src/share/vm/gc_implementation/g1/heapRegion.cpp

Tue, 28 May 2013 09:32:06 +0200

author
tschatzl
date
Tue, 28 May 2013 09:32:06 +0200
changeset 5204
e72f7eecc96d
parent 4065
8fbf05030e24
child 5205
3a4805ad0005
permissions
-rw-r--r--

8013895: G1: G1SummarizeRSetStats output on Linux needs improvemen
Summary: Fixed the output of G1SummarizeRSetStats: too small datatype for the number of concurrently processed cards, added concurrent remembered set thread time retrieval for Linux and Windows (BSD uses os::elapsedTime() now), and other cleanup. The information presented during VM operation is now relative to the previous output, not always cumulative if G1SummarizeRSetStatsPeriod > 0. At VM exit, the code prints a cumulative summary.
Reviewed-by: johnc, jwilhelm

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    29 #include "gc_implementation/g1/heapRegion.inline.hpp"
    30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    32 #include "memory/genOopClosures.inline.hpp"
    33 #include "memory/iterator.hpp"
    34 #include "oops/oop.inline.hpp"
    36 int    HeapRegion::LogOfHRGrainBytes = 0;
    37 int    HeapRegion::LogOfHRGrainWords = 0;
    38 size_t HeapRegion::GrainBytes        = 0;
    39 size_t HeapRegion::GrainWords        = 0;
    40 size_t HeapRegion::CardsPerRegion    = 0;
    42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    43                                  HeapRegion* hr, ExtendedOopClosure* cl,
    44                                  CardTableModRefBS::PrecisionStyle precision,
    45                                  FilterKind fk) :
    46   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    47   _hr(hr), _fk(fk), _g1(g1) { }
    49 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    50                                                    OopClosure* oc) :
    51   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    53 class VerifyLiveClosure: public OopClosure {
    54 private:
    55   G1CollectedHeap* _g1h;
    56   CardTableModRefBS* _bs;
    57   oop _containing_obj;
    58   bool _failures;
    59   int _n_failures;
    60   VerifyOption _vo;
    61 public:
    62   // _vo == UsePrevMarking -> use "prev" marking information,
    63   // _vo == UseNextMarking -> use "next" marking information,
    64   // _vo == UseMarkWord    -> use mark word from object header.
    65   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
    66     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
    67     _failures(false), _n_failures(0), _vo(vo)
    68   {
    69     BarrierSet* bs = _g1h->barrier_set();
    70     if (bs->is_a(BarrierSet::CardTableModRef))
    71       _bs = (CardTableModRefBS*)bs;
    72   }
    74   void set_containing_obj(oop obj) {
    75     _containing_obj = obj;
    76   }
    78   bool failures() { return _failures; }
    79   int n_failures() { return _n_failures; }
    81   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
    82   virtual void do_oop(      oop* p) { do_oop_work(p); }
    84   void print_object(outputStream* out, oop obj) {
    85 #ifdef PRODUCT
    86     Klass* k = obj->klass();
    87     const char* class_name = InstanceKlass::cast(k)->external_name();
    88     out->print_cr("class name %s", class_name);
    89 #else // PRODUCT
    90     obj->print_on(out);
    91 #endif // PRODUCT
    92   }
    94   template <class T>
    95   void do_oop_work(T* p) {
    96     assert(_containing_obj != NULL, "Precondition");
    97     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
    98            "Precondition");
    99     T heap_oop = oopDesc::load_heap_oop(p);
   100     if (!oopDesc::is_null(heap_oop)) {
   101       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   102       bool failed = false;
   103       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   104         MutexLockerEx x(ParGCRareEvent_lock,
   105                         Mutex::_no_safepoint_check_flag);
   107         if (!_failures) {
   108           gclog_or_tty->print_cr("");
   109           gclog_or_tty->print_cr("----------");
   110         }
   111         if (!_g1h->is_in_closed_subset(obj)) {
   112           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   113           gclog_or_tty->print_cr("Field "PTR_FORMAT
   114                                  " of live obj "PTR_FORMAT" in region "
   115                                  "["PTR_FORMAT", "PTR_FORMAT")",
   116                                  p, (void*) _containing_obj,
   117                                  from->bottom(), from->end());
   118           print_object(gclog_or_tty, _containing_obj);
   119           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   120                                  (void*) obj);
   121         } else {
   122           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   123           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   124           gclog_or_tty->print_cr("Field "PTR_FORMAT
   125                                  " of live obj "PTR_FORMAT" in region "
