src/os/linux/vm/os_linux.cpp

Tue, 28 May 2013 09:32:06 +0200

author
tschatzl
date
Tue, 28 May 2013 09:32:06 +0200
changeset 5204
e72f7eecc96d
parent 5040
9ce110b1d14a
child 5237
f2110083203d
permissions
-rw-r--r--

8013895: G1: G1SummarizeRSetStats output on Linux needs improvemen
Summary: Fixed the output of G1SummarizeRSetStats: too small datatype for the number of concurrently processed cards, added concurrent remembered set thread time retrieval for Linux and Windows (BSD uses os::elapsedTime() now), and other cleanup. The information presented during VM operation is now relative to the previous output, not always cumulative if G1SummarizeRSetStatsPeriod > 0. At VM exit, the code prints a cumulative summary.
Reviewed-by: johnc, jwilhelm

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/thread.inline.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/memTracker.hpp"
    62 #include "services/runtimeService.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/elfFile.hpp"
    67 #include "utilities/growableArray.hpp"
    68 #include "utilities/vmError.hpp"
    70 // put OS-includes here
    71 # include <sys/types.h>
    72 # include <sys/mman.h>
    73 # include <sys/stat.h>
    74 # include <sys/select.h>
    75 # include <pthread.h>
    76 # include <signal.h>
    77 # include <errno.h>
    78 # include <dlfcn.h>
    79 # include <stdio.h>
    80 # include <unistd.h>
    81 # include <sys/resource.h>
    82 # include <pthread.h>
    83 # include <sys/stat.h>
    84 # include <sys/time.h>
    85 # include <sys/times.h>
    86 # include <sys/utsname.h>
    87 # include <sys/socket.h>
    88 # include <sys/wait.h>
    89 # include <pwd.h>
    90 # include <poll.h>
    91 # include <semaphore.h>
    92 # include <fcntl.h>
    93 # include <string.h>
    94 # include <syscall.h>
    95 # include <sys/sysinfo.h>
    96 # include <gnu/libc-version.h>
    97 # include <sys/ipc.h>
    98 # include <sys/shm.h>
    99 # include <link.h>
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   105 // getrusage() is prepared to handle the associated failure.
   106 #ifndef RUSAGE_THREAD
   107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   108 #endif
   110 #define MAX_PATH    (2 * K)
   112 // for timer info max values which include all bits
   113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   115 #define LARGEPAGES_BIT (1 << 6)
   116 ////////////////////////////////////////////////////////////////////////////////
   117 // global variables
   118 julong os::Linux::_physical_memory = 0;
   120 address   os::Linux::_initial_thread_stack_bottom = NULL;
   121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   125 Mutex* os::Linux::_createThread_lock = NULL;
   126 pthread_t os::Linux::_main_thread;
   127 int os::Linux::_page_size = -1;
   128 const int os::Linux::_vm_default_page_size = (8 * K);
   129 bool os::Linux::_is_floating_stack = false;
   130 bool os::Linux::_is_NPTL = false;
   131 bool os::Linux::_supports_fast_thread_cpu_time = false;
   132 const char * os::Linux::_glibc_version = NULL;
   133 const char * os::Linux::_libpthread_version = NULL;
   135 static jlong initial_time_count=0;
   137 static int clock_tics_per_sec = 100;
   139 // For diagnostics to print a message once. see run_periodic_checks
   140 static sigset_t check_signal_done;
   141 static bool check_signals = true;;
   143 static pid_t _initial_pid = 0;
   145 /* Signal number used to suspend/resume a thread */
   147 /* do not use any signal number less than SIGSEGV, see 4355769 */
   148 static int SR_signum = SIGUSR2;
   149 sigset_t SR_sigset;
   151 /* Used to protect dlsym() calls */
   152 static pthread_mutex_t dl_mutex;
   154 #ifdef JAVASE_EMBEDDED
   155 class MemNotifyThread: public Thread {
   156   friend class VMStructs;
   157  public:
   158   virtual void run();
   160  private:
   161   static MemNotifyThread* _memnotify_thread;
   162   int _fd;
   164  public:
   166   // Constructor
   167   MemNotifyThread(int fd);
   169   // Tester
   170   bool is_memnotify_thread() const { return true; }
   172   // Printing
   173   char* name() const { return (char*)"Linux MemNotify Thread"; }
   175   // Returns the single instance of the MemNotifyThread
   176   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   178   // Create and start the single instance of MemNotifyThread
   179   static void start();
   180 };
   181 #endif // JAVASE_EMBEDDED
   183 // utility functions
   185 static int SR_initialize();
   187 julong os::available_memory() {
   188   return Linux::available_memory();
   189 }
   191 julong os::Linux::available_memory() {
   192   // values in struct sysinfo are "unsigned long"
   193   struct sysinfo si;
   194   sysinfo(&si);
   196   return (julong)si.freeram * si.mem_unit;
   197 }
   199 julong os::physical_memory() {
   200   return Linux::physical_memory();
   201 }
   203 ////////////////////////////////////////////////////////////////////////////////
   204 // environment support
   206 bool os::getenv(const char* name, char* buf, int len) {
   207   const char* val = ::getenv(name);
   208   if (val != NULL && strlen(val) < (size_t)len) {
   209     strcpy(buf, val);
   210     return true;
   211   }
   212   if (len > 0) buf[0] = 0;  // return a null string
   213   return false;
   214 }
   217 // Return true if user is running as root.
   219 bool os::have_special_privileges() {
   220   static bool init = false;
   221   static bool privileges = false;
   222   if (!init) {
   223     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   224     init = true;
   225   }
   226   return privileges;
   227 }
   230 #ifndef SYS_gettid
   231 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   232 #ifdef __ia64__
   233 #define SYS_gettid 1105
   234 #elif __i386__
   235 #define SYS_gettid 224
   236 #elif __amd64__
   237 #define SYS_gettid 186
   238 #elif __sparc__
   239 #define SYS_gettid 143
   240 #else
   241 #error define gettid for the arch
   242 #endif
   243 #endif
   245 // Cpu architecture string
   246 #if   defined(ZERO)
   247 static char cpu_arch[] = ZERO_LIBARCH;
   248 #elif defined(IA64)
   249 static char cpu_arch[] = "ia64";
   250 #elif defined(IA32)
   251 static char cpu_arch[] = "i386";
   252 #elif defined(AMD64)
   253 static char cpu_arch[] = "amd64";
   254 #elif defined(ARM)
   255 static char cpu_arch[] = "arm";
   256 #elif defined(PPC)
   257 static char cpu_arch[] = "ppc";
   258 #elif defined(SPARC)
   259 #  ifdef _LP64
   260 static char cpu_arch[] = "sparcv9";
   261 #  else
   262 static char cpu_arch[] = "sparc";
   263 #  endif
   264 #else
   265 #error Add appropriate cpu_arch setting
   266 #endif
   269 // pid_t gettid()
   270 //
   271 // Returns the kernel thread id of the currently running thread. Kernel
   272 // thread id is used to access /proc.
   273 //
   274 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   275 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   276 //
   277 pid_t os::Linux::gettid() {
   278   int rslt = syscall(SYS_gettid);
   279   if (rslt == -1) {
   280      // old kernel, no NPTL support
   281      return getpid();
   282   } else {
   283      return (pid_t)rslt;
   284   }
   285 }
   287 // Most versions of linux have a bug where the number of processors are
   288 // determined by looking at the /proc file system.  In a chroot environment,
   289 // the system call returns 1.  This causes the VM to act as if it is
   290 // a single processor and elide locking (see is_MP() call).
   291 static bool unsafe_chroot_detected = false;
   292 static const char *unstable_chroot_error = "/proc file system not found.\n"
   293                      "Java may be unstable running multithreaded in a chroot "
   294                      "environment on Linux when /proc filesystem is not mounted.";
   296 void os::Linux::initialize_system_info() {
   297   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   298   if (processor_count() == 1) {
   299     pid_t pid = os::Linux::gettid();
   300     char fname[32];
   301     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   302     FILE *fp = fopen(fname, "r");
   303     if (fp == NULL) {
   304       unsafe_chroot_detected = true;
   305     } else {
   306       fclose(fp);
   307     }
   308   }
   309   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   310   assert(processor_count() > 0, "linux error");
   311 }
   313 void os::init_system_properties_values() {
   314 //  char arch[12];
   315 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   317   // The next steps are taken in the product version:
   318   //
   319   // Obtain the JAVA_HOME value from the location of libjvm.so.
   320   // This library should be located at:
   321   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   322   //
   323   // If "/jre/lib/" appears at the right place in the path, then we
   324   // assume libjvm.so is installed in a JDK and we use this path.
   325   //
   326   // Otherwise exit with message: "Could not create the Java virtual machine."
   327   //
   328   // The following extra steps are taken in the debugging version:
   329   //
   330   // If "/jre/lib/" does NOT appear at the right place in the path
   331   // instead of exit check for $JAVA_HOME environment variable.
   332   //
   333   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   334   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   335   // it looks like libjvm.so is installed there
   336   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   337   //
   338   // Otherwise exit.
   339   //
   340   // Important note: if the location of libjvm.so changes this
   341   // code needs to be changed accordingly.
   343   // The next few definitions allow the code to be verbatim:
   344 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   345 #define getenv(n) ::getenv(n)
   347 /*
   348  * See ld(1):
   349  *      The linker uses the following search paths to locate required
   350  *      shared libraries:
   351  *        1: ...
   352  *        ...
   353  *        7: The default directories, normally /lib and /usr/lib.
   354  */
   355 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   356 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   357 #else
   358 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   359 #endif
   361 #define EXTENSIONS_DIR  "/lib/ext"
   362 #define ENDORSED_DIR    "/lib/endorsed"
   363 #define REG_DIR         "/usr/java/packages"
   365   {
   366     /* sysclasspath, java_home, dll_dir */
   367     {
   368         char *home_path;
   369         char *dll_path;
   370         char *pslash;
   371         char buf[MAXPATHLEN];
   372         os::jvm_path(buf, sizeof(buf));
   374         // Found the full path to libjvm.so.
   375         // Now cut the path to <java_home>/jre if we can.
   376         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   377         pslash = strrchr(buf, '/');
   378         if (pslash != NULL)
   379             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   380         dll_path = malloc(strlen(buf) + 1);
   381         if (dll_path == NULL)
   382             return;
   383         strcpy(dll_path, buf);
   384         Arguments::set_dll_dir(dll_path);
   386         if (pslash != NULL) {
   387             pslash = strrchr(buf, '/');
   388             if (pslash != NULL) {
   389                 *pslash = '\0';       /* get rid of /<arch> */
   390                 pslash = strrchr(buf, '/');
   391                 if (pslash != NULL)
   392                     *pslash = '\0';   /* get rid of /lib */
   393             }
   394         }
   396         home_path = malloc(strlen(buf) + 1);
   397         if (home_path == NULL)
   398             return;
   399         strcpy(home_path, buf);
   400         Arguments::set_java_home(home_path);
   402         if (!set_boot_path('/', ':'))
   403             return;
   404     }
   406     /*
   407      * Where to look for native libraries
   408      *
   409      * Note: Due to a legacy implementation, most of the library path
   410      * is set in the launcher.  This was to accomodate linking restrictions
   411      * on legacy Linux implementations (which are no longer supported).
   412      * Eventually, all the library path setting will be done here.
   413      *
   414      * However, to prevent the proliferation of improperly built native
   415      * libraries, the new path component /usr/java/packages is added here.
   416      * Eventually, all the library path setting will be done here.
