src/share/vm/prims/jvmtiTagMap.cpp

Fri, 13 Jul 2012 20:14:27 -0400

author
jiangli
date
Fri, 13 Jul 2012 20:14:27 -0400
changeset 3921
e74da3c2b827
parent 3900
d2a62e0f25eb
child 3969
1d7922586cf6
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "jvmtifiles/jvmtiEnv.hpp"
    30 #include "oops/instanceMirrorKlass.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline2.hpp"
    33 #include "prims/jvmtiEventController.hpp"
    34 #include "prims/jvmtiEventController.inline.hpp"
    35 #include "prims/jvmtiExport.hpp"
    36 #include "prims/jvmtiImpl.hpp"
    37 #include "prims/jvmtiTagMap.hpp"
    38 #include "runtime/biasedLocking.hpp"
    39 #include "runtime/javaCalls.hpp"
    40 #include "runtime/jniHandles.hpp"
    41 #include "runtime/mutex.hpp"
    42 #include "runtime/mutexLocker.hpp"
    43 #include "runtime/reflectionUtils.hpp"
    44 #include "runtime/vframe.hpp"
    45 #include "runtime/vmThread.hpp"
    46 #include "runtime/vm_operations.hpp"
    47 #include "services/serviceUtil.hpp"
    48 #ifndef SERIALGC
    49 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    50 #endif
    52 // JvmtiTagHashmapEntry
    53 //
    54 // Each entry encapsulates a reference to the tagged object
    55 // and the tag value. In addition an entry includes a next pointer which
    56 // is used to chain entries together.
    58 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
    59  private:
    60   friend class JvmtiTagMap;
    62   oop _object;                          // tagged object
    63   jlong _tag;                           // the tag
    64   JvmtiTagHashmapEntry* _next;          // next on the list
    66   inline void init(oop object, jlong tag) {
    67     _object = object;
    68     _tag = tag;
    69     _next = NULL;
    70   }
    72   // constructor
    73   JvmtiTagHashmapEntry(oop object, jlong tag)         { init(object, tag); }
    75  public:
    77   // accessor methods
    78   inline oop object() const                           { return _object; }
    79   inline oop* object_addr()                           { return &_object; }
    80   inline jlong tag() const                            { return _tag; }
    82   inline void set_tag(jlong tag) {
    83     assert(tag != 0, "can't be zero");
    84     _tag = tag;
    85   }
    87   inline JvmtiTagHashmapEntry* next() const             { return _next; }
    88   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
    89 };
    92 // JvmtiTagHashmap
    93 //
    94 // A hashmap is essentially a table of pointers to entries. Entries
    95 // are hashed to a location, or position in the table, and then
    96 // chained from that location. The "key" for hashing is address of
    97 // the object, or oop. The "value" is the tag value.
    98 //
    99 // A hashmap maintains a count of the number entries in the hashmap
   100 // and resizes if the number of entries exceeds a given threshold.
   101 // The threshold is specified as a percentage of the size - for
   102 // example a threshold of 0.75 will trigger the hashmap to resize
   103 // if the number of entries is >75% of table size.
   104 //
   105 // A hashmap provides functions for adding, removing, and finding
   106 // entries. It also provides a function to iterate over all entries
   107 // in the hashmap.
   109 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
   110  private:
   111   friend class JvmtiTagMap;
   113   enum {
   114     small_trace_threshold  = 10000,                  // threshold for tracing
   115     medium_trace_threshold = 100000,
   116     large_trace_threshold  = 1000000,
   117     initial_trace_threshold = small_trace_threshold
   118   };
   120   static int _sizes[];                  // array of possible hashmap sizes
   121   int _size;                            // actual size of the table
   122   int _size_index;                      // index into size table
   124   int _entry_count;                     // number of entries in the hashmap
   126   float _load_factor;                   // load factor as a % of the size
   127   int _resize_threshold;                // computed threshold to trigger resizing.
   128   bool _resizing_enabled;               // indicates if hashmap can resize
   130   int _trace_threshold;                 // threshold for trace messages
   132   JvmtiTagHashmapEntry** _table;        // the table of entries.
   134   // private accessors
   135   int resize_threshold() const                  { return _resize_threshold; }
   136   int trace_threshold() const                   { return _trace_threshold; }
   138   // initialize the hashmap
   139   void init(int size_index=0, float load_factor=4.0f) {
   140     int initial_size =  _sizes[size_index];
   141     _size_index = size_index;
   142     _size = initial_size;
   143     _entry_count = 0;
   144     if (TraceJVMTIObjectTagging) {
   145       _trace_threshold = initial_trace_threshold;
   146     } else {
   147       _trace_threshold = -1;
   148     }
   149     _load_factor = load_factor;
   150     _resize_threshold = (int)(_load_factor * _size);
   151     _resizing_enabled = true;
   152     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
   153     _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
   154     if (_table == NULL) {
   155       vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
   156     }
   157     for (int i=0; i<initial_size; i++) {
   158       _table[i] = NULL;
   159     }
   160   }
   162   // hash a given key (oop) with the specified size
   163   static unsigned int hash(oop key, int size) {
   164     // shift right to get better distribution (as these bits will be zero
   165     // with aligned addresses)
   166     unsigned int addr = (unsigned int)((intptr_t)key);
   167 #ifdef _LP64
   168     return (addr >> 3) % size;
   169 #else
   170     return (addr >> 2) % size;
   171 #endif
   172   }
   174   // hash a given key (oop)
   175   unsigned int hash(oop key) {
   176     return hash(key, _size);
   177   }
   179   // resize the hashmap - allocates a large table and re-hashes
   180   // all entries into the new table.
   181   void resize() {
   182     int new_size_index = _size_index+1;
   183     int new_size = _sizes[new_size_index];
   184     if (new_size < 0) {
   185       // hashmap already at maximum capacity
   186       return;
   187     }
   189     // allocate new table
   190     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
   191     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
   192     if (new_table == NULL) {
   193       warning("unable to allocate larger hashtable for jvmti object tags");
   194       set_resizing_enabled(false);
   195       return;
   196     }
   198     // initialize new table
   199     int i;
   200     for (i=0; i<new_size; i++) {
   201       new_table[i] = NULL;
   202     }
   204     // rehash all entries into the new table
   205     for (i=0; i<_size; i++) {
   206       JvmtiTagHashmapEntry* entry = _table[i];
   207       while (entry != NULL) {
   208         JvmtiTagHashmapEntry* next = entry->next();
   209         oop key = entry->object();
   210         assert(key != NULL, "jni weak reference cleared!!");
   211         unsigned int h = hash(key, new_size);
   212         JvmtiTagHashmapEntry* anchor = new_table[h];
   213         if (anchor == NULL) {
   214           new_table[h] = entry;
   215           entry->set_next(NULL);
   216         } else {
   217           entry->set_next(anchor);
   218           new_table[h] = entry;
   219         }
   220         entry = next;
   221       }
   222     }
   224     // free old table and update settings.
   225     os::free((void*)_table);
   226     _table = new_table;
   227     _size_index = new_size_index;
   228     _size = new_size;
   230     // compute new resize threshold
   231     _resize_threshold = (int)(_load_factor * _size);
   232   }
   235   // internal remove function - remove an entry at a given position in the
   236   // table.
   237   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
   238     assert(pos >= 0 && pos < _size, "out of range");
   239     if (prev == NULL) {
   240       _table[pos] = entry->next();
   241     } else {
   242       prev->set_next(entry->next());
   243     }
   244     assert(_entry_count > 0, "checking");
   245     _entry_count--;
   246   }
   248   // resizing switch
   249   bool is_resizing_enabled() const          { return _resizing_enabled; }
   250   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
   252   // debugging
   253   void print_memory_usage();
   254   void compute_next_trace_threshold();
   256  public:
   258   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
   259   // The preferred size is rounded down to an actual size.
   260   JvmtiTagHashmap(int size, float load_factor=0.0f) {
   261     int i=0;
   262     while (_sizes[i] < size) {
   263       if (_sizes[i] < 0) {
   264         assert(i > 0, "sanity check");
   265         i--;
   266         break;
   267       }
   268       i++;
   269     }
   271     // if a load factor is specified then use it, otherwise use default
   272     if (load_factor > 0.01f) {
   273       init(i, load_factor);
   274     } else {
   275       init(i);
   276     }
   277   }
   279   // create a JvmtiTagHashmap with default settings
   280   JvmtiTagHashmap() {
   281     init();
   282   }
   284   // release table when JvmtiTagHashmap destroyed
   285   ~JvmtiTagHashmap() {
   286     if (_table != NULL) {
   287       os::free((void*)_table);
   288       _table = NULL;
   289     }
   290   }
   292   // accessors
   293   int size() const                              { return _size; }
   294   JvmtiTagHashmapEntry** table() const          { return _table; }
   295   int entry_count() const                       { return _entry_count; }
   297   // find an entry in the hashmap, returns NULL if not found.
   298   inline JvmtiTagHashmapEntry* find(oop key) {
   299     unsigned int h = hash(key);
   300     JvmtiTagHashmapEntry* entry = _table[h];
   301     while (entry != NULL) {
   302       if (entry->object() == key) {
   303          return entry;
   304       }
   305       entry = entry->next();
   306     }
   307     return NULL;
   308   }
   311   // add a new entry to hashmap
   312   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
   313     assert(key != NULL, "checking");
   314     assert(find(key) == NULL, "duplicate detected");
   315     unsigned int h = hash(key);
   316     JvmtiTagHashmapEntry* anchor = _table[h];
   317     if (anchor == NULL) {
   318       _table[h] = entry;
   319       entry->set_next(NULL);
   320     } else {
   321       entry->set_next(anchor);
   322       _table[h] = entry;
   323     }
   325     _entry_count++;
   326     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
   327       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
   328       print_memory_usage();
   329       compute_next_trace_threshold();
   330     }
   332     // if the number of entries exceed the threshold then resize
   333     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
   334       resize();
   335     }
   336   }
   338   // remove an entry with the given key.
   339   inline JvmtiTagHashmapEntry* remove(oop key) {
   340     unsigned int h = hash(key);
   341     JvmtiTagHashmapEntry* entry = _table[h];
   342     JvmtiTagHashmapEntry* prev = NULL;
   343     while (entry != NULL) {
   344       if (key == entry->object()) {
   345         break;
   346       }
   347       prev = entry;
   348       entry = entry->next();
   349     }
   350     if (entry != NULL) {
   351       remove(prev, h, entry);
   352     }
   353     return entry;
   354   }
   356   // iterate over all entries in the hashmap
   357   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
   358 };
   360 // possible hashmap sizes - odd primes that roughly double in size.
   361 // To avoid excessive resizing the odd primes from 4801-76831 and
   362 // 76831-307261 have been removed. The list must be terminated by -1.
   363 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
   364     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
   367 // A supporting class for iterating over all entries in Hashmap
   368 class JvmtiTagHashmapEntryClosure {
   369  public:
   370   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
   371 };
   374 // iterate over all entries in the hashmap
   375 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   376   for (int i=0; i<_size; i++) {
   377     JvmtiTagHashmapEntry* entry = _table[i];
   378     JvmtiTagHashmapEntry* prev = NULL;
   379     while (entry != NULL) {
   380       // obtain the next entry before invoking do_entry - this is
   381       // necessary because do_entry may remove the entry from the
   382       // hashmap.
   383       JvmtiTagHashmapEntry* next = entry->next();
   384       closure->do_entry(entry);
   385       entry = next;
   386      }
   387   }
   388 }
   390 // debugging
   391 void JvmtiTagHashmap::print_memory_usage() {
   392   intptr_t p = (intptr_t)this;
   393   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
   395   // table + entries in KB
   396   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
   397     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
   399   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
   400   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
   401     entry_count(), hashmap_usage, weak_globals_usage);
   402 }
   404 // compute threshold for the next trace message
   405 void JvmtiTagHashmap::compute_next_trace_threshold() {
   406   if (trace_threshold() < medium_trace_threshold) {
   407     _trace_threshold += small_trace_threshold;
   408   } else {
   409     if (trace_threshold() < large_trace_threshold) {
   410       _trace_threshold += medium_trace_threshold;
   411     } else {
   412       _trace_threshold += large_trace_threshold;
   413     }
   414   }
   415 }
   417 // create a JvmtiTagMap
   418 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
   419   _env(env),
   420   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
   421   _free_entries(NULL),
   422   _free_entries_count(0)
   423 {
   424   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
   425   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
   427   _hashmap = new JvmtiTagHashmap();
   429   // finally add us to the environment
   430   ((JvmtiEnvBase *)env)->set_tag_map(this);
   431 }
   434 // destroy a JvmtiTagMap
   435 JvmtiTagMap::~JvmtiTagMap() {
   437   // no lock acquired as we assume the enclosing environment is
   438   // also being destroryed.
