src/cpu/x86/vm/assembler_x86.cpp

Tue, 12 Jun 2012 10:02:36 +0200

author
roland
date
Tue, 12 Jun 2012 10:02:36 +0200
changeset 3844
e7715c222897
parent 3790
e2961d14584b
child 3882
8c92982cbbc4
permissions
-rw-r--r--

7174532: jdk/test/java/lang/Math/WorstCaseTests.java failing on x86
Summary: increase precision on x86 for the steps of the computation of exp and pow.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // Force generation of a 4 byte immediate value even if it fits into 8bit
   240 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   241   assert(isByte(op1) && isByte(op2), "wrong opcode");
   242   assert((op1 & 0x01) == 1, "should be 32bit operation");
   243   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   244   emit_byte(op1);
   245   emit_byte(op2 | encode(dst));
   246   emit_long(imm32);
   247 }
   249 // immediate-to-memory forms
   250 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   251   assert((op1 & 0x01) == 1, "should be 32bit operation");
   252   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   253   if (is8bit(imm32)) {
   254     emit_byte(op1 | 0x02); // set sign bit
   255     emit_operand(rm, adr, 1);
   256     emit_byte(imm32 & 0xFF);
   257   } else {
   258     emit_byte(op1);
   259     emit_operand(rm, adr, 4);
   260     emit_long(imm32);
   261   }
   262 }
   264 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   265   LP64_ONLY(ShouldNotReachHere());
   266   assert(isByte(op1) && isByte(op2), "wrong opcode");
   267   assert((op1 & 0x01) == 1, "should be 32bit operation");
   268   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   269   InstructionMark im(this);
   270   emit_byte(op1);
   271   emit_byte(op2 | encode(dst));
   272   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   273 }
   276 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   277   assert(isByte(op1) && isByte(op2), "wrong opcode");
   278   emit_byte(op1);
   279   emit_byte(op2 | encode(dst) << 3 | encode(src));
   280 }
   283 void Assembler::emit_operand(Register reg, Register base, Register index,
   284                              Address::ScaleFactor scale, int disp,
   285                              RelocationHolder const& rspec,
   286                              int rip_relative_correction) {
   287   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   289   // Encode the registers as needed in the fields they are used in
   291   int regenc = encode(reg) << 3;
   292   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   293   int baseenc = base->is_valid() ? encode(base) : 0;
   295   if (base->is_valid()) {
   296     if (index->is_valid()) {
   297       assert(scale != Address::no_scale, "inconsistent address");
   298       // [base + index*scale + disp]
   299       if (disp == 0 && rtype == relocInfo::none  &&
   300           base != rbp LP64_ONLY(&& base != r13)) {
   301         // [base + index*scale]
   302         // [00 reg 100][ss index base]
   303         assert(index != rsp, "illegal addressing mode");
   304         emit_byte(0x04 | regenc);
   305         emit_byte(scale << 6 | indexenc | baseenc);
   306       } else if (is8bit(disp) && rtype == relocInfo::none) {
   307         // [base + index*scale + imm8]
   308         // [01 reg 100][ss index base] imm8
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_byte(0x44 | regenc);
   311         emit_byte(scale << 6 | indexenc | baseenc);
   312         emit_byte(disp & 0xFF);
   313       } else {
   314         // [base + index*scale + disp32]
   315         // [10 reg 100][ss index base] disp32
   316         assert(index != rsp, "illegal addressing mode");
   317         emit_byte(0x84 | regenc);
   318         emit_byte(scale << 6 | indexenc | baseenc);
   319         emit_data(disp, rspec, disp32_operand);
   320       }
   321     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   322       // [rsp + disp]
   323       if (disp == 0 && rtype == relocInfo::none) {
   324         // [rsp]
   325         // [00 reg 100][00 100 100]
   326         emit_byte(0x04 | regenc);
   327         emit_byte(0x24);
   328       } else if (is8bit(disp) && rtype == relocInfo::none) {
   329         // [rsp + imm8]
   330         // [01 reg 100][00 100 100] disp8
   331         emit_byte(0x44 | regenc);
   332         emit_byte(0x24);
   333         emit_byte(disp & 0xFF);
   334       } else {
   335         // [rsp + imm32]
   336         // [10 reg 100][00 100 100] disp32
   337         emit_byte(0x84 | regenc);
   338         emit_byte(0x24);
   339         emit_data(disp, rspec, disp32_operand);
   340       }
   341     } else {
   342       // [base + disp]
   343       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   344       if (disp == 0 && rtype == relocInfo::none &&
   345           base != rbp LP64_ONLY(&& base != r13)) {
   346         // [base]
   347         // [00 reg base]
   348         emit_byte(0x00 | regenc | baseenc);
   349       } else if (is8bit(disp) && rtype == relocInfo::none) {
   350         // [base + disp8]
   351         // [01 reg base] disp8
   352         emit_byte(0x40 | regenc | baseenc);
   353         emit_byte(disp & 0xFF);
   354       } else {
   355         // [base + disp32]
   356         // [10 reg base] disp32
   357         emit_byte(0x80 | regenc | baseenc);
   358         emit_data(disp, rspec, disp32_operand);
   359       }
   360     }
   361   } else {
   362     if (index->is_valid()) {
   363       assert(scale != Address::no_scale, "inconsistent address");
   364       // [index*scale + disp]
   365       // [00 reg 100][ss index 101] disp32
   366       assert(index != rsp, "illegal addressing mode");
   367       emit_byte(0x04 | regenc);
   368       emit_byte(scale << 6 | indexenc | 0x05);
   369       emit_data(disp, rspec, disp32_operand);
   370     } else if (rtype != relocInfo::none ) {
   371       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   372       // [00 000 101] disp32
   374       emit_byte(0x05 | regenc);
   375       // Note that the RIP-rel. correction applies to the generated
   376       // disp field, but _not_ to the target address in the rspec.
   378       // disp was created by converting the target address minus the pc
   379       // at the start of the instruction. That needs more correction here.
   380       // intptr_t disp = target - next_ip;
   381       assert(inst_mark() != NULL, "must be inside InstructionMark");
   382       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   383       int64_t adjusted = disp;
   384       // Do rip-rel adjustment for 64bit
   385       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   386       assert(is_simm32(adjusted),
   387              "must be 32bit offset (RIP relative address)");
   388       emit_data((int32_t) adjusted, rspec, disp32_operand);
   390     } else {
   391       // 32bit never did this, did everything as the rip-rel/disp code above
   392       // [disp] ABSOLUTE
   393       // [00 reg 100][00 100 101] disp32
   394       emit_byte(0x04 | regenc);
   395       emit_byte(0x25);
   396       emit_data(disp, rspec, disp32_operand);
   397     }
   398   }
   399 }
   401 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   402                              Address::ScaleFactor scale, int disp,
   403                              RelocationHolder const& rspec) {
   404   emit_operand((Register)reg, base, index, scale, disp, rspec);
   405 }
   407 // Secret local extension to Assembler::WhichOperand:
   408 #define end_pc_operand (_WhichOperand_limit)
   410 address Assembler::locate_operand(address inst, WhichOperand which) {
   411   // Decode the given instruction, and return the address of
   412   // an embedded 32-bit operand word.
   414   // If "which" is disp32_operand, selects the displacement portion
   415   // of an effective address specifier.
   416   // If "which" is imm64_operand, selects the trailing immediate constant.
   417   // If "which" is call32_operand, selects the displacement of a call or jump.
   418   // Caller is responsible for ensuring that there is such an operand,
   419   // and that it is 32/64 bits wide.
   421   // If "which" is end_pc_operand, find the end of the instruction.
   423   address ip = inst;
   424   bool is_64bit = false;
   426   debug_only(bool has_disp32 = false);
   427   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   429   again_after_prefix:
   430   switch (0xFF & *ip++) {
   432   // These convenience macros generate groups of "case" labels for the switch.
   433 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   434 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   435              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   436 #define REP16(x) REP8((x)+0): \
   437               case REP8((x)+8)
   439   case CS_segment:
   440   case SS_segment:
   441   case DS_segment:
   442   case ES_segment:
   443   case FS_segment:
   444   case GS_segment:
   445     // Seems dubious
   446     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   447     assert(ip == inst+1, "only one prefix allowed");
   448     goto again_after_prefix;
   450   case 0x67:
   451   case REX:
   452   case REX_B:
   453   case REX_X:
   454   case REX_XB:
   455   case REX_R:
   456   case REX_RB:
   457   case REX_RX:
   458   case REX_RXB:
   459     NOT_LP64(assert(false, "64bit prefixes"));
   460     goto again_after_prefix;
   462   case REX_W:
   463   case REX_WB:
   464   case REX_WX:
   465   case REX_WXB:
   466   case REX_WR:
   467   case REX_WRB:
   468   case REX_WRX:
   469   case REX_WRXB:
   470     NOT_LP64(assert(false, "64bit prefixes"));
   471     is_64bit = true;
   472     goto again_after_prefix;
   474   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   475   case 0x88: // movb a, r
   476   case 0x89: // movl a, r
   477   case 0x8A: // movb r, a
   478   case 0x8B: // movl r, a
   479   case 0x8F: // popl a
   480     debug_only(has_disp32 = true);
   481     break;
   483   case 0x68: // pushq #32
   484     if (which == end_pc_operand) {
   485       return ip + 4;
   486     }
   487     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   488     return ip;                  // not produced by emit_operand
   490   case 0x66: // movw ... (size prefix)
   491     again_after_size_prefix2:
   492     switch (0xFF & *ip++) {
   493     case REX:
   494     case REX_B:
   495     case REX_X:
   496     case REX_XB:
   497     case REX_R:
   498     case REX_RB:
   499     case REX_RX:
   500     case REX_RXB:
   501     case REX_W:
   502     case REX_WB:
   503     case REX_WX:
   504     case REX_WXB:
   505     case REX_WR:
   506     case REX_WRB:
   507     case REX_WRX:
   508     case REX_WRXB:
   509       NOT_LP64(assert(false, "64bit prefix found"));
   510       goto again_after_size_prefix2;
   511     case 0x8B: // movw r, a
   512     case 0x89: // movw a, r
   513       debug_only(has_disp32 = true);
   514       break;
   515     case 0xC7: // movw a, #16
   516       debug_only(has_disp32 = true);
   517       tail_size = 2;  // the imm16
   518       break;
   519     case 0x0F: // several SSE/SSE2 variants
   520       ip--;    // reparse the 0x0F
   521       goto again_after_prefix;
   522     default:
   523       ShouldNotReachHere();
   524     }
   525     break;
   527   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   528     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   529     // these asserts are somewhat nonsensical
   530 #ifndef _LP64
   531     assert(which == imm_operand || which == disp32_operand,
   532            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   533 #else
   534     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   535            which == narrow_oop_operand && !is_64bit,
   536            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   537 #endif // _LP64
   538     return ip;
   540   case 0x69: // imul r, a, #32
   541   case 0xC7: // movl a, #32(oop?)
   542     tail_size = 4;
   543     debug_only(has_disp32 = true); // has both kinds of operands!
   544     break;
   546   case 0x0F: // movx..., etc.
   547     switch (0xFF & *ip++) {
   548     case 0x3A: // pcmpestri
   549       tail_size = 1;
   550     case 0x38: // ptest, pmovzxbw
   551       ip++; // skip opcode
   552       debug_only(has_disp32 = true); // has both kinds of operands!
   553       break;
   555     case 0x70: // pshufd r, r/a, #8
   556       debug_only(has_disp32 = true); // has both kinds of operands!
   557     case 0x73: // psrldq r, #8
   558       tail_size = 1;
   559       break;
   561     case 0x12: // movlps
   562     case 0x28: // movaps
   563     case 0x2E: // ucomiss
   564     case 0x2F: // comiss
   565     case 0x54: // andps
   566     case 0x55: // andnps
   567     case 0x56: // orps
   568     case 0x57: // xorps
   569     case 0x6E: // movd
   570     case 0x7E: // movd
   571     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   572       debug_only(has_disp32 = true);
   573       break;
   575     case 0xAD: // shrd r, a, %cl
   576     case 0xAF: // imul r, a
   577     case 0xBE: // movsbl r, a (movsxb)
   578     case 0xBF: // movswl r, a (movsxw)
   579     case 0xB6: // movzbl r, a (movzxb)
   580     case 0xB7: // movzwl r, a (movzxw)
   581     case REP16(0x40): // cmovl cc, r, a
   582     case 0xB0: // cmpxchgb
   583     case 0xB1: // cmpxchg
   584     case 0xC1: // xaddl
   585     case 0xC7: // cmpxchg8
   586     case REP16(0x90): // setcc a
   587       debug_only(has_disp32 = true);
   588       // fall out of the switch to decode the address
   589       break;
   591     case 0xC4: // pinsrw r, a, #8
   592       debug_only(has_disp32 = true);
   593     case 0xC5: // pextrw r, r, #8
   594       tail_size = 1;  // the imm8
   595       break;
   597     case 0xAC: // shrd r, a, #8
   598       debug_only(has_disp32 = true);
   599       tail_size = 1;  // the imm8
   600       break;
   602     case REP16(0x80): // jcc rdisp32
   603       if (which == end_pc_operand)  return ip + 4;
   604       assert(which == call32_operand, "jcc has no disp32 or imm");
   605       return ip;
   606     default:
   607       ShouldNotReachHere();
   608     }
   609     break;
   611   case 0x81: // addl a, #32; addl r, #32
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     // on 32bit in the case of cmpl, the imm might be an oop
   614     tail_size = 4;
   615     debug_only(has_disp32 = true); // has both kinds of operands!
   616     break;
   618   case 0x83: // addl a, #8; addl r, #8
   619     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   620     debug_only(has_disp32 = true); // has both kinds of operands!
   621     tail_size = 1;
   622     break;
   624   case 0x9B:
   625     switch (0xFF & *ip++) {
   626     case 0xD9: // fnstcw a
   627       debug_only(has_disp32 = true);
   628       break;
   629     default:
   630       ShouldNotReachHere();
   631     }
   632     break;
   634   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   635   case REP4(0x10): // adc...
   636   case REP4(0x20): // and...
   637   case REP4(0x30): // xor...
   638   case REP4(0x08): // or...
   639   case REP4(0x18): // sbb...
   640   case REP4(0x28): // sub...
   641   case 0xF7: // mull a
   642   case 0x8D: // lea r, a
   643   case 0x87: // xchg r, a
   644   case REP4(0x38): // cmp...
   645   case 0x85: // test r, a
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     break;
   649   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   650   case 0xC6: // movb a, #8
   651   case 0x80: // cmpb a, #8
   652   case 0x6B: // imul r, a, #8
   653     debug_only(has_disp32 = true); // has both kinds of operands!
   654     tail_size = 1; // the imm8
   655     break;
   657   case 0xC4: // VEX_3bytes
   658   case 0xC5: // VEX_2bytes
   659     assert((UseAVX > 0), "shouldn't have VEX prefix");
   660     assert(ip == inst+1, "no prefixes allowed");
   661     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   662     // but they have prefix 0x0F and processed when 0x0F processed above.
   663     //
   664     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   665     // instructions (these instructions are not supported in 64-bit mode).
   666     // To distinguish them bits [7:6] are set in the VEX second byte since
   667     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   668     // those VEX bits REX and vvvv bits are inverted.
   669     //
   670     // Fortunately C2 doesn't generate these instructions so we don't need
   671     // to check for them in product version.
   673     // Check second byte
   674     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   676     // First byte
   677     if ((0xFF & *inst) == VEX_3bytes) {
   678       ip++; // third byte
   679       is_64bit = ((VEX_W & *ip) == VEX_W);
   680     }
   681     ip++; // opcode
   682     // To find the end of instruction (which == end_pc_operand).
   683     switch (0xFF & *ip) {
   684     case 0x61: // pcmpestri r, r/a, #8
   685     case 0x70: // pshufd r, r/a, #8
   686     case 0x73: // psrldq r, #8
   687       tail_size = 1;  // the imm8
   688       break;
   689     default:
   690       break;
   691     }
   692     ip++; // skip opcode
   693     debug_only(has_disp32 = true); // has both kinds of operands!
   694     break;
   696   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   697   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   698   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   699   case 0xDD: // fld_d a; fst_d a; fstp_d a
   700   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   701   case 0xDF: // fild_d a; fistp_d a
   702   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   703   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   704   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   705     debug_only(has_disp32 = true);
   706     break;
   708   case 0xE8: // call rdisp32
   709   case 0xE9: // jmp  rdisp32
   710     if (which == end_pc_operand)  return ip + 4;
   711     assert(which == call32_operand, "call has no disp32 or imm");
   712     return ip;
   714   case 0xF0:                    // Lock
   715     assert(os::is_MP(), "only on MP");
   716     goto again_after_prefix;
   718   case 0xF3:                    // For SSE
   719   case 0xF2:                    // For SSE2
   720     switch (0xFF & *ip++) {
   721     case REX:
   722     case REX_B:
   723     case REX_X:
   724     case REX_XB:
   725     case REX_R:
   726     case REX_RB:
   727     case REX_RX:
   728     case REX_RXB:
   729     case REX_W:
   730     case REX_WB:
   731     case REX_WX:
   732     case REX_WXB:
   733     case REX_WR:
   734     case REX_WRB:
   735     case REX_WRX:
   736     case REX_WRXB:
   737       NOT_LP64(assert(false, "found 64bit prefix"));
   738       ip++;
   739     default:
   740       ip++;
   741     }
   742     debug_only(has_disp32 = true); // has both kinds of operands!
   743     break;
   745   default:
   746     ShouldNotReachHere();
   748 #undef REP8
   749 #undef REP16
   750   }
   752   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   753 #ifdef _LP64
   754   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   755 #else
   756   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   757   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   758 #endif // LP64
   759   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   761   // parse the output of emit_operand
   762   int op2 = 0xFF & *ip++;
   763   int base = op2 & 0x07;
   764   int op3 = -1;
   765   const int b100 = 4;
   766   const int b101 = 5;
   767   if (base == b100 && (op2 >> 6) != 3) {
   768     op3 = 0xFF & *ip++;
   769     base = op3 & 0x07;   // refetch the base
   770   }
   771   // now ip points at the disp (if any)
   773   switch (op2 >> 6) {
   774   case 0:
   775     // [00 reg  100][ss index base]
   776     // [00 reg  100][00   100  esp]
   777     // [00 reg base]
   778     // [00 reg  100][ss index  101][disp32]
   779     // [00 reg  101]               [disp32]
   781     if (base == b101) {
   782       if (which == disp32_operand)
   783         return ip;              // caller wants the disp32
   784       ip += 4;                  // skip the disp32
   785     }
   786     break;
   788   case 1:
   789     // [01 reg  100][ss index base][disp8]
   790     // [01 reg  100][00   100  esp][disp8]
   791     // [01 reg base]               [disp8]
   792     ip += 1;                    // skip the disp8
   793     break;
   795   case 2:
   796     // [10 reg  100][ss index base][disp32]
   797     // [10 reg  100][00   100  esp][disp32]
   798     // [10 reg base]               [disp32]
   799     if (which == disp32_operand)
   800       return ip;                // caller wants the disp32
   801     ip += 4;                    // skip the disp32
   802     break;
   804   case 3:
   805     // [11 reg base]  (not a memory addressing mode)
   806     break;
   807   }
   809   if (which == end_pc_operand) {
   810     return ip + tail_size;
   811   }
   813 #ifdef _LP64
   814   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   815 #else
   816   assert(which == imm_operand, "instruction has only an imm field");
   817 #endif // LP64
   818   return ip;
   819 }
   821 address Assembler::locate_next_instruction(address inst) {
   822   // Secretly share code with locate_operand:
   823   return locate_operand(inst, end_pc_operand);
   824 }
   827 #ifdef ASSERT
   828 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   829   address inst = inst_mark();
   830   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   831   address opnd;
   833   Relocation* r = rspec.reloc();
   834   if (r->type() == relocInfo::none) {
   835     return;
   836   } else if (r->is_call() || format == call32_operand) {
   837     // assert(format == imm32_operand, "cannot specify a nonzero format");
   838     opnd = locate_operand(inst, call32_operand);
   839   } else if (r->is_data()) {
   840     assert(format == imm_operand || format == disp32_operand
   841            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   842     opnd = locate_operand(inst, (WhichOperand)format);
   843   } else {
   844     assert(format == imm_operand, "cannot specify a format");
   845     return;
   846   }
   847   assert(opnd == pc(), "must put operand where relocs can find it");
   848 }
   849 #endif // ASSERT
   851 void Assembler::emit_operand32(Register reg, Address adr) {
   852   assert(reg->encoding() < 8, "no extended registers");
   853   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   854   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   855                adr._rspec);
   856 }
   858 void Assembler::emit_operand(Register reg, Address adr,
   859                              int rip_relative_correction) {
   860   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   861                adr._rspec,
   862                rip_relative_correction);
   863 }
   865 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   866   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   867                adr._rspec);
   868 }
   870 // MMX operations
   871 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   872   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   873   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   874 }
   876 // work around gcc (3.2.1-7a) bug
   877 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   878   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   879   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   880 }
   883 void Assembler::emit_farith(int b1, int b2, int i) {
   884   assert(isByte(b1) && isByte(b2), "wrong opcode");
   885   assert(0 <= i &&  i < 8, "illegal stack offset");
   886   emit_byte(b1);
   887   emit_byte(b2 + i);
   888 }
   891 // Now the Assembler instructions (identical for 32/64 bits)
   893 void Assembler::adcl(Address dst, int32_t imm32) {
   894   InstructionMark im(this);
   895   prefix(dst);
   896   emit_arith_operand(0x81, rdx, dst, imm32);
   897 }
   899 void Assembler::adcl(Address dst, Register src) {
   900   InstructionMark im(this);
   901   prefix(dst, src);
   902   emit_byte(0x11);
   903   emit_operand(src, dst);
   904 }
   906 void Assembler::adcl(Register dst, int32_t imm32) {
   907   prefix(dst);
   908   emit_arith(0x81, 0xD0, dst, imm32);
   909 }
   911 void Assembler::adcl(Register dst, Address src) {
   912   InstructionMark im(this);
   913   prefix(src, dst);
   914   emit_byte(0x13);
   915   emit_operand(dst, src);
   916 }
   918 void Assembler::adcl(Register dst, Register src) {
   919   (void) prefix_and_encode(dst->encoding(), src->encoding());
   920   emit_arith(0x13, 0xC0, dst, src);
   921 }
   923 void Assembler::addl(Address dst, int32_t imm32) {
   924   InstructionMark im(this);
   925   prefix(dst);
   926   emit_arith_operand(0x81, rax, dst, imm32);
   927 }
   929 void Assembler::addl(Address dst, Register src) {
   930   InstructionMark im(this);
   931   prefix(dst, src);
   932   emit_byte(0x01);
   933   emit_operand(src, dst);
   934 }
   936 void Assembler::addl(Register dst, int32_t imm32) {
   937   prefix(dst);
   938   emit_arith(0x81, 0xC0, dst, imm32);
   939 }
   941 void Assembler::addl(Register dst, Address src) {
   942   InstructionMark im(this);
   943   prefix(src, dst);
   944   emit_byte(0x03);
   945   emit_operand(dst, src);
   946 }
   948 void Assembler::addl(Register dst, Register src) {
   949   (void) prefix_and_encode(dst->encoding(), src->encoding());
   950   emit_arith(0x03, 0xC0, dst, src);
   951 }
   953 void Assembler::addr_nop_4() {
   954   assert(UseAddressNop, "no CPU support");
   955   // 4 bytes: NOP DWORD PTR [EAX+0]
   956   emit_byte(0x0F);
   957   emit_byte(0x1F);
   958   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   959   emit_byte(0);    // 8-bits offset (1 byte)
   960 }
   962 void Assembler::addr_nop_5() {
   963   assert(UseAddressNop, "no CPU support");
   964   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   965   emit_byte(0x0F);
   966   emit_byte(0x1F);
   967   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   968   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   969   emit_byte(0);    // 8-bits offset (1 byte)
   970 }
   972 void Assembler::addr_nop_7() {
   973   assert(UseAddressNop, "no CPU support");
   974   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   975   emit_byte(0x0F);
   976   emit_byte(0x1F);
   977   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   978   emit_long(0);    // 32-bits offset (4 bytes)
   979 }
   981 void Assembler::addr_nop_8() {
   982   assert(UseAddressNop, "no CPU support");
   983   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   984   emit_byte(0x0F);
   985   emit_byte(0x1F);
   986   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   987   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   988   emit_long(0);    // 32-bits offset (4 bytes)
   989 }
   991 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   993   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
   994   emit_byte(0x58);
   995   emit_byte(0xC0 | encode);
   996 }
   998 void Assembler::addsd(XMMRegister dst, Address src) {
   999   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1000   InstructionMark im(this);
  1001   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1002   emit_byte(0x58);
  1003   emit_operand(dst, src);
  1006 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1007   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1008   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1009   emit_byte(0x58);
  1010   emit_byte(0xC0 | encode);
  1013 void Assembler::addss(XMMRegister dst, Address src) {
  1014   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1015   InstructionMark im(this);
  1016   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1017   emit_byte(0x58);
  1018   emit_operand(dst, src);
  1021 void Assembler::andl(Address dst, int32_t imm32) {
  1022   InstructionMark im(this);
  1023   prefix(dst);
  1024   emit_byte(0x81);
  1025   emit_operand(rsp, dst, 4);
  1026   emit_long(imm32);
  1029 void Assembler::andl(Register dst, int32_t imm32) {
  1030   prefix(dst);
  1031   emit_arith(0x81, 0xE0, dst, imm32);
  1034 void Assembler::andl(Register dst, Address src) {
  1035   InstructionMark im(this);
  1036   prefix(src, dst);
  1037   emit_byte(0x23);
  1038   emit_operand(dst, src);
  1041 void Assembler::andl(Register dst, Register src) {
  1042   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1043   emit_arith(0x23, 0xC0, dst, src);
  1046 void Assembler::andpd(XMMRegister dst, Address src) {
  1047   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1048   InstructionMark im(this);
  1049   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1050   emit_byte(0x54);
  1051   emit_operand(dst, src);
  1054 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  1055   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1056   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  1057   emit_byte(0x54);
  1058   emit_byte(0xC0 | encode);
  1061 void Assembler::andps(XMMRegister dst, Address src) {
  1062   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1063   InstructionMark im(this);
  1064   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  1065   emit_byte(0x54);
  1066   emit_operand(dst, src);
  1069 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  1070   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1071   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  1072   emit_byte(0x54);
  1073   emit_byte(0xC0 | encode);
  1076 void Assembler::bsfl(Register dst, Register src) {
  1077   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1078   emit_byte(0x0F);
  1079   emit_byte(0xBC);
  1080   emit_byte(0xC0 | encode);
  1083 void Assembler::bsrl(Register dst, Register src) {
  1084   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1085   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1086   emit_byte(0x0F);
  1087   emit_byte(0xBD);
  1088   emit_byte(0xC0 | encode);
  1091 void Assembler::bswapl(Register reg) { // bswap
  1092   int encode = prefix_and_encode(reg->encoding());
  1093   emit_byte(0x0F);
  1094   emit_byte(0xC8 | encode);
  1097 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1098   // suspect disp32 is always good
  1099   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1101   if (L.is_bound()) {
  1102     const int long_size = 5;
  1103     int offs = (int)( target(L) - pc() );
  1104     assert(offs <= 0, "assembler error");
  1105     InstructionMark im(this);
  1106     // 1110 1000 #32-bit disp
  1107     emit_byte(0xE8);
  1108     emit_data(offs - long_size, rtype, operand);
  1109   } else {
  1110     InstructionMark im(this);
  1111     // 1110 1000 #32-bit disp
  1112     L.add_patch_at(code(), locator());
  1114     emit_byte(0xE8);
  1115     emit_data(int(0), rtype, operand);
  1119 void Assembler::call(Register dst) {
  1120   int encode = prefix_and_encode(dst->encoding());
  1121   emit_byte(0xFF);
  1122   emit_byte(0xD0 | encode);
  1126 void Assembler::call(Address adr) {
  1127   InstructionMark im(this);
  1128   prefix(adr);
  1129   emit_byte(0xFF);
  1130   emit_operand(rdx, adr);
  1133 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1134   assert(entry != NULL, "call most probably wrong");
  1135   InstructionMark im(this);
  1136   emit_byte(0xE8);
  1137   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1138   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1139   // Technically, should use call32_operand, but this format is
  1140   // implied by the fact that we're emitting a call instruction.
  1142   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1143   emit_data((int) disp, rspec, operand);
  1146 void Assembler::cdql() {
  1147   emit_byte(0x99);
  1150 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1151   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1152   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1153   emit_byte(0x0F);
  1154   emit_byte(0x40 | cc);
  1155   emit_byte(0xC0 | encode);
  1159 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1160   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1161   prefix(src, dst);
  1162   emit_byte(0x0F);
  1163   emit_byte(0x40 | cc);
  1164   emit_operand(dst, src);
  1167 void Assembler::cmpb(Address dst, int imm8) {
  1168   InstructionMark im(this);
  1169   prefix(dst);
  1170   emit_byte(0x80);
  1171   emit_operand(rdi, dst, 1);
  1172   emit_byte(imm8);
  1175 void Assembler::cmpl(Address dst, int32_t imm32) {
  1176   InstructionMark im(this);
  1177   prefix(dst);
  1178   emit_byte(0x81);
  1179   emit_operand(rdi, dst, 4);
  1180   emit_long(imm32);
  1183 void Assembler::cmpl(Register dst, int32_t imm32) {
  1184   prefix(dst);
  1185   emit_arith(0x81, 0xF8, dst, imm32);
  1188 void Assembler::cmpl(Register dst, Register src) {
  1189   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1190   emit_arith(0x3B, 0xC0, dst, src);
  1194 void Assembler::cmpl(Register dst, Address  src) {
  1195   InstructionMark im(this);
  1196   prefix(src, dst);
  1197   emit_byte(0x3B);
  1198   emit_operand(dst, src);
  1201 void Assembler::cmpw(Address dst, int imm16) {
  1202   InstructionMark im(this);
  1203   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1204   emit_byte(0x66);
  1205   emit_byte(0x81);
  1206   emit_operand(rdi, dst, 2);
  1207   emit_word(imm16);
  1210 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1211 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1212 // The ZF is set if the compared values were equal, and cleared otherwise.
  1213 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1214   if (Atomics & 2) {
  1215      // caveat: no instructionmark, so this isn't relocatable.
  1216      // Emit a synthetic, non-atomic, CAS equivalent.
  1217      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1218      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1219      cmpl(rax, adr);
  1220      movl(rax, adr);
  1221      if (reg != rax) {
  1222         Label L ;
  1223         jcc(Assembler::notEqual, L);
  1224         movl(adr, reg);
  1225         bind(L);
  1227   } else {
  1228      InstructionMark im(this);
  1229      prefix(adr, reg);
  1230      emit_byte(0x0F);
  1231      emit_byte(0xB1);
  1232      emit_operand(reg, adr);
  1236 void Assembler::comisd(XMMRegister dst, Address src) {
  1237   // NOTE: dbx seems to decode this as comiss even though the
  1238   // 0x66 is there. Strangly ucomisd comes out correct
  1239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1240   InstructionMark im(this);
  1241   simd_prefix(dst, src, VEX_SIMD_66);
  1242   emit_byte(0x2F);
  1243   emit_operand(dst, src);
  1246 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1248   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1249   emit_byte(0x2F);
  1250   emit_byte(0xC0 | encode);
  1253 void Assembler::comiss(XMMRegister dst, Address src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1255   InstructionMark im(this);
  1256   simd_prefix(dst, src, VEX_SIMD_NONE);
  1257   emit_byte(0x2F);
  1258   emit_operand(dst, src);
  1261 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1262   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1263   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1264   emit_byte(0x2F);
  1265   emit_byte(0xC0 | encode);
  1268 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1270   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1271   emit_byte(0xE6);
  1272   emit_byte(0xC0 | encode);
  1275 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1277   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1278   emit_byte(0x5B);
  1279   emit_byte(0xC0 | encode);
  1282 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1284   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1285   emit_byte(0x5A);
  1286   emit_byte(0xC0 | encode);
  1289 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1290   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1291   InstructionMark im(this);
  1292   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1293   emit_byte(0x5A);
  1294   emit_operand(dst, src);
  1297 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1298   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1300   emit_byte(0x2A);
  1301   emit_byte(0xC0 | encode);
  1304 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1306   InstructionMark im(this);
  1307   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1308   emit_byte(0x2A);
  1309   emit_operand(dst, src);
  1312 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1314   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1315   emit_byte(0x2A);
  1316   emit_byte(0xC0 | encode);
  1319 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1320   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1321   InstructionMark im(this);
  1322   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1323   emit_byte(0x2A);
  1324   emit_operand(dst, src);
  1327 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1329   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1330   emit_byte(0x5A);
  1331   emit_byte(0xC0 | encode);
  1334 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1336   InstructionMark im(this);
  1337   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1338   emit_byte(0x5A);
  1339   emit_operand(dst, src);
  1343 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1345   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1346   emit_byte(0x2C);
  1347   emit_byte(0xC0 | encode);
  1350 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1351   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1352   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1353   emit_byte(0x2C);
  1354   emit_byte(0xC0 | encode);
  1357 void Assembler::decl(Address dst) {
  1358   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1359   InstructionMark im(this);
  1360   prefix(dst);
  1361   emit_byte(0xFF);
  1362   emit_operand(rcx, dst);
  1365 void Assembler::divsd(XMMRegister dst, Address src) {
  1366   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1367   InstructionMark im(this);
  1368   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1369   emit_byte(0x5E);
  1370   emit_operand(dst, src);
  1373 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1375   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1376   emit_byte(0x5E);
  1377   emit_byte(0xC0 | encode);
  1380 void Assembler::divss(XMMRegister dst, Address src) {
  1381   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1382   InstructionMark im(this);
  1383   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1384   emit_byte(0x5E);
  1385   emit_operand(dst, src);
  1388 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1390   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1391   emit_byte(0x5E);
  1392   emit_byte(0xC0 | encode);
  1395 void Assembler::emms() {
  1396   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1397   emit_byte(0x0F);
  1398   emit_byte(0x77);
  1401 void Assembler::hlt() {
  1402   emit_byte(0xF4);
  1405 void Assembler::idivl(Register src) {
  1406   int encode = prefix_and_encode(src->encoding());
  1407   emit_byte(0xF7);
  1408   emit_byte(0xF8 | encode);
  1411 void Assembler::divl(Register src) { // Unsigned
  1412   int encode = prefix_and_encode(src->encoding());
  1413   emit_byte(0xF7);
  1414   emit_byte(0xF0 | encode);
  1417 void Assembler::imull(Register dst, Register src) {
  1418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1419   emit_byte(0x0F);
  1420   emit_byte(0xAF);
  1421   emit_byte(0xC0 | encode);
  1425 void Assembler::imull(Register dst, Register src, int value) {
  1426   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1427   if (is8bit(value)) {
  1428     emit_byte(0x6B);
  1429     emit_byte(0xC0 | encode);
  1430     emit_byte(value & 0xFF);
  1431   } else {
  1432     emit_byte(0x69);
  1433     emit_byte(0xC0 | encode);
  1434     emit_long(value);
  1438 void Assembler::incl(Address dst) {
  1439   // Don't use it directly. Use MacroAssembler::increment() instead.
  1440   InstructionMark im(this);
  1441   prefix(dst);
  1442   emit_byte(0xFF);
  1443   emit_operand(rax, dst);
  1446 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1447   InstructionMark im(this);
  1448   assert((0 <= cc) && (cc < 16), "illegal cc");
  1449   if (L.is_bound()) {
  1450     address dst = target(L);
  1451     assert(dst != NULL, "jcc most probably wrong");
  1453     const int short_size = 2;
  1454     const int long_size = 6;
  1455     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1456     if (maybe_short && is8bit(offs - short_size)) {
  1457       // 0111 tttn #8-bit disp
  1458       emit_byte(0x70 | cc);
  1459       emit_byte((offs - short_size) & 0xFF);
  1460     } else {
  1461       // 0000 1111 1000 tttn #32-bit disp
  1462       assert(is_simm32(offs - long_size),
  1463              "must be 32bit offset (call4)");
  1464       emit_byte(0x0F);
  1465       emit_byte(0x80 | cc);
  1466       emit_long(offs - long_size);
  1468   } else {
  1469     // Note: could eliminate cond. jumps to this jump if condition
  1470     //       is the same however, seems to be rather unlikely case.
  1471     // Note: use jccb() if label to be bound is very close to get
  1472     //       an 8-bit displacement
  1473     L.add_patch_at(code(), locator());
  1474     emit_byte(0x0F);
  1475     emit_byte(0x80 | cc);
  1476     emit_long(0);
  1480 void Assembler::jccb(Condition cc, Label& L) {
  1481   if (L.is_bound()) {
  1482     const int short_size = 2;
  1483     address entry = target(L);
  1484 #ifdef ASSERT
  1485     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1486     intptr_t delta = short_branch_delta();
  1487     if (delta != 0) {
  1488       dist += (dist < 0 ? (-delta) :delta);
  1490     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1491 #endif
  1492     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1493     // 0111 tttn #8-bit disp
  1494     emit_byte(0x70 | cc);
  1495     emit_byte((offs - short_size) & 0xFF);
  1496   } else {
  1497     InstructionMark im(this);
  1498     L.add_patch_at(code(), locator());
  1499     emit_byte(0x70 | cc);
  1500     emit_byte(0);
  1504 void Assembler::jmp(Address adr) {
  1505   InstructionMark im(this);
  1506   prefix(adr);
  1507   emit_byte(0xFF);
  1508   emit_operand(rsp, adr);
  1511 void Assembler::jmp(Label& L, bool maybe_short) {
  1512   if (L.is_bound()) {
  1513     address entry = target(L);
  1514     assert(entry != NULL, "jmp most probably wrong");
  1515     InstructionMark im(this);
  1516     const int short_size = 2;
  1517     const int long_size = 5;
  1518     intptr_t offs = entry - _code_pos;
  1519     if (maybe_short && is8bit(offs - short_size)) {
  1520       emit_byte(0xEB);
  1521       emit_byte((offs - short_size) & 0xFF);
  1522     } else {
  1523       emit_byte(0xE9);
  1524       emit_long(offs - long_size);
  1526   } else {
  1527     // By default, forward jumps are always 32-bit displacements, since
  1528     // we can't yet know where the label will be bound.  If you're sure that
  1529     // the forward jump will not run beyond 256 bytes, use jmpb to
  1530     // force an 8-bit displacement.
