src/share/vm/interpreter/interpreterRuntime.cpp

Fri, 13 Jul 2012 20:14:27 -0400

author
jiangli
date
Fri, 13 Jul 2012 20:14:27 -0400
changeset 3921
e74da3c2b827
parent 3900
d2a62e0f25eb
parent 3917
8150fa46d2ed
child 3931
dd785aabe02b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "gc_interface/collectedHeap.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "interpreter/linkResolver.hpp"
    33 #include "interpreter/templateTable.hpp"
    34 #include "memory/oopFactory.hpp"
    35 #include "memory/universe.inline.hpp"
    36 #include "oops/constantPoolOop.hpp"
    37 #include "oops/cpCacheOop.hpp"
    38 #include "oops/instanceKlass.hpp"
    39 #include "oops/methodDataOop.hpp"
    40 #include "oops/objArrayKlass.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "oops/symbol.hpp"
    43 #include "prims/jvmtiExport.hpp"
    44 #include "prims/nativeLookup.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/compilationPolicy.hpp"
    47 #include "runtime/deoptimization.hpp"
    48 #include "runtime/fieldDescriptor.hpp"
    49 #include "runtime/handles.inline.hpp"
    50 #include "runtime/interfaceSupport.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/jfieldIDWorkaround.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/synchronizer.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "utilities/events.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "vm_version_x86.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_sparc
    63 # include "vm_version_sparc.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_zero
    66 # include "vm_version_zero.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_arm
    69 # include "vm_version_arm.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_ppc
    72 # include "vm_version_ppc.hpp"
    73 #endif
    74 #ifdef COMPILER2
    75 #include "opto/runtime.hpp"
    76 #endif
    78 class UnlockFlagSaver {
    79   private:
    80     JavaThread* _thread;
    81     bool _do_not_unlock;
    82   public:
    83     UnlockFlagSaver(JavaThread* t) {
    84       _thread = t;
    85       _do_not_unlock = t->do_not_unlock_if_synchronized();
    86       t->set_do_not_unlock_if_synchronized(false);
    87     }
    88     ~UnlockFlagSaver() {
    89       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
    90     }
    91 };
    93 //------------------------------------------------------------------------------------------------------------------------
    94 // State accessors
    96 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
    97   last_frame(thread).interpreter_frame_set_bcp(bcp);
    98   if (ProfileInterpreter) {
    99     // ProfileTraps uses MDOs independently of ProfileInterpreter.
   100     // That is why we must check both ProfileInterpreter and mdo != NULL.
   101     methodDataOop mdo = last_frame(thread).interpreter_frame_method()->method_data();
   102     if (mdo != NULL) {
   103       NEEDS_CLEANUP;
   104       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
   105     }
   106   }
   107 }
   109 //------------------------------------------------------------------------------------------------------------------------
   110 // Constants
   113 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
   114   // access constant pool
   115   constantPoolOop pool = method(thread)->constants();
   116   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
   117   constantTag tag = pool->tag_at(index);
   119   if (tag.is_unresolved_klass() || tag.is_klass()) {
   120     klassOop klass = pool->klass_at(index, CHECK);
   121     oop java_class = klass->java_mirror();
   122     thread->set_vm_result(java_class);
   123   } else {
   124 #ifdef ASSERT
   125     // If we entered this runtime routine, we believed the tag contained
   126     // an unresolved string, an unresolved class or a resolved class.
   127     // However, another thread could have resolved the unresolved string
   128     // or class by the time we go there.
   129     assert(tag.is_unresolved_string()|| tag.is_string(), "expected string");
   130 #endif
   131     oop s_oop = pool->string_at(index, CHECK);
   132     thread->set_vm_result(s_oop);
   133   }
   134 IRT_END
   136 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
   137   assert(bytecode == Bytecodes::_fast_aldc ||
   138          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
   139   ResourceMark rm(thread);
   140   methodHandle m (thread, method(thread));
   141   Bytecode_loadconstant ldc(m, bci(thread));
   142   oop result = ldc.resolve_constant(CHECK);
   143 #ifdef ASSERT
   144   {
   145     // The bytecode wrappers aren't GC-safe so construct a new one
   146     Bytecode_loadconstant ldc2(m, bci(thread));
   147     ConstantPoolCacheEntry* cpce = m->constants()->cache()->entry_at(ldc2.cache_index());
   148     assert(result == cpce->f1(), "expected result for assembly code");
   149   }
   150 #endif
   151 }
   152 IRT_END
   155 //------------------------------------------------------------------------------------------------------------------------
   156 // Allocation
   158 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index))
   159   klassOop k_oop = pool->klass_at(index, CHECK);
   160   instanceKlassHandle klass (THREAD, k_oop);
   162   // Make sure we are not instantiating an abstract klass
   163   klass->check_valid_for_instantiation(true, CHECK);
   165   // Make sure klass is initialized
   166   klass->initialize(CHECK);
   168   // At this point the class may not be fully initialized
   169   // because of recursive initialization. If it is fully
   170   // initialized & has_finalized is not set, we rewrite
   171   // it into its fast version (Note: no locking is needed
   172   // here since this is an atomic byte write and can be
   173   // done more than once).
   174   //
   175   // Note: In case of classes with has_finalized we don't
   176   //       rewrite since that saves us an extra check in
   177   //       the fast version which then would call the
   178   //       slow version anyway (and do a call back into
   179   //       Java).
   180   //       If we have a breakpoint, then we don't rewrite
   181   //       because the _breakpoint bytecode would be lost.