   439   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
   441   JvmtiTagHashmapEntry** table = _hashmap->table();
   442   for (int j = 0; j < _hashmap->size(); j++) {
   443     JvmtiTagHashmapEntry* entry = table[j];
   444     while (entry != NULL) {
   445       JvmtiTagHashmapEntry* next = entry->next();
   446       delete entry;
   447       entry = next;
   448     }
   449   }
   451   // finally destroy the hashmap
   452   delete _hashmap;
   453   _hashmap = NULL;
   455   // remove any entries on the free list
   456   JvmtiTagHashmapEntry* entry = _free_entries;
   457   while (entry != NULL) {
   458     JvmtiTagHashmapEntry* next = entry->next();
   459     delete entry;
   460     entry = next;
   461   }
   462   _free_entries = NULL;
   463 }
   465 // create a hashmap entry
   466 // - if there's an entry on the (per-environment) free list then this
   467 // is returned. Otherwise an new entry is allocated.
   468 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
   469   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
   470   JvmtiTagHashmapEntry* entry;
   471   if (_free_entries == NULL) {
   472     entry = new JvmtiTagHashmapEntry(ref, tag);
   473   } else {
   474     assert(_free_entries_count > 0, "mismatched _free_entries_count");
   475     _free_entries_count--;
   476     entry = _free_entries;
   477     _free_entries = entry->next();
   478     entry->init(ref, tag);
   479   }
   480   return entry;
   481 }
   483 // destroy an entry by returning it to the free list
   484 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
   485   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   486   // limit the size of the free list
   487   if (_free_entries_count >= max_free_entries) {
   488     delete entry;
   489   } else {
   490     entry->set_next(_free_entries);
   491     _free_entries = entry;
   492     _free_entries_count++;
   493   }
   494 }
   496 // returns the tag map for the given environments. If the tag map
   497 // doesn't exist then it is created.
   498 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
   499   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
   500   if (tag_map == NULL) {
   501     MutexLocker mu(JvmtiThreadState_lock);
   502     tag_map = ((JvmtiEnvBase*)env)->tag_map();
   503     if (tag_map == NULL) {
   504       tag_map = new JvmtiTagMap(env);
   505     }
   506   } else {
   507     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
   508   }
   509   return tag_map;
   510 }
   512 // iterate over all entries in the tag map.
   513 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   514   hashmap()->entry_iterate(closure);
   515 }
   517 // returns true if the hashmaps are empty
   518 bool JvmtiTagMap::is_empty() {
   519   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   520   return hashmap()->entry_count() == 0;
   521 }
   524 // Return the tag value for an object, or 0 if the object is
   525 // not tagged
   526 //
   527 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
   528   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
   529   if (entry == NULL) {
   530     return 0;
   531   } else {
   532     return entry->tag();
   533   }
   534 }
   536 // If the object is a java.lang.Class then return the klassOop,
   537 // otherwise return the original object
   538 static inline oop klassOop_if_java_lang_Class(oop o) {
   539   if (o->klass() == SystemDictionary::Class_klass()) {
   540     if (!java_lang_Class::is_primitive(o)) {
   541       o = (oop)java_lang_Class::as_klassOop(o);
   542       assert(o != NULL, "class for non-primitive mirror must exist");
   543     }
   544   }
   545   return o;
   546 }
   548 // A CallbackWrapper is a support class for querying and tagging an object
   549 // around a callback to a profiler. The constructor does pre-callback
   550 // work to get the tag value, klass tag value, ... and the destructor
   551 // does the post-callback work of tagging or untagging the object.
   552 //
   553 // {
   554 //   CallbackWrapper wrapper(tag_map, o);
   555 //
   556 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
   557 //
   558 // } // wrapper goes out of scope here which results in the destructor
   559 //      checking to see if the object has been tagged, untagged, or the
   560 //      tag value has changed.
   561 //
   562 class CallbackWrapper : public StackObj {
   563  private:
   564   JvmtiTagMap* _tag_map;
   565   JvmtiTagHashmap* _hashmap;
   566   JvmtiTagHashmapEntry* _entry;
   567   oop _o;
   568   jlong _obj_size;
   569   jlong _obj_tag;
   570   klassOop _klass;         // the object's class
   571   jlong _klass_tag;
   573  protected:
   574   JvmtiTagMap* tag_map() const      { return _tag_map; }
   576   // invoked post-callback to tag, untag, or update the tag of an object
   577   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
   578                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
   579  public:
   580   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
   581     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
   582            "MT unsafe or must be VM thread");
   584     // for Classes the klassOop is tagged
   585     _o = klassOop_if_java_lang_Class(o);
   587     // object size
   588     _obj_size = (jlong)_o->size() * wordSize;
   590     // record the context
   591     _tag_map = tag_map;
   592     _hashmap = tag_map->hashmap();
   593     _entry = _hashmap->find(_o);
   595     // get object tag
   596     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
   598     // get the class and the class's tag value
   599     if (_o == o) {
   600       _klass = _o->klass();
   601     } else {
   602       // if the object represents a runtime class then use the
   603       // tag for java.lang.Class
   604       _klass = SystemDictionary::Class_klass();
   605     }
   606     _klass_tag = tag_for(tag_map, _klass);
   607   }
   609   ~CallbackWrapper() {
   610     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
   611   }
   613   inline jlong* obj_tag_p()                     { return &_obj_tag; }
   614   inline jlong obj_size() const                 { return _obj_size; }
   615   inline jlong obj_tag() const                  { return _obj_tag; }
   616   inline klassOop klass() const                 { return _klass; }
   617   inline jlong klass_tag() const                { return _klass_tag; }
   618 };
   622 // callback post-callback to tag, untag, or update the tag of an object
   623 void inline CallbackWrapper::post_callback_tag_update(oop o,
   624                                                       JvmtiTagHashmap* hashmap,
   625                                                       JvmtiTagHashmapEntry* entry,
   626                                                       jlong obj_tag) {
   627   if (entry == NULL) {
   628     if (obj_tag != 0) {
   629       // callback has tagged the object
   630       assert(Thread::current()->is_VM_thread(), "must be VMThread");
   631       entry = tag_map()->create_entry(o, obj_tag);
   632       hashmap->add(o, entry);
   633     }
   634   } else {
   635     // object was previously tagged - the callback may have untagged
   636     // the object or changed the tag value
   637     if (obj_tag == 0) {
   639       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
   640       assert(entry_removed == entry, "checking");
   641       tag_map()->destroy_entry(entry);
   643     } else {
   644       if (obj_tag != entry->tag()) {
   645          entry->set_tag(obj_tag);
   646       }
   647     }
   648   }
   649 }
   651 // An extended CallbackWrapper used when reporting an object reference
   652 // to the agent.
   653 //
   654 // {
   655 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
   656 //
   657 //   (*callback)(wrapper.klass_tag(),
   658 //               wrapper.obj_size(),
   659 //               wrapper.obj_tag_p()
   660 //               wrapper.referrer_tag_p(), ...)
   661 //
   662 // } // wrapper goes out of scope here which results in the destructor
   663 //      checking to see if the referrer object has been tagged, untagged,
   664 //      or the tag value has changed.
   665 //
   666 class TwoOopCallbackWrapper : public CallbackWrapper {
   667  private:
   668   bool _is_reference_to_self;
   669   JvmtiTagHashmap* _referrer_hashmap;
   670   JvmtiTagHashmapEntry* _referrer_entry;
   671   oop _referrer;
   672   jlong _referrer_obj_tag;
   673   jlong _referrer_klass_tag;
   674   jlong* _referrer_tag_p;
   676   bool is_reference_to_self() const             { return _is_reference_to_self; }
   678  public:
   679   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
   680     CallbackWrapper(tag_map, o)
   681   {
   682     // self reference needs to be handled in a special way
   683     _is_reference_to_self = (referrer == o);
   685     if (_is_reference_to_self) {
   686       _referrer_klass_tag = klass_tag();
   687       _referrer_tag_p = obj_tag_p();
   688     } else {
   689       // for Classes the klassOop is tagged
   690       _referrer = klassOop_if_java_lang_Class(referrer);
   691       // record the context
   692       _referrer_hashmap = tag_map->hashmap();
   693       _referrer_entry = _referrer_hashmap->find(_referrer);
   695       // get object tag
   696       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
   697       _referrer_tag_p = &_referrer_obj_tag;
   699       // get referrer class tag.
   700       klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
   701           _referrer->klass()                  // No, just get its class
   702          : SystemDictionary::Class_klass();   // Yes, its class is Class
   703       _referrer_klass_tag = tag_for(tag_map, k);
   704     }
   705   }
   707   ~TwoOopCallbackWrapper() {
   708     if (!is_reference_to_self()){
   709       post_callback_tag_update(_referrer,
   710                                _referrer_hashmap,
   711                                _referrer_entry,
   712                                _referrer_obj_tag);
   713     }
   714   }
   716   // address of referrer tag
   717   // (for a self reference this will return the same thing as obj_tag_p())
   718   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
   720   // referrer's class tag
   721   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
   722 };
   724 // tag an object
   725 //
   726 // This function is performance critical. If many threads attempt to tag objects
   727 // around the same time then it's possible that the Mutex associated with the
   728 // tag map will be a hot lock.
   729 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
   730   MutexLocker ml(lock());
   732   // resolve the object
   733   oop o = JNIHandles::resolve_non_null(object);
   735   // for Classes we tag the klassOop
   736   o = klassOop_if_java_lang_Class(o);
   738   // see if the object is already tagged
   739   JvmtiTagHashmap* hashmap = _hashmap;
   740   JvmtiTagHashmapEntry* entry = hashmap->find(o);
   742   // if the object is not already tagged then we tag it
   743   if (entry == NULL) {
   744     if (tag != 0) {
   745       entry = create_entry(o, tag);
   746       hashmap->add(o, entry);
   747     } else {
   748       // no-op
   749     }
   750   } else {
   751     // if the object is already tagged then we either update
   752     // the tag (if a new tag value has been provided)
   753     // or remove the object if the new tag value is 0.
   754     if (tag == 0) {
   755       hashmap->remove(o);
   756       destroy_entry(entry);
   757     } else {
   758       entry->set_tag(tag);
   759     }
   760   }
   761 }
   763 // get the tag for an object
   764 jlong JvmtiTagMap::get_tag(jobject object) {
   765   MutexLocker ml(lock());
   767   // resolve the object
   768   oop o = JNIHandles::resolve_non_null(object);
   770   // for Classes get the tag from the klassOop
   771   return tag_for(this, klassOop_if_java_lang_Class(o));
   772 }
   775 // Helper class used to describe the static or instance fields of a class.
   776 // For each field it holds the field index (as defined by the JVMTI specification),
   777 // the field type, and the offset.
   779 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
   780  private:
   781   int _field_index;
   782   int _field_offset;
   783   char _field_type;
   784  public:
   785   ClassFieldDescriptor(int index, char type, int offset) :
   786     _field_index(index), _field_type(type), _field_offset(offset) {
   787   }
   788   int field_index()  const  { return _field_index; }
   789   char field_type()  const  { return _field_type; }
   790   int field_offset() const  { return _field_offset; }
   791 };
   793 class ClassFieldMap: public CHeapObj<mtInternal> {
   794  private:
   795   enum {
   796     initial_field_count = 5
   797   };
   799   // list of field descriptors
   800   GrowableArray<ClassFieldDescriptor*>* _fields;
   802   // constructor
   803   ClassFieldMap();
   805   // add a field
   806   void add(int index, char type, int offset);
   808   // returns the field count for the given class
   809   static int compute_field_count(instanceKlassHandle ikh);
   811  public:
   812   ~ClassFieldMap();
   814   // access
   815   int field_count()                     { return _fields->length(); }
   816   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
   818   // functions to create maps of static or instance fields
   819   static ClassFieldMap* create_map_of_static_fields(klassOop k);
   820   static ClassFieldMap* create_map_of_instance_fields(oop obj);
   821 };
   823 ClassFieldMap::ClassFieldMap() {
   824   _fields = new (ResourceObj::C_HEAP, mtInternal)
   825     GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
   826 }
   828 ClassFieldMap::~ClassFieldMap() {
   829   for (int i=0; i<_fields->length(); i++) {
   830     delete _fields->at(i);
   831   }
   832   delete _fields;
   833 }
   835 void ClassFieldMap::add(int index, char type, int offset) {
   836   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
   837   _fields->append(field);
   838 }
   840 // Returns a heap allocated ClassFieldMap to describe the static fields
   841 // of the given class.
