src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Tue, 28 May 2013 09:32:06 +0200

author
tschatzl
date
Tue, 28 May 2013 09:32:06 +0200
changeset 5204
e72f7eecc96d
parent 5123
48391ab0687e
child 5237
f2110083203d
permissions
-rw-r--r--

8013895: G1: G1SummarizeRSetStats output on Linux needs improvemen
Summary: Fixed the output of G1SummarizeRSetStats: too small datatype for the number of concurrently processed cards, added concurrent remembered set thread time retrieval for Linux and Windows (BSD uses os::elapsedTime() now), and other cleanup. The information presented during VM operation is now relative to the previous output, not always cumulative if G1SummarizeRSetStatsPeriod > 0. At VM exit, the code prints a cumulative summary.
Reviewed-by: johnc, jwilhelm

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/java.hpp"
    38 #include "runtime/mutexLocker.hpp"
    39 #include "utilities/debug.hpp"
    41 // Different defaults for different number of GC threads
    42 // They were chosen by running GCOld and SPECjbb on debris with different
    43 //   numbers of GC threads and choosing them based on the results
    45 // all the same
    46 static double rs_length_diff_defaults[] = {
    47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    48 };
    50 static double cost_per_card_ms_defaults[] = {
    51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    52 };
    54 // all the same
    55 static double young_cards_per_entry_ratio_defaults[] = {
    56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    57 };
    59 static double cost_per_entry_ms_defaults[] = {
    60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    61 };
    63 static double cost_per_byte_ms_defaults[] = {
    64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    65 };
    67 // these should be pretty consistent
    68 static double constant_other_time_ms_defaults[] = {
    69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    70 };
    73 static double young_other_cost_per_region_ms_defaults[] = {
    74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    75 };
    77 static double non_young_other_cost_per_region_ms_defaults[] = {
    78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    79 };
    81 G1CollectorPolicy::G1CollectorPolicy() :
    82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    83                         ? ParallelGCThreads : 1),
    85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _stop_world_start(0.0),
    88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    92   _prev_collection_pause_end_ms(0.0),
    93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _non_young_other_cost_per_region_ms_seq(
   104                                          new TruncatedSeq(TruncatedSeqLength)),
   106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   109   _pause_time_target_ms((double) MaxGCPauseMillis),
   111   _gcs_are_young(true),
   113   _during_marking(false),
   114   _in_marking_window(false),
   115   _in_marking_window_im(false),
   117   _recent_prev_end_times_for_all_gcs_sec(
   118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   120   _recent_avg_pause_time_ratio(0.0),
   122   _initiate_conc_mark_if_possible(false),
   123   _during_initial_mark_pause(false),
   124   _last_young_gc(false),
   125   _last_gc_was_young(false),
   127   _eden_used_bytes_before_gc(0),
   128   _survivor_used_bytes_before_gc(0),
   129   _heap_used_bytes_before_gc(0),
   130   _metaspace_used_bytes_before_gc(0),
   131   _eden_capacity_bytes_before_gc(0),
   132   _heap_capacity_bytes_before_gc(0),
   134   _eden_cset_region_length(0),
   135   _survivor_cset_region_length(0),
   136   _old_cset_region_length(0),
   138   _collection_set(NULL),
   139   _collection_set_bytes_used_before(0),
   141   // Incremental CSet attributes
   142   _inc_cset_build_state(Inactive),
   143   _inc_cset_head(NULL),
   144   _inc_cset_tail(NULL),
   145   _inc_cset_bytes_used_before(0),
   146   _inc_cset_max_finger(NULL),
   147   _inc_cset_recorded_rs_lengths(0),
   148   _inc_cset_recorded_rs_lengths_diffs(0),
   149   _inc_cset_predicted_elapsed_time_ms(0.0),
   150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   154 #endif // _MSC_VER
   156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   157                                                  G1YoungSurvRateNumRegionsSummary)),
   158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   159                                               G1YoungSurvRateNumRegionsSummary)),
   160   // add here any more surv rate groups
   161   _recorded_survivor_regions(0),
   162   _recorded_survivor_head(NULL),
   163   _recorded_survivor_tail(NULL),
   164   _survivors_age_table(true),
   166   _gc_overhead_perc(0.0) {
   168   // Set up the region size and associated fields. Given that the
   169   // policy is created before the heap, we have to set this up here,
   170   // so it's done as soon as possible.
   171   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   172   HeapRegionRemSet::setup_remset_size();
   174   G1ErgoVerbose::initialize();
   175   if (PrintAdaptiveSizePolicy) {
   176     // Currently, we only use a single switch for all the heuristics.
   177     G1ErgoVerbose::set_enabled(true);
   178     // Given that we don't currently have a verboseness level
   179     // parameter, we'll hardcode this to high. This can be easily
   180     // changed in the future.
   181     G1ErgoVerbose::set_level(ErgoHigh);
   182   } else {
   183     G1ErgoVerbose::set_enabled(false);
   184   }
   186   // Verify PLAB sizes
   187   const size_t region_size = HeapRegion::GrainWords;
   188   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   189     char buffer[128];
   190     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   191                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   192     vm_exit_during_initialization(buffer);
   193   }
   195   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   196   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   198   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   200   int index = MIN2(_parallel_gc_threads - 1, 7);
   202   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   203   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   204   _young_cards_per_entry_ratio_seq->add(
   205                                   young_cards_per_entry_ratio_defaults[index]);
   206   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   207   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   208   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   209   _young_other_cost_per_region_ms_seq->add(
   210                                young_other_cost_per_region_ms_defaults[index]);
   211   _non_young_other_cost_per_region_ms_seq->add(
   212                            non_young_other_cost_per_region_ms_defaults[index]);
   214   // Below, we might need to calculate the pause time target based on
   215   // the pause interval. When we do so we are going to give G1 maximum
   216   // flexibility and allow it to do pauses when it needs to. So, we'll
   217   // arrange that the pause interval to be pause time target + 1 to
   218   // ensure that a) the pause time target is maximized with respect to
   219   // the pause interval and b) we maintain the invariant that pause
   220   // time target < pause interval. If the user does not want this
   221   // maximum flexibility, they will have to set the pause interval
   222   // explicitly.
   224   // First make sure that, if either parameter is set, its value is
   225   // reasonable.
   226   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   227     if (MaxGCPauseMillis < 1) {
   228       vm_exit_during_initialization("MaxGCPauseMillis should be "
   229                                     "greater than 0");
   230     }
   231   }
   232   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   233     if (GCPauseIntervalMillis < 1) {
   234       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   235                                     "greater than 0");
   236     }
   237   }
   239   // Then, if the pause time target parameter was not set, set it to
   240   // the default value.
   241   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   242     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   243       // The default pause time target in G1 is 200ms
   244       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   245     } else {
   246       // We do not allow the pause interval to be set without the
   247       // pause time target
   248       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   249                                     "without setting MaxGCPauseMillis");
   250     }
   251   }
   253   // Then, if the interval parameter was not set, set it according to
   254   // the pause time target (this will also deal with the case when the
   255   // pause time target is the default value).
   256   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   257     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   258   }
   260   // Finally, make sure that the two parameters are consistent.
   261   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   262     char buffer[256];
   263     jio_snprintf(buffer, 256,
   264                  "MaxGCPauseMillis (%u) should be less than "
   265                  "GCPauseIntervalMillis (%u)",
   266                  MaxGCPauseMillis, GCPauseIntervalMillis);
   267     vm_exit_during_initialization(buffer);
   268   }
   270   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   271   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   272   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   274   uintx confidence_perc = G1ConfidencePercent;
   275   // Put an artificial ceiling on this so that it's not set to a silly value.
   276   if (confidence_perc > 100) {
   277     confidence_perc = 100;
   278     warning("G1ConfidencePercent is set to a value that is too large, "
   279             "it's been updated to %u", confidence_perc);
   280   }
   281   _sigma = (double) confidence_perc / 100.0;
   283   // start conservatively (around 50ms is about right)
   284   _concurrent_mark_remark_times_ms->add(0.05);
   285   _concurrent_mark_cleanup_times_ms->add(0.20);
   286   _tenuring_threshold = MaxTenuringThreshold;
   287   // _max_survivor_regions will be calculated by
   288   // update_young_list_target_length() during initialization.
   289   _max_survivor_regions = 0;
   291   assert(GCTimeRatio > 0,
   292          "we should have set it to a default value set_g1_gc_flags() "
   293          "if a user set it to 0");
   294   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   296   uintx reserve_perc = G1ReservePercent;
   297   // Put an artificial ceiling on this so that it's not set to a silly value.
   298   if (reserve_perc > 50) {
   299     reserve_perc = 50;
   300     warning("G1ReservePercent is set to a value that is too large, "
   301             "it's been updated to %u", reserve_perc);
   302   }
   303   _reserve_factor = (double) reserve_perc / 100.0;
   304   // This will be set when the heap is expanded
   305   // for the first time during initialization.