  1531     InstructionMark im(this);
  1532     L.add_patch_at(code(), locator());
  1533     emit_byte(0xE9);
  1534     emit_long(0);
  1538 void Assembler::jmp(Register entry) {
  1539   int encode = prefix_and_encode(entry->encoding());
  1540   emit_byte(0xFF);
  1541   emit_byte(0xE0 | encode);
  1544 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1545   InstructionMark im(this);
  1546   emit_byte(0xE9);
  1547   assert(dest != NULL, "must have a target");
  1548   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1549   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1550   emit_data(disp, rspec.reloc(), call32_operand);
  1553 void Assembler::jmpb(Label& L) {
  1554   if (L.is_bound()) {
  1555     const int short_size = 2;
  1556     address entry = target(L);
  1557     assert(entry != NULL, "jmp most probably wrong");
  1558 #ifdef ASSERT
  1559     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1560     intptr_t delta = short_branch_delta();
  1561     if (delta != 0) {
  1562       dist += (dist < 0 ? (-delta) :delta);
  1564     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1565 #endif
  1566     intptr_t offs = entry - _code_pos;
  1567     emit_byte(0xEB);
  1568     emit_byte((offs - short_size) & 0xFF);
  1569   } else {
  1570     InstructionMark im(this);
  1571     L.add_patch_at(code(), locator());
  1572     emit_byte(0xEB);
  1573     emit_byte(0);
  1577 void Assembler::ldmxcsr( Address src) {
  1578   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1579   InstructionMark im(this);
  1580   prefix(src);
  1581   emit_byte(0x0F);
  1582   emit_byte(0xAE);
  1583   emit_operand(as_Register(2), src);
  1586 void Assembler::leal(Register dst, Address src) {
  1587   InstructionMark im(this);
  1588 #ifdef _LP64
  1589   emit_byte(0x67); // addr32
  1590   prefix(src, dst);
  1591 #endif // LP64
  1592   emit_byte(0x8D);
  1593   emit_operand(dst, src);
  1596 void Assembler::lock() {
  1597   if (Atomics & 1) {
  1598      // Emit either nothing, a NOP, or a NOP: prefix
  1599      emit_byte(0x90) ;
  1600   } else {
  1601      emit_byte(0xF0);
  1605 void Assembler::lzcntl(Register dst, Register src) {
  1606   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1607   emit_byte(0xF3);
  1608   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1609   emit_byte(0x0F);
  1610   emit_byte(0xBD);
  1611   emit_byte(0xC0 | encode);
  1614 // Emit mfence instruction
  1615 void Assembler::mfence() {
  1616   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1617   emit_byte( 0x0F );
  1618   emit_byte( 0xAE );
  1619   emit_byte( 0xF0 );
  1622 void Assembler::mov(Register dst, Register src) {
  1623   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1626 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1628   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1629   emit_byte(0x28);
  1630   emit_byte(0xC0 | encode);
  1633 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1634   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1635   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1636   emit_byte(0x28);
  1637   emit_byte(0xC0 | encode);
  1640 void Assembler::movb(Register dst, Address src) {
  1641   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1642   InstructionMark im(this);
  1643   prefix(src, dst, true);
  1644   emit_byte(0x8A);
  1645   emit_operand(dst, src);
  1649 void Assembler::movb(Address dst, int imm8) {
  1650   InstructionMark im(this);
  1651    prefix(dst);
  1652   emit_byte(0xC6);
  1653   emit_operand(rax, dst, 1);
  1654   emit_byte(imm8);
  1658 void Assembler::movb(Address dst, Register src) {
  1659   assert(src->has_byte_register(), "must have byte register");
  1660   InstructionMark im(this);
  1661   prefix(dst, src, true);
  1662   emit_byte(0x88);
  1663   emit_operand(src, dst);
  1666 void Assembler::movdl(XMMRegister dst, Register src) {
  1667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1668   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1669   emit_byte(0x6E);
  1670   emit_byte(0xC0 | encode);
  1673 void Assembler::movdl(Register dst, XMMRegister src) {
  1674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1675   // swap src/dst to get correct prefix
  1676   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1677   emit_byte(0x7E);
  1678   emit_byte(0xC0 | encode);
  1681 void Assembler::movdl(XMMRegister dst, Address src) {
  1682   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1683   InstructionMark im(this);
  1684   simd_prefix(dst, src, VEX_SIMD_66);
  1685   emit_byte(0x6E);
  1686   emit_operand(dst, src);
  1689 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1690   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1691   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1692   emit_byte(0x6F);
  1693   emit_byte(0xC0 | encode);
  1696 void Assembler::movdqu(XMMRegister dst, Address src) {
  1697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1698   InstructionMark im(this);
  1699   simd_prefix(dst, src, VEX_SIMD_F3);
  1700   emit_byte(0x6F);
  1701   emit_operand(dst, src);
  1704 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1705   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1706   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1707   emit_byte(0x6F);
  1708   emit_byte(0xC0 | encode);
  1711 void Assembler::movdqu(Address dst, XMMRegister src) {
  1712   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1713   InstructionMark im(this);
  1714   simd_prefix(dst, src, VEX_SIMD_F3);
  1715   emit_byte(0x7F);
  1716   emit_operand(src, dst);
  1719 // Uses zero extension on 64bit
  1721 void Assembler::movl(Register dst, int32_t imm32) {
  1722   int encode = prefix_and_encode(dst->encoding());
  1723   emit_byte(0xB8 | encode);
  1724   emit_long(imm32);
  1727 void Assembler::movl(Register dst, Register src) {
  1728   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1729   emit_byte(0x8B);
  1730   emit_byte(0xC0 | encode);
  1733 void Assembler::movl(Register dst, Address src) {
  1734   InstructionMark im(this);
  1735   prefix(src, dst);
  1736   emit_byte(0x8B);
  1737   emit_operand(dst, src);
  1740 void Assembler::movl(Address dst, int32_t imm32) {
  1741   InstructionMark im(this);
  1742   prefix(dst);
  1743   emit_byte(0xC7);
  1744   emit_operand(rax, dst, 4);
  1745   emit_long(imm32);
  1748 void Assembler::movl(Address dst, Register src) {
  1749   InstructionMark im(this);
  1750   prefix(dst, src);
  1751   emit_byte(0x89);
  1752   emit_operand(src, dst);
  1755 // New cpus require to use movsd and movss to avoid partial register stall
  1756 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1757 // The selection is done in MacroAssembler::movdbl() and movflt().
  1758 void Assembler::movlpd(XMMRegister dst, Address src) {
  1759   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1760   InstructionMark im(this);
  1761   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1762   emit_byte(0x12);
  1763   emit_operand(dst, src);
  1766 void Assembler::movq( MMXRegister dst, Address src ) {
  1767   assert( VM_Version::supports_mmx(), "" );
  1768   emit_byte(0x0F);
  1769   emit_byte(0x6F);
  1770   emit_operand(dst, src);
  1773 void Assembler::movq( Address dst, MMXRegister src ) {
  1774   assert( VM_Version::supports_mmx(), "" );
  1775   emit_byte(0x0F);
  1776   emit_byte(0x7F);
  1777   // workaround gcc (3.2.1-7a) bug
  1778   // In that version of gcc with only an emit_operand(MMX, Address)
  1779   // gcc will tail jump and try and reverse the parameters completely
  1780   // obliterating dst in the process. By having a version available
  1781   // that doesn't need to swap the args at the tail jump the bug is
  1782   // avoided.
  1783   emit_operand(dst, src);
  1786 void Assembler::movq(XMMRegister dst, Address src) {
  1787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1788   InstructionMark im(this);
  1789   simd_prefix(dst, src, VEX_SIMD_F3);
  1790   emit_byte(0x7E);
  1791   emit_operand(dst, src);
  1794 void Assembler::movq(Address dst, XMMRegister src) {
  1795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1796   InstructionMark im(this);
  1797   simd_prefix(dst, src, VEX_SIMD_66);
  1798   emit_byte(0xD6);
  1799   emit_operand(src, dst);
  1802 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1803   InstructionMark im(this);
  1804   prefix(src, dst);
  1805   emit_byte(0x0F);
  1806   emit_byte(0xBE);
  1807   emit_operand(dst, src);
  1810 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1811   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1812   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1813   emit_byte(0x0F);
  1814   emit_byte(0xBE);
  1815   emit_byte(0xC0 | encode);
  1818 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1820   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1821   emit_byte(0x10);
  1822   emit_byte(0xC0 | encode);
  1825 void Assembler::movsd(XMMRegister dst, Address src) {
  1826   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1827   InstructionMark im(this);
  1828   simd_prefix(dst, src, VEX_SIMD_F2);
  1829   emit_byte(0x10);
  1830   emit_operand(dst, src);
  1833 void Assembler::movsd(Address dst, XMMRegister src) {
  1834   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1835   InstructionMark im(this);
  1836   simd_prefix(dst, src, VEX_SIMD_F2);
  1837   emit_byte(0x11);
  1838   emit_operand(src, dst);
  1841 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1842   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1843   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1844   emit_byte(0x10);
  1845   emit_byte(0xC0 | encode);
  1848 void Assembler::movss(XMMRegister dst, Address src) {
  1849   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1850   InstructionMark im(this);
  1851   simd_prefix(dst, src, VEX_SIMD_F3);
  1852   emit_byte(0x10);
  1853   emit_operand(dst, src);
  1856 void Assembler::movss(Address dst, XMMRegister src) {
  1857   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1858   InstructionMark im(this);
  1859   simd_prefix(dst, src, VEX_SIMD_F3);
  1860   emit_byte(0x11);
  1861   emit_operand(src, dst);
  1864 void Assembler::movswl(Register dst, Address src) { // movsxw
  1865   InstructionMark im(this);
  1866   prefix(src, dst);
  1867   emit_byte(0x0F);
  1868   emit_byte(0xBF);
  1869   emit_operand(dst, src);
  1872 void Assembler::movswl(Register dst, Register src) { // movsxw
  1873   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1874   emit_byte(0x0F);
  1875   emit_byte(0xBF);
  1876   emit_byte(0xC0 | encode);
  1879 void Assembler::movw(Address dst, int imm16) {
  1880   InstructionMark im(this);
  1882   emit_byte(0x66); // switch to 16-bit mode
  1883   prefix(dst);
  1884   emit_byte(0xC7);
  1885   emit_operand(rax, dst, 2);
  1886   emit_word(imm16);
  1889 void Assembler::movw(Register dst, Address src) {
  1890   InstructionMark im(this);
  1891   emit_byte(0x66);
  1892   prefix(src, dst);
  1893   emit_byte(0x8B);
  1894   emit_operand(dst, src);
  1897 void Assembler::movw(Address dst, Register src) {
  1898   InstructionMark im(this);
  1899   emit_byte(0x66);
  1900   prefix(dst, src);
  1901   emit_byte(0x89);
  1902   emit_operand(src, dst);
  1905 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1906   InstructionMark im(this);
  1907   prefix(src, dst);
  1908   emit_byte(0x0F);
  1909   emit_byte(0xB6);
  1910   emit_operand(dst, src);
  1913 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1914   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1915   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1916   emit_byte(0x0F);
  1917   emit_byte(0xB6);
  1918   emit_byte(0xC0 | encode);
  1921 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1922   InstructionMark im(this);
  1923   prefix(src, dst);
  1924   emit_byte(0x0F);
  1925   emit_byte(0xB7);
  1926   emit_operand(dst, src);
  1929 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1930   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1931   emit_byte(0x0F);
  1932   emit_byte(0xB7);
  1933   emit_byte(0xC0 | encode);
  1936 void Assembler::mull(Address src) {
  1937   InstructionMark im(this);
  1938   prefix(src);
  1939   emit_byte(0xF7);
  1940   emit_operand(rsp, src);
  1943 void Assembler::mull(Register src) {
  1944   int encode = prefix_and_encode(src->encoding());
  1945   emit_byte(0xF7);
  1946   emit_byte(0xE0 | encode);
  1949 void Assembler::mulsd(XMMRegister dst, Address src) {
  1950   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1951   InstructionMark im(this);
  1952   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1953   emit_byte(0x59);
  1954   emit_operand(dst, src);
  1957 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1958   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1959   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1960   emit_byte(0x59);
  1961   emit_byte(0xC0 | encode);
  1964 void Assembler::mulss(XMMRegister dst, Address src) {
  1965   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1966   InstructionMark im(this);
  1967   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1968   emit_byte(0x59);
  1969   emit_operand(dst, src);
  1972 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1973   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1974   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1975   emit_byte(0x59);
  1976   emit_byte(0xC0 | encode);
  1979 void Assembler::negl(Register dst) {
  1980   int encode = prefix_and_encode(dst->encoding());
  1981   emit_byte(0xF7);
  1982   emit_byte(0xD8 | encode);
  1985 void Assembler::nop(int i) {
  1986 #ifdef ASSERT
  1987   assert(i > 0, " ");
  1988   // The fancy nops aren't currently recognized by debuggers making it a
  1989   // pain to disassemble code while debugging. If asserts are on clearly
  1990   // speed is not an issue so simply use the single byte traditional nop
  1991   // to do alignment.
  1993   for (; i > 0 ; i--) emit_byte(0x90);
  1994   return;
  1996 #endif // ASSERT
  1998   if (UseAddressNop && VM_Version::is_intel()) {
  1999     //
  2000     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2001     //  1: 0x90
  2002     //  2: 0x66 0x90
  2003     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2004     //  4: 0x0F 0x1F 0x40 0x00
  2005     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2006     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2007     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2008     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2009     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2010     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2011     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2013     // The rest coding is Intel specific - don't use consecutive address nops
  2015     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2016     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2017     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2018     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2020     while(i >= 15) {
  2021       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2022       i -= 15;
  2023       emit_byte(0x66);   // size prefix
  2024       emit_byte(0x66);   // size prefix
  2025       emit_byte(0x66);   // size prefix
  2026       addr_nop_8();
  2027       emit_byte(0x66);   // size prefix
  2028       emit_byte(0x66);   // size prefix
  2029       emit_byte(0x66);   // size prefix
  2030       emit_byte(0x90);   // nop
  2032     switch (i) {
  2033       case 14:
  2034         emit_byte(0x66); // size prefix
  2035       case 13:
  2036         emit_byte(0x66); // size prefix
  2037       case 12:
  2038         addr_nop_8();
  2039         emit_byte(0x66); // size prefix
  2040         emit_byte(0x66); // size prefix
  2041         emit_byte(0x66); // size prefix
  2042         emit_byte(0x90); // nop
  2043         break;
  2044       case 11:
  2045         emit_byte(0x66); // size prefix
  2046       case 10:
  2047         emit_byte(0x66); // size prefix
  2048       case 9:
  2049         emit_byte(0x66); // size prefix
  2050       case 8:
  2051         addr_nop_8();
  2052         break;
  2053       case 7:
  2054         addr_nop_7();
  2055         break;
  2056       case 6:
  2057         emit_byte(0x66); // size prefix
  2058       case 5:
  2059         addr_nop_5();
  2060         break;
  2061       case 4:
  2062         addr_nop_4();
  2063         break;
  2064       case 3:
  2065         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2066         emit_byte(0x66); // size prefix
  2067       case 2:
  2068         emit_byte(0x66); // size prefix
  2069       case 1:
  2070         emit_byte(0x90); // nop
  2071         break;
  2072       default:
  2073         assert(i == 0, " ");
  2075     return;
  2077   if (UseAddressNop && VM_Version::is_amd()) {
  2078     //
  2079     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2080     //  1: 0x90
  2081     //  2: 0x66 0x90
  2082     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2083     //  4: 0x0F 0x1F 0x40 0x00
  2084     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2085     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2086     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2087     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2088     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2089     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2090     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2092     // The rest coding is AMD specific - use consecutive address nops
  2094     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2095     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2096     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2097     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2098     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2099     //     Size prefixes (0x66) are added for larger sizes
  2101     while(i >= 22) {
  2102       i -= 11;
  2103       emit_byte(0x66); // size prefix
  2104       emit_byte(0x66); // size prefix
  2105       emit_byte(0x66); // size prefix
  2106       addr_nop_8();
  2108     // Generate first nop for size between 21-12
  2109     switch (i) {
  2110       case 21:
  2111         i -= 1;
  2112         emit_byte(0x66); // size prefix
  2113       case 20:
  2114       case 19:
  2115         i -= 1;
  2116         emit_byte(0x66); // size prefix
  2117       case 18:
  2118       case 17:
  2119         i -= 1;
  2120         emit_byte(0x66); // size prefix
  2121       case 16:
  2122       case 15:
  2123         i -= 8;
  2124         addr_nop_8();
  2125         break;
  2126       case 14:
  2127       case 13:
  2128         i -= 7;
  2129         addr_nop_7();
  2130         break;
  2131       case 12:
  2132         i -= 6;
  2133         emit_byte(0x66); // size prefix
  2134         addr_nop_5();
  2135         break;
  2136       default:
  2137         assert(i < 12, " ");
  2140     // Generate second nop for size between 11-1
  2141     switch (i) {
  2142       case 11:
  2143         emit_byte(0x66); // size prefix
  2144       case 10:
  2145         emit_byte(0x66); // size prefix
  2146       case 9:
  2147         emit_byte(0x66); // size prefix
  2148       case 8:
  2149         addr_nop_8();
  2150         break;
  2151       case 7:
  2152         addr_nop_7();
  2153         break;
  2154       case 6:
  2155         emit_byte(0x66); // size prefix
  2156       case 5:
  2157         addr_nop_5();
  2158         break;
  2159       case 4:
  2160         addr_nop_4();
  2161         break;
  2162       case 3:
  2163         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2164         emit_byte(0x66); // size prefix
  2165       case 2:
  2166         emit_byte(0x66); // size prefix
  2167       case 1:
  2168         emit_byte(0x90); // nop
  2169         break;
  2170       default:
  2171         assert(i == 0, " ");
  2173     return;
  2176   // Using nops with size prefixes "0x66 0x90".
  2177   // From AMD Optimization Guide:
  2178   //  1: 0x90
  2179   //  2: 0x66 0x90
  2180   //  3: 0x66 0x66 0x90
  2181   //  4: 0x66 0x66 0x66 0x90
  2182   //  5: 0x66 0x66 0x90 0x66 0x90
  2183   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2184   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2185   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2186   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2187   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2188   //
  2189   while(i > 12) {
  2190     i -= 4;
  2191     emit_byte(0x66); // size prefix
  2192     emit_byte(0x66);
  2193     emit_byte(0x66);
  2194     emit_byte(0x90); // nop
  2196   // 1 - 12 nops
  2197   if(i > 8) {
  2198     if(i > 9) {
  2199       i -= 1;
  2200       emit_byte(0x66);
  2202     i -= 3;
  2203     emit_byte(0x66);
  2204     emit_byte(0x66);
  2205     emit_byte(0x90);
  2207   // 1 - 8 nops
  2208   if(i > 4) {
  2209     if(i > 6) {
  2210       i -= 1;
  2211       emit_byte(0x66);
  2213     i -= 3;
  2214     emit_byte(0x66);
  2215     emit_byte(0x66);
  2216     emit_byte(0x90);
  2218   switch (i) {
  2219     case 4:
  2220       emit_byte(0x66);
  2221     case 3:
  2222       emit_byte(0x66);
  2223     case 2:
  2224       emit_byte(0x66);
  2225     case 1:
  2226       emit_byte(0x90);
  2227       break;
  2228     default:
  2229       assert(i == 0, " ");
  2233 void Assembler::notl(Register dst) {
  2234   int encode = prefix_and_encode(dst->encoding());
  2235   emit_byte(0xF7);
  2236   emit_byte(0xD0 | encode );
  2239 void Assembler::orl(Address dst, int32_t imm32) {
  2240   InstructionMark im(this);
  2241   prefix(dst);
  2242   emit_arith_operand(0x81, rcx, dst, imm32);
  2245 void Assembler::orl(Register dst, int32_t imm32) {
  2246   prefix(dst);
  2247   emit_arith(0x81, 0xC8, dst, imm32);
  2250 void Assembler::orl(Register dst, Address src) {
  2251   InstructionMark im(this);
  2252   prefix(src, dst);
  2253   emit_byte(0x0B);
  2254   emit_operand(dst, src);
  2257 void Assembler::orl(Register dst, Register src) {
  2258   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2259   emit_arith(0x0B, 0xC0, dst, src);
  2262 void Assembler::packuswb(XMMRegister dst, Address src) {
  2263   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2264   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2265   InstructionMark im(this);
  2266   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2267   emit_byte(0x67);
  2268   emit_operand(dst, src);
  2271 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2273   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2274   emit_byte(0x67);
  2275   emit_byte(0xC0 | encode);
  2278 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2279   assert(VM_Version::supports_sse4_2(), "");
  2280   InstructionMark im(this);
  2281   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2282   emit_byte(0x61);
  2283   emit_operand(dst, src);
  2284   emit_byte(imm8);
  2287 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2288   assert(VM_Version::supports_sse4_2(), "");
  2289   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2290   emit_byte(0x61);
  2291   emit_byte(0xC0 | encode);
  2292   emit_byte(imm8);
  2295 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2296   assert(VM_Version::supports_sse4_1(), "");
  2297   InstructionMark im(this);
  2298   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2299   emit_byte(0x30);
  2300   emit_operand(dst, src);
  2303 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2304   assert(VM_Version::supports_sse4_1(), "");
  2305   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2306   emit_byte(0x30);
  2307   emit_byte(0xC0 | encode);
  2310 // generic
  2311 void Assembler::pop(Register dst) {
  2312   int encode = prefix_and_encode(dst->encoding());
  2313   emit_byte(0x58 | encode);
  2316 void Assembler::popcntl(Register dst, Address src) {
  2317   assert(VM_Version::supports_popcnt(), "must support");
  2318   InstructionMark im(this);
  2319   emit_byte(0xF3);
  2320   prefix(src, dst);
  2321   emit_byte(0x0F);
  2322   emit_byte(0xB8);
  2323   emit_operand(dst, src);
  2326 void Assembler::popcntl(Register dst, Register src) {
  2327   assert(VM_Version::supports_popcnt(), "must support");
  2328   emit_byte(0xF3);
  2329   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2330   emit_byte(0x0F);
  2331   emit_byte(0xB8);
  2332   emit_byte(0xC0 | encode);
  2335 void Assembler::popf() {
  2336   emit_byte(0x9D);
  2339 #ifndef _LP64 // no 32bit push/pop on amd64
  2340 void Assembler::popl(Address dst) {
  2341   // NOTE: this will adjust stack by 8byte on 64bits
  2342   InstructionMark im(this);
  2343   prefix(dst);
  2344   emit_byte(0x8F);
  2345   emit_operand(rax, dst);
  2347 #endif
  2349 void Assembler::prefetch_prefix(Address src) {
  2350   prefix(src);
  2351   emit_byte(0x0F);
  2354 void Assembler::prefetchnta(Address src) {
  2355   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2356   InstructionMark im(this);
  2357   prefetch_prefix(src);
  2358   emit_byte(0x18);
  2359   emit_operand(rax, src); // 0, src
  2362 void Assembler::prefetchr(Address src) {
  2363   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2364   InstructionMark im(this);
  2365   prefetch_prefix(src);
  2366   emit_byte(0x0D);
  2367   emit_operand(rax, src); // 0, src
  2370 void Assembler::prefetcht0(Address src) {
  2371   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2372   InstructionMark im(this);
  2373   prefetch_prefix(src);
  2374   emit_byte(0x18);
  2375   emit_operand(rcx, src); // 1, src
  2378 void Assembler::prefetcht1(Address src) {
  2379   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2380   InstructionMark im(this);
  2381   prefetch_prefix(src);
  2382   emit_byte(0x18);
  2383   emit_operand(rdx, src); // 2, src
  2386 void Assembler::prefetcht2(Address src) {
  2387   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2388   InstructionMark im(this);
  2389   prefetch_prefix(src);
  2390   emit_byte(0x18);
  2391   emit_operand(rbx, src); // 3, src
  2394 void Assembler::prefetchw(Address src) {
  2395   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2396   InstructionMark im(this);
  2397   prefetch_prefix(src);
  2398   emit_byte(0x0D);
  2399   emit_operand(rcx, src); // 1, src
  2402 void Assembler::prefix(Prefix p) {
  2403   a_byte(p);
  2406 void Assembler::por(XMMRegister dst, XMMRegister src) {
  2407   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2408   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2409   emit_byte(0xEB);
  2410   emit_byte(0xC0 | encode);
  2413 void Assembler::por(XMMRegister dst, Address src) {
  2414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2415   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2416   InstructionMark im(this);
  2417   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2418   emit_byte(0xEB);
  2419   emit_operand(dst, src);
  2422 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2423   assert(isByte(mode), "invalid value");
  2424   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2425   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2426   emit_byte(0x70);
  2427   emit_byte(0xC0 | encode);
  2428   emit_byte(mode & 0xFF);
  2432 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2433   assert(isByte(mode), "invalid value");
  2434   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2435   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2436   InstructionMark im(this);
  2437   simd_prefix(dst, src, VEX_SIMD_66);
  2438   emit_byte(0x70);
  2439   emit_operand(dst, src);
  2440   emit_byte(mode & 0xFF);
  2443 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2444   assert(isByte(mode), "invalid value");
  2445   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2446   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  2447   emit_byte(0x70);
  2448   emit_byte(0xC0 | encode);
  2449   emit_byte(mode & 0xFF);
  2452 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2453   assert(isByte(mode), "invalid value");
  2454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2455   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2456   InstructionMark im(this);
  2457   simd_prefix(dst, src, VEX_SIMD_F2);
  2458   emit_byte(0x70);
  2459   emit_operand(dst, src);
  2460   emit_byte(mode & 0xFF);
  2463 void Assembler::psrlq(XMMRegister dst, int shift) {
  2464   // Shift 64 bit value logically right by specified number of bits.
  2465   // HMM Table D-1 says sse2 or mmx.
  2466   // Do not confuse it with psrldq SSE2 instruction which
  2467   // shifts 128 bit value in xmm register by number of bytes.
  2468   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2469   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  2470   emit_byte(0x73);
  2471   emit_byte(0xC0 | encode);
  2472   emit_byte(shift);
  2475 void Assembler::psrldq(XMMRegister dst, int shift) {
  2476   // Shift 128 bit value in xmm register by number of bytes.
  2477   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2478   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2479   emit_byte(0x73);
  2480   emit_byte(0xC0 | encode);
  2481   emit_byte(shift);
  2484 void Assembler::ptest(XMMRegister dst, Address src) {
  2485   assert(VM_Version::supports_sse4_1(), "");
  2486   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2487   InstructionMark im(this);
  2488   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2489   emit_byte(0x17);
  2490   emit_operand(dst, src);
  2493 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2494   assert(VM_Version::supports_sse4_1(), "");
  2495   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2496   emit_byte(0x17);
  2497   emit_byte(0xC0 | encode);
  2500 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2501   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2502   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2503   InstructionMark im(this);
  2504   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2505   emit_byte(0x60);
  2506   emit_operand(dst, src);
  2509 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2511   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2512   emit_byte(0x60);
  2513   emit_byte(0xC0 | encode);
  2516 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2517   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2518   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2519   InstructionMark im(this);
  2520   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2521   emit_byte(0x62);
  2522   emit_operand(dst, src);
  2525 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2526   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2527   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2528   emit_byte(0x62);
  2529   emit_byte(0xC0 | encode);
  2532 void Assembler::push(int32_t imm32) {
  2533   // in 64bits we push 64bits onto the stack but only
  2534   // take a 32bit immediate
  2535   emit_byte(0x68);
  2536   emit_long(imm32);
  2539 void Assembler::push(Register src) {
  2540   int encode = prefix_and_encode(src->encoding());
  2542   emit_byte(0x50 | encode);
  2545 void Assembler::pushf() {
  2546   emit_byte(0x9C);
  2549 #ifndef _LP64 // no 32bit push/pop on amd64
  2550 void Assembler::pushl(Address src) {
  2551   // Note this will push 64bit on 64bit
  2552   InstructionMark im(this);
  2553   prefix(src);
  2554   emit_byte(0xFF);
  2555   emit_operand(rsi, src);
  2557 #endif
  2559 void Assembler::pxor(XMMRegister dst, Address src) {
  2560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2561   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2562   InstructionMark im(this);
  2563   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2564   emit_byte(0xEF);
  2565   emit_operand(dst, src);
  2568 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2569   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2570   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2571   emit_byte(0xEF);
  2572   emit_byte(0xC0 | encode);
  2575 void Assembler::rcll(Register dst, int imm8) {
  2576   assert(isShiftCount(imm8), "illegal shift count");
  2577   int encode = prefix_and_encode(dst->encoding());
  2578   if (imm8 == 1) {
  2579     emit_byte(0xD1);
  2580     emit_byte(0xD0 | encode);
  2581   } else {
  2582     emit_byte(0xC1);
  2583     emit_byte(0xD0 | encode);
  2584     emit_byte(imm8);
  2588 // copies data from [esi] to [edi] using rcx pointer sized words
  2589 // generic
  2590 void Assembler::rep_mov() {
  2591   emit_byte(0xF3);
  2592   // MOVSQ
  2593   LP64_ONLY(prefix(REX_W));
  2594   emit_byte(0xA5);
  2597 // sets rcx pointer sized words with rax, value at [edi]
  2598 // generic
  2599 void Assembler::rep_set() { // rep_set
  2600   emit_byte(0xF3);
  2601   // STOSQ
  2602   LP64_ONLY(prefix(REX_W));
  2603   emit_byte(0xAB);
  2606 // scans rcx pointer sized words at [edi] for occurance of rax,
  2607 // generic
  2608 void Assembler::repne_scan() { // repne_scan
  2609   emit_byte(0xF2);
  2610   // SCASQ
  2611   LP64_ONLY(prefix(REX_W));
  2612   emit_byte(0xAF);
  2615 #ifdef _LP64
  2616 // scans rcx 4 byte words at [edi] for occurance of rax,
  2617 // generic
  2618 void Assembler::repne_scanl() { // repne_scan
  2619   emit_byte(0xF2);
  2620   // SCASL
  2621   emit_byte(0xAF);
  2623 #endif
  2625 void Assembler::ret(int imm16) {
  2626   if (imm16 == 0) {
  2627     emit_byte(0xC3);
  2628   } else {
  2629     emit_byte(0xC2);
  2630     emit_word(imm16);
  2634 void Assembler::sahf() {
  2635 #ifdef _LP64
  2636   // Not supported in 64bit mode
  2637   ShouldNotReachHere();
  2638 #endif
  2639   emit_byte(0x9E);
  2642 void Assembler::sarl(Register dst, int imm8) {
  2643   int encode = prefix_and_encode(dst->encoding());
  2644   assert(isShiftCount(imm8), "illegal shift count");
  2645   if (imm8 == 1) {
  2646     emit_byte(0xD1);
  2647     emit_byte(0xF8 | encode);
  2648   } else {
  2649     emit_byte(0xC1);
  2650     emit_byte(0xF8 | encode);
  2651     emit_byte(imm8);
  2655 void Assembler::sarl(Register dst) {
  2656   int encode = prefix_and_encode(dst->encoding());
  2657   emit_byte(0xD3);
  2658   emit_byte(0xF8 | encode);
  2661 void Assembler::sbbl(Address dst, int32_t imm32) {
  2662   InstructionMark im(this);
  2663   prefix(dst);
  2664   emit_arith_operand(0x81, rbx, dst, imm32);
  2667 void Assembler::sbbl(Register dst, int32_t imm32) {
  2668   prefix(dst);
  2669   emit_arith(0x81, 0xD8, dst, imm32);
  2673 void Assembler::sbbl(Register dst, Address src) {
  2674   InstructionMark im(this);
  2675   prefix(src, dst);
  2676   emit_byte(0x1B);
  2677   emit_operand(dst, src);
  2680 void Assembler::sbbl(Register dst, Register src) {
  2681   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2682   emit_arith(0x1B, 0xC0, dst, src);
  2685 void Assembler::setb(Condition cc, Register dst) {
  2686   assert(0 <= cc && cc < 16, "illegal cc");
  2687   int encode = prefix_and_encode(dst->encoding(), true);
  2688   emit_byte(0x0F);
  2689   emit_byte(0x90 | cc);
  2690   emit_byte(0xC0 | encode);
  2693 void Assembler::shll(Register dst, int imm8) {
  2694   assert(isShiftCount(imm8), "illegal shift count");
  2695   int encode = prefix_and_encode(dst->encoding());
  2696   if (imm8 == 1 ) {
  2697     emit_byte(0xD1);
  2698     emit_byte(0xE0 | encode);
  2699   } else {
  2700     emit_byte(0xC1);
  2701     emit_byte(0xE0 | encode);
  2702     emit_byte(imm8);
  2706 void Assembler::shll(Register dst) {
  2707   int encode = prefix_and_encode(dst->encoding());
  2708   emit_byte(0xD3);
  2709   emit_byte(0xE0 | encode);
  2712 void Assembler::shrl(Register dst, int imm8) {
  2713   assert(isShiftCount(imm8), "illegal shift count");
  2714   int encode = prefix_and_encode(dst->encoding());
  2715   emit_byte(0xC1);
  2716   emit_byte(0xE8 | encode);
  2717   emit_byte(imm8);
  2720 void Assembler::shrl(Register dst) {
  2721   int encode = prefix_and_encode(dst->encoding());
  2722   emit_byte(0xD3);
  2723   emit_byte(0xE8 | encode);
  2726 // copies a single word from [esi] to [edi]
  2727 void Assembler::smovl() {
  2728   emit_byte(0xA5);
  2731 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2733   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2734   emit_byte(0x51);
  2735   emit_byte(0xC0 | encode);
  2738 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2739   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2740   InstructionMark im(this);
  2741   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2742   emit_byte(0x51);
  2743   emit_operand(dst, src);
  2746 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2747   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2748   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2749   emit_byte(0x51);
  2750   emit_byte(0xC0 | encode);
  2753 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2754   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2755   InstructionMark im(this);
  2756   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2757   emit_byte(0x51);
  2758   emit_operand(dst, src);
  2761 void Assembler::stmxcsr( Address dst) {
  2762   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2763   InstructionMark im(this);
  2764   prefix(dst);
  2765   emit_byte(0x0F);
  2766   emit_byte(0xAE);
  2767   emit_operand(as_Register(3), dst);
  2770 void Assembler::subl(Address dst, int32_t imm32) {
  2771   InstructionMark im(this);
  2772   prefix(dst);
  2773   emit_arith_operand(0x81, rbp, dst, imm32);
  2776 void Assembler::subl(Address dst, Register src) {
  2777   InstructionMark im(this);
  2778   prefix(dst, src);
  2779   emit_byte(0x29);
  2780   emit_operand(src, dst);
  2783 void Assembler::subl(Register dst, int32_t imm32) {
  2784   prefix(dst);
  2785   emit_arith(0x81, 0xE8, dst, imm32);
  2788 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2789 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2790   prefix(dst);
  2791   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2794 void Assembler::subl(Register dst, Address src) {
  2795   InstructionMark im(this);
  2796   prefix(src, dst);
  2797   emit_byte(0x2B);
  2798   emit_operand(dst, src);
  2801 void Assembler::subl(Register dst, Register src) {
  2802   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2803   emit_arith(0x2B, 0xC0, dst, src);
  2806 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2807   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2808   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2809   emit_byte(0x5C);
  2810   emit_byte(0xC0 | encode);
  2813 void Assembler::subsd(XMMRegister dst, Address src) {
  2814   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2815   InstructionMark im(this);
  2816   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2817   emit_byte(0x5C);
  2818   emit_operand(dst, src);
  2821 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2822   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2823   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2824   emit_byte(0x5C);
  2825   emit_byte(0xC0 | encode);
  2828 void Assembler::subss(XMMRegister dst, Address src) {
  2829   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2830   InstructionMark im(this);
  2831   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2832   emit_byte(0x5C);
  2833   emit_operand(dst, src);
  2836 void Assembler::testb(Register dst, int imm8) {
  2837   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2838   (void) prefix_and_encode(dst->encoding(), true);
  2839   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2842 void Assembler::testl(Register dst, int32_t imm32) {
  2843   // not using emit_arith because test
  2844   // doesn't support sign-extension of
  2845   // 8bit operands
  2846   int encode = dst->encoding();
  2847   if (encode == 0) {
  2848     emit_byte(0xA9);
  2849   } else {
  2850     encode = prefix_and_encode(encode);
  2851     emit_byte(0xF7);
  2852     emit_byte(0xC0 | encode);
  2854   emit_long(imm32);
  2857 void Assembler::testl(Register dst, Register src) {
  2858   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2859   emit_arith(0x85, 0xC0, dst, src);
  2862 void Assembler::testl(Register dst, Address  src) {
  2863   InstructionMark im(this);
  2864   prefix(src, dst);
  2865   emit_byte(0x85);
  2866   emit_operand(dst, src);
  2869 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2870   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2871   InstructionMark im(this);
  2872   simd_prefix(dst, src, VEX_SIMD_66);
  2873   emit_byte(0x2E);
  2874   emit_operand(dst, src);
  2877 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2878   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2879   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2880   emit_byte(0x2E);
  2881   emit_byte(0xC0 | encode);
  2884 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2885   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2886   InstructionMark im(this);
  2887   simd_prefix(dst, src, VEX_SIMD_NONE);
  2888   emit_byte(0x2E);
  2889   emit_operand(dst, src);
  2892 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2893   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2894   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  2895   emit_byte(0x2E);
  2896   emit_byte(0xC0 | encode);
  2900 void Assembler::xaddl(Address dst, Register src) {
  2901   InstructionMark im(this);
  2902   prefix(dst, src);
  2903   emit_byte(0x0F);
  2904   emit_byte(0xC1);
  2905   emit_operand(src, dst);
  2908 void Assembler::xchgl(Register dst, Address src) { // xchg
  2909   InstructionMark im(this);
  2910   prefix(src, dst);
  2911   emit_byte(0x87);
  2912   emit_operand(dst, src);
  2915 void Assembler::xchgl(Register dst, Register src) {
  2916   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2917   emit_byte(0x87);
  2918   emit_byte(0xc0 | encode);
  2921 void Assembler::xorl(Register dst, int32_t imm32) {
  2922   prefix(dst);
  2923   emit_arith(0x81, 0xF0, dst, imm32);
  2926 void Assembler::xorl(Register dst, Address src) {
  2927   InstructionMark im(this);
  2928   prefix(src, dst);
  2929   emit_byte(0x33);
  2930   emit_operand(dst, src);
  2933 void Assembler::xorl(Register dst, Register src) {
  2934   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2935   emit_arith(0x33, 0xC0, dst, src);
  2938 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2939   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2940   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2941   emit_byte(0x57);
  2942   emit_byte(0xC0 | encode);
  2945 void Assembler::xorpd(XMMRegister dst, Address src) {
  2946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2947   InstructionMark im(this);
  2948   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2949   emit_byte(0x57);
  2950   emit_operand(dst, src);
  2954 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2955   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2956   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  2957   emit_byte(0x57);
  2958   emit_byte(0xC0 | encode);
  2961 void Assembler::xorps(XMMRegister dst, Address src) {
  2962   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2963   InstructionMark im(this);
  2964   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  2965   emit_byte(0x57);
  2966   emit_operand(dst, src);
  2969 // AVX 3-operands non destructive source instructions (encoded with VEX prefix)
  2971 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2972   assert(VM_Version::supports_avx(), "");
  2973   InstructionMark im(this);
  2974   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  2975   emit_byte(0x58);
  2976   emit_operand(dst, src);
  2979 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2980   assert(VM_Version::supports_avx(), "");
  2981   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  2982   emit_byte(0x58);
  2983   emit_byte(0xC0 | encode);
  2986 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2987   assert(VM_Version::supports_avx(), "");
  2988   InstructionMark im(this);
  2989   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  2990   emit_byte(0x58);
  2991   emit_operand(dst, src);
  2994 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2995   assert(VM_Version::supports_avx(), "");
  2996   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  2997   emit_byte(0x58);
  2998   emit_byte(0xC0 | encode);
  3001 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src) {
  3002   assert(VM_Version::supports_avx(), "");
  3003   InstructionMark im(this);
  3004   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3005   emit_byte(0x54);
  3006   emit_operand(dst, src);
  3009 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src) {
  3010   assert(VM_Version::supports_avx(), "");
  3011   InstructionMark im(this);
  3012   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3013   emit_byte(0x54);
  3014   emit_operand(dst, src);
  3017 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  3018   assert(VM_Version::supports_avx(), "");
  3019   InstructionMark im(this);
  3020   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3021   emit_byte(0x5E);
  3022   emit_operand(dst, src);
  3025 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3026   assert(VM_Version::supports_avx(), "");
  3027   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3028   emit_byte(0x5E);
  3029   emit_byte(0xC0 | encode);
  3032 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3033   assert(VM_Version::supports_avx(), "");
  3034   InstructionMark im(this);
  3035   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3036   emit_byte(0x5E);
  3037   emit_operand(dst, src);
  3040 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3041   assert(VM_Version::supports_avx(), "");
  3042   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3043   emit_byte(0x5E);
  3044   emit_byte(0xC0 | encode);
  3047 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3048   assert(VM_Version::supports_avx(), "");
  3049   InstructionMark im(this);
  3050   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3051   emit_byte(0x59);
  3052   emit_operand(dst, src);
  3055 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3056   assert(VM_Version::supports_avx(), "");
  3057   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3058   emit_byte(0x59);
  3059   emit_byte(0xC0 | encode);
  3062 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3063   InstructionMark im(this);
  3064   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3065   emit_byte(0x59);
  3066   emit_operand(dst, src);
  3069 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3070   assert(VM_Version::supports_avx(), "");
  3071   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3072   emit_byte(0x59);
  3073   emit_byte(0xC0 | encode);
  3077 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3078   assert(VM_Version::supports_avx(), "");
  3079   InstructionMark im(this);
  3080   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3081   emit_byte(0x5C);
  3082   emit_operand(dst, src);
  3085 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3086   assert(VM_Version::supports_avx(), "");
  3087   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3088   emit_byte(0x5C);
  3089   emit_byte(0xC0 | encode);
  3092 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3093   assert(VM_Version::supports_avx(), "");
  3094   InstructionMark im(this);
  3095   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3096   emit_byte(0x5C);
  3097   emit_operand(dst, src);
  3100 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3101   assert(VM_Version::supports_avx(), "");
  3102   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3103   emit_byte(0x5C);
  3104   emit_byte(0xC0 | encode);
  3107 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src) {
  3108   assert(VM_Version::supports_avx(), "");
  3109   InstructionMark im(this);
  3110   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3111   emit_byte(0x57);
  3112   emit_operand(dst, src);
  3115 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src) {
  3116   assert(VM_Version::supports_avx(), "");
  3117   InstructionMark im(this);
  3118   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3119   emit_byte(0x57);
  3120   emit_operand(dst, src);
  3124 #ifndef _LP64
  3125 // 32bit only pieces of the assembler
  3127 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3128   // NO PREFIX AS NEVER 64BIT
  3129   InstructionMark im(this);
  3130   emit_byte(0x81);
  3131   emit_byte(0xF8 | src1->encoding());
  3132   emit_data(imm32, rspec, 0);
  3135 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3136   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3137   InstructionMark im(this);
  3138   emit_byte(0x81);
  3139   emit_operand(rdi, src1);
  3140   emit_data(imm32, rspec, 0);
  3143 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3144 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3145 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3146 void Assembler::cmpxchg8(Address adr) {
  3147   InstructionMark im(this);
  3148   emit_byte(0x0F);
  3149   emit_byte(0xc7);
  3150   emit_operand(rcx, adr);
  3153 void Assembler::decl(Register dst) {
  3154   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3155  emit_byte(0x48 | dst->encoding());
  3158 #endif // _LP64
  3160 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3162 void Assembler::fabs() {
  3163   emit_byte(0xD9);
  3164   emit_byte(0xE1);
  3167 void Assembler::fadd(int i) {
  3168   emit_farith(0xD8, 0xC0, i);
  3171 void Assembler::fadd_d(Address src) {
  3172   InstructionMark im(this);
  3173   emit_byte(0xDC);
  3174   emit_operand32(rax, src);
  3177 void Assembler::fadd_s(Address src) {
  3178   InstructionMark im(this);
  3179   emit_byte(0xD8);
  3180   emit_operand32(rax, src);
  3183 void Assembler::fadda(int i) {
  3184   emit_farith(0xDC, 0xC0, i);
  3187 void Assembler::faddp(int i) {
  3188   emit_farith(0xDE, 0xC0, i);
  3191 void Assembler::fchs() {
  3192   emit_byte(0xD9);
  3193   emit_byte(0xE0);
  3196 void Assembler::fcom(int i) {
  3197   emit_farith(0xD8, 0xD0, i);
  3200 void Assembler::fcomp(int i) {
  3201   emit_farith(0xD8, 0xD8, i);
  3204 void Assembler::fcomp_d(Address src) {
  3205   InstructionMark im(this);
  3206   emit_byte(0xDC);
  3207   emit_operand32(rbx, src);
  3210 void Assembler::fcomp_s(Address src) {
  3211   InstructionMark im(this);
  3212   emit_byte(0xD8);
  3213   emit_operand32(rbx, src);
  3216 void Assembler::fcompp() {
  3217   emit_byte(0xDE);
  3218   emit_byte(0xD9);
  3221 void Assembler::fcos() {
  3222   emit_byte(0xD9);
  3223   emit_byte(0xFF);
  3226 void Assembler::fdecstp() {
  3227   emit_byte(0xD9);
  3228   emit_byte(0xF6);
  3231 void Assembler::fdiv(int i) {
  3232   emit_farith(0xD8, 0xF0, i);
  3235 void Assembler::fdiv_d(Address src) {
  3236   InstructionMark im(this);
  3237   emit_byte(0xDC);
  3238   emit_operand32(rsi, src);
  3241 void Assembler::fdiv_s(Address src) {
  3242   InstructionMark im(this);
  3243   emit_byte(0xD8);
  3244   emit_operand32(rsi, src);
  3247 void Assembler::fdiva(int i) {
  3248   emit_farith(0xDC, 0xF8, i);
  3251 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3252 //       is erroneous for some of the floating-point instructions below.