   417      */
   418     {
   419         char *ld_library_path;
   421         /*
   422          * Construct the invariant part of ld_library_path. Note that the
   423          * space for the colon and the trailing null are provided by the
   424          * nulls included by the sizeof operator (so actually we allocate
   425          * a byte more than necessary).
   426          */
   427         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   428             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   429         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   431         /*
   432          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   433          * should always exist (until the legacy problem cited above is
   434          * addressed).
   435          */
   436         char *v = getenv("LD_LIBRARY_PATH");
   437         if (v != NULL) {
   438             char *t = ld_library_path;
   439             /* That's +1 for the colon and +1 for the trailing '\0' */
   440             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   441             sprintf(ld_library_path, "%s:%s", v, t);
   442         }
   443         Arguments::set_library_path(ld_library_path);
   444     }
   446     /*
   447      * Extensions directories.
   448      *
   449      * Note that the space for the colon and the trailing null are provided
   450      * by the nulls included by the sizeof operator (so actually one byte more
   451      * than necessary is allocated).
   452      */
   453     {
   454         char *buf = malloc(strlen(Arguments::get_java_home()) +
   455             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   456         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   457             Arguments::get_java_home());
   458         Arguments::set_ext_dirs(buf);
   459     }
   461     /* Endorsed standards default directory. */
   462     {
   463         char * buf;
   464         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   465         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   466         Arguments::set_endorsed_dirs(buf);
   467     }
   468   }
   470 #undef malloc
   471 #undef getenv
   472 #undef EXTENSIONS_DIR
   473 #undef ENDORSED_DIR
   475   // Done
   476   return;
   477 }
   479 ////////////////////////////////////////////////////////////////////////////////
   480 // breakpoint support
   482 void os::breakpoint() {
   483   BREAKPOINT;
   484 }
   486 extern "C" void breakpoint() {
   487   // use debugger to set breakpoint here
   488 }
   490 ////////////////////////////////////////////////////////////////////////////////
   491 // signal support
   493 debug_only(static bool signal_sets_initialized = false);
   494 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   496 bool os::Linux::is_sig_ignored(int sig) {
   497       struct sigaction oact;
   498       sigaction(sig, (struct sigaction*)NULL, &oact);
   499       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   500                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   501       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   502            return true;
   503       else
   504            return false;
   505 }
   507 void os::Linux::signal_sets_init() {
   508   // Should also have an assertion stating we are still single-threaded.
   509   assert(!signal_sets_initialized, "Already initialized");
   510   // Fill in signals that are necessarily unblocked for all threads in
   511   // the VM. Currently, we unblock the following signals:
   512   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   513   //                         by -Xrs (=ReduceSignalUsage));
   514   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   515   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   516   // the dispositions or masks wrt these signals.
   517   // Programs embedding the VM that want to use the above signals for their
   518   // own purposes must, at this time, use the "-Xrs" option to prevent
   519   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   520   // (See bug 4345157, and other related bugs).
   521   // In reality, though, unblocking these signals is really a nop, since
   522   // these signals are not blocked by default.
   523   sigemptyset(&unblocked_sigs);
   524   sigemptyset(&allowdebug_blocked_sigs);
   525   sigaddset(&unblocked_sigs, SIGILL);
   526   sigaddset(&unblocked_sigs, SIGSEGV);
   527   sigaddset(&unblocked_sigs, SIGBUS);
   528   sigaddset(&unblocked_sigs, SIGFPE);
   529   sigaddset(&unblocked_sigs, SR_signum);
   531   if (!ReduceSignalUsage) {
   532    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   533       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   534       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   535    }
   536    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   537       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   538       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   539    }
   540    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   541       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   542       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   543    }
   544   }
   545   // Fill in signals that are blocked by all but the VM thread.
   546   sigemptyset(&vm_sigs);
   547   if (!ReduceSignalUsage)
   548     sigaddset(&vm_sigs, BREAK_SIGNAL);
   549   debug_only(signal_sets_initialized = true);
   551 }
   553 // These are signals that are unblocked while a thread is running Java.
   554 // (For some reason, they get blocked by default.)
   555 sigset_t* os::Linux::unblocked_signals() {
   556   assert(signal_sets_initialized, "Not initialized");
   557   return &unblocked_sigs;
   558 }
   560 // These are the signals that are blocked while a (non-VM) thread is
   561 // running Java. Only the VM thread handles these signals.
   562 sigset_t* os::Linux::vm_signals() {
   563   assert(signal_sets_initialized, "Not initialized");
   564   return &vm_sigs;
   565 }
   567 // These are signals that are blocked during cond_wait to allow debugger in
   568 sigset_t* os::Linux::allowdebug_blocked_signals() {
   569   assert(signal_sets_initialized, "Not initialized");
   570   return &allowdebug_blocked_sigs;
   571 }
   573 void os::Linux::hotspot_sigmask(Thread* thread) {
   575   //Save caller's signal mask before setting VM signal mask
   576   sigset_t caller_sigmask;
   577   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   579   OSThread* osthread = thread->osthread();
   580   osthread->set_caller_sigmask(caller_sigmask);
   582   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   584   if (!ReduceSignalUsage) {
   585     if (thread->is_VM_thread()) {
   586       // Only the VM thread handles BREAK_SIGNAL ...
   587       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   588     } else {
   589       // ... all other threads block BREAK_SIGNAL
   590       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   591     }
   592   }
   593 }
   595 //////////////////////////////////////////////////////////////////////////////
   596 // detecting pthread library
   598 void os::Linux::libpthread_init() {
   599   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   600   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   601   // generic name for earlier versions.
   602   // Define macros here so we can build HotSpot on old systems.
   603 # ifndef _CS_GNU_LIBC_VERSION
   604 # define _CS_GNU_LIBC_VERSION 2
   605 # endif
   606 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   607 # define _CS_GNU_LIBPTHREAD_VERSION 3
   608 # endif
   610   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   611   if (n > 0) {
   612      char *str = (char *)malloc(n, mtInternal);
   613      confstr(_CS_GNU_LIBC_VERSION, str, n);
   614      os::Linux::set_glibc_version(str);
   615   } else {
   616      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   617      static char _gnu_libc_version[32];
   618      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   619               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   620      os::Linux::set_glibc_version(_gnu_libc_version);
   621   }
   623   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   624   if (n > 0) {
   625      char *str = (char *)malloc(n, mtInternal);
   626      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   627      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   628      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   629      // is the case. LinuxThreads has a hard limit on max number of threads.
   630      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   631      // On the other hand, NPTL does not have such a limit, sysconf()
   632      // will return -1 and errno is not changed. Check if it is really NPTL.
   633      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   634          strstr(str, "NPTL") &&
   635          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   636        free(str);
   637        os::Linux::set_libpthread_version("linuxthreads");
   638      } else {
   639        os::Linux::set_libpthread_version(str);
   640      }
   641   } else {
   642     // glibc before 2.3.2 only has LinuxThreads.
   643     os::Linux::set_libpthread_version("linuxthreads");
   644   }
   646   if (strstr(libpthread_version(), "NPTL")) {
   647      os::Linux::set_is_NPTL();
   648   } else {
   649      os::Linux::set_is_LinuxThreads();
   650   }
   652   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   653   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   654   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   655      os::Linux::set_is_floating_stack();
   656   }
   657 }
   659 /////////////////////////////////////////////////////////////////////////////
   660 // thread stack
   662 // Force Linux kernel to expand current thread stack. If "bottom" is close
   663 // to the stack guard, caller should block all signals.
   664 //
   665 // MAP_GROWSDOWN:
   666 //   A special mmap() flag that is used to implement thread stacks. It tells
   667 //   kernel that the memory region should extend downwards when needed. This
   668 //   allows early versions of LinuxThreads to only mmap the first few pages
   669 //   when creating a new thread. Linux kernel will automatically expand thread
   670 //   stack as needed (on page faults).
   671 //
   672 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   673 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   674 //   region, it's hard to tell if the fault is due to a legitimate stack
   675 //   access or because of reading/writing non-exist memory (e.g. buffer
   676 //   overrun). As a rule, if the fault happens below current stack pointer,
   677 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   678 //   application (see Linux kernel fault.c).
   679 //
   680 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   681 //   stack overflow detection.
   682 //
   683 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   684 //   not use this flag. However, the stack of initial thread is not created
   685 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   686 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   687 //   and then attach the thread to JVM.
   688 //
   689 // To get around the problem and allow stack banging on Linux, we need to
   690 // manually expand thread stack after receiving the SIGSEGV.
   691 //
   692 // There are two ways to expand thread stack to address "bottom", we used
   693 // both of them in JVM before 1.5:
   694 //   1. adjust stack pointer first so that it is below "bottom", and then
   695 //      touch "bottom"
   696 //   2. mmap() the page in question
   697 //
   698 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   699 // if current sp is already near the lower end of page 101, and we need to
   700 // call mmap() to map page 100, it is possible that part of the mmap() frame
   701 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   702 // That will destroy the mmap() frame and cause VM to crash.
   703 //
   704 // The following code works by adjusting sp first, then accessing the "bottom"
   705 // page to force a page fault. Linux kernel will then automatically expand the
   706 // stack mapping.
   707 //
   708 // _expand_stack_to() assumes its frame size is less than page size, which
   709 // should always be true if the function is not inlined.
   711 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   712 #define NOINLINE
   713 #else
   714 #define NOINLINE __attribute__ ((noinline))
   715 #endif
   717 static void _expand_stack_to(address bottom) NOINLINE;
   719 static void _expand_stack_to(address bottom) {
   720   address sp;
   721   size_t size;
   722   volatile char *p;
   724   // Adjust bottom to point to the largest address within the same page, it
   725   // gives us a one-page buffer if alloca() allocates slightly more memory.
   726   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   727   bottom += os::Linux::page_size() - 1;
   729   // sp might be slightly above current stack pointer; if that's the case, we
   730   // will alloca() a little more space than necessary, which is OK. Don't use
   731   // os::current_stack_pointer(), as its result can be slightly below current
   732   // stack pointer, causing us to not alloca enough to reach "bottom".
   733   sp = (address)&sp;
   735   if (sp > bottom) {
   736     size = sp - bottom;
   737     p = (volatile char *)alloca(size);
   738     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   739     p[0] = '\0';
   740   }
   741 }
   743 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   744   assert(t!=NULL, "just checking");
   745   assert(t->osthread()->expanding_stack(), "expand should be set");
   746   assert(t->stack_base() != NULL, "stack_base was not initialized");
   748   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   749     sigset_t mask_all, old_sigset;
   750     sigfillset(&mask_all);
   751     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   752     _expand_stack_to(addr);
   753     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   754     return true;
   755   }
   756   return false;
   757 }
   759 //////////////////////////////////////////////////////////////////////////////
   760 // create new thread
   762 static address highest_vm_reserved_address();
   764 // check if it's safe to start a new thread
   765 static bool _thread_safety_check(Thread* thread) {
   766   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   767     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   768     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   769     //   allocated (MAP_FIXED) from high address space. Every thread stack
   770     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   771     //   it to other values if they rebuild LinuxThreads).
   772     //
   773     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   774     // the memory region has already been mmap'ed. That means if we have too
   775     // many threads and/or very large heap, eventually thread stack will
   776     // collide with heap.
   777     //
   778     // Here we try to prevent heap/stack collision by comparing current
   779     // stack bottom with the highest address that has been mmap'ed by JVM
   780     // plus a safety margin for memory maps created by native code.