   182   oop obj = klass->allocate_instance(CHECK);
   183   thread->set_vm_result(obj);
   184 IRT_END
   187 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
   188   oop obj = oopFactory::new_typeArray(type, size, CHECK);
   189   thread->set_vm_result(obj);
   190 IRT_END
   193 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, constantPoolOopDesc* pool, int index, jint size))
   194   // Note: no oopHandle for pool & klass needed since they are not used
   195   //       anymore after new_objArray() and no GC can happen before.
   196   //       (This may have to change if this code changes!)
   197   klassOop  klass = pool->klass_at(index, CHECK);
   198   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
   199   thread->set_vm_result(obj);
   200 IRT_END
   203 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
   204   // We may want to pass in more arguments - could make this slightly faster
   205   constantPoolOop constants = method(thread)->constants();
   206   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
   207   klassOop klass = constants->klass_at(i, CHECK);
   208   int   nof_dims = number_of_dimensions(thread);
   209   assert(oop(klass)->is_klass(), "not a class");
   210   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
   212   // We must create an array of jints to pass to multi_allocate.
   213   ResourceMark rm(thread);
   214   const int small_dims = 10;
   215   jint dim_array[small_dims];
   216   jint *dims = &dim_array[0];
   217   if (nof_dims > small_dims) {
   218     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
   219   }
   220   for (int index = 0; index < nof_dims; index++) {
   221     // offset from first_size_address is addressed as local[index]
   222     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
   223     dims[index] = first_size_address[n];
   224   }
   225   oop obj = arrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
   226   thread->set_vm_result(obj);
   227 IRT_END
   230 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   231   assert(obj->is_oop(), "must be a valid oop");
   232   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   233   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   234 IRT_END
   237 // Quicken instance-of and check-cast bytecodes
   238 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
   239   // Force resolving; quicken the bytecode
   240   int which = get_index_u2(thread, Bytecodes::_checkcast);
   241   constantPoolOop cpool = method(thread)->constants();
   242   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
   243   // program we might have seen an unquick'd bytecode in the interpreter but have another
   244   // thread quicken the bytecode before we get here.
   245   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
   246   klassOop klass = cpool->klass_at(which, CHECK);
   247   thread->set_vm_result(klass);
   248 IRT_END
   251 //------------------------------------------------------------------------------------------------------------------------
   252 // Exceptions
   254 // Assume the compiler is (or will be) interested in this event.
   255 // If necessary, create an MDO to hold the information, and record it.
   256 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
   257   assert(ProfileTraps, "call me only if profiling");
   258   methodHandle trap_method(thread, method(thread));
   260   if (trap_method.not_null()) {
   261     methodDataHandle trap_mdo(thread, trap_method->method_data());
   262     if (trap_mdo.is_null()) {
   263       methodOopDesc::build_interpreter_method_data(trap_method, THREAD);
   264       if (HAS_PENDING_EXCEPTION) {
   265         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
   266         CLEAR_PENDING_EXCEPTION;
   267       }
   268       trap_mdo = methodDataHandle(thread, trap_method->method_data());
   269       // and fall through...
   270     }
   271     if (trap_mdo.not_null()) {
   272       // Update per-method count of trap events.  The interpreter
   273       // is updating the MDO to simulate the effect of compiler traps.
   274       int trap_bci = trap_method->bci_from(bcp(thread));
   275       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
   276     }
   277   }
   278 }
   280 static Handle get_preinitialized_exception(klassOop k, TRAPS) {
   281   // get klass
   282   instanceKlass* klass = instanceKlass::cast(k);
   283   assert(klass->is_initialized(),
   284          "this klass should have been initialized during VM initialization");
   285   // create instance - do not call constructor since we may have no
   286   // (java) stack space left (should assert constructor is empty)
   287   Handle exception;
   288   oop exception_oop = klass->allocate_instance(CHECK_(exception));
   289   exception = Handle(THREAD, exception_oop);
   290   if (StackTraceInThrowable) {
   291     java_lang_Throwable::fill_in_stack_trace(exception);
   292   }
   293   return exception;
   294 }
   296 // Special handling for stack overflow: since we don't have any (java) stack
   297 // space left we use the pre-allocated & pre-initialized StackOverflowError
   298 // klass to create an stack overflow error instance.  We do not call its
   299 // constructor for the same reason (it is empty, anyway).
   300 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
   301   Handle exception = get_preinitialized_exception(
   302                                  SystemDictionary::StackOverflowError_klass(),
   303                                  CHECK);
   304   THROW_HANDLE(exception);
   305 IRT_END
   308 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
   309   // lookup exception klass
   310   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
   311   if (ProfileTraps) {
   312     if (s == vmSymbols::java_lang_ArithmeticException()) {
   313       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
   314     } else if (s == vmSymbols::java_lang_NullPointerException()) {
   315       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
   316     }
   317   }
   318   // create exception
   319   Handle exception = Exceptions::new_exception(thread, s, message);
   320   thread->set_vm_result(exception());
   321 IRT_END
   324 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
   325   ResourceMark rm(thread);
   326   const char* klass_name = Klass::cast(obj->klass())->external_name();
   327   // lookup exception klass
   328   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
   329   if (ProfileTraps) {
   330     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
   331   }
   332   // create exception, with klass name as detail message
   333   Handle exception = Exceptions::new_exception(thread, s, klass_name);
   334   thread->set_vm_result(exception());
   335 IRT_END
   338 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
   339   char message[jintAsStringSize];
   340   // lookup exception klass
   341   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
   342   if (ProfileTraps) {
   343     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
   344   }
   345   // create exception
   346   sprintf(message, "%d", index);
   347   THROW_MSG(s, message);
   348 IRT_END
   350 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
   351   JavaThread* thread, oopDesc* obj))
   353   ResourceMark rm(thread);
   354   char* message = SharedRuntime::generate_class_cast_message(
   355     thread, Klass::cast(obj->klass())->external_name());
   357   if (ProfileTraps) {
   358     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
   359   }
   361   // create exception
   362   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
   363 IRT_END
   365 // exception_handler_for_exception(...) returns the continuation address,
   366 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
   367 // The exception oop is returned to make sure it is preserved over GC (it
   368 // is only on the stack if the exception was thrown explicitly via athrow).