  3254 void Assembler::fdivp(int i) {
  3255   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3258 void Assembler::fdivr(int i) {
  3259   emit_farith(0xD8, 0xF8, i);
  3262 void Assembler::fdivr_d(Address src) {
  3263   InstructionMark im(this);
  3264   emit_byte(0xDC);
  3265   emit_operand32(rdi, src);
  3268 void Assembler::fdivr_s(Address src) {
  3269   InstructionMark im(this);
  3270   emit_byte(0xD8);
  3271   emit_operand32(rdi, src);
  3274 void Assembler::fdivra(int i) {
  3275   emit_farith(0xDC, 0xF0, i);
  3278 void Assembler::fdivrp(int i) {
  3279   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3282 void Assembler::ffree(int i) {
  3283   emit_farith(0xDD, 0xC0, i);
  3286 void Assembler::fild_d(Address adr) {
  3287   InstructionMark im(this);
  3288   emit_byte(0xDF);
  3289   emit_operand32(rbp, adr);
  3292 void Assembler::fild_s(Address adr) {
  3293   InstructionMark im(this);
  3294   emit_byte(0xDB);
  3295   emit_operand32(rax, adr);
  3298 void Assembler::fincstp() {
  3299   emit_byte(0xD9);
  3300   emit_byte(0xF7);
  3303 void Assembler::finit() {
  3304   emit_byte(0x9B);
  3305   emit_byte(0xDB);
  3306   emit_byte(0xE3);
  3309 void Assembler::fist_s(Address adr) {
  3310   InstructionMark im(this);
  3311   emit_byte(0xDB);
  3312   emit_operand32(rdx, adr);
  3315 void Assembler::fistp_d(Address adr) {
  3316   InstructionMark im(this);
  3317   emit_byte(0xDF);
  3318   emit_operand32(rdi, adr);
  3321 void Assembler::fistp_s(Address adr) {
  3322   InstructionMark im(this);
  3323   emit_byte(0xDB);
  3324   emit_operand32(rbx, adr);
  3327 void Assembler::fld1() {
  3328   emit_byte(0xD9);
  3329   emit_byte(0xE8);
  3332 void Assembler::fld_d(Address adr) {
  3333   InstructionMark im(this);
  3334   emit_byte(0xDD);
  3335   emit_operand32(rax, adr);
  3338 void Assembler::fld_s(Address adr) {
  3339   InstructionMark im(this);
  3340   emit_byte(0xD9);
  3341   emit_operand32(rax, adr);
  3345 void Assembler::fld_s(int index) {
  3346   emit_farith(0xD9, 0xC0, index);
  3349 void Assembler::fld_x(Address adr) {
  3350   InstructionMark im(this);
  3351   emit_byte(0xDB);
  3352   emit_operand32(rbp, adr);
  3355 void Assembler::fldcw(Address src) {
  3356   InstructionMark im(this);
  3357   emit_byte(0xd9);
  3358   emit_operand32(rbp, src);
  3361 void Assembler::fldenv(Address src) {
  3362   InstructionMark im(this);
  3363   emit_byte(0xD9);
  3364   emit_operand32(rsp, src);
  3367 void Assembler::fldlg2() {
  3368   emit_byte(0xD9);
  3369   emit_byte(0xEC);
  3372 void Assembler::fldln2() {
  3373   emit_byte(0xD9);
  3374   emit_byte(0xED);
  3377 void Assembler::fldz() {
  3378   emit_byte(0xD9);
  3379   emit_byte(0xEE);
  3382 void Assembler::flog() {
  3383   fldln2();
  3384   fxch();
  3385   fyl2x();
  3388 void Assembler::flog10() {
  3389   fldlg2();
  3390   fxch();
  3391   fyl2x();
  3394 void Assembler::fmul(int i) {
  3395   emit_farith(0xD8, 0xC8, i);
  3398 void Assembler::fmul_d(Address src) {
  3399   InstructionMark im(this);
  3400   emit_byte(0xDC);
  3401   emit_operand32(rcx, src);
  3404 void Assembler::fmul_s(Address src) {
  3405   InstructionMark im(this);
  3406   emit_byte(0xD8);
  3407   emit_operand32(rcx, src);
  3410 void Assembler::fmula(int i) {
  3411   emit_farith(0xDC, 0xC8, i);
  3414 void Assembler::fmulp(int i) {
  3415   emit_farith(0xDE, 0xC8, i);
  3418 void Assembler::fnsave(Address dst) {
  3419   InstructionMark im(this);
  3420   emit_byte(0xDD);
  3421   emit_operand32(rsi, dst);
  3424 void Assembler::fnstcw(Address src) {
  3425   InstructionMark im(this);
  3426   emit_byte(0x9B);
  3427   emit_byte(0xD9);
  3428   emit_operand32(rdi, src);
  3431 void Assembler::fnstsw_ax() {
  3432   emit_byte(0xdF);
  3433   emit_byte(0xE0);
  3436 void Assembler::fprem() {
  3437   emit_byte(0xD9);
  3438   emit_byte(0xF8);
  3441 void Assembler::fprem1() {
  3442   emit_byte(0xD9);
  3443   emit_byte(0xF5);
  3446 void Assembler::frstor(Address src) {
  3447   InstructionMark im(this);
  3448   emit_byte(0xDD);
  3449   emit_operand32(rsp, src);
  3452 void Assembler::fsin() {
  3453   emit_byte(0xD9);
  3454   emit_byte(0xFE);
  3457 void Assembler::fsqrt() {
  3458   emit_byte(0xD9);
  3459   emit_byte(0xFA);
  3462 void Assembler::fst_d(Address adr) {
  3463   InstructionMark im(this);
  3464   emit_byte(0xDD);
  3465   emit_operand32(rdx, adr);
  3468 void Assembler::fst_s(Address adr) {
  3469   InstructionMark im(this);
  3470   emit_byte(0xD9);
  3471   emit_operand32(rdx, adr);
  3474 void Assembler::fstp_d(Address adr) {
  3475   InstructionMark im(this);
  3476   emit_byte(0xDD);
  3477   emit_operand32(rbx, adr);
  3480 void Assembler::fstp_d(int index) {
  3481   emit_farith(0xDD, 0xD8, index);
  3484 void Assembler::fstp_s(Address adr) {
  3485   InstructionMark im(this);
  3486   emit_byte(0xD9);
  3487   emit_operand32(rbx, adr);
  3490 void Assembler::fstp_x(Address adr) {
  3491   InstructionMark im(this);
  3492   emit_byte(0xDB);
  3493   emit_operand32(rdi, adr);
  3496 void Assembler::fsub(int i) {
  3497   emit_farith(0xD8, 0xE0, i);
  3500 void Assembler::fsub_d(Address src) {
  3501   InstructionMark im(this);
  3502   emit_byte(0xDC);
  3503   emit_operand32(rsp, src);
  3506 void Assembler::fsub_s(Address src) {
  3507   InstructionMark im(this);
  3508   emit_byte(0xD8);
  3509   emit_operand32(rsp, src);
  3512 void Assembler::fsuba(int i) {
  3513   emit_farith(0xDC, 0xE8, i);
  3516 void Assembler::fsubp(int i) {
  3517   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3520 void Assembler::fsubr(int i) {
  3521   emit_farith(0xD8, 0xE8, i);
  3524 void Assembler::fsubr_d(Address src) {
  3525   InstructionMark im(this);
  3526   emit_byte(0xDC);
  3527   emit_operand32(rbp, src);
  3530 void Assembler::fsubr_s(Address src) {
  3531   InstructionMark im(this);
  3532   emit_byte(0xD8);
  3533   emit_operand32(rbp, src);
  3536 void Assembler::fsubra(int i) {
  3537   emit_farith(0xDC, 0xE0, i);
  3540 void Assembler::fsubrp(int i) {
  3541   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3544 void Assembler::ftan() {
  3545   emit_byte(0xD9);
  3546   emit_byte(0xF2);
  3547   emit_byte(0xDD);
  3548   emit_byte(0xD8);
  3551 void Assembler::ftst() {
  3552   emit_byte(0xD9);
  3553   emit_byte(0xE4);
  3556 void Assembler::fucomi(int i) {
  3557   // make sure the instruction is supported (introduced for P6, together with cmov)
  3558   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3559   emit_farith(0xDB, 0xE8, i);
  3562 void Assembler::fucomip(int i) {
  3563   // make sure the instruction is supported (introduced for P6, together with cmov)
  3564   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3565   emit_farith(0xDF, 0xE8, i);
  3568 void Assembler::fwait() {
  3569   emit_byte(0x9B);
  3572 void Assembler::fxch(int i) {
  3573   emit_farith(0xD9, 0xC8, i);
  3576 void Assembler::fyl2x() {
  3577   emit_byte(0xD9);
  3578   emit_byte(0xF1);
  3581 void Assembler::frndint() {
  3582   emit_byte(0xD9);
  3583   emit_byte(0xFC);
  3586 void Assembler::f2xm1() {
  3587   emit_byte(0xD9);
  3588   emit_byte(0xF0);
  3591 void Assembler::fldl2e() {
  3592   emit_byte(0xD9);
  3593   emit_byte(0xEA);
  3596 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  3597 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  3598 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  3599 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  3601 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  3602 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3603   if (pre > 0) {
  3604     emit_byte(simd_pre[pre]);
  3606   if (rex_w) {
  3607     prefixq(adr, xreg);
  3608   } else {
  3609     prefix(adr, xreg);
  3611   if (opc > 0) {
  3612     emit_byte(0x0F);
  3613     int opc2 = simd_opc[opc];
  3614     if (opc2 > 0) {
  3615       emit_byte(opc2);
  3620 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3621   if (pre > 0) {
  3622     emit_byte(simd_pre[pre]);
  3624   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  3625                           prefix_and_encode(dst_enc, src_enc);
  3626   if (opc > 0) {
  3627     emit_byte(0x0F);
  3628     int opc2 = simd_opc[opc];
  3629     if (opc2 > 0) {
  3630       emit_byte(opc2);
  3633   return encode;
  3637 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  3638   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  3639     prefix(VEX_3bytes);
  3641     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  3642     byte1 = (~byte1) & 0xE0;
  3643     byte1 |= opc;
  3644     a_byte(byte1);
  3646     int byte2 = ((~nds_enc) & 0xf) << 3;
  3647     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  3648     emit_byte(byte2);
  3649   } else {
  3650     prefix(VEX_2bytes);
  3652     int byte1 = vex_r ? VEX_R : 0;
  3653     byte1 = (~byte1) & 0x80;
  3654     byte1 |= ((~nds_enc) & 0xf) << 3;
  3655     byte1 |= (vector256 ? 4 : 0) | pre;
  3656     emit_byte(byte1);
  3660 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  3661   bool vex_r = (xreg_enc >= 8);
  3662   bool vex_b = adr.base_needs_rex();
  3663   bool vex_x = adr.index_needs_rex();
  3664   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3667 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  3668   bool vex_r = (dst_enc >= 8);
  3669   bool vex_b = (src_enc >= 8);
  3670   bool vex_x = false;
  3671   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3672   return (((dst_enc & 7) << 3) | (src_enc & 7));
  3676 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3677   if (UseAVX > 0) {
  3678     int xreg_enc = xreg->encoding();
  3679     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3680     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  3681   } else {
  3682     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  3683     rex_prefix(adr, xreg, pre, opc, rex_w);
  3687 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3688   int dst_enc = dst->encoding();
  3689   int src_enc = src->encoding();
  3690   if (UseAVX > 0) {
  3691     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3692     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  3693   } else {
  3694     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  3695     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  3699 #ifndef _LP64
  3701 void Assembler::incl(Register dst) {
  3702   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3703   emit_byte(0x40 | dst->encoding());
  3706 void Assembler::lea(Register dst, Address src) {
  3707   leal(dst, src);
  3710 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3711   InstructionMark im(this);
  3712   emit_byte(0xC7);
  3713   emit_operand(rax, dst);
  3714   emit_data((int)imm32, rspec, 0);
  3717 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3718   InstructionMark im(this);
  3719   int encode = prefix_and_encode(dst->encoding());
  3720   emit_byte(0xB8 | encode);
  3721   emit_data((int)imm32, rspec, 0);
  3724 void Assembler::popa() { // 32bit
  3725   emit_byte(0x61);
  3728 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3729   InstructionMark im(this);
  3730   emit_byte(0x68);
  3731   emit_data(imm32, rspec, 0);
  3734 void Assembler::pusha() { // 32bit
  3735   emit_byte(0x60);
  3738 void Assembler::set_byte_if_not_zero(Register dst) {
  3739   emit_byte(0x0F);
  3740   emit_byte(0x95);
  3741   emit_byte(0xE0 | dst->encoding());
  3744 void Assembler::shldl(Register dst, Register src) {
  3745   emit_byte(0x0F);
  3746   emit_byte(0xA5);
  3747   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3750 void Assembler::shrdl(Register dst, Register src) {
  3751   emit_byte(0x0F);
  3752   emit_byte(0xAD);
  3753   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3756 #else // LP64
  3758 void Assembler::set_byte_if_not_zero(Register dst) {
  3759   int enc = prefix_and_encode(dst->encoding(), true);
  3760   emit_byte(0x0F);
  3761   emit_byte(0x95);
  3762   emit_byte(0xE0 | enc);
  3765 // 64bit only pieces of the assembler
  3766 // This should only be used by 64bit instructions that can use rip-relative
  3767 // it cannot be used by instructions that want an immediate value.
  3769 bool Assembler::reachable(AddressLiteral adr) {
  3770   int64_t disp;
  3771   // None will force a 64bit literal to the code stream. Likely a placeholder
  3772   // for something that will be patched later and we need to certain it will
  3773   // always be reachable.
  3774   if (adr.reloc() == relocInfo::none) {
  3775     return false;
  3777   if (adr.reloc() == relocInfo::internal_word_type) {
  3778     // This should be rip relative and easily reachable.
  3779     return true;
  3781   if (adr.reloc() == relocInfo::virtual_call_type ||
  3782       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3783       adr.reloc() == relocInfo::static_call_type ||
  3784       adr.reloc() == relocInfo::static_stub_type ) {
  3785     // This should be rip relative within the code cache and easily
  3786     // reachable until we get huge code caches. (At which point
  3787     // ic code is going to have issues).
  3788     return true;
  3790   if (adr.reloc() != relocInfo::external_word_type &&
  3791       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3792       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3793       adr.reloc() != relocInfo::runtime_call_type ) {
  3794     return false;
  3797   // Stress the correction code
  3798   if (ForceUnreachable) {
  3799     // Must be runtimecall reloc, see if it is in the codecache
  3800     // Flipping stuff in the codecache to be unreachable causes issues
  3801     // with things like inline caches where the additional instructions
  3802     // are not handled.
  3803     if (CodeCache::find_blob(adr._target) == NULL) {
  3804       return false;
  3807   // For external_word_type/runtime_call_type if it is reachable from where we
  3808   // are now (possibly a temp buffer) and where we might end up
  3809   // anywhere in the codeCache then we are always reachable.
  3810   // This would have to change if we ever save/restore shared code
  3811   // to be more pessimistic.
  3812   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3813   if (!is_simm32(disp)) return false;
  3814   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3815   if (!is_simm32(disp)) return false;
  3817   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3819   // Because rip relative is a disp + address_of_next_instruction and we
  3820   // don't know the value of address_of_next_instruction we apply a fudge factor
  3821   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3822   // We don't have to fudge the checks above here because they are already worst case.
  3824   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3825   // + 4 because better safe than sorry.
  3826   const int fudge = 12 + 4;
  3827   if (disp < 0) {
  3828     disp -= fudge;
  3829   } else {
  3830     disp += fudge;
  3832   return is_simm32(disp);
  3835 // Check if the polling page is not reachable from the code cache using rip-relative
  3836 // addressing.
  3837 bool Assembler::is_polling_page_far() {
  3838   intptr_t addr = (intptr_t)os::get_polling_page();
  3839   return ForceUnreachable ||
  3840          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  3841          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  3844 void Assembler::emit_data64(jlong data,
  3845                             relocInfo::relocType rtype,
  3846                             int format) {
  3847   if (rtype == relocInfo::none) {
  3848     emit_long64(data);
  3849   } else {
  3850     emit_data64(data, Relocation::spec_simple(rtype), format);
  3854 void Assembler::emit_data64(jlong data,
  3855                             RelocationHolder const& rspec,
  3856                             int format) {
  3857   assert(imm_operand == 0, "default format must be immediate in this file");
  3858   assert(imm_operand == format, "must be immediate");
  3859   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3860   // Do not use AbstractAssembler::relocate, which is not intended for
  3861   // embedded words.  Instead, relocate to the enclosing instruction.
  3862   code_section()->relocate(inst_mark(), rspec, format);
  3863 #ifdef ASSERT
  3864   check_relocation(rspec, format);
  3865 #endif
  3866   emit_long64(data);
  3869 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3870   if (reg_enc >= 8) {
  3871     prefix(REX_B);
  3872     reg_enc -= 8;
  3873   } else if (byteinst && reg_enc >= 4) {
  3874     prefix(REX);
  3876   return reg_enc;
  3879 int Assembler::prefixq_and_encode(int reg_enc) {
  3880   if (reg_enc < 8) {
  3881     prefix(REX_W);
  3882   } else {
  3883     prefix(REX_WB);
  3884     reg_enc -= 8;
  3886   return reg_enc;
  3889 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3890   if (dst_enc < 8) {
  3891     if (src_enc >= 8) {
  3892       prefix(REX_B);
  3893       src_enc -= 8;
  3894     } else if (byteinst && src_enc >= 4) {
  3895       prefix(REX);
  3897   } else {
  3898     if (src_enc < 8) {
  3899       prefix(REX_R);
  3900     } else {
  3901       prefix(REX_RB);
  3902       src_enc -= 8;
  3904     dst_enc -= 8;
  3906   return dst_enc << 3 | src_enc;
  3909 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3910   if (dst_enc < 8) {
  3911     if (src_enc < 8) {
  3912       prefix(REX_W);
  3913     } else {
  3914       prefix(REX_WB);
  3915       src_enc -= 8;
  3917   } else {
  3918     if (src_enc < 8) {
  3919       prefix(REX_WR);
  3920     } else {
  3921       prefix(REX_WRB);
  3922       src_enc -= 8;
  3924     dst_enc -= 8;
  3926   return dst_enc << 3 | src_enc;
  3929 void Assembler::prefix(Register reg) {
  3930   if (reg->encoding() >= 8) {
  3931     prefix(REX_B);
  3935 void Assembler::prefix(Address adr) {
  3936   if (adr.base_needs_rex()) {
  3937     if (adr.index_needs_rex()) {
  3938       prefix(REX_XB);
  3939     } else {
  3940       prefix(REX_B);
  3942   } else {
  3943     if (adr.index_needs_rex()) {
  3944       prefix(REX_X);
  3949 void Assembler::prefixq(Address adr) {
  3950   if (adr.base_needs_rex()) {
  3951     if (adr.index_needs_rex()) {
  3952       prefix(REX_WXB);
  3953     } else {
  3954       prefix(REX_WB);
  3956   } else {
  3957     if (adr.index_needs_rex()) {
  3958       prefix(REX_WX);
  3959     } else {
  3960       prefix(REX_W);
  3966 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3967   if (reg->encoding() < 8) {
  3968     if (adr.base_needs_rex()) {
  3969       if (adr.index_needs_rex()) {
  3970         prefix(REX_XB);
  3971       } else {
  3972         prefix(REX_B);
  3974     } else {
  3975       if (adr.index_needs_rex()) {
  3976         prefix(REX_X);
  3977       } else if (byteinst && reg->encoding() >= 4 ) {
  3978         prefix(REX);
  3981   } else {
  3982     if (adr.base_needs_rex()) {
  3983       if (adr.index_needs_rex()) {
  3984         prefix(REX_RXB);
  3985       } else {
  3986         prefix(REX_RB);
  3988     } else {
  3989       if (adr.index_needs_rex()) {
  3990         prefix(REX_RX);
  3991       } else {
  3992         prefix(REX_R);
  3998 void Assembler::prefixq(Address adr, Register src) {
  3999   if (src->encoding() < 8) {
  4000     if (adr.base_needs_rex()) {
  4001       if (adr.index_needs_rex()) {
  4002         prefix(REX_WXB);
  4003       } else {
  4004         prefix(REX_WB);
  4006     } else {
  4007       if (adr.index_needs_rex()) {
  4008         prefix(REX_WX);
  4009       } else {
  4010         prefix(REX_W);
  4013   } else {
  4014     if (adr.base_needs_rex()) {
  4015       if (adr.index_needs_rex()) {
  4016         prefix(REX_WRXB);
  4017       } else {
  4018         prefix(REX_WRB);
  4020     } else {
  4021       if (adr.index_needs_rex()) {
  4022         prefix(REX_WRX);
  4023       } else {
  4024         prefix(REX_WR);
  4030 void Assembler::prefix(Address adr, XMMRegister reg) {
  4031   if (reg->encoding() < 8) {
  4032     if (adr.base_needs_rex()) {
  4033       if (adr.index_needs_rex()) {
  4034         prefix(REX_XB);
  4035       } else {
  4036         prefix(REX_B);
  4038     } else {
  4039       if (adr.index_needs_rex()) {
  4040         prefix(REX_X);
  4043   } else {
  4044     if (adr.base_needs_rex()) {
  4045       if (adr.index_needs_rex()) {
  4046         prefix(REX_RXB);
  4047       } else {
  4048         prefix(REX_RB);
  4050     } else {
  4051       if (adr.index_needs_rex()) {
  4052         prefix(REX_RX);
  4053       } else {
  4054         prefix(REX_R);
  4060 void Assembler::prefixq(Address adr, XMMRegister src) {
  4061   if (src->encoding() < 8) {
  4062     if (adr.base_needs_rex()) {
  4063       if (adr.index_needs_rex()) {
  4064         prefix(REX_WXB);
  4065       } else {
  4066         prefix(REX_WB);
  4068     } else {
  4069       if (adr.index_needs_rex()) {
  4070         prefix(REX_WX);
  4071       } else {
  4072         prefix(REX_W);
  4075   } else {
  4076     if (adr.base_needs_rex()) {
  4077       if (adr.index_needs_rex()) {
  4078         prefix(REX_WRXB);
  4079       } else {
  4080         prefix(REX_WRB);
  4082     } else {
  4083       if (adr.index_needs_rex()) {
  4084         prefix(REX_WRX);
  4085       } else {
  4086         prefix(REX_WR);
  4092 void Assembler::adcq(Register dst, int32_t imm32) {
  4093   (void) prefixq_and_encode(dst->encoding());
  4094   emit_arith(0x81, 0xD0, dst, imm32);
  4097 void Assembler::adcq(Register dst, Address src) {
  4098   InstructionMark im(this);
  4099   prefixq(src, dst);
  4100   emit_byte(0x13);
  4101   emit_operand(dst, src);
  4104 void Assembler::adcq(Register dst, Register src) {
  4105   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4106   emit_arith(0x13, 0xC0, dst, src);
  4109 void Assembler::addq(Address dst, int32_t imm32) {
  4110   InstructionMark im(this);
  4111   prefixq(dst);
  4112   emit_arith_operand(0x81, rax, dst,imm32);
  4115 void Assembler::addq(Address dst, Register src) {
  4116   InstructionMark im(this);
  4117   prefixq(dst, src);
  4118   emit_byte(0x01);
  4119   emit_operand(src, dst);
  4122 void Assembler::addq(Register dst, int32_t imm32) {
  4123   (void) prefixq_and_encode(dst->encoding());
  4124   emit_arith(0x81, 0xC0, dst, imm32);
  4127 void Assembler::addq(Register dst, Address src) {
  4128   InstructionMark im(this);
  4129   prefixq(src, dst);
  4130   emit_byte(0x03);
  4131   emit_operand(dst, src);
  4134 void Assembler::addq(Register dst, Register src) {
  4135   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4136   emit_arith(0x03, 0xC0, dst, src);
  4139 void Assembler::andq(Address dst, int32_t imm32) {
  4140   InstructionMark im(this);
  4141   prefixq(dst);
  4142   emit_byte(0x81);
  4143   emit_operand(rsp, dst, 4);
  4144   emit_long(imm32);
  4147 void Assembler::andq(Register dst, int32_t imm32) {
  4148   (void) prefixq_and_encode(dst->encoding());
  4149   emit_arith(0x81, 0xE0, dst, imm32);
  4152 void Assembler::andq(Register dst, Address src) {
  4153   InstructionMark im(this);
  4154   prefixq(src, dst);
  4155   emit_byte(0x23);
  4156   emit_operand(dst, src);
  4159 void Assembler::andq(Register dst, Register src) {
  4160   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4161   emit_arith(0x23, 0xC0, dst, src);
  4164 void Assembler::bsfq(Register dst, Register src) {
  4165   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4166   emit_byte(0x0F);
  4167   emit_byte(0xBC);
  4168   emit_byte(0xC0 | encode);
  4171 void Assembler::bsrq(Register dst, Register src) {
  4172   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4173   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4174   emit_byte(0x0F);
  4175   emit_byte(0xBD);
  4176   emit_byte(0xC0 | encode);
  4179 void Assembler::bswapq(Register reg) {
  4180   int encode = prefixq_and_encode(reg->encoding());
  4181   emit_byte(0x0F);
  4182   emit_byte(0xC8 | encode);
  4185 void Assembler::cdqq() {
  4186   prefix(REX_W);
  4187   emit_byte(0x99);
  4190 void Assembler::clflush(Address adr) {
  4191   prefix(adr);
  4192   emit_byte(0x0F);
  4193   emit_byte(0xAE);
  4194   emit_operand(rdi, adr);
  4197 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4198   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4199   emit_byte(0x0F);
  4200   emit_byte(0x40 | cc);
  4201   emit_byte(0xC0 | encode);
  4204 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4205   InstructionMark im(this);
  4206   prefixq(src, dst);
  4207   emit_byte(0x0F);
  4208   emit_byte(0x40 | cc);
  4209   emit_operand(dst, src);
  4212 void Assembler::cmpq(Address dst, int32_t imm32) {
  4213   InstructionMark im(this);
  4214   prefixq(dst);
  4215   emit_byte(0x81);
  4216   emit_operand(rdi, dst, 4);
  4217   emit_long(imm32);
  4220 void Assembler::cmpq(Register dst, int32_t imm32) {
  4221   (void) prefixq_and_encode(dst->encoding());
  4222   emit_arith(0x81, 0xF8, dst, imm32);
  4225 void Assembler::cmpq(Address dst, Register src) {
  4226   InstructionMark im(this);
  4227   prefixq(dst, src);
  4228   emit_byte(0x3B);
  4229   emit_operand(src, dst);
  4232 void Assembler::cmpq(Register dst, Register src) {
  4233   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4234   emit_arith(0x3B, 0xC0, dst, src);
  4237 void Assembler::cmpq(Register dst, Address  src) {
  4238   InstructionMark im(this);
  4239   prefixq(src, dst);
  4240   emit_byte(0x3B);
  4241   emit_operand(dst, src);
  4244 void Assembler::cmpxchgq(Register reg, Address adr) {
  4245   InstructionMark im(this);
  4246   prefixq(adr, reg);
  4247   emit_byte(0x0F);
  4248   emit_byte(0xB1);
  4249   emit_operand(reg, adr);
  4252 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4253   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4254   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4255   emit_byte(0x2A);
  4256   emit_byte(0xC0 | encode);
  4259 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4261   InstructionMark im(this);
  4262   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4263   emit_byte(0x2A);
  4264   emit_operand(dst, src);
  4267 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4268   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4269   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4270   emit_byte(0x2A);
  4271   emit_byte(0xC0 | encode);
  4274 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4275   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4276   InstructionMark im(this);
  4277   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4278   emit_byte(0x2A);
  4279   emit_operand(dst, src);
  4282 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4284   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4285   emit_byte(0x2C);
  4286   emit_byte(0xC0 | encode);
  4289 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4290   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4291   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4292   emit_byte(0x2C);
  4293   emit_byte(0xC0 | encode);
  4296 void Assembler::decl(Register dst) {
  4297   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4298   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4299   int encode = prefix_and_encode(dst->encoding());
  4300   emit_byte(0xFF);
  4301   emit_byte(0xC8 | encode);
  4304 void Assembler::decq(Register dst) {
  4305   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4306   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4307   int encode = prefixq_and_encode(dst->encoding());
  4308   emit_byte(0xFF);
  4309   emit_byte(0xC8 | encode);
  4312 void Assembler::decq(Address dst) {
  4313   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4314   InstructionMark im(this);
  4315   prefixq(dst);
  4316   emit_byte(0xFF);
  4317   emit_operand(rcx, dst);
  4320 void Assembler::fxrstor(Address src) {
  4321   prefixq(src);
  4322   emit_byte(0x0F);
  4323   emit_byte(0xAE);
  4324   emit_operand(as_Register(1), src);
  4327 void Assembler::fxsave(Address dst) {
  4328   prefixq(dst);
  4329   emit_byte(0x0F);
  4330   emit_byte(0xAE);
  4331   emit_operand(as_Register(0), dst);
  4334 void Assembler::idivq(Register src) {
  4335   int encode = prefixq_and_encode(src->encoding());
  4336   emit_byte(0xF7);
  4337   emit_byte(0xF8 | encode);
  4340 void Assembler::imulq(Register dst, Register src) {
  4341   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4342   emit_byte(0x0F);
  4343   emit_byte(0xAF);
  4344   emit_byte(0xC0 | encode);
  4347 void Assembler::imulq(Register dst, Register src, int value) {
  4348   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4349   if (is8bit(value)) {
  4350     emit_byte(0x6B);
  4351     emit_byte(0xC0 | encode);
  4352     emit_byte(value & 0xFF);
  4353   } else {
  4354     emit_byte(0x69);
  4355     emit_byte(0xC0 | encode);
  4356     emit_long(value);
  4360 void Assembler::incl(Register dst) {
  4361   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4362   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4363   int encode = prefix_and_encode(dst->encoding());
  4364   emit_byte(0xFF);
  4365   emit_byte(0xC0 | encode);
  4368 void Assembler::incq(Register dst) {
  4369   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4370   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4371   int encode = prefixq_and_encode(dst->encoding());
  4372   emit_byte(0xFF);
  4373   emit_byte(0xC0 | encode);
  4376 void Assembler::incq(Address dst) {
  4377   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4378   InstructionMark im(this);
  4379   prefixq(dst);
  4380   emit_byte(0xFF);
  4381   emit_operand(rax, dst);
  4384 void Assembler::lea(Register dst, Address src) {
  4385   leaq(dst, src);
  4388 void Assembler::leaq(Register dst, Address src) {
  4389   InstructionMark im(this);
  4390   prefixq(src, dst);
  4391   emit_byte(0x8D);
  4392   emit_operand(dst, src);
  4395 void Assembler::mov64(Register dst, int64_t imm64) {
  4396   InstructionMark im(this);
  4397   int encode = prefixq_and_encode(dst->encoding());
  4398   emit_byte(0xB8 | encode);
  4399   emit_long64(imm64);
  4402 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4403   InstructionMark im(this);
  4404   int encode = prefixq_and_encode(dst->encoding());
  4405   emit_byte(0xB8 | encode);
  4406   emit_data64(imm64, rspec);
  4409 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4410   InstructionMark im(this);
  4411   int encode = prefix_and_encode(dst->encoding());
  4412   emit_byte(0xB8 | encode);
  4413   emit_data((int)imm32, rspec, narrow_oop_operand);
  4416 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4417   InstructionMark im(this);
  4418   prefix(dst);
  4419   emit_byte(0xC7);
  4420   emit_operand(rax, dst, 4);
  4421   emit_data((int)imm32, rspec, narrow_oop_operand);
  4424 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4425   InstructionMark im(this);
  4426   int encode = prefix_and_encode(src1->encoding());
  4427   emit_byte(0x81);
  4428   emit_byte(0xF8 | encode);
  4429   emit_data((int)imm32, rspec, narrow_oop_operand);
  4432 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4433   InstructionMark im(this);
  4434   prefix(src1);
  4435   emit_byte(0x81);
  4436   emit_operand(rax, src1, 4);
  4437   emit_data((int)imm32, rspec, narrow_oop_operand);
  4440 void Assembler::lzcntq(Register dst, Register src) {
  4441   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4442   emit_byte(0xF3);
  4443   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4444   emit_byte(0x0F);
  4445   emit_byte(0xBD);
  4446   emit_byte(0xC0 | encode);
  4449 void Assembler::movdq(XMMRegister dst, Register src) {
  4450   // table D-1 says MMX/SSE2
  4451   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4452   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4453   emit_byte(0x6E);
  4454   emit_byte(0xC0 | encode);
  4457 void Assembler::movdq(Register dst, XMMRegister src) {
  4458   // table D-1 says MMX/SSE2
  4459   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4460   // swap src/dst to get correct prefix
  4461   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4462   emit_byte(0x7E);
  4463   emit_byte(0xC0 | encode);
  4466 void Assembler::movq(Register dst, Register src) {
  4467   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4468   emit_byte(0x8B);
  4469   emit_byte(0xC0 | encode);
  4472 void Assembler::movq(Register dst, Address src) {
  4473   InstructionMark im(this);
  4474   prefixq(src, dst);
  4475   emit_byte(0x8B);
  4476   emit_operand(dst, src);
  4479 void Assembler::movq(Address dst, Register src) {
  4480   InstructionMark im(this);
  4481   prefixq(dst, src);
  4482   emit_byte(0x89);
  4483   emit_operand(src, dst);
  4486 void Assembler::movsbq(Register dst, Address src) {
  4487   InstructionMark im(this);
  4488   prefixq(src, dst);
  4489   emit_byte(0x0F);
  4490   emit_byte(0xBE);
  4491   emit_operand(dst, src);
  4494 void Assembler::movsbq(Register dst, Register src) {
  4495   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4496   emit_byte(0x0F);
  4497   emit_byte(0xBE);
  4498   emit_byte(0xC0 | encode);
  4501 void Assembler::movslq(Register dst, int32_t imm32) {
  4502   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4503   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4504   // as a result we shouldn't use until tested at runtime...