   781     //
   782     // This feature can be disabled by setting ThreadSafetyMargin to 0
   783     //
   784     if (ThreadSafetyMargin > 0) {
   785       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   787       // not safe if our stack extends below the safety margin
   788       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   789     } else {
   790       return true;
   791     }
   792   } else {
   793     // Floating stack LinuxThreads or NPTL:
   794     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   795     //   there's not enough space left, pthread_create() will fail. If we come
   796     //   here, that means enough space has been reserved for stack.
   797     return true;
   798   }
   799 }
   801 // Thread start routine for all newly created threads
   802 static void *java_start(Thread *thread) {
   803   // Try to randomize the cache line index of hot stack frames.
   804   // This helps when threads of the same stack traces evict each other's
   805   // cache lines. The threads can be either from the same JVM instance, or
   806   // from different JVM instances. The benefit is especially true for
   807   // processors with hyperthreading technology.
   808   static int counter = 0;
   809   int pid = os::current_process_id();
   810   alloca(((pid ^ counter++) & 7) * 128);
   812   ThreadLocalStorage::set_thread(thread);
   814   OSThread* osthread = thread->osthread();
   815   Monitor* sync = osthread->startThread_lock();
   817   // non floating stack LinuxThreads needs extra check, see above
   818   if (!_thread_safety_check(thread)) {
   819     // notify parent thread
   820     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   821     osthread->set_state(ZOMBIE);
   822     sync->notify_all();
   823     return NULL;
   824   }
   826   // thread_id is kernel thread id (similar to Solaris LWP id)
   827   osthread->set_thread_id(os::Linux::gettid());
   829   if (UseNUMA) {
   830     int lgrp_id = os::numa_get_group_id();
   831     if (lgrp_id != -1) {
   832       thread->set_lgrp_id(lgrp_id);
   833     }
   834   }
   835   // initialize signal mask for this thread
   836   os::Linux::hotspot_sigmask(thread);
   838   // initialize floating point control register
   839   os::Linux::init_thread_fpu_state();
   841   // handshaking with parent thread
   842   {
   843     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   845     // notify parent thread
   846     osthread->set_state(INITIALIZED);
   847     sync->notify_all();
   849     // wait until os::start_thread()
   850     while (osthread->get_state() == INITIALIZED) {
   851       sync->wait(Mutex::_no_safepoint_check_flag);
   852     }
   853   }
   855   // call one more level start routine
   856   thread->run();
   858   return 0;
   859 }
   861 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   862   assert(thread->osthread() == NULL, "caller responsible");
   864   // Allocate the OSThread object
   865   OSThread* osthread = new OSThread(NULL, NULL);
   866   if (osthread == NULL) {
   867     return false;
   868   }
   870   // set the correct thread state
   871   osthread->set_thread_type(thr_type);
   873   // Initial state is ALLOCATED but not INITIALIZED
   874   osthread->set_state(ALLOCATED);
   876   thread->set_osthread(osthread);
   878   // init thread attributes
   879   pthread_attr_t attr;
   880   pthread_attr_init(&attr);
   881   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   883   // stack size
   884   if (os::Linux::supports_variable_stack_size()) {
   885     // calculate stack size if it's not specified by caller
   886     if (stack_size == 0) {
   887       stack_size = os::Linux::default_stack_size(thr_type);
   889       switch (thr_type) {
   890       case os::java_thread:
   891         // Java threads use ThreadStackSize which default value can be
   892         // changed with the flag -Xss
   893         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   894         stack_size = JavaThread::stack_size_at_create();
   895         break;
   896       case os::compiler_thread:
   897         if (CompilerThreadStackSize > 0) {
   898           stack_size = (size_t)(CompilerThreadStackSize * K);
   899           break;
   900         } // else fall through:
   901           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   902       case os::vm_thread:
   903       case os::pgc_thread:
   904       case os::cgc_thread:
   905       case os::watcher_thread:
   906         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   907         break;
   908       }
   909     }
   911     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   912     pthread_attr_setstacksize(&attr, stack_size);
   913   } else {
   914     // let pthread_create() pick the default value.
   915   }
   917   // glibc guard page
   918   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   920   ThreadState state;
   922   {
   923     // Serialize thread creation if we are running with fixed stack LinuxThreads
   924     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   925     if (lock) {
   926       os::Linux::createThread_lock()->lock_without_safepoint_check();
   927     }
   929     pthread_t tid;
   930     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   932     pthread_attr_destroy(&attr);
   934     if (ret != 0) {
   935       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   936         perror("pthread_create()");
   937       }
   938       // Need to clean up stuff we've allocated so far
   939       thread->set_osthread(NULL);
   940       delete osthread;
   941       if (lock) os::Linux::createThread_lock()->unlock();
   942       return false;
   943     }
   945     // Store pthread info into the OSThread
   946     osthread->set_pthread_id(tid);
   948     // Wait until child thread is either initialized or aborted
   949     {
   950       Monitor* sync_with_child = osthread->startThread_lock();
   951       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   952       while ((state = osthread->get_state()) == ALLOCATED) {
   953         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   954       }
   955     }
   957     if (lock) {
   958       os::Linux::createThread_lock()->unlock();
   959     }
   960   }
   962   // Aborted due to thread limit being reached
   963   if (state == ZOMBIE) {
   964       thread->set_osthread(NULL);
   965       delete osthread;
   966       return false;
   967   }
   969   // The thread is returned suspended (in state INITIALIZED),
   970   // and is started higher up in the call chain
   971   assert(state == INITIALIZED, "race condition");
   972   return true;
   973 }
   975 /////////////////////////////////////////////////////////////////////////////
   976 // attach existing thread
   978 // bootstrap the main thread
   979 bool os::create_main_thread(JavaThread* thread) {
   980   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   981   return create_attached_thread(thread);
   982 }
   984 bool os::create_attached_thread(JavaThread* thread) {
   985 #ifdef ASSERT
   986     thread->verify_not_published();
   987 #endif
   989   // Allocate the OSThread object
   990   OSThread* osthread = new OSThread(NULL, NULL);
   992   if (osthread == NULL) {
   993     return false;
   994   }
   996   // Store pthread info into the OSThread
   997   osthread->set_thread_id(os::Linux::gettid());
   998   osthread->set_pthread_id(::pthread_self());
  1000   // initialize floating point control register
  1001   os::Linux::init_thread_fpu_state();
  1003   // Initial thread state is RUNNABLE
  1004   osthread->set_state(RUNNABLE);
  1006   thread->set_osthread(osthread);
  1008   if (UseNUMA) {
  1009     int lgrp_id = os::numa_get_group_id();
  1010     if (lgrp_id != -1) {
  1011       thread->set_lgrp_id(lgrp_id);
  1015   if (os::Linux::is_initial_thread()) {
  1016     // If current thread is initial thread, its stack is mapped on demand,
  1017     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1018     // the entire stack region to avoid SEGV in stack banging.
  1019     // It is also useful to get around the heap-stack-gap problem on SuSE
  1020     // kernel (see 4821821 for details). We first expand stack to the top
  1021     // of yellow zone, then enable stack yellow zone (order is significant,
  1022     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1023     // is no gap between the last two virtual memory regions.
  1025     JavaThread *jt = (JavaThread *)thread;
  1026     address addr = jt->stack_yellow_zone_base();
  1027     assert(addr != NULL, "initialization problem?");
  1028     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1030     osthread->set_expanding_stack();
  1031     os::Linux::manually_expand_stack(jt, addr);
  1032     osthread->clear_expanding_stack();
  1035   // initialize signal mask for this thread
  1036   // and save the caller's signal mask
  1037   os::Linux::hotspot_sigmask(thread);
  1039   return true;
  1042 void os::pd_start_thread(Thread* thread) {
  1043   OSThread * osthread = thread->osthread();
  1044   assert(osthread->get_state() != INITIALIZED, "just checking");
  1045   Monitor* sync_with_child = osthread->startThread_lock();
  1046   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1047   sync_with_child->notify();
  1050 // Free Linux resources related to the OSThread
  1051 void os::free_thread(OSThread* osthread) {
  1052   assert(osthread != NULL, "osthread not set");
  1054   if (Thread::current()->osthread() == osthread) {
  1055     // Restore caller's signal mask
  1056     sigset_t sigmask = osthread->caller_sigmask();
  1057     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1060   delete osthread;
  1063 //////////////////////////////////////////////////////////////////////////////
  1064 // thread local storage
  1066 int os::allocate_thread_local_storage() {
  1067   pthread_key_t key;
  1068   int rslt = pthread_key_create(&key, NULL);
  1069   assert(rslt == 0, "cannot allocate thread local storage");
  1070   return (int)key;
  1073 // Note: This is currently not used by VM, as we don't destroy TLS key
  1074 // on VM exit.
  1075 void os::free_thread_local_storage(int index) {
  1076   int rslt = pthread_key_delete((pthread_key_t)index);
  1077   assert(rslt == 0, "invalid index");
  1080 void os::thread_local_storage_at_put(int index, void* value) {
  1081   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1082   assert(rslt == 0, "pthread_setspecific failed");
  1085 extern "C" Thread* get_thread() {
  1086   return ThreadLocalStorage::thread();
  1089 //////////////////////////////////////////////////////////////////////////////
  1090 // initial thread
  1092 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1093 bool os::Linux::is_initial_thread(void) {
  1094   char dummy;
  1095   // If called before init complete, thread stack bottom will be null.
  1096   // Can be called if fatal error occurs before initialization.
  1097   if (initial_thread_stack_bottom() == NULL) return false;
  1098   assert(initial_thread_stack_bottom() != NULL &&
  1099          initial_thread_stack_size()   != 0,
  1100          "os::init did not locate initial thread's stack region");
  1101   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1102       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1103        return true;
  1104   else return false;
  1107 // Find the virtual memory area that contains addr
  1108 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1109   FILE *fp = fopen("/proc/self/maps", "r");
  1110   if (fp) {
  1111     address low, high;
  1112     while (!feof(fp)) {
  1113       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1114         if (low <= addr && addr < high) {
  1115            if (vma_low)  *vma_low  = low;
  1116            if (vma_high) *vma_high = high;
  1117            fclose (fp);
  1118            return true;
  1121       for (;;) {
  1122         int ch = fgetc(fp);
  1123         if (ch == EOF || ch == (int)'\n') break;
  1126     fclose(fp);
  1128   return false;
  1131 // Locate initial thread stack. This special handling of initial thread stack
  1132 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1133 // bogus value for initial thread.
  1134 void os::Linux::capture_initial_stack(size_t max_size) {
  1135   // stack size is the easy part, get it from RLIMIT_STACK
  1136   size_t stack_size;
  1137   struct rlimit rlim;
  1138   getrlimit(RLIMIT_STACK, &rlim);
  1139   stack_size = rlim.rlim_cur;
  1141   // 6308388: a bug in ld.so will relocate its own .data section to the
  1142   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1143   //   so we won't install guard page on ld.so's data section.
  1144   stack_size -= 2 * page_size();
  1146   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1147   //   7.1, in both cases we will get 2G in return value.
  1148   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1149   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1150   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1151   //   in case other parts in glibc still assumes 2M max stack size.
  1152   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1153   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1154   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1155       stack_size = 2 * K * K IA64_ONLY(*2);
  1156   // Try to figure out where the stack base (top) is. This is harder.
  1157   //
  1158   // When an application is started, glibc saves the initial stack pointer in
  1159   // a global variable "__libc_stack_end", which is then used by system
  1160   // libraries. __libc_stack_end should be pretty close to stack top. The
  1161   // variable is available since the very early days. However, because it is
  1162   // a private interface, it could disappear in the future.
  1163   //
  1164   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1165   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1166   // stack top. Note that /proc may not exist if VM is running as a chroot
  1167   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1168   // /proc/<pid>/stat could change in the future (though unlikely).