   126                                  "["PTR_FORMAT", "PTR_FORMAT")",
   127                                  p, (void*) _containing_obj,
   128                                  from->bottom(), from->end());
   129           print_object(gclog_or_tty, _containing_obj);
   130           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   131                                  "["PTR_FORMAT", "PTR_FORMAT")",
   132                                  (void*) obj, to->bottom(), to->end());
   133           print_object(gclog_or_tty, obj);
   134         }
   135         gclog_or_tty->print_cr("----------");
   136         gclog_or_tty->flush();
   137         _failures = true;
   138         failed = true;
   139         _n_failures++;
   140       }
   142       if (!_g1h->full_collection()) {
   143         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   144         HeapRegion* to   = _g1h->heap_region_containing(obj);
   145         if (from != NULL && to != NULL &&
   146             from != to &&
   147             !to->isHumongous()) {
   148           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   149           jbyte cv_field = *_bs->byte_for_const(p);
   150           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   152           bool is_bad = !(from->is_young()
   153                           || to->rem_set()->contains_reference(p)
   154                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   155                               (_containing_obj->is_objArray() ?
   156                                   cv_field == dirty
   157                                : cv_obj == dirty || cv_field == dirty));
   158           if (is_bad) {
   159             MutexLockerEx x(ParGCRareEvent_lock,
   160                             Mutex::_no_safepoint_check_flag);
   162             if (!_failures) {
   163               gclog_or_tty->print_cr("");
   164               gclog_or_tty->print_cr("----------");
   165             }
   166             gclog_or_tty->print_cr("Missing rem set entry:");
   167             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   168                                    "of obj "PTR_FORMAT", "
   169                                    "in region "HR_FORMAT,
   170                                    p, (void*) _containing_obj,
   171                                    HR_FORMAT_PARAMS(from));
   172             _containing_obj->print_on(gclog_or_tty);
   173             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   174                                    "in region "HR_FORMAT,
   175                                    (void*) obj,
   176                                    HR_FORMAT_PARAMS(to));
   177             obj->print_on(gclog_or_tty);
   178             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   179                           cv_obj, cv_field);
   180             gclog_or_tty->print_cr("----------");
   181             gclog_or_tty->flush();
   182             _failures = true;
   183             if (!failed) _n_failures++;
   184           }
   185         }
   186       }
   187     }
   188   }
   189 };
   191 template<class ClosureType>
   192 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
   193                                HeapRegion* hr,
   194                                HeapWord* cur, HeapWord* top) {
   195   oop cur_oop = oop(cur);
   196   int oop_size = cur_oop->size();
   197   HeapWord* next_obj = cur + oop_size;
   198   while (next_obj < top) {
   199     // Keep filtering the remembered set.
   200     if (!g1h->is_obj_dead(cur_oop, hr)) {
   201       // Bottom lies entirely below top, so we can call the
   202       // non-memRegion version of oop_iterate below.
   203       cur_oop->oop_iterate(cl);
   204     }
   205     cur = next_obj;
   206     cur_oop = oop(cur);
   207     oop_size = cur_oop->size();
   208     next_obj = cur + oop_size;
   209   }
   210   return cur;
   211 }
   213 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
   214                                               HeapWord* bottom,
   215                                               HeapWord* top,
   216                                               ExtendedOopClosure* cl) {
   217   G1CollectedHeap* g1h = _g1;
   218   int oop_size;
   219   ExtendedOopClosure* cl2 = NULL;
   221   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
   222   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
   224   switch (_fk) {
   225   case NoFilterKind:          cl2 = cl; break;
   226   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
   227   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
   228   default:                    ShouldNotReachHere();
   229   }
   231   // Start filtering what we add to the remembered set. If the object is
   232   // not considered dead, either because it is marked (in the mark bitmap)
   233   // or it was allocated after marking finished, then we add it. Otherwise
   234   // we can safely ignore the object.