   369 // During this operation, the expression stack contains the values for the
   370 // bci where the exception happened. If the exception was propagated back
   371 // from a call, the expression stack contains the values for the bci at the
   372 // invoke w/o arguments (i.e., as if one were inside the call).
   373 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
   375   Handle             h_exception(thread, exception);
   376   methodHandle       h_method   (thread, method(thread));
   377   constantPoolHandle h_constants(thread, h_method->constants());
   378   bool               should_repeat;
   379   int                handler_bci;
   380   int                current_bci = bci(thread);
   382   // Need to do this check first since when _do_not_unlock_if_synchronized
   383   // is set, we don't want to trigger any classloading which may make calls
   384   // into java, or surprisingly find a matching exception handler for bci 0
   385   // since at this moment the method hasn't been "officially" entered yet.
   386   if (thread->do_not_unlock_if_synchronized()) {
   387     ResourceMark rm;
   388     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
   389     thread->set_vm_result(exception);
   390 #ifdef CC_INTERP
   391     return (address) -1;
   392 #else
   393     return Interpreter::remove_activation_entry();
   394 #endif
   395   }
   397   do {
   398     should_repeat = false;
   400     // assertions
   401 #ifdef ASSERT
   402     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
   403     assert(h_exception->is_oop(), "just checking");
   404     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   405     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
   406       if (ExitVMOnVerifyError) vm_exit(-1);
   407       ShouldNotReachHere();
   408     }
   409 #endif
   411     // tracing
   412     if (TraceExceptions) {
   413       ttyLocker ttyl;
   414       ResourceMark rm(thread);
   415       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception());
   416       tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
   417       tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
   418     }
   419 // Don't go paging in something which won't be used.
   420 //     else if (h_extable->length() == 0) {
   421 //       // disabled for now - interpreter is not using shortcut yet
   422 //       // (shortcut is not to call runtime if we have no exception handlers)
   423 //       // warning("performance bug: should not call runtime if method has no exception handlers");
   424 //     }
   425     // for AbortVMOnException flag
   426     NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
   428     // exception handler lookup
   429     KlassHandle h_klass(THREAD, h_exception->klass());
   430     handler_bci = h_method->fast_exception_handler_bci_for(h_klass, current_bci, THREAD);
   431     if (HAS_PENDING_EXCEPTION) {
   432       // We threw an exception while trying to find the exception handler.
   433       // Transfer the new exception to the exception handle which will
   434       // be set into thread local storage, and do another lookup for an
   435       // exception handler for this exception, this time starting at the
   436       // BCI of the exception handler which caused the exception to be
   437       // thrown (bug 4307310).
   438       h_exception = Handle(THREAD, PENDING_EXCEPTION);
   439       CLEAR_PENDING_EXCEPTION;
   440       if (handler_bci >= 0) {
   441         current_bci = handler_bci;
   442         should_repeat = true;
   443       }
   444     }
   445   } while (should_repeat == true);
   447   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
   448   // time throw or a stack unwinding throw and accordingly notify the debugger
   449   if (JvmtiExport::can_post_on_exceptions()) {
   450     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
   451   }
   453 #ifdef CC_INTERP
   454   address continuation = (address)(intptr_t) handler_bci;
   455 #else
   456   address continuation = NULL;
   457 #endif
   458   address handler_pc = NULL;
   459   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
   460     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
   461     // handler in this method, or (b) after a stack overflow there is not yet
   462     // enough stack space available to reprotect the stack.
   463 #ifndef CC_INTERP
   464     continuation = Interpreter::remove_activation_entry();
   465 #endif
   466     // Count this for compilation purposes
   467     h_method->interpreter_throwout_increment();
   468   } else {
   469     // handler in this method => change bci/bcp to handler bci/bcp and continue there
   470     handler_pc = h_method->code_base() + handler_bci;
   471 #ifndef CC_INTERP
   472     set_bcp_and_mdp(handler_pc, thread);
   473     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
   474 #endif
   475   }
   476   // notify debugger of an exception catch
   477   // (this is good for exceptions caught in native methods as well)
   478   if (JvmtiExport::can_post_on_exceptions()) {
   479     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
   480   }
   482   thread->set_vm_result(h_exception());
   483   return continuation;
   484 IRT_END
   487 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
   488   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
   489   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
   490 IRT_END
   493 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
   494   THROW(vmSymbols::java_lang_AbstractMethodError());
   495 IRT_END
   498 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   499   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
   500 IRT_END
   503 //------------------------------------------------------------------------------------------------------------------------
   504 // Fields
   505 //
   507 IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode))
   508   // resolve field
   509   FieldAccessInfo info;
   510   constantPoolHandle pool(thread, method(thread)->constants());
   511   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_putstatic);
   512   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
   514   {
   515     JvmtiHideSingleStepping jhss(thread);
   516     LinkResolver::resolve_field(info, pool, get_index_u2_cpcache(thread, bytecode),
   517                                 bytecode, false, CHECK);
   518   } // end JvmtiHideSingleStepping
   520   // check if link resolution caused cpCache to be updated
   521   if (already_resolved(thread)) return;
   523   // compute auxiliary field attributes
   524   TosState state  = as_TosState(info.field_type());
   526   // We need to delay resolving put instructions on final fields
   527   // until we actually invoke one. This is required so we throw
   528   // exceptions at the correct place. If we do not resolve completely
   529   // in the current pass, leaving the put_code set to zero will
   530   // cause the next put instruction to reresolve.