   306   _reserve_regions = 0;
   308   initialize_all();
   309   _collectionSetChooser = new CollectionSetChooser();
   310   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   311 }
   313 void G1CollectorPolicy::initialize_flags() {
   314   set_min_alignment(HeapRegion::GrainBytes);
   315   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   316   set_max_alignment(MAX2(card_table_alignment, min_alignment()));
   317   if (SurvivorRatio < 1) {
   318     vm_exit_during_initialization("Invalid survivor ratio specified");
   319   }
   320   CollectorPolicy::initialize_flags();
   321 }
   323 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   324   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
   325   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
   326   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
   328   if (FLAG_IS_CMDLINE(NewRatio)) {
   329     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   330       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   331     } else {
   332       _sizer_kind = SizerNewRatio;
   333       _adaptive_size = false;
   334       return;
   335     }
   336   }
   338   if (FLAG_IS_CMDLINE(NewSize)) {
   339     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   340                                      1U);
   341     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   342       _max_desired_young_length =
   343                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   344                                   1U);
   345       _sizer_kind = SizerMaxAndNewSize;
   346       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   347     } else {
   348       _sizer_kind = SizerNewSizeOnly;
   349     }
   350   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   351     _max_desired_young_length =
   352                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   353                                   1U);
   354     _sizer_kind = SizerMaxNewSizeOnly;
   355   }
   356 }
   358 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   359   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
   360   return MAX2(1U, default_value);
   361 }
   363 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   364   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
   365   return MAX2(1U, default_value);
   366 }
   368 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   369   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   371   switch (_sizer_kind) {
   372     case SizerDefaults:
   373       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   374       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   375       break;
   376     case SizerNewSizeOnly:
   377       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   378       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   379       break;
   380     case SizerMaxNewSizeOnly:
   381       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   382       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   383       break;
   384     case SizerMaxAndNewSize:
   385       // Do nothing. Values set on the command line, don't update them at runtime.
   386       break;
   387     case SizerNewRatio:
   388       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   389       _max_desired_young_length = _min_desired_young_length;
   390       break;
   391     default:
   392       ShouldNotReachHere();
   393   }
   395   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   396 }
   398 void G1CollectorPolicy::init() {
   399   // Set aside an initial future to_space.
   400   _g1 = G1CollectedHeap::heap();
   402   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   404   initialize_gc_policy_counters();
   406   if (adaptive_young_list_length()) {
   407     _young_list_fixed_length = 0;
   408   } else {
   409     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   410   }
   411   _free_regions_at_end_of_collection = _g1->free_regions();
   412   update_young_list_target_length();
   414   // We may immediately start allocating regions and placing them on the
   415   // collection set list. Initialize the per-collection set info
   416   start_incremental_cset_building();
   417 }
   419 // Create the jstat counters for the policy.
   420 void G1CollectorPolicy::initialize_gc_policy_counters() {
   421   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   422 }
   424 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   425                                          double base_time_ms,
   426                                          uint base_free_regions,
   427                                          double target_pause_time_ms) {
   428   if (young_length >= base_free_regions) {
   429     // end condition 1: not enough space for the young regions
   430     return false;
   431   }
   433   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   434   size_t bytes_to_copy =
   435                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   436   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   437   double young_other_time_ms = predict_young_other_time_ms(young_length);
   438   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   439   if (pause_time_ms > target_pause_time_ms) {
   440     // end condition 2: prediction is over the target pause time
   441     return false;
   442   }
   444   size_t free_bytes =
   445                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   446   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   447     // end condition 3: out-of-space (conservatively!)
   448     return false;
   449   }
   451   // success!
   452   return true;
   453 }
   455 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   456   // re-calculate the necessary reserve
   457   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   458   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   459   // smaller than 1.0) we'll get 1.
   460   _reserve_regions = (uint) ceil(reserve_regions_d);
   462   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   463 }
   465 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   466                                                        uint base_min_length) {
   467   uint desired_min_length = 0;
   468   if (adaptive_young_list_length()) {
   469     if (_alloc_rate_ms_seq->num() > 3) {
   470       double now_sec = os::elapsedTime();
   471       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   472       double alloc_rate_ms = predict_alloc_rate_ms();
   473       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   474     } else {
   475       // otherwise we don't have enough info to make the prediction
   476     }
   477   }
   478   desired_min_length += base_min_length;
   479   // make sure we don't go below any user-defined minimum bound
   480   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   481 }
   483 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   484   // Here, we might want to also take into account any additional
   485   // constraints (i.e., user-defined minimum bound). Currently, we
   486   // effectively don't set this bound.
   487   return _young_gen_sizer->max_desired_young_length();
   488 }
   490 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   491   if (rs_lengths == (size_t) -1) {
   492     // if it's set to the default value (-1), we should predict it;
   493     // otherwise, use the given value.
   494     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   495   }
   497   // Calculate the absolute and desired min bounds.
   499   // This is how many young regions we already have (currently: the survivors).
   500   uint base_min_length = recorded_survivor_regions();
   501   // This is the absolute minimum young length, which ensures that we
   502   // can allocate one eden region in the worst-case.
   503   uint absolute_min_length = base_min_length + 1;
   504   uint desired_min_length =
   505                      calculate_young_list_desired_min_length(base_min_length);
   506   if (desired_min_length < absolute_min_length) {
   507     desired_min_length = absolute_min_length;
   508   }
   510   // Calculate the absolute and desired max bounds.
   512   // We will try our best not to "eat" into the reserve.
   513   uint absolute_max_length = 0;
   514   if (_free_regions_at_end_of_collection > _reserve_regions) {
   515     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   516   }
   517   uint desired_max_length = calculate_young_list_desired_max_length();
   518   if (desired_max_length > absolute_max_length) {
   519     desired_max_length = absolute_max_length;
   520   }
   522   uint young_list_target_length = 0;
   523   if (adaptive_young_list_length()) {
   524     if (gcs_are_young()) {
   525       young_list_target_length =
   526                         calculate_young_list_target_length(rs_lengths,
   527                                                            base_min_length,
   528                                                            desired_min_length,
   529                                                            desired_max_length);
   530       _rs_lengths_prediction = rs_lengths;
   531     } else {
   532       // Don't calculate anything and let the code below bound it to
   533       // the desired_min_length, i.e., do the next GC as soon as
   534       // possible to maximize how many old regions we can add to it.
   535     }
   536   } else {
   537     // The user asked for a fixed young gen so we'll fix the young gen
   538     // whether the next GC is young or mixed.
   539     young_list_target_length = _young_list_fixed_length;
   540   }
   542   // Make sure we don't go over the desired max length, nor under the
   543   // desired min length. In case they clash, desired_min_length wins
   544   // which is why that test is second.
   545   if (young_list_target_length > desired_max_length) {
   546     young_list_target_length = desired_max_length;
   547   }
   548   if (young_list_target_length < desired_min_length) {
   549     young_list_target_length = desired_min_length;
   550   }
   552   assert(young_list_target_length > recorded_survivor_regions(),
   553          "we should be able to allocate at least one eden region");
   554   assert(young_list_target_length >= absolute_min_length, "post-condition");
   555   _young_list_target_length = young_list_target_length;
   557   update_max_gc_locker_expansion();
   558 }
   560 uint
   561 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   562                                                      uint base_min_length,
   563                                                      uint desired_min_length,
   564                                                      uint desired_max_length) {
   565   assert(adaptive_young_list_length(), "pre-condition");
   566   assert(gcs_are_young(), "only call this for young GCs");
   568   // In case some edge-condition makes the desired max length too small...
   569   if (desired_max_length <= desired_min_length) {
   570     return desired_min_length;
   571   }
   573   // We'll adjust min_young_length and max_young_length not to include
   574   // the already allocated young regions (i.e., so they reflect the
   575   // min and max eden regions we'll allocate). The base_min_length
   576   // will be reflected in the predictions by the
   577   // survivor_regions_evac_time prediction.
   578   assert(desired_min_length > base_min_length, "invariant");
   579   uint min_young_length = desired_min_length - base_min_length;
   580   assert(desired_max_length > base_min_length, "invariant");
   581   uint max_young_length = desired_max_length - base_min_length;
   583   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   584   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   585   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   586   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   587   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   588   double base_time_ms =
   589     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   590     survivor_regions_evac_time;
   591   uint available_free_regions = _free_regions_at_end_of_collection;
   592   uint base_free_regions = 0;
   593   if (available_free_regions > _reserve_regions) {
   594     base_free_regions = available_free_regions - _reserve_regions;
   595   }
   597   // Here, we will make sure that the shortest young length that
   598   // makes sense fits within the target pause time.