   842 //
   843 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
   844   HandleMark hm;
   845   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
   847   // create the field map
   848   ClassFieldMap* field_map = new ClassFieldMap();
   850   FilteredFieldStream f(ikh, false, false);
   851   int max_field_index = f.field_count()-1;
   853   int index = 0;
   854   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
   855     // ignore instance fields
   856     if (!fld.access_flags().is_static()) {
   857       continue;
   858     }
   859     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   860   }
   861   return field_map;
   862 }
   864 // Returns a heap allocated ClassFieldMap to describe the instance fields
   865 // of the given class. All instance fields are included (this means public
   866 // and private fields declared in superclasses and superinterfaces too).
   867 //
   868 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
   869   HandleMark hm;
   870   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
   872   // create the field map
   873   ClassFieldMap* field_map = new ClassFieldMap();
   875   FilteredFieldStream f(ikh, false, false);
   877   int max_field_index = f.field_count()-1;
   879   int index = 0;
   880   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
   881     // ignore static fields
   882     if (fld.access_flags().is_static()) {
   883       continue;
   884     }
   885     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   886   }
   888   return field_map;
   889 }
   891 // Helper class used to cache a ClassFileMap for the instance fields of
   892 // a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
   893 // heap iteration and avoid creating a field map for each object in the heap
   894 // (only need to create the map when the first instance of a class is encountered).
   895 //
   896 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
   897  private:
   898    enum {
   899      initial_class_count = 200
   900    };
   901   ClassFieldMap* _field_map;
   903   ClassFieldMap* field_map() const          { return _field_map; }
   905   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
   906   ~JvmtiCachedClassFieldMap();
   908   static GrowableArray<instanceKlass*>* _class_list;
   909   static void add_to_class_list(instanceKlass* ik);
   911  public:
   912   // returns the field map for a given object (returning map cached
   913   // by instanceKlass if possible
   914   static ClassFieldMap* get_map_of_instance_fields(oop obj);
   916   // removes the field map from all instanceKlasses - should be
   917   // called before VM operation completes
   918   static void clear_cache();
   920   // returns the number of ClassFieldMap cached by instanceKlasses
   921   static int cached_field_map_count();
   922 };
   924 GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
   926 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
   927   _field_map = field_map;
   928 }
   930 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
   931   if (_field_map != NULL) {
   932     delete _field_map;
   933   }
   934 }
   936 // Marker class to ensure that the class file map cache is only used in a defined
   937 // scope.
   938 class ClassFieldMapCacheMark : public StackObj {
   939  private:
   940    static bool _is_active;
   941  public:
   942    ClassFieldMapCacheMark() {
   943      assert(Thread::current()->is_VM_thread(), "must be VMThread");
   944      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
   945      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
   946      _is_active = true;
   947    }
   948    ~ClassFieldMapCacheMark() {
   949      JvmtiCachedClassFieldMap::clear_cache();
   950      _is_active = false;
   951    }
   952    static bool is_active() { return _is_active; }
   953 };
   955 bool ClassFieldMapCacheMark::_is_active;
   958 // record that the given instanceKlass is caching a field map
   959 void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
   960   if (_class_list == NULL) {
   961     _class_list = new (ResourceObj::C_HEAP, mtInternal)
   962       GrowableArray<instanceKlass*>(initial_class_count, true);
   963   }
   964   _class_list->push(ik);
   965 }
   967 // returns the instance field map for the given object
   968 // (returns field map cached by the instanceKlass if possible)
   969 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
   970   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   971   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
   973   klassOop k = obj->klass();
   974   instanceKlass* ik = instanceKlass::cast(k);
   976   // return cached map if possible
   977   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   978   if (cached_map != NULL) {
   979     assert(cached_map->field_map() != NULL, "missing field list");
   980     return cached_map->field_map();
   981   } else {
   982     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
   983     cached_map = new JvmtiCachedClassFieldMap(field_map);
   984     ik->set_jvmti_cached_class_field_map(cached_map);
   985     add_to_class_list(ik);
   986     return field_map;
   987   }
   988 }
   990 // remove the fields maps cached from all instanceKlasses
   991 void JvmtiCachedClassFieldMap::clear_cache() {
   992   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   993   if (_class_list != NULL) {
   994     for (int i = 0; i < _class_list->length(); i++) {
   995       instanceKlass* ik = _class_list->at(i);
   996       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   997       assert(cached_map != NULL, "should not be NULL");
   998       ik->set_jvmti_cached_class_field_map(NULL);
   999       delete cached_map;  // deletes the encapsulated field map
  1001     delete _class_list;
  1002     _class_list = NULL;
  1006 // returns the number of ClassFieldMap cached by instanceKlasses
  1007 int JvmtiCachedClassFieldMap::cached_field_map_count() {
  1008   return (_class_list == NULL) ? 0 : _class_list->length();
  1011 // helper function to indicate if an object is filtered by its tag or class tag
  1012 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
  1013                                               jlong klass_tag,
  1014                                               int heap_filter) {
  1015   // apply the heap filter
  1016   if (obj_tag != 0) {
  1017     // filter out tagged objects
  1018     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
  1019   } else {
  1020     // filter out untagged objects
  1021     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
  1023   if (klass_tag != 0) {
  1024     // filter out objects with tagged classes
  1025     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
  1026   } else {
  1027     // filter out objects with untagged classes.
  1028     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
  1030   return false;
  1033 // helper function to indicate if an object is filtered by a klass filter
  1034 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
  1035   if (!klass_filter.is_null()) {
  1036     if (obj->klass() != klass_filter()) {
  1037       return true;
  1040   return false;
  1043 // helper function to tell if a field is a primitive field or not
  1044 static inline bool is_primitive_field_type(char type) {
  1045   return (type != 'L' && type != '[');
  1048 // helper function to copy the value from location addr to jvalue.
  1049 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
  1050   switch (value_type) {
  1051     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
  1052     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
  1053     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
  1054     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
  1055     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
  1056     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
  1057     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
  1058     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
  1059     default: ShouldNotReachHere();
  1063 // helper function to invoke string primitive value callback
  1064 // returns visit control flags
  1065 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
  1066                                          CallbackWrapper* wrapper,
  1067                                          oop str,
  1068                                          void* user_data)
  1070   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  1072   // get the string value and length
  1073   // (string value may be offset from the base)
  1074   int s_len = java_lang_String::length(str);
  1075   typeArrayOop s_value = java_lang_String::value(str);
  1076   int s_offset = java_lang_String::offset(str);
  1077   jchar* value;
  1078   if (s_len > 0) {
  1079     value = s_value->char_at_addr(s_offset);
  1080   } else {
  1081     value = (jchar*) s_value->base(T_CHAR);
  1084   // invoke the callback
  1085   return (*cb)(wrapper->klass_tag(),
  1086                wrapper->obj_size(),
  1087                wrapper->obj_tag_p(),
  1088                value,
  1089                (jint)s_len,
  1090                user_data);
  1093 // helper function to invoke string primitive value callback
  1094 // returns visit control flags
  1095 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
  1096                                                   CallbackWrapper* wrapper,
  1097                                                   oop obj,
  1098                                                   void* user_data)
  1100   assert(obj->is_typeArray(), "not a primitive array");
  1102   // get base address of first element
  1103   typeArrayOop array = typeArrayOop(obj);
  1104   BasicType type = typeArrayKlass::cast(array->klass())->element_type();
  1105   void* elements = array->base(type);
  1107   // jvmtiPrimitiveType is defined so this mapping is always correct
  1108   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
  1110   return (*cb)(wrapper->klass_tag(),
  1111                wrapper->obj_size(),
  1112                wrapper->obj_tag_p(),
  1113                (jint)array->length(),
  1114                elem_type,
  1115                elements,
  1116                user_data);
  1119 // helper function to invoke the primitive field callback for all static fields
  1120 // of a given class
  1121 static jint invoke_primitive_field_callback_for_static_fields
  1122   (CallbackWrapper* wrapper,
  1123    oop obj,
  1124    jvmtiPrimitiveFieldCallback cb,
  1125    void* user_data)
  1127   // for static fields only the index will be set
  1128   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1130   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
  1131   if (java_lang_Class::is_primitive(obj)) {
  1132     return 0;
  1134   klassOop k = java_lang_Class::as_klassOop(obj);
  1135   Klass* klass = k->klass_part();
  1137   // ignore classes for object and type arrays
  1138   if (!klass->oop_is_instance()) {
  1139     return 0;
  1142   // ignore classes which aren't linked yet
  1143   instanceKlass* ik = instanceKlass::cast(k);
  1144   if (!ik->is_linked()) {
  1145     return 0;
  1148   // get the field map
  1149   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  1151   // invoke the callback for each static primitive field
  1152   for (int i=0; i<field_map->field_count(); i++) {
  1153     ClassFieldDescriptor* field = field_map->field_at(i);
  1155     // ignore non-primitive fields
  1156     char type = field->field_type();
  1157     if (!is_primitive_field_type(type)) {
  1158       continue;
  1160     // one-to-one mapping
  1161     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1163     // get offset and field value
  1164     int offset = field->field_offset();
  1165     address addr = (address)k + offset;
  1166     jvalue value;
  1167     copy_to_jvalue(&value, addr, value_type);
  1169     // field index
  1170     reference_info.field.index = field->field_index();
  1172     // invoke the callback
  1173     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  1174                      &reference_info,
  1175                      wrapper->klass_tag(),
  1176                      wrapper->obj_tag_p(),
  1177                      value,
  1178                      value_type,
  1179                      user_data);
  1180     if (res & JVMTI_VISIT_ABORT) {
  1181       delete field_map;
  1182       return res;
  1186   delete field_map;
  1187   return 0;
  1190 // helper function to invoke the primitive field callback for all instance fields
  1191 // of a given object
  1192 static jint invoke_primitive_field_callback_for_instance_fields(
  1193   CallbackWrapper* wrapper,
  1194   oop obj,
  1195   jvmtiPrimitiveFieldCallback cb,
  1196   void* user_data)
  1198   // for instance fields only the index will be set
  1199   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1201   // get the map of the instance fields
  1202   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
  1204   // invoke the callback for each instance primitive field
  1205   for (int i=0; i<fields->field_count(); i++) {
  1206     ClassFieldDescriptor* field = fields->field_at(i);
  1208     // ignore non-primitive fields
  1209     char type = field->field_type();
  1210     if (!is_primitive_field_type(type)) {
  1211       continue;
  1213     // one-to-one mapping
  1214     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1216     // get offset and field value
  1217     int offset = field->field_offset();
  1218     address addr = (address)obj + offset;
  1219     jvalue value;
  1220     copy_to_jvalue(&value, addr, value_type);
  1222     // field index
  1223     reference_info.field.index = field->field_index();
  1225     // invoke the callback
  1226     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
  1227                      &reference_info,
  1228                      wrapper->klass_tag(),
  1229                      wrapper->obj_tag_p(),
  1230                      value,
  1231                      value_type,
  1232                      user_data);
  1233     if (res & JVMTI_VISIT_ABORT) {
  1234       return res;
  1237   return 0;
  1241 // VM operation to iterate over all objects in the heap (both reachable
  1242 // and unreachable)
  1243 class VM_HeapIterateOperation: public VM_Operation {
  1244  private:
  1245   ObjectClosure* _blk;
  1246  public:
  1247   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
  1249   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
  1250   void doit() {
  1251     // allows class files maps to be cached during iteration
  1252     ClassFieldMapCacheMark cm;
  1254     // make sure that heap is parsable (fills TLABs with filler objects)
  1255     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1257     // Verify heap before iteration - if the heap gets corrupted then
  1258     // JVMTI's IterateOverHeap will crash.
  1259     if (VerifyBeforeIteration) {
  1260       Universe::verify();
  1263     // do the iteration
  1264     // If this operation encounters a bad object when using CMS,
  1265     // consider using safe_object_iterate() which avoids perm gen
  1266     // objects that may contain bad references.