   531   Bytecodes::Code put_code = (Bytecodes::Code)0;
   533   // We also need to delay resolving getstatic instructions until the
   534   // class is intitialized.  This is required so that access to the static
   535   // field will call the initialization function every time until the class
   536   // is completely initialized ala. in 2.17.5 in JVM Specification.
   537   instanceKlass *klass = instanceKlass::cast(info.klass()->as_klassOop());
   538   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
   539                                !klass->is_initialized());
   540   Bytecodes::Code get_code = (Bytecodes::Code)0;
   542   if (!uninitialized_static) {
   543     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
   544     if (is_put || !info.access_flags().is_final()) {
   545       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
   546     }
   547   }
   549   if (is_put && !is_static && klass->is_subclass_of(SystemDictionary::CallSite_klass()) && (info.name() == vmSymbols::target_name())) {
   550     const jint direction = frame::interpreter_frame_expression_stack_direction();
   551     Handle call_site    (THREAD, *((oop*) thread->last_frame().interpreter_frame_tos_at(-1 * direction)));
   552     Handle method_handle(THREAD, *((oop*) thread->last_frame().interpreter_frame_tos_at( 0 * direction)));
   553     assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "must be");
   554     assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "must be");
   556     {
   557       // Walk all nmethods depending on this call site.
   558       MutexLocker mu(Compile_lock, thread);
   559       Universe::flush_dependents_on(call_site, method_handle);
   560     }
   562     // Don't allow fast path for setting CallSite.target and sub-classes.
   563     put_code = (Bytecodes::Code) 0;
   564   }
   566   cache_entry(thread)->set_field(
   567     get_code,
   568     put_code,
   569     info.klass(),
   570     info.field_index(),
   571     info.field_offset(),
   572     state,
   573     info.access_flags().is_final(),
   574     info.access_flags().is_volatile()
   575   );
   576 IRT_END
   579 //------------------------------------------------------------------------------------------------------------------------
   580 // Synchronization
   581 //
   582 // The interpreter's synchronization code is factored out so that it can
   583 // be shared by method invocation and synchronized blocks.
   584 //%note synchronization_3
   586 static void trace_locking(Handle& h_locking_obj, bool is_locking) {
   587   ObjectSynchronizer::trace_locking(h_locking_obj, false, true, is_locking);
   588 }
   591 //%note monitor_1
   592 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
   593 #ifdef ASSERT
   594   thread->last_frame().interpreter_frame_verify_monitor(elem);
   595 #endif
   596   if (PrintBiasedLockingStatistics) {
   597     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   598   }
   599   Handle h_obj(thread, elem->obj());
   600   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
   601          "must be NULL or an object");
   602   if (UseBiasedLocking) {
   603     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   604     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
   605   } else {
   606     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
   607   }
   608   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
   609          "must be NULL or an object");
   610 #ifdef ASSERT
   611   thread->last_frame().interpreter_frame_verify_monitor(elem);
   612 #endif
   613 IRT_END
   616 //%note monitor_1
   617 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
   618 #ifdef ASSERT
   619   thread->last_frame().interpreter_frame_verify_monitor(elem);
   620 #endif
   621   Handle h_obj(thread, elem->obj());
   622   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
   623          "must be NULL or an object");
   624   if (elem == NULL || h_obj()->is_unlocked()) {
   625     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   626   }
   627   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
   628   // Free entry. This must be done here, since a pending exception might be installed on
   629   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
   630   elem->set_obj(NULL);
   631 #ifdef ASSERT
   632   thread->last_frame().interpreter_frame_verify_monitor(elem);
   633 #endif
   634 IRT_END
   637 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
   638   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   639 IRT_END
   642 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
   643   // Returns an illegal exception to install into the current thread. The
   644   // pending_exception flag is cleared so normal exception handling does not
   645   // trigger. Any current installed exception will be overwritten. This
   646   // method will be called during an exception unwind.