   600   if (predict_will_fit(min_young_length, base_time_ms,
   601                        base_free_regions, target_pause_time_ms)) {
   602     // The shortest young length will fit into the target pause time;
   603     // we'll now check whether the absolute maximum number of young
   604     // regions will fit in the target pause time. If not, we'll do
   605     // a binary search between min_young_length and max_young_length.
   606     if (predict_will_fit(max_young_length, base_time_ms,
   607                          base_free_regions, target_pause_time_ms)) {
   608       // The maximum young length will fit into the target pause time.
   609       // We are done so set min young length to the maximum length (as
   610       // the result is assumed to be returned in min_young_length).
   611       min_young_length = max_young_length;
   612     } else {
   613       // The maximum possible number of young regions will not fit within
   614       // the target pause time so we'll search for the optimal
   615       // length. The loop invariants are:
   616       //
   617       // min_young_length < max_young_length
   618       // min_young_length is known to fit into the target pause time
   619       // max_young_length is known not to fit into the target pause time
   620       //
   621       // Going into the loop we know the above hold as we've just
   622       // checked them. Every time around the loop we check whether
   623       // the middle value between min_young_length and
   624       // max_young_length fits into the target pause time. If it
   625       // does, it becomes the new min. If it doesn't, it becomes
   626       // the new max. This way we maintain the loop invariants.
   628       assert(min_young_length < max_young_length, "invariant");
   629       uint diff = (max_young_length - min_young_length) / 2;
   630       while (diff > 0) {
   631         uint young_length = min_young_length + diff;
   632         if (predict_will_fit(young_length, base_time_ms,
   633                              base_free_regions, target_pause_time_ms)) {
   634           min_young_length = young_length;
   635         } else {
   636           max_young_length = young_length;
   637         }
   638         assert(min_young_length <  max_young_length, "invariant");
   639         diff = (max_young_length - min_young_length) / 2;
   640       }
   641       // The results is min_young_length which, according to the
   642       // loop invariants, should fit within the target pause time.
   644       // These are the post-conditions of the binary search above:
   645       assert(min_young_length < max_young_length,
   646              "otherwise we should have discovered that max_young_length "
   647              "fits into the pause target and not done the binary search");
   648       assert(predict_will_fit(min_young_length, base_time_ms,
   649                               base_free_regions, target_pause_time_ms),
   650              "min_young_length, the result of the binary search, should "
   651              "fit into the pause target");
   652       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   653                                base_free_regions, target_pause_time_ms),
   654              "min_young_length, the result of the binary search, should be "
   655              "optimal, so no larger length should fit into the pause target");
   656     }
   657   } else {
   658     // Even the minimum length doesn't fit into the pause time
   659     // target, return it as the result nevertheless.
   660   }
   661   return base_min_length + min_young_length;
   662 }
   664 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   665   double survivor_regions_evac_time = 0.0;
   666   for (HeapRegion * r = _recorded_survivor_head;
   667        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   668        r = r->get_next_young_region()) {
   669     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   670   }
   671   return survivor_regions_evac_time;
   672 }
   674 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   675   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   677   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   678   if (rs_lengths > _rs_lengths_prediction) {
   679     // add 10% to avoid having to recalculate often
   680     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   681     update_young_list_target_length(rs_lengths_prediction);
   682   }
   683 }
   687 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   688                                                bool is_tlab,
   689                                                bool* gc_overhead_limit_was_exceeded) {
   690   guarantee(false, "Not using this policy feature yet.");
   691   return NULL;
   692 }
   694 // This method controls how a collector handles one or more
   695 // of its generations being fully allocated.
   696 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   697                                                        bool is_tlab) {
   698   guarantee(false, "Not using this policy feature yet.");
   699   return NULL;
   700 }
   703 #ifndef PRODUCT
   704 bool G1CollectorPolicy::verify_young_ages() {
   705   HeapRegion* head = _g1->young_list()->first_region();
   706   return
   707     verify_young_ages(head, _short_lived_surv_rate_group);
   708   // also call verify_young_ages on any additional surv rate groups
   709 }
   711 bool
   712 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   713                                      SurvRateGroup *surv_rate_group) {
   714   guarantee( surv_rate_group != NULL, "pre-condition" );
   716   const char* name = surv_rate_group->name();
   717   bool ret = true;
   718   int prev_age = -1;
   720   for (HeapRegion* curr = head;
   721        curr != NULL;
   722        curr = curr->get_next_young_region()) {
   723     SurvRateGroup* group = curr->surv_rate_group();
   724     if (group == NULL && !curr->is_survivor()) {
   725       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   726       ret = false;
   727     }
   729     if (surv_rate_group == group) {
   730       int age = curr->age_in_surv_rate_group();
   732       if (age < 0) {
   733         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   734         ret = false;
   735       }
   737       if (age <= prev_age) {
   738         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   739                                "(%d, %d)", name, age, prev_age);
   740         ret = false;
   741       }
   742       prev_age = age;
   743     }
   744   }
   746   return ret;
   747 }
   748 #endif // PRODUCT
   750 void G1CollectorPolicy::record_full_collection_start() {
   751   _full_collection_start_sec = os::elapsedTime();
   752   record_heap_size_info_at_start(true /* full */);
   753   // Release the future to-space so that it is available for compaction into.
   754   _g1->set_full_collection();
   755 }
   757 void G1CollectorPolicy::record_full_collection_end() {
   758   // Consider this like a collection pause for the purposes of allocation
   759   // since last pause.
   760   double end_sec = os::elapsedTime();
   761   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   762   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   764   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   766   update_recent_gc_times(end_sec, full_gc_time_ms);
   768   _g1->clear_full_collection();
   770   // "Nuke" the heuristics that control the young/mixed GC
   771   // transitions and make sure we start with young GCs after the Full GC.
   772   set_gcs_are_young(true);
   773   _last_young_gc = false;
   774   clear_initiate_conc_mark_if_possible();
   775   clear_during_initial_mark_pause();
   776   _in_marking_window = false;
   777   _in_marking_window_im = false;
   779   _short_lived_surv_rate_group->start_adding_regions();
   780   // also call this on any additional surv rate groups
   782   record_survivor_regions(0, NULL, NULL);
   784   _free_regions_at_end_of_collection = _g1->free_regions();
   785   // Reset survivors SurvRateGroup.
   786   _survivor_surv_rate_group->reset();
   787   update_young_list_target_length();
   788   _collectionSetChooser->clear();
   789 }
   791 void G1CollectorPolicy::record_stop_world_start() {
   792   _stop_world_start = os::elapsedTime();
   793 }
   795 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
   796   // We only need to do this here as the policy will only be applied
   797   // to the GC we're about to start. so, no point is calculating this
   798   // every time we calculate / recalculate the target young length.
   799   update_survivors_policy();
   801   assert(_g1->used() == _g1->recalculate_used(),
   802          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   803                  _g1->used(), _g1->recalculate_used()));
   805   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   806   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   807   _stop_world_start = 0.0;
   809   record_heap_size_info_at_start(false /* full */);
   811   phase_times()->record_cur_collection_start_sec(start_time_sec);
   812   _pending_cards = _g1->pending_card_num();
   814   _collection_set_bytes_used_before = 0;
   815   _bytes_copied_during_gc = 0;
   817   _last_gc_was_young = false;
   819   // do that for any other surv rate groups
   820   _short_lived_surv_rate_group->stop_adding_regions();
   821   _survivors_age_table.clear();
   823   assert( verify_young_ages(), "region age verification" );
   824 }
   826 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   827                                                    mark_init_elapsed_time_ms) {
   828   _during_marking = true;
   829   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   830   clear_during_initial_mark_pause();
   831   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   832 }
   834 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   835   _mark_remark_start_sec = os::elapsedTime();
   836   _during_marking = false;
   837 }
   839 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   840   double end_time_sec = os::elapsedTime();
   841   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   842   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   843   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   844   _prev_collection_pause_end_ms += elapsed_time_ms;
   846   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   847 }
   849 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   850   _mark_cleanup_start_sec = os::elapsedTime();
   851 }
   853 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   854   _last_young_gc = true;
   855   _in_marking_window = false;
   856 }
   858 void G1CollectorPolicy::record_concurrent_pause() {
   859   if (_stop_world_start > 0.0) {
   860     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   861     _trace_gen0_time_data.record_yield_time(yield_ms);
   862   }
   863 }
   865 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   866   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   867     return false;
   868   }
   870   size_t marking_initiating_used_threshold =
   871     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   872   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   873   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   875   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   876     if (gcs_are_young()) {
   877       ergo_verbose5(ErgoConcCycles,
   878         "request concurrent cycle initiation",
   879         ergo_format_reason("occupancy higher than threshold")
   880         ergo_format_byte("occupancy")
   881         ergo_format_byte("allocation request")
   882         ergo_format_byte_perc("threshold")
   883         ergo_format_str("source"),
   884         cur_used_bytes,
   885         alloc_byte_size,
   886         marking_initiating_used_threshold,
   887         (double) InitiatingHeapOccupancyPercent,
   888         source);
   889       return true;
   890     } else {
   891       ergo_verbose5(ErgoConcCycles,
   892         "do not request concurrent cycle initiation",
   893         ergo_format_reason("still doing mixed collections")
   894         ergo_format_byte("occupancy")
   895         ergo_format_byte("allocation request")
   896         ergo_format_byte_perc("threshold")
   897         ergo_format_str("source"),
   898         cur_used_bytes,
   899         alloc_byte_size,
   900         marking_initiating_used_threshold,
   901         (double) InitiatingHeapOccupancyPercent,
   902         source);
   903     }
   904   }
   906   return false;
   907 }
   909 // Anything below that is considered to be zero
   910 #define MIN_TIMER_GRANULARITY 0.0000001
   912 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
   913   double end_time_sec = os::elapsedTime();
   914   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   915          "otherwise, the subtraction below does not make sense");
   916   size_t rs_size =
   917             _cur_collection_pause_used_regions_at_start - cset_region_length();
   918   size_t cur_used_bytes = _g1->used();
   919   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   920   bool last_pause_included_initial_mark = false;
   921   bool update_stats = !_g1->evacuation_failed();
   923 #ifndef PRODUCT
   924   if (G1YoungSurvRateVerbose) {
   925     gclog_or_tty->print_cr("");
   926     _short_lived_surv_rate_group->print();
   927     // do that for any other surv rate groups too
   928   }
   929 #endif // PRODUCT
   931   last_pause_included_initial_mark = during_initial_mark_pause();
   932   if (last_pause_included_initial_mark) {
   933     record_concurrent_mark_init_end(0.0);
   934   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
   935     // Note: this might have already been set, if during the last
   936     // pause we decided to start a cycle but at the beginning of
   937     // this pause we decided to postpone it. That's OK.