  1169   //
  1170   // We try __libc_stack_end first. If that doesn't work, look for
  1171   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1172   // as a hint, which should work well in most cases.
  1174   uintptr_t stack_start;
  1176   // try __libc_stack_end first
  1177   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1178   if (p && *p) {
  1179     stack_start = *p;
  1180   } else {
  1181     // see if we can get the start_stack field from /proc/self/stat
  1182     FILE *fp;
  1183     int pid;
  1184     char state;
  1185     int ppid;
  1186     int pgrp;
  1187     int session;
  1188     int nr;
  1189     int tpgrp;
  1190     unsigned long flags;
  1191     unsigned long minflt;
  1192     unsigned long cminflt;
  1193     unsigned long majflt;
  1194     unsigned long cmajflt;
  1195     unsigned long utime;
  1196     unsigned long stime;
  1197     long cutime;
  1198     long cstime;
  1199     long prio;
  1200     long nice;
  1201     long junk;
  1202     long it_real;
  1203     uintptr_t start;
  1204     uintptr_t vsize;
  1205     intptr_t rss;
  1206     uintptr_t rsslim;
  1207     uintptr_t scodes;
  1208     uintptr_t ecode;
  1209     int i;
  1211     // Figure what the primordial thread stack base is. Code is inspired
  1212     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1213     // followed by command name surrounded by parentheses, state, etc.
  1214     char stat[2048];
  1215     int statlen;
  1217     fp = fopen("/proc/self/stat", "r");
  1218     if (fp) {
  1219       statlen = fread(stat, 1, 2047, fp);
  1220       stat[statlen] = '\0';
  1221       fclose(fp);
  1223       // Skip pid and the command string. Note that we could be dealing with
  1224       // weird command names, e.g. user could decide to rename java launcher
  1225       // to "java 1.4.2 :)", then the stat file would look like
  1226       //                1234 (java 1.4.2 :)) R ... ...
  1227       // We don't really need to know the command string, just find the last
  1228       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1229       char * s = strrchr(stat, ')');
  1231       i = 0;
  1232       if (s) {
  1233         // Skip blank chars
  1234         do s++; while (isspace(*s));
  1236 #define _UFM UINTX_FORMAT
  1237 #define _DFM INTX_FORMAT
  1239         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1240         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1241         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1242              &state,          /* 3  %c  */
  1243              &ppid,           /* 4  %d  */
  1244              &pgrp,           /* 5  %d  */
  1245              &session,        /* 6  %d  */
  1246              &nr,             /* 7  %d  */
  1247              &tpgrp,          /* 8  %d  */
  1248              &flags,          /* 9  %lu  */
  1249              &minflt,         /* 10 %lu  */
  1250              &cminflt,        /* 11 %lu  */
  1251              &majflt,         /* 12 %lu  */
  1252              &cmajflt,        /* 13 %lu  */
  1253              &utime,          /* 14 %lu  */
  1254              &stime,          /* 15 %lu  */
  1255              &cutime,         /* 16 %ld  */
  1256              &cstime,         /* 17 %ld  */
  1257              &prio,           /* 18 %ld  */
  1258              &nice,           /* 19 %ld  */
  1259              &junk,           /* 20 %ld  */
  1260              &it_real,        /* 21 %ld  */
  1261              &start,          /* 22 UINTX_FORMAT */
  1262              &vsize,          /* 23 UINTX_FORMAT */
  1263              &rss,            /* 24 INTX_FORMAT  */
  1264              &rsslim,         /* 25 UINTX_FORMAT */
  1265              &scodes,         /* 26 UINTX_FORMAT */
  1266              &ecode,          /* 27 UINTX_FORMAT */
  1267              &stack_start);   /* 28 UINTX_FORMAT */
  1270 #undef _UFM
  1271 #undef _DFM
  1273       if (i != 28 - 2) {
  1274          assert(false, "Bad conversion from /proc/self/stat");
  1275          // product mode - assume we are the initial thread, good luck in the
  1276          // embedded case.
  1277          warning("Can't detect initial thread stack location - bad conversion");
  1278          stack_start = (uintptr_t) &rlim;
  1280     } else {
  1281       // For some reason we can't open /proc/self/stat (for example, running on
  1282       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1283       // most cases, so don't abort:
  1284       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1285       stack_start = (uintptr_t) &rlim;
  1289   // Now we have a pointer (stack_start) very close to the stack top, the
  1290   // next thing to do is to figure out the exact location of stack top. We
  1291   // can find out the virtual memory area that contains stack_start by
  1292   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1293   // and its upper limit is the real stack top. (again, this would fail if
  1294   // running inside chroot, because /proc may not exist.)
  1296   uintptr_t stack_top;
  1297   address low, high;
  1298   if (find_vma((address)stack_start, &low, &high)) {
  1299     // success, "high" is the true stack top. (ignore "low", because initial
  1300     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1301     stack_top = (uintptr_t)high;
  1302   } else {
  1303     // failed, likely because /proc/self/maps does not exist
  1304     warning("Can't detect initial thread stack location - find_vma failed");
  1305     // best effort: stack_start is normally within a few pages below the real
  1306     // stack top, use it as stack top, and reduce stack size so we won't put
  1307     // guard page outside stack.
  1308     stack_top = stack_start;
  1309     stack_size -= 16 * page_size();
  1312   // stack_top could be partially down the page so align it
  1313   stack_top = align_size_up(stack_top, page_size());
  1315   if (max_size && stack_size > max_size) {
  1316      _initial_thread_stack_size = max_size;
  1317   } else {
  1318      _initial_thread_stack_size = stack_size;
  1321   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1322   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1325 ////////////////////////////////////////////////////////////////////////////////
  1326 // time support
  1328 // Time since start-up in seconds to a fine granularity.
  1329 // Used by VMSelfDestructTimer and the MemProfiler.
  1330 double os::elapsedTime() {
  1332   return (double)(os::elapsed_counter()) * 0.000001;
  1335 jlong os::elapsed_counter() {
  1336   timeval time;
  1337   int status = gettimeofday(&time, NULL);
  1338   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1341 jlong os::elapsed_frequency() {
  1342   return (1000 * 1000);
  1345 bool os::supports_vtime() { return true; }
  1346 bool os::enable_vtime()   { return false; }
  1347 bool os::vtime_enabled()  { return false; }
  1349 double os::elapsedVTime() {
  1350   struct rusage usage;
  1351   int retval = getrusage(RUSAGE_THREAD, &usage);
  1352   if (retval == 0) {
  1353     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1354   } else {
  1355     // better than nothing, but not much
  1356     return elapsedTime();
  1360 jlong os::javaTimeMillis() {
  1361   timeval time;
  1362   int status = gettimeofday(&time, NULL);
  1363   assert(status != -1, "linux error");
  1364   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1367 #ifndef CLOCK_MONOTONIC
  1368 #define CLOCK_MONOTONIC (1)
  1369 #endif
  1371 void os::Linux::clock_init() {
  1372   // we do dlopen's in this particular order due to bug in linux
  1373   // dynamical loader (see 6348968) leading to crash on exit
  1374   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1375   if (handle == NULL) {
  1376     handle = dlopen("librt.so", RTLD_LAZY);
  1379   if (handle) {
  1380     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1381            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1382     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1383            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1384     if (clock_getres_func && clock_gettime_func) {
  1385       // See if monotonic clock is supported by the kernel. Note that some
  1386       // early implementations simply return kernel jiffies (updated every
  1387       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1388       // for nano time (though the monotonic property is still nice to have).
  1389       // It's fixed in newer kernels, however clock_getres() still returns
  1390       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1391       // resolution for now. Hopefully as people move to new kernels, this
  1392       // won't be a problem.
  1393       struct timespec res;
  1394       struct timespec tp;
  1395       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1396           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1397         // yes, monotonic clock is supported
  1398         _clock_gettime = clock_gettime_func;
  1399       } else {
  1400         // close librt if there is no monotonic clock
  1401         dlclose(handle);
  1407 #ifndef SYS_clock_getres
  1409 #if defined(IA32) || defined(AMD64)
  1410 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1411 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1412 #else
  1413 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1414 #define sys_clock_getres(x,y)  -1
  1415 #endif
  1417 #else
  1418 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1419 #endif
  1421 void os::Linux::fast_thread_clock_init() {
  1422   if (!UseLinuxPosixThreadCPUClocks) {
  1423     return;
  1425   clockid_t clockid;
  1426   struct timespec tp;
  1427   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1428       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1430   // Switch to using fast clocks for thread cpu time if
  1431   // the sys_clock_getres() returns 0 error code.
  1432   // Note, that some kernels may support the current thread
  1433   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1434   // returned by the pthread_getcpuclockid().
  1435   // If the fast Posix clocks are supported then the sys_clock_getres()
  1436   // must return at least tp.tv_sec == 0 which means a resolution
  1437   // better than 1 sec. This is extra check for reliability.
  1439   if(pthread_getcpuclockid_func &&
  1440      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1441      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1443     _supports_fast_thread_cpu_time = true;
  1444     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1448 jlong os::javaTimeNanos() {
  1449   if (Linux::supports_monotonic_clock()) {
  1450     struct timespec tp;
  1451     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1452     assert(status == 0, "gettime error");
  1453     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1454     return result;
  1455   } else {
  1456     timeval time;
  1457     int status = gettimeofday(&time, NULL);
  1458     assert(status != -1, "linux error");
  1459     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1460     return 1000 * usecs;
  1464 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1465   if (Linux::supports_monotonic_clock()) {
  1466     info_ptr->max_value = ALL_64_BITS;
  1468     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1469     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1470     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1471   } else {
  1472     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1473     info_ptr->max_value = ALL_64_BITS;
  1475     // gettimeofday is a real time clock so it skips
  1476     info_ptr->may_skip_backward = true;
  1477     info_ptr->may_skip_forward = true;
  1480   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1483 // Return the real, user, and system times in seconds from an
  1484 // arbitrary fixed point in the past.
  1485 bool os::getTimesSecs(double* process_real_time,
  1486                       double* process_user_time,
  1487                       double* process_system_time) {
  1488   struct tms ticks;
  1489   clock_t real_ticks = times(&ticks);
  1491   if (real_ticks == (clock_t) (-1)) {
  1492     return false;
  1493   } else {
  1494     double ticks_per_second = (double) clock_tics_per_sec;
  1495     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1496     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1497     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1499     return true;
  1504 char * os::local_time_string(char *buf, size_t buflen) {
  1505   struct tm t;
  1506   time_t long_time;
  1507   time(&long_time);
  1508   localtime_r(&long_time, &t);
  1509   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1510                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1511                t.tm_hour, t.tm_min, t.tm_sec);
  1512   return buf;
  1515 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1516   return localtime_r(clock, res);
  1519 ////////////////////////////////////////////////////////////////////////////////
  1520 // runtime exit support
  1522 // Note: os::shutdown() might be called very early during initialization, or
  1523 // called from signal handler. Before adding something to os::shutdown(), make
  1524 // sure it is async-safe and can handle partially initialized VM.
  1525 void os::shutdown() {
  1527   // allow PerfMemory to attempt cleanup of any persistent resources
  1528   perfMemory_exit();
  1530   // needs to remove object in file system
  1531   AttachListener::abort();
  1533   // flush buffered output, finish log files
  1534   ostream_abort();
  1536   // Check for abort hook
  1537   abort_hook_t abort_hook = Arguments::abort_hook();
  1538   if (abort_hook != NULL) {
  1539     abort_hook();
  1544 // Note: os::abort() might be called very early during initialization, or
  1545 // called from signal handler. Before adding something to os::abort(), make
  1546 // sure it is async-safe and can handle partially initialized VM.