  4505   ShouldNotReachHere();
  4506   InstructionMark im(this);
  4507   int encode = prefixq_and_encode(dst->encoding());
  4508   emit_byte(0xC7 | encode);
  4509   emit_long(imm32);
  4512 void Assembler::movslq(Address dst, int32_t imm32) {
  4513   assert(is_simm32(imm32), "lost bits");
  4514   InstructionMark im(this);
  4515   prefixq(dst);
  4516   emit_byte(0xC7);
  4517   emit_operand(rax, dst, 4);
  4518   emit_long(imm32);
  4521 void Assembler::movslq(Register dst, Address src) {
  4522   InstructionMark im(this);
  4523   prefixq(src, dst);
  4524   emit_byte(0x63);
  4525   emit_operand(dst, src);
  4528 void Assembler::movslq(Register dst, Register src) {
  4529   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4530   emit_byte(0x63);
  4531   emit_byte(0xC0 | encode);
  4534 void Assembler::movswq(Register dst, Address src) {
  4535   InstructionMark im(this);
  4536   prefixq(src, dst);
  4537   emit_byte(0x0F);
  4538   emit_byte(0xBF);
  4539   emit_operand(dst, src);
  4542 void Assembler::movswq(Register dst, Register src) {
  4543   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4544   emit_byte(0x0F);
  4545   emit_byte(0xBF);
  4546   emit_byte(0xC0 | encode);
  4549 void Assembler::movzbq(Register dst, Address src) {
  4550   InstructionMark im(this);
  4551   prefixq(src, dst);
  4552   emit_byte(0x0F);
  4553   emit_byte(0xB6);
  4554   emit_operand(dst, src);
  4557 void Assembler::movzbq(Register dst, Register src) {
  4558   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4559   emit_byte(0x0F);
  4560   emit_byte(0xB6);
  4561   emit_byte(0xC0 | encode);
  4564 void Assembler::movzwq(Register dst, Address src) {
  4565   InstructionMark im(this);
  4566   prefixq(src, dst);
  4567   emit_byte(0x0F);
  4568   emit_byte(0xB7);
  4569   emit_operand(dst, src);
  4572 void Assembler::movzwq(Register dst, Register src) {
  4573   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4574   emit_byte(0x0F);
  4575   emit_byte(0xB7);
  4576   emit_byte(0xC0 | encode);
  4579 void Assembler::negq(Register dst) {
  4580   int encode = prefixq_and_encode(dst->encoding());
  4581   emit_byte(0xF7);
  4582   emit_byte(0xD8 | encode);
  4585 void Assembler::notq(Register dst) {
  4586   int encode = prefixq_and_encode(dst->encoding());
  4587   emit_byte(0xF7);
  4588   emit_byte(0xD0 | encode);
  4591 void Assembler::orq(Address dst, int32_t imm32) {
  4592   InstructionMark im(this);
  4593   prefixq(dst);
  4594   emit_byte(0x81);
  4595   emit_operand(rcx, dst, 4);
  4596   emit_long(imm32);
  4599 void Assembler::orq(Register dst, int32_t imm32) {
  4600   (void) prefixq_and_encode(dst->encoding());
  4601   emit_arith(0x81, 0xC8, dst, imm32);
  4604 void Assembler::orq(Register dst, Address src) {
  4605   InstructionMark im(this);
  4606   prefixq(src, dst);
  4607   emit_byte(0x0B);
  4608   emit_operand(dst, src);
  4611 void Assembler::orq(Register dst, Register src) {
  4612   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4613   emit_arith(0x0B, 0xC0, dst, src);
  4616 void Assembler::popa() { // 64bit
  4617   movq(r15, Address(rsp, 0));
  4618   movq(r14, Address(rsp, wordSize));
  4619   movq(r13, Address(rsp, 2 * wordSize));
  4620   movq(r12, Address(rsp, 3 * wordSize));
  4621   movq(r11, Address(rsp, 4 * wordSize));
  4622   movq(r10, Address(rsp, 5 * wordSize));
  4623   movq(r9,  Address(rsp, 6 * wordSize));
  4624   movq(r8,  Address(rsp, 7 * wordSize));
  4625   movq(rdi, Address(rsp, 8 * wordSize));
  4626   movq(rsi, Address(rsp, 9 * wordSize));
  4627   movq(rbp, Address(rsp, 10 * wordSize));
  4628   // skip rsp
  4629   movq(rbx, Address(rsp, 12 * wordSize));
  4630   movq(rdx, Address(rsp, 13 * wordSize));
  4631   movq(rcx, Address(rsp, 14 * wordSize));
  4632   movq(rax, Address(rsp, 15 * wordSize));
  4634   addq(rsp, 16 * wordSize);
  4637 void Assembler::popcntq(Register dst, Address src) {
  4638   assert(VM_Version::supports_popcnt(), "must support");
  4639   InstructionMark im(this);
  4640   emit_byte(0xF3);
  4641   prefixq(src, dst);
  4642   emit_byte(0x0F);
  4643   emit_byte(0xB8);
  4644   emit_operand(dst, src);
  4647 void Assembler::popcntq(Register dst, Register src) {
  4648   assert(VM_Version::supports_popcnt(), "must support");
  4649   emit_byte(0xF3);
  4650   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4651   emit_byte(0x0F);
  4652   emit_byte(0xB8);
  4653   emit_byte(0xC0 | encode);
  4656 void Assembler::popq(Address dst) {
  4657   InstructionMark im(this);
  4658   prefixq(dst);
  4659   emit_byte(0x8F);
  4660   emit_operand(rax, dst);
  4663 void Assembler::pusha() { // 64bit
  4664   // we have to store original rsp.  ABI says that 128 bytes
  4665   // below rsp are local scratch.
  4666   movq(Address(rsp, -5 * wordSize), rsp);
  4668   subq(rsp, 16 * wordSize);
  4670   movq(Address(rsp, 15 * wordSize), rax);
  4671   movq(Address(rsp, 14 * wordSize), rcx);
  4672   movq(Address(rsp, 13 * wordSize), rdx);
  4673   movq(Address(rsp, 12 * wordSize), rbx);
  4674   // skip rsp
  4675   movq(Address(rsp, 10 * wordSize), rbp);
  4676   movq(Address(rsp, 9 * wordSize), rsi);
  4677   movq(Address(rsp, 8 * wordSize), rdi);
  4678   movq(Address(rsp, 7 * wordSize), r8);
  4679   movq(Address(rsp, 6 * wordSize), r9);
  4680   movq(Address(rsp, 5 * wordSize), r10);
  4681   movq(Address(rsp, 4 * wordSize), r11);
  4682   movq(Address(rsp, 3 * wordSize), r12);
  4683   movq(Address(rsp, 2 * wordSize), r13);
  4684   movq(Address(rsp, wordSize), r14);
  4685   movq(Address(rsp, 0), r15);
  4688 void Assembler::pushq(Address src) {
  4689   InstructionMark im(this);
  4690   prefixq(src);
  4691   emit_byte(0xFF);
  4692   emit_operand(rsi, src);
  4695 void Assembler::rclq(Register dst, int imm8) {
  4696   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4697   int encode = prefixq_and_encode(dst->encoding());
  4698   if (imm8 == 1) {
  4699     emit_byte(0xD1);
  4700     emit_byte(0xD0 | encode);
  4701   } else {
  4702     emit_byte(0xC1);
  4703     emit_byte(0xD0 | encode);
  4704     emit_byte(imm8);
  4707 void Assembler::sarq(Register dst, int imm8) {
  4708   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4709   int encode = prefixq_and_encode(dst->encoding());
  4710   if (imm8 == 1) {
  4711     emit_byte(0xD1);
  4712     emit_byte(0xF8 | encode);
  4713   } else {
  4714     emit_byte(0xC1);
  4715     emit_byte(0xF8 | encode);
  4716     emit_byte(imm8);
  4720 void Assembler::sarq(Register dst) {
  4721   int encode = prefixq_and_encode(dst->encoding());
  4722   emit_byte(0xD3);
  4723   emit_byte(0xF8 | encode);
  4726 void Assembler::sbbq(Address dst, int32_t imm32) {
  4727   InstructionMark im(this);
  4728   prefixq(dst);
  4729   emit_arith_operand(0x81, rbx, dst, imm32);
  4732 void Assembler::sbbq(Register dst, int32_t imm32) {
  4733   (void) prefixq_and_encode(dst->encoding());
  4734   emit_arith(0x81, 0xD8, dst, imm32);
  4737 void Assembler::sbbq(Register dst, Address src) {
  4738   InstructionMark im(this);
  4739   prefixq(src, dst);
  4740   emit_byte(0x1B);
  4741   emit_operand(dst, src);
  4744 void Assembler::sbbq(Register dst, Register src) {
  4745   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4746   emit_arith(0x1B, 0xC0, dst, src);
  4749 void Assembler::shlq(Register dst, int imm8) {
  4750   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4751   int encode = prefixq_and_encode(dst->encoding());
  4752   if (imm8 == 1) {
  4753     emit_byte(0xD1);
  4754     emit_byte(0xE0 | encode);
  4755   } else {
  4756     emit_byte(0xC1);
  4757     emit_byte(0xE0 | encode);
  4758     emit_byte(imm8);
  4762 void Assembler::shlq(Register dst) {
  4763   int encode = prefixq_and_encode(dst->encoding());
  4764   emit_byte(0xD3);
  4765   emit_byte(0xE0 | encode);
  4768 void Assembler::shrq(Register dst, int imm8) {
  4769   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4770   int encode = prefixq_and_encode(dst->encoding());
  4771   emit_byte(0xC1);
  4772   emit_byte(0xE8 | encode);
  4773   emit_byte(imm8);
  4776 void Assembler::shrq(Register dst) {
  4777   int encode = prefixq_and_encode(dst->encoding());
  4778   emit_byte(0xD3);
  4779   emit_byte(0xE8 | encode);
  4782 void Assembler::subq(Address dst, int32_t imm32) {
  4783   InstructionMark im(this);
  4784   prefixq(dst);
  4785   emit_arith_operand(0x81, rbp, dst, imm32);
  4788 void Assembler::subq(Address dst, Register src) {
  4789   InstructionMark im(this);
  4790   prefixq(dst, src);
  4791   emit_byte(0x29);
  4792   emit_operand(src, dst);
  4795 void Assembler::subq(Register dst, int32_t imm32) {
  4796   (void) prefixq_and_encode(dst->encoding());
  4797   emit_arith(0x81, 0xE8, dst, imm32);
  4800 // Force generation of a 4 byte immediate value even if it fits into 8bit
  4801 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  4802   (void) prefixq_and_encode(dst->encoding());
  4803   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  4806 void Assembler::subq(Register dst, Address src) {
  4807   InstructionMark im(this);
  4808   prefixq(src, dst);
  4809   emit_byte(0x2B);
  4810   emit_operand(dst, src);
  4813 void Assembler::subq(Register dst, Register src) {
  4814   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4815   emit_arith(0x2B, 0xC0, dst, src);
  4818 void Assembler::testq(Register dst, int32_t imm32) {
  4819   // not using emit_arith because test
  4820   // doesn't support sign-extension of
  4821   // 8bit operands
  4822   int encode = dst->encoding();
  4823   if (encode == 0) {
  4824     prefix(REX_W);
  4825     emit_byte(0xA9);
  4826   } else {
  4827     encode = prefixq_and_encode(encode);
  4828     emit_byte(0xF7);
  4829     emit_byte(0xC0 | encode);
  4831   emit_long(imm32);
  4834 void Assembler::testq(Register dst, Register src) {
  4835   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4836   emit_arith(0x85, 0xC0, dst, src);
  4839 void Assembler::xaddq(Address dst, Register src) {
  4840   InstructionMark im(this);
  4841   prefixq(dst, src);
  4842   emit_byte(0x0F);
  4843   emit_byte(0xC1);
  4844   emit_operand(src, dst);
  4847 void Assembler::xchgq(Register dst, Address src) {
  4848   InstructionMark im(this);
  4849   prefixq(src, dst);
  4850   emit_byte(0x87);
  4851   emit_operand(dst, src);
  4854 void Assembler::xchgq(Register dst, Register src) {
  4855   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4856   emit_byte(0x87);
  4857   emit_byte(0xc0 | encode);
  4860 void Assembler::xorq(Register dst, Register src) {
  4861   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4862   emit_arith(0x33, 0xC0, dst, src);
  4865 void Assembler::xorq(Register dst, Address src) {
  4866   InstructionMark im(this);
  4867   prefixq(src, dst);
  4868   emit_byte(0x33);
  4869   emit_operand(dst, src);
  4872 #endif // !LP64
  4874 static Assembler::Condition reverse[] = {
  4875     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4876     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4877     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4878     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4879     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4880     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4881     Assembler::above          /* belowEqual    = 0x6 */ ,
  4882     Assembler::belowEqual     /* above         = 0x7 */ ,
  4883     Assembler::positive       /* negative      = 0x8 */ ,
  4884     Assembler::negative       /* positive      = 0x9 */ ,
  4885     Assembler::noParity       /* parity        = 0xa */ ,
  4886     Assembler::parity         /* noParity      = 0xb */ ,
  4887     Assembler::greaterEqual   /* less          = 0xc */ ,
  4888     Assembler::less           /* greaterEqual  = 0xd */ ,
  4889     Assembler::greater        /* lessEqual     = 0xe */ ,
  4890     Assembler::lessEqual      /* greater       = 0xf, */
  4892 };
  4895 // Implementation of MacroAssembler
  4897 // First all the versions that have distinct versions depending on 32/64 bit
  4898 // Unless the difference is trivial (1 line or so).
  4900 #ifndef _LP64
  4902 // 32bit versions
  4904 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4905   return Address(adr.target(), adr.rspec());
  4908 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4909   return Address::make_array(adr);
  4912 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4913                                          Register obj_reg,
  4914                                          Register swap_reg,
  4915                                          Register tmp_reg,
  4916                                          bool swap_reg_contains_mark,
  4917                                          Label& done,
  4918                                          Label* slow_case,
  4919                                          BiasedLockingCounters* counters) {
  4920   assert(UseBiasedLocking, "why call this otherwise?");
  4921   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4922   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4924   if (PrintBiasedLockingStatistics && counters == NULL)
  4925     counters = BiasedLocking::counters();
  4927   bool need_tmp_reg = false;
  4928   if (tmp_reg == noreg) {
  4929     need_tmp_reg = true;
  4930     tmp_reg = lock_reg;
  4931   } else {
  4932     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4934   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4935   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4936   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4937   Address saved_mark_addr(lock_reg, 0);
  4939   // Biased locking
  4940   // See whether the lock is currently biased toward our thread and
  4941   // whether the epoch is still valid
  4942   // Note that the runtime guarantees sufficient alignment of JavaThread
  4943   // pointers to allow age to be placed into low bits
  4944   // First check to see whether biasing is even enabled for this object
  4945   Label cas_label;
  4946   int null_check_offset = -1;
  4947   if (!swap_reg_contains_mark) {
  4948     null_check_offset = offset();
  4949     movl(swap_reg, mark_addr);
  4951   if (need_tmp_reg) {
  4952     push(tmp_reg);
  4954   movl(tmp_reg, swap_reg);
  4955   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4956   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4957   if (need_tmp_reg) {
  4958     pop(tmp_reg);
  4960   jcc(Assembler::notEqual, cas_label);
  4961   // The bias pattern is present in the object's header. Need to check
  4962   // whether the bias owner and the epoch are both still current.
  4963   // Note that because there is no current thread register on x86 we
  4964   // need to store off the mark word we read out of the object to
  4965   // avoid reloading it and needing to recheck invariants below. This
  4966   // store is unfortunate but it makes the overall code shorter and
  4967   // simpler.
  4968   movl(saved_mark_addr, swap_reg);
  4969   if (need_tmp_reg) {
  4970     push(tmp_reg);
  4972   get_thread(tmp_reg);
  4973   xorl(swap_reg, tmp_reg);
  4974   if (swap_reg_contains_mark) {
  4975     null_check_offset = offset();
  4977   movl(tmp_reg, klass_addr);
  4978   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  4979   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4980   if (need_tmp_reg) {
  4981     pop(tmp_reg);
  4983   if (counters != NULL) {
  4984     cond_inc32(Assembler::zero,
  4985                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4987   jcc(Assembler::equal, done);
  4989   Label try_revoke_bias;
  4990   Label try_rebias;
  4992   // At this point we know that the header has the bias pattern and
  4993   // that we are not the bias owner in the current epoch. We need to
  4994   // figure out more details about the state of the header in order to
  4995   // know what operations can be legally performed on the object's
  4996   // header.
  4998   // If the low three bits in the xor result aren't clear, that means
  4999   // the prototype header is no longer biased and we have to revoke
  5000   // the bias on this object.
  5001   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  5002   jcc(Assembler::notZero, try_revoke_bias);
  5004   // Biasing is still enabled for this data type. See whether the
  5005   // epoch of the current bias is still valid, meaning that the epoch
  5006   // bits of the mark word are equal to the epoch bits of the
  5007   // prototype header. (Note that the prototype header's epoch bits
  5008   // only change at a safepoint.) If not, attempt to rebias the object
  5009   // toward the current thread. Note that we must be absolutely sure
  5010   // that the current epoch is invalid in order to do this because
  5011   // otherwise the manipulations it performs on the mark word are
  5012   // illegal.
  5013   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  5014   jcc(Assembler::notZero, try_rebias);
  5016   // The epoch of the current bias is still valid but we know nothing
  5017   // about the owner; it might be set or it might be clear. Try to
  5018   // acquire the bias of the object using an atomic operation. If this
  5019   // fails we will go in to the runtime to revoke the object's bias.
  5020   // Note that we first construct the presumed unbiased header so we
  5021   // don't accidentally blow away another thread's valid bias.
  5022   movl(swap_reg, saved_mark_addr);
  5023   andl(swap_reg,
  5024        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5025   if (need_tmp_reg) {
  5026     push(tmp_reg);
  5028   get_thread(tmp_reg);
  5029   orl(tmp_reg, swap_reg);
  5030   if (os::is_MP()) {
  5031     lock();
  5033   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5034   if (need_tmp_reg) {
  5035     pop(tmp_reg);
  5037   // If the biasing toward our thread failed, this means that
  5038   // another thread succeeded in biasing it toward itself and we
  5039   // need to revoke that bias. The revocation will occur in the
  5040   // interpreter runtime in the slow case.
  5041   if (counters != NULL) {
  5042     cond_inc32(Assembler::zero,
  5043                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5045   if (slow_case != NULL) {
  5046     jcc(Assembler::notZero, *slow_case);
  5048   jmp(done);
  5050   bind(try_rebias);
  5051   // At this point we know the epoch has expired, meaning that the
  5052   // current "bias owner", if any, is actually invalid. Under these
  5053   // circumstances _only_, we are allowed to use the current header's
  5054   // value as the comparison value when doing the cas to acquire the
  5055   // bias in the current epoch. In other words, we allow transfer of
  5056   // the bias from one thread to another directly in this situation.
  5057   //
  5058   // FIXME: due to a lack of registers we currently blow away the age
  5059   // bits in this situation. Should attempt to preserve them.
  5060   if (need_tmp_reg) {
  5061     push(tmp_reg);
  5063   get_thread(tmp_reg);
  5064   movl(swap_reg, klass_addr);
  5065   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5066   movl(swap_reg, saved_mark_addr);
  5067   if (os::is_MP()) {
  5068     lock();
  5070   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5071   if (need_tmp_reg) {
  5072     pop(tmp_reg);
  5074   // If the biasing toward our thread failed, then another thread
  5075   // succeeded in biasing it toward itself and we need to revoke that
  5076   // bias. The revocation will occur in the runtime in the slow case.
  5077   if (counters != NULL) {
  5078     cond_inc32(Assembler::zero,
  5079                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5081   if (slow_case != NULL) {
  5082     jcc(Assembler::notZero, *slow_case);
  5084   jmp(done);
  5086   bind(try_revoke_bias);
  5087   // The prototype mark in the klass doesn't have the bias bit set any
  5088   // more, indicating that objects of this data type are not supposed
  5089   // to be biased any more. We are going to try to reset the mark of
  5090   // this object to the prototype value and fall through to the
  5091   // CAS-based locking scheme. Note that if our CAS fails, it means
  5092   // that another thread raced us for the privilege of revoking the
  5093   // bias of this particular object, so it's okay to continue in the
  5094   // normal locking code.
  5095   //
  5096   // FIXME: due to a lack of registers we currently blow away the age
  5097   // bits in this situation. Should attempt to preserve them.
  5098   movl(swap_reg, saved_mark_addr);
  5099   if (need_tmp_reg) {
  5100     push(tmp_reg);
  5102   movl(tmp_reg, klass_addr);
  5103   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5104   if (os::is_MP()) {
  5105     lock();
  5107   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5108   if (need_tmp_reg) {
  5109     pop(tmp_reg);
  5111   // Fall through to the normal CAS-based lock, because no matter what
  5112   // the result of the above CAS, some thread must have succeeded in
  5113   // removing the bias bit from the object's header.
  5114   if (counters != NULL) {
  5115     cond_inc32(Assembler::zero,
  5116                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5119   bind(cas_label);
  5121   return null_check_offset;
  5123 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5124                                        int number_of_arguments) {
  5125   call(RuntimeAddress(entry_point));
  5126   increment(rsp, number_of_arguments * wordSize);
  5129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5130   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5133 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5134   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5137 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5138   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5139   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5140     cdql();
  5141   } else {
  5142     movl(hi, lo);
  5143     sarl(hi, 31);
  5147 void MacroAssembler::jC2(Register tmp, Label& L) {
  5148   // set parity bit if FPU flag C2 is set (via rax)
  5149   save_rax(tmp);
  5150   fwait(); fnstsw_ax();
  5151   sahf();
  5152   restore_rax(tmp);
  5153   // branch
  5154   jcc(Assembler::parity, L);
  5157 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5158   // set parity bit if FPU flag C2 is set (via rax)
  5159   save_rax(tmp);
  5160   fwait(); fnstsw_ax();
  5161   sahf();
  5162   restore_rax(tmp);
  5163   // branch
  5164   jcc(Assembler::noParity, L);
  5167 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5168 // to be installed in the Address class
  5169 void MacroAssembler::jump(ArrayAddress entry) {
  5170   jmp(as_Address(entry));
  5173 // Note: y_lo will be destroyed
  5174 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5175   // Long compare for Java (semantics as described in JVM spec.)
  5176   Label high, low, done;
  5178   cmpl(x_hi, y_hi);
  5179   jcc(Assembler::less, low);
  5180   jcc(Assembler::greater, high);
  5181   // x_hi is the return register
  5182   xorl(x_hi, x_hi);
  5183   cmpl(x_lo, y_lo);
  5184   jcc(Assembler::below, low);
  5185   jcc(Assembler::equal, done);
  5187   bind(high);
  5188   xorl(x_hi, x_hi);
  5189   increment(x_hi);
  5190   jmp(done);
  5192   bind(low);
  5193   xorl(x_hi, x_hi);
  5194   decrementl(x_hi);
  5196   bind(done);
  5199 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5200     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5203 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5204   // leal(dst, as_Address(adr));
  5205   // see note in movl as to why we must use a move
  5206   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5209 void MacroAssembler::leave() {
  5210   mov(rsp, rbp);
  5211   pop(rbp);
  5214 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5215   // Multiplication of two Java long values stored on the stack
  5216   // as illustrated below. Result is in rdx:rax.
  5217   //
  5218   // rsp ---> [  ??  ] \               \
  5219   //            ....    | y_rsp_offset  |
  5220   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5221   //          [ y_hi ]                  | (in bytes)
  5222   //            ....                    |
  5223   //          [ x_lo ]                 /
  5224   //          [ x_hi ]
  5225   //            ....
  5226   //
  5227   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5228   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5229   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5230   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5231   Label quick;
  5232   // load x_hi, y_hi and check if quick
  5233   // multiplication is possible
  5234   movl(rbx, x_hi);
  5235   movl(rcx, y_hi);
  5236   movl(rax, rbx);
  5237   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5238   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5239   // do full multiplication
  5240   // 1st step
  5241   mull(y_lo);                                    // x_hi * y_lo
  5242   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5243   // 2nd step
  5244   movl(rax, x_lo);
  5245   mull(rcx);                                     // x_lo * y_hi
  5246   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5247   // 3rd step
  5248   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5249   movl(rax, x_lo);
  5250   mull(y_lo);                                    // x_lo * y_lo
  5251   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5254 void MacroAssembler::lneg(Register hi, Register lo) {
  5255   negl(lo);
  5256   adcl(hi, 0);
  5257   negl(hi);
  5260 void MacroAssembler::lshl(Register hi, Register lo) {
  5261   // Java shift left long support (semantics as described in JVM spec., p.305)
  5262   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5263   // shift value is in rcx !
  5264   assert(hi != rcx, "must not use rcx");
  5265   assert(lo != rcx, "must not use rcx");
  5266   const Register s = rcx;                        // shift count
  5267   const int      n = BitsPerWord;
  5268   Label L;
  5269   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5270   cmpl(s, n);                                    // if (s < n)
  5271   jcc(Assembler::less, L);                       // else (s >= n)
  5272   movl(hi, lo);                                  // x := x << n
  5273   xorl(lo, lo);
  5274   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5275   bind(L);                                       // s (mod n) < n
  5276   shldl(hi, lo);                                 // x := x << s
  5277   shll(lo);
  5281 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5282   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5283   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5284   assert(hi != rcx, "must not use rcx");
  5285   assert(lo != rcx, "must not use rcx");
  5286   const Register s = rcx;                        // shift count
  5287   const int      n = BitsPerWord;
  5288   Label L;
  5289   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5290   cmpl(s, n);                                    // if (s < n)
  5291   jcc(Assembler::less, L);                       // else (s >= n)
  5292   movl(lo, hi);                                  // x := x >> n
  5293   if (sign_extension) sarl(hi, 31);
  5294   else                xorl(hi, hi);
  5295   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5296   bind(L);                                       // s (mod n) < n
  5297   shrdl(lo, hi);                                 // x := x >> s
  5298   if (sign_extension) sarl(hi);
  5299   else                shrl(hi);
  5302 void MacroAssembler::movoop(Register dst, jobject obj) {
  5303   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5306 void MacroAssembler::movoop(Address dst, jobject obj) {
  5307   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5310 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5311   if (src.is_lval()) {
  5312     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5313   } else {
  5314     movl(dst, as_Address(src));
  5318 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5319   movl(as_Address(dst), src);
  5322 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5323   movl(dst, as_Address(src));
  5326 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5327 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5328   movl(dst, src);
  5332 void MacroAssembler::pop_callee_saved_registers() {
  5333   pop(rcx);
  5334   pop(rdx);
  5335   pop(rdi);
  5336   pop(rsi);
  5339 void MacroAssembler::pop_fTOS() {
  5340   fld_d(Address(rsp, 0));
  5341   addl(rsp, 2 * wordSize);
  5344 void MacroAssembler::push_callee_saved_registers() {
  5345   push(rsi);
  5346   push(rdi);
  5347   push(rdx);
  5348   push(rcx);
  5351 void MacroAssembler::push_fTOS() {
  5352   subl(rsp, 2 * wordSize);
  5353   fstp_d(Address(rsp, 0));
  5357 void MacroAssembler::pushoop(jobject obj) {
  5358   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5362 void MacroAssembler::pushptr(AddressLiteral src) {
  5363   if (src.is_lval()) {
  5364     push_literal32((int32_t)src.target(), src.rspec());
  5365   } else {
  5366     pushl(as_Address(src));
  5370 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5371   xorl(dst, dst);
  5372   set_byte_if_not_zero(dst);
  5375 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5376   masm->push(arg);
  5379 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5380   masm->push(arg);
  5383 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5384   masm->push(arg);
  5387 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5388   masm->push(arg);
  5391 #ifndef PRODUCT
  5392 extern "C" void findpc(intptr_t x);
  5393 #endif
  5395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5396   // In order to get locks to work, we need to fake a in_VM state
  5397   JavaThread* thread = JavaThread::current();
  5398   JavaThreadState saved_state = thread->thread_state();
  5399   thread->set_thread_state(_thread_in_vm);
  5400   if (ShowMessageBoxOnError) {
  5401     JavaThread* thread = JavaThread::current();
  5402     JavaThreadState saved_state = thread->thread_state();
  5403     thread->set_thread_state(_thread_in_vm);
  5404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5405       ttyLocker ttyl;
  5406       BytecodeCounter::print();
  5408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5409     // This is the value of eip which points to where verify_oop will return.
  5410     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5411       ttyLocker ttyl;
  5412       tty->print_cr("eip = 0x%08x", eip);
  5413 #ifndef PRODUCT
  5414       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5415         tty->cr();
  5416         findpc(eip);
  5417         tty->cr();
  5419 #endif
  5420       tty->print_cr("rax = 0x%08x", rax);
  5421       tty->print_cr("rbx = 0x%08x", rbx);
  5422       tty->print_cr("rcx = 0x%08x", rcx);
  5423       tty->print_cr("rdx = 0x%08x", rdx);
  5424       tty->print_cr("rdi = 0x%08x", rdi);
  5425       tty->print_cr("rsi = 0x%08x", rsi);
  5426       tty->print_cr("rbp = 0x%08x", rbp);
  5427       tty->print_cr("rsp = 0x%08x", rsp);
  5428       BREAKPOINT;
  5429       assert(false, "start up GDB");
  5431   } else {
  5432     ttyLocker ttyl;
  5433     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5434     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5436   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5439 void MacroAssembler::stop(const char* msg) {
  5440   ExternalAddress message((address)msg);
  5441   // push address of message
  5442   pushptr(message.addr());
  5443   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5444   pusha();                                           // push registers
  5445   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5446   hlt();
  5449 void MacroAssembler::warn(const char* msg) {
  5450   push_CPU_state();
  5452   ExternalAddress message((address) msg);
  5453   // push address of message
  5454   pushptr(message.addr());
  5456   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5457   addl(rsp, wordSize);       // discard argument
  5458   pop_CPU_state();
  5461 #else // _LP64
  5463 // 64 bit versions
  5465 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5466   // amd64 always does this as a pc-rel
  5467   // we can be absolute or disp based on the instruction type
  5468   // jmp/call are displacements others are absolute
  5469   assert(!adr.is_lval(), "must be rval");
  5470   assert(reachable(adr), "must be");
  5471   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5475 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5476   AddressLiteral base = adr.base();
  5477   lea(rscratch1, base);
  5478   Address index = adr.index();
  5479   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5480   Address array(rscratch1, index._index, index._scale, index._disp);
  5481   return array;
  5484 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5485                                          Register obj_reg,
  5486                                          Register swap_reg,
  5487                                          Register tmp_reg,
  5488                                          bool swap_reg_contains_mark,
  5489                                          Label& done,
  5490                                          Label* slow_case,
  5491                                          BiasedLockingCounters* counters) {
  5492   assert(UseBiasedLocking, "why call this otherwise?");
  5493   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5494   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5495   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5496   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5497   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5498   Address saved_mark_addr(lock_reg, 0);
  5500   if (PrintBiasedLockingStatistics && counters == NULL)
  5501     counters = BiasedLocking::counters();
  5503   // Biased locking
  5504   // See whether the lock is currently biased toward our thread and
  5505   // whether the epoch is still valid
  5506   // Note that the runtime guarantees sufficient alignment of JavaThread
  5507   // pointers to allow age to be placed into low bits
  5508   // First check to see whether biasing is even enabled for this object
  5509   Label cas_label;
  5510   int null_check_offset = -1;
  5511   if (!swap_reg_contains_mark) {
  5512     null_check_offset = offset();
  5513     movq(swap_reg, mark_addr);
  5515   movq(tmp_reg, swap_reg);
  5516   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5517   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5518   jcc(Assembler::notEqual, cas_label);
  5519   // The bias pattern is present in the object's header. Need to check
  5520   // whether the bias owner and the epoch are both still current.
  5521   load_prototype_header(tmp_reg, obj_reg);
  5522   orq(tmp_reg, r15_thread);
  5523   xorq(tmp_reg, swap_reg);
  5524   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5525   if (counters != NULL) {
  5526     cond_inc32(Assembler::zero,
  5527                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5529   jcc(Assembler::equal, done);
  5531   Label try_revoke_bias;
  5532   Label try_rebias;
  5534   // At this point we know that the header has the bias pattern and
  5535   // that we are not the bias owner in the current epoch. We need to
  5536   // figure out more details about the state of the header in order to
  5537   // know what operations can be legally performed on the object's
  5538   // header.
  5540   // If the low three bits in the xor result aren't clear, that means
  5541   // the prototype header is no longer biased and we have to revoke
  5542   // the bias on this object.