   938     set_initiate_conc_mark_if_possible();
   939   }
   941   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   942                           end_time_sec, false);
   944   if (update_stats) {
   945     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   946     // this is where we update the allocation rate of the application
   947     double app_time_ms =
   948       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   949     if (app_time_ms < MIN_TIMER_GRANULARITY) {
   950       // This usually happens due to the timer not having the required
   951       // granularity. Some Linuxes are the usual culprits.
   952       // We'll just set it to something (arbitrarily) small.
   953       app_time_ms = 1.0;
   954     }
   955     // We maintain the invariant that all objects allocated by mutator
   956     // threads will be allocated out of eden regions. So, we can use
   957     // the eden region number allocated since the previous GC to
   958     // calculate the application's allocate rate. The only exception
   959     // to that is humongous objects that are allocated separately. But
   960     // given that humongous object allocations do not really affect
   961     // either the pause's duration nor when the next pause will take
   962     // place we can safely ignore them here.
   963     uint regions_allocated = eden_cset_region_length();
   964     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
   965     _alloc_rate_ms_seq->add(alloc_rate_ms);
   967     double interval_ms =
   968       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
   969     update_recent_gc_times(end_time_sec, pause_time_ms);
   970     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
   971     if (recent_avg_pause_time_ratio() < 0.0 ||
   972         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
   973 #ifndef PRODUCT
   974       // Dump info to allow post-facto debugging
   975       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
   976       gclog_or_tty->print_cr("-------------------------------------------");
   977       gclog_or_tty->print_cr("Recent GC Times (ms):");
   978       _recent_gc_times_ms->dump();
   979       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
   980       _recent_prev_end_times_for_all_gcs_sec->dump();
   981       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
   982                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
   983       // In debug mode, terminate the JVM if the user wants to debug at this point.
   984       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
   985 #endif  // !PRODUCT
   986       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
   987       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
   988       if (_recent_avg_pause_time_ratio < 0.0) {
   989         _recent_avg_pause_time_ratio = 0.0;
   990       } else {
   991         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
   992         _recent_avg_pause_time_ratio = 1.0;
   993       }
   994     }
   995   }
   997   bool new_in_marking_window = _in_marking_window;
   998   bool new_in_marking_window_im = false;
   999   if (during_initial_mark_pause()) {
  1000     new_in_marking_window = true;
  1001     new_in_marking_window_im = true;
  1004   if (_last_young_gc) {
  1005     // This is supposed to to be the "last young GC" before we start
  1006     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1008     if (!last_pause_included_initial_mark) {
  1009       if (next_gc_should_be_mixed("start mixed GCs",
  1010                                   "do not start mixed GCs")) {
  1011         set_gcs_are_young(false);
  1013     } else {
  1014       ergo_verbose0(ErgoMixedGCs,
  1015                     "do not start mixed GCs",
  1016                     ergo_format_reason("concurrent cycle is about to start"));
  1018     _last_young_gc = false;
  1021   if (!_last_gc_was_young) {
  1022     // This is a mixed GC. Here we decide whether to continue doing
  1023     // mixed GCs or not.
  1025     if (!next_gc_should_be_mixed("continue mixed GCs",
  1026                                  "do not continue mixed GCs")) {
  1027       set_gcs_are_young(true);
  1031   _short_lived_surv_rate_group->start_adding_regions();
  1032   // do that for any other surv rate groupsx
  1034   if (update_stats) {
  1035     double cost_per_card_ms = 0.0;
  1036     if (_pending_cards > 0) {
  1037       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
  1038       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1041     size_t cards_scanned = _g1->cards_scanned();
  1043     double cost_per_entry_ms = 0.0;
  1044     if (cards_scanned > 10) {
  1045       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
  1046       if (_last_gc_was_young) {
  1047         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1048       } else {
  1049         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1053     if (_max_rs_lengths > 0) {
  1054       double cards_per_entry_ratio =
  1055         (double) cards_scanned / (double) _max_rs_lengths;
  1056       if (_last_gc_was_young) {
  1057         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1058       } else {
  1059         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1063     // This is defensive. For a while _max_rs_lengths could get
  1064     // smaller than _recorded_rs_lengths which was causing
  1065     // rs_length_diff to get very large and mess up the RSet length
  1066     // predictions. The reason was unsafe concurrent updates to the
  1067     // _inc_cset_recorded_rs_lengths field which the code below guards
  1068     // against (see CR 7118202). This bug has now been fixed (see CR
  1069     // 7119027). However, I'm still worried that
  1070     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1071     // inaccurate. The concurrent refinement thread calculates an
  1072     // RSet's length concurrently with other CR threads updating it
  1073     // which might cause it to calculate the length incorrectly (if,
  1074     // say, it's in mid-coarsening). So I'll leave in the defensive
  1075     // conditional below just in case.