  1267     Universe::heap()->object_iterate(_blk);
  1269     // when sharing is enabled we must iterate over the shared spaces
  1270     if (UseSharedSpaces) {
  1271       GenCollectedHeap* gch = GenCollectedHeap::heap();
  1272       CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1273       gen->ro_space()->object_iterate(_blk);
  1274       gen->rw_space()->object_iterate(_blk);
  1278 };
  1281 // An ObjectClosure used to support the deprecated IterateOverHeap and
  1282 // IterateOverInstancesOfClass functions
  1283 class IterateOverHeapObjectClosure: public ObjectClosure {
  1284  private:
  1285   JvmtiTagMap* _tag_map;
  1286   KlassHandle _klass;
  1287   jvmtiHeapObjectFilter _object_filter;
  1288   jvmtiHeapObjectCallback _heap_object_callback;
  1289   const void* _user_data;
  1291   // accessors
  1292   JvmtiTagMap* tag_map() const                    { return _tag_map; }
  1293   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
  1294   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
  1295   KlassHandle klass() const                       { return _klass; }
  1296   const void* user_data() const                   { return _user_data; }
  1298   // indicates if iteration has been aborted
  1299   bool _iteration_aborted;
  1300   bool is_iteration_aborted() const               { return _iteration_aborted; }
  1301   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
  1303  public:
  1304   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
  1305                                KlassHandle klass,
  1306                                jvmtiHeapObjectFilter object_filter,
  1307                                jvmtiHeapObjectCallback heap_object_callback,
  1308                                const void* user_data) :
  1309     _tag_map(tag_map),
  1310     _klass(klass),
  1311     _object_filter(object_filter),
  1312     _heap_object_callback(heap_object_callback),
  1313     _user_data(user_data),
  1314     _iteration_aborted(false)
  1318   void do_object(oop o);
  1319 };
  1321 // invoked for each object in the heap
  1322 void IterateOverHeapObjectClosure::do_object(oop o) {
  1323   // check if iteration has been halted
  1324   if (is_iteration_aborted()) return;
  1326   // ignore any objects that aren't visible to profiler
  1327   if (!ServiceUtil::visible_oop(o)) return;
  1329   // instanceof check when filtering by klass
  1330   if (!klass().is_null() && !o->is_a(klass()())) {
  1331     return;
  1333   // prepare for the calllback
  1334   CallbackWrapper wrapper(tag_map(), o);
  1336   // if the object is tagged and we're only interested in untagged objects
  1337   // then don't invoke the callback. Similiarly, if the object is untagged
  1338   // and we're only interested in tagged objects we skip the callback.
  1339   if (wrapper.obj_tag() != 0) {
  1340     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
  1341   } else {
  1342     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
  1345   // invoke the agent's callback
  1346   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
  1347                                                        wrapper.obj_size(),
  1348                                                        wrapper.obj_tag_p(),
  1349                                                        (void*)user_data());
  1350   if (control == JVMTI_ITERATION_ABORT) {
  1351     set_iteration_aborted(true);
  1355 // An ObjectClosure used to support the IterateThroughHeap function
  1356 class IterateThroughHeapObjectClosure: public ObjectClosure {
  1357  private:
  1358   JvmtiTagMap* _tag_map;
  1359   KlassHandle _klass;
  1360   int _heap_filter;
  1361   const jvmtiHeapCallbacks* _callbacks;
  1362   const void* _user_data;
  1364   // accessor functions
  1365   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  1366   int heap_filter() const                          { return _heap_filter; }
  1367   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
  1368   KlassHandle klass() const                        { return _klass; }
  1369   const void* user_data() const                    { return _user_data; }
  1371   // indicates if the iteration has been aborted
  1372   bool _iteration_aborted;
  1373   bool is_iteration_aborted() const                { return _iteration_aborted; }
  1375   // used to check the visit control flags. If the abort flag is set
  1376   // then we set the iteration aborted flag so that the iteration completes
  1377   // without processing any further objects
  1378   bool check_flags_for_abort(jint flags) {
  1379     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
  1380     if (is_abort) {
  1381       _iteration_aborted = true;
  1383     return is_abort;
  1386  public:
  1387   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
  1388                                   KlassHandle klass,
  1389                                   int heap_filter,
  1390                                   const jvmtiHeapCallbacks* heap_callbacks,
  1391                                   const void* user_data) :
  1392     _tag_map(tag_map),
  1393     _klass(klass),
  1394     _heap_filter(heap_filter),
  1395     _callbacks(heap_callbacks),
  1396     _user_data(user_data),
  1397     _iteration_aborted(false)
  1401   void do_object(oop o);
  1402 };
  1404 // invoked for each object in the heap
  1405 void IterateThroughHeapObjectClosure::do_object(oop obj) {
  1406   // check if iteration has been halted
  1407   if (is_iteration_aborted()) return;
  1409   // ignore any objects that aren't visible to profiler
  1410   if (!ServiceUtil::visible_oop(obj)) return;
  1412   // apply class filter
  1413   if (is_filtered_by_klass_filter(obj, klass())) return;
  1415   // prepare for callback
  1416   CallbackWrapper wrapper(tag_map(), obj);
  1418   // check if filtered by the heap filter
  1419   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
  1420     return;
  1423   // for arrays we need the length, otherwise -1
  1424   bool is_array = obj->is_array();
  1425   int len = is_array ? arrayOop(obj)->length() : -1;
  1427   // invoke the object callback (if callback is provided)
  1428   if (callbacks()->heap_iteration_callback != NULL) {
  1429     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
  1430     jint res = (*cb)(wrapper.klass_tag(),
  1431                      wrapper.obj_size(),
  1432                      wrapper.obj_tag_p(),
  1433                      (jint)len,
  1434                      (void*)user_data());
  1435     if (check_flags_for_abort(res)) return;
  1438   // for objects and classes we report primitive fields if callback provided
  1439   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
  1440     jint res;
  1441     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
  1442     if (obj->klass() == SystemDictionary::Class_klass()) {
  1443       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
  1444                                                                     obj,
  1445                                                                     cb,
  1446                                                                     (void*)user_data());
  1447     } else {
  1448       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
  1449                                                                       obj,
  1450                                                                       cb,
  1451                                                                       (void*)user_data());
  1453     if (check_flags_for_abort(res)) return;
  1456   // string callback
  1457   if (!is_array &&
  1458       callbacks()->string_primitive_value_callback != NULL &&
  1459       obj->klass() == SystemDictionary::String_klass()) {
  1460     jint res = invoke_string_value_callback(
  1461                 callbacks()->string_primitive_value_callback,
  1462                 &wrapper,
  1463                 obj,
  1464                 (void*)user_data() );
  1465     if (check_flags_for_abort(res)) return;
  1468   // array callback
  1469   if (is_array &&
  1470       callbacks()->array_primitive_value_callback != NULL &&
  1471       obj->is_typeArray()) {
  1472     jint res = invoke_array_primitive_value_callback(
  1473                callbacks()->array_primitive_value_callback,
  1474                &wrapper,
  1475                obj,
  1476                (void*)user_data() );
  1477     if (check_flags_for_abort(res)) return;
  1479 };
  1482 // Deprecated function to iterate over all objects in the heap
  1483 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
  1484                                     KlassHandle klass,
  1485                                     jvmtiHeapObjectCallback heap_object_callback,
  1486                                     const void* user_data)
  1488   MutexLocker ml(Heap_lock);
  1489   IterateOverHeapObjectClosure blk(this,
  1490                                    klass,
  1491                                    object_filter,
  1492                                    heap_object_callback,
  1493                                    user_data);
  1494   VM_HeapIterateOperation op(&blk);
  1495   VMThread::execute(&op);
  1499 // Iterates over all objects in the heap
  1500 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
  1501                                        KlassHandle klass,
  1502                                        const jvmtiHeapCallbacks* callbacks,
  1503                                        const void* user_data)
  1505   MutexLocker ml(Heap_lock);
  1506   IterateThroughHeapObjectClosure blk(this,
  1507                                       klass,
  1508                                       heap_filter,
  1509                                       callbacks,
  1510                                       user_data);
  1511   VM_HeapIterateOperation op(&blk);
  1512   VMThread::execute(&op);
  1515 // support class for get_objects_with_tags
  1517 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
  1518  private:
  1519   JvmtiEnv* _env;
  1520   jlong* _tags;
  1521   jint _tag_count;
  1523   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
  1524   GrowableArray<uint64_t>* _tag_results;    // collected tags
  1526  public:
  1527   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
  1528     _env = env;
  1529     _tags = (jlong*)tags;
  1530     _tag_count = tag_count;
  1531     _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true);
  1532     _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true);
  1535   ~TagObjectCollector() {
  1536     delete _object_results;
  1537     delete _tag_results;
  1540   // for each tagged object check if the tag value matches
  1541   // - if it matches then we create a JNI local reference to the object
  1542   // and record the reference and tag value.
  1543   //
  1544   void do_entry(JvmtiTagHashmapEntry* entry) {
  1545     for (int i=0; i<_tag_count; i++) {
  1546       if (_tags[i] == entry->tag()) {
  1547         oop o = entry->object();
  1548         assert(o != NULL, "sanity check");
  1550         // the mirror is tagged
  1551         if (o->is_klass()) {
  1552           klassOop k = (klassOop)o;
  1553           o = Klass::cast(k)->java_mirror();
  1556         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
  1557         _object_results->append(ref);
  1558         _tag_results->append((uint64_t)entry->tag());
  1563   // return the results from the collection
  1564   //
  1565   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1566     jvmtiError error;
  1567     int count = _object_results->length();
  1568     assert(count >= 0, "sanity check");
  1570     // if object_result_ptr is not NULL then allocate the result and copy
  1571     // in the object references.
  1572     if (object_result_ptr != NULL) {
  1573       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
  1574       if (error != JVMTI_ERROR_NONE) {
  1575         return error;
  1577       for (int i=0; i<count; i++) {
  1578         (*object_result_ptr)[i] = _object_results->at(i);
  1582     // if tag_result_ptr is not NULL then allocate the result and copy
  1583     // in the tag values.
  1584     if (tag_result_ptr != NULL) {
  1585       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
  1586       if (error != JVMTI_ERROR_NONE) {
  1587         if (object_result_ptr != NULL) {
  1588           _env->Deallocate((unsigned char*)object_result_ptr);
  1590         return error;
  1592       for (int i=0; i<count; i++) {
  1593         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
  1597     *count_ptr = count;
  1598     return JVMTI_ERROR_NONE;
  1600 };
  1602 // return the list of objects with the specified tags
  1603 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
  1604   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1606   TagObjectCollector collector(env(), tags, count);
  1608     // iterate over all tagged objects
  1609     MutexLocker ml(lock());
  1610     entry_iterate(&collector);
  1612   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
  1616 // ObjectMarker is used to support the marking objects when walking the
  1617 // heap.
  1618 //
  1619 // This implementation uses the existing mark bits in an object for
  1620 // marking. Objects that are marked must later have their headers restored.
  1621 // As most objects are unlocked and don't have their identity hash computed
  1622 // we don't have to save their headers. Instead we save the headers that
  1623 // are "interesting". Later when the headers are restored this implementation
  1624 // restores all headers to their initial value and then restores the few
  1625 // objects that had interesting headers.
  1626 //
  1627 // Future work: This implementation currently uses growable arrays to save
  1628 // the oop and header of interesting objects. As an optimization we could
  1629 // use the same technique as the GC and make use of the unused area
  1630 // between top() and end().
  1631 //
  1633 // An ObjectClosure used to restore the mark bits of an object
  1634 class RestoreMarksClosure : public ObjectClosure {
  1635  public:
  1636   void do_object(oop o) {
  1637     if (o != NULL) {
  1638       markOop mark = o->mark();
  1639       if (mark->is_marked()) {
  1640         o->init_mark();
  1644 };
  1646 // ObjectMarker provides the mark and visited functions
  1647 class ObjectMarker : AllStatic {
  1648  private:
  1649   // saved headers
  1650   static GrowableArray<oop>* _saved_oop_stack;
  1651   static GrowableArray<markOop>* _saved_mark_stack;
  1652   static bool _needs_reset;                  // do we need to reset mark bits?
  1654  public:
  1655   static void init();                       // initialize
  1656   static void done();                       // clean-up
  1658   static inline void mark(oop o);           // mark an object
  1659   static inline bool visited(oop o);        // check if object has been visited
  1661   static inline bool needs_reset()            { return _needs_reset; }
  1662   static inline void set_needs_reset(bool v)  { _needs_reset = v; }
  1663 };
  1665 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
  1666 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
  1667 bool ObjectMarker::_needs_reset = true;  // need to reset mark bits by default
  1669 // initialize ObjectMarker - prepares for object marking
  1670 void ObjectMarker::init() {
  1671   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1673   // prepare heap for iteration
  1674   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1676   // create stacks for interesting headers
  1677   _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(4000, true);
  1678   _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true);
  1680   if (UseBiasedLocking) {
  1681     BiasedLocking::preserve_marks();
  1685 // Object marking is done so restore object headers
  1686 void ObjectMarker::done() {
  1687   // iterate over all objects and restore the mark bits to
  1688   // their initial value
  1689   RestoreMarksClosure blk;
  1690   if (needs_reset()) {
  1691     Universe::heap()->object_iterate(&blk);
  1692   } else {
  1693     // We don't need to reset mark bits on this call, but reset the
  1694     // flag to the default for the next call.