  5543   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5544   jcc(Assembler::notZero, try_revoke_bias);
  5546   // Biasing is still enabled for this data type. See whether the
  5547   // epoch of the current bias is still valid, meaning that the epoch
  5548   // bits of the mark word are equal to the epoch bits of the
  5549   // prototype header. (Note that the prototype header's epoch bits
  5550   // only change at a safepoint.) If not, attempt to rebias the object
  5551   // toward the current thread. Note that we must be absolutely sure
  5552   // that the current epoch is invalid in order to do this because
  5553   // otherwise the manipulations it performs on the mark word are
  5554   // illegal.
  5555   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5556   jcc(Assembler::notZero, try_rebias);
  5558   // The epoch of the current bias is still valid but we know nothing
  5559   // about the owner; it might be set or it might be clear. Try to
  5560   // acquire the bias of the object using an atomic operation. If this
  5561   // fails we will go in to the runtime to revoke the object's bias.
  5562   // Note that we first construct the presumed unbiased header so we
  5563   // don't accidentally blow away another thread's valid bias.
  5564   andq(swap_reg,
  5565        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5566   movq(tmp_reg, swap_reg);
  5567   orq(tmp_reg, r15_thread);
  5568   if (os::is_MP()) {
  5569     lock();
  5571   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5572   // If the biasing toward our thread failed, this means that
  5573   // another thread succeeded in biasing it toward itself and we
  5574   // need to revoke that bias. The revocation will occur in the
  5575   // interpreter runtime in the slow case.
  5576   if (counters != NULL) {
  5577     cond_inc32(Assembler::zero,
  5578                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5580   if (slow_case != NULL) {
  5581     jcc(Assembler::notZero, *slow_case);
  5583   jmp(done);
  5585   bind(try_rebias);
  5586   // At this point we know the epoch has expired, meaning that the
  5587   // current "bias owner", if any, is actually invalid. Under these
  5588   // circumstances _only_, we are allowed to use the current header's
  5589   // value as the comparison value when doing the cas to acquire the
  5590   // bias in the current epoch. In other words, we allow transfer of
  5591   // the bias from one thread to another directly in this situation.
  5592   //
  5593   // FIXME: due to a lack of registers we currently blow away the age
  5594   // bits in this situation. Should attempt to preserve them.
  5595   load_prototype_header(tmp_reg, obj_reg);
  5596   orq(tmp_reg, r15_thread);
  5597   if (os::is_MP()) {
  5598     lock();
  5600   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5601   // If the biasing toward our thread failed, then another thread
  5602   // succeeded in biasing it toward itself and we need to revoke that
  5603   // bias. The revocation will occur in the runtime in the slow case.
  5604   if (counters != NULL) {
  5605     cond_inc32(Assembler::zero,
  5606                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5608   if (slow_case != NULL) {
  5609     jcc(Assembler::notZero, *slow_case);
  5611   jmp(done);
  5613   bind(try_revoke_bias);
  5614   // The prototype mark in the klass doesn't have the bias bit set any
  5615   // more, indicating that objects of this data type are not supposed
  5616   // to be biased any more. We are going to try to reset the mark of
  5617   // this object to the prototype value and fall through to the
  5618   // CAS-based locking scheme. Note that if our CAS fails, it means
  5619   // that another thread raced us for the privilege of revoking the
  5620   // bias of this particular object, so it's okay to continue in the
  5621   // normal locking code.
  5622   //
  5623   // FIXME: due to a lack of registers we currently blow away the age
  5624   // bits in this situation. Should attempt to preserve them.
  5625   load_prototype_header(tmp_reg, obj_reg);
  5626   if (os::is_MP()) {
  5627     lock();
  5629   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5630   // Fall through to the normal CAS-based lock, because no matter what
  5631   // the result of the above CAS, some thread must have succeeded in
  5632   // removing the bias bit from the object's header.
  5633   if (counters != NULL) {
  5634     cond_inc32(Assembler::zero,
  5635                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5638   bind(cas_label);
  5640   return null_check_offset;
  5643 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5644   Label L, E;
  5646 #ifdef _WIN64
  5647   // Windows always allocates space for it's register args
  5648   assert(num_args <= 4, "only register arguments supported");
  5649   subq(rsp,  frame::arg_reg_save_area_bytes);
  5650 #endif
  5652   // Align stack if necessary
  5653   testl(rsp, 15);
  5654   jcc(Assembler::zero, L);
  5656   subq(rsp, 8);
  5658     call(RuntimeAddress(entry_point));
  5660   addq(rsp, 8);
  5661   jmp(E);
  5663   bind(L);
  5665     call(RuntimeAddress(entry_point));
  5668   bind(E);
  5670 #ifdef _WIN64
  5671   // restore stack pointer
  5672   addq(rsp, frame::arg_reg_save_area_bytes);
  5673 #endif
  5677 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5678   assert(!src2.is_lval(), "should use cmpptr");
  5680   if (reachable(src2)) {
  5681     cmpq(src1, as_Address(src2));
  5682   } else {
  5683     lea(rscratch1, src2);
  5684     Assembler::cmpq(src1, Address(rscratch1, 0));
  5688 int MacroAssembler::corrected_idivq(Register reg) {
  5689   // Full implementation of Java ldiv and lrem; checks for special
  5690   // case as described in JVM spec., p.243 & p.271.  The function
  5691   // returns the (pc) offset of the idivl instruction - may be needed
  5692   // for implicit exceptions.
  5693   //
  5694   //         normal case                           special case
  5695   //
  5696   // input : rax: dividend                         min_long
  5697   //         reg: divisor   (may not be eax/edx)   -1
  5698   //
  5699   // output: rax: quotient  (= rax idiv reg)       min_long
  5700   //         rdx: remainder (= rax irem reg)       0
  5701   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5702   static const int64_t min_long = 0x8000000000000000;
  5703   Label normal_case, special_case;
  5705   // check for special case
  5706   cmp64(rax, ExternalAddress((address) &min_long));
  5707   jcc(Assembler::notEqual, normal_case);
  5708   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5709                   // remainder = 0)
  5710   cmpq(reg, -1);
  5711   jcc(Assembler::equal, special_case);
  5713   // handle normal case
  5714   bind(normal_case);
  5715   cdqq();
  5716   int idivq_offset = offset();
  5717   idivq(reg);
  5719   // normal and special case exit
  5720   bind(special_case);
  5722   return idivq_offset;
  5725 void MacroAssembler::decrementq(Register reg, int value) {
  5726   if (value == min_jint) { subq(reg, value); return; }
  5727   if (value <  0) { incrementq(reg, -value); return; }
  5728   if (value == 0) {                        ; return; }
  5729   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5730   /* else */      { subq(reg, value)       ; return; }
  5733 void MacroAssembler::decrementq(Address dst, int value) {
  5734   if (value == min_jint) { subq(dst, value); return; }
  5735   if (value <  0) { incrementq(dst, -value); return; }
  5736   if (value == 0) {                        ; return; }
  5737   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5738   /* else */      { subq(dst, value)       ; return; }
  5741 void MacroAssembler::incrementq(Register reg, int value) {
  5742   if (value == min_jint) { addq(reg, value); return; }
  5743   if (value <  0) { decrementq(reg, -value); return; }
  5744   if (value == 0) {                        ; return; }
  5745   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5746   /* else */      { addq(reg, value)       ; return; }
  5749 void MacroAssembler::incrementq(Address dst, int value) {
  5750   if (value == min_jint) { addq(dst, value); return; }
  5751   if (value <  0) { decrementq(dst, -value); return; }
  5752   if (value == 0) {                        ; return; }
  5753   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5754   /* else */      { addq(dst, value)       ; return; }
  5757 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5758 // to be installed in the Address class
  5759 void MacroAssembler::jump(ArrayAddress entry) {
  5760   lea(rscratch1, entry.base());
  5761   Address dispatch = entry.index();
  5762   assert(dispatch._base == noreg, "must be");
  5763   dispatch._base = rscratch1;
  5764   jmp(dispatch);
  5767 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5768   ShouldNotReachHere(); // 64bit doesn't use two regs
  5769   cmpq(x_lo, y_lo);
  5772 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5773     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5776 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5777   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5778   movptr(dst, rscratch1);
  5781 void MacroAssembler::leave() {
  5782   // %%% is this really better? Why not on 32bit too?
  5783   emit_byte(0xC9); // LEAVE
  5786 void MacroAssembler::lneg(Register hi, Register lo) {
  5787   ShouldNotReachHere(); // 64bit doesn't use two regs
  5788   negq(lo);
  5791 void MacroAssembler::movoop(Register dst, jobject obj) {
  5792   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5795 void MacroAssembler::movoop(Address dst, jobject obj) {
  5796   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5797   movq(dst, rscratch1);
  5800 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5801   if (src.is_lval()) {
  5802     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5803   } else {
  5804     if (reachable(src)) {
  5805       movq(dst, as_Address(src));
  5806     } else {
  5807       lea(rscratch1, src);
  5808       movq(dst, Address(rscratch1,0));
  5813 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5814   movq(as_Address(dst), src);
  5817 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5818   movq(dst, as_Address(src));
  5821 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5822 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5823   mov64(rscratch1, src);
  5824   movq(dst, rscratch1);
  5827 // These are mostly for initializing NULL
  5828 void MacroAssembler::movptr(Address dst, int32_t src) {
  5829   movslq(dst, src);
  5832 void MacroAssembler::movptr(Register dst, int32_t src) {
  5833   mov64(dst, (intptr_t)src);
  5836 void MacroAssembler::pushoop(jobject obj) {
  5837   movoop(rscratch1, obj);
  5838   push(rscratch1);
  5841 void MacroAssembler::pushptr(AddressLiteral src) {
  5842   lea(rscratch1, src);
  5843   if (src.is_lval()) {
  5844     push(rscratch1);
  5845   } else {
  5846     pushq(Address(rscratch1, 0));
  5850 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5851                                            bool clear_pc) {
  5852   // we must set sp to zero to clear frame
  5853   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5854   // must clear fp, so that compiled frames are not confused; it is
  5855   // possible that we need it only for debugging
  5856   if (clear_fp) {
  5857     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5860   if (clear_pc) {
  5861     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5865 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5866                                          Register last_java_fp,
  5867                                          address  last_java_pc) {
  5868   // determine last_java_sp register
  5869   if (!last_java_sp->is_valid()) {
  5870     last_java_sp = rsp;
  5873   // last_java_fp is optional
  5874   if (last_java_fp->is_valid()) {
  5875     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5876            last_java_fp);
  5879   // last_java_pc is optional
  5880   if (last_java_pc != NULL) {
  5881     Address java_pc(r15_thread,
  5882                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5883     lea(rscratch1, InternalAddress(last_java_pc));
  5884     movptr(java_pc, rscratch1);
  5887   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5890 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5891   if (c_rarg0 != arg ) {
  5892     masm->mov(c_rarg0, arg);
  5896 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5897   if (c_rarg1 != arg ) {
  5898     masm->mov(c_rarg1, arg);
  5902 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5903   if (c_rarg2 != arg ) {
  5904     masm->mov(c_rarg2, arg);
  5908 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5909   if (c_rarg3 != arg ) {
  5910     masm->mov(c_rarg3, arg);
  5914 void MacroAssembler::stop(const char* msg) {
  5915   address rip = pc();
  5916   pusha(); // get regs on stack
  5917   lea(c_rarg0, ExternalAddress((address) msg));
  5918   lea(c_rarg1, InternalAddress(rip));
  5919   movq(c_rarg2, rsp); // pass pointer to regs array
  5920   andq(rsp, -16); // align stack as required by ABI
  5921   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5922   hlt();
  5925 void MacroAssembler::warn(const char* msg) {
  5926   push(rsp);
  5927   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5929   push_CPU_state();   // keeps alignment at 16 bytes
  5930   lea(c_rarg0, ExternalAddress((address) msg));
  5931   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5932   pop_CPU_state();
  5933   pop(rsp);
  5936 #ifndef PRODUCT
  5937 extern "C" void findpc(intptr_t x);
  5938 #endif
  5940 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5941   // In order to get locks to work, we need to fake a in_VM state
  5942   if (ShowMessageBoxOnError ) {
  5943     JavaThread* thread = JavaThread::current();
  5944     JavaThreadState saved_state = thread->thread_state();
  5945     thread->set_thread_state(_thread_in_vm);
  5946 #ifndef PRODUCT
  5947     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5948       ttyLocker ttyl;
  5949       BytecodeCounter::print();
  5951 #endif
  5952     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5953     // XXX correct this offset for amd64
  5954     // This is the value of eip which points to where verify_oop will return.
  5955     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5956       ttyLocker ttyl;
  5957       tty->print_cr("rip = 0x%016lx", pc);
  5958 #ifndef PRODUCT
  5959       tty->cr();
  5960       findpc(pc);
  5961       tty->cr();
  5962 #endif
  5963       tty->print_cr("rax = 0x%016lx", regs[15]);
  5964       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5965       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5966       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5967       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5968       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5969       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5970       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5971       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5972       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5973       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5974       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5975       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5976       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5977       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5978       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5979       BREAKPOINT;
  5981     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5982   } else {
  5983     ttyLocker ttyl;
  5984     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5985                     msg);
  5986     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5990 #endif // _LP64
  5992 // Now versions that are common to 32/64 bit
  5994 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5995   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5998 void MacroAssembler::addptr(Register dst, Register src) {
  5999   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6002 void MacroAssembler::addptr(Address dst, Register src) {
  6003   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6006 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  6007   if (reachable(src)) {
  6008     Assembler::addsd(dst, as_Address(src));
  6009   } else {
  6010     lea(rscratch1, src);
  6011     Assembler::addsd(dst, Address(rscratch1, 0));
  6015 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  6016   if (reachable(src)) {
  6017     addss(dst, as_Address(src));
  6018   } else {
  6019     lea(rscratch1, src);
  6020     addss(dst, Address(rscratch1, 0));
  6024 void MacroAssembler::align(int modulus) {
  6025   if (offset() % modulus != 0) {
  6026     nop(modulus - (offset() % modulus));
  6030 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6031   // Used in sign-masking with aligned address.
  6032   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6033   if (reachable(src)) {
  6034     Assembler::andpd(dst, as_Address(src));
  6035   } else {
  6036     lea(rscratch1, src);
  6037     Assembler::andpd(dst, Address(rscratch1, 0));
  6041 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6042   // Used in sign-masking with aligned address.
  6043   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6044   if (reachable(src)) {
  6045     Assembler::andps(dst, as_Address(src));
  6046   } else {
  6047     lea(rscratch1, src);
  6048     Assembler::andps(dst, Address(rscratch1, 0));
  6052 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6053   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6056 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6057   pushf();
  6058   if (os::is_MP())
  6059     lock();
  6060   incrementl(counter_addr);
  6061   popf();
  6064 // Writes to stack successive pages until offset reached to check for
  6065 // stack overflow + shadow pages.  This clobbers tmp.
  6066 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6067   movptr(tmp, rsp);
  6068   // Bang stack for total size given plus shadow page size.
  6069   // Bang one page at a time because large size can bang beyond yellow and
  6070   // red zones.
  6071   Label loop;
  6072   bind(loop);
  6073   movl(Address(tmp, (-os::vm_page_size())), size );
  6074   subptr(tmp, os::vm_page_size());
  6075   subl(size, os::vm_page_size());
  6076   jcc(Assembler::greater, loop);
  6078   // Bang down shadow pages too.
  6079   // The -1 because we already subtracted 1 page.
  6080   for (int i = 0; i< StackShadowPages-1; i++) {
  6081     // this could be any sized move but this is can be a debugging crumb
  6082     // so the bigger the better.
  6083     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6087 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6088   assert(UseBiasedLocking, "why call this otherwise?");
  6090   // Check for biased locking unlock case, which is a no-op
  6091   // Note: we do not have to check the thread ID for two reasons.
  6092   // First, the interpreter checks for IllegalMonitorStateException at
  6093   // a higher level. Second, if the bias was revoked while we held the
  6094   // lock, the object could not be rebiased toward another thread, so
  6095   // the bias bit would be clear.
  6096   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6097   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6098   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6099   jcc(Assembler::equal, done);
  6102 void MacroAssembler::c2bool(Register x) {
  6103   // implements x == 0 ? 0 : 1
  6104   // note: must only look at least-significant byte of x
  6105   //       since C-style booleans are stored in one byte
  6106   //       only! (was bug)
  6107   andl(x, 0xFF);
  6108   setb(Assembler::notZero, x);
  6111 // Wouldn't need if AddressLiteral version had new name
  6112 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6113   Assembler::call(L, rtype);
  6116 void MacroAssembler::call(Register entry) {
  6117   Assembler::call(entry);
  6120 void MacroAssembler::call(AddressLiteral entry) {
  6121   if (reachable(entry)) {
  6122     Assembler::call_literal(entry.target(), entry.rspec());
  6123   } else {
  6124     lea(rscratch1, entry);
  6125     Assembler::call(rscratch1);
  6129 // Implementation of call_VM versions
  6131 void MacroAssembler::call_VM(Register oop_result,
  6132                              address entry_point,
  6133                              bool check_exceptions) {
  6134   Label C, E;
  6135   call(C, relocInfo::none);
  6136   jmp(E);
  6138   bind(C);
  6139   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6140   ret(0);
  6142   bind(E);
  6145 void MacroAssembler::call_VM(Register oop_result,
  6146                              address entry_point,
  6147                              Register arg_1,
  6148                              bool check_exceptions) {
  6149   Label C, E;
  6150   call(C, relocInfo::none);
  6151   jmp(E);
  6153   bind(C);
  6154   pass_arg1(this, arg_1);
  6155   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6156   ret(0);
  6158   bind(E);
  6161 void MacroAssembler::call_VM(Register oop_result,
  6162                              address entry_point,
  6163                              Register arg_1,
  6164                              Register arg_2,
  6165                              bool check_exceptions) {
  6166   Label C, E;
  6167   call(C, relocInfo::none);
  6168   jmp(E);
  6170   bind(C);
  6172   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6174   pass_arg2(this, arg_2);
  6175   pass_arg1(this, arg_1);
  6176   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6177   ret(0);
  6179   bind(E);
  6182 void MacroAssembler::call_VM(Register oop_result,
  6183                              address entry_point,
  6184                              Register arg_1,
  6185                              Register arg_2,
  6186                              Register arg_3,
  6187                              bool check_exceptions) {
  6188   Label C, E;
  6189   call(C, relocInfo::none);
  6190   jmp(E);
  6192   bind(C);
  6194   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6195   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6196   pass_arg3(this, arg_3);
  6198   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6199   pass_arg2(this, arg_2);
  6201   pass_arg1(this, arg_1);
  6202   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6203   ret(0);
  6205   bind(E);
  6208 void MacroAssembler::call_VM(Register oop_result,
  6209                              Register last_java_sp,
  6210                              address entry_point,
  6211                              int number_of_arguments,
  6212                              bool check_exceptions) {
  6213   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6214   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6217 void MacroAssembler::call_VM(Register oop_result,
  6218                              Register last_java_sp,
  6219                              address entry_point,
  6220                              Register arg_1,
  6221                              bool check_exceptions) {
  6222   pass_arg1(this, arg_1);
  6223   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6226 void MacroAssembler::call_VM(Register oop_result,
  6227                              Register last_java_sp,
  6228                              address entry_point,
  6229                              Register arg_1,
  6230                              Register arg_2,
  6231                              bool check_exceptions) {
  6233   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6234   pass_arg2(this, arg_2);
  6235   pass_arg1(this, arg_1);
  6236   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6239 void MacroAssembler::call_VM(Register oop_result,
  6240                              Register last_java_sp,
  6241                              address entry_point,
  6242                              Register arg_1,
  6243                              Register arg_2,
  6244                              Register arg_3,
  6245                              bool check_exceptions) {
  6246   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6247   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6248   pass_arg3(this, arg_3);
  6249   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6250   pass_arg2(this, arg_2);
  6251   pass_arg1(this, arg_1);
  6252   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6255 void MacroAssembler::super_call_VM(Register oop_result,
  6256                                    Register last_java_sp,
  6257                                    address entry_point,
  6258                                    int number_of_arguments,
  6259                                    bool check_exceptions) {
  6260   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6261   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6264 void MacroAssembler::super_call_VM(Register oop_result,
  6265                                    Register last_java_sp,
  6266                                    address entry_point,
  6267                                    Register arg_1,
  6268                                    bool check_exceptions) {
  6269   pass_arg1(this, arg_1);
  6270   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6273 void MacroAssembler::super_call_VM(Register oop_result,
  6274                                    Register last_java_sp,
  6275                                    address entry_point,
  6276                                    Register arg_1,
  6277                                    Register arg_2,
  6278                                    bool check_exceptions) {
  6280   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6281   pass_arg2(this, arg_2);
  6282   pass_arg1(this, arg_1);
  6283   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6286 void MacroAssembler::super_call_VM(Register oop_result,
  6287                                    Register last_java_sp,
  6288                                    address entry_point,
  6289                                    Register arg_1,
  6290                                    Register arg_2,
  6291                                    Register arg_3,
  6292                                    bool check_exceptions) {
  6293   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6294   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6295   pass_arg3(this, arg_3);
  6296   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6297   pass_arg2(this, arg_2);
  6298   pass_arg1(this, arg_1);
  6299   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6302 void MacroAssembler::call_VM_base(Register oop_result,
  6303                                   Register java_thread,
  6304                                   Register last_java_sp,
  6305                                   address  entry_point,
  6306                                   int      number_of_arguments,
  6307                                   bool     check_exceptions) {
  6308   // determine java_thread register
  6309   if (!java_thread->is_valid()) {
  6310 #ifdef _LP64
  6311     java_thread = r15_thread;
  6312 #else
  6313     java_thread = rdi;
  6314     get_thread(java_thread);
  6315 #endif // LP64
  6317   // determine last_java_sp register
  6318   if (!last_java_sp->is_valid()) {
  6319     last_java_sp = rsp;
  6321   // debugging support
  6322   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6323   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6324 #ifdef ASSERT
  6325   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6326   // r12 is the heapbase.
  6327   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6328 #endif // ASSERT
  6330   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6331   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6333   // push java thread (becomes first argument of C function)
  6335   NOT_LP64(push(java_thread); number_of_arguments++);
  6336   LP64_ONLY(mov(c_rarg0, r15_thread));
  6338   // set last Java frame before call
  6339   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6341   // Only interpreter should have to set fp
  6342   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6344   // do the call, remove parameters
  6345   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6347   // restore the thread (cannot use the pushed argument since arguments
  6348   // may be overwritten by C code generated by an optimizing compiler);
  6349   // however can use the register value directly if it is callee saved.
  6350   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6351     // rdi & rsi (also r15) are callee saved -> nothing to do
  6352 #ifdef ASSERT
  6353     guarantee(java_thread != rax, "change this code");
  6354     push(rax);
  6355     { Label L;
  6356       get_thread(rax);
  6357       cmpptr(java_thread, rax);
  6358       jcc(Assembler::equal, L);
  6359       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  6360       bind(L);
  6362     pop(rax);
  6363 #endif
  6364   } else {
  6365     get_thread(java_thread);
  6367   // reset last Java frame
  6368   // Only interpreter should have to clear fp
  6369   reset_last_Java_frame(java_thread, true, false);
  6371 #ifndef CC_INTERP
  6372    // C++ interp handles this in the interpreter
  6373   check_and_handle_popframe(java_thread);
  6374   check_and_handle_earlyret(java_thread);
  6375 #endif /* CC_INTERP */
  6377   if (check_exceptions) {
  6378     // check for pending exceptions (java_thread is set upon return)
  6379     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6380 #ifndef _LP64
  6381     jump_cc(Assembler::notEqual,
  6382             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6383 #else
  6384     // This used to conditionally jump to forward_exception however it is
  6385     // possible if we relocate that the branch will not reach. So we must jump
  6386     // around so we can always reach
  6388     Label ok;
  6389     jcc(Assembler::equal, ok);
  6390     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6391     bind(ok);
  6392 #endif // LP64
  6395   // get oop result if there is one and reset the value in the thread
  6396   if (oop_result->is_valid()) {
  6397     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  6398     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  6399     verify_oop(oop_result, "broken oop in call_VM_base");
  6403 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6405   // Calculate the value for last_Java_sp
  6406   // somewhat subtle. call_VM does an intermediate call
  6407   // which places a return address on the stack just under the
  6408   // stack pointer as the user finsihed with it. This allows
  6409   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6410   // On 32bit we then have to push additional args on the stack to accomplish
  6411   // the actual requested call. On 64bit call_VM only can use register args
  6412   // so the only extra space is the return address that call_VM created.
  6413   // This hopefully explains the calculations here.
  6415 #ifdef _LP64
  6416   // We've pushed one address, correct last_Java_sp
  6417   lea(rax, Address(rsp, wordSize));
  6418 #else
  6419   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6420 #endif // LP64
  6422   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6426 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6427   call_VM_leaf_base(entry_point, number_of_arguments);
  6430 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6431   pass_arg0(this, arg_0);
  6432   call_VM_leaf(entry_point, 1);
  6435 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6437   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6438   pass_arg1(this, arg_1);
  6439   pass_arg0(this, arg_0);
  6440   call_VM_leaf(entry_point, 2);
  6443 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6444   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6446   pass_arg2(this, arg_2);
  6447   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6448   pass_arg1(this, arg_1);
  6449   pass_arg0(this, arg_0);
  6450   call_VM_leaf(entry_point, 3);
  6453 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  6454   pass_arg0(this, arg_0);
  6455   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  6458 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6460   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6461   pass_arg1(this, arg_1);
  6462   pass_arg0(this, arg_0);
  6463   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  6466 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6467   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6468   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6469   pass_arg2(this, arg_2);
  6470   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6471   pass_arg1(this, arg_1);
  6472   pass_arg0(this, arg_0);
  6473   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  6476 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  6477   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  6478   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6479   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6480   pass_arg3(this, arg_3);
  6481   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6482   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6483   pass_arg2(this, arg_2);
  6484   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6485   pass_arg1(this, arg_1);
  6486   pass_arg0(this, arg_0);
  6487   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  6490 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6493 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6496 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6497   if (reachable(src1)) {
  6498     cmpl(as_Address(src1), imm);
  6499   } else {
  6500     lea(rscratch1, src1);
  6501     cmpl(Address(rscratch1, 0), imm);
  6505 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6506   assert(!src2.is_lval(), "use cmpptr");
  6507   if (reachable(src2)) {
  6508     cmpl(src1, as_Address(src2));
  6509   } else {
  6510     lea(rscratch1, src2);
  6511     cmpl(src1, Address(rscratch1, 0));
  6515 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6516   Assembler::cmpl(src1, imm);
  6519 void MacroAssembler::cmp32(Register src1, Address src2) {
  6520   Assembler::cmpl(src1, src2);
  6523 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6524   ucomisd(opr1, opr2);
  6526   Label L;
  6527   if (unordered_is_less) {
  6528     movl(dst, -1);
  6529     jcc(Assembler::parity, L);
  6530     jcc(Assembler::below , L);
  6531     movl(dst, 0);
  6532     jcc(Assembler::equal , L);
  6533     increment(dst);
  6534   } else { // unordered is greater
  6535     movl(dst, 1);
  6536     jcc(Assembler::parity, L);
  6537     jcc(Assembler::above , L);
  6538     movl(dst, 0);
  6539     jcc(Assembler::equal , L);
  6540     decrementl(dst);
  6542   bind(L);
  6545 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6546   ucomiss(opr1, opr2);
  6548   Label L;
  6549   if (unordered_is_less) {
  6550     movl(dst, -1);
  6551     jcc(Assembler::parity, L);
  6552     jcc(Assembler::below , L);
  6553     movl(dst, 0);
  6554     jcc(Assembler::equal , L);
  6555     increment(dst);
  6556   } else { // unordered is greater
  6557     movl(dst, 1);
  6558     jcc(Assembler::parity, L);
  6559     jcc(Assembler::above , L);
  6560     movl(dst, 0);
  6561     jcc(Assembler::equal , L);
  6562     decrementl(dst);
  6564   bind(L);
  6568 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6569   if (reachable(src1)) {
  6570     cmpb(as_Address(src1), imm);
  6571   } else {
  6572     lea(rscratch1, src1);
  6573     cmpb(Address(rscratch1, 0), imm);
  6577 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6578 #ifdef _LP64
  6579   if (src2.is_lval()) {
  6580     movptr(rscratch1, src2);
  6581     Assembler::cmpq(src1, rscratch1);
  6582   } else if (reachable(src2)) {
  6583     cmpq(src1, as_Address(src2));
  6584   } else {
  6585     lea(rscratch1, src2);
  6586     Assembler::cmpq(src1, Address(rscratch1, 0));
  6588 #else
  6589   if (src2.is_lval()) {
  6590     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6591   } else {
  6592     cmpl(src1, as_Address(src2));
  6594 #endif // _LP64
  6597 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6598   assert(src2.is_lval(), "not a mem-mem compare");
  6599 #ifdef _LP64
  6600   // moves src2's literal address
  6601   movptr(rscratch1, src2);
  6602   Assembler::cmpq(src1, rscratch1);
  6603 #else
  6604   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6605 #endif // _LP64
  6608 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6609   if (reachable(adr)) {
  6610     if (os::is_MP())
  6611       lock();
  6612     cmpxchgptr(reg, as_Address(adr));
  6613   } else {
  6614     lea(rscratch1, adr);
  6615     if (os::is_MP())
  6616       lock();
  6617     cmpxchgptr(reg, Address(rscratch1, 0));
  6621 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6622   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6625 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6626   if (reachable(src)) {
  6627     Assembler::comisd(dst, as_Address(src));
  6628   } else {
  6629     lea(rscratch1, src);
  6630     Assembler::comisd(dst, Address(rscratch1, 0));
  6634 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6635   if (reachable(src)) {
  6636     Assembler::comiss(dst, as_Address(src));
  6637   } else {
  6638     lea(rscratch1, src);
  6639     Assembler::comiss(dst, Address(rscratch1, 0));
  6644 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6645   Condition negated_cond = negate_condition(cond);
  6646   Label L;
  6647   jcc(negated_cond, L);
  6648   atomic_incl(counter_addr);
  6649   bind(L);
  6652 int MacroAssembler::corrected_idivl(Register reg) {
  6653   // Full implementation of Java idiv and irem; checks for
  6654   // special case as described in JVM spec., p.243 & p.271.
  6655   // The function returns the (pc) offset of the idivl
  6656   // instruction - may be needed for implicit exceptions.
  6657   //
  6658   //         normal case                           special case
  6659   //
  6660   // input : rax,: dividend                         min_int
  6661   //         reg: divisor   (may not be rax,/rdx)   -1
  6662   //
  6663   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6664   //         rdx: remainder (= rax, irem reg)       0
  6665   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6666   const int min_int = 0x80000000;
  6667   Label normal_case, special_case;
  6669   // check for special case
  6670   cmpl(rax, min_int);
  6671   jcc(Assembler::notEqual, normal_case);
  6672   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6673   cmpl(reg, -1);
  6674   jcc(Assembler::equal, special_case);
  6676   // handle normal case
  6677   bind(normal_case);
  6678   cdql();
  6679   int idivl_offset = offset();
  6680   idivl(reg);
  6682   // normal and special case exit
  6683   bind(special_case);
  6685   return idivl_offset;
  6690 void MacroAssembler::decrementl(Register reg, int value) {
  6691   if (value == min_jint) {subl(reg, value) ; return; }
  6692   if (value <  0) { incrementl(reg, -value); return; }
  6693   if (value == 0) {                        ; return; }
  6694   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6695   /* else */      { subl(reg, value)       ; return; }
  6698 void MacroAssembler::decrementl(Address dst, int value) {
  6699   if (value == min_jint) {subl(dst, value) ; return; }
  6700   if (value <  0) { incrementl(dst, -value); return; }
  6701   if (value == 0) {                        ; return; }
  6702   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6703   /* else */      { subl(dst, value)       ; return; }
  6706 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6707   assert (shift_value > 0, "illegal shift value");
  6708   Label _is_positive;
  6709   testl (reg, reg);
  6710   jcc (Assembler::positive, _is_positive);
  6711   int offset = (1 << shift_value) - 1 ;
  6713   if (offset == 1) {
  6714     incrementl(reg);
  6715   } else {
  6716     addl(reg, offset);
  6719   bind (_is_positive);
  6720   sarl(reg, shift_value);
  6723 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  6724   if (reachable(src)) {
  6725     Assembler::divsd(dst, as_Address(src));
  6726   } else {
  6727     lea(rscratch1, src);
  6728     Assembler::divsd(dst, Address(rscratch1, 0));
  6732 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  6733   if (reachable(src)) {
  6734     Assembler::divss(dst, as_Address(src));
  6735   } else {
  6736     lea(rscratch1, src);
  6737     Assembler::divss(dst, Address(rscratch1, 0));
  6741 // !defined(COMPILER2) is because of stupid core builds
  6742 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6743 void MacroAssembler::empty_FPU_stack() {
  6744   if (VM_Version::supports_mmx()) {
  6745     emms();
  6746   } else {
  6747     for (int i = 8; i-- > 0; ) ffree(i);
  6750 #endif // !LP64 || C1 || !C2
  6753 // Defines obj, preserves var_size_in_bytes
  6754 void MacroAssembler::eden_allocate(Register obj,
  6755                                    Register var_size_in_bytes,
  6756                                    int con_size_in_bytes,
  6757                                    Register t1,
  6758                                    Label& slow_case) {
  6759   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6760   assert_different_registers(obj, var_size_in_bytes, t1);
  6761   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6762     jmp(slow_case);
  6763   } else {
  6764     Register end = t1;
  6765     Label retry;
  6766     bind(retry);
  6767     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6768     movptr(obj, heap_top);
  6769     if (var_size_in_bytes == noreg) {
  6770       lea(end, Address(obj, con_size_in_bytes));
  6771     } else {
  6772       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6774     // if end < obj then we wrapped around => object too long => slow case
  6775     cmpptr(end, obj);
  6776     jcc(Assembler::below, slow_case);
  6777     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6778     jcc(Assembler::above, slow_case);
  6779     // Compare obj with the top addr, and if still equal, store the new top addr in
  6780     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6781     // it otherwise. Use lock prefix for atomicity on MPs.
  6782     locked_cmpxchgptr(end, heap_top);
  6783     jcc(Assembler::notEqual, retry);
  6787 void MacroAssembler::enter() {
  6788   push(rbp);
  6789   mov(rbp, rsp);
  6792 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  6793 void MacroAssembler::fat_nop() {
  6794   if (UseAddressNop) {
  6795     addr_nop_5();
  6796   } else {
  6797     emit_byte(0x26); // es:
  6798     emit_byte(0x2e); // cs:
  6799     emit_byte(0x64); // fs:
  6800     emit_byte(0x65); // gs:
  6801     emit_byte(0x90);
  6805 void MacroAssembler::fcmp(Register tmp) {
  6806   fcmp(tmp, 1, true, true);
  6809 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6810   assert(!pop_right || pop_left, "usage error");
  6811   if (VM_Version::supports_cmov()) {
  6812     assert(tmp == noreg, "unneeded temp");
  6813     if (pop_left) {
  6814       fucomip(index);
  6815     } else {
  6816       fucomi(index);
  6818     if (pop_right) {
  6819       fpop();
  6821   } else {
  6822     assert(tmp != noreg, "need temp");
  6823     if (pop_left) {
  6824       if (pop_right) {
  6825         fcompp();
  6826       } else {
  6827         fcomp(index);
  6829     } else {
  6830       fcom(index);
  6832     // convert FPU condition into eflags condition via rax,
  6833     save_rax(tmp);
  6834     fwait(); fnstsw_ax();
  6835     sahf();
  6836     restore_rax(tmp);
  6838   // condition codes set as follows:
  6839   //
  6840   // CF (corresponds to C0) if x < y
  6841   // PF (corresponds to C2) if unordered
  6842   // ZF (corresponds to C3) if x = y
  6845 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6846   fcmp2int(dst, unordered_is_less, 1, true, true);
  6849 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6850   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6851   Label L;
  6852   if (unordered_is_less) {
  6853     movl(dst, -1);
  6854     jcc(Assembler::parity, L);
  6855     jcc(Assembler::below , L);
  6856     movl(dst, 0);
  6857     jcc(Assembler::equal , L);
  6858     increment(dst);
  6859   } else { // unordered is greater
  6860     movl(dst, 1);
  6861     jcc(Assembler::parity, L);
  6862     jcc(Assembler::above , L);
  6863     movl(dst, 0);
  6864     jcc(Assembler::equal , L);
  6865     decrementl(dst);
  6867   bind(L);
  6870 void MacroAssembler::fld_d(AddressLiteral src) {
  6871   fld_d(as_Address(src));
  6874 void MacroAssembler::fld_s(AddressLiteral src) {
  6875   fld_s(as_Address(src));
  6878 void MacroAssembler::fld_x(AddressLiteral src) {
  6879   Assembler::fld_x(as_Address(src));
  6882 void MacroAssembler::fldcw(AddressLiteral src) {
  6883   Assembler::fldcw(as_Address(src));
  6886 void MacroAssembler::pow_exp_core_encoding() {
  6887   // kills rax, rcx, rdx
  6888   subptr(rsp,sizeof(jdouble));
  6889   // computes 2^X. Stack: X ...
  6890   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  6891   // keep it on the thread's stack to compute 2^int(X) later
  6892   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  6893   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  6894   fld_s(0);                 // Stack: X X ...
  6895   frndint();                // Stack: int(X) X ...
  6896   fsuba(1);                 // Stack: int(X) X-int(X) ...
  6897   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  6898   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  6899   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  6900   faddp(1);                 // Stack: 2^(X-int(X))
  6901   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  6902   // shift int(X)+1023 to exponent position.
  6903   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  6904   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  6905   // values so detect them and set result to NaN.
  6906   movl(rax,Address(rsp,0));
  6907   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  6908   addl(rax, 1023);
  6909   movl(rdx,rax);
  6910   shll(rax,20);
  6911   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  6912   addl(rdx,1);
  6913   // Check that 1 < int(X)+1023+1 < 2048
  6914   // in 3 steps:
  6915   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  6916   // 2- (int(X)+1023+1)&-2048 != 0
  6917   // 3- (int(X)+1023+1)&-2048 != 1
  6918   // Do 2- first because addl just updated the flags.