  1076     size_t rs_length_diff = 0;
  1077     if (_max_rs_lengths > _recorded_rs_lengths) {
  1078       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1080     _rs_length_diff_seq->add((double) rs_length_diff);
  1082     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
  1083     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
  1084     double cost_per_byte_ms = 0.0;
  1086     if (copied_bytes > 0) {
  1087       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
  1088       if (_in_marking_window) {
  1089         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1090       } else {
  1091         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1095     double all_other_time_ms = pause_time_ms -
  1096       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
  1097       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
  1099     double young_other_time_ms = 0.0;
  1100     if (young_cset_region_length() > 0) {
  1101       young_other_time_ms =
  1102         phase_times()->young_cset_choice_time_ms() +
  1103         phase_times()->young_free_cset_time_ms();
  1104       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1105                                           (double) young_cset_region_length());
  1107     double non_young_other_time_ms = 0.0;
  1108     if (old_cset_region_length() > 0) {
  1109       non_young_other_time_ms =
  1110         phase_times()->non_young_cset_choice_time_ms() +
  1111         phase_times()->non_young_free_cset_time_ms();
  1113       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1114                                             (double) old_cset_region_length());
  1117     double constant_other_time_ms = all_other_time_ms -
  1118       (young_other_time_ms + non_young_other_time_ms);
  1119     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1121     double survival_ratio = 0.0;
  1122     if (_collection_set_bytes_used_before > 0) {
  1123       survival_ratio = (double) _bytes_copied_during_gc /
  1124                                    (double) _collection_set_bytes_used_before;
  1127     _pending_cards_seq->add((double) _pending_cards);
  1128     _rs_lengths_seq->add((double) _max_rs_lengths);
  1131   _in_marking_window = new_in_marking_window;
  1132   _in_marking_window_im = new_in_marking_window_im;
  1133   _free_regions_at_end_of_collection = _g1->free_regions();
  1134   update_young_list_target_length();
  1136   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1137   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1138   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
  1139                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
  1141   _collectionSetChooser->verify();
  1144 #define EXT_SIZE_FORMAT "%.1f%s"
  1145 #define EXT_SIZE_PARAMS(bytes)                                  \
  1146   byte_size_in_proper_unit((double)(bytes)),                    \
  1147   proper_unit_for_byte_size((bytes))
  1149 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
  1150   YoungList* young_list = _g1->young_list();
  1151   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  1152   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  1153   _heap_capacity_bytes_before_gc = _g1->capacity();
  1154   _heap_used_bytes_before_gc = _g1->used();
  1155   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  1157   _eden_capacity_bytes_before_gc =
  1158          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
  1160   if (full) {
  1161     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
  1165 void G1CollectorPolicy::print_heap_transition() {
  1166   _g1->print_size_transition(gclog_or_tty,
  1167                              _heap_used_bytes_before_gc,
  1168                              _g1->used(),
  1169                              _g1->capacity());
  1172 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  1173   YoungList* young_list = _g1->young_list();
  1175   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  1176   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  1177   size_t heap_used_bytes_after_gc = _g1->used();
  1179   size_t heap_capacity_bytes_after_gc = _g1->capacity();
  1180   size_t eden_capacity_bytes_after_gc =
  1181     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
  1183   gclog_or_tty->print(
  1184     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1185     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1186     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1187     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1188     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
  1189     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
  1190     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
  1191     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
  1192     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
  1193     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
  1194     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
  1195     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
  1196     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
  1197     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
  1199   if (full) {
  1200     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  1203   gclog_or_tty->cr();
  1206 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1207                                                      double update_rs_processed_buffers,
  1208                                                      double goal_ms) {
  1209   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1210   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1212   if (G1UseAdaptiveConcRefinement) {
  1213     const int k_gy = 3, k_gr = 6;
  1214     const double inc_k = 1.1, dec_k = 0.9;
  1216     int g = cg1r->green_zone();
  1217     if (update_rs_time > goal_ms) {
  1218       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1219     } else {
  1220       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1221         g = (int)MAX2(g * inc_k, g + 1.0);
  1224     // Change the refinement threads params
  1225     cg1r->set_green_zone(g);
  1226     cg1r->set_yellow_zone(g * k_gy);
  1227     cg1r->set_red_zone(g * k_gr);
  1228     cg1r->reinitialize_threads();
  1230     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1231     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1232                                     cg1r->yellow_zone());
  1233     // Change the barrier params
  1234     dcqs.set_process_completed_threshold(processing_threshold);
  1235     dcqs.set_max_completed_queue(cg1r->red_zone());
  1238   int curr_queue_size = dcqs.completed_buffers_num();
  1239   if (curr_queue_size >= cg1r->yellow_zone()) {
  1240     dcqs.set_completed_queue_padding(curr_queue_size);
  1241   } else {
  1242     dcqs.set_completed_queue_padding(0);
  1244   dcqs.notify_if_necessary();
  1247 double
  1248 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1249                                                 size_t scanned_cards) {
  1250   return
  1251     predict_rs_update_time_ms(pending_cards) +
  1252     predict_rs_scan_time_ms(scanned_cards) +
  1253     predict_constant_other_time_ms();
  1256 double
  1257 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1258   size_t rs_length = predict_rs_length_diff();
  1259   size_t card_num;
  1260   if (gcs_are_young()) {
  1261     card_num = predict_young_card_num(rs_length);
  1262   } else {
  1263     card_num = predict_non_young_card_num(rs_length);
  1265   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1268 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1269   size_t bytes_to_copy;
  1270   if (hr->is_marked())
  1271     bytes_to_copy = hr->max_live_bytes();
  1272   else {
  1273     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1274     int age = hr->age_in_surv_rate_group();
  1275     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1276     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1278   return bytes_to_copy;
  1281 double
  1282 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1283                                                   bool for_young_gc) {
  1284   size_t rs_length = hr->rem_set()->occupied();
  1285   size_t card_num;
  1287   // Predicting the number of cards is based on which type of GC
  1288   // we're predicting for.
  1289   if (for_young_gc) {
  1290     card_num = predict_young_card_num(rs_length);
  1291   } else {
  1292     card_num = predict_non_young_card_num(rs_length);
  1294   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1296   double region_elapsed_time_ms =
  1297     predict_rs_scan_time_ms(card_num) +
  1298     predict_object_copy_time_ms(bytes_to_copy);
  1300   // The prediction of the "other" time for this region is based
  1301   // upon the region type and NOT the GC type.
  1302   if (hr->is_young()) {
  1303     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1304   } else {
  1305     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1307   return region_elapsed_time_ms;
  1310 void
  1311 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1312                                             uint survivor_cset_region_length) {
  1313   _eden_cset_region_length     = eden_cset_region_length;
  1314   _survivor_cset_region_length = survivor_cset_region_length;
  1315   _old_cset_region_length      = 0;
  1318 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1319   _recorded_rs_lengths = rs_lengths;
  1322 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1323                                                double elapsed_ms) {
  1324   _recent_gc_times_ms->add(elapsed_ms);
  1325   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1326   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1329 size_t G1CollectorPolicy::expansion_amount() {
  1330   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1331   double threshold = _gc_overhead_perc;
  1332   if (recent_gc_overhead > threshold) {
  1333     // We will double the existing space, or take
  1334     // G1ExpandByPercentOfAvailable % of the available expansion
  1335     // space, whichever is smaller, bounded below by a minimum
  1336     // expansion (unless that's all that's left.)
  1337     const size_t min_expand_bytes = 1*M;
  1338     size_t reserved_bytes = _g1->max_capacity();
  1339     size_t committed_bytes = _g1->capacity();
  1340     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1341     size_t expand_bytes;
  1342     size_t expand_bytes_via_pct =
  1343       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1344     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1345     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1346     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1348     ergo_verbose5(ErgoHeapSizing,
  1349                   "attempt heap expansion",
  1350                   ergo_format_reason("recent GC overhead higher than "
  1351                                      "threshold after GC")
  1352                   ergo_format_perc("recent GC overhead")
  1353                   ergo_format_perc("threshold")
  1354                   ergo_format_byte("uncommitted")
  1355                   ergo_format_byte_perc("calculated expansion amount"),
  1356                   recent_gc_overhead, threshold,
  1357                   uncommitted_bytes,
  1358                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1360     return expand_bytes;
  1361   } else {
  1362     return 0;
  1366 void G1CollectorPolicy::print_tracing_info() const {
  1367   _trace_gen0_time_data.print();
  1368   _trace_gen1_time_data.print();
  1371 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1372 #ifndef PRODUCT
  1373   _short_lived_surv_rate_group->print_surv_rate_summary();
  1374   // add this call for any other surv rate groups
  1375 #endif // PRODUCT
  1378 uint G1CollectorPolicy::max_regions(int purpose) {
  1379   switch (purpose) {
  1380     case GCAllocForSurvived:
  1381       return _max_survivor_regions;
  1382     case GCAllocForTenured:
  1383       return REGIONS_UNLIMITED;
  1384     default:
  1385       ShouldNotReachHere();
  1386       return REGIONS_UNLIMITED;
  1387   };
  1390 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1391   uint expansion_region_num = 0;
  1392   if (GCLockerEdenExpansionPercent > 0) {
  1393     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1394     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1395     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1396     // less than 1.0) we'll get 1.
  1397     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1398   } else {
  1399     assert(expansion_region_num == 0, "sanity");
  1401   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1402   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1405 // Calculates survivor space parameters.
  1406 void G1CollectorPolicy::update_survivors_policy() {
  1407   double max_survivor_regions_d =
  1408                  (double) _young_list_target_length / (double) SurvivorRatio;
  1409   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1410   // smaller than 1.0) we'll get 1.
  1411   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1413   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1414         HeapRegion::GrainWords * _max_survivor_regions);
  1417 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1418                                                      GCCause::Cause gc_cause) {
  1419   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1420   if (!during_cycle) {
  1421     ergo_verbose1(ErgoConcCycles,
  1422                   "request concurrent cycle initiation",
  1423                   ergo_format_reason("requested by GC cause")
  1424                   ergo_format_str("GC cause"),
  1425                   GCCause::to_string(gc_cause));
  1426     set_initiate_conc_mark_if_possible();
  1427     return true;
  1428   } else {
  1429     ergo_verbose1(ErgoConcCycles,
  1430                   "do not request concurrent cycle initiation",
  1431                   ergo_format_reason("concurrent cycle already in progress")
  1432                   ergo_format_str("GC cause"),
  1433                   GCCause::to_string(gc_cause));
  1434     return false;
  1438 void
  1439 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1440   // We are about to decide on whether this pause will be an
  1441   // initial-mark pause.
  1443   // First, during_initial_mark_pause() should not be already set. We
  1444   // will set it here if we have to. However, it should be cleared by
  1445   // the end of the pause (it's only set for the duration of an
  1446   // initial-mark pause).