  1547 void os::abort(bool dump_core) {
  1548   os::shutdown();
  1549   if (dump_core) {
  1550 #ifndef PRODUCT
  1551     fdStream out(defaultStream::output_fd());
  1552     out.print_raw("Current thread is ");
  1553     char buf[16];
  1554     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1555     out.print_raw_cr(buf);
  1556     out.print_raw_cr("Dumping core ...");
  1557 #endif
  1558     ::abort(); // dump core
  1561   ::exit(1);
  1564 // Die immediately, no exit hook, no abort hook, no cleanup.
  1565 void os::die() {
  1566   // _exit() on LinuxThreads only kills current thread
  1567   ::abort();
  1570 // unused on linux for now.
  1571 void os::set_error_file(const char *logfile) {}
  1574 // This method is a copy of JDK's sysGetLastErrorString
  1575 // from src/solaris/hpi/src/system_md.c
  1577 size_t os::lasterror(char *buf, size_t len) {
  1579   if (errno == 0)  return 0;
  1581   const char *s = ::strerror(errno);
  1582   size_t n = ::strlen(s);
  1583   if (n >= len) {
  1584     n = len - 1;
  1586   ::strncpy(buf, s, n);
  1587   buf[n] = '\0';
  1588   return n;
  1591 intx os::current_thread_id() { return (intx)pthread_self(); }
  1592 int os::current_process_id() {
  1594   // Under the old linux thread library, linux gives each thread
  1595   // its own process id. Because of this each thread will return
  1596   // a different pid if this method were to return the result
  1597   // of getpid(2). Linux provides no api that returns the pid
  1598   // of the launcher thread for the vm. This implementation
  1599   // returns a unique pid, the pid of the launcher thread
  1600   // that starts the vm 'process'.
  1602   // Under the NPTL, getpid() returns the same pid as the
  1603   // launcher thread rather than a unique pid per thread.
  1604   // Use gettid() if you want the old pre NPTL behaviour.
  1606   // if you are looking for the result of a call to getpid() that
  1607   // returns a unique pid for the calling thread, then look at the
  1608   // OSThread::thread_id() method in osThread_linux.hpp file
  1610   return (int)(_initial_pid ? _initial_pid : getpid());
  1613 // DLL functions
  1615 const char* os::dll_file_extension() { return ".so"; }
  1617 // This must be hard coded because it's the system's temporary
  1618 // directory not the java application's temp directory, ala java.io.tmpdir.
  1619 const char* os::get_temp_directory() { return "/tmp"; }
  1621 static bool file_exists(const char* filename) {
  1622   struct stat statbuf;
  1623   if (filename == NULL || strlen(filename) == 0) {
  1624     return false;
  1626   return os::stat(filename, &statbuf) == 0;
  1629 bool os::dll_build_name(char* buffer, size_t buflen,
  1630                         const char* pname, const char* fname) {
  1631   bool retval = false;
  1632   // Copied from libhpi
  1633   const size_t pnamelen = pname ? strlen(pname) : 0;
  1635   // Return error on buffer overflow.
  1636   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1637     return retval;
  1640   if (pnamelen == 0) {
  1641     snprintf(buffer, buflen, "lib%s.so", fname);
  1642     retval = true;
  1643   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1644     int n;
  1645     char** pelements = split_path(pname, &n);
  1646     if (pelements == NULL) {
  1647       return false;
  1649     for (int i = 0 ; i < n ; i++) {
  1650       // Really shouldn't be NULL, but check can't hurt
  1651       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1652         continue; // skip the empty path values
  1654       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1655       if (file_exists(buffer)) {
  1656         retval = true;
  1657         break;
  1660     // release the storage
  1661     for (int i = 0 ; i < n ; i++) {
  1662       if (pelements[i] != NULL) {
  1663         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1666     if (pelements != NULL) {
  1667       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1669   } else {
  1670     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1671     retval = true;
  1673   return retval;
  1676 // check if addr is inside libjvm.so
  1677 bool os::address_is_in_vm(address addr) {
  1678   static address libjvm_base_addr;
  1679   Dl_info dlinfo;
  1681   if (libjvm_base_addr == NULL) {
  1682     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1683     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1684     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1687   if (dladdr((void *)addr, &dlinfo)) {
  1688     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1691   return false;
  1694 bool os::dll_address_to_function_name(address addr, char *buf,
  1695                                       int buflen, int *offset) {
  1696   Dl_info dlinfo;
  1698   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1699     if (buf != NULL) {
  1700       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1701         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1704     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1705     return true;
  1706   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1707     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1708         buf, buflen, offset, dlinfo.dli_fname)) {
  1709        return true;
  1713   if (buf != NULL) buf[0] = '\0';
  1714   if (offset != NULL) *offset = -1;
  1715   return false;
  1718 struct _address_to_library_name {
  1719   address addr;          // input : memory address
  1720   size_t  buflen;        //         size of fname
  1721   char*   fname;         // output: library name
  1722   address base;          //         library base addr
  1723 };
  1725 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1726                                             size_t size, void *data) {
  1727   int i;
  1728   bool found = false;
  1729   address libbase = NULL;
  1730   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1732   // iterate through all loadable segments
  1733   for (i = 0; i < info->dlpi_phnum; i++) {
  1734     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1735     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1736       // base address of a library is the lowest address of its loaded
  1737       // segments.
  1738       if (libbase == NULL || libbase > segbase) {
  1739         libbase = segbase;
  1741       // see if 'addr' is within current segment
  1742       if (segbase <= d->addr &&
  1743           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1744         found = true;
  1749   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1750   // so dll_address_to_library_name() can fall through to use dladdr() which
  1751   // can figure out executable name from argv[0].
  1752   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1753     d->base = libbase;
  1754     if (d->fname) {
  1755       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1757     return 1;
  1759   return 0;
  1762 bool os::dll_address_to_library_name(address addr, char* buf,
  1763                                      int buflen, int* offset) {
  1764   Dl_info dlinfo;
  1765   struct _address_to_library_name data;
  1767   // There is a bug in old glibc dladdr() implementation that it could resolve
  1768   // to wrong library name if the .so file has a base address != NULL. Here
  1769   // we iterate through the program headers of all loaded libraries to find
  1770   // out which library 'addr' really belongs to. This workaround can be
  1771   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1772   data.addr = addr;
  1773   data.fname = buf;
  1774   data.buflen = buflen;
  1775   data.base = NULL;
  1776   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1778   if (rslt) {
  1779      // buf already contains library name
  1780      if (offset) *offset = addr - data.base;
  1781      return true;
  1782   } else if (dladdr((void*)addr, &dlinfo)){
  1783      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1784      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1785      return true;
  1786   } else {
  1787      if (buf) buf[0] = '\0';
  1788      if (offset) *offset = -1;
  1789      return false;
  1793   // Loads .dll/.so and
  1794   // in case of error it checks if .dll/.so was built for the
  1795   // same architecture as Hotspot is running on
  1798 // Remember the stack's state. The Linux dynamic linker will change
  1799 // the stack to 'executable' at most once, so we must safepoint only once.
  1800 bool os::Linux::_stack_is_executable = false;
  1802 // VM operation that loads a library.  This is necessary if stack protection
  1803 // of the Java stacks can be lost during loading the library.  If we
  1804 // do not stop the Java threads, they can stack overflow before the stacks
  1805 // are protected again.
  1806 class VM_LinuxDllLoad: public VM_Operation {
  1807  private:
  1808   const char *_filename;
  1809   char *_ebuf;
  1810   int _ebuflen;
  1811   void *_lib;
  1812  public:
  1813   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1814     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1815   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1816   void doit() {
  1817     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1818     os::Linux::_stack_is_executable = true;
  1820   void* loaded_library() { return _lib; }
  1821 };
  1823 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1825   void * result = NULL;
  1826   bool load_attempted = false;
  1828   // Check whether the library to load might change execution rights
  1829   // of the stack. If they are changed, the protection of the stack
  1830   // guard pages will be lost. We need a safepoint to fix this.
  1831   //
  1832   // See Linux man page execstack(8) for more info.
  1833   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1834     ElfFile ef(filename);
  1835     if (!ef.specifies_noexecstack()) {
  1836       if (!is_init_completed()) {
  1837         os::Linux::_stack_is_executable = true;
  1838         // This is OK - No Java threads have been created yet, and hence no
  1839         // stack guard pages to fix.
  1840         //
  1841         // This should happen only when you are building JDK7 using a very
  1842         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1843         //
  1844         // Dynamic loader will make all stacks executable after
  1845         // this function returns, and will not do that again.
  1846         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1847       } else {
  1848         warning("You have loaded library %s which might have disabled stack guard. "
  1849                 "The VM will try to fix the stack guard now.\n"
  1850                 "It's highly recommended that you fix the library with "
  1851                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1852                 filename);
  1854         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1855         JavaThread *jt = JavaThread::current();
  1856         if (jt->thread_state() != _thread_in_native) {
  1857           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1858           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1859           warning("Unable to fix stack guard. Giving up.");
  1860         } else {
  1861           if (!LoadExecStackDllInVMThread) {
  1862             // This is for the case where the DLL has an static
  1863             // constructor function that executes JNI code. We cannot
  1864             // load such DLLs in the VMThread.