   235   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   236     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   237   } else {
   238     oop_size = oop(bottom)->size();
   239   }
   241   bottom += oop_size;
   243   if (bottom < top) {
   244     // We replicate the loop below for several kinds of possible filters.
   245     switch (_fk) {
   246     case NoFilterKind:
   247       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   248       break;
   250     case IntoCSFilterKind: {
   251       FilterIntoCSClosure filt(this, g1h, cl);
   252       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   253       break;
   254     }
   256     case OutOfRegionFilterKind: {
   257       FilterOutOfRegionClosure filt(_hr, cl);
   258       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   259       break;
   260     }
   262     default:
   263       ShouldNotReachHere();
   264     }
   266     // Last object. Need to do dead-obj filtering here too.
   267     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   268       oop(bottom)->oop_iterate(cl2, mr);
   269     }
   270   }
   271 }
   273 // Minimum region size; we won't go lower than that.
   274 // We might want to decrease this in the future, to deal with small
   275 // heaps a bit more efficiently.
   276 #define MIN_REGION_SIZE  (      1024 * 1024 )
   278 // Maximum region size; we don't go higher than that. There's a good
   279 // reason for having an upper bound. We don't want regions to get too
   280 // large, otherwise cleanup's effectiveness would decrease as there
   281 // will be fewer opportunities to find totally empty regions after
   282 // marking.
   283 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   285 // The automatic region size calculation will try to have around this
   286 // many regions in the heap (based on the min heap size).
   287 #define TARGET_REGION_NUMBER          2048
   289 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
   290   // region_size in bytes
   291   uintx region_size = G1HeapRegionSize;
   292   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   293     // We base the automatic calculation on the min heap size. This
   294     // can be problematic if the spread between min and max is quite
   295     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
   296     // the max size, the region size might be way too large for the
   297     // min size. Either way, some users might have to set the region
   298     // size manually for some -Xms / -Xmx combos.
   300     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
   301                        (uintx) MIN_REGION_SIZE);
   302   }
   304   int region_size_log = log2_long((jlong) region_size);
   305   // Recalculate the region size to make sure it's a power of
   306   // 2. This means that region_size is the largest power of 2 that's
   307   // <= what we've calculated so far.
   308   region_size = ((uintx)1 << region_size_log);
   310   // Now make sure that we don't go over or under our limits.
   311   if (region_size < MIN_REGION_SIZE) {
   312     region_size = MIN_REGION_SIZE;
   313   } else if (region_size > MAX_REGION_SIZE) {
   314     region_size = MAX_REGION_SIZE;
   315   }
   317   // And recalculate the log.
   318   region_size_log = log2_long((jlong) region_size);
   320   // Now, set up the globals.
   321   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   322   LogOfHRGrainBytes = region_size_log;
   324   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   325   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   327   guarantee(GrainBytes == 0, "we should only set it once");
   328   // The cast to int is safe, given that we've bounded region_size by
   329   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   330   GrainBytes = (size_t)region_size;
   332   guarantee(GrainWords == 0, "we should only set it once");
   333   GrainWords = GrainBytes >> LogHeapWordSize;
   334   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   336   guarantee(CardsPerRegion == 0, "we should only set it once");
   337   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   338 }
   340 void HeapRegion::reset_after_compaction() {
   341   G1OffsetTableContigSpace::reset_after_compaction();
   342   // After a compaction the mark bitmap is invalid, so we must
   343   // treat all objects as being inside the unmarked area.