  1447   assert(!during_initial_mark_pause(), "pre-condition");
  1449   if (initiate_conc_mark_if_possible()) {
  1450     // We had noticed on a previous pause that the heap occupancy has
  1451     // gone over the initiating threshold and we should start a
  1452     // concurrent marking cycle. So we might initiate one.
  1454     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1455     if (!during_cycle) {
  1456       // The concurrent marking thread is not "during a cycle", i.e.,
  1457       // it has completed the last one. So we can go ahead and
  1458       // initiate a new cycle.
  1460       set_during_initial_mark_pause();
  1461       // We do not allow mixed GCs during marking.
  1462       if (!gcs_are_young()) {
  1463         set_gcs_are_young(true);
  1464         ergo_verbose0(ErgoMixedGCs,
  1465                       "end mixed GCs",
  1466                       ergo_format_reason("concurrent cycle is about to start"));
  1469       // And we can now clear initiate_conc_mark_if_possible() as
  1470       // we've already acted on it.
  1471       clear_initiate_conc_mark_if_possible();
  1473       ergo_verbose0(ErgoConcCycles,
  1474                   "initiate concurrent cycle",
  1475                   ergo_format_reason("concurrent cycle initiation requested"));
  1476     } else {
  1477       // The concurrent marking thread is still finishing up the
  1478       // previous cycle. If we start one right now the two cycles
  1479       // overlap. In particular, the concurrent marking thread might
  1480       // be in the process of clearing the next marking bitmap (which
  1481       // we will use for the next cycle if we start one). Starting a
  1482       // cycle now will be bad given that parts of the marking
  1483       // information might get cleared by the marking thread. And we
  1484       // cannot wait for the marking thread to finish the cycle as it
  1485       // periodically yields while clearing the next marking bitmap
  1486       // and, if it's in a yield point, it's waiting for us to
  1487       // finish. So, at this point we will not start a cycle and we'll
  1488       // let the concurrent marking thread complete the last one.
  1489       ergo_verbose0(ErgoConcCycles,
  1490                     "do not initiate concurrent cycle",
  1491                     ergo_format_reason("concurrent cycle already in progress"));
  1496 class KnownGarbageClosure: public HeapRegionClosure {
  1497   G1CollectedHeap* _g1h;
  1498   CollectionSetChooser* _hrSorted;
  1500 public:
  1501   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1502     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1504   bool doHeapRegion(HeapRegion* r) {
  1505     // We only include humongous regions in collection
  1506     // sets when concurrent mark shows that their contained object is
  1507     // unreachable.
  1509     // Do we have any marking information for this region?
  1510     if (r->is_marked()) {
  1511       // We will skip any region that's currently used as an old GC
  1512       // alloc region (we should not consider those for collection
  1513       // before we fill them up).
  1514       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1515         _hrSorted->add_region(r);
  1518     return false;
  1520 };
  1522 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1523   G1CollectedHeap* _g1h;
  1524   CSetChooserParUpdater _cset_updater;
  1526 public:
  1527   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1528                            uint chunk_size) :
  1529     _g1h(G1CollectedHeap::heap()),
  1530     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1532   bool doHeapRegion(HeapRegion* r) {
  1533     // Do we have any marking information for this region?
  1534     if (r->is_marked()) {
  1535       // We will skip any region that's currently used as an old GC
  1536       // alloc region (we should not consider those for collection
  1537       // before we fill them up).
  1538       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1539         _cset_updater.add_region(r);
  1542     return false;
  1544 };
  1546 class ParKnownGarbageTask: public AbstractGangTask {
  1547   CollectionSetChooser* _hrSorted;
  1548   uint _chunk_size;
  1549   G1CollectedHeap* _g1;
  1550 public:
  1551   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1552     AbstractGangTask("ParKnownGarbageTask"),
  1553     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1554     _g1(G1CollectedHeap::heap()) { }
  1556   void work(uint worker_id) {
  1557     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1559     // Back to zero for the claim value.
  1560     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1561                                          _g1->workers()->active_workers(),
  1562                                          HeapRegion::InitialClaimValue);
  1564 };
  1566 void
  1567 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1568   _collectionSetChooser->clear();
  1570   uint region_num = _g1->n_regions();
  1571   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1572     const uint OverpartitionFactor = 4;
  1573     uint WorkUnit;
  1574     // The use of MinChunkSize = 8 in the original code
  1575     // causes some assertion failures when the total number of
  1576     // region is less than 8.  The code here tries to fix that.
  1577     // Should the original code also be fixed?
  1578     if (no_of_gc_threads > 0) {
  1579       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1580       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1581                       MinWorkUnit);
  1582     } else {
  1583       assert(no_of_gc_threads > 0,
  1584         "The active gc workers should be greater than 0");
  1585       // In a product build do something reasonable to avoid a crash.
  1586       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1587       WorkUnit =
  1588         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1589              MinWorkUnit);
  1591     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  1592                                                            WorkUnit);
  1593     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1594                                             (int) WorkUnit);
  1595     _g1->workers()->run_task(&parKnownGarbageTask);
  1597     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1598            "sanity check");
  1599   } else {
  1600     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1601     _g1->heap_region_iterate(&knownGarbagecl);
  1604   _collectionSetChooser->sort_regions();
  1606   double end_sec = os::elapsedTime();
  1607   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1608   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1609   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1610   _prev_collection_pause_end_ms += elapsed_time_ms;
  1611   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1614 // Add the heap region at the head of the non-incremental collection set
  1615 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1616   assert(_inc_cset_build_state == Active, "Precondition");
  1617   assert(!hr->is_young(), "non-incremental add of young region");
  1619   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1620   hr->set_in_collection_set(true);
  1621   hr->set_next_in_collection_set(_collection_set);
  1622   _collection_set = hr;
  1623   _collection_set_bytes_used_before += hr->used();
  1624   _g1->register_region_with_in_cset_fast_test(hr);
  1625   size_t rs_length = hr->rem_set()->occupied();
  1626   _recorded_rs_lengths += rs_length;
  1627   _old_cset_region_length += 1;
  1630 // Initialize the per-collection-set information
  1631 void G1CollectorPolicy::start_incremental_cset_building() {
  1632   assert(_inc_cset_build_state == Inactive, "Precondition");
  1634   _inc_cset_head = NULL;
  1635   _inc_cset_tail = NULL;
  1636   _inc_cset_bytes_used_before = 0;
  1638   _inc_cset_max_finger = 0;
  1639   _inc_cset_recorded_rs_lengths = 0;
  1640   _inc_cset_recorded_rs_lengths_diffs = 0;
  1641   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1642   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1643   _inc_cset_build_state = Active;
  1646 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1647   assert(_inc_cset_build_state == Active, "Precondition");
  1648   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1650   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1651   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1652   // that adds a new region to the CSet. Further updates by the
  1653   // concurrent refinement thread that samples the young RSet lengths
  1654   // are accumulated in the *_diffs fields. Here we add the diffs to
  1655   // the "main" fields.
  1657   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1658     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1659   } else {
  1660     // This is defensive. The diff should in theory be always positive
  1661     // as RSets can only grow between GCs. However, given that we
  1662     // sample their size concurrently with other threads updating them
  1663     // it's possible that we might get the wrong size back, which
  1664     // could make the calculations somewhat inaccurate.
  1665     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1666     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1667       _inc_cset_recorded_rs_lengths -= diffs;
  1668     } else {
  1669       _inc_cset_recorded_rs_lengths = 0;
  1672   _inc_cset_predicted_elapsed_time_ms +=
  1673                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1675   _inc_cset_recorded_rs_lengths_diffs = 0;
  1676   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1679 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1680   // This routine is used when:
  1681   // * adding survivor regions to the incremental cset at the end of an
  1682   //   evacuation pause,
  1683   // * adding the current allocation region to the incremental cset
  1684   //   when it is retired, and
  1685   // * updating existing policy information for a region in the
  1686   //   incremental cset via young list RSet sampling.
  1687   // Therefore this routine may be called at a safepoint by the
  1688   // VM thread, or in-between safepoints by mutator threads (when
  1689   // retiring the current allocation region) or a concurrent
  1690   // refine thread (RSet sampling).
  1692   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1693   size_t used_bytes = hr->used();
  1694   _inc_cset_recorded_rs_lengths += rs_length;
  1695   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1696   _inc_cset_bytes_used_before += used_bytes;
  1698   // Cache the values we have added to the aggregated informtion
  1699   // in the heap region in case we have to remove this region from
  1700   // the incremental collection set, or it is updated by the
  1701   // rset sampling code
  1702   hr->set_recorded_rs_length(rs_length);
  1703   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1706 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1707                                                      size_t new_rs_length) {
  1708   // Update the CSet information that is dependent on the new RS length
  1709   assert(hr->is_young(), "Precondition");
  1710   assert(!SafepointSynchronize::is_at_safepoint(),
  1711                                                "should not be at a safepoint");
  1713   // We could have updated _inc_cset_recorded_rs_lengths and
  1714   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1715   // that atomically, as this code is executed by a concurrent
  1716   // refinement thread, potentially concurrently with a mutator thread
  1717   // allocating a new region and also updating the same fields. To
  1718   // avoid the atomic operations we accumulate these updates on two
  1719   // separate fields (*_diffs) and we'll just add them to the "main"
  1720   // fields at the start of a GC.