  1865             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1868           ThreadInVMfromNative tiv(jt);
  1869           debug_only(VMNativeEntryWrapper vew;)
  1871           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1872           VMThread::execute(&op);
  1873           if (LoadExecStackDllInVMThread) {
  1874             result = op.loaded_library();
  1876           load_attempted = true;
  1882   if (!load_attempted) {
  1883     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1886   if (result != NULL) {
  1887     // Successful loading
  1888     return result;
  1891   Elf32_Ehdr elf_head;
  1892   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1893   char* diag_msg_buf=ebuf+strlen(ebuf);
  1895   if (diag_msg_max_length==0) {
  1896     // No more space in ebuf for additional diagnostics message
  1897     return NULL;
  1901   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1903   if (file_descriptor < 0) {
  1904     // Can't open library, report dlerror() message
  1905     return NULL;
  1908   bool failed_to_read_elf_head=
  1909     (sizeof(elf_head)!=
  1910         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1912   ::close(file_descriptor);
  1913   if (failed_to_read_elf_head) {
  1914     // file i/o error - report dlerror() msg
  1915     return NULL;
  1918   typedef struct {
  1919     Elf32_Half  code;         // Actual value as defined in elf.h
  1920     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1921     char        elf_class;    // 32 or 64 bit
  1922     char        endianess;    // MSB or LSB
  1923     char*       name;         // String representation
  1924   } arch_t;
  1926   #ifndef EM_486
  1927   #define EM_486          6               /* Intel 80486 */
  1928   #endif
  1930   static const arch_t arch_array[]={
  1931     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1932     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1933     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1934     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1935     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1936     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1937     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1938     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1939     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1940     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1941     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1942     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1943     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1944     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1945     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1946     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1947   };
  1949   #if  (defined IA32)
  1950     static  Elf32_Half running_arch_code=EM_386;
  1951   #elif   (defined AMD64)
  1952     static  Elf32_Half running_arch_code=EM_X86_64;
  1953   #elif  (defined IA64)
  1954     static  Elf32_Half running_arch_code=EM_IA_64;
  1955   #elif  (defined __sparc) && (defined _LP64)
  1956     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1957   #elif  (defined __sparc) && (!defined _LP64)
  1958     static  Elf32_Half running_arch_code=EM_SPARC;
  1959   #elif  (defined __powerpc64__)
  1960     static  Elf32_Half running_arch_code=EM_PPC64;
  1961   #elif  (defined __powerpc__)
  1962     static  Elf32_Half running_arch_code=EM_PPC;
  1963   #elif  (defined ARM)
  1964     static  Elf32_Half running_arch_code=EM_ARM;
  1965   #elif  (defined S390)
  1966     static  Elf32_Half running_arch_code=EM_S390;
  1967   #elif  (defined ALPHA)
  1968     static  Elf32_Half running_arch_code=EM_ALPHA;
  1969   #elif  (defined MIPSEL)
  1970     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1971   #elif  (defined PARISC)
  1972     static  Elf32_Half running_arch_code=EM_PARISC;
  1973   #elif  (defined MIPS)
  1974     static  Elf32_Half running_arch_code=EM_MIPS;
  1975   #elif  (defined M68K)
  1976     static  Elf32_Half running_arch_code=EM_68K;
  1977   #else
  1978     #error Method os::dll_load requires that one of following is defined:\
  1979          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1980   #endif
  1982   // Identify compatability class for VM's architecture and library's architecture
  1983   // Obtain string descriptions for architectures
  1985   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1986   int running_arch_index=-1;
  1988   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1989     if (running_arch_code == arch_array[i].code) {
  1990       running_arch_index    = i;
  1992     if (lib_arch.code == arch_array[i].code) {
  1993       lib_arch.compat_class = arch_array[i].compat_class;
  1994       lib_arch.name         = arch_array[i].name;
  1998   assert(running_arch_index != -1,
  1999     "Didn't find running architecture code (running_arch_code) in arch_array");
  2000   if (running_arch_index == -1) {
  2001     // Even though running architecture detection failed
  2002     // we may still continue with reporting dlerror() message
  2003     return NULL;
  2006   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2007     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2008     return NULL;
  2011 #ifndef S390
  2012   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2013     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2014     return NULL;
  2016 #endif // !S390
  2018   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2019     if ( lib_arch.name!=NULL ) {
  2020       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2021         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2022         lib_arch.name, arch_array[running_arch_index].name);
  2023     } else {
  2024       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2025       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2026         lib_arch.code,
  2027         arch_array[running_arch_index].name);
  2031   return NULL;
  2034 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2035   void * result = ::dlopen(filename, RTLD_LAZY);
  2036   if (result == NULL) {
  2037     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2038     ebuf[ebuflen-1] = '\0';
  2040   return result;
  2043 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2044   void * result = NULL;
  2045   if (LoadExecStackDllInVMThread) {
  2046     result = dlopen_helper(filename, ebuf, ebuflen);
  2049   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2050   // library that requires an executable stack, or which does not have this
  2051   // stack attribute set, dlopen changes the stack attribute to executable. The
  2052   // read protection of the guard pages gets lost.
  2053   //
  2054   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2055   // may have been queued at the same time.
  2057   if (!_stack_is_executable) {
  2058     JavaThread *jt = Threads::first();
  2060     while (jt) {
  2061       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2062           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2063         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2064                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2065           warning("Attempt to reguard stack yellow zone failed.");
  2068       jt = jt->next();
  2072   return result;
  2075 /*
  2076  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2077  * chances are you might want to run the generated bits against glibc-2.0
  2078  * libdl.so, so always use locking for any version of glibc.
  2079  */
  2080 void* os::dll_lookup(void* handle, const char* name) {
  2081   pthread_mutex_lock(&dl_mutex);
  2082   void* res = dlsym(handle, name);
  2083   pthread_mutex_unlock(&dl_mutex);
  2084   return res;
  2088 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2089   int fd = ::open(filename, O_RDONLY);
  2090   if (fd == -1) {
  2091      return false;
  2094   char buf[32];
  2095   int bytes;
  2096   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2097     st->print_raw(buf, bytes);
  2100   ::close(fd);
  2102   return true;
  2105 void os::print_dll_info(outputStream *st) {
  2106    st->print_cr("Dynamic libraries:");
  2108    char fname[32];
  2109    pid_t pid = os::Linux::gettid();
  2111    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2113    if (!_print_ascii_file(fname, st)) {
  2114      st->print("Can not get library information for pid = %d\n", pid);
  2118 void os::print_os_info_brief(outputStream* st) {
  2119   os::Linux::print_distro_info(st);
  2121   os::Posix::print_uname_info(st);
  2123   os::Linux::print_libversion_info(st);
  2127 void os::print_os_info(outputStream* st) {
  2128   st->print("OS:");
  2130   os::Linux::print_distro_info(st);
  2132   os::Posix::print_uname_info(st);
  2134   // Print warning if unsafe chroot environment detected
  2135   if (unsafe_chroot_detected) {
  2136     st->print("WARNING!! ");
  2137     st->print_cr(unstable_chroot_error);
  2140   os::Linux::print_libversion_info(st);
  2142   os::Posix::print_rlimit_info(st);
  2144   os::Posix::print_load_average(st);
  2146   os::Linux::print_full_memory_info(st);
  2149 // Try to identify popular distros.
  2150 // Most Linux distributions have /etc/XXX-release file, which contains
  2151 // the OS version string. Some have more than one /etc/XXX-release file
  2152 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2153 // so the order is important.
  2154 void os::Linux::print_distro_info(outputStream* st) {
  2155   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2156       !_print_ascii_file("/etc/sun-release", st) &&
  2157       !_print_ascii_file("/etc/redhat-release", st) &&
  2158       !_print_ascii_file("/etc/SuSE-release", st) &&
  2159       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2160       !_print_ascii_file("/etc/gentoo-release", st) &&
  2161       !_print_ascii_file("/etc/debian_version", st) &&
  2162       !_print_ascii_file("/etc/ltib-release", st) &&
  2163       !_print_ascii_file("/etc/angstrom-version", st)) {
  2164       st->print("Linux");
  2166   st->cr();
  2169 void os::Linux::print_libversion_info(outputStream* st) {
  2170   // libc, pthread
  2171   st->print("libc:");
  2172   st->print(os::Linux::glibc_version()); st->print(" ");
  2173   st->print(os::Linux::libpthread_version()); st->print(" ");
  2174   if (os::Linux::is_LinuxThreads()) {
  2175      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2177   st->cr();
  2180 void os::Linux::print_full_memory_info(outputStream* st) {
  2181    st->print("\n/proc/meminfo:\n");
  2182    _print_ascii_file("/proc/meminfo", st);
  2183    st->cr();
  2186 void os::print_memory_info(outputStream* st) {
  2188   st->print("Memory:");
  2189   st->print(" %dk page", os::vm_page_size()>>10);
  2191   // values in struct sysinfo are "unsigned long"
  2192   struct sysinfo si;
  2193   sysinfo(&si);
  2195   st->print(", physical " UINT64_FORMAT "k",
  2196             os::physical_memory() >> 10);
  2197   st->print("(" UINT64_FORMAT "k free)",
  2198             os::available_memory() >> 10);
  2199   st->print(", swap " UINT64_FORMAT "k",
  2200             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2201   st->print("(" UINT64_FORMAT "k free)",
  2202             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2203   st->cr();
  2206 void os::pd_print_cpu_info(outputStream* st) {
  2207   st->print("\n/proc/cpuinfo:\n");
  2208   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2209     st->print("  <Not Available>");
  2211   st->cr();
  2214 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2215 // but they're the same for all the linux arch that we support
  2216 // and they're the same for solaris but there's no common place to put this.
  2217 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2218                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2219                           "ILL_COPROC", "ILL_BADSTK" };
  2221 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2222                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2223                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2225 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2227 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2229 void os::print_siginfo(outputStream* st, void* siginfo) {
  2230   st->print("siginfo:");
  2232   const int buflen = 100;
  2233   char buf[buflen];
  2234   siginfo_t *si = (siginfo_t*)siginfo;
  2235   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2236   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2237     st->print("si_errno=%s", buf);
  2238   } else {
  2239     st->print("si_errno=%d", si->si_errno);
  2241   const int c = si->si_code;
  2242   assert(c > 0, "unexpected si_code");
  2243   switch (si->si_signo) {
  2244   case SIGILL:
  2245     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2246     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2247     break;
  2248   case SIGFPE:
  2249     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2250     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2251     break;
  2252   case SIGSEGV:
  2253     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2254     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2255     break;
  2256   case SIGBUS:
  2257     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2258     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2259     break;
  2260   default:
  2261     st->print(", si_code=%d", si->si_code);
  2262     // no si_addr
  2265   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2266       UseSharedSpaces) {
  2267     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2268     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2269       st->print("\n\nError accessing class data sharing archive."   \
  2270                 " Mapped file inaccessible during execution, "      \
  2271                 " possible disk/network problem.");
  2274   st->cr();
  2278 static void print_signal_handler(outputStream* st, int sig,
  2279                                  char* buf, size_t buflen);
  2281 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2282   st->print_cr("Signal Handlers:");
  2283   print_signal_handler(st, SIGSEGV, buf, buflen);
  2284   print_signal_handler(st, SIGBUS , buf, buflen);
  2285   print_signal_handler(st, SIGFPE , buf, buflen);
  2286   print_signal_handler(st, SIGPIPE, buf, buflen);
  2287   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2288   print_signal_handler(st, SIGILL , buf, buflen);
  2289   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2290   print_signal_handler(st, SR_signum, buf, buflen);
  2291   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2292   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2293   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2294   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2297 static char saved_jvm_path[MAXPATHLEN] = {0};
  2299 // Find the full path to the current module, libjvm.so
  2300 void os::jvm_path(char *buf, jint buflen) {
  2301   // Error checking.
  2302   if (buflen < MAXPATHLEN) {
  2303     assert(false, "must use a large-enough buffer");
  2304     buf[0] = '\0';
  2305     return;
  2307   // Lazy resolve the path to current module.
  2308   if (saved_jvm_path[0] != 0) {
  2309     strcpy(buf, saved_jvm_path);
  2310     return;
  2313   char dli_fname[MAXPATHLEN];
  2314   bool ret = dll_address_to_library_name(
  2315                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2316                 dli_fname, sizeof(dli_fname), NULL);
  2317   assert(ret != 0, "cannot locate libjvm");
  2318   char *rp = realpath(dli_fname, buf);
  2319   if (rp == NULL)
  2320     return;
  2322   if (Arguments::created_by_gamma_launcher()) {
  2323     // Support for the gamma launcher.  Typical value for buf is
  2324     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2325     // the right place in the string, then assume we are installed in a JDK and
  2326     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2327     // up the path so it looks like libjvm.so is installed there (append a
  2328     // fake suffix hotspot/libjvm.so).
  2329     const char *p = buf + strlen(buf) - 1;
  2330     for (int count = 0; p > buf && count < 5; ++count) {
  2331       for (--p; p > buf && *p != '/'; --p)
  2332         /* empty */ ;
  2335     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2336       // Look for JAVA_HOME in the environment.
  2337       char* java_home_var = ::getenv("JAVA_HOME");
  2338       if (java_home_var != NULL && java_home_var[0] != 0) {
  2339         char* jrelib_p;
  2340         int len;
  2342         // Check the current module name "libjvm.so".