  6919   cmov32(Assembler::equal,rax,rcx);
  6920   cmpl(rdx,1);
  6921   cmov32(Assembler::equal,rax,rcx);
  6922   testl(rdx,rcx);
  6923   cmov32(Assembler::notEqual,rax,rcx);
  6924   movl(Address(rsp,4),rax);
  6925   movl(Address(rsp,0),0);
  6926   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  6927   addptr(rsp,sizeof(jdouble));
  6930 void MacroAssembler::increase_precision() {
  6931   subptr(rsp, BytesPerWord);
  6932   fnstcw(Address(rsp, 0));
  6933   movl(rax, Address(rsp, 0));
  6934   orl(rax, 0x300);
  6935   push(rax);
  6936   fldcw(Address(rsp, 0));
  6937   pop(rax);
  6940 void MacroAssembler::restore_precision() {
  6941   fldcw(Address(rsp, 0));
  6942   addptr(rsp, BytesPerWord);
  6945 void MacroAssembler::fast_pow() {
  6946   // computes X^Y = 2^(Y * log2(X))
  6947   // if fast computation is not possible, result is NaN. Requires
  6948   // fallback from user of this macro.
  6949   // increase precision for intermediate steps of the computation
  6950   increase_precision();
  6951   fyl2x();                 // Stack: (Y*log2(X)) ...
  6952   pow_exp_core_encoding(); // Stack: exp(X) ...
  6953   restore_precision();
  6956 void MacroAssembler::fast_exp() {
  6957   // computes exp(X) = 2^(X * log2(e))
  6958   // if fast computation is not possible, result is NaN. Requires
  6959   // fallback from user of this macro.
  6960   // increase precision for intermediate steps of the computation
  6961   increase_precision();
  6962   fldl2e();                // Stack: log2(e) X ...
  6963   fmulp(1);                // Stack: (X*log2(e)) ...
  6964   pow_exp_core_encoding(); // Stack: exp(X) ...
  6965   restore_precision();
  6968 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  6969   // kills rax, rcx, rdx
  6970   // pow and exp needs 2 extra registers on the fpu stack.
  6971   Label slow_case, done;
  6972   Register tmp = noreg;
  6973   if (!VM_Version::supports_cmov()) {
  6974     // fcmp needs a temporary so preserve rdx,
  6975     tmp = rdx;
  6977   Register tmp2 = rax;
  6978   Register tmp3 = rcx;
  6980   if (is_exp) {
  6981     // Stack: X
  6982     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  6983     fast_exp();                 // Stack: exp(X) X
  6984     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  6985     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  6986     jcc(Assembler::parity, slow_case);
  6987     // get rid of duplicate argument. Stack: exp(X)
  6988     if (num_fpu_regs_in_use > 0) {
  6989       fxch();
  6990       fpop();
  6991     } else {
  6992       ffree(1);
  6994     jmp(done);
  6995   } else {
  6996     // Stack: X Y
  6997     Label x_negative, y_odd;
  6999     fldz();                     // Stack: 0 X Y
  7000     fcmp(tmp, 1, true, false);  // Stack: X Y
  7001     jcc(Assembler::above, x_negative);
  7003     // X >= 0
  7005     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7006     fld_s(1);                   // Stack: X Y X Y
  7007     fast_pow();                 // Stack: X^Y X Y
  7008     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  7009     // X^Y not equal to itself: X^Y is NaN go to slow case.
  7010     jcc(Assembler::parity, slow_case);
  7011     // get rid of duplicate arguments. Stack: X^Y
  7012     if (num_fpu_regs_in_use > 0) {
  7013       fxch(); fpop();
  7014       fxch(); fpop();
  7015     } else {
  7016       ffree(2);
  7017       ffree(1);
  7019     jmp(done);
  7021     // X <= 0
  7022     bind(x_negative);
  7024     fld_s(1);                   // Stack: Y X Y
  7025     frndint();                  // Stack: int(Y) X Y
  7026     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  7027     jcc(Assembler::notEqual, slow_case);
  7029     subptr(rsp, 8);
  7031     // For X^Y, when X < 0, Y has to be an integer and the final
  7032     // result depends on whether it's odd or even. We just checked
  7033     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  7034     // integer to test its parity. If int(Y) is huge and doesn't fit
  7035     // in the 64 bit integer range, the integer indefinite value will
  7036     // end up in the gp registers. Huge numbers are all even, the
  7037     // integer indefinite number is even so it's fine.
  7039 #ifdef ASSERT
  7040     // Let's check we don't end up with an integer indefinite number
  7041     // when not expected. First test for huge numbers: check whether
  7042     // int(Y)+1 == int(Y) which is true for very large numbers and
  7043     // those are all even. A 64 bit integer is guaranteed to not
  7044     // overflow for numbers where y+1 != y (when precision is set to
  7045     // double precision).
  7046     Label y_not_huge;
  7048     fld1();                     // Stack: 1 int(Y) X Y
  7049     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  7051 #ifdef _LP64
  7052     // trip to memory to force the precision down from double extended
  7053     // precision
  7054     fstp_d(Address(rsp, 0));
  7055     fld_d(Address(rsp, 0));
  7056 #endif
  7058     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  7059 #endif
  7061     // move int(Y) as 64 bit integer to thread's stack
  7062     fistp_d(Address(rsp,0));    // Stack: X Y
  7064 #ifdef ASSERT
  7065     jcc(Assembler::notEqual, y_not_huge);
  7067     // Y is huge so we know it's even. It may not fit in a 64 bit
  7068     // integer and we don't want the debug code below to see the
  7069     // integer indefinite value so overwrite int(Y) on the thread's
  7070     // stack with 0.
  7071     movl(Address(rsp, 0), 0);
  7072     movl(Address(rsp, 4), 0);
  7074     bind(y_not_huge);
  7075 #endif
  7077     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7078     fld_s(1);                   // Stack: X Y X Y
  7079     fabs();                     // Stack: abs(X) Y X Y
  7080     fast_pow();                 // Stack: abs(X)^Y X Y
  7081     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  7082     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  7084     pop(tmp2);
  7085     NOT_LP64(pop(tmp3));
  7086     jcc(Assembler::parity, slow_case);
  7088 #ifdef ASSERT
  7089     // Check that int(Y) is not integer indefinite value (int
  7090     // overflow). Shouldn't happen because for values that would
  7091     // overflow, 1+int(Y)==Y which was tested earlier.
  7092 #ifndef _LP64
  7094       Label integer;
  7095       testl(tmp2, tmp2);
  7096       jcc(Assembler::notZero, integer);
  7097       cmpl(tmp3, 0x80000000);
  7098       jcc(Assembler::notZero, integer);
  7099       stop("integer indefinite value shouldn't be seen here");
  7100       bind(integer);
  7102 #else
  7104       Label integer;
  7105       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  7106       shlq(tmp3, 1);
  7107       jcc(Assembler::carryClear, integer);
  7108       jcc(Assembler::notZero, integer);
  7109       stop("integer indefinite value shouldn't be seen here");
  7110       bind(integer);
  7112 #endif
  7113 #endif
  7115     // get rid of duplicate arguments. Stack: X^Y
  7116     if (num_fpu_regs_in_use > 0) {
  7117       fxch(); fpop();
  7118       fxch(); fpop();
  7119     } else {
  7120       ffree(2);
  7121       ffree(1);
  7124     testl(tmp2, 1);
  7125     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  7126     // X <= 0, Y even: X^Y = -abs(X)^Y
  7128     fchs();                     // Stack: -abs(X)^Y Y
  7129     jmp(done);
  7132   // slow case: runtime call
  7133   bind(slow_case);
  7135   fpop();                       // pop incorrect result or int(Y)
  7137   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  7138                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  7140   // Come here with result in F-TOS
  7141   bind(done);
  7144 void MacroAssembler::fpop() {
  7145   ffree();
  7146   fincstp();
  7149 void MacroAssembler::fremr(Register tmp) {
  7150   save_rax(tmp);
  7151   { Label L;
  7152     bind(L);
  7153     fprem();
  7154     fwait(); fnstsw_ax();
  7155 #ifdef _LP64
  7156     testl(rax, 0x400);
  7157     jcc(Assembler::notEqual, L);
  7158 #else
  7159     sahf();
  7160     jcc(Assembler::parity, L);
  7161 #endif // _LP64
  7163   restore_rax(tmp);
  7164   // Result is in ST0.
  7165   // Note: fxch & fpop to get rid of ST1
  7166   // (otherwise FPU stack could overflow eventually)
  7167   fxch(1);
  7168   fpop();
  7172 void MacroAssembler::incrementl(AddressLiteral dst) {
  7173   if (reachable(dst)) {
  7174     incrementl(as_Address(dst));
  7175   } else {
  7176     lea(rscratch1, dst);
  7177     incrementl(Address(rscratch1, 0));
  7181 void MacroAssembler::incrementl(ArrayAddress dst) {
  7182   incrementl(as_Address(dst));
  7185 void MacroAssembler::incrementl(Register reg, int value) {
  7186   if (value == min_jint) {addl(reg, value) ; return; }
  7187   if (value <  0) { decrementl(reg, -value); return; }
  7188   if (value == 0) {                        ; return; }
  7189   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  7190   /* else */      { addl(reg, value)       ; return; }
  7193 void MacroAssembler::incrementl(Address dst, int value) {
  7194   if (value == min_jint) {addl(dst, value) ; return; }
  7195   if (value <  0) { decrementl(dst, -value); return; }
  7196   if (value == 0) {                        ; return; }
  7197   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  7198   /* else */      { addl(dst, value)       ; return; }
  7201 void MacroAssembler::jump(AddressLiteral dst) {
  7202   if (reachable(dst)) {
  7203     jmp_literal(dst.target(), dst.rspec());
  7204   } else {
  7205     lea(rscratch1, dst);
  7206     jmp(rscratch1);
  7210 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  7211   if (reachable(dst)) {
  7212     InstructionMark im(this);
  7213     relocate(dst.reloc());
  7214     const int short_size = 2;
  7215     const int long_size = 6;
  7216     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  7217     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  7218       // 0111 tttn #8-bit disp
  7219       emit_byte(0x70 | cc);
  7220       emit_byte((offs - short_size) & 0xFF);
  7221     } else {
  7222       // 0000 1111 1000 tttn #32-bit disp
  7223       emit_byte(0x0F);
  7224       emit_byte(0x80 | cc);
  7225       emit_long(offs - long_size);
  7227   } else {
  7228 #ifdef ASSERT
  7229     warning("reversing conditional branch");
  7230 #endif /* ASSERT */
  7231     Label skip;
  7232     jccb(reverse[cc], skip);
  7233     lea(rscratch1, dst);
  7234     Assembler::jmp(rscratch1);
  7235     bind(skip);
  7239 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  7240   if (reachable(src)) {
  7241     Assembler::ldmxcsr(as_Address(src));
  7242   } else {
  7243     lea(rscratch1, src);
  7244     Assembler::ldmxcsr(Address(rscratch1, 0));
  7248 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  7249   int off;
  7250   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7251     off = offset();
  7252     movsbl(dst, src); // movsxb
  7253   } else {
  7254     off = load_unsigned_byte(dst, src);
  7255     shll(dst, 24);
  7256     sarl(dst, 24);
  7258   return off;
  7261 // Note: load_signed_short used to be called load_signed_word.
  7262 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  7263 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  7264 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  7265 int MacroAssembler::load_signed_short(Register dst, Address src) {
  7266   int off;
  7267   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7268     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  7269     // version but this is what 64bit has always done. This seems to imply
  7270     // that users are only using 32bits worth.
  7271     off = offset();
  7272     movswl(dst, src); // movsxw
  7273   } else {
  7274     off = load_unsigned_short(dst, src);
  7275     shll(dst, 16);
  7276     sarl(dst, 16);
  7278   return off;
  7281 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7282   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7283   // and "3.9 Partial Register Penalties", p. 22).
  7284   int off;
  7285   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7286     off = offset();
  7287     movzbl(dst, src); // movzxb
  7288   } else {
  7289     xorl(dst, dst);
  7290     off = offset();
  7291     movb(dst, src);
  7293   return off;
  7296 // Note: load_unsigned_short used to be called load_unsigned_word.
  7297 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7298   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7299   // and "3.9 Partial Register Penalties", p. 22).
  7300   int off;
  7301   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7302     off = offset();
  7303     movzwl(dst, src); // movzxw
  7304   } else {
  7305     xorl(dst, dst);
  7306     off = offset();
  7307     movw(dst, src);
  7309   return off;
  7312 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7313   switch (size_in_bytes) {
  7314 #ifndef _LP64
  7315   case  8:
  7316     assert(dst2 != noreg, "second dest register required");
  7317     movl(dst,  src);
  7318     movl(dst2, src.plus_disp(BytesPerInt));
  7319     break;
  7320 #else
  7321   case  8:  movq(dst, src); break;
  7322 #endif
  7323   case  4:  movl(dst, src); break;
  7324   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7325   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7326   default:  ShouldNotReachHere();
  7330 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7331   switch (size_in_bytes) {
  7332 #ifndef _LP64
  7333   case  8:
  7334     assert(src2 != noreg, "second source register required");
  7335     movl(dst,                        src);
  7336     movl(dst.plus_disp(BytesPerInt), src2);
  7337     break;
  7338 #else
  7339   case  8:  movq(dst, src); break;
  7340 #endif
  7341   case  4:  movl(dst, src); break;
  7342   case  2:  movw(dst, src); break;
  7343   case  1:  movb(dst, src); break;
  7344   default:  ShouldNotReachHere();
  7348 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7349   if (reachable(dst)) {
  7350     movl(as_Address(dst), src);
  7351   } else {
  7352     lea(rscratch1, dst);
  7353     movl(Address(rscratch1, 0), src);
  7357 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7358   if (reachable(src)) {
  7359     movl(dst, as_Address(src));
  7360   } else {
  7361     lea(rscratch1, src);
  7362     movl(dst, Address(rscratch1, 0));
  7366 // C++ bool manipulation
  7368 void MacroAssembler::movbool(Register dst, Address src) {
  7369   if(sizeof(bool) == 1)
  7370     movb(dst, src);
  7371   else if(sizeof(bool) == 2)
  7372     movw(dst, src);
  7373   else if(sizeof(bool) == 4)
  7374     movl(dst, src);
  7375   else
  7376     // unsupported
  7377     ShouldNotReachHere();
  7380 void MacroAssembler::movbool(Address dst, bool boolconst) {
  7381   if(sizeof(bool) == 1)
  7382     movb(dst, (int) boolconst);
  7383   else if(sizeof(bool) == 2)
  7384     movw(dst, (int) boolconst);
  7385   else if(sizeof(bool) == 4)
  7386     movl(dst, (int) boolconst);
  7387   else
  7388     // unsupported
  7389     ShouldNotReachHere();
  7392 void MacroAssembler::movbool(Address dst, Register src) {
  7393   if(sizeof(bool) == 1)
  7394     movb(dst, src);
  7395   else if(sizeof(bool) == 2)
  7396     movw(dst, src);
  7397   else if(sizeof(bool) == 4)
  7398     movl(dst, src);
  7399   else
  7400     // unsupported
  7401     ShouldNotReachHere();
  7404 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  7405   movb(as_Address(dst), src);
  7408 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  7409   if (reachable(src)) {
  7410     if (UseXmmLoadAndClearUpper) {
  7411       movsd (dst, as_Address(src));
  7412     } else {
  7413       movlpd(dst, as_Address(src));
  7415   } else {
  7416     lea(rscratch1, src);
  7417     if (UseXmmLoadAndClearUpper) {
  7418       movsd (dst, Address(rscratch1, 0));
  7419     } else {
  7420       movlpd(dst, Address(rscratch1, 0));
  7425 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  7426   if (reachable(src)) {
  7427     movss(dst, as_Address(src));
  7428   } else {
  7429     lea(rscratch1, src);
  7430     movss(dst, Address(rscratch1, 0));
  7434 void MacroAssembler::movptr(Register dst, Register src) {
  7435   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7438 void MacroAssembler::movptr(Register dst, Address src) {
  7439   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7442 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  7443 void MacroAssembler::movptr(Register dst, intptr_t src) {
  7444   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  7447 void MacroAssembler::movptr(Address dst, Register src) {
  7448   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7451 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  7452   if (reachable(src)) {
  7453     Assembler::movsd(dst, as_Address(src));
  7454   } else {
  7455     lea(rscratch1, src);
  7456     Assembler::movsd(dst, Address(rscratch1, 0));
  7460 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  7461   if (reachable(src)) {
  7462     Assembler::movss(dst, as_Address(src));
  7463   } else {
  7464     lea(rscratch1, src);
  7465     Assembler::movss(dst, Address(rscratch1, 0));
  7469 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  7470   if (reachable(src)) {
  7471     Assembler::mulsd(dst, as_Address(src));
  7472   } else {
  7473     lea(rscratch1, src);
  7474     Assembler::mulsd(dst, Address(rscratch1, 0));
  7478 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  7479   if (reachable(src)) {
  7480     Assembler::mulss(dst, as_Address(src));
  7481   } else {
  7482     lea(rscratch1, src);
  7483     Assembler::mulss(dst, Address(rscratch1, 0));
  7487 void MacroAssembler::null_check(Register reg, int offset) {
  7488   if (needs_explicit_null_check(offset)) {
  7489     // provoke OS NULL exception if reg = NULL by
  7490     // accessing M[reg] w/o changing any (non-CC) registers
  7491     // NOTE: cmpl is plenty here to provoke a segv
  7492     cmpptr(rax, Address(reg, 0));
  7493     // Note: should probably use testl(rax, Address(reg, 0));
  7494     //       may be shorter code (however, this version of
  7495     //       testl needs to be implemented first)
  7496   } else {
  7497     // nothing to do, (later) access of M[reg + offset]
  7498     // will provoke OS NULL exception if reg = NULL
  7502 void MacroAssembler::os_breakpoint() {
  7503   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  7504   // (e.g., MSVC can't call ps() otherwise)
  7505   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  7508 void MacroAssembler::pop_CPU_state() {
  7509   pop_FPU_state();
  7510   pop_IU_state();
  7513 void MacroAssembler::pop_FPU_state() {
  7514   NOT_LP64(frstor(Address(rsp, 0));)
  7515   LP64_ONLY(fxrstor(Address(rsp, 0));)
  7516   addptr(rsp, FPUStateSizeInWords * wordSize);
  7519 void MacroAssembler::pop_IU_state() {
  7520   popa();
  7521   LP64_ONLY(addq(rsp, 8));
  7522   popf();
  7525 // Save Integer and Float state
  7526 // Warning: Stack must be 16 byte aligned (64bit)
  7527 void MacroAssembler::push_CPU_state() {
  7528   push_IU_state();
  7529   push_FPU_state();
  7532 void MacroAssembler::push_FPU_state() {
  7533   subptr(rsp, FPUStateSizeInWords * wordSize);
  7534 #ifndef _LP64
  7535   fnsave(Address(rsp, 0));
  7536   fwait();
  7537 #else
  7538   fxsave(Address(rsp, 0));
  7539 #endif // LP64
  7542 void MacroAssembler::push_IU_state() {
  7543   // Push flags first because pusha kills them
  7544   pushf();
  7545   // Make sure rsp stays 16-byte aligned
  7546   LP64_ONLY(subq(rsp, 8));
  7547   pusha();
  7550 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  7551   // determine java_thread register
  7552   if (!java_thread->is_valid()) {
  7553     java_thread = rdi;
  7554     get_thread(java_thread);
  7556   // we must set sp to zero to clear frame
  7557   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  7558   if (clear_fp) {
  7559     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  7562   if (clear_pc)
  7563     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  7567 void MacroAssembler::restore_rax(Register tmp) {
  7568   if (tmp == noreg) pop(rax);
  7569   else if (tmp != rax) mov(rax, tmp);
  7572 void MacroAssembler::round_to(Register reg, int modulus) {
  7573   addptr(reg, modulus - 1);
  7574   andptr(reg, -modulus);
  7577 void MacroAssembler::save_rax(Register tmp) {
  7578   if (tmp == noreg) push(rax);
  7579   else if (tmp != rax) mov(tmp, rax);
  7582 // Write serialization page so VM thread can do a pseudo remote membar.
  7583 // We use the current thread pointer to calculate a thread specific
  7584 // offset to write to within the page. This minimizes bus traffic
  7585 // due to cache line collision.
  7586 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  7587   movl(tmp, thread);
  7588   shrl(tmp, os::get_serialize_page_shift_count());
  7589   andl(tmp, (os::vm_page_size() - sizeof(int)));
  7591   Address index(noreg, tmp, Address::times_1);
  7592   ExternalAddress page(os::get_memory_serialize_page());
  7594   // Size of store must match masking code above
  7595   movl(as_Address(ArrayAddress(page, index)), tmp);
  7598 // Calls to C land
  7599 //
  7600 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  7601 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  7602 // has to be reset to 0. This is required to allow proper stack traversal.
  7603 void MacroAssembler::set_last_Java_frame(Register java_thread,
  7604                                          Register last_java_sp,
  7605                                          Register last_java_fp,
  7606                                          address  last_java_pc) {
  7607   // determine java_thread register
  7608   if (!java_thread->is_valid()) {
  7609     java_thread = rdi;
  7610     get_thread(java_thread);
  7612   // determine last_java_sp register
  7613   if (!last_java_sp->is_valid()) {
  7614     last_java_sp = rsp;
  7617   // last_java_fp is optional
  7619   if (last_java_fp->is_valid()) {
  7620     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  7623   // last_java_pc is optional
  7625   if (last_java_pc != NULL) {
  7626     lea(Address(java_thread,
  7627                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  7628         InternalAddress(last_java_pc));
  7631   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  7634 void MacroAssembler::shlptr(Register dst, int imm8) {
  7635   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  7638 void MacroAssembler::shrptr(Register dst, int imm8) {
  7639   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  7642 void MacroAssembler::sign_extend_byte(Register reg) {
  7643   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  7644     movsbl(reg, reg); // movsxb
  7645   } else {
  7646     shll(reg, 24);
  7647     sarl(reg, 24);
  7651 void MacroAssembler::sign_extend_short(Register reg) {
  7652   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7653     movswl(reg, reg); // movsxw
  7654   } else {
  7655     shll(reg, 16);
  7656     sarl(reg, 16);
  7660 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  7661   assert(reachable(src), "Address should be reachable");
  7662   testl(dst, as_Address(src));
  7665 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  7666   if (reachable(src)) {
  7667     Assembler::sqrtsd(dst, as_Address(src));
  7668   } else {
  7669     lea(rscratch1, src);
  7670     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  7674 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  7675   if (reachable(src)) {
  7676     Assembler::sqrtss(dst, as_Address(src));
  7677   } else {
  7678     lea(rscratch1, src);
  7679     Assembler::sqrtss(dst, Address(rscratch1, 0));
  7683 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  7684   if (reachable(src)) {
  7685     Assembler::subsd(dst, as_Address(src));
  7686   } else {
  7687     lea(rscratch1, src);
  7688     Assembler::subsd(dst, Address(rscratch1, 0));
  7692 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  7693   if (reachable(src)) {
  7694     Assembler::subss(dst, as_Address(src));
  7695   } else {
  7696     lea(rscratch1, src);
  7697     Assembler::subss(dst, Address(rscratch1, 0));
  7701 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7702   if (reachable(src)) {
  7703     Assembler::ucomisd(dst, as_Address(src));
  7704   } else {
  7705     lea(rscratch1, src);
  7706     Assembler::ucomisd(dst, Address(rscratch1, 0));
  7710 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7711   if (reachable(src)) {
  7712     Assembler::ucomiss(dst, as_Address(src));
  7713   } else {
  7714     lea(rscratch1, src);
  7715     Assembler::ucomiss(dst, Address(rscratch1, 0));
  7719 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7720   // Used in sign-bit flipping with aligned address.
  7721   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7722   if (reachable(src)) {
  7723     Assembler::xorpd(dst, as_Address(src));
  7724   } else {
  7725     lea(rscratch1, src);
  7726     Assembler::xorpd(dst, Address(rscratch1, 0));
  7730 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7731   // Used in sign-bit flipping with aligned address.
  7732   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7733   if (reachable(src)) {
  7734     Assembler::xorps(dst, as_Address(src));
  7735   } else {
  7736     lea(rscratch1, src);
  7737     Assembler::xorps(dst, Address(rscratch1, 0));
  7741 // AVX 3-operands instructions
  7743 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7744   if (reachable(src)) {
  7745     vaddsd(dst, nds, as_Address(src));
  7746   } else {
  7747     lea(rscratch1, src);
  7748     vaddsd(dst, nds, Address(rscratch1, 0));
  7752 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7753   if (reachable(src)) {
  7754     vaddss(dst, nds, as_Address(src));
  7755   } else {
  7756     lea(rscratch1, src);
  7757     vaddss(dst, nds, Address(rscratch1, 0));
  7761 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7762   if (reachable(src)) {
  7763     vandpd(dst, nds, as_Address(src));
  7764   } else {
  7765     lea(rscratch1, src);
  7766     vandpd(dst, nds, Address(rscratch1, 0));
  7770 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7771   if (reachable(src)) {
  7772     vandps(dst, nds, as_Address(src));
  7773   } else {
  7774     lea(rscratch1, src);
  7775     vandps(dst, nds, Address(rscratch1, 0));
  7779 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7780   if (reachable(src)) {
  7781     vdivsd(dst, nds, as_Address(src));
  7782   } else {
  7783     lea(rscratch1, src);
  7784     vdivsd(dst, nds, Address(rscratch1, 0));
  7788 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7789   if (reachable(src)) {
  7790     vdivss(dst, nds, as_Address(src));
  7791   } else {
  7792     lea(rscratch1, src);
  7793     vdivss(dst, nds, Address(rscratch1, 0));
  7797 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7798   if (reachable(src)) {
  7799     vmulsd(dst, nds, as_Address(src));
  7800   } else {
  7801     lea(rscratch1, src);
  7802     vmulsd(dst, nds, Address(rscratch1, 0));
  7806 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7807   if (reachable(src)) {
  7808     vmulss(dst, nds, as_Address(src));
  7809   } else {
  7810     lea(rscratch1, src);
  7811     vmulss(dst, nds, Address(rscratch1, 0));
  7815 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7816   if (reachable(src)) {
  7817     vsubsd(dst, nds, as_Address(src));
  7818   } else {
  7819     lea(rscratch1, src);
  7820     vsubsd(dst, nds, Address(rscratch1, 0));
  7824 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7825   if (reachable(src)) {
  7826     vsubss(dst, nds, as_Address(src));
  7827   } else {
  7828     lea(rscratch1, src);
  7829     vsubss(dst, nds, Address(rscratch1, 0));
  7833 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7834   if (reachable(src)) {
  7835     vxorpd(dst, nds, as_Address(src));
  7836   } else {
  7837     lea(rscratch1, src);
  7838     vxorpd(dst, nds, Address(rscratch1, 0));
  7842 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7843   if (reachable(src)) {
  7844     vxorps(dst, nds, as_Address(src));
  7845   } else {
  7846     lea(rscratch1, src);
  7847     vxorps(dst, nds, Address(rscratch1, 0));
  7852 //////////////////////////////////////////////////////////////////////////////////
  7853 #ifndef SERIALGC
  7855 void MacroAssembler::g1_write_barrier_pre(Register obj,
  7856                                           Register pre_val,
  7857                                           Register thread,
  7858                                           Register tmp,
  7859                                           bool tosca_live,
  7860                                           bool expand_call) {
  7862   // If expand_call is true then we expand the call_VM_leaf macro
  7863   // directly to skip generating the check by
  7864   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  7866 #ifdef _LP64
  7867   assert(thread == r15_thread, "must be");
  7868 #endif // _LP64
  7870   Label done;
  7871   Label runtime;
  7873   assert(pre_val != noreg, "check this code");
  7875   if (obj != noreg) {
  7876     assert_different_registers(obj, pre_val, tmp);
  7877     assert(pre_val != rax, "check this code");
  7880   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7881                                        PtrQueue::byte_offset_of_active()));
  7882   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7883                                        PtrQueue::byte_offset_of_index()));
  7884   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7885                                        PtrQueue::byte_offset_of_buf()));
  7888   // Is marking active?
  7889   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  7890     cmpl(in_progress, 0);
  7891   } else {
  7892     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  7893     cmpb(in_progress, 0);
  7895   jcc(Assembler::equal, done);
  7897   // Do we need to load the previous value?
  7898   if (obj != noreg) {
  7899     load_heap_oop(pre_val, Address(obj, 0));
  7902   // Is the previous value null?
  7903   cmpptr(pre_val, (int32_t) NULL_WORD);
  7904   jcc(Assembler::equal, done);
  7906   // Can we store original value in the thread's buffer?
  7907   // Is index == 0?
  7908   // (The index field is typed as size_t.)
  7910   movptr(tmp, index);                   // tmp := *index_adr
  7911   cmpptr(tmp, 0);                       // tmp == 0?
  7912   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  7914   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  7915   movptr(index, tmp);                   // *index_adr := tmp
  7916   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  7918   // Record the previous value
  7919   movptr(Address(tmp, 0), pre_val);
  7920   jmp(done);
  7922   bind(runtime);
  7923   // save the live input values
  7924   if(tosca_live) push(rax);
  7926   if (obj != noreg && obj != rax)
  7927     push(obj);
  7929   if (pre_val != rax)
  7930     push(pre_val);
  7932   // Calling the runtime using the regular call_VM_leaf mechanism generates
  7933   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  7934   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  7935   //
  7936   // If we care generating the pre-barrier without a frame (e.g. in the
  7937   // intrinsified Reference.get() routine) then ebp might be pointing to
  7938   // the caller frame and so this check will most likely fail at runtime.
  7939   //
  7940   // Expanding the call directly bypasses the generation of the check.
  7941   // So when we do not have have a full interpreter frame on the stack
  7942   // expand_call should be passed true.
  7944   NOT_LP64( push(thread); )
  7946   if (expand_call) {
  7947     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  7948     pass_arg1(this, thread);
  7949     pass_arg0(this, pre_val);
  7950     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  7951   } else {
  7952     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  7955   NOT_LP64( pop(thread); )
  7957   // save the live input values
  7958   if (pre_val != rax)
  7959     pop(pre_val);
  7961   if (obj != noreg && obj != rax)
  7962     pop(obj);
  7964   if(tosca_live) pop(rax);
  7966   bind(done);
  7969 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  7970                                            Register new_val,
  7971                                            Register thread,
  7972                                            Register tmp,
  7973                                            Register tmp2) {
  7974 #ifdef _LP64
  7975   assert(thread == r15_thread, "must be");
  7976 #endif // _LP64
  7978   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7979                                        PtrQueue::byte_offset_of_index()));
  7980   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7981                                        PtrQueue::byte_offset_of_buf()));
  7983   BarrierSet* bs = Universe::heap()->barrier_set();
  7984   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7985   Label done;
  7986   Label runtime;
  7988   // Does store cross heap regions?
  7990   movptr(tmp, store_addr);
  7991   xorptr(tmp, new_val);
  7992   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  7993   jcc(Assembler::equal, done);
  7995   // crosses regions, storing NULL?
  7997   cmpptr(new_val, (int32_t) NULL_WORD);
  7998   jcc(Assembler::equal, done);
  8000   // storing region crossing non-NULL, is card already dirty?
  8002   ExternalAddress cardtable((address) ct->byte_map_base);
  8003   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8004 #ifdef _LP64
  8005   const Register card_addr = tmp;
  8007   movq(card_addr, store_addr);
  8008   shrq(card_addr, CardTableModRefBS::card_shift);
  8010   lea(tmp2, cardtable);
  8012   // get the address of the card
  8013   addq(card_addr, tmp2);
  8014 #else
  8015   const Register card_index = tmp;
  8017   movl(card_index, store_addr);
  8018   shrl(card_index, CardTableModRefBS::card_shift);
  8020   Address index(noreg, card_index, Address::times_1);
  8021   const Register card_addr = tmp;
  8022   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  8023 #endif
  8024   cmpb(Address(card_addr, 0), 0);
  8025   jcc(Assembler::equal, done);
  8027   // storing a region crossing, non-NULL oop, card is clean.
  8028   // dirty card and log.
  8030   movb(Address(card_addr, 0), 0);
  8032   cmpl(queue_index, 0);
  8033   jcc(Assembler::equal, runtime);
  8034   subl(queue_index, wordSize);
  8035   movptr(tmp2, buffer);
  8036 #ifdef _LP64
  8037   movslq(rscratch1, queue_index);
  8038   addq(tmp2, rscratch1);
  8039   movq(Address(tmp2, 0), card_addr);
  8040 #else
  8041   addl(tmp2, queue_index);
  8042   movl(Address(tmp2, 0), card_index);
  8043 #endif
  8044   jmp(done);
  8046   bind(runtime);
  8047   // save the live input values
  8048   push(store_addr);
  8049   push(new_val);
  8050 #ifdef _LP64
  8051   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  8052 #else
  8053   push(thread);
  8054   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  8055   pop(thread);
  8056 #endif
  8057   pop(new_val);
  8058   pop(store_addr);
  8060   bind(done);
  8063 #endif // SERIALGC
  8064 //////////////////////////////////////////////////////////////////////////////////
  8067 void MacroAssembler::store_check(Register obj) {
  8068   // Does a store check for the oop in register obj. The content of
  8069   // register obj is destroyed afterwards.
  8070   store_check_part_1(obj);
  8071   store_check_part_2(obj);
  8074 void MacroAssembler::store_check(Register obj, Address dst) {
  8075   store_check(obj);
  8079 // split the store check operation so that other instructions can be scheduled inbetween
  8080 void MacroAssembler::store_check_part_1(Register obj) {
  8081   BarrierSet* bs = Universe::heap()->barrier_set();
  8082   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8083   shrptr(obj, CardTableModRefBS::card_shift);
  8086 void MacroAssembler::store_check_part_2(Register obj) {
  8087   BarrierSet* bs = Universe::heap()->barrier_set();
  8088   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8089   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8090   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8092   // The calculation for byte_map_base is as follows:
  8093   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  8094   // So this essentially converts an address to a displacement and
  8095   // it will never need to be relocated. On 64bit however the value may be too
  8096   // large for a 32bit displacement
  8098   intptr_t disp = (intptr_t) ct->byte_map_base;
  8099   if (is_simm32(disp)) {
  8100     Address cardtable(noreg, obj, Address::times_1, disp);
  8101     movb(cardtable, 0);
  8102   } else {
  8103     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  8104     // displacement and done in a single instruction given favorable mapping and
  8105     // a smarter version of as_Address. Worst case it is two instructions which
  8106     // is no worse off then loading disp into a register and doing as a simple
  8107     // Address() as above.
  8108     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  8109     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  8110     // in some cases we'll get a single instruction version.
  8112     ExternalAddress cardtable((address)disp);
  8113     Address index(noreg, obj, Address::times_1);
  8114     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  8118 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  8119   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  8122 // Force generation of a 4 byte immediate value even if it fits into 8bit
  8123 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  8124   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  8127 void MacroAssembler::subptr(Register dst, Register src) {
  8128   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  8131 // C++ bool manipulation
  8132 void MacroAssembler::testbool(Register dst) {
  8133   if(sizeof(bool) == 1)
  8134     testb(dst, 0xff);
  8135   else if(sizeof(bool) == 2) {
  8136     // testw implementation needed for two byte bools
  8137     ShouldNotReachHere();
  8138   } else if(sizeof(bool) == 4)
  8139     testl(dst, dst);
  8140   else
  8141     // unsupported
  8142     ShouldNotReachHere();
  8145 void MacroAssembler::testptr(Register dst, Register src) {
  8146   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  8149 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  8150 void MacroAssembler::tlab_allocate(Register obj,
  8151                                    Register var_size_in_bytes,
  8152                                    int con_size_in_bytes,
  8153                                    Register t1,
  8154                                    Register t2,
  8155                                    Label& slow_case) {
  8156   assert_different_registers(obj, t1, t2);
  8157   assert_different_registers(obj, var_size_in_bytes, t1);
  8158   Register end = t2;
  8159   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  8161   verify_tlab();
  8163   NOT_LP64(get_thread(thread));
  8165   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  8166   if (var_size_in_bytes == noreg) {
  8167     lea(end, Address(obj, con_size_in_bytes));
  8168   } else {
  8169     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  8171   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  8172   jcc(Assembler::above, slow_case);
  8174   // update the tlab top pointer
  8175   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  8177   // recover var_size_in_bytes if necessary
  8178   if (var_size_in_bytes == end) {
  8179     subptr(var_size_in_bytes, obj);
  8181   verify_tlab();
  8184 // Preserves rbx, and rdx.
  8185 Register MacroAssembler::tlab_refill(Label& retry,
  8186                                      Label& try_eden,
  8187                                      Label& slow_case) {
  8188   Register top = rax;
  8189   Register t1  = rcx;
  8190   Register t2  = rsi;
  8191   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  8192   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  8193   Label do_refill, discard_tlab;
  8195   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  8196     // No allocation in the shared eden.
  8197     jmp(slow_case);
  8200   NOT_LP64(get_thread(thread_reg));
  8202   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8203   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8205   // calculate amount of free space
  8206   subptr(t1, top);
  8207   shrptr(t1, LogHeapWordSize);
  8209   // Retain tlab and allocate object in shared space if
  8210   // the amount free in the tlab is too large to discard.
  8211   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  8212   jcc(Assembler::lessEqual, discard_tlab);
  8214   // Retain
  8215   // %%% yuck as movptr...