   344   zero_marked_bytes();
   345   init_top_at_mark_start();
   346 }
   348 void HeapRegion::hr_clear(bool par, bool clear_space) {
   349   assert(_humongous_type == NotHumongous,
   350          "we should have already filtered out humongous regions");
   351   assert(_humongous_start_region == NULL,
   352          "we should have already filtered out humongous regions");
   353   assert(_end == _orig_end,
   354          "we should have already filtered out humongous regions");
   356   _in_collection_set = false;
   358   set_young_index_in_cset(-1);
   359   uninstall_surv_rate_group();
   360   set_young_type(NotYoung);
   361   reset_pre_dummy_top();
   363   if (!par) {
   364     // If this is parallel, this will be done later.
   365     HeapRegionRemSet* hrrs = rem_set();
   366     if (hrrs != NULL) hrrs->clear();
   367     _claimed = InitialClaimValue;
   368   }
   369   zero_marked_bytes();
   371   _offsets.resize(HeapRegion::GrainWords);
   372   init_top_at_mark_start();
   373   if (clear_space) clear(SpaceDecorator::Mangle);
   374 }
   376 void HeapRegion::par_clear() {
   377   assert(used() == 0, "the region should have been already cleared");
   378   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   379   HeapRegionRemSet* hrrs = rem_set();
   380   hrrs->clear();
   381   CardTableModRefBS* ct_bs =
   382                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   383   ct_bs->clear(MemRegion(bottom(), end()));
   384 }
   386 void HeapRegion::calc_gc_efficiency() {
   387   // GC efficiency is the ratio of how much space would be
   388   // reclaimed over how long we predict it would take to reclaim it.
   389   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   390   G1CollectorPolicy* g1p = g1h->g1_policy();
   392   // Retrieve a prediction of the elapsed time for this region for
   393   // a mixed gc because the region will only be evacuated during a
   394   // mixed gc.
   395   double region_elapsed_time_ms =
   396     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   397   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   398 }
   400 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   401   assert(!isHumongous(), "sanity / pre-condition");
   402   assert(end() == _orig_end,
   403          "Should be normal before the humongous object allocation");
   404   assert(top() == bottom(), "should be empty");
   405   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   407   _humongous_type = StartsHumongous;
   408   _humongous_start_region = this;
   410   set_end(new_end);
   411   _offsets.set_for_starts_humongous(new_top);
   412 }
   414 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   415   assert(!isHumongous(), "sanity / pre-condition");
   416   assert(end() == _orig_end,
   417          "Should be normal before the humongous object allocation");
   418   assert(top() == bottom(), "should be empty");
   419   assert(first_hr->startsHumongous(), "pre-condition");
   421   _humongous_type = ContinuesHumongous;
   422   _humongous_start_region = first_hr;
   423 }
   425 void HeapRegion::set_notHumongous() {
   426   assert(isHumongous(), "pre-condition");
   428   if (startsHumongous()) {
   429     assert(top() <= end(), "pre-condition");
   430     set_end(_orig_end);
   431     if (top() > end()) {
   432       // at least one "continues humongous" region after it
   433       set_top(end());
   434     }
   435   } else {
   436     // continues humongous
   437     assert(end() == _orig_end, "sanity");
   438   }
   440   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   441   _humongous_type = NotHumongous;
   442   _humongous_start_region = NULL;
   443 }
   445 bool HeapRegion::claimHeapRegion(jint claimValue) {
   446   jint current = _claimed;
   447   if (current != claimValue) {
   448     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   449     if (res == current) {
   450       return true;
   451     }
   452   }
   453   return false;
   454 }
   456 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   457   HeapWord* low = addr;
   458   HeapWord* high = end();
   459   while (low < high) {
   460     size_t diff = pointer_delta(high, low);
   461     // Must add one below to bias toward the high amount.  Otherwise, if
   462   // "high" were at the desired value, and "low" were one less, we
   463     // would not converge on "high".  This is not symmetric, because
   464     // we set "high" to a block start, which might be the right one,
   465     // which we don't do for "low".