  2343         p = strrchr(buf, '/');
  2344         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2346         rp = realpath(java_home_var, buf);
  2347         if (rp == NULL)
  2348           return;
  2350         // determine if this is a legacy image or modules image
  2351         // modules image doesn't have "jre" subdirectory
  2352         len = strlen(buf);
  2353         jrelib_p = buf + len;
  2354         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2355         if (0 != access(buf, F_OK)) {
  2356           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2359         if (0 == access(buf, F_OK)) {
  2360           // Use current module name "libjvm.so"
  2361           len = strlen(buf);
  2362           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2363         } else {
  2364           // Go back to path of .so
  2365           rp = realpath(dli_fname, buf);
  2366           if (rp == NULL)
  2367             return;
  2373   strcpy(saved_jvm_path, buf);
  2376 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2377   // no prefix required, not even "_"
  2380 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2381   // no suffix required
  2384 ////////////////////////////////////////////////////////////////////////////////
  2385 // sun.misc.Signal support
  2387 static volatile jint sigint_count = 0;
  2389 static void
  2390 UserHandler(int sig, void *siginfo, void *context) {
  2391   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2392   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2393   // don't want to flood the manager thread with sem_post requests.
  2394   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2395       return;
  2397   // Ctrl-C is pressed during error reporting, likely because the error
  2398   // handler fails to abort. Let VM die immediately.
  2399   if (sig == SIGINT && is_error_reported()) {
  2400      os::die();
  2403   os::signal_notify(sig);
  2406 void* os::user_handler() {
  2407   return CAST_FROM_FN_PTR(void*, UserHandler);
  2410 extern "C" {
  2411   typedef void (*sa_handler_t)(int);
  2412   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2415 void* os::signal(int signal_number, void* handler) {
  2416   struct sigaction sigAct, oldSigAct;
  2418   sigfillset(&(sigAct.sa_mask));
  2419   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2420   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2422   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2423     // -1 means registration failed
  2424     return (void *)-1;
  2427   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2430 void os::signal_raise(int signal_number) {
  2431   ::raise(signal_number);
  2434 /*
  2435  * The following code is moved from os.cpp for making this
  2436  * code platform specific, which it is by its very nature.
  2437  */
  2439 // Will be modified when max signal is changed to be dynamic
  2440 int os::sigexitnum_pd() {
  2441   return NSIG;
  2444 // a counter for each possible signal value
  2445 static volatile jint pending_signals[NSIG+1] = { 0 };
  2447 // Linux(POSIX) specific hand shaking semaphore.
  2448 static sem_t sig_sem;
  2450 void os::signal_init_pd() {
  2451   // Initialize signal structures
  2452   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2454   // Initialize signal semaphore
  2455   ::sem_init(&sig_sem, 0, 0);
  2458 void os::signal_notify(int sig) {
  2459   Atomic::inc(&pending_signals[sig]);
  2460   ::sem_post(&sig_sem);
  2463 static int check_pending_signals(bool wait) {
  2464   Atomic::store(0, &sigint_count);
  2465   for (;;) {
  2466     for (int i = 0; i < NSIG + 1; i++) {
  2467       jint n = pending_signals[i];
  2468       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2469         return i;
  2472     if (!wait) {
  2473       return -1;
  2475     JavaThread *thread = JavaThread::current();
  2476     ThreadBlockInVM tbivm(thread);
  2478     bool threadIsSuspended;
  2479     do {
  2480       thread->set_suspend_equivalent();
  2481       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2482       ::sem_wait(&sig_sem);
  2484       // were we externally suspended while we were waiting?
  2485       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2486       if (threadIsSuspended) {
  2487         //
  2488         // The semaphore has been incremented, but while we were waiting
  2489         // another thread suspended us. We don't want to continue running
  2490         // while suspended because that would surprise the thread that
  2491         // suspended us.
  2492         //
  2493         ::sem_post(&sig_sem);
  2495         thread->java_suspend_self();
  2497     } while (threadIsSuspended);
  2501 int os::signal_lookup() {
  2502   return check_pending_signals(false);
  2505 int os::signal_wait() {
  2506   return check_pending_signals(true);
  2509 ////////////////////////////////////////////////////////////////////////////////
  2510 // Virtual Memory
  2512 int os::vm_page_size() {
  2513   // Seems redundant as all get out
  2514   assert(os::Linux::page_size() != -1, "must call os::init");
  2515   return os::Linux::page_size();
  2518 // Solaris allocates memory by pages.
  2519 int os::vm_allocation_granularity() {
  2520   assert(os::Linux::page_size() != -1, "must call os::init");
  2521   return os::Linux::page_size();
  2524 // Rationale behind this function:
  2525 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2526 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2527 //  samples for JITted code. Here we create private executable mapping over the code cache
  2528 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2529 //  info for the reporting script by storing timestamp and location of symbol
  2530 void linux_wrap_code(char* base, size_t size) {
  2531   static volatile jint cnt = 0;
  2533   if (!UseOprofile) {
  2534     return;
  2537   char buf[PATH_MAX+1];
  2538   int num = Atomic::add(1, &cnt);
  2540   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2541            os::get_temp_directory(), os::current_process_id(), num);
  2542   unlink(buf);
  2544   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2546   if (fd != -1) {
  2547     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2548     if (rv != (off_t)-1) {
  2549       if (::write(fd, "", 1) == 1) {
  2550         mmap(base, size,
  2551              PROT_READ|PROT_WRITE|PROT_EXEC,
  2552              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2555     ::close(fd);
  2556     unlink(buf);
  2560 // NOTE: Linux kernel does not really reserve the pages for us.
  2561 //       All it does is to check if there are enough free pages
  2562 //       left at the time of mmap(). This could be a potential
  2563 //       problem.
  2564 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2565   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2566   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2567                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2568   if (res != (uintptr_t) MAP_FAILED) {
  2569     if (UseNUMAInterleaving) {
  2570       numa_make_global(addr, size);
  2572     return true;
  2574   return false;
  2577 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2578 #ifndef MAP_HUGETLB
  2579 #define MAP_HUGETLB 0x40000
  2580 #endif
  2582 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2583 #ifndef MADV_HUGEPAGE
  2584 #define MADV_HUGEPAGE 14
  2585 #endif
  2587 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2588                        bool exec) {
  2589   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2590     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2591     uintptr_t res =
  2592       (uintptr_t) ::mmap(addr, size, prot,
  2593                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2594                          -1, 0);
  2595     if (res != (uintptr_t) MAP_FAILED) {
  2596       if (UseNUMAInterleaving) {
  2597         numa_make_global(addr, size);
  2599       return true;
  2601     // Fall through and try to use small pages
  2604   if (commit_memory(addr, size, exec)) {
  2605     realign_memory(addr, size, alignment_hint);
  2606     return true;
  2608   return false;
  2611 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2612   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2613     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2614     // be supported or the memory may already be backed by huge pages.
  2615     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2619 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2620   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2621   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2622   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2623   // small pages on top of the SHM segment. This method always works for small pages, so we
  2624   // allow that in any case.
  2625   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
  2626     commit_memory(addr, bytes, alignment_hint, false);
  2630 void os::numa_make_global(char *addr, size_t bytes) {
  2631   Linux::numa_interleave_memory(addr, bytes);
  2634 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2635   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2638 bool os::numa_topology_changed()   { return false; }
  2640 size_t os::numa_get_groups_num() {
  2641   int max_node = Linux::numa_max_node();
  2642   return max_node > 0 ? max_node + 1 : 1;
  2645 int os::numa_get_group_id() {
  2646   int cpu_id = Linux::sched_getcpu();
  2647   if (cpu_id != -1) {
  2648     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2649     if (lgrp_id != -1) {
  2650       return lgrp_id;
  2653   return 0;
  2656 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2657   for (size_t i = 0; i < size; i++) {
  2658     ids[i] = i;
  2660   return size;
  2663 bool os::get_page_info(char *start, page_info* info) {
  2664   return false;
  2667 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2668   return end;
  2672 int os::Linux::sched_getcpu_syscall(void) {
  2673   unsigned int cpu;
  2674   int retval = -1;
  2676 #if defined(IA32)
  2677 # ifndef SYS_getcpu
  2678 # define SYS_getcpu 318
  2679 # endif
  2680   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2681 #elif defined(AMD64)
  2682 // Unfortunately we have to bring all these macros here from vsyscall.h
  2683 // to be able to compile on old linuxes.
  2684 # define __NR_vgetcpu 2
  2685 # define VSYSCALL_START (-10UL << 20)
  2686 # define VSYSCALL_SIZE 1024
  2687 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2688   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2689   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2690   retval = vgetcpu(&cpu, NULL, NULL);
  2691 #endif
  2693   return (retval == -1) ? retval : cpu;
  2696 // Something to do with the numa-aware allocator needs these symbols
  2697 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2698 extern "C" JNIEXPORT void numa_error(char *where) { }
  2699 extern "C" JNIEXPORT int fork1() { return fork(); }
  2702 // If we are running with libnuma version > 2, then we should
  2703 // be trying to use symbols with versions 1.1
  2704 // If we are running with earlier version, which did not have symbol versions,
  2705 // we should use the base version.
  2706 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2707   void *f = dlvsym(handle, name, "libnuma_1.1");
  2708   if (f == NULL) {
  2709     f = dlsym(handle, name);
  2711   return f;
  2714 bool os::Linux::libnuma_init() {
  2715   // sched_getcpu() should be in libc.
  2716   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2717                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2719   // If it's not, try a direct syscall.
  2720   if (sched_getcpu() == -1)
  2721     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2723   if (sched_getcpu() != -1) { // Does it work?
  2724     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2725     if (handle != NULL) {
  2726       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2727                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2728       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2729                                        libnuma_dlsym(handle, "numa_max_node")));
  2730       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2731                                         libnuma_dlsym(handle, "numa_available")));
  2732       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2733                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2734       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2735                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2738       if (numa_available() != -1) {
  2739         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2740         // Create a cpu -> node mapping
  2741         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2742         rebuild_cpu_to_node_map();
  2743         return true;
  2747   return false;
  2750 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2751 // The table is later used in get_node_by_cpu().
  2752 void os::Linux::rebuild_cpu_to_node_map() {
  2753   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2754                               // in libnuma (possible values are starting from 16,
  2755                               // and continuing up with every other power of 2, but less
  2756                               // than the maximum number of CPUs supported by kernel), and
  2757                               // is a subject to change (in libnuma version 2 the requirements
  2758                               // are more reasonable) we'll just hardcode the number they use
  2759                               // in the library.
  2760   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2762   size_t cpu_num = os::active_processor_count();
  2763   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2764   size_t cpu_map_valid_size =
  2765     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2767   cpu_to_node()->clear();
  2768   cpu_to_node()->at_grow(cpu_num - 1);
  2769   size_t node_num = numa_get_groups_num();
  2771   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2772   for (size_t i = 0; i < node_num; i++) {
  2773     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2774       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2775         if (cpu_map[j] != 0) {
  2776           for (size_t k = 0; k < BitsPerCLong; k++) {
  2777             if (cpu_map[j] & (1UL << k)) {
  2778               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2785   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2788 int os::Linux::get_node_by_cpu(int cpu_id) {
  2789   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2790     return cpu_to_node()->at(cpu_id);
  2792   return -1;
  2795 GrowableArray<int>* os::Linux::_cpu_to_node;
  2796 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2797 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2798 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2799 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2800 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2801 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2802 unsigned long* os::Linux::_numa_all_nodes;
  2804 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2805   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2806                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2807   return res  != (uintptr_t) MAP_FAILED;
  2810 // Linux uses a growable mapping for the stack, and if the mapping for
  2811 // the stack guard pages is not removed when we detach a thread the
  2812 // stack cannot grow beyond the pages where the stack guard was
  2813 // mapped.  If at some point later in the process the stack expands to
  2814 // that point, the Linux kernel cannot expand the stack any further
  2815 // because the guard pages are in the way, and a segfault occurs.