  8216   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  8217   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  8218   if (TLABStats) {
  8219     // increment number of slow_allocations
  8220     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  8222   jmp(try_eden);
  8224   bind(discard_tlab);
  8225   if (TLABStats) {
  8226     // increment number of refills
  8227     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  8228     // accumulate wastage -- t1 is amount free in tlab
  8229     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  8232   // if tlab is currently allocated (top or end != null) then
  8233   // fill [top, end + alignment_reserve) with array object
  8234   testptr(top, top);
  8235   jcc(Assembler::zero, do_refill);
  8237   // set up the mark word
  8238   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  8239   // set the length to the remaining space
  8240   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  8241   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  8242   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  8243   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  8244   // set klass to intArrayKlass
  8245   // dubious reloc why not an oop reloc?
  8246   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  8247   // store klass last.  concurrent gcs assumes klass length is valid if
  8248   // klass field is not null.
  8249   store_klass(top, t1);
  8251   movptr(t1, top);
  8252   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8253   incr_allocated_bytes(thread_reg, t1, 0);
  8255   // refill the tlab with an eden allocation
  8256   bind(do_refill);
  8257   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8258   shlptr(t1, LogHeapWordSize);
  8259   // allocate new tlab, address returned in top
  8260   eden_allocate(top, t1, 0, t2, slow_case);
  8262   // Check that t1 was preserved in eden_allocate.
  8263 #ifdef ASSERT
  8264   if (UseTLAB) {
  8265     Label ok;
  8266     Register tsize = rsi;
  8267     assert_different_registers(tsize, thread_reg, t1);
  8268     push(tsize);
  8269     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8270     shlptr(tsize, LogHeapWordSize);
  8271     cmpptr(t1, tsize);
  8272     jcc(Assembler::equal, ok);
  8273     stop("assert(t1 != tlab size)");
  8274     should_not_reach_here();
  8276     bind(ok);
  8277     pop(tsize);
  8279 #endif
  8280   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8281   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8282   addptr(top, t1);
  8283   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  8284   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  8285   verify_tlab();
  8286   jmp(retry);
  8288   return thread_reg; // for use by caller
  8291 void MacroAssembler::incr_allocated_bytes(Register thread,
  8292                                           Register var_size_in_bytes,
  8293                                           int con_size_in_bytes,
  8294                                           Register t1) {
  8295   if (!thread->is_valid()) {
  8296 #ifdef _LP64
  8297     thread = r15_thread;
  8298 #else
  8299     assert(t1->is_valid(), "need temp reg");
  8300     thread = t1;
  8301     get_thread(thread);
  8302 #endif
  8305 #ifdef _LP64
  8306   if (var_size_in_bytes->is_valid()) {
  8307     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8308   } else {
  8309     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8311 #else
  8312   if (var_size_in_bytes->is_valid()) {
  8313     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8314   } else {
  8315     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8317   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8318 #endif
  8321 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  8322   pusha();
  8324   // if we are coming from c1, xmm registers may be live
  8325   if (UseSSE >= 1) {
  8326     subptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8328   int off = 0;
  8329   if (UseSSE == 1)  {
  8330     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8331     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8332     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8333     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8334     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8335     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8336     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8337     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8338   } else if (UseSSE >= 2)  {
  8339     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8340     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8341     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8342     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8343     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8344     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8345     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8346     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8347 #ifdef _LP64
  8348     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm8);
  8349     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm9);
  8350     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm10);
  8351     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm11);
  8352     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm12);
  8353     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm13);
  8354     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm14);
  8355     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm15);
  8356 #endif
  8359   // Preserve registers across runtime call
  8360   int incoming_argument_and_return_value_offset = -1;
  8361   if (num_fpu_regs_in_use > 1) {
  8362     // Must preserve all other FPU regs (could alternatively convert
  8363     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  8364     // FPU state, but can not trust C compiler)
  8365     NEEDS_CLEANUP;
  8366     // NOTE that in this case we also push the incoming argument(s) to
  8367     // the stack and restore it later; we also use this stack slot to
  8368     // hold the return value from dsin, dcos etc.
  8369     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8370       subptr(rsp, sizeof(jdouble));
  8371       fstp_d(Address(rsp, 0));
  8373     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  8374     for (int i = nb_args-1; i >= 0; i--) {
  8375       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  8379   subptr(rsp, nb_args*sizeof(jdouble));
  8380   for (int i = 0; i < nb_args; i++) {
  8381     fstp_d(Address(rsp, i*sizeof(jdouble)));
  8384 #ifdef _LP64
  8385   if (nb_args > 0) {
  8386     movdbl(xmm0, Address(rsp, 0));
  8388   if (nb_args > 1) {
  8389     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  8391   assert(nb_args <= 2, "unsupported number of args");
  8392 #endif // _LP64
  8394   // NOTE: we must not use call_VM_leaf here because that requires a
  8395   // complete interpreter frame in debug mode -- same bug as 4387334
  8396   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  8397   // do proper 64bit abi
  8399   NEEDS_CLEANUP;
  8400   // Need to add stack banging before this runtime call if it needs to
  8401   // be taken; however, there is no generic stack banging routine at
  8402   // the MacroAssembler level
  8404   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  8406 #ifdef _LP64
  8407   movsd(Address(rsp, 0), xmm0);
  8408   fld_d(Address(rsp, 0));
  8409 #endif // _LP64
  8410   addptr(rsp, sizeof(jdouble) * nb_args);
  8411   if (num_fpu_regs_in_use > 1) {
  8412     // Must save return value to stack and then restore entire FPU
  8413     // stack except incoming arguments
  8414     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  8415     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  8416       fld_d(Address(rsp, 0));
  8417       addptr(rsp, sizeof(jdouble));
  8419     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  8420     addptr(rsp, sizeof(jdouble) * nb_args);
  8423   off = 0;
  8424   if (UseSSE == 1)  {
  8425     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8426     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8427     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8428     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8429     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8430     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8431     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8432     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8433   } else if (UseSSE >= 2)  {
  8434     movdbl(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8435     movdbl(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8436     movdbl(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8437     movdbl(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8438     movdbl(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8439     movdbl(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8440     movdbl(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8441     movdbl(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8442 #ifdef _LP64
  8443     movdbl(xmm8, Address(rsp,off++*sizeof(jdouble)));
  8444     movdbl(xmm9, Address(rsp,off++*sizeof(jdouble)));
  8445     movdbl(xmm10, Address(rsp,off++*sizeof(jdouble)));
  8446     movdbl(xmm11, Address(rsp,off++*sizeof(jdouble)));
  8447     movdbl(xmm12, Address(rsp,off++*sizeof(jdouble)));
  8448     movdbl(xmm13, Address(rsp,off++*sizeof(jdouble)));
  8449     movdbl(xmm14, Address(rsp,off++*sizeof(jdouble)));
  8450     movdbl(xmm15, Address(rsp,off++*sizeof(jdouble)));
  8451 #endif
  8453   if (UseSSE >= 1) {
  8454     addptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8456   popa();
  8459 static const double     pi_4 =  0.7853981633974483;
  8461 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  8462   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  8463   // was attempted in this code; unfortunately it appears that the
  8464   // switch to 80-bit precision and back causes this to be
  8465   // unprofitable compared with simply performing a runtime call if
  8466   // the argument is out of the (-pi/4, pi/4) range.
  8468   Register tmp = noreg;
  8469   if (!VM_Version::supports_cmov()) {
  8470     // fcmp needs a temporary so preserve rbx,
  8471     tmp = rbx;
  8472     push(tmp);
  8475   Label slow_case, done;
  8477   ExternalAddress pi4_adr = (address)&pi_4;
  8478   if (reachable(pi4_adr)) {
  8479     // x ?<= pi/4
  8480     fld_d(pi4_adr);
  8481     fld_s(1);                // Stack:  X  PI/4  X
  8482     fabs();                  // Stack: |X| PI/4  X
  8483     fcmp(tmp);
  8484     jcc(Assembler::above, slow_case);
  8486     // fastest case: -pi/4 <= x <= pi/4
  8487     switch(trig) {
  8488     case 's':
  8489       fsin();
  8490       break;
  8491     case 'c':
  8492       fcos();
  8493       break;
  8494     case 't':
  8495       ftan();
  8496       break;
  8497     default:
  8498       assert(false, "bad intrinsic");
  8499       break;
  8501     jmp(done);
  8504   // slow case: runtime call
  8505   bind(slow_case);
  8507   switch(trig) {
  8508   case 's':
  8510       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  8512     break;
  8513   case 'c':
  8515       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  8517     break;
  8518   case 't':
  8520       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  8522     break;
  8523   default:
  8524     assert(false, "bad intrinsic");
  8525     break;
  8528   // Come here with result in F-TOS
  8529   bind(done);
  8531   if (tmp != noreg) {
  8532     pop(tmp);
  8537 // Look up the method for a megamorphic invokeinterface call.
  8538 // The target method is determined by <intf_klass, itable_index>.
  8539 // The receiver klass is in recv_klass.
  8540 // On success, the result will be in method_result, and execution falls through.
  8541 // On failure, execution transfers to the given label.
  8542 void MacroAssembler::lookup_interface_method(Register recv_klass,
  8543                                              Register intf_klass,
  8544                                              RegisterOrConstant itable_index,
  8545                                              Register method_result,
  8546                                              Register scan_temp,
  8547                                              Label& L_no_such_interface) {
  8548   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  8549   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  8550          "caller must use same register for non-constant itable index as for method");
  8552   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  8553   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  8554   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  8555   int scan_step   = itableOffsetEntry::size() * wordSize;
  8556   int vte_size    = vtableEntry::size() * wordSize;
  8557   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  8558   assert(vte_size == wordSize, "else adjust times_vte_scale");
  8560   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  8562   // %%% Could store the aligned, prescaled offset in the klassoop.
  8563   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  8564   if (HeapWordsPerLong > 1) {
  8565     // Round up to align_object_offset boundary
  8566     // see code for instanceKlass::start_of_itable!
  8567     round_to(scan_temp, BytesPerLong);
  8570   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  8571   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  8572   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  8574   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  8575   //   if (scan->interface() == intf) {
  8576   //     result = (klass + scan->offset() + itable_index);
  8577   //   }
  8578   // }
  8579   Label search, found_method;
  8581   for (int peel = 1; peel >= 0; peel--) {
  8582     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  8583     cmpptr(intf_klass, method_result);
  8585     if (peel) {
  8586       jccb(Assembler::equal, found_method);
  8587     } else {
  8588       jccb(Assembler::notEqual, search);
  8589       // (invert the test to fall through to found_method...)
  8592     if (!peel)  break;
  8594     bind(search);
  8596     // Check that the previous entry is non-null.  A null entry means that
  8597     // the receiver class doesn't implement the interface, and wasn't the
  8598     // same as when the caller was compiled.
  8599     testptr(method_result, method_result);
  8600     jcc(Assembler::zero, L_no_such_interface);
  8601     addptr(scan_temp, scan_step);
  8604   bind(found_method);
  8606   // Got a hit.
  8607   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  8608   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  8612 void MacroAssembler::check_klass_subtype(Register sub_klass,
  8613                            Register super_klass,
  8614                            Register temp_reg,
  8615                            Label& L_success) {
  8616   Label L_failure;
  8617   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  8618   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  8619   bind(L_failure);
  8623 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  8624                                                    Register super_klass,
  8625                                                    Register temp_reg,
  8626                                                    Label* L_success,
  8627                                                    Label* L_failure,
  8628                                                    Label* L_slow_path,
  8629                                         RegisterOrConstant super_check_offset) {
  8630   assert_different_registers(sub_klass, super_klass, temp_reg);
  8631   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  8632   if (super_check_offset.is_register()) {
  8633     assert_different_registers(sub_klass, super_klass,
  8634                                super_check_offset.as_register());
  8635   } else if (must_load_sco) {
  8636     assert(temp_reg != noreg, "supply either a temp or a register offset");
  8639   Label L_fallthrough;
  8640   int label_nulls = 0;
  8641   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8642   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8643   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  8644   assert(label_nulls <= 1, "at most one NULL in the batch");
  8646   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8647   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  8648   Address super_check_offset_addr(super_klass, sco_offset);
  8650   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  8651   // range of a jccb.  If this routine grows larger, reconsider at
  8652   // least some of these.
  8653 #define local_jcc(assembler_cond, label)                                \
  8654   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  8655   else                             jcc( assembler_cond, label) /*omit semi*/
  8657   // Hacked jmp, which may only be used just before L_fallthrough.
  8658 #define final_jmp(label)                                                \
  8659   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  8660   else                            jmp(label)                /*omit semi*/
  8662   // If the pointers are equal, we are done (e.g., String[] elements).
  8663   // This self-check enables sharing of secondary supertype arrays among
  8664   // non-primary types such as array-of-interface.  Otherwise, each such
  8665   // type would need its own customized SSA.
  8666   // We move this check to the front of the fast path because many
  8667   // type checks are in fact trivially successful in this manner,
  8668   // so we get a nicely predicted branch right at the start of the check.
  8669   cmpptr(sub_klass, super_klass);
  8670   local_jcc(Assembler::equal, *L_success);
  8672   // Check the supertype display:
  8673   if (must_load_sco) {
  8674     // Positive movl does right thing on LP64.
  8675     movl(temp_reg, super_check_offset_addr);
  8676     super_check_offset = RegisterOrConstant(temp_reg);
  8678   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  8679   cmpptr(super_klass, super_check_addr); // load displayed supertype
  8681   // This check has worked decisively for primary supers.
  8682   // Secondary supers are sought in the super_cache ('super_cache_addr').
  8683   // (Secondary supers are interfaces and very deeply nested subtypes.)
  8684   // This works in the same check above because of a tricky aliasing
  8685   // between the super_cache and the primary super display elements.
  8686   // (The 'super_check_addr' can address either, as the case requires.)
  8687   // Note that the cache is updated below if it does not help us find
  8688   // what we need immediately.
  8689   // So if it was a primary super, we can just fail immediately.
  8690   // Otherwise, it's the slow path for us (no success at this point).
  8692   if (super_check_offset.is_register()) {
  8693     local_jcc(Assembler::equal, *L_success);
  8694     cmpl(super_check_offset.as_register(), sc_offset);
  8695     if (L_failure == &L_fallthrough) {
  8696       local_jcc(Assembler::equal, *L_slow_path);
  8697     } else {
  8698       local_jcc(Assembler::notEqual, *L_failure);
  8699       final_jmp(*L_slow_path);
  8701   } else if (super_check_offset.as_constant() == sc_offset) {
  8702     // Need a slow path; fast failure is impossible.
  8703     if (L_slow_path == &L_fallthrough) {
  8704       local_jcc(Assembler::equal, *L_success);
  8705     } else {
  8706       local_jcc(Assembler::notEqual, *L_slow_path);
  8707       final_jmp(*L_success);
  8709   } else {
  8710     // No slow path; it's a fast decision.
  8711     if (L_failure == &L_fallthrough) {
  8712       local_jcc(Assembler::equal, *L_success);
  8713     } else {
  8714       local_jcc(Assembler::notEqual, *L_failure);
  8715       final_jmp(*L_success);
  8719   bind(L_fallthrough);
  8721 #undef local_jcc
  8722 #undef final_jmp
  8726 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  8727                                                    Register super_klass,
  8728                                                    Register temp_reg,
  8729                                                    Register temp2_reg,
  8730                                                    Label* L_success,
  8731                                                    Label* L_failure,
  8732                                                    bool set_cond_codes) {
  8733   assert_different_registers(sub_klass, super_klass, temp_reg);
  8734   if (temp2_reg != noreg)
  8735     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  8736 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  8738   Label L_fallthrough;
  8739   int label_nulls = 0;
  8740   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8741   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8742   assert(label_nulls <= 1, "at most one NULL in the batch");
  8744   // a couple of useful fields in sub_klass:
  8745   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  8746   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8747   Address secondary_supers_addr(sub_klass, ss_offset);
  8748   Address super_cache_addr(     sub_klass, sc_offset);
  8750   // Do a linear scan of the secondary super-klass chain.
  8751   // This code is rarely used, so simplicity is a virtue here.
  8752   // The repne_scan instruction uses fixed registers, which we must spill.
  8753   // Don't worry too much about pre-existing connections with the input regs.
  8755   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  8756   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  8758   // Get super_klass value into rax (even if it was in rdi or rcx).
  8759   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  8760   if (super_klass != rax || UseCompressedOops) {
  8761     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  8762     mov(rax, super_klass);
  8764   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  8765   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  8767 #ifndef PRODUCT
  8768   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  8769   ExternalAddress pst_counter_addr((address) pst_counter);
  8770   NOT_LP64(  incrementl(pst_counter_addr) );
  8771   LP64_ONLY( lea(rcx, pst_counter_addr) );
  8772   LP64_ONLY( incrementl(Address(rcx, 0)) );
  8773 #endif //PRODUCT
  8775   // We will consult the secondary-super array.
  8776   movptr(rdi, secondary_supers_addr);
  8777   // Load the array length.  (Positive movl does right thing on LP64.)
  8778   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  8779   // Skip to start of data.
  8780   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  8782   // Scan RCX words at [RDI] for an occurrence of RAX.
  8783   // Set NZ/Z based on last compare.
  8784   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  8785   // not change flags (only scas instruction which is repeated sets flags).
  8786   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  8787 #ifdef _LP64
  8788   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  8789   // and we store values in objArrays always encoded, thus we need to encode
  8790   // the value of rax before repne.  Note that rax is dead after the repne.
  8791   if (UseCompressedOops) {
  8792     encode_heap_oop_not_null(rax); // Changes flags.
  8793     // The superclass is never null; it would be a basic system error if a null
  8794     // pointer were to sneak in here.  Note that we have already loaded the
  8795     // Klass::super_check_offset from the super_klass in the fast path,
  8796     // so if there is a null in that register, we are already in the afterlife.
  8797     testl(rax,rax); // Set Z = 0
  8798     repne_scanl();
  8799   } else
  8800 #endif // _LP64
  8802     testptr(rax,rax); // Set Z = 0
  8803     repne_scan();
  8805   // Unspill the temp. registers:
  8806   if (pushed_rdi)  pop(rdi);
  8807   if (pushed_rcx)  pop(rcx);
  8808   if (pushed_rax)  pop(rax);
  8810   if (set_cond_codes) {
  8811     // Special hack for the AD files:  rdi is guaranteed non-zero.
  8812     assert(!pushed_rdi, "rdi must be left non-NULL");
  8813     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  8816   if (L_failure == &L_fallthrough)
  8817         jccb(Assembler::notEqual, *L_failure);
  8818   else  jcc(Assembler::notEqual, *L_failure);
  8820   // Success.  Cache the super we found and proceed in triumph.
  8821   movptr(super_cache_addr, super_klass);
  8823   if (L_success != &L_fallthrough) {
  8824     jmp(*L_success);
  8827 #undef IS_A_TEMP
  8829   bind(L_fallthrough);
  8833 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  8834   if (VM_Version::supports_cmov()) {
  8835     cmovl(cc, dst, src);
  8836   } else {
  8837     Label L;
  8838     jccb(negate_condition(cc), L);
  8839     movl(dst, src);
  8840     bind(L);
  8844 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  8845   if (VM_Version::supports_cmov()) {
  8846     cmovl(cc, dst, src);
  8847   } else {
  8848     Label L;
  8849     jccb(negate_condition(cc), L);
  8850     movl(dst, src);
  8851     bind(L);
  8855 void MacroAssembler::verify_oop(Register reg, const char* s) {
  8856   if (!VerifyOops) return;
  8858   // Pass register number to verify_oop_subroutine
  8859   char* b = new char[strlen(s) + 50];
  8860   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  8861 #ifdef _LP64
  8862   push(rscratch1);                    // save r10, trashed by movptr()
  8863 #endif
  8864   push(rax);                          // save rax,
  8865   push(reg);                          // pass register argument
  8866   ExternalAddress buffer((address) b);
  8867   // avoid using pushptr, as it modifies scratch registers
  8868   // and our contract is not to modify anything
  8869   movptr(rax, buffer.addr());
  8870   push(rax);
  8871   // call indirectly to solve generation ordering problem
  8872   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  8873   call(rax);
  8874   // Caller pops the arguments (oop, message) and restores rax, r10
  8878 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  8879                                                       Register tmp,
  8880                                                       int offset) {
  8881   intptr_t value = *delayed_value_addr;
  8882   if (value != 0)
  8883     return RegisterOrConstant(value + offset);
  8885   // load indirectly to solve generation ordering problem
  8886   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  8888 #ifdef ASSERT
  8889   { Label L;
  8890     testptr(tmp, tmp);
  8891     if (WizardMode) {
  8892       jcc(Assembler::notZero, L);
  8893       char* buf = new char[40];
  8894       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  8895       stop(buf);
  8896     } else {
  8897       jccb(Assembler::notZero, L);
  8898       hlt();
  8900     bind(L);
  8902 #endif
  8904   if (offset != 0)
  8905     addptr(tmp, offset);
  8907   return RegisterOrConstant(tmp);
  8911 // registers on entry:
  8912 //  - rax ('check' register): required MethodType
  8913 //  - rcx: method handle
  8914 //  - rdx, rsi, or ?: killable temp
  8915 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  8916                                               Register temp_reg,
  8917                                               Label& wrong_method_type) {
  8918   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
  8919   // compare method type against that of the receiver
  8920   if (UseCompressedOops) {
  8921     load_heap_oop(temp_reg, type_addr);
  8922     cmpptr(mtype_reg, temp_reg);
  8923   } else {
  8924     cmpptr(mtype_reg, type_addr);
  8926   jcc(Assembler::notEqual, wrong_method_type);
  8930 // A method handle has a "vmslots" field which gives the size of its
  8931 // argument list in JVM stack slots.  This field is either located directly
  8932 // in every method handle, or else is indirectly accessed through the
  8933 // method handle's MethodType.  This macro hides the distinction.
  8934 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  8935                                                 Register temp_reg) {
  8936   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  8937   // load mh.type.form.vmslots
  8938   Register temp2_reg = vmslots_reg;
  8939   load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
  8940   load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
  8941   movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  8945 // registers on entry:
  8946 //  - rcx: method handle
  8947 //  - rdx: killable temp (interpreted only)
  8948 //  - rax: killable temp (compiled only)
  8949 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  8950   assert(mh_reg == rcx, "caller must put MH object in rcx");
  8951   assert_different_registers(mh_reg, temp_reg);
  8953   // pick out the interpreted side of the handler
  8954   // NOTE: vmentry is not an oop!
  8955   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  8957   // off we go...
  8958   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  8960   // for the various stubs which take control at this point,
  8961   // see MethodHandles::generate_method_handle_stub
  8965 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  8966                                          int extra_slot_offset) {
  8967   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  8968   int stackElementSize = Interpreter::stackElementSize;
  8969   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  8970 #ifdef ASSERT
  8971   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  8972   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  8973 #endif
  8974   Register             scale_reg    = noreg;
  8975   Address::ScaleFactor scale_factor = Address::no_scale;
  8976   if (arg_slot.is_constant()) {
  8977     offset += arg_slot.as_constant() * stackElementSize;
  8978   } else {
  8979     scale_reg    = arg_slot.as_register();
  8980     scale_factor = Address::times(stackElementSize);
  8982   offset += wordSize;           // return PC is on stack
  8983   return Address(rsp, scale_reg, scale_factor, offset);
  8987 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  8988   if (!VerifyOops) return;
  8990   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  8991   // Pass register number to verify_oop_subroutine
  8992   char* b = new char[strlen(s) + 50];
  8993   sprintf(b, "verify_oop_addr: %s", s);
  8995 #ifdef _LP64
  8996   push(rscratch1);                    // save r10, trashed by movptr()
  8997 #endif
  8998   push(rax);                          // save rax,
  8999   // addr may contain rsp so we will have to adjust it based on the push
  9000   // we just did (and on 64 bit we do two pushes)
  9001   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  9002   // stores rax into addr which is backwards of what was intended.
  9003   if (addr.uses(rsp)) {
  9004     lea(rax, addr);
  9005     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  9006   } else {
  9007     pushptr(addr);
  9010   ExternalAddress buffer((address) b);
  9011   // pass msg argument
  9012   // avoid using pushptr, as it modifies scratch registers
  9013   // and our contract is not to modify anything
  9014   movptr(rax, buffer.addr());
  9015   push(rax);
  9017   // call indirectly to solve generation ordering problem
  9018   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9019   call(rax);
  9020   // Caller pops the arguments (addr, message) and restores rax, r10.
  9023 void MacroAssembler::verify_tlab() {
  9024 #ifdef ASSERT
  9025   if (UseTLAB && VerifyOops) {
  9026     Label next, ok;
  9027     Register t1 = rsi;
  9028     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  9030     push(t1);
  9031     NOT_LP64(push(thread_reg));
  9032     NOT_LP64(get_thread(thread_reg));
  9034     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9035     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  9036     jcc(Assembler::aboveEqual, next);
  9037     stop("assert(top >= start)");
  9038     should_not_reach_here();
  9040     bind(next);
  9041     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  9042     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9043     jcc(Assembler::aboveEqual, ok);
  9044     stop("assert(top <= end)");
  9045     should_not_reach_here();
  9047     bind(ok);
  9048     NOT_LP64(pop(thread_reg));
  9049     pop(t1);
  9051 #endif
  9054 class ControlWord {
  9055  public:
  9056   int32_t _value;
  9058   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  9059   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  9060   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9061   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9062   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9063   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9064   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9065   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9067   void print() const {
  9068     // rounding control
  9069     const char* rc;
  9070     switch (rounding_control()) {
  9071       case 0: rc = "round near"; break;
  9072       case 1: rc = "round down"; break;
  9073       case 2: rc = "round up  "; break;
  9074       case 3: rc = "chop      "; break;
  9075     };
  9076     // precision control
  9077     const char* pc;
  9078     switch (precision_control()) {
  9079       case 0: pc = "24 bits "; break;
  9080       case 1: pc = "reserved"; break;
  9081       case 2: pc = "53 bits "; break;
  9082       case 3: pc = "64 bits "; break;
  9083     };
  9084     // flags
  9085     char f[9];
  9086     f[0] = ' ';
  9087     f[1] = ' ';
  9088     f[2] = (precision   ()) ? 'P' : 'p';
  9089     f[3] = (underflow   ()) ? 'U' : 'u';
  9090     f[4] = (overflow    ()) ? 'O' : 'o';
  9091     f[5] = (zero_divide ()) ? 'Z' : 'z';
  9092     f[6] = (denormalized()) ? 'D' : 'd';
  9093     f[7] = (invalid     ()) ? 'I' : 'i';
  9094     f[8] = '\x0';
  9095     // output
  9096     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  9099 };
  9101 class StatusWord {
  9102  public:
  9103   int32_t _value;
  9105   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  9106   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  9107   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  9108   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  9109   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  9110   int  top() const                     { return  (_value >> 11) & 7      ; }
  9111   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  9112   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  9113   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9114   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9115   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9116   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9117   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9118   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9120   void print() const {
  9121     // condition codes
  9122     char c[5];
  9123     c[0] = (C3()) ? '3' : '-';
  9124     c[1] = (C2()) ? '2' : '-';
  9125     c[2] = (C1()) ? '1' : '-';
  9126     c[3] = (C0()) ? '0' : '-';
  9127     c[4] = '\x0';
  9128     // flags
  9129     char f[9];
  9130     f[0] = (error_status()) ? 'E' : '-';
  9131     f[1] = (stack_fault ()) ? 'S' : '-';
  9132     f[2] = (precision   ()) ? 'P' : '-';
  9133     f[3] = (underflow   ()) ? 'U' : '-';
  9134     f[4] = (overflow    ()) ? 'O' : '-';
  9135     f[5] = (zero_divide ()) ? 'Z' : '-';
  9136     f[6] = (denormalized()) ? 'D' : '-';
  9137     f[7] = (invalid     ()) ? 'I' : '-';
  9138     f[8] = '\x0';
  9139     // output
  9140     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  9143 };
  9145 class TagWord {
  9146  public:
  9147   int32_t _value;
  9149   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  9151   void print() const {
  9152     printf("%04x", _value & 0xFFFF);
  9155 };
  9157 class FPU_Register {
  9158  public:
  9159   int32_t _m0;
  9160   int32_t _m1;
  9161   int16_t _ex;
  9163   bool is_indefinite() const           {
  9164     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  9167   void print() const {
  9168     char  sign = (_ex < 0) ? '-' : '+';
  9169     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  9170     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  9171   };
  9173 };
  9175 class FPU_State {
  9176  public:
  9177   enum {
  9178     register_size       = 10,
  9179     number_of_registers =  8,
  9180     register_mask       =  7
  9181   };
  9183   ControlWord  _control_word;
  9184   StatusWord   _status_word;
  9185   TagWord      _tag_word;
  9186   int32_t      _error_offset;
  9187   int32_t      _error_selector;
  9188   int32_t      _data_offset;
  9189   int32_t      _data_selector;
  9190   int8_t       _register[register_size * number_of_registers];
  9192   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  9193   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  9195   const char* tag_as_string(int tag) const {
  9196     switch (tag) {
  9197       case 0: return "valid";
  9198       case 1: return "zero";
  9199       case 2: return "special";
  9200       case 3: return "empty";
  9202     ShouldNotReachHere();
  9203     return NULL;
  9206   void print() const {
  9207     // print computation registers
  9208     { int t = _status_word.top();
  9209       for (int i = 0; i < number_of_registers; i++) {
  9210         int j = (i - t) & register_mask;
  9211         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  9212         st(j)->print();
  9213         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  9216     printf("\n");
  9217     // print control registers
  9218     printf("ctrl = "); _control_word.print(); printf("\n");
  9219     printf("stat = "); _status_word .print(); printf("\n");
  9220     printf("tags = "); _tag_word    .print(); printf("\n");
  9223 };
  9225 class Flag_Register {
  9226  public:
  9227   int32_t _value;
  9229   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  9230   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  9231   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  9232   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  9233   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  9234   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  9235   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  9237   void print() const {
  9238     // flags
  9239     char f[8];
  9240     f[0] = (overflow       ()) ? 'O' : '-';
  9241     f[1] = (direction      ()) ? 'D' : '-';
  9242     f[2] = (sign           ()) ? 'S' : '-';
  9243     f[3] = (zero           ()) ? 'Z' : '-';
  9244     f[4] = (auxiliary_carry()) ? 'A' : '-';
  9245     f[5] = (parity         ()) ? 'P' : '-';
  9246     f[6] = (carry          ()) ? 'C' : '-';
  9247     f[7] = '\x0';
  9248     // output
  9249     printf("%08x  flags = %s", _value, f);
  9252 };
  9254 class IU_Register {
  9255  public:
  9256   int32_t _value;
  9258   void print() const {
  9259     printf("%08x  %11d", _value, _value);
  9262 };
  9264 class IU_State {
  9265  public:
  9266   Flag_Register _eflags;
  9267   IU_Register   _rdi;
  9268   IU_Register   _rsi;
  9269   IU_Register   _rbp;
  9270   IU_Register   _rsp;
  9271   IU_Register   _rbx;
  9272   IU_Register   _rdx;
  9273   IU_Register   _rcx;
  9274   IU_Register   _rax;
  9276   void print() const {
  9277     // computation registers
  9278     printf("rax,  = "); _rax.print(); printf("\n");
  9279     printf("rbx,  = "); _rbx.print(); printf("\n");
  9280     printf("rcx  = "); _rcx.print(); printf("\n");
  9281     printf("rdx  = "); _rdx.print(); printf("\n");
  9282     printf("rdi  = "); _rdi.print(); printf("\n");
  9283     printf("rsi  = "); _rsi.print(); printf("\n");
  9284     printf("rbp,  = "); _rbp.print(); printf("\n");
  9285     printf("rsp  = "); _rsp.print(); printf("\n");
  9286     printf("\n");
  9287     // control registers
  9288     printf("flgs = "); _eflags.print(); printf("\n");
  9290 };
  9293 class CPU_State {
  9294  public:
  9295   FPU_State _fpu_state;
  9296   IU_State  _iu_state;
  9298   void print() const {
  9299     printf("--------------------------------------------------\n");
  9300     _iu_state .print();
  9301     printf("\n");
  9302     _fpu_state.print();
  9303     printf("--------------------------------------------------\n");
  9306 };
  9309 static void _print_CPU_state(CPU_State* state) {
  9310   state->print();
  9311 };
  9314 void MacroAssembler::print_CPU_state() {
  9315   push_CPU_state();
  9316   push(rsp);                // pass CPU state
  9317   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  9318   addptr(rsp, wordSize);       // discard argument
  9319   pop_CPU_state();
  9323 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  9324   static int counter = 0;
  9325   FPU_State* fs = &state->_fpu_state;
  9326   counter++;
  9327   // For leaf calls, only verify that the top few elements remain empty.
  9328   // We only need 1 empty at the top for C2 code.
  9329   if( stack_depth < 0 ) {
  9330     if( fs->tag_for_st(7) != 3 ) {
  9331       printf("FPR7 not empty\n");
  9332       state->print();
  9333       assert(false, "error");
  9334       return false;
  9336     return true;                // All other stack states do not matter
  9339   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  9340          "bad FPU control word");
  9342   // compute stack depth
  9343   int i = 0;
  9344   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  9345   int d = i;
  9346   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  9347   // verify findings
  9348   if (i != FPU_State::number_of_registers) {
  9349     // stack not contiguous
  9350     printf("%s: stack not contiguous at ST%d\n", s, i);
  9351     state->print();
  9352     assert(false, "error");
  9353     return false;
  9355   // check if computed stack depth corresponds to expected stack depth
  9356   if (stack_depth < 0) {
  9357     // expected stack depth is -stack_depth or less
  9358     if (d > -stack_depth) {
  9359       // too many elements on the stack
  9360       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  9361       state->print();
  9362       assert(false, "error");
  9363       return false;
  9365   } else {
  9366     // expected stack depth is stack_depth
  9367     if (d != stack_depth) {
  9368       // wrong stack depth
  9369       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  9370       state->print();
  9371       assert(false, "error");
  9372       return false;
  9375   // everything is cool
  9376   return true;
  9380 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  9381   if (!VerifyFPU) return;
  9382   push_CPU_state();
  9383   push(rsp);                // pass CPU state
  9384   ExternalAddress msg((address) s);
  9385   // pass message string s
  9386   pushptr(msg.addr());
  9387   push(stack_depth);        // pass stack depth
  9388   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  9389   addptr(rsp, 3 * wordSize);   // discard arguments
  9390   // check for error
  9391   { Label L;
  9392     testl(rax, rax);
  9393     jcc(Assembler::notZero, L);
  9394     int3();                  // break if error condition
  9395     bind(L);
  9397   pop_CPU_state();
  9400 void MacroAssembler::load_klass(Register dst, Register src) {
  9401 #ifdef _LP64
  9402   if (UseCompressedOops) {
  9403     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9404     decode_heap_oop_not_null(dst);
  9405   } else
  9406 #endif
  9407     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9410 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  9411 #ifdef _LP64
  9412   if (UseCompressedOops) {
  9413     assert (Universe::heap() != NULL, "java heap should be initialized");
  9414     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9415     if (Universe::narrow_oop_shift() != 0) {
  9416       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9417       if (LogMinObjAlignmentInBytes == Address::times_8) {
  9418         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  9419       } else {
  9420         // OK to use shift since we don't need to preserve flags.
  9421         shlq(dst, LogMinObjAlignmentInBytes);
  9422         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
  9424     } else {
  9425       movq(dst, Address(dst, Klass::prototype_header_offset()));
  9427   } else
  9428 #endif
  9430     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9431     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  9435 void MacroAssembler::store_klass(Register dst, Register src) {
  9436 #ifdef _LP64
  9437   if (UseCompressedOops) {
  9438     encode_heap_oop_not_null(src);
  9439     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9440   } else
  9441 #endif
  9442     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9445 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  9446 #ifdef _LP64
  9447   if (UseCompressedOops) {
  9448     movl(dst, src);
  9449     decode_heap_oop(dst);
  9450   } else
  9451 #endif
  9452     movptr(dst, src);
  9455 // Doesn't do verfication, generates fixed size code
  9456 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  9457 #ifdef _LP64
  9458   if (UseCompressedOops) {
  9459     movl(dst, src);
  9460     decode_heap_oop_not_null(dst);
  9461   } else
  9462 #endif
  9463     movptr(dst, src);
  9466 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  9467 #ifdef _LP64
  9468   if (UseCompressedOops) {
  9469     assert(!dst.uses(src), "not enough registers");
  9470     encode_heap_oop(src);
  9471     movl(dst, src);
  9472   } else
  9473 #endif
  9474     movptr(dst, src);
  9477 // Used for storing NULLs.
  9478 void MacroAssembler::store_heap_oop_null(Address dst) {
  9479 #ifdef _LP64
  9480   if (UseCompressedOops) {
  9481     movl(dst, (int32_t)NULL_WORD);
  9482   } else {
  9483     movslq(dst, (int32_t)NULL_WORD);
  9485 #else
  9486   movl(dst, (int32_t)NULL_WORD);
  9487 #endif
  9490 #ifdef _LP64
  9491 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  9492   if (UseCompressedOops) {
  9493     // Store to klass gap in destination
  9494     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  9498 #ifdef ASSERT
  9499 void MacroAssembler::verify_heapbase(const char* msg) {
  9500   assert (UseCompressedOops, "should be compressed");
  9501   assert (Universe::heap() != NULL, "java heap should be initialized");
  9502   if (CheckCompressedOops) {
  9503     Label ok;
  9504     push(rscratch1); // cmpptr trashes rscratch1
  9505     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9506     jcc(Assembler::equal, ok);
  9507     stop(msg);
  9508     bind(ok);
  9509     pop(rscratch1);
  9512 #endif
  9514 // Algorithm must match oop.inline.hpp encode_heap_oop.