   466     HeapWord* middle = low + (diff+1)/2;
   467     if (middle == high) return high;
   468     HeapWord* mid_bs = block_start_careful(middle);
   469     if (mid_bs < addr) {
   470       low = middle;
   471     } else {
   472       high = mid_bs;
   473     }
   474   }
   475   assert(low == high && low >= addr, "Didn't work.");
   476   return low;
   477 }
   479 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   480 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   481 #endif // _MSC_VER
   484 HeapRegion::HeapRegion(uint hrs_index,
   485                        G1BlockOffsetSharedArray* sharedOffsetArray,
   486                        MemRegion mr) :
   487     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   488     _hrs_index(hrs_index),
   489     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   490     _in_collection_set(false),
   491     _next_in_special_set(NULL), _orig_end(NULL),
   492     _claimed(InitialClaimValue), _evacuation_failed(false),
   493     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   494     _young_type(NotYoung), _next_young_region(NULL),
   495     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
   496 #ifdef ASSERT
   497     _containing_set(NULL),
   498 #endif // ASSERT
   499      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   500     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   501     _predicted_bytes_to_copy(0)
   502 {
   503   _orig_end = mr.end();
   504   // Note that initialize() will set the start of the unmarked area of the
   505   // region.
   506   hr_clear(false /*par*/, false /*clear_space*/);
   507   set_top(bottom());
   508   set_saved_mark();
   510   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
   512   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   513 }
   515 CompactibleSpace* HeapRegion::next_compaction_space() const {
   516   // We're not using an iterator given that it will wrap around when
   517   // it reaches the last region and this is not what we want here.
   518   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   519   uint index = hrs_index() + 1;
   520   while (index < g1h->n_regions()) {
   521     HeapRegion* hr = g1h->region_at(index);
   522     if (!hr->isHumongous()) {
   523       return hr;
   524     }
   525     index += 1;
   526   }
   527   return NULL;
   528 }
   530 void HeapRegion::save_marks() {
   531   set_saved_mark();
   532 }
   534 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   535   HeapWord* p = mr.start();
   536   HeapWord* e = mr.end();
   537   oop obj;
   538   while (p < e) {
   539     obj = oop(p);
   540     p += obj->oop_iterate(cl);
   541   }
   542   assert(p == e, "bad memregion: doesn't end on obj boundary");
   543 }
   545 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   546 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   547   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   548 }
   549 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   552 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
   553   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   554 }
   556 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   557                                                     bool during_conc_mark) {
   558   // We always recreate the prev marking info and we'll explicitly
   559   // mark all objects we find to be self-forwarded on the prev
   560   // bitmap. So all objects need to be below PTAMS.
   561   _prev_top_at_mark_start = top();
   562   _prev_marked_bytes = 0;
   564   if (during_initial_mark) {
   565     // During initial-mark, we'll also explicitly mark all objects
   566     // we find to be self-forwarded on the next bitmap. So all
   567     // objects need to be below NTAMS.
   568     _next_top_at_mark_start = top();
   569     _next_marked_bytes = 0;
   570   } else if (during_conc_mark) {
   571     // During concurrent mark, all objects in the CSet (including
   572     // the ones we find to be self-forwarded) are implicitly live.
   573     // So all objects need to be above NTAMS.
   574     _next_top_at_mark_start = bottom();
   575     _next_marked_bytes = 0;
   576   }
   577 }
   579 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   580                                                   bool during_conc_mark,
   581                                                   size_t marked_bytes) {
   582   assert(0 <= marked_bytes && marked_bytes <= used(),
   583          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   584                  marked_bytes, used()));
   585   _prev_marked_bytes = marked_bytes;
   586 }
   588 HeapWord*
   589 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   590                                                  ObjectClosure* cl) {
   591   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   592   // We used to use "block_start_careful" here.  But we're actually happy
   593   // to update the BOT while we do this...
   594   HeapWord* cur = block_start(mr.start());
   595   mr = mr.intersection(used_region());
   596   if (mr.is_empty()) return NULL;
   597   // Otherwise, find the obj that extends onto mr.start().