  1695     set_needs_reset(true);
  1698   // When sharing is enabled we need to restore the headers of the objects
  1699   // in the readwrite space too.
  1700   if (UseSharedSpaces) {
  1701     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1702     CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1703     gen->rw_space()->object_iterate(&blk);
  1706   // now restore the interesting headers
  1707   for (int i = 0; i < _saved_oop_stack->length(); i++) {
  1708     oop o = _saved_oop_stack->at(i);
  1709     markOop mark = _saved_mark_stack->at(i);
  1710     o->set_mark(mark);
  1713   if (UseBiasedLocking) {
  1714     BiasedLocking::restore_marks();
  1717   // free the stacks
  1718   delete _saved_oop_stack;
  1719   delete _saved_mark_stack;
  1722 // mark an object
  1723 inline void ObjectMarker::mark(oop o) {
  1724   assert(Universe::heap()->is_in(o), "sanity check");
  1725   assert(!o->mark()->is_marked(), "should only mark an object once");
  1727   // object's mark word
  1728   markOop mark = o->mark();
  1730   if (mark->must_be_preserved(o)) {
  1731     _saved_mark_stack->push(mark);
  1732     _saved_oop_stack->push(o);
  1735   // mark the object
  1736   o->set_mark(markOopDesc::prototype()->set_marked());
  1739 // return true if object is marked
  1740 inline bool ObjectMarker::visited(oop o) {
  1741   return o->mark()->is_marked();
  1744 // Stack allocated class to help ensure that ObjectMarker is used
  1745 // correctly. Constructor initializes ObjectMarker, destructor calls
  1746 // ObjectMarker's done() function to restore object headers.
  1747 class ObjectMarkerController : public StackObj {
  1748  public:
  1749   ObjectMarkerController() {
  1750     ObjectMarker::init();
  1752   ~ObjectMarkerController() {
  1753     ObjectMarker::done();
  1755 };
  1758 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
  1759 // (not performance critical as only used for roots)
  1760 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
  1761   switch (kind) {
  1762     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
  1763     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
  1764     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
  1765     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
  1766     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
  1767     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
  1768     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
  1769     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
  1773 // Base class for all heap walk contexts. The base class maintains a flag
  1774 // to indicate if the context is valid or not.
  1775 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
  1776  private:
  1777   bool _valid;
  1778  public:
  1779   HeapWalkContext(bool valid)                   { _valid = valid; }
  1780   void invalidate()                             { _valid = false; }
  1781   bool is_valid() const                         { return _valid; }
  1782 };
  1784 // A basic heap walk context for the deprecated heap walking functions.
  1785 // The context for a basic heap walk are the callbacks and fields used by
  1786 // the referrer caching scheme.
  1787 class BasicHeapWalkContext: public HeapWalkContext {
  1788  private:
  1789   jvmtiHeapRootCallback _heap_root_callback;
  1790   jvmtiStackReferenceCallback _stack_ref_callback;
  1791   jvmtiObjectReferenceCallback _object_ref_callback;
  1793   // used for caching
  1794   oop _last_referrer;
  1795   jlong _last_referrer_tag;
  1797  public:
  1798   BasicHeapWalkContext() : HeapWalkContext(false) { }
  1800   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
  1801                        jvmtiStackReferenceCallback stack_ref_callback,
  1802                        jvmtiObjectReferenceCallback object_ref_callback) :
  1803     HeapWalkContext(true),
  1804     _heap_root_callback(heap_root_callback),
  1805     _stack_ref_callback(stack_ref_callback),
  1806     _object_ref_callback(object_ref_callback),
  1807     _last_referrer(NULL),
  1808     _last_referrer_tag(0) {
  1811   // accessors
  1812   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
  1813   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
  1814   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
  1816   oop last_referrer() const               { return _last_referrer; }
  1817   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
  1818   jlong last_referrer_tag() const         { return _last_referrer_tag; }
  1819   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
  1820 };
  1822 // The advanced heap walk context for the FollowReferences functions.
  1823 // The context is the callbacks, and the fields used for filtering.
  1824 class AdvancedHeapWalkContext: public HeapWalkContext {
  1825  private:
  1826   jint _heap_filter;
  1827   KlassHandle _klass_filter;
  1828   const jvmtiHeapCallbacks* _heap_callbacks;
  1830  public:
  1831   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
  1833   AdvancedHeapWalkContext(jint heap_filter,
  1834                            KlassHandle klass_filter,
  1835                            const jvmtiHeapCallbacks* heap_callbacks) :
  1836     HeapWalkContext(true),
  1837     _heap_filter(heap_filter),
  1838     _klass_filter(klass_filter),
  1839     _heap_callbacks(heap_callbacks) {
  1842   // accessors
  1843   jint heap_filter() const         { return _heap_filter; }
  1844   KlassHandle klass_filter() const { return _klass_filter; }
  1846   const jvmtiHeapReferenceCallback heap_reference_callback() const {
  1847     return _heap_callbacks->heap_reference_callback;
  1848   };
  1849   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
  1850     return _heap_callbacks->primitive_field_callback;
  1852   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
  1853     return _heap_callbacks->array_primitive_value_callback;
  1855   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
  1856     return _heap_callbacks->string_primitive_value_callback;
  1858 };
  1860 // The CallbackInvoker is a class with static functions that the heap walk can call
  1861 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
  1862 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
  1863 // mode is for the newer FollowReferences function which supports a lot of
  1864 // additional callbacks.
  1865 class CallbackInvoker : AllStatic {
  1866  private:
  1867   // heap walk styles
  1868   enum { basic, advanced };
  1869   static int _heap_walk_type;
  1870   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
  1871   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
  1873   // context for basic style heap walk
  1874   static BasicHeapWalkContext _basic_context;
  1875   static BasicHeapWalkContext* basic_context() {
  1876     assert(_basic_context.is_valid(), "invalid");
  1877     return &_basic_context;
  1880   // context for advanced style heap walk
  1881   static AdvancedHeapWalkContext _advanced_context;
  1882   static AdvancedHeapWalkContext* advanced_context() {
  1883     assert(_advanced_context.is_valid(), "invalid");
  1884     return &_advanced_context;
  1887   // context needed for all heap walks
  1888   static JvmtiTagMap* _tag_map;
  1889   static const void* _user_data;
  1890   static GrowableArray<oop>* _visit_stack;
  1892   // accessors
  1893   static JvmtiTagMap* tag_map()                        { return _tag_map; }
  1894   static const void* user_data()                       { return _user_data; }
  1895   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
  1897   // if the object hasn't been visited then push it onto the visit stack
  1898   // so that it will be visited later
  1899   static inline bool check_for_visit(oop obj) {
  1900     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
  1901     return true;
  1904   // invoke basic style callbacks
  1905   static inline bool invoke_basic_heap_root_callback
  1906     (jvmtiHeapRootKind root_kind, oop obj);
  1907   static inline bool invoke_basic_stack_ref_callback
  1908     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
  1909      int slot, oop obj);
  1910   static inline bool invoke_basic_object_reference_callback
  1911     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1913   // invoke advanced style callbacks
  1914   static inline bool invoke_advanced_heap_root_callback
  1915     (jvmtiHeapReferenceKind ref_kind, oop obj);
  1916   static inline bool invoke_advanced_stack_ref_callback
  1917     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
  1918      jmethodID method, jlocation bci, jint slot, oop obj);
  1919   static inline bool invoke_advanced_object_reference_callback
  1920     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1922   // used to report the value of primitive fields
  1923   static inline bool report_primitive_field
  1924     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
  1926  public:
  1927   // initialize for basic mode
  1928   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1929                                              GrowableArray<oop>* visit_stack,
  1930                                              const void* user_data,
  1931                                              BasicHeapWalkContext context);
  1933   // initialize for advanced mode
  1934   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1935                                                 GrowableArray<oop>* visit_stack,
  1936                                                 const void* user_data,
  1937                                                 AdvancedHeapWalkContext context);
  1939    // functions to report roots
  1940   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
  1941   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
  1942     jmethodID m, oop o);
  1943   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
  1944     jmethodID method, jlocation bci, jint slot, oop o);
  1946   // functions to report references
  1947   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
  1948   static inline bool report_class_reference(oop referrer, oop referree);
  1949   static inline bool report_class_loader_reference(oop referrer, oop referree);
  1950   static inline bool report_signers_reference(oop referrer, oop referree);
  1951   static inline bool report_protection_domain_reference(oop referrer, oop referree);
  1952   static inline bool report_superclass_reference(oop referrer, oop referree);
  1953   static inline bool report_interface_reference(oop referrer, oop referree);
  1954   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
  1955   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
  1956   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
  1957   static inline bool report_primitive_array_values(oop array);
  1958   static inline bool report_string_value(oop str);
  1959   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
  1960   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
  1961 };
  1963 // statics
  1964 int CallbackInvoker::_heap_walk_type;
  1965 BasicHeapWalkContext CallbackInvoker::_basic_context;
  1966 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
  1967 JvmtiTagMap* CallbackInvoker::_tag_map;
  1968 const void* CallbackInvoker::_user_data;
  1969 GrowableArray<oop>* CallbackInvoker::_visit_stack;
  1971 // initialize for basic heap walk (IterateOverReachableObjects et al)
  1972 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1973                                                      GrowableArray<oop>* visit_stack,
  1974                                                      const void* user_data,
  1975                                                      BasicHeapWalkContext context) {
  1976   _tag_map = tag_map;
  1977   _visit_stack = visit_stack;
  1978   _user_data = user_data;
  1979   _basic_context = context;
  1980   _advanced_context.invalidate();       // will trigger assertion if used
  1981   _heap_walk_type = basic;
  1984 // initialize for advanced heap walk (FollowReferences)
  1985 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1986                                                         GrowableArray<oop>* visit_stack,
  1987                                                         const void* user_data,
  1988                                                         AdvancedHeapWalkContext context) {
  1989   _tag_map = tag_map;
  1990   _visit_stack = visit_stack;
  1991   _user_data = user_data;
  1992   _advanced_context = context;
  1993   _basic_context.invalidate();      // will trigger assertion if used
  1994   _heap_walk_type = advanced;
  1998 // invoke basic style heap root callback
  1999 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
  2000   assert(ServiceUtil::visible_oop(obj), "checking");
  2002   // if we heap roots should be reported
  2003   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
  2004   if (cb == NULL) {
  2005     return check_for_visit(obj);
  2008   CallbackWrapper wrapper(tag_map(), obj);
  2009   jvmtiIterationControl control = (*cb)(root_kind,
  2010                                         wrapper.klass_tag(),
  2011                                         wrapper.obj_size(),
  2012                                         wrapper.obj_tag_p(),
  2013                                         (void*)user_data());
  2014   // push root to visit stack when following references
  2015   if (control == JVMTI_ITERATION_CONTINUE &&
  2016       basic_context()->object_ref_callback() != NULL) {
  2017     visit_stack()->push(obj);
  2019   return control != JVMTI_ITERATION_ABORT;
  2022 // invoke basic style stack ref callback
  2023 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
  2024                                                              jlong thread_tag,
  2025                                                              jint depth,
  2026                                                              jmethodID method,
  2027                                                              jint slot,
  2028                                                              oop obj) {
  2029   assert(ServiceUtil::visible_oop(obj), "checking");
  2031   // if we stack refs should be reported
  2032   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
  2033   if (cb == NULL) {
  2034     return check_for_visit(obj);
  2037   CallbackWrapper wrapper(tag_map(), obj);
  2038   jvmtiIterationControl control = (*cb)(root_kind,
  2039                                         wrapper.klass_tag(),
  2040                                         wrapper.obj_size(),
  2041                                         wrapper.obj_tag_p(),
  2042                                         thread_tag,
  2043                                         depth,
  2044                                         method,
  2045                                         slot,
  2046                                         (void*)user_data());
  2047   // push root to visit stack when following references
  2048   if (control == JVMTI_ITERATION_CONTINUE &&
  2049       basic_context()->object_ref_callback() != NULL) {
  2050     visit_stack()->push(obj);
  2052   return control != JVMTI_ITERATION_ABORT;
  2055 // invoke basic style object reference callback
  2056 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
  2057                                                                     oop referrer,
  2058                                                                     oop referree,
  2059                                                                     jint index) {
  2061   assert(ServiceUtil::visible_oop(referrer), "checking");
  2062   assert(ServiceUtil::visible_oop(referree), "checking");
  2064   BasicHeapWalkContext* context = basic_context();
  2066   // callback requires the referrer's tag. If it's the same referrer
  2067   // as the last call then we use the cached value.