   648   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
   649   Handle exception(thread, thread->vm_result());
   650   assert(exception() != NULL, "vm result should be set");
   651   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
   652   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
   653     exception = get_preinitialized_exception(
   654                        SystemDictionary::IllegalMonitorStateException_klass(),
   655                        CATCH);
   656   }
   657   thread->set_vm_result(exception());
   658 IRT_END
   661 //------------------------------------------------------------------------------------------------------------------------
   662 // Invokes
   664 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp))
   665   return method->orig_bytecode_at(method->bci_from(bcp));
   666 IRT_END
   668 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp, Bytecodes::Code new_code))
   669   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
   670 IRT_END
   672 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, methodOopDesc* method, address bcp))
   673   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
   674 IRT_END
   676 IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode))
   677   // extract receiver from the outgoing argument list if necessary
   678   Handle receiver(thread, NULL);
   679   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
   680     ResourceMark rm(thread);
   681     methodHandle m (thread, method(thread));
   682     Bytecode_invoke call(m, bci(thread));
   683     Symbol* signature = call.signature();
   684     receiver = Handle(thread,
   685                   thread->last_frame().interpreter_callee_receiver(signature));
   686     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
   687            "sanity check");
   688     assert(receiver.is_null() ||
   689            Universe::heap()->is_in_reserved(receiver->klass()),
   690            "sanity check");
   691   }
   693   // resolve method
   694   CallInfo info;
   695   constantPoolHandle pool(thread, method(thread)->constants());
   697   {
   698     JvmtiHideSingleStepping jhss(thread);
   699     LinkResolver::resolve_invoke(info, receiver, pool,
   700                                  get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
   701     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
   702       int retry_count = 0;
   703       while (info.resolved_method()->is_old()) {
   704         // It is very unlikely that method is redefined more than 100 times
   705         // in the middle of resolve. If it is looping here more than 100 times
   706         // means then there could be a bug here.
   707         guarantee((retry_count++ < 100),
   708                   "Could not resolve to latest version of redefined method");
   709         // method is redefined in the middle of resolve so re-try.
   710         LinkResolver::resolve_invoke(info, receiver, pool,
   711                                      get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
   712       }
   713     }
   714   } // end JvmtiHideSingleStepping
   716   // check if link resolution caused cpCache to be updated
   717   if (already_resolved(thread)) return;
   719   if (bytecode == Bytecodes::_invokeinterface) {
   721     if (TraceItables && Verbose) {
   722       ResourceMark rm(thread);
   723       tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
   724     }
   725     if (info.resolved_method()->method_holder() ==
   726                                             SystemDictionary::Object_klass()) {
   727       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
   728       // (see also cpCacheOop.cpp for details)
   729       methodHandle rm = info.resolved_method();
   730       assert(rm->is_final() || info.has_vtable_index(),
   731              "should have been set already");
   732       cache_entry(thread)->set_method(bytecode, rm, info.vtable_index());
   733     } else {
   734       // Setup itable entry
   735       int index = klassItable::compute_itable_index(info.resolved_method()());
   736       cache_entry(thread)->set_interface_call(info.resolved_method(), index);
   737     }
   738   } else {
   739     cache_entry(thread)->set_method(
   740       bytecode,
   741       info.resolved_method(),
   742       info.vtable_index());
   743   }
   744 IRT_END
   747 // First time execution:  Resolve symbols, create a permanent CallSite object.
   748 IRT_ENTRY(void, InterpreterRuntime::resolve_invokedynamic(JavaThread* thread)) {
   749   ResourceMark rm(thread);
   751   assert(EnableInvokeDynamic, "");
   753   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
   755   methodHandle caller_method(thread, method(thread));
   757   constantPoolHandle pool(thread, caller_method->constants());
   758   pool->set_invokedynamic();    // mark header to flag active call sites
   760   int caller_bci = 0;
   761   int site_index = 0;
   762   { address caller_bcp = bcp(thread);
   763     caller_bci = caller_method->bci_from(caller_bcp);
   764     site_index = Bytes::get_native_u4(caller_bcp+1);
   765   }
   766   assert(site_index == InterpreterRuntime::bytecode(thread).get_index_u4(bytecode), "");
   767   assert(constantPoolCacheOopDesc::is_secondary_index(site_index), "proper format");
   768   // there is a second CPC entries that is of interest; it caches signature info:
   769   int main_index = pool->cache()->secondary_entry_at(site_index)->main_entry_index();
   770   int pool_index = pool->cache()->entry_at(main_index)->constant_pool_index();
   772   // first resolve the signature to a MH.invoke methodOop
   773   if (!pool->cache()->entry_at(main_index)->is_resolved(bytecode)) {
   774     JvmtiHideSingleStepping jhss(thread);
   775     CallInfo callinfo;
   776     LinkResolver::resolve_invoke(callinfo, Handle(), pool,
   777                                  site_index, bytecode, CHECK);
   778     // The main entry corresponds to a JVM_CONSTANT_InvokeDynamic, and serves
   779     // as a common reference point for all invokedynamic call sites with
   780     // that exact call descriptor.  We will link it in the CP cache exactly
   781     // as if it were an invokevirtual of MethodHandle.invoke.
   782     pool->cache()->entry_at(main_index)->set_method(
   783       bytecode,
   784       callinfo.resolved_method(),
   785       callinfo.vtable_index());
   786   }
   788   // The method (f2 entry) of the main entry is the MH.invoke for the
   789   // invokedynamic target call signature.
   790   oop f1_value = pool->cache()->entry_at(main_index)->f1();
   791   methodHandle signature_invoker(THREAD, (methodOop) f1_value);
   792   assert(signature_invoker.not_null() && signature_invoker->is_method() && signature_invoker->is_method_handle_invoke(),
   793          "correct result from LinkResolver::resolve_invokedynamic");
   795   Handle info;  // optional argument(s) in JVM_CONSTANT_InvokeDynamic
   796   Handle bootm = SystemDictionary::find_bootstrap_method(caller_method, caller_bci,
   797                                                          main_index, info, CHECK);
   798   if (!java_lang_invoke_MethodHandle::is_instance(bootm())) {
   799     THROW_MSG(vmSymbols::java_lang_IllegalStateException(),
   800               "no bootstrap method found for invokedynamic");
   801   }
   803   // Short circuit if CallSite has been bound already:
   804   if (!pool->cache()->secondary_entry_at(site_index)->is_f1_null())
   805     return;
   807   Symbol*  call_site_name = pool->name_ref_at(site_index);
   809   Handle call_site
   810     = SystemDictionary::make_dynamic_call_site(bootm,
   811                                                // Callee information:
   812                                                call_site_name,
   813                                                signature_invoker,
   814                                                info,
   815                                                // Caller information:
   816                                                caller_method,
   817                                                caller_bci,
   818                                                CHECK);
   820   // In the secondary entry, the f1 field is the call site, and the f2 (index)
   821   // field is some data about the invoke site.  Currently, it is just the BCI.