   599   assert(cur <= mr.start()
   600          && (oop(cur)->klass_or_null() == NULL ||
   601              cur + oop(cur)->size() > mr.start()),
   602          "postcondition of block_start");
   603   oop obj;
   604   while (cur < mr.end()) {
   605     obj = oop(cur);
   606     if (obj->klass_or_null() == NULL) {
   607       // Ran into an unparseable point.
   608       return cur;
   609     } else if (!g1h->is_obj_dead(obj)) {
   610       cl->do_object(obj);
   611     }
   612     if (cl->abort()) return cur;
   613     // The check above must occur before the operation below, since an
   614     // abort might invalidate the "size" operation.
   615     cur += obj->size();
   616   }
   617   return NULL;
   618 }
   620 HeapWord*
   621 HeapRegion::
   622 oops_on_card_seq_iterate_careful(MemRegion mr,
   623                                  FilterOutOfRegionClosure* cl,
   624                                  bool filter_young,
   625                                  jbyte* card_ptr) {
   626   // Currently, we should only have to clean the card if filter_young
   627   // is true and vice versa.
   628   if (filter_young) {
   629     assert(card_ptr != NULL, "pre-condition");
   630   } else {
   631     assert(card_ptr == NULL, "pre-condition");
   632   }
   633   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   635   // If we're within a stop-world GC, then we might look at a card in a
   636   // GC alloc region that extends onto a GC LAB, which may not be
   637   // parseable.  Stop such at the "saved_mark" of the region.
   638   if (g1h->is_gc_active()) {
   639     mr = mr.intersection(used_region_at_save_marks());
   640   } else {
   641     mr = mr.intersection(used_region());
   642   }
   643   if (mr.is_empty()) return NULL;
   644   // Otherwise, find the obj that extends onto mr.start().
   646   // The intersection of the incoming mr (for the card) and the
   647   // allocated part of the region is non-empty. This implies that
   648   // we have actually allocated into this region. The code in
   649   // G1CollectedHeap.cpp that allocates a new region sets the
   650   // is_young tag on the region before allocating. Thus we
   651   // safely know if this region is young.
   652   if (is_young() && filter_young) {
   653     return NULL;
   654   }
   656   assert(!is_young(), "check value of filter_young");
   658   // We can only clean the card here, after we make the decision that
   659   // the card is not young. And we only clean the card if we have been
   660   // asked to (i.e., card_ptr != NULL).
   661   if (card_ptr != NULL) {
   662     *card_ptr = CardTableModRefBS::clean_card_val();
   663     // We must complete this write before we do any of the reads below.
   664     OrderAccess::storeload();
   665   }
   667   // Cache the boundaries of the memory region in some const locals
   668   HeapWord* const start = mr.start();
   669   HeapWord* const end = mr.end();
   671   // We used to use "block_start_careful" here.  But we're actually happy
   672   // to update the BOT while we do this...
   673   HeapWord* cur = block_start(start);
   674   assert(cur <= start, "Postcondition");
   676   oop obj;
   678   HeapWord* next = cur;
   679   while (next <= start) {
   680     cur = next;
   681     obj = oop(cur);
   682     if (obj->klass_or_null() == NULL) {
   683       // Ran into an unparseable point.
   684       return cur;
   685     }
   686     // Otherwise...
   687     next = (cur + obj->size());
   688   }
   690   // If we finish the above loop...We have a parseable object that
   691   // begins on or before the start of the memory region, and ends
   692   // inside or spans the entire region.
   694   assert(obj == oop(cur), "sanity");
   695   assert(cur <= start &&
   696          obj->klass_or_null() != NULL &&
   697          (cur + obj->size()) > start,
   698          "Loop postcondition");
   700   if (!g1h->is_obj_dead(obj)) {
   701     obj->oop_iterate(cl, mr);
   702   }
   704   while (cur < end) {
   705     obj = oop(cur);
   706     if (obj->klass_or_null() == NULL) {
   707       // Ran into an unparseable point.