  2068   jlong referrer_tag;
  2069   if (referrer == context->last_referrer()) {
  2070     referrer_tag = context->last_referrer_tag();
  2071   } else {
  2072     referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
  2075   // do the callback
  2076   CallbackWrapper wrapper(tag_map(), referree);
  2077   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
  2078   jvmtiIterationControl control = (*cb)(ref_kind,
  2079                                         wrapper.klass_tag(),
  2080                                         wrapper.obj_size(),
  2081                                         wrapper.obj_tag_p(),
  2082                                         referrer_tag,
  2083                                         index,
  2084                                         (void*)user_data());
  2086   // record referrer and referrer tag. For self-references record the
  2087   // tag value from the callback as this might differ from referrer_tag.
  2088   context->set_last_referrer(referrer);
  2089   if (referrer == referree) {
  2090     context->set_last_referrer_tag(*wrapper.obj_tag_p());
  2091   } else {
  2092     context->set_last_referrer_tag(referrer_tag);
  2095   if (control == JVMTI_ITERATION_CONTINUE) {
  2096     return check_for_visit(referree);
  2097   } else {
  2098     return control != JVMTI_ITERATION_ABORT;
  2102 // invoke advanced style heap root callback
  2103 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
  2104                                                                 oop obj) {
  2105   assert(ServiceUtil::visible_oop(obj), "checking");
  2107   AdvancedHeapWalkContext* context = advanced_context();
  2109   // check that callback is provided
  2110   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2111   if (cb == NULL) {
  2112     return check_for_visit(obj);
  2115   // apply class filter
  2116   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2117     return check_for_visit(obj);
  2120   // setup the callback wrapper
  2121   CallbackWrapper wrapper(tag_map(), obj);
  2123   // apply tag filter
  2124   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2125                                  wrapper.klass_tag(),
  2126                                  context->heap_filter())) {
  2127     return check_for_visit(obj);
  2130   // for arrays we need the length, otherwise -1
  2131   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2133   // invoke the callback
  2134   jint res  = (*cb)(ref_kind,
  2135                     NULL, // referrer info
  2136                     wrapper.klass_tag(),
  2137                     0,    // referrer_class_tag is 0 for heap root
  2138                     wrapper.obj_size(),
  2139                     wrapper.obj_tag_p(),
  2140                     NULL, // referrer_tag_p
  2141                     len,
  2142                     (void*)user_data());
  2143   if (res & JVMTI_VISIT_ABORT) {
  2144     return false;// referrer class tag
  2146   if (res & JVMTI_VISIT_OBJECTS) {
  2147     check_for_visit(obj);
  2149   return true;
  2152 // report a reference from a thread stack to an object
  2153 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
  2154                                                                 jlong thread_tag,
  2155                                                                 jlong tid,
  2156                                                                 int depth,
  2157                                                                 jmethodID method,
  2158                                                                 jlocation bci,
  2159                                                                 jint slot,
  2160                                                                 oop obj) {
  2161   assert(ServiceUtil::visible_oop(obj), "checking");
  2163   AdvancedHeapWalkContext* context = advanced_context();
  2165   // check that callback is provider
  2166   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2167   if (cb == NULL) {
  2168     return check_for_visit(obj);
  2171   // apply class filter
  2172   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2173     return check_for_visit(obj);
  2176   // setup the callback wrapper
  2177   CallbackWrapper wrapper(tag_map(), obj);
  2179   // apply tag filter
  2180   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2181                                  wrapper.klass_tag(),
  2182                                  context->heap_filter())) {
  2183     return check_for_visit(obj);
  2186   // setup the referrer info
  2187   jvmtiHeapReferenceInfo reference_info;
  2188   reference_info.stack_local.thread_tag = thread_tag;
  2189   reference_info.stack_local.thread_id = tid;
  2190   reference_info.stack_local.depth = depth;
  2191   reference_info.stack_local.method = method;
  2192   reference_info.stack_local.location = bci;
  2193   reference_info.stack_local.slot = slot;
  2195   // for arrays we need the length, otherwise -1
  2196   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2198   // call into the agent
  2199   int res = (*cb)(ref_kind,
  2200                   &reference_info,
  2201                   wrapper.klass_tag(),
  2202                   0,    // referrer_class_tag is 0 for heap root (stack)
  2203                   wrapper.obj_size(),
  2204                   wrapper.obj_tag_p(),
  2205                   NULL, // referrer_tag is 0 for root
  2206                   len,
  2207                   (void*)user_data());
  2209   if (res & JVMTI_VISIT_ABORT) {
  2210     return false;
  2212   if (res & JVMTI_VISIT_OBJECTS) {
  2213     check_for_visit(obj);
  2215   return true;
  2218 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
  2219 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
  2220 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
  2221                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
  2222                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
  2223                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
  2224                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
  2225                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
  2227 // invoke the object reference callback to report a reference
  2228 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
  2229                                                                        oop referrer,
  2230                                                                        oop obj,
  2231                                                                        jint index)
  2233   // field index is only valid field in reference_info
  2234   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2236   assert(ServiceUtil::visible_oop(referrer), "checking");
  2237   assert(ServiceUtil::visible_oop(obj), "checking");
  2239   AdvancedHeapWalkContext* context = advanced_context();
  2241   // check that callback is provider
  2242   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2243   if (cb == NULL) {
  2244     return check_for_visit(obj);
  2247   // apply class filter
  2248   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2249     return check_for_visit(obj);
  2252   // setup the callback wrapper
  2253   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
  2255   // apply tag filter
  2256   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2257                                  wrapper.klass_tag(),
  2258                                  context->heap_filter())) {
  2259     return check_for_visit(obj);
  2262   // field index is only valid field in reference_info
  2263   reference_info.field.index = index;
  2265   // for arrays we need the length, otherwise -1
  2266   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2268   // invoke the callback
  2269   int res = (*cb)(ref_kind,
  2270                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
  2271                   wrapper.klass_tag(),
  2272                   wrapper.referrer_klass_tag(),
  2273                   wrapper.obj_size(),
  2274                   wrapper.obj_tag_p(),
  2275                   wrapper.referrer_tag_p(),
  2276                   len,
  2277                   (void*)user_data());
  2279   if (res & JVMTI_VISIT_ABORT) {
  2280     return false;
  2282   if (res & JVMTI_VISIT_OBJECTS) {
  2283     check_for_visit(obj);
  2285   return true;
  2288 // report a "simple root"
  2289 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
  2290   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
  2291          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
  2292   assert(ServiceUtil::visible_oop(obj), "checking");
  2294   if (is_basic_heap_walk()) {
  2295     // map to old style root kind
  2296     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
  2297     return invoke_basic_heap_root_callback(root_kind, obj);
  2298   } else {
  2299     assert(is_advanced_heap_walk(), "wrong heap walk type");
  2300     return invoke_advanced_heap_root_callback(kind, obj);
  2305 // invoke the primitive array values
  2306 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
  2307   assert(obj->is_typeArray(), "not a primitive array");
  2309   AdvancedHeapWalkContext* context = advanced_context();
  2310   assert(context->array_primitive_value_callback() != NULL, "no callback");
  2312   // apply class filter
  2313   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2314     return true;
  2317   CallbackWrapper wrapper(tag_map(), obj);
  2319   // apply tag filter
  2320   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2321                                  wrapper.klass_tag(),
  2322                                  context->heap_filter())) {
  2323     return true;
  2326   // invoke the callback
  2327   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
  2328                                                   &wrapper,
  2329                                                   obj,
  2330                                                   (void*)user_data());
  2331   return (!(res & JVMTI_VISIT_ABORT));
  2334 // invoke the string value callback
  2335 inline bool CallbackInvoker::report_string_value(oop str) {
  2336   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  2338   AdvancedHeapWalkContext* context = advanced_context();
  2339   assert(context->string_primitive_value_callback() != NULL, "no callback");
  2341   // apply class filter
  2342   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
  2343     return true;
  2346   CallbackWrapper wrapper(tag_map(), str);
  2348   // apply tag filter
  2349   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2350                                  wrapper.klass_tag(),
  2351                                  context->heap_filter())) {
  2352     return true;
  2355   // invoke the callback
  2356   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
  2357                                          &wrapper,
  2358                                          str,
  2359                                          (void*)user_data());
  2360   return (!(res & JVMTI_VISIT_ABORT));
  2363 // invoke the primitive field callback
  2364 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
  2365                                                     oop obj,
  2366                                                     jint index,
  2367                                                     address addr,
  2368                                                     char type)
  2370   // for primitive fields only the index will be set
  2371   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2373   AdvancedHeapWalkContext* context = advanced_context();
  2374   assert(context->primitive_field_callback() != NULL, "no callback");
  2376   // apply class filter
  2377   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2378     return true;
  2381   CallbackWrapper wrapper(tag_map(), obj);
  2383   // apply tag filter
  2384   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2385                                  wrapper.klass_tag(),
  2386                                  context->heap_filter())) {
  2387     return true;
  2390   // the field index in the referrer
  2391   reference_info.field.index = index;
  2393   // map the type
  2394   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  2396   // setup the jvalue
  2397   jvalue value;
  2398   copy_to_jvalue(&value, addr, value_type);
  2400   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
  2401   int res = (*cb)(ref_kind,
  2402                   &reference_info,
  2403                   wrapper.klass_tag(),
  2404                   wrapper.obj_tag_p(),
  2405                   value,
  2406                   value_type,
  2407                   (void*)user_data());
  2408   return (!(res & JVMTI_VISIT_ABORT));
  2412 // instance field
  2413 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
  2414                                                              jint index,
  2415                                                              address value,
  2416                                                              char type) {
  2417   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
  2418                                 obj,
  2419                                 index,
  2420                                 value,
  2421                                 type);
  2424 // static field
  2425 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
  2426                                                            jint index,
  2427                                                            address value,
  2428                                                            char type) {
  2429   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  2430                                 obj,
  2431                                 index,
  2432                                 value,
  2433                                 type);
  2436 // report a JNI local (root object) to the profiler
  2437 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
  2438   if (is_basic_heap_walk()) {
  2439     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
  2440                                            thread_tag,
  2441                                            depth,
  2442                                            m,
  2443                                            -1,
  2444                                            obj);
  2445   } else {
  2446     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
  2447                                               thread_tag, tid,
  2448                                               depth,
  2449                                               m,
  2450                                               (jlocation)-1,
  2451                                               -1,
  2452                                               obj);
  2457 // report a local (stack reference, root object)
  2458 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
  2459                                                    jlong tid,
  2460                                                    jint depth,
  2461                                                    jmethodID method,
  2462                                                    jlocation bci,
  2463                                                    jint slot,
  2464                                                    oop obj) {
  2465   if (is_basic_heap_walk()) {
  2466     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
  2467                                            thread_tag,
  2468                                            depth,
  2469                                            method,
  2470                                            slot,
  2471                                            obj);
  2472   } else {
  2473     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
  2474                                               thread_tag,
  2475                                               tid,
  2476                                               depth,
  2477                                               method,
  2478                                               bci,
  2479                                               slot,
  2480                                               obj);
  2484 // report an object referencing a class.
  2485 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
  2486   if (is_basic_heap_walk()) {
  2487     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2488   } else {
  2489     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
  2493 // report a class referencing its class loader.
  2494 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
  2495   if (is_basic_heap_walk()) {
  2496     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2497   } else {
  2498     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2502 // report a class referencing its signers.
  2503 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
  2504   if (is_basic_heap_walk()) {
  2505     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
  2506   } else {
  2507     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
  2511 // report a class referencing its protection domain..
  2512 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
  2513   if (is_basic_heap_walk()) {
  2514     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2515   } else {
  2516     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2520 // report a class referencing its superclass.
  2521 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
  2522   if (is_basic_heap_walk()) {
  2523     // Send this to be consistent with past implementation
  2524     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2525   } else {
  2526     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
  2530 // report a class referencing one of its interfaces.
  2531 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
  2532   if (is_basic_heap_walk()) {
  2533     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
  2534   } else {
  2535     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
  2539 // report a class referencing one of its static fields.