   822   // Later, it might be changed to help manage inlining dependencies.
   823   pool->cache()->secondary_entry_at(site_index)->set_dynamic_call(call_site, signature_invoker);
   824 }
   825 IRT_END
   828 //------------------------------------------------------------------------------------------------------------------------
   829 // Miscellaneous
   832 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
   833   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
   834   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
   835   if (branch_bcp != NULL && nm != NULL) {
   836     // This was a successful request for an OSR nmethod.  Because
   837     // frequency_counter_overflow_inner ends with a safepoint check,
   838     // nm could have been unloaded so look it up again.  It's unsafe
   839     // to examine nm directly since it might have been freed and used
   840     // for something else.
   841     frame fr = thread->last_frame();
   842     methodOop method =  fr.interpreter_frame_method();
   843     int bci = method->bci_from(fr.interpreter_frame_bcp());
   844     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
   845   }
   846 #ifndef PRODUCT
   847   if (TraceOnStackReplacement) {
   848     if (nm != NULL) {
   849       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", nm->osr_entry());
   850       nm->print();
   851     }
   852   }
   853 #endif
   854   return nm;
   855 }
   857 IRT_ENTRY(nmethod*,
   858           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
   859   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
   860   // flag, in case this method triggers classloading which will call into Java.
   861   UnlockFlagSaver fs(thread);
   863   frame fr = thread->last_frame();
   864   assert(fr.is_interpreted_frame(), "must come from interpreter");
   865   methodHandle method(thread, fr.interpreter_frame_method());
   866   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
   867   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
   869   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
   870   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
   871   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
   873   if (osr_nm != NULL) {
   874     // We may need to do on-stack replacement which requires that no
   875     // monitors in the activation are biased because their
   876     // BasicObjectLocks will need to migrate during OSR. Force
   877     // unbiasing of all monitors in the activation now (even though
   878     // the OSR nmethod might be invalidated) because we don't have a
   879     // safepoint opportunity later once the migration begins.
   880     if (UseBiasedLocking) {
   881       ResourceMark rm;
   882       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
   883       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
   884            kptr < fr.interpreter_frame_monitor_begin();
   885            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
   886         if( kptr->obj() != NULL ) {
   887           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
   888         }
   889       }
   890       BiasedLocking::revoke(objects_to_revoke);
   891     }
   892   }
   893   return osr_nm;
   894 IRT_END
   896 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(methodOopDesc* method, address cur_bcp))
   897   assert(ProfileInterpreter, "must be profiling interpreter");
   898   int bci = method->bci_from(cur_bcp);
   899   methodDataOop mdo = method->method_data();
   900   if (mdo == NULL)  return 0;
   901   return mdo->bci_to_di(bci);
   902 IRT_END
   904 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
   905   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
   906   // flag, in case this method triggers classloading which will call into Java.
   907   UnlockFlagSaver fs(thread);
   909   assert(ProfileInterpreter, "must be profiling interpreter");
   910   frame fr = thread->last_frame();
   911   assert(fr.is_interpreted_frame(), "must come from interpreter");
   912   methodHandle method(thread, fr.interpreter_frame_method());
   913   methodOopDesc::build_interpreter_method_data(method, THREAD);
   914   if (HAS_PENDING_EXCEPTION) {
   915     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
   916     CLEAR_PENDING_EXCEPTION;
   917     // and fall through...
   918   }
   919 IRT_END
   922 #ifdef ASSERT
   923 IRT_LEAF(void, InterpreterRuntime::verify_mdp(methodOopDesc* method, address bcp, address mdp))
   924   assert(ProfileInterpreter, "must be profiling interpreter");
   926   methodDataOop mdo = method->method_data();
   927   assert(mdo != NULL, "must not be null");
   929   int bci = method->bci_from(bcp);
   931   address mdp2 = mdo->bci_to_dp(bci);
   932   if (mdp != mdp2) {
   933     ResourceMark rm;
   934     ResetNoHandleMark rnm; // In a LEAF entry.
   935     HandleMark hm;
   936     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
   937     int current_di = mdo->dp_to_di(mdp);
   938     int expected_di  = mdo->dp_to_di(mdp2);
   939     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
   940     int expected_approx_bci = mdo->data_at(expected_di)->bci();
   941     int approx_bci = -1;
   942     if (current_di >= 0) {
   943       approx_bci = mdo->data_at(current_di)->bci();
   944     }
   945     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
   946     mdo->print_on(tty);
   947     method->print_codes();
   948   }
   949   assert(mdp == mdp2, "wrong mdp");
   950 IRT_END
   951 #endif // ASSERT
   953 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
   954   assert(ProfileInterpreter, "must be profiling interpreter");
   955   ResourceMark rm(thread);
   956   HandleMark hm(thread);
   957   frame fr = thread->last_frame();
   958   assert(fr.is_interpreted_frame(), "must come from interpreter");
   959   methodDataHandle h_mdo(thread, fr.interpreter_frame_method()->method_data());
   961   // Grab a lock to ensure atomic access to setting the return bci and
   962   // the displacement.  This can block and GC, invalidating all naked oops.