   708       return cur;
   709     };
   711     // Otherwise:
   712     next = (cur + obj->size());
   714     if (!g1h->is_obj_dead(obj)) {
   715       if (next < end || !obj->is_objArray()) {
   716         // This object either does not span the MemRegion
   717         // boundary, or if it does it's not an array.
   718         // Apply closure to whole object.
   719         obj->oop_iterate(cl);
   720       } else {
   721         // This obj is an array that spans the boundary.
   722         // Stop at the boundary.
   723         obj->oop_iterate(cl, mr);
   724       }
   725     }
   726     cur = next;
   727   }
   728   return NULL;
   729 }
   731 void HeapRegion::print() const { print_on(gclog_or_tty); }
   732 void HeapRegion::print_on(outputStream* st) const {
   733   if (isHumongous()) {
   734     if (startsHumongous())
   735       st->print(" HS");
   736     else
   737       st->print(" HC");
   738   } else {
   739     st->print("   ");
   740   }
   741   if (in_collection_set())
   742     st->print(" CS");
   743   else
   744     st->print("   ");
   745   if (is_young())
   746     st->print(is_survivor() ? " SU" : " Y ");
   747   else
   748     st->print("   ");
   749   if (is_empty())
   750     st->print(" F");
   751   else
   752     st->print("  ");
   753   st->print(" TS %5d", _gc_time_stamp);
   754   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   755             prev_top_at_mark_start(), next_top_at_mark_start());
   756   G1OffsetTableContigSpace::print_on(st);
   757 }
   759 void HeapRegion::verify() const {
   760   bool dummy = false;
   761   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
   762 }
   764 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   765 // We would need a mechanism to make that code skip dead objects.
   767 void HeapRegion::verify(VerifyOption vo,
   768                         bool* failures) const {
   769   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   770   *failures = false;
   771   HeapWord* p = bottom();
   772   HeapWord* prev_p = NULL;
   773   VerifyLiveClosure vl_cl(g1, vo);
   774   bool is_humongous = isHumongous();
   775   bool do_bot_verify = !is_young();
   776   size_t object_num = 0;
   777   while (p < top()) {
   778     oop obj = oop(p);
   779     size_t obj_size = obj->size();
   780     object_num += 1;
   782     if (is_humongous != g1->isHumongous(obj_size)) {
   783       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   784                              SIZE_FORMAT" words) in a %shumongous region",
   785                              p, g1->isHumongous(obj_size) ? "" : "non-",
   786                              obj_size, is_humongous ? "" : "non-");
   787        *failures = true;
   788        return;
   789     }
   791     // If it returns false, verify_for_object() will output the
   792     // appropriate messasge.
   793     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   794       *failures = true;
   795       return;
   796     }
   798     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   799       if (obj->is_oop()) {
   800         Klass* klass = obj->klass();
   801         if (!klass->is_metadata()) {
   802           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   803                                  "not metadata", klass, obj);
   804           *failures = true;
   805           return;
   806         } else if (!klass->is_klass()) {
   807           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   808                                  "not a klass", klass, obj);
   809           *failures = true;
   810           return;
   811         } else {
   812           vl_cl.set_containing_obj(obj);
   813           obj->oop_iterate_no_header(&vl_cl);
   814           if (vl_cl.failures()) {
   815             *failures = true;
   816           }
   817           if (G1MaxVerifyFailures >= 0 &&
   818               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   819             return;
   820           }
   821         }
   822       } else {
   823         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
   824         *failures = true;
   825         return;
   826       }
   827     }
   828     prev_p = p;
   829     p += obj_size;
   830   }
   832   if (p != top()) {
   833     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   834                            "does not match top "PTR_FORMAT, p, top());
   835     *failures = true;
   836     return;
   837   }
   839   HeapWord* the_end = end();
   840   assert(p == top(), "it should still hold");
   841   // Do some extra BOT consistency checking for addresses in the
   842   // range [top, end). BOT look-ups in this range should yield
   843   // top. No point in doing that if top == end (there's nothing there).