  1722   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1723   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1724   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1726   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1727   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1728   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1729   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1731   hr->set_recorded_rs_length(new_rs_length);
  1732   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1735 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1736   assert(hr->is_young(), "invariant");
  1737   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1738   assert(_inc_cset_build_state == Active, "Precondition");
  1740   // We need to clear and set the cached recorded/cached collection set
  1741   // information in the heap region here (before the region gets added
  1742   // to the collection set). An individual heap region's cached values
  1743   // are calculated, aggregated with the policy collection set info,
  1744   // and cached in the heap region here (initially) and (subsequently)
  1745   // by the Young List sampling code.
  1747   size_t rs_length = hr->rem_set()->occupied();
  1748   add_to_incremental_cset_info(hr, rs_length);
  1750   HeapWord* hr_end = hr->end();
  1751   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1753   assert(!hr->in_collection_set(), "invariant");
  1754   hr->set_in_collection_set(true);
  1755   assert( hr->next_in_collection_set() == NULL, "invariant");
  1757   _g1->register_region_with_in_cset_fast_test(hr);
  1760 // Add the region at the RHS of the incremental cset
  1761 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1762   // We should only ever be appending survivors at the end of a pause
  1763   assert( hr->is_survivor(), "Logic");
  1765   // Do the 'common' stuff
  1766   add_region_to_incremental_cset_common(hr);
  1768   // Now add the region at the right hand side
  1769   if (_inc_cset_tail == NULL) {
  1770     assert(_inc_cset_head == NULL, "invariant");
  1771     _inc_cset_head = hr;
  1772   } else {
  1773     _inc_cset_tail->set_next_in_collection_set(hr);
  1775   _inc_cset_tail = hr;
  1778 // Add the region to the LHS of the incremental cset
  1779 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1780   // Survivors should be added to the RHS at the end of a pause
  1781   assert(!hr->is_survivor(), "Logic");
  1783   // Do the 'common' stuff
  1784   add_region_to_incremental_cset_common(hr);
  1786   // Add the region at the left hand side
  1787   hr->set_next_in_collection_set(_inc_cset_head);
  1788   if (_inc_cset_head == NULL) {
  1789     assert(_inc_cset_tail == NULL, "Invariant");
  1790     _inc_cset_tail = hr;
  1792   _inc_cset_head = hr;
  1795 #ifndef PRODUCT
  1796 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1797   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1799   st->print_cr("\nCollection_set:");
  1800   HeapRegion* csr = list_head;
  1801   while (csr != NULL) {
  1802     HeapRegion* next = csr->next_in_collection_set();
  1803     assert(csr->in_collection_set(), "bad CS");
  1804     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  1805                  HR_FORMAT_PARAMS(csr),
  1806                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1807                  csr->age_in_surv_rate_group_cond());
  1808     csr = next;
  1811 #endif // !PRODUCT
  1813 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  1814   // Returns the given amount of reclaimable bytes (that represents
  1815   // the amount of reclaimable space still to be collected) as a
  1816   // percentage of the current heap capacity.
  1817   size_t capacity_bytes = _g1->capacity();
  1818   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1821 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1822                                                 const char* false_action_str) {
  1823   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1824   if (cset_chooser->is_empty()) {
  1825     ergo_verbose0(ErgoMixedGCs,
  1826                   false_action_str,
  1827                   ergo_format_reason("candidate old regions not available"));
  1828     return false;
  1831   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
  1832   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1833   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1834   double threshold = (double) G1HeapWastePercent;
  1835   if (reclaimable_perc <= threshold) {
  1836     ergo_verbose4(ErgoMixedGCs,
  1837               false_action_str,
  1838               ergo_format_reason("reclaimable percentage not over threshold")
  1839               ergo_format_region("candidate old regions")
  1840               ergo_format_byte_perc("reclaimable")
  1841               ergo_format_perc("threshold"),
  1842               cset_chooser->remaining_regions(),
  1843               reclaimable_bytes,
  1844               reclaimable_perc, threshold);
  1845     return false;
  1848   ergo_verbose4(ErgoMixedGCs,
  1849                 true_action_str,
  1850                 ergo_format_reason("candidate old regions available")
  1851                 ergo_format_region("candidate old regions")
  1852                 ergo_format_byte_perc("reclaimable")
  1853                 ergo_format_perc("threshold"),
  1854                 cset_chooser->remaining_regions(),
  1855                 reclaimable_bytes,
  1856                 reclaimable_perc, threshold);
  1857   return true;
  1860 uint G1CollectorPolicy::calc_min_old_cset_length() {
  1861   // The min old CSet region bound is based on the maximum desired
  1862   // number of mixed GCs after a cycle. I.e., even if some old regions
  1863   // look expensive, we should add them to the CSet anyway to make
  1864   // sure we go through the available old regions in no more than the
  1865   // maximum desired number of mixed GCs.
  1866   //
  1867   // The calculation is based on the number of marked regions we added
  1868   // to the CSet chooser in the first place, not how many remain, so
  1869   // that the result is the same during all mixed GCs that follow a cycle.
  1871   const size_t region_num = (size_t) _collectionSetChooser->length();
  1872   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  1873   size_t result = region_num / gc_num;
  1874   // emulate ceiling
  1875   if (result * gc_num < region_num) {
  1876     result += 1;
  1878   return (uint) result;
  1881 uint G1CollectorPolicy::calc_max_old_cset_length() {
  1882   // The max old CSet region bound is based on the threshold expressed
  1883   // as a percentage of the heap size. I.e., it should bound the
  1884   // number of old regions added to the CSet irrespective of how many
  1885   // of them are available.
  1887   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1888   const size_t region_num = g1h->n_regions();
  1889   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  1890   size_t result = region_num * perc / 100;
  1891   // emulate ceiling
  1892   if (100 * result < region_num * perc) {
  1893     result += 1;
  1895   return (uint) result;
  1899 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  1900   double young_start_time_sec = os::elapsedTime();
  1902   YoungList* young_list = _g1->young_list();
  1903   finalize_incremental_cset_building();
  1905   guarantee(target_pause_time_ms > 0.0,
  1906             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1907                     target_pause_time_ms));
  1908   guarantee(_collection_set == NULL, "Precondition");
  1910   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1911   double predicted_pause_time_ms = base_time_ms;
  1912   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
  1914   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1915                 "start choosing CSet",
  1916                 ergo_format_size("_pending_cards")
  1917                 ergo_format_ms("predicted base time")
  1918                 ergo_format_ms("remaining time")
  1919                 ergo_format_ms("target pause time"),
  1920                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1922   _last_gc_was_young = gcs_are_young() ? true : false;
  1924   if (_last_gc_was_young) {
  1925     _trace_gen0_time_data.increment_young_collection_count();
  1926   } else {
  1927     _trace_gen0_time_data.increment_mixed_collection_count();
  1930   // The young list is laid with the survivor regions from the previous
  1931   // pause are appended to the RHS of the young list, i.e.
  1932   //   [Newly Young Regions ++ Survivors from last pause].
  1934   uint survivor_region_length = young_list->survivor_length();
  1935   uint eden_region_length = young_list->length() - survivor_region_length;
  1936   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1938   HeapRegion* hr = young_list->first_survivor_region();
  1939   while (hr != NULL) {
  1940     assert(hr->is_survivor(), "badly formed young list");
  1941     hr->set_young();
  1942     hr = hr->get_next_young_region();
  1945   // Clear the fields that point to the survivor list - they are all young now.
  1946   young_list->clear_survivors();
  1948   _collection_set = _inc_cset_head;
  1949   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  1950   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
  1951   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  1953   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  1954                 "add young regions to CSet",
  1955                 ergo_format_region("eden")
  1956                 ergo_format_region("survivors")
  1957                 ergo_format_ms("predicted young region time"),
  1958                 eden_region_length, survivor_region_length,
  1959                 _inc_cset_predicted_elapsed_time_ms);
  1961   // The number of recorded young regions is the incremental
  1962   // collection set's current size
  1963   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  1965   double young_end_time_sec = os::elapsedTime();
  1966   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  1968   // Set the start of the non-young choice time.