   963   MutexLocker ml(RetData_lock);
   965   // ProfileData is essentially a wrapper around a derived oop, so we
   966   // need to take the lock before making any ProfileData structures.
   967   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
   968   RetData* rdata = data->as_RetData();
   969   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
   970   fr.interpreter_frame_set_mdp(new_mdp);
   971 IRT_END
   974 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
   975   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
   976   // stack traversal automatically takes care of preserving arguments for invoke, so
   977   // this is no longer needed.
   979   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
   980   // if this is called during a safepoint
   982   if (JvmtiExport::should_post_single_step()) {
   983     // We are called during regular safepoints and when the VM is
   984     // single stepping. If any thread is marked for single stepping,
   985     // then we may have JVMTI work to do.
   986     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
   987   }
   988 IRT_END
   990 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
   991 ConstantPoolCacheEntry *cp_entry))
   993   // check the access_flags for the field in the klass
   995   instanceKlass* ik = instanceKlass::cast(java_lang_Class::as_klassOop(cp_entry->f1()));
   996   int index = cp_entry->field_index();
   997   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
   999   switch(cp_entry->flag_state()) {
  1000     case btos:    // fall through
  1001     case ctos:    // fall through
  1002     case stos:    // fall through
  1003     case itos:    // fall through
  1004     case ftos:    // fall through
  1005     case ltos:    // fall through
  1006     case dtos:    // fall through
  1007     case atos: break;
  1008     default: ShouldNotReachHere(); return;
  1010   bool is_static = (obj == NULL);
  1011   HandleMark hm(thread);
  1013   Handle h_obj;
  1014   if (!is_static) {
  1015     // non-static field accessors have an object, but we need a handle
  1016     h_obj = Handle(thread, obj);
  1018   instanceKlassHandle h_cp_entry_f1(thread, java_lang_Class::as_klassOop(cp_entry->f1()));
  1019   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2(), is_static);
  1020   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
  1021 IRT_END
  1023 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
  1024   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
  1026   klassOop k = java_lang_Class::as_klassOop(cp_entry->f1());
  1028   // check the access_flags for the field in the klass
  1029   instanceKlass* ik = instanceKlass::cast(k);
  1030   int index = cp_entry->field_index();
  1031   // bail out if field modifications are not watched
  1032   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
  1034   char sig_type = '\0';
  1036   switch(cp_entry->flag_state()) {
  1037     case btos: sig_type = 'Z'; break;
  1038     case ctos: sig_type = 'C'; break;
  1039     case stos: sig_type = 'S'; break;
  1040     case itos: sig_type = 'I'; break;
  1041     case ftos: sig_type = 'F'; break;
  1042     case atos: sig_type = 'L'; break;
  1043     case ltos: sig_type = 'J'; break;
  1044     case dtos: sig_type = 'D'; break;
  1045     default:  ShouldNotReachHere(); return;
  1047   bool is_static = (obj == NULL);
  1049   HandleMark hm(thread);
  1050   instanceKlassHandle h_klass(thread, k);
  1051   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2(), is_static);
  1052   jvalue fvalue;
  1053 #ifdef _LP64
  1054   fvalue = *value;
  1055 #else
  1056   // Long/double values are stored unaligned and also noncontiguously with
  1057   // tagged stacks.  We can't just do a simple assignment even in the non-
  1058   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
  1059   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
  1060   // We assume that the two halves of longs/doubles are stored in interpreter
  1061   // stack slots in platform-endian order.
  1062   jlong_accessor u;
  1063   jint* newval = (jint*)value;
  1064   u.words[0] = newval[0];
  1065   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
  1066   fvalue.j = u.long_value;
  1067 #endif // _LP64
  1069   Handle h_obj;
  1070   if (!is_static) {
  1071     // non-static field accessors have an object, but we need a handle
  1072     h_obj = Handle(thread, obj);
  1075   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
  1076                                            fid, sig_type, &fvalue);
  1077 IRT_END
  1079 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
  1080   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
  1081 IRT_END
  1084 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
  1085   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
  1086 IRT_END
  1088 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
  1090   return (Interpreter::contains(pc) ? 1 : 0);
  1092 IRT_END
  1095 // Implementation of SignatureHandlerLibrary
  1097 address SignatureHandlerLibrary::set_handler_blob() {
  1098   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
  1099   if (handler_blob == NULL) {
  1100     return NULL;
  1102   address handler = handler_blob->code_begin();
  1103   _handler_blob = handler_blob;
  1104   _handler = handler;
  1105   return handler;
  1108 void SignatureHandlerLibrary::initialize() {
  1109   if (_fingerprints != NULL) {
  1110     return;
  1112   if (set_handler_blob() == NULL) {
  1113     vm_exit_out_of_memory(blob_size, "native signature handlers");
  1116   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
  1117                                       SignatureHandlerLibrary::buffer_size);
  1118   _buffer = bb->code_begin();
  1120   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
  1121   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
  1124 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
  1125   address handler   = _handler;
  1126   int     insts_size = buffer->pure_insts_size();
  1127   if (handler + insts_size > _handler_blob->code_end()) {
  1128     // get a new handler blob
  1129     handler = set_handler_blob();
  1131   if (handler != NULL) {