  9515 void MacroAssembler::encode_heap_oop(Register r) {
  9516 #ifdef ASSERT
  9517   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  9518 #endif
  9519   verify_oop(r, "broken oop in encode_heap_oop");
  9520   if (Universe::narrow_oop_base() == NULL) {
  9521     if (Universe::narrow_oop_shift() != 0) {
  9522       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9523       shrq(r, LogMinObjAlignmentInBytes);
  9525     return;
  9527   testq(r, r);
  9528   cmovq(Assembler::equal, r, r12_heapbase);
  9529   subq(r, r12_heapbase);
  9530   shrq(r, LogMinObjAlignmentInBytes);
  9533 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  9534 #ifdef ASSERT
  9535   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  9536   if (CheckCompressedOops) {
  9537     Label ok;
  9538     testq(r, r);
  9539     jcc(Assembler::notEqual, ok);
  9540     stop("null oop passed to encode_heap_oop_not_null");
  9541     bind(ok);
  9543 #endif
  9544   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  9545   if (Universe::narrow_oop_base() != NULL) {
  9546     subq(r, r12_heapbase);
  9548   if (Universe::narrow_oop_shift() != 0) {
  9549     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9550     shrq(r, LogMinObjAlignmentInBytes);
  9554 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  9555 #ifdef ASSERT
  9556   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  9557   if (CheckCompressedOops) {
  9558     Label ok;
  9559     testq(src, src);
  9560     jcc(Assembler::notEqual, ok);
  9561     stop("null oop passed to encode_heap_oop_not_null2");
  9562     bind(ok);
  9564 #endif
  9565   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  9566   if (dst != src) {
  9567     movq(dst, src);
  9569   if (Universe::narrow_oop_base() != NULL) {
  9570     subq(dst, r12_heapbase);
  9572   if (Universe::narrow_oop_shift() != 0) {
  9573     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9574     shrq(dst, LogMinObjAlignmentInBytes);
  9578 void  MacroAssembler::decode_heap_oop(Register r) {
  9579 #ifdef ASSERT
  9580   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  9581 #endif
  9582   if (Universe::narrow_oop_base() == NULL) {
  9583     if (Universe::narrow_oop_shift() != 0) {
  9584       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9585       shlq(r, LogMinObjAlignmentInBytes);
  9587   } else {
  9588     Label done;
  9589     shlq(r, LogMinObjAlignmentInBytes);
  9590     jccb(Assembler::equal, done);
  9591     addq(r, r12_heapbase);
  9592     bind(done);
  9594   verify_oop(r, "broken oop in decode_heap_oop");
  9597 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  9598   // Note: it will change flags
  9599   assert (UseCompressedOops, "should only be used for compressed headers");
  9600   assert (Universe::heap() != NULL, "java heap should be initialized");
  9601   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9602   // vtableStubs also counts instructions in pd_code_size_limit.
  9603   // Also do not verify_oop as this is called by verify_oop.
  9604   if (Universe::narrow_oop_shift() != 0) {
  9605     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9606     shlq(r, LogMinObjAlignmentInBytes);
  9607     if (Universe::narrow_oop_base() != NULL) {
  9608       addq(r, r12_heapbase);
  9610   } else {
  9611     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9615 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  9616   // Note: it will change flags
  9617   assert (UseCompressedOops, "should only be used for compressed headers");
  9618   assert (Universe::heap() != NULL, "java heap should be initialized");
  9619   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9620   // vtableStubs also counts instructions in pd_code_size_limit.
  9621   // Also do not verify_oop as this is called by verify_oop.
  9622   if (Universe::narrow_oop_shift() != 0) {
  9623     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9624     if (LogMinObjAlignmentInBytes == Address::times_8) {
  9625       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  9626     } else {
  9627       if (dst != src) {
  9628         movq(dst, src);
  9630       shlq(dst, LogMinObjAlignmentInBytes);
  9631       if (Universe::narrow_oop_base() != NULL) {
  9632         addq(dst, r12_heapbase);
  9635   } else {
  9636     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9637     if (dst != src) {
  9638       movq(dst, src);
  9643 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  9644   assert (UseCompressedOops, "should only be used for compressed headers");
  9645   assert (Universe::heap() != NULL, "java heap should be initialized");
  9646   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9647   int oop_index = oop_recorder()->find_index(obj);
  9648   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9649   mov_narrow_oop(dst, oop_index, rspec);
  9652 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  9653   assert (UseCompressedOops, "should only be used for compressed headers");
  9654   assert (Universe::heap() != NULL, "java heap should be initialized");
  9655   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9656   int oop_index = oop_recorder()->find_index(obj);
  9657   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9658   mov_narrow_oop(dst, oop_index, rspec);
  9661 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  9662   assert (UseCompressedOops, "should only be used for compressed headers");
  9663   assert (Universe::heap() != NULL, "java heap should be initialized");
  9664   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9665   int oop_index = oop_recorder()->find_index(obj);
  9666   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9667   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9670 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  9671   assert (UseCompressedOops, "should only be used for compressed headers");
  9672   assert (Universe::heap() != NULL, "java heap should be initialized");
  9673   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9674   int oop_index = oop_recorder()->find_index(obj);
  9675   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9676   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9679 void MacroAssembler::reinit_heapbase() {
  9680   if (UseCompressedOops) {
  9681     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9684 #endif // _LP64
  9687 // C2 compiled method's prolog code.
  9688 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  9690   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  9691   // NativeJump::patch_verified_entry will be able to patch out the entry
  9692   // code safely. The push to verify stack depth is ok at 5 bytes,
  9693   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  9694   // stack bang then we must use the 6 byte frame allocation even if
  9695   // we have no frame. :-(
  9697   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  9698   // Remove word for return addr
  9699   framesize -= wordSize;
  9701   // Calls to C2R adapters often do not accept exceptional returns.
  9702   // We require that their callers must bang for them.  But be careful, because
  9703   // some VM calls (such as call site linkage) can use several kilobytes of
  9704   // stack.  But the stack safety zone should account for that.
  9705   // See bugs 4446381, 4468289, 4497237.
  9706   if (stack_bang) {
  9707     generate_stack_overflow_check(framesize);
  9709     // We always push rbp, so that on return to interpreter rbp, will be
  9710     // restored correctly and we can correct the stack.
  9711     push(rbp);
  9712     // Remove word for ebp
  9713     framesize -= wordSize;
  9715     // Create frame
  9716     if (framesize) {
  9717       subptr(rsp, framesize);
  9719   } else {
  9720     // Create frame (force generation of a 4 byte immediate value)
  9721     subptr_imm32(rsp, framesize);
  9723     // Save RBP register now.
  9724     framesize -= wordSize;
  9725     movptr(Address(rsp, framesize), rbp);
  9728   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  9729     framesize -= wordSize;
  9730     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  9733 #ifndef _LP64
  9734   // If method sets FPU control word do it now
  9735   if (fp_mode_24b) {
  9736     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  9738   if (UseSSE >= 2 && VerifyFPU) {
  9739     verify_FPU(0, "FPU stack must be clean on entry");
  9741 #endif
  9743 #ifdef ASSERT
  9744   if (VerifyStackAtCalls) {
  9745     Label L;
  9746     push(rax);
  9747     mov(rax, rsp);
  9748     andptr(rax, StackAlignmentInBytes-1);
  9749     cmpptr(rax, StackAlignmentInBytes-wordSize);
  9750     pop(rax);
  9751     jcc(Assembler::equal, L);
  9752     stop("Stack is not properly aligned!");
  9753     bind(L);
  9755 #endif
  9760 // IndexOf for constant substrings with size >= 8 chars
  9761 // which don't need to be loaded through stack.
  9762 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  9763                                       Register cnt1, Register cnt2,
  9764                                       int int_cnt2,  Register result,
  9765                                       XMMRegister vec, Register tmp) {
  9766   ShortBranchVerifier sbv(this);
  9767   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9769   // This method uses pcmpestri inxtruction with bound registers
  9770   //   inputs:
  9771   //     xmm - substring
  9772   //     rax - substring length (elements count)
  9773   //     mem - scanned string
  9774   //     rdx - string length (elements count)
  9775   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9776   //   outputs:
  9777   //     rcx - matched index in string
  9778   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9780   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  9781         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  9782         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  9784   // Note, inline_string_indexOf() generates checks:
  9785   // if (substr.count > string.count) return -1;
  9786   // if (substr.count == 0) return 0;
  9787   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  9789   // Load substring.
  9790   movdqu(vec, Address(str2, 0));
  9791   movl(cnt2, int_cnt2);
  9792   movptr(result, str1); // string addr
  9794   if (int_cnt2 > 8) {
  9795     jmpb(SCAN_TO_SUBSTR);
  9797     // Reload substr for rescan, this code
  9798     // is executed only for large substrings (> 8 chars)
  9799     bind(RELOAD_SUBSTR);
  9800     movdqu(vec, Address(str2, 0));
  9801     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  9803     bind(RELOAD_STR);
  9804     // We came here after the beginning of the substring was
  9805     // matched but the rest of it was not so we need to search
  9806     // again. Start from the next element after the previous match.
  9808     // cnt2 is number of substring reminding elements and
  9809     // cnt1 is number of string reminding elements when cmp failed.
  9810     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  9811     subl(cnt1, cnt2);
  9812     addl(cnt1, int_cnt2);
  9813     movl(cnt2, int_cnt2); // Now restore cnt2
  9815     decrementl(cnt1);     // Shift to next element
  9816     cmpl(cnt1, cnt2);
  9817     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9819     addptr(result, 2);
  9821   } // (int_cnt2 > 8)
  9823   // Scan string for start of substr in 16-byte vectors
  9824   bind(SCAN_TO_SUBSTR);
  9825   pcmpestri(vec, Address(result, 0), 0x0d);
  9826   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  9827   subl(cnt1, 8);
  9828   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  9829   cmpl(cnt1, cnt2);
  9830   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9831   addptr(result, 16);
  9832   jmpb(SCAN_TO_SUBSTR);
  9834   // Found a potential substr
  9835   bind(FOUND_CANDIDATE);
  9836   // Matched whole vector if first element matched (tmp(rcx) == 0).
  9837   if (int_cnt2 == 8) {
  9838     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  9839   } else { // int_cnt2 > 8
  9840     jccb(Assembler::overflow, FOUND_SUBSTR);
  9842   // After pcmpestri tmp(rcx) contains matched element index
  9843   // Compute start addr of substr
  9844   lea(result, Address(result, tmp, Address::times_2));
  9846   // Make sure string is still long enough
  9847   subl(cnt1, tmp);
  9848   cmpl(cnt1, cnt2);
  9849   if (int_cnt2 == 8) {
  9850     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  9851   } else { // int_cnt2 > 8
  9852     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  9854   // Left less then substring.
  9856   bind(RET_NOT_FOUND);
  9857   movl(result, -1);
  9858   jmpb(EXIT);
  9860   if (int_cnt2 > 8) {
  9861     // This code is optimized for the case when whole substring
  9862     // is matched if its head is matched.
  9863     bind(MATCH_SUBSTR_HEAD);
  9864     pcmpestri(vec, Address(result, 0), 0x0d);
  9865     // Reload only string if does not match
  9866     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  9868     Label CONT_SCAN_SUBSTR;
  9869     // Compare the rest of substring (> 8 chars).
  9870     bind(FOUND_SUBSTR);
  9871     // First 8 chars are already matched.
  9872     negptr(cnt2);
  9873     addptr(cnt2, 8);
  9875     bind(SCAN_SUBSTR);
  9876     subl(cnt1, 8);
  9877     cmpl(cnt2, -8); // Do not read beyond substring
  9878     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  9879     // Back-up strings to avoid reading beyond substring:
  9880     // cnt1 = cnt1 - cnt2 + 8
  9881     addl(cnt1, cnt2); // cnt2 is negative
  9882     addl(cnt1, 8);
  9883     movl(cnt2, 8); negptr(cnt2);
  9884     bind(CONT_SCAN_SUBSTR);
  9885     if (int_cnt2 < (int)G) {
  9886       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  9887       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  9888     } else {
  9889       // calculate index in register to avoid integer overflow (int_cnt2*2)
  9890       movl(tmp, int_cnt2);
  9891       addptr(tmp, cnt2);
  9892       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  9893       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  9895     // Need to reload strings pointers if not matched whole vector
  9896     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  9897     addptr(cnt2, 8);
  9898     jcc(Assembler::negative, SCAN_SUBSTR);
  9899     // Fall through if found full substring
  9901   } // (int_cnt2 > 8)
  9903   bind(RET_FOUND);
  9904   // Found result if we matched full small substring.
  9905   // Compute substr offset
  9906   subptr(result, str1);
  9907   shrl(result, 1); // index
  9908   bind(EXIT);
  9910 } // string_indexofC8
  9912 // Small strings are loaded through stack if they cross page boundary.
  9913 void MacroAssembler::string_indexof(Register str1, Register str2,
  9914                                     Register cnt1, Register cnt2,
  9915                                     int int_cnt2,  Register result,
  9916                                     XMMRegister vec, Register tmp) {
  9917   ShortBranchVerifier sbv(this);
  9918   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9919   //
  9920   // int_cnt2 is length of small (< 8 chars) constant substring
  9921   // or (-1) for non constant substring in which case its length
  9922   // is in cnt2 register.
  9923   //
  9924   // Note, inline_string_indexOf() generates checks:
  9925   // if (substr.count > string.count) return -1;
  9926   // if (substr.count == 0) return 0;
  9927   //
  9928   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  9930   // This method uses pcmpestri inxtruction with bound registers
  9931   //   inputs:
  9932   //     xmm - substring
  9933   //     rax - substring length (elements count)
  9934   //     mem - scanned string
  9935   //     rdx - string length (elements count)
  9936   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9937   //   outputs:
  9938   //     rcx - matched index in string
  9939   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9941   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  9942         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  9943         FOUND_CANDIDATE;
  9945   { //========================================================
  9946     // We don't know where these strings are located
  9947     // and we can't read beyond them. Load them through stack.
  9948     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  9950     movptr(tmp, rsp); // save old SP
  9952     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  9953       if (int_cnt2 == 1) {  // One char
  9954         load_unsigned_short(result, Address(str2, 0));
  9955         movdl(vec, result); // move 32 bits
  9956       } else if (int_cnt2 == 2) { // Two chars
  9957         movdl(vec, Address(str2, 0)); // move 32 bits
  9958       } else if (int_cnt2 == 4) { // Four chars
  9959         movq(vec, Address(str2, 0));  // move 64 bits
  9960       } else { // cnt2 = { 3, 5, 6, 7 }
  9961         // Array header size is 12 bytes in 32-bit VM
  9962         // + 6 bytes for 3 chars == 18 bytes,
  9963         // enough space to load vec and shift.
  9964         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
  9965         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  9966         psrldq(vec, 16-(int_cnt2*2));
  9968     } else { // not constant substring
  9969       cmpl(cnt2, 8);
  9970       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  9972       // We can read beyond string if srt+16 does not cross page boundary
  9973       // since heaps are aligned and mapped by pages.
  9974       assert(os::vm_page_size() < (int)G, "default page should be small");
  9975       movl(result, str2); // We need only low 32 bits
  9976       andl(result, (os::vm_page_size()-1));
  9977       cmpl(result, (os::vm_page_size()-16));
  9978       jccb(Assembler::belowEqual, CHECK_STR);
  9980       // Move small strings to stack to allow load 16 bytes into vec.
  9981       subptr(rsp, 16);
  9982       int stk_offset = wordSize-2;
  9983       push(cnt2);
  9985       bind(COPY_SUBSTR);
  9986       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  9987       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  9988       decrement(cnt2);
  9989       jccb(Assembler::notZero, COPY_SUBSTR);
  9991       pop(cnt2);
  9992       movptr(str2, rsp);  // New substring address
  9993     } // non constant
  9995     bind(CHECK_STR);
  9996     cmpl(cnt1, 8);
  9997     jccb(Assembler::aboveEqual, BIG_STRINGS);
  9999     // Check cross page boundary.
 10000     movl(result, str1); // We need only low 32 bits
 10001     andl(result, (os::vm_page_size()-1));
 10002     cmpl(result, (os::vm_page_size()-16));
 10003     jccb(Assembler::belowEqual, BIG_STRINGS);
 10005     subptr(rsp, 16);
 10006     int stk_offset = -2;
 10007     if (int_cnt2 < 0) { // not constant
 10008       push(cnt2);
 10009       stk_offset += wordSize;
 10011     movl(cnt2, cnt1);
 10013     bind(COPY_STR);
 10014     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
 10015     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10016     decrement(cnt2);
 10017     jccb(Assembler::notZero, COPY_STR);
 10019     if (int_cnt2 < 0) { // not constant
 10020       pop(cnt2);
 10022     movptr(str1, rsp);  // New string address
 10024     bind(BIG_STRINGS);
 10025     // Load substring.
 10026     if (int_cnt2 < 0) { // -1
 10027       movdqu(vec, Address(str2, 0));
 10028       push(cnt2);       // substr count
 10029       push(str2);       // substr addr
 10030       push(str1);       // string addr
 10031     } else {
 10032       // Small (< 8 chars) constant substrings are loaded already.
 10033       movl(cnt2, int_cnt2);
 10035     push(tmp);  // original SP
 10037   } // Finished loading
 10039   //========================================================
 10040   // Start search
 10041   //
 10043   movptr(result, str1); // string addr
 10045   if (int_cnt2  < 0) {  // Only for non constant substring
 10046     jmpb(SCAN_TO_SUBSTR);
 10048     // SP saved at sp+0
 10049     // String saved at sp+1*wordSize
 10050     // Substr saved at sp+2*wordSize
 10051     // Substr count saved at sp+3*wordSize
 10053     // Reload substr for rescan, this code
 10054     // is executed only for large substrings (> 8 chars)
 10055     bind(RELOAD_SUBSTR);
 10056     movptr(str2, Address(rsp, 2*wordSize));
 10057     movl(cnt2, Address(rsp, 3*wordSize));
 10058     movdqu(vec, Address(str2, 0));
 10059     // We came here after the beginning of the substring was
 10060     // matched but the rest of it was not so we need to search
 10061     // again. Start from the next element after the previous match.
 10062     subptr(str1, result); // Restore counter
 10063     shrl(str1, 1);
 10064     addl(cnt1, str1);
 10065     decrementl(cnt1);   // Shift to next element
 10066     cmpl(cnt1, cnt2);
 10067     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10069     addptr(result, 2);
 10070   } // non constant
 10072   // Scan string for start of substr in 16-byte vectors
 10073   bind(SCAN_TO_SUBSTR);
 10074   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10075   pcmpestri(vec, Address(result, 0), 0x0d);
 10076   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10077   subl(cnt1, 8);
 10078   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10079   cmpl(cnt1, cnt2);
 10080   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10081   addptr(result, 16);
 10083   bind(ADJUST_STR);
 10084   cmpl(cnt1, 8); // Do not read beyond string
 10085   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10086   // Back-up string to avoid reading beyond string.
 10087   lea(result, Address(result, cnt1, Address::times_2, -16));
 10088   movl(cnt1, 8);
 10089   jmpb(SCAN_TO_SUBSTR);
 10091   // Found a potential substr
 10092   bind(FOUND_CANDIDATE);
 10093   // After pcmpestri tmp(rcx) contains matched element index
 10095   // Make sure string is still long enough
 10096   subl(cnt1, tmp);
 10097   cmpl(cnt1, cnt2);
 10098   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
 10099   // Left less then substring.
 10101   bind(RET_NOT_FOUND);
 10102   movl(result, -1);
 10103   jmpb(CLEANUP);
 10105   bind(FOUND_SUBSTR);
 10106   // Compute start addr of substr
 10107   lea(result, Address(result, tmp, Address::times_2));
 10109   if (int_cnt2 > 0) { // Constant substring
 10110     // Repeat search for small substring (< 8 chars)
 10111     // from new point without reloading substring.
 10112     // Have to check that we don't read beyond string.
 10113     cmpl(tmp, 8-int_cnt2);
 10114     jccb(Assembler::greater, ADJUST_STR);
 10115     // Fall through if matched whole substring.
 10116   } else { // non constant
 10117     assert(int_cnt2 == -1, "should be != 0");
 10119     addl(tmp, cnt2);
 10120     // Found result if we matched whole substring.
 10121     cmpl(tmp, 8);
 10122     jccb(Assembler::lessEqual, RET_FOUND);
 10124     // Repeat search for small substring (<= 8 chars)
 10125     // from new point 'str1' without reloading substring.
 10126     cmpl(cnt2, 8);
 10127     // Have to check that we don't read beyond string.
 10128     jccb(Assembler::lessEqual, ADJUST_STR);
 10130     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
 10131     // Compare the rest of substring (> 8 chars).
 10132     movptr(str1, result);
 10134     cmpl(tmp, cnt2);
 10135     // First 8 chars are already matched.
 10136     jccb(Assembler::equal, CHECK_NEXT);
 10138     bind(SCAN_SUBSTR);
 10139     pcmpestri(vec, Address(str1, 0), 0x0d);
 10140     // Need to reload strings pointers if not matched whole vector
 10141     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10143     bind(CHECK_NEXT);
 10144     subl(cnt2, 8);
 10145     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
 10146     addptr(str1, 16);
 10147     addptr(str2, 16);
 10148     subl(cnt1, 8);
 10149     cmpl(cnt2, 8); // Do not read beyond substring
 10150     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
 10151     // Back-up strings to avoid reading beyond substring.
 10152     lea(str2, Address(str2, cnt2, Address::times_2, -16));
 10153     lea(str1, Address(str1, cnt2, Address::times_2, -16));
 10154     subl(cnt1, cnt2);
 10155     movl(cnt2, 8);
 10156     addl(cnt1, 8);
 10157     bind(CONT_SCAN_SUBSTR);
 10158     movdqu(vec, Address(str2, 0));
 10159     jmpb(SCAN_SUBSTR);
 10161     bind(RET_FOUND_LONG);
 10162     movptr(str1, Address(rsp, wordSize));
 10163   } // non constant
 10165   bind(RET_FOUND);
 10166   // Compute substr offset
 10167   subptr(result, str1);
 10168   shrl(result, 1); // index
 10170   bind(CLEANUP);
 10171   pop(rsp); // restore SP
 10173 } // string_indexof
 10175 // Compare strings.
 10176 void MacroAssembler::string_compare(Register str1, Register str2,
 10177                                     Register cnt1, Register cnt2, Register result,
 10178                                     XMMRegister vec1) {
 10179   ShortBranchVerifier sbv(this);
 10180   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
 10182   // Compute the minimum of the string lengths and the
 10183   // difference of the string lengths (stack).
 10184   // Do the conditional move stuff
 10185   movl(result, cnt1);
 10186   subl(cnt1, cnt2);
 10187   push(cnt1);
 10188   cmov32(Assembler::lessEqual, cnt2, result);
 10190   // Is the minimum length zero?
 10191   testl(cnt2, cnt2);
 10192   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10194   // Load first characters
 10195   load_unsigned_short(result, Address(str1, 0));
 10196   load_unsigned_short(cnt1, Address(str2, 0));
 10198   // Compare first characters
 10199   subl(result, cnt1);
 10200   jcc(Assembler::notZero,  POP_LABEL);
 10201   decrementl(cnt2);
 10202   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10205     // Check after comparing first character to see if strings are equivalent
 10206     Label LSkip2;
 10207     // Check if the strings start at same location
 10208     cmpptr(str1, str2);
 10209     jccb(Assembler::notEqual, LSkip2);
 10211     // Check if the length difference is zero (from stack)
 10212     cmpl(Address(rsp, 0), 0x0);
 10213     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
 10215     // Strings might not be equivalent
 10216     bind(LSkip2);
 10219   Address::ScaleFactor scale = Address::times_2;
 10220   int stride = 8;
 10222   // Advance to next element
 10223   addptr(str1, 16/stride);
 10224   addptr(str2, 16/stride);
 10226   if (UseSSE42Intrinsics) {
 10227     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
 10228     int pcmpmask = 0x19;
 10229     // Setup to compare 16-byte vectors
 10230     movl(result, cnt2);
 10231     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
 10232     jccb(Assembler::zero, COMPARE_TAIL);
 10234     lea(str1, Address(str1, result, scale));
 10235     lea(str2, Address(str2, result, scale));
 10236     negptr(result);
 10238     // pcmpestri
 10239     //   inputs:
 10240     //     vec1- substring
 10241     //     rax - negative string length (elements count)
 10242     //     mem - scaned string
 10243     //     rdx - string length (elements count)
 10244     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
 10245     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
 10246     //   outputs:
 10247     //     rcx - first mismatched element index
 10248     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
 10250     bind(COMPARE_WIDE_VECTORS);
 10251     movdqu(vec1, Address(str1, result, scale));
 10252     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10253     // After pcmpestri cnt1(rcx) contains mismatched element index
 10255     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
 10256     addptr(result, stride);
 10257     subptr(cnt2, stride);
 10258     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10260     // compare wide vectors tail
 10261     testl(result, result);
 10262     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
 10264     movl(cnt2, stride);
 10265     movl(result, stride);
 10266     negptr(result);
 10267     movdqu(vec1, Address(str1, result, scale));
 10268     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10269     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
 10271     // Mismatched characters in the vectors
 10272     bind(VECTOR_NOT_EQUAL);
 10273     addptr(result, cnt1);
 10274     movptr(cnt2, result);
 10275     load_unsigned_short(result, Address(str1, cnt2, scale));
 10276     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
 10277     subl(result, cnt1);
 10278     jmpb(POP_LABEL);
 10280     bind(COMPARE_TAIL); // limit is zero
 10281     movl(cnt2, result);
 10282     // Fallthru to tail compare
 10285   // Shift str2 and str1 to the end of the arrays, negate min
 10286   lea(str1, Address(str1, cnt2, scale, 0));
 10287   lea(str2, Address(str2, cnt2, scale, 0));
 10288   negptr(cnt2);
 10290   // Compare the rest of the elements
 10291   bind(WHILE_HEAD_LABEL);
 10292   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
 10293   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
 10294   subl(result, cnt1);
 10295   jccb(Assembler::notZero, POP_LABEL);
 10296   increment(cnt2);
 10297   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
 10299   // Strings are equal up to min length.  Return the length difference.
 10300   bind(LENGTH_DIFF_LABEL);
 10301   pop(result);
 10302   jmpb(DONE_LABEL);
 10304   // Discard the stored length difference
 10305   bind(POP_LABEL);
 10306   pop(cnt1);
 10308   // That's it
 10309   bind(DONE_LABEL);
 10312 // Compare char[] arrays aligned to 4 bytes or substrings.
 10313 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
 10314                                         Register limit, Register result, Register chr,
 10315                                         XMMRegister vec1, XMMRegister vec2) {
 10316   ShortBranchVerifier sbv(this);
 10317   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
 10319   int length_offset  = arrayOopDesc::length_offset_in_bytes();
 10320   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
 10322   // Check the input args
 10323   cmpptr(ary1, ary2);
 10324   jcc(Assembler::equal, TRUE_LABEL);
 10326   if (is_array_equ) {
 10327     // Need additional checks for arrays_equals.
 10328     testptr(ary1, ary1);
 10329     jcc(Assembler::zero, FALSE_LABEL);
 10330     testptr(ary2, ary2);
 10331     jcc(Assembler::zero, FALSE_LABEL);
 10333     // Check the lengths
 10334     movl(limit, Address(ary1, length_offset));
 10335     cmpl(limit, Address(ary2, length_offset));
 10336     jcc(Assembler::notEqual, FALSE_LABEL);
 10339   // count == 0
 10340   testl(limit, limit);
 10341   jcc(Assembler::zero, TRUE_LABEL);
 10343   if (is_array_equ) {
 10344     // Load array address
 10345     lea(ary1, Address(ary1, base_offset));
 10346     lea(ary2, Address(ary2, base_offset));
 10349   shll(limit, 1);      // byte count != 0
 10350   movl(result, limit); // copy
 10352   if (UseSSE42Intrinsics) {
 10353     // With SSE4.2, use double quad vector compare
 10354     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
 10356     // Compare 16-byte vectors
 10357     andl(result, 0x0000000e);  //   tail count (in bytes)
 10358     andl(limit, 0xfffffff0);   // vector count (in bytes)
 10359     jccb(Assembler::zero, COMPARE_TAIL);
 10361     lea(ary1, Address(ary1, limit, Address::times_1));
 10362     lea(ary2, Address(ary2, limit, Address::times_1));
 10363     negptr(limit);
 10365     bind(COMPARE_WIDE_VECTORS);
 10366     movdqu(vec1, Address(ary1, limit, Address::times_1));
 10367     movdqu(vec2, Address(ary2, limit, Address::times_1));
 10368     pxor(vec1, vec2);
 10370     ptest(vec1, vec1);
 10371     jccb(Assembler::notZero, FALSE_LABEL);
 10372     addptr(limit, 16);
 10373     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10375     testl(result, result);
 10376     jccb(Assembler::zero, TRUE_LABEL);
 10378     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 10379     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 10380     pxor(vec1, vec2);
 10382     ptest(vec1, vec1);
 10383     jccb(Assembler::notZero, FALSE_LABEL);
 10384     jmpb(TRUE_LABEL);
 10386     bind(COMPARE_TAIL); // limit is zero
 10387     movl(limit, result);
 10388     // Fallthru to tail compare
 10391   // Compare 4-byte vectors
 10392   andl(limit, 0xfffffffc); // vector count (in bytes)
 10393   jccb(Assembler::zero, COMPARE_CHAR);
 10395   lea(ary1, Address(ary1, limit, Address::times_1));
 10396   lea(ary2, Address(ary2, limit, Address::times_1));
 10397   negptr(limit);
 10399   bind(COMPARE_VECTORS);
 10400   movl(chr, Address(ary1, limit, Address::times_1));
 10401   cmpl(chr, Address(ary2, limit, Address::times_1));
 10402   jccb(Assembler::notEqual, FALSE_LABEL);
 10403   addptr(limit, 4);
 10404   jcc(Assembler::notZero, COMPARE_VECTORS);
 10406   // Compare trailing char (final 2 bytes), if any
 10407   bind(COMPARE_CHAR);
 10408   testl(result, 0x2);   // tail  char
 10409   jccb(Assembler::zero, TRUE_LABEL);
 10410   load_unsigned_short(chr, Address(ary1, 0));
 10411   load_unsigned_short(limit, Address(ary2, 0));
 10412   cmpl(chr, limit);
 10413   jccb(Assembler::notEqual, FALSE_LABEL);
 10415   bind(TRUE_LABEL);
 10416   movl(result, 1);   // return true
 10417   jmpb(DONE);
 10419   bind(FALSE_LABEL);
 10420   xorl(result, result); // return false
 10422   // That's it
 10423   bind(DONE);
 10426 #ifdef PRODUCT
 10427 #define BLOCK_COMMENT(str) /* nothing */
 10428 #else
 10429 #define BLOCK_COMMENT(str) block_comment(str)
 10430 #endif
 10432 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
 10433 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 10434                                    Register to, Register value, Register count,
 10435                                    Register rtmp, XMMRegister xtmp) {
 10436   ShortBranchVerifier sbv(this);
 10437   assert_different_registers(to, value, count, rtmp);
 10438   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 10439   Label L_fill_2_bytes, L_fill_4_bytes;
 10441   int shift = -1;
 10442   switch (t) {
 10443     case T_BYTE:
 10444       shift = 2;
 10445       break;
 10446     case T_SHORT:
 10447       shift = 1;
 10448       break;
 10449     case T_INT:
 10450       shift = 0;
 10451       break;
 10452     default: ShouldNotReachHere();
 10455   if (t == T_BYTE) {
 10456     andl(value, 0xff);
 10457     movl(rtmp, value);
 10458     shll(rtmp, 8);
 10459     orl(value, rtmp);
 10461   if (t == T_SHORT) {
 10462     andl(value, 0xffff);
 10464   if (t == T_BYTE || t == T_SHORT) {
 10465     movl(rtmp, value);
 10466     shll(rtmp, 16);
 10467     orl(value, rtmp);
 10470   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 10471   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 10472   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 10473     // align source address at 4 bytes address boundary
 10474     if (t == T_BYTE) {
 10475       // One byte misalignment happens only for byte arrays
 10476       testptr(to, 1);
 10477       jccb(Assembler::zero, L_skip_align1);
 10478       movb(Address(to, 0), value);
 10479       increment(to);
 10480       decrement(count);
 10481       BIND(L_skip_align1);
 10483     // Two bytes misalignment happens only for byte and short (char) arrays
 10484     testptr(to, 2);
 10485     jccb(Assembler::zero, L_skip_align2);
 10486     movw(Address(to, 0), value);
 10487     addptr(to, 2);
 10488     subl(count, 1<<(shift-1));
 10489     BIND(L_skip_align2);
 10491   if (UseSSE < 2) {
 10492     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10493     // Fill 32-byte chunks
 10494     subl(count, 8 << shift);
 10495     jcc(Assembler::less, L_check_fill_8_bytes);
 10496     align(16);
 10498     BIND(L_fill_32_bytes_loop);
 10500     for (int i = 0; i < 32; i += 4) {
 10501       movl(Address(to, i), value);
 10504     addptr(to, 32);
 10505     subl(count, 8 << shift);
 10506     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10507     BIND(L_check_fill_8_bytes);
 10508     addl(count, 8 << shift);
 10509     jccb(Assembler::zero, L_exit);
 10510     jmpb(L_fill_8_bytes);
 10512     //
 10513     // length is too short, just fill qwords
 10514     //
 10515     BIND(L_fill_8_bytes_loop);
 10516     movl(Address(to, 0), value);
 10517     movl(Address(to, 4), value);
 10518     addptr(to, 8);
 10519     BIND(L_fill_8_bytes);
 10520     subl(count, 1 << (shift + 1));
 10521     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10522     // fall through to fill 4 bytes
 10523   } else {
 10524     Label L_fill_32_bytes;
 10525     if (!UseUnalignedLoadStores) {
 10526       // align to 8 bytes, we know we are 4 byte aligned to start
 10527       testptr(to, 4);
 10528       jccb(Assembler::zero, L_fill_32_bytes);
 10529       movl(Address(to, 0), value);
 10530       addptr(to, 4);
 10531       subl(count, 1<<shift);
 10533     BIND(L_fill_32_bytes);
 10535       assert( UseSSE >= 2, "supported cpu only" );
 10536       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10537       // Fill 32-byte chunks
 10538       movdl(xtmp, value);
 10539       pshufd(xtmp, xtmp, 0);
 10541       subl(count, 8 << shift);
 10542       jcc(Assembler::less, L_check_fill_8_bytes);
 10543       align(16);
 10545       BIND(L_fill_32_bytes_loop);
 10547       if (UseUnalignedLoadStores) {
 10548         movdqu(Address(to, 0), xtmp);
 10549         movdqu(Address(to, 16), xtmp);
 10550       } else {
 10551         movq(Address(to, 0), xtmp);
 10552         movq(Address(to, 8), xtmp);
 10553         movq(Address(to, 16), xtmp);
 10554         movq(Address(to, 24), xtmp);
 10557       addptr(to, 32);
 10558       subl(count, 8 << shift);
 10559       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10560       BIND(L_check_fill_8_bytes);
 10561       addl(count, 8 << shift);
 10562       jccb(Assembler::zero, L_exit);
 10563       jmpb(L_fill_8_bytes);
 10565       //
 10566       // length is too short, just fill qwords
 10567       //
 10568       BIND(L_fill_8_bytes_loop);
 10569       movq(Address(to, 0), xtmp);
 10570       addptr(to, 8);
 10571       BIND(L_fill_8_bytes);
 10572       subl(count, 1 << (shift + 1));
 10573       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10576   // fill trailing 4 bytes
 10577   BIND(L_fill_4_bytes);
 10578   testl(count, 1<<shift);
 10579   jccb(Assembler::zero, L_fill_2_bytes);
 10580   movl(Address(to, 0), value);
 10581   if (t == T_BYTE || t == T_SHORT) {
 10582     addptr(to, 4);
 10583     BIND(L_fill_2_bytes);
 10584     // fill trailing 2 bytes
 10585     testl(count, 1<<(shift-1));
 10586     jccb(Assembler::zero, L_fill_byte);
 10587     movw(Address(to, 0), value);
 10588     if (t == T_BYTE) {
 10589       addptr(to, 2);
 10590       BIND(L_fill_byte);
 10591       // fill trailing byte
 10592       testl(count, 1);
 10593       jccb(Assembler::zero, L_exit);
 10594       movb(Address(to, 0), value);
 10595     } else {
 10596       BIND(L_fill_byte);
 10598   } else {
 10599     BIND(L_fill_2_bytes);
 10601   BIND(L_exit);
 10603 #undef BIND
 10604 #undef BLOCK_COMMENT
 10607 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 10608   switch (cond) {
 10609     // Note some conditions are synonyms for others
 10610     case Assembler::zero:         return Assembler::notZero;
 10611     case Assembler::notZero:      return Assembler::zero;
 10612     case Assembler::less:         return Assembler::greaterEqual;
 10613     case Assembler::lessEqual:    return Assembler::greater;
 10614     case Assembler::greater:      return Assembler::lessEqual;
 10615     case Assembler::greaterEqual: return Assembler::less;
 10616     case Assembler::below:        return Assembler::aboveEqual;
 10617     case Assembler::belowEqual:   return Assembler::above;
 10618     case Assembler::above:        return Assembler::belowEqual;
 10619     case Assembler::aboveEqual:   return Assembler::below;
 10620     case Assembler::overflow:     return Assembler::noOverflow;
 10621     case Assembler::noOverflow:   return Assembler::overflow;
 10622     case Assembler::negative:     return Assembler::positive;
 10623     case Assembler::positive:     return Assembler::negative;
 10624     case Assembler::parity:       return Assembler::noParity;
 10625     case Assembler::noParity:     return Assembler::parity;
 10627   ShouldNotReachHere(); return Assembler::overflow;
 10630 SkipIfEqual::SkipIfEqual(
 10631     MacroAssembler* masm, const bool* flag_addr, bool value) {
 10632   _masm = masm;
 10633   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 10634   _masm->jcc(Assembler::equal, _label);
 10637 SkipIfEqual::~SkipIfEqual() {
 10638   _masm->bind(_label);

mercurial