  2540 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
  2541   if (is_basic_heap_walk()) {
  2542     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2543   } else {
  2544     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2548 // report an array referencing an element object
  2549 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
  2550   if (is_basic_heap_walk()) {
  2551     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2552   } else {
  2553     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2557 // report an object referencing an instance field object
  2558 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
  2559   if (is_basic_heap_walk()) {
  2560     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
  2561   } else {
  2562     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
  2566 // report an array referencing an element object
  2567 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
  2568   if (is_basic_heap_walk()) {
  2569     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2570   } else {
  2571     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2575 // A supporting closure used to process simple roots
  2576 class SimpleRootsClosure : public OopClosure {
  2577  private:
  2578   jvmtiHeapReferenceKind _kind;
  2579   bool _continue;
  2581   jvmtiHeapReferenceKind root_kind()    { return _kind; }
  2583  public:
  2584   void set_kind(jvmtiHeapReferenceKind kind) {
  2585     _kind = kind;
  2586     _continue = true;
  2589   inline bool stopped() {
  2590     return !_continue;
  2593   void do_oop(oop* obj_p) {
  2594     // iteration has terminated
  2595     if (stopped()) {
  2596       return;
  2599     // ignore null or deleted handles
  2600     oop o = *obj_p;
  2601     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2602       return;
  2605     jvmtiHeapReferenceKind kind = root_kind();
  2607     // many roots are Klasses so we use the java mirror
  2608     if (o->is_klass()) {
  2609       klassOop k = (klassOop)o;
  2610       o = Klass::cast(k)->java_mirror();
  2611       if (o == NULL) {
  2612         // Classes without mirrors don't correspond to real Java
  2613         // classes so just ignore them.
  2614         return;
  2616     } else {
  2618       // SystemDictionary::always_strong_oops_do reports the application
  2619       // class loader as a root. We want this root to be reported as
  2620       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
  2621       if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
  2622         kind = JVMTI_HEAP_REFERENCE_OTHER;
  2626     // some objects are ignored - in the case of simple
  2627     // roots it's mostly Symbol*s that we are skipping
  2628     // here.
  2629     if (!ServiceUtil::visible_oop(o)) {
  2630       return;
  2633     // invoke the callback
  2634     _continue = CallbackInvoker::report_simple_root(kind, o);
  2637   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2638 };
  2640 // A supporting closure used to process JNI locals
  2641 class JNILocalRootsClosure : public OopClosure {
  2642  private:
  2643   jlong _thread_tag;
  2644   jlong _tid;
  2645   jint _depth;
  2646   jmethodID _method;
  2647   bool _continue;
  2648  public:
  2649   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
  2650     _thread_tag = thread_tag;
  2651     _tid = tid;
  2652     _depth = depth;
  2653     _method = method;
  2654     _continue = true;
  2657   inline bool stopped() {
  2658     return !_continue;
  2661   void do_oop(oop* obj_p) {
  2662     // iteration has terminated
  2663     if (stopped()) {
  2664       return;
  2667     // ignore null or deleted handles
  2668     oop o = *obj_p;
  2669     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2670       return;
  2673     if (!ServiceUtil::visible_oop(o)) {
  2674       return;
  2677     // invoke the callback
  2678     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
  2680   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2681 };
  2684 // A VM operation to iterate over objects that are reachable from
  2685 // a set of roots or an initial object.
  2686 //
  2687 // For VM_HeapWalkOperation the set of roots used is :-
  2688 //
  2689 // - All JNI global references
  2690 // - All inflated monitors
  2691 // - All classes loaded by the boot class loader (or all classes
  2692 //     in the event that class unloading is disabled)
  2693 // - All java threads
  2694 // - For each java thread then all locals and JNI local references
  2695 //      on the thread's execution stack
  2696 // - All visible/explainable objects from Universes::oops_do
  2697 //
  2698 class VM_HeapWalkOperation: public VM_Operation {
  2699  private:
  2700   enum {
  2701     initial_visit_stack_size = 4000
  2702   };
  2704   bool _is_advanced_heap_walk;                      // indicates FollowReferences
  2705   JvmtiTagMap* _tag_map;
  2706   Handle _initial_object;
  2707   GrowableArray<oop>* _visit_stack;                 // the visit stack
  2709   bool _collecting_heap_roots;                      // are we collecting roots
  2710   bool _following_object_refs;                      // are we following object references
  2712   bool _reporting_primitive_fields;                 // optional reporting
  2713   bool _reporting_primitive_array_values;
  2714   bool _reporting_string_values;
  2716   GrowableArray<oop>* create_visit_stack() {
  2717     return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true);
  2720   // accessors
  2721   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
  2722   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  2723   Handle initial_object() const                    { return _initial_object; }
  2725   bool is_following_references() const             { return _following_object_refs; }
  2727   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
  2728   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
  2729   bool is_reporting_string_values() const          { return _reporting_string_values; }
  2731   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
  2733   // iterate over the various object types
  2734   inline bool iterate_over_array(oop o);
  2735   inline bool iterate_over_type_array(oop o);
  2736   inline bool iterate_over_class(klassOop o);
  2737   inline bool iterate_over_object(oop o);
  2739   // root collection
  2740   inline bool collect_simple_roots();
  2741   inline bool collect_stack_roots();
  2742   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
  2744   // visit an object
  2745   inline bool visit(oop o);
  2747  public:
  2748   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2749                        Handle initial_object,
  2750                        BasicHeapWalkContext callbacks,
  2751                        const void* user_data);
  2753   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2754                        Handle initial_object,
  2755                        AdvancedHeapWalkContext callbacks,
  2756                        const void* user_data);
  2758   ~VM_HeapWalkOperation();
  2760   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
  2761   void doit();
  2762 };
  2765 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2766                                            Handle initial_object,
  2767                                            BasicHeapWalkContext callbacks,
  2768                                            const void* user_data) {
  2769   _is_advanced_heap_walk = false;
  2770   _tag_map = tag_map;
  2771   _initial_object = initial_object;
  2772   _following_object_refs = (callbacks.object_ref_callback() != NULL);
  2773   _reporting_primitive_fields = false;
  2774   _reporting_primitive_array_values = false;
  2775   _reporting_string_values = false;
  2776   _visit_stack = create_visit_stack();
  2779   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2782 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2783                                            Handle initial_object,
  2784                                            AdvancedHeapWalkContext callbacks,
  2785                                            const void* user_data) {
  2786   _is_advanced_heap_walk = true;
  2787   _tag_map = tag_map;
  2788   _initial_object = initial_object;
  2789   _following_object_refs = true;
  2790   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
  2791   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
  2792   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
  2793   _visit_stack = create_visit_stack();
  2795   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2798 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
  2799   if (_following_object_refs) {
  2800     assert(_visit_stack != NULL, "checking");
  2801     delete _visit_stack;
  2802     _visit_stack = NULL;
  2806 // an array references its class and has a reference to
  2807 // each element in the array
  2808 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
  2809   objArrayOop array = objArrayOop(o);
  2810   if (array->klass() == Universe::systemObjArrayKlassObj()) {
  2811     // filtered out
  2812     return true;
  2815   // array reference to its class
  2816   oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
  2817   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2818     return false;
  2821   // iterate over the array and report each reference to a
  2822   // non-null element
  2823   for (int index=0; index<array->length(); index++) {
  2824     oop elem = array->obj_at(index);
  2825     if (elem == NULL) {
  2826       continue;
  2829     // report the array reference o[index] = elem
  2830     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
  2831       return false;
  2834   return true;
  2837 // a type array references its class
  2838 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
  2839   klassOop k = o->klass();
  2840   oop mirror = Klass::cast(k)->java_mirror();
  2841   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2842     return false;
  2845   // report the array contents if required
  2846   if (is_reporting_primitive_array_values()) {
  2847     if (!CallbackInvoker::report_primitive_array_values(o)) {
  2848       return false;
  2851   return true;
  2854 // verify that a static oop field is in range
  2855 static inline bool verify_static_oop(instanceKlass* ik,
  2856                                      oop mirror, int offset) {
  2857   address obj_p = (address)mirror + offset;
  2858   address start = (address)instanceMirrorKlass::start_of_static_fields(mirror);
  2859   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
  2860   assert(end >= start, "sanity check");
  2862   if (obj_p >= start && obj_p < end) {
  2863     return true;
  2864   } else {
  2865     return false;
  2869 // a class references its super class, interfaces, class loader, ...
  2870 // and finally its static fields
  2871 inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
  2872   int i;
  2873   Klass* klass = klassOop(k)->klass_part();
  2875   if (klass->oop_is_instance()) {
  2876     instanceKlass* ik = instanceKlass::cast(k);
  2878     // ignore the class if it's has been initialized yet
  2879     if (!ik->is_linked()) {
  2880       return true;
  2883     // get the java mirror
  2884     oop mirror = klass->java_mirror();
  2886     // super (only if something more interesting than java.lang.Object)
  2887     klassOop java_super = ik->java_super();
  2888     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
  2889       oop super = Klass::cast(java_super)->java_mirror();
  2890       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
  2891         return false;
  2895     // class loader
  2896     oop cl = ik->class_loader();
  2897     if (cl != NULL) {
  2898       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
  2899         return false;
  2903     // protection domain
  2904     oop pd = ik->protection_domain();
  2905     if (pd != NULL) {
  2906       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
  2907         return false;
  2911     // signers
  2912     oop signers = ik->signers();
  2913     if (signers != NULL) {
  2914       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
  2915         return false;
  2919     // references from the constant pool
  2921       const constantPoolOop pool = ik->constants();
  2922       for (int i = 1; i < pool->length(); i++) {
  2923         constantTag tag = pool->tag_at(i).value();
  2924         if (tag.is_string() || tag.is_klass()) {
  2925           oop entry;
  2926           if (tag.is_string()) {
  2927             entry = pool->resolved_string_at(i);
  2928             assert(java_lang_String::is_instance(entry), "must be string");
  2929           } else {
  2930             entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
  2932           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
  2933             return false;
  2939     // interfaces
  2940     // (These will already have been reported as references from the constant pool
  2941     //  but are specified by IterateOverReachableObjects and must be reported).
  2942     objArrayOop interfaces = ik->local_interfaces();
  2943     for (i = 0; i < interfaces->length(); i++) {
  2944       oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
  2945       if (interf == NULL) {
  2946         continue;
  2948       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
  2949         return false;
  2953     // iterate over the static fields
  2955     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  2956     for (i=0; i<field_map->field_count(); i++) {
  2957       ClassFieldDescriptor* field = field_map->field_at(i);
  2958       char type = field->field_type();
  2959       if (!is_primitive_field_type(type)) {
  2960         oop fld_o = mirror->obj_field(field->field_offset());
  2961         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
  2962         if (fld_o != NULL) {
  2963           int slot = field->field_index();
  2964           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
  2965             delete field_map;
  2966             return false;
  2969       } else {
  2970          if (is_reporting_primitive_fields()) {
  2971            address addr = (address)mirror + field->field_offset();
  2972            int slot = field->field_index();
  2973            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
  2974              delete field_map;
  2975              return false;
  2980     delete field_map;
  2982     return true;
  2985   return true;
  2988 // an object references a class and its instance fields
  2989 // (static fields are ignored here as we report these as
  2990 // references from the class).
  2991 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
  2992   // reference to the class
  2993   if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
  2994     return false;
  2997   // iterate over instance fields
  2998   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
  2999   for (int i=0; i<field_map->field_count(); i++) {
  3000     ClassFieldDescriptor* field = field_map->field_at(i);
  3001     char type = field->field_type();
  3002     if (!is_primitive_field_type(type)) {
  3003       oop fld_o = o->obj_field(field->field_offset());
  3004       // ignore any objects that aren't visible to profiler
  3005       if (fld_o != NULL && ServiceUtil::visible_oop(fld_o)) {
  3006         // reflection code may have a reference to a klassOop.
  3007         // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
  3008         if (fld_o->is_klass()) {
  3009           klassOop k = (klassOop)fld_o;
  3010           fld_o = Klass::cast(k)->java_mirror();
  3012         int slot = field->field_index();
  3013         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
  3014           return false;
  3017     } else {
  3018       if (is_reporting_primitive_fields()) {
  3019         // primitive instance field
  3020         address addr = (address)o + field->field_offset();
  3021         int slot = field->field_index();
  3022         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
  3023           return false;
  3029   // if the object is a java.lang.String
  3030   if (is_reporting_string_values() &&
  3031       o->klass() == SystemDictionary::String_klass()) {
  3032     if (!CallbackInvoker::report_string_value(o)) {
  3033       return false;
  3036   return true;
  3040 // Collects all simple (non-stack) roots except for threads;
  3041 // threads are handled in collect_stack_roots() as an optimization.