   844   if (p < the_end) {
   845     // Look up top
   846     HeapWord* addr_1 = p;
   847     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   848     if (b_start_1 != p) {
   849       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   850                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   851                              addr_1, b_start_1, p);
   852       *failures = true;
   853       return;
   854     }
   856     // Look up top + 1
   857     HeapWord* addr_2 = p + 1;
   858     if (addr_2 < the_end) {
   859       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   860       if (b_start_2 != p) {
   861         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   862                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   863                                addr_2, b_start_2, p);
   864         *failures = true;
   865         return;
   866       }
   867     }
   869     // Look up an address between top and end
   870     size_t diff = pointer_delta(the_end, p) / 2;
   871     HeapWord* addr_3 = p + diff;
   872     if (addr_3 < the_end) {
   873       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   874       if (b_start_3 != p) {
   875         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
   876                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   877                                addr_3, b_start_3, p);
   878         *failures = true;
   879         return;
   880       }
   881     }
   883     // Loook up end - 1
   884     HeapWord* addr_4 = the_end - 1;
   885     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   886     if (b_start_4 != p) {
   887       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
   888                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   889                              addr_4, b_start_4, p);
   890       *failures = true;
   891       return;
   892     }
   893   }
   895   if (is_humongous && object_num > 1) {
   896     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
   897                            "but has "SIZE_FORMAT", objects",
   898                            bottom(), end(), object_num);
   899     *failures = true;
   900     return;
   901   }
   902 }
   904 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
   905 // away eventually.
   907 void G1OffsetTableContigSpace::clear(bool mangle_space) {
   908   ContiguousSpace::clear(mangle_space);
   909   _offsets.zero_bottom_entry();
   910   _offsets.initialize_threshold();
   911 }
   913 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   914   Space::set_bottom(new_bottom);
   915   _offsets.set_bottom(new_bottom);
   916 }
   918 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
   919   Space::set_end(new_end);
   920   _offsets.resize(new_end - bottom());
   921 }
   923 void G1OffsetTableContigSpace::print() const {
   924   print_short();
   925   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   926                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   927                 bottom(), top(), _offsets.threshold(), end());
   928 }
   930 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
   931   return _offsets.initialize_threshold();
   932 }
   934 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
   935                                                     HeapWord* end) {
   936   _offsets.alloc_block(start, end);
   937   return _offsets.threshold();
   938 }
   940 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
   941   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   942   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
   943   if (_gc_time_stamp < g1h->get_gc_time_stamp())
   944     return top();
   945   else
   946     return ContiguousSpace::saved_mark_word();
   947 }
   949 void G1OffsetTableContigSpace::set_saved_mark() {
   950   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   951   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
   953   if (_gc_time_stamp < curr_gc_time_stamp) {
   954     // The order of these is important, as another thread might be
   955     // about to start scanning this region. If it does so after
   956     // set_saved_mark and before _gc_time_stamp = ..., then the latter
   957     // will be false, and it will pick up top() as the high water mark
   958     // of region. If it does so after _gc_time_stamp = ..., then it
   959     // will pick up the right saved_mark_word() as the high water mark
   960     // of the region. Either way, the behaviour will be correct.
   961     ContiguousSpace::set_saved_mark();
   962     OrderAccess::storestore();
   963     _gc_time_stamp = curr_gc_time_stamp;
   964     // No need to do another barrier to flush the writes above. If
   965     // this is called in parallel with other threads trying to
   966     // allocate into the region, the caller should call this while
   967     // holding a lock and when the lock is released the writes will be
   968     // flushed.
   969   }
   970 }
   972 G1OffsetTableContigSpace::
   973 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   974                          MemRegion mr) :
   975   _offsets(sharedOffsetArray, mr),
   976   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
   977   _gc_time_stamp(0)
   978 {
   979   _offsets.set_space(this);
   980   // false ==> we'll do the clearing if there's clearing to be done.
   981   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
   982   _offsets.zero_bottom_entry();
   983   _offsets.initialize_threshold();
   984 }

mercurial