  1969   double non_young_start_time_sec = young_end_time_sec;
  1971   if (!gcs_are_young()) {
  1972     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1973     cset_chooser->verify();
  1974     const uint min_old_cset_length = calc_min_old_cset_length();
  1975     const uint max_old_cset_length = calc_max_old_cset_length();
  1977     uint expensive_region_num = 0;
  1978     bool check_time_remaining = adaptive_young_list_length();
  1980     HeapRegion* hr = cset_chooser->peek();
  1981     while (hr != NULL) {
  1982       if (old_cset_region_length() >= max_old_cset_length) {
  1983         // Added maximum number of old regions to the CSet.
  1984         ergo_verbose2(ErgoCSetConstruction,
  1985                       "finish adding old regions to CSet",
  1986                       ergo_format_reason("old CSet region num reached max")
  1987                       ergo_format_region("old")
  1988                       ergo_format_region("max"),
  1989                       old_cset_region_length(), max_old_cset_length);
  1990         break;
  1994       // Stop adding regions if the remaining reclaimable space is
  1995       // not above G1HeapWastePercent.
  1996       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1997       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1998       double threshold = (double) G1HeapWastePercent;
  1999       if (reclaimable_perc <= threshold) {
  2000         // We've added enough old regions that the amount of uncollected
  2001         // reclaimable space is at or below the waste threshold. Stop
  2002         // adding old regions to the CSet.
  2003         ergo_verbose5(ErgoCSetConstruction,
  2004                       "finish adding old regions to CSet",
  2005                       ergo_format_reason("reclaimable percentage not over threshold")
  2006                       ergo_format_region("old")
  2007                       ergo_format_region("max")
  2008                       ergo_format_byte_perc("reclaimable")
  2009                       ergo_format_perc("threshold"),
  2010                       old_cset_region_length(),
  2011                       max_old_cset_length,
  2012                       reclaimable_bytes,
  2013                       reclaimable_perc, threshold);
  2014         break;
  2017       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  2018       if (check_time_remaining) {
  2019         if (predicted_time_ms > time_remaining_ms) {
  2020           // Too expensive for the current CSet.
  2022           if (old_cset_region_length() >= min_old_cset_length) {
  2023             // We have added the minimum number of old regions to the CSet,
  2024             // we are done with this CSet.
  2025             ergo_verbose4(ErgoCSetConstruction,
  2026                           "finish adding old regions to CSet",
  2027                           ergo_format_reason("predicted time is too high")
  2028                           ergo_format_ms("predicted time")
  2029                           ergo_format_ms("remaining time")
  2030                           ergo_format_region("old")
  2031                           ergo_format_region("min"),
  2032                           predicted_time_ms, time_remaining_ms,
  2033                           old_cset_region_length(), min_old_cset_length);
  2034             break;
  2037           // We'll add it anyway given that we haven't reached the
  2038           // minimum number of old regions.
  2039           expensive_region_num += 1;
  2041       } else {
  2042         if (old_cset_region_length() >= min_old_cset_length) {
  2043           // In the non-auto-tuning case, we'll finish adding regions
  2044           // to the CSet if we reach the minimum.
  2045           ergo_verbose2(ErgoCSetConstruction,
  2046                         "finish adding old regions to CSet",
  2047                         ergo_format_reason("old CSet region num reached min")
  2048                         ergo_format_region("old")
  2049                         ergo_format_region("min"),
  2050                         old_cset_region_length(), min_old_cset_length);
  2051           break;
  2055       // We will add this region to the CSet.
  2056       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
  2057       predicted_pause_time_ms += predicted_time_ms;
  2058       cset_chooser->remove_and_move_to_next(hr);
  2059       _g1->old_set_remove(hr);
  2060       add_old_region_to_cset(hr);
  2062       hr = cset_chooser->peek();
  2064     if (hr == NULL) {
  2065       ergo_verbose0(ErgoCSetConstruction,
  2066                     "finish adding old regions to CSet",
  2067                     ergo_format_reason("candidate old regions not available"));
  2070     if (expensive_region_num > 0) {
  2071       // We print the information once here at the end, predicated on
  2072       // whether we added any apparently expensive regions or not, to
  2073       // avoid generating output per region.
  2074       ergo_verbose4(ErgoCSetConstruction,
  2075                     "added expensive regions to CSet",
  2076                     ergo_format_reason("old CSet region num not reached min")
  2077                     ergo_format_region("old")
  2078                     ergo_format_region("expensive")
  2079                     ergo_format_region("min")
  2080                     ergo_format_ms("remaining time"),
  2081                     old_cset_region_length(),
  2082                     expensive_region_num,
  2083                     min_old_cset_length,
  2084                     time_remaining_ms);
  2087     cset_chooser->verify();
  2090   stop_incremental_cset_building();
  2092   ergo_verbose5(ErgoCSetConstruction,
  2093                 "finish choosing CSet",
  2094                 ergo_format_region("eden")
  2095                 ergo_format_region("survivors")
  2096                 ergo_format_region("old")
  2097                 ergo_format_ms("predicted pause time")
  2098                 ergo_format_ms("target pause time"),
  2099                 eden_region_length, survivor_region_length,
  2100                 old_cset_region_length(),
  2101                 predicted_pause_time_ms, target_pause_time_ms);
  2103   double non_young_end_time_sec = os::elapsedTime();
  2104   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2107 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2108   if(TraceGen0Time) {
  2109     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2113 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2114   if(TraceGen0Time) {
  2115     _all_yield_times_ms.add(yield_time_ms);
  2119 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2120   if(TraceGen0Time) {
  2121     _total.add(pause_time_ms);
  2122     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2123     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2124     _parallel.add(phase_times->cur_collection_par_time_ms());
  2125     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
  2126     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
  2127     _update_rs.add(phase_times->average_last_update_rs_time());
  2128     _scan_rs.add(phase_times->average_last_scan_rs_time());
  2129     _obj_copy.add(phase_times->average_last_obj_copy_time());
  2130     _termination.add(phase_times->average_last_termination_time());
  2132     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
  2133       phase_times->average_last_satb_filtering_times_ms() +
  2134       phase_times->average_last_update_rs_time() +
  2135       phase_times->average_last_scan_rs_time() +
  2136       phase_times->average_last_obj_copy_time() +
  2137       + phase_times->average_last_termination_time();
  2139     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2140     _parallel_other.add(parallel_other_time);
  2141     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2145 void TraceGen0TimeData::increment_young_collection_count() {
  2146   if(TraceGen0Time) {
  2147     ++_young_pause_num;
  2151 void TraceGen0TimeData::increment_mixed_collection_count() {
  2152   if(TraceGen0Time) {
  2153     ++_mixed_pause_num;
  2157 void TraceGen0TimeData::print_summary(const char* str,
  2158                                       const NumberSeq* seq) const {
  2159   double sum = seq->sum();
  2160   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2161                 str, sum / 1000.0, seq->avg());
  2164 void TraceGen0TimeData::print_summary_sd(const char* str,
  2165                                          const NumberSeq* seq) const {
  2166   print_summary(str, seq);
  2167   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2168                 "(num", seq->num(), seq->sd(), seq->maximum());
  2171 void TraceGen0TimeData::print() const {
  2172   if (!TraceGen0Time) {
  2173     return;
  2176   gclog_or_tty->print_cr("ALL PAUSES");
  2177   print_summary_sd("   Total", &_total);
  2178   gclog_or_tty->print_cr("");
  2179   gclog_or_tty->print_cr("");
  2180   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2181   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2182   gclog_or_tty->print_cr("");
  2184   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2186   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2187     gclog_or_tty->print_cr("none");
  2188   } else {
  2189     print_summary_sd("   Evacuation Pauses", &_total);
  2190     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2191     print_summary("      Parallel Time", &_parallel);
  2192     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2193     print_summary("         SATB Filtering", &_satb_filtering);
  2194     print_summary("         Update RS", &_update_rs);
  2195     print_summary("         Scan RS", &_scan_rs);
  2196     print_summary("         Object Copy", &_obj_copy);
  2197     print_summary("         Termination", &_termination);
  2198     print_summary("         Parallel Other", &_parallel_other);
  2199     print_summary("      Clear CT", &_clear_ct);
  2200     print_summary("      Other", &_other);
  2202   gclog_or_tty->print_cr("");
  2204   gclog_or_tty->print_cr("MISC");
  2205   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2206   print_summary_sd("   Yields", &_all_yield_times_ms);
  2209 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2210   if (TraceGen1Time) {
  2211     _all_full_gc_times.add(full_gc_time_ms);
  2215 void TraceGen1TimeData::print() const {
  2216   if (!TraceGen1Time) {
  2217     return;
  2220   if (_all_full_gc_times.num() > 0) {
  2221     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2222       _all_full_gc_times.num(),
  2223       _all_full_gc_times.sum() / 1000.0);
  2224     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2225     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2226       _all_full_gc_times.sd(),
  2227       _all_full_gc_times.maximum());

mercurial