  3042 // if there's a heap root callback provided then the callback is
  3043 // invoked for each simple root.
  3044 // if an object reference callback is provided then all simple
  3045 // roots are pushed onto the marking stack so that they can be
  3046 // processed later
  3047 //
  3048 inline bool VM_HeapWalkOperation::collect_simple_roots() {
  3049   SimpleRootsClosure blk;
  3051   // JNI globals
  3052   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
  3053   JNIHandles::oops_do(&blk);
  3054   if (blk.stopped()) {
  3055     return false;
  3058   // Preloaded classes and loader from the system dictionary
  3059   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
  3060   SystemDictionary::always_strong_oops_do(&blk);
  3061   if (blk.stopped()) {
  3062     return false;
  3065   // Inflated monitors
  3066   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
  3067   ObjectSynchronizer::oops_do(&blk);
  3068   if (blk.stopped()) {
  3069     return false;
  3072   // threads are now handled in collect_stack_roots()
  3074   // Other kinds of roots maintained by HotSpot
  3075   // Many of these won't be visible but others (such as instances of important
  3076   // exceptions) will be visible.
  3077   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3078   Universe::oops_do(&blk);
  3080   // If there are any non-perm roots in the code cache, visit them.
  3081   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3082   CodeBlobToOopClosure look_in_blobs(&blk, false);
  3083   CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
  3085   return true;
  3088 // Walk the stack of a given thread and find all references (locals
  3089 // and JNI calls) and report these as stack references
  3090 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
  3091                                                       JNILocalRootsClosure* blk)
  3093   oop threadObj = java_thread->threadObj();
  3094   assert(threadObj != NULL, "sanity check");
  3096   // only need to get the thread's tag once per thread
  3097   jlong thread_tag = tag_for(_tag_map, threadObj);
  3099   // also need the thread id
  3100   jlong tid = java_lang_Thread::thread_id(threadObj);
  3103   if (java_thread->has_last_Java_frame()) {
  3105     // vframes are resource allocated
  3106     Thread* current_thread = Thread::current();
  3107     ResourceMark rm(current_thread);
  3108     HandleMark hm(current_thread);
  3110     RegisterMap reg_map(java_thread);
  3111     frame f = java_thread->last_frame();
  3112     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
  3114     bool is_top_frame = true;
  3115     int depth = 0;
  3116     frame* last_entry_frame = NULL;
  3118     while (vf != NULL) {
  3119       if (vf->is_java_frame()) {
  3121         // java frame (interpreted, compiled, ...)
  3122         javaVFrame *jvf = javaVFrame::cast(vf);
  3124         // the jmethodID
  3125         jmethodID method = jvf->method()->jmethod_id();
  3127         if (!(jvf->method()->is_native())) {
  3128           jlocation bci = (jlocation)jvf->bci();
  3129           StackValueCollection* locals = jvf->locals();
  3130           for (int slot=0; slot<locals->size(); slot++) {
  3131             if (locals->at(slot)->type() == T_OBJECT) {
  3132               oop o = locals->obj_at(slot)();
  3133               if (o == NULL) {
  3134                 continue;
  3137               // stack reference
  3138               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
  3139                                                    bci, slot, o)) {
  3140                 return false;
  3144         } else {
  3145           blk->set_context(thread_tag, tid, depth, method);
  3146           if (is_top_frame) {
  3147             // JNI locals for the top frame.
  3148             java_thread->active_handles()->oops_do(blk);
  3149           } else {
  3150             if (last_entry_frame != NULL) {
  3151               // JNI locals for the entry frame
  3152               assert(last_entry_frame->is_entry_frame(), "checking");
  3153               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
  3157         last_entry_frame = NULL;
  3158         depth++;
  3159       } else {
  3160         // externalVFrame - for an entry frame then we report the JNI locals
  3161         // when we find the corresponding javaVFrame
  3162         frame* fr = vf->frame_pointer();
  3163         assert(fr != NULL, "sanity check");
  3164         if (fr->is_entry_frame()) {
  3165           last_entry_frame = fr;
  3167         if (fr->is_ricochet_frame()) {
  3168           fr->oops_ricochet_do(blk, vf->register_map());
  3172       vf = vf->sender();
  3173       is_top_frame = false;
  3175   } else {
  3176     // no last java frame but there may be JNI locals
  3177     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
  3178     java_thread->active_handles()->oops_do(blk);
  3180   return true;
  3184 // Collects the simple roots for all threads and collects all
  3185 // stack roots - for each thread it walks the execution
  3186 // stack to find all references and local JNI refs.
  3187 inline bool VM_HeapWalkOperation::collect_stack_roots() {
  3188   JNILocalRootsClosure blk;
  3189   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3190     oop threadObj = thread->threadObj();
  3191     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3192       // Collect the simple root for this thread before we
  3193       // collect its stack roots
  3194       if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
  3195                                                threadObj)) {
  3196         return false;
  3198       if (!collect_stack_roots(thread, &blk)) {
  3199         return false;
  3203   return true;
  3206 // visit an object
  3207 // first mark the object as visited
  3208 // second get all the outbound references from this object (in other words, all
  3209 // the objects referenced by this object).
  3210 //
  3211 bool VM_HeapWalkOperation::visit(oop o) {
  3212   // mark object as visited
  3213   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
  3214   ObjectMarker::mark(o);
  3216   // instance
  3217   if (o->is_instance()) {
  3218     if (o->klass() == SystemDictionary::Class_klass()) {
  3219       o = klassOop_if_java_lang_Class(o);
  3220       if (o->is_klass()) {
  3221         // a java.lang.Class
  3222         return iterate_over_class(klassOop(o));
  3224     } else {
  3225       return iterate_over_object(o);
  3229   // object array
  3230   if (o->is_objArray()) {
  3231     return iterate_over_array(o);
  3234   // type array
  3235   if (o->is_typeArray()) {
  3236     return iterate_over_type_array(o);
  3239   return true;
  3242 void VM_HeapWalkOperation::doit() {
  3243   ResourceMark rm;
  3244   ObjectMarkerController marker;
  3245   ClassFieldMapCacheMark cm;
  3247   assert(visit_stack()->is_empty(), "visit stack must be empty");
  3249   // the heap walk starts with an initial object or the heap roots
  3250   if (initial_object().is_null()) {
  3251     // If either collect_stack_roots() or collect_simple_roots()
  3252     // returns false at this point, then there are no mark bits
  3253     // to reset.
  3254     ObjectMarker::set_needs_reset(false);
  3256     // Calling collect_stack_roots() before collect_simple_roots()
  3257     // can result in a big performance boost for an agent that is
  3258     // focused on analyzing references in the thread stacks.
  3259     if (!collect_stack_roots()) return;
  3261     if (!collect_simple_roots()) return;
  3263     // no early return so enable heap traversal to reset the mark bits
  3264     ObjectMarker::set_needs_reset(true);
  3265   } else {
  3266     visit_stack()->push(initial_object()());
  3269   // object references required
  3270   if (is_following_references()) {
  3272     // visit each object until all reachable objects have been
  3273     // visited or the callback asked to terminate the iteration.
  3274     while (!visit_stack()->is_empty()) {
  3275       oop o = visit_stack()->pop();
  3276       if (!ObjectMarker::visited(o)) {
  3277         if (!visit(o)) {
  3278           break;
  3285 // iterate over all objects that are reachable from a set of roots
  3286 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
  3287                                                  jvmtiStackReferenceCallback stack_ref_callback,
  3288                                                  jvmtiObjectReferenceCallback object_ref_callback,
  3289                                                  const void* user_data) {
  3290   MutexLocker ml(Heap_lock);
  3291   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
  3292   VM_HeapWalkOperation op(this, Handle(), context, user_data);
  3293   VMThread::execute(&op);
  3296 // iterate over all objects that are reachable from a given object
  3297 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
  3298                                                              jvmtiObjectReferenceCallback object_ref_callback,
  3299                                                              const void* user_data) {
  3300   oop obj = JNIHandles::resolve(object);
  3301   Handle initial_object(Thread::current(), obj);
  3303   MutexLocker ml(Heap_lock);
  3304   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
  3305   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3306   VMThread::execute(&op);
  3309 // follow references from an initial object or the GC roots
  3310 void JvmtiTagMap::follow_references(jint heap_filter,
  3311                                     KlassHandle klass,
  3312                                     jobject object,
  3313                                     const jvmtiHeapCallbacks* callbacks,
  3314                                     const void* user_data)
  3316   oop obj = JNIHandles::resolve(object);
  3317   Handle initial_object(Thread::current(), obj);
  3319   MutexLocker ml(Heap_lock);
  3320   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
  3321   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3322   VMThread::execute(&op);
  3326 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
  3327   // No locks during VM bring-up (0 threads) and no safepoints after main
  3328   // thread creation and before VMThread creation (1 thread); initial GC
  3329   // verification can happen in that window which gets to here.
  3330   assert(Threads::number_of_threads() <= 1 ||
  3331          SafepointSynchronize::is_at_safepoint(),
  3332          "must be executed at a safepoint");
  3333   if (JvmtiEnv::environments_might_exist()) {
  3334     JvmtiEnvIterator it;
  3335     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3336       JvmtiTagMap* tag_map = env->tag_map();
  3337       if (tag_map != NULL && !tag_map->is_empty()) {
  3338         tag_map->do_weak_oops(is_alive, f);
  3344 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
  3346   // does this environment have the OBJECT_FREE event enabled
  3347   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
  3349   // counters used for trace message
  3350   int freed = 0;
  3351   int moved = 0;
  3353   JvmtiTagHashmap* hashmap = this->hashmap();
  3355   // reenable sizing (if disabled)
  3356   hashmap->set_resizing_enabled(true);
  3358   // if the hashmap is empty then we can skip it
  3359   if (hashmap->_entry_count == 0) {
  3360     return;
  3363   // now iterate through each entry in the table
  3365   JvmtiTagHashmapEntry** table = hashmap->table();
  3366   int size = hashmap->size();
  3368   JvmtiTagHashmapEntry* delayed_add = NULL;
  3370   for (int pos = 0; pos < size; ++pos) {
  3371     JvmtiTagHashmapEntry* entry = table[pos];
  3372     JvmtiTagHashmapEntry* prev = NULL;
  3374     while (entry != NULL) {
  3375       JvmtiTagHashmapEntry* next = entry->next();
  3377       oop* obj = entry->object_addr();
  3379       // has object been GC'ed
  3380       if (!is_alive->do_object_b(entry->object())) {
  3381         // grab the tag
  3382         jlong tag = entry->tag();
  3383         guarantee(tag != 0, "checking");
  3385         // remove GC'ed entry from hashmap and return the
  3386         // entry to the free list
  3387         hashmap->remove(prev, pos, entry);
  3388         destroy_entry(entry);
  3390         // post the event to the profiler
  3391         if (post_object_free) {
  3392           JvmtiExport::post_object_free(env(), tag);
  3395         ++freed;
  3396       } else {
  3397         f->do_oop(entry->object_addr());
  3398         oop new_oop = entry->object();
  3400         // if the object has moved then re-hash it and move its
  3401         // entry to its new location.
  3402         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
  3403         if (new_pos != (unsigned int)pos) {
  3404           if (prev == NULL) {
  3405             table[pos] = next;
  3406           } else {
  3407             prev->set_next(next);
  3409           if (new_pos < (unsigned int)pos) {
  3410             entry->set_next(table[new_pos]);
  3411             table[new_pos] = entry;
  3412           } else {
  3413             // Delay adding this entry to it's new position as we'd end up
  3414             // hitting it again during this iteration.
  3415             entry->set_next(delayed_add);
  3416             delayed_add = entry;
  3418           moved++;
  3419         } else {
  3420           // object didn't move
  3421           prev = entry;
  3425       entry = next;
  3429   // Re-add all the entries which were kept aside
  3430   while (delayed_add != NULL) {
  3431     JvmtiTagHashmapEntry* next = delayed_add->next();
  3432     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object(), size);
  3433     delayed_add->set_next(table[pos]);
  3434     table[pos] = delayed_add;
  3435     delayed_add = next;
  3438   // stats
  3439   if (TraceJVMTIObjectTagging) {
  3440     int post_total = hashmap->_entry_count;
  3441     int pre_total = post_total + freed;
  3443     tty->print_cr("(%d->%d, %d freed, %d total moves)",
  3444         pre_total, post_total, freed, moved);

mercurial