  1132     memcpy(handler, buffer->insts_begin(), insts_size);
  1133     pd_set_handler(handler);
  1134     ICache::invalidate_range(handler, insts_size);
  1135     _handler = handler + insts_size;
  1137   return handler;
  1140 void SignatureHandlerLibrary::add(methodHandle method) {
  1141   if (method->signature_handler() == NULL) {
  1142     // use slow signature handler if we can't do better
  1143     int handler_index = -1;
  1144     // check if we can use customized (fast) signature handler
  1145     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
  1146       // use customized signature handler
  1147       MutexLocker mu(SignatureHandlerLibrary_lock);
  1148       // make sure data structure is initialized
  1149       initialize();
  1150       // lookup method signature's fingerprint
  1151       uint64_t fingerprint = Fingerprinter(method).fingerprint();
  1152       handler_index = _fingerprints->find(fingerprint);
  1153       // create handler if necessary
  1154       if (handler_index < 0) {
  1155         ResourceMark rm;
  1156         ptrdiff_t align_offset = (address)
  1157           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
  1158         CodeBuffer buffer((address)(_buffer + align_offset),
  1159                           SignatureHandlerLibrary::buffer_size - align_offset);
  1160         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
  1161         // copy into code heap
  1162         address handler = set_handler(&buffer);
  1163         if (handler == NULL) {
  1164           // use slow signature handler
  1165         } else {
  1166           // debugging suppport
  1167           if (PrintSignatureHandlers) {
  1168             tty->cr();
  1169             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
  1170                           _handlers->length(),
  1171                           (method->is_static() ? "static" : "receiver"),
  1172                           method->name_and_sig_as_C_string(),
  1173                           fingerprint,
  1174                           buffer.insts_size());
  1175             Disassembler::decode(handler, handler + buffer.insts_size());
  1176 #ifndef PRODUCT
  1177             tty->print_cr(" --- associated result handler ---");
  1178             address rh_begin = Interpreter::result_handler(method()->result_type());
  1179             address rh_end = rh_begin;
  1180             while (*(int*)rh_end != 0) {
  1181               rh_end += sizeof(int);
  1183             Disassembler::decode(rh_begin, rh_end);
  1184 #endif
  1186           // add handler to library
  1187           _fingerprints->append(fingerprint);
  1188           _handlers->append(handler);
  1189           // set handler index
  1190           assert(_fingerprints->length() == _handlers->length(), "sanity check");
  1191           handler_index = _fingerprints->length() - 1;
  1194       // Set handler under SignatureHandlerLibrary_lock
  1195     if (handler_index < 0) {
  1196       // use generic signature handler
  1197       method->set_signature_handler(Interpreter::slow_signature_handler());
  1198     } else {
  1199       // set handler
  1200       method->set_signature_handler(_handlers->at(handler_index));
  1202     } else {
  1203       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
  1204       // use generic signature handler
  1205       method->set_signature_handler(Interpreter::slow_signature_handler());
  1208 #ifdef ASSERT
  1209   int handler_index = -1;
  1210   int fingerprint_index = -2;
  1212     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
  1213     // in any way if accessed from multiple threads. To avoid races with another
  1214     // thread which may change the arrays in the above, mutex protected block, we
  1215     // have to protect this read access here with the same mutex as well!
  1216     MutexLocker mu(SignatureHandlerLibrary_lock);
  1217     if (_handlers != NULL) {
  1218     handler_index = _handlers->find(method->signature_handler());
  1219     fingerprint_index = _fingerprints->find(Fingerprinter(method).fingerprint());
  1222   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
  1223          handler_index == fingerprint_index, "sanity check");
  1224 #endif // ASSERT
  1228 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
  1229 address                  SignatureHandlerLibrary::_handler      = NULL;
  1230 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
  1231 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
  1232 address                  SignatureHandlerLibrary::_buffer       = NULL;
  1235 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, methodOopDesc* method))
  1236   methodHandle m(thread, method);
  1237   assert(m->is_native(), "sanity check");
  1238   // lookup native function entry point if it doesn't exist
  1239   bool in_base_library;
  1240   if (!m->has_native_function()) {
  1241     NativeLookup::lookup(m, in_base_library, CHECK);
  1243   // make sure signature handler is installed
  1244   SignatureHandlerLibrary::add(m);
  1245   // The interpreter entry point checks the signature handler first,
  1246   // before trying to fetch the native entry point and klass mirror.
  1247   // We must set the signature handler last, so that multiple processors
  1248   // preparing the same method will be sure to see non-null entry & mirror.
  1249 IRT_END
  1251 #if defined(IA32) || defined(AMD64) || defined(ARM)
  1252 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
  1253   if (src_address == dest_address) {
  1254     return;
  1256   ResetNoHandleMark rnm; // In a LEAF entry.
  1257   HandleMark hm;
  1258   ResourceMark rm;
  1259   frame fr = thread->last_frame();
  1260   assert(fr.is_interpreted_frame(), "");
  1261   jint bci = fr.interpreter_frame_bci();
  1262   methodHandle mh(thread, fr.interpreter_frame_method());
  1263   Bytecode_invoke invoke(mh, bci);
  1264   ArgumentSizeComputer asc(invoke.signature());
  1265   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
  1266   Copy::conjoint_jbytes(src_address, dest_address,
  1267                        size_of_arguments * Interpreter::stackElementSize);
  1268 IRT_END
  1269 #endif

mercurial