  2816 //
  2817 // However, it's essential not to split the stack region by unmapping
  2818 // a region (leaving a hole) that's already part of the stack mapping,
  2819 // so if the stack mapping has already grown beyond the guard pages at
  2820 // the time we create them, we have to truncate the stack mapping.
  2821 // So, we need to know the extent of the stack mapping when
  2822 // create_stack_guard_pages() is called.
  2824 // Find the bounds of the stack mapping.  Return true for success.
  2825 //
  2826 // We only need this for stacks that are growable: at the time of
  2827 // writing thread stacks don't use growable mappings (i.e. those
  2828 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2829 // only applies to the main thread.
  2831 static
  2832 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
  2834   char buf[128];
  2835   int fd, sz;
  2837   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
  2838     return false;
  2841   const char kw[] = "[stack]";
  2842   const int kwlen = sizeof(kw)-1;
  2844   // Address part of /proc/self/maps couldn't be more than 128 bytes
  2845   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
  2846      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
  2847         // Extract addresses
  2848         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2849            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
  2850            if (sp >= *bottom && sp <= *top) {
  2851               ::close(fd);
  2852               return true;
  2858  ::close(fd);
  2859   return false;
  2863 // If the (growable) stack mapping already extends beyond the point
  2864 // where we're going to put our guard pages, truncate the mapping at
  2865 // that point by munmap()ping it.  This ensures that when we later
  2866 // munmap() the guard pages we don't leave a hole in the stack
  2867 // mapping. This only affects the main/initial thread, but guard
  2868 // against future OS changes
  2869 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2870   uintptr_t stack_extent, stack_base;
  2871   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2872   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2873       assert(os::Linux::is_initial_thread(),
  2874            "growable stack in non-initial thread");
  2875     if (stack_extent < (uintptr_t)addr)
  2876       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2879   return os::commit_memory(addr, size);
  2882 // If this is a growable mapping, remove the guard pages entirely by
  2883 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2884 // affects the main/initial thread, but guard against future OS changes
  2885 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2886   uintptr_t stack_extent, stack_base;
  2887   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2888   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2889       assert(os::Linux::is_initial_thread(),
  2890            "growable stack in non-initial thread");
  2892     return ::munmap(addr, size) == 0;
  2895   return os::uncommit_memory(addr, size);
  2898 static address _highest_vm_reserved_address = NULL;
  2900 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2901 // at 'requested_addr'. If there are existing memory mappings at the same
  2902 // location, however, they will be overwritten. If 'fixed' is false,
  2903 // 'requested_addr' is only treated as a hint, the return value may or
  2904 // may not start from the requested address. Unlike Linux mmap(), this
  2905 // function returns NULL to indicate failure.
  2906 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2907   char * addr;
  2908   int flags;
  2910   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2911   if (fixed) {
  2912     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2913     flags |= MAP_FIXED;
  2916   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  2917   // touch an uncommitted page. Otherwise, the read/write might
  2918   // succeed if we have enough swap space to back the physical page.
  2919   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  2920                        flags, -1, 0);
  2922   if (addr != MAP_FAILED) {
  2923     // anon_mmap() should only get called during VM initialization,
  2924     // don't need lock (actually we can skip locking even it can be called
  2925     // from multiple threads, because _highest_vm_reserved_address is just a
  2926     // hint about the upper limit of non-stack memory regions.)
  2927     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2928       _highest_vm_reserved_address = (address)addr + bytes;
  2932   return addr == MAP_FAILED ? NULL : addr;
  2935 // Don't update _highest_vm_reserved_address, because there might be memory
  2936 // regions above addr + size. If so, releasing a memory region only creates
  2937 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2938 //
  2939 static int anon_munmap(char * addr, size_t size) {
  2940   return ::munmap(addr, size) == 0;
  2943 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  2944                          size_t alignment_hint) {
  2945   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2948 bool os::pd_release_memory(char* addr, size_t size) {
  2949   return anon_munmap(addr, size);
  2952 static address highest_vm_reserved_address() {
  2953   return _highest_vm_reserved_address;
  2956 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2957   // Linux wants the mprotect address argument to be page aligned.
  2958   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2960   // According to SUSv3, mprotect() should only be used with mappings
  2961   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2962   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2963   // protection of malloc'ed or statically allocated memory). Check the
  2964   // caller if you hit this assert.
  2965   assert(addr == bottom, "sanity check");
  2967   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2968   return ::mprotect(bottom, size, prot) == 0;
  2971 // Set protections specified
  2972 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2973                         bool is_committed) {
  2974   unsigned int p = 0;
  2975   switch (prot) {
  2976   case MEM_PROT_NONE: p = PROT_NONE; break;
  2977   case MEM_PROT_READ: p = PROT_READ; break;
  2978   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2979   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2980   default:
  2981     ShouldNotReachHere();
  2983   // is_committed is unused.
  2984   return linux_mprotect(addr, bytes, p);
  2987 bool os::guard_memory(char* addr, size_t size) {
  2988   return linux_mprotect(addr, size, PROT_NONE);
  2991 bool os::unguard_memory(char* addr, size_t size) {
  2992   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2995 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2996   bool result = false;
  2997   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  2998                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  2999                   -1, 0);
  3001   if (p != (void *) -1) {
  3002     // We don't know if this really is a huge page or not.
  3003     FILE *fp = fopen("/proc/self/maps", "r");
  3004     if (fp) {
  3005       while (!feof(fp)) {
  3006         char chars[257];
  3007         long x = 0;
  3008         if (fgets(chars, sizeof(chars), fp)) {
  3009           if (sscanf(chars, "%lx-%*x", &x) == 1
  3010               && x == (long)p) {
  3011             if (strstr (chars, "hugepage")) {
  3012               result = true;
  3013               break;
  3018       fclose(fp);
  3020     munmap (p, page_size);
  3021     if (result)
  3022       return true;
  3025   if (warn) {
  3026     warning("HugeTLBFS is not supported by the operating system.");
  3029   return result;
  3032 /*
  3033 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3035 * From the coredump_filter documentation:
  3037 * - (bit 0) anonymous private memory
  3038 * - (bit 1) anonymous shared memory
  3039 * - (bit 2) file-backed private memory
  3040 * - (bit 3) file-backed shared memory
  3041 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3042 *           effective only if the bit 2 is cleared)
  3043 * - (bit 5) hugetlb private memory
  3044 * - (bit 6) hugetlb shared memory
  3045 */
  3046 static void set_coredump_filter(void) {
  3047   FILE *f;
  3048   long cdm;
  3050   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3051     return;
  3054   if (fscanf(f, "%lx", &cdm) != 1) {
  3055     fclose(f);
  3056     return;
  3059   rewind(f);
  3061   if ((cdm & LARGEPAGES_BIT) == 0) {
  3062     cdm |= LARGEPAGES_BIT;
  3063     fprintf(f, "%#lx", cdm);
  3066   fclose(f);
  3069 // Large page support
  3071 static size_t _large_page_size = 0;
  3073 void os::large_page_init() {
  3074   if (!UseLargePages) {
  3075     UseHugeTLBFS = false;
  3076     UseSHM = false;
  3077     return;
  3080   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  3081     // If UseLargePages is specified on the command line try both methods,
  3082     // if it's default, then try only HugeTLBFS.
  3083     if (FLAG_IS_DEFAULT(UseLargePages)) {
  3084       UseHugeTLBFS = true;
  3085     } else {
  3086       UseHugeTLBFS = UseSHM = true;
  3090   if (LargePageSizeInBytes) {
  3091     _large_page_size = LargePageSizeInBytes;
  3092   } else {
  3093     // large_page_size on Linux is used to round up heap size. x86 uses either
  3094     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3095     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3096     // page as large as 256M.
  3097     //
  3098     // Here we try to figure out page size by parsing /proc/meminfo and looking
  3099     // for a line with the following format:
  3100     //    Hugepagesize:     2048 kB
  3101     //
  3102     // If we can't determine the value (e.g. /proc is not mounted, or the text
  3103     // format has been changed), we'll use the largest page size supported by
  3104     // the processor.
  3106 #ifndef ZERO
  3107     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3108                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3109 #endif // ZERO
  3111     FILE *fp = fopen("/proc/meminfo", "r");
  3112     if (fp) {
  3113       while (!feof(fp)) {
  3114         int x = 0;
  3115         char buf[16];
  3116         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3117           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3118             _large_page_size = x * K;
  3119             break;
  3121         } else {
  3122           // skip to next line
  3123           for (;;) {
  3124             int ch = fgetc(fp);
  3125             if (ch == EOF || ch == (int)'\n') break;
  3129       fclose(fp);
  3133   // print a warning if any large page related flag is specified on command line
  3134   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3136   const size_t default_page_size = (size_t)Linux::page_size();
  3137   if (_large_page_size > default_page_size) {
  3138     _page_sizes[0] = _large_page_size;
  3139     _page_sizes[1] = default_page_size;
  3140     _page_sizes[2] = 0;
  3142   UseHugeTLBFS = UseHugeTLBFS &&
  3143                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  3145   if (UseHugeTLBFS)
  3146     UseSHM = false;
  3148   UseLargePages = UseHugeTLBFS || UseSHM;
  3150   set_coredump_filter();
  3153 #ifndef SHM_HUGETLB
  3154 #define SHM_HUGETLB 04000
  3155 #endif
  3157 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3158   // "exec" is passed in but not used.  Creating the shared image for
  3159   // the code cache doesn't have an SHM_X executable permission to check.
  3160   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3162   key_t key = IPC_PRIVATE;
  3163   char *addr;
  3165   bool warn_on_failure = UseLargePages &&
  3166                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3167                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3168                         );
  3169   char msg[128];
  3171   // Create a large shared memory region to attach to based on size.
  3172   // Currently, size is the total size of the heap
  3173   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3174   if (shmid == -1) {
  3175      // Possible reasons for shmget failure:
  3176      // 1. shmmax is too small for Java heap.
  3177      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3178      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3179      // 2. not enough large page memory.
  3180      //    > check available large pages: cat /proc/meminfo
  3181      //    > increase amount of large pages:
  3182      //          echo new_value > /proc/sys/vm/nr_hugepages
  3183      //      Note 1: different Linux may use different name for this property,
  3184      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3185      //      Note 2: it's possible there's enough physical memory available but
  3186      //            they are so fragmented after a long run that they can't
  3187      //            coalesce into large pages. Try to reserve large pages when
  3188      //            the system is still "fresh".
  3189      if (warn_on_failure) {
  3190        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3191        warning(msg);
  3193      return NULL;
  3196   // attach to the region
  3197   addr = (char*)shmat(shmid, req_addr, 0);
  3198   int err = errno;
  3200   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3201   // will be deleted when it's detached by shmdt() or when the process
  3202   // terminates. If shmat() is not successful this will remove the shared
  3203   // segment immediately.
  3204   shmctl(shmid, IPC_RMID, NULL);
  3206   if ((intptr_t)addr == -1) {
  3207      if (warn_on_failure) {
  3208        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3209        warning(msg);
  3211      return NULL;
  3214   if ((addr != NULL) && UseNUMAInterleaving) {
  3215     numa_make_global(addr, bytes);
  3218   // The memory is committed
  3219   address pc = CALLER_PC;
  3220   MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
  3221   MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
  3223   return addr;
  3226 bool os::release_memory_special(char* base, size_t bytes) {
  3227   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3228   int rslt = shmdt(base);
  3229   if (rslt == 0) {
  3230     MemTracker::record_virtual_memory_uncommit((address)base, bytes);
  3231     MemTracker::record_virtual_memory_release((address)base, bytes);
  3232     return true;
  3233   } else {
  3234    return false;
  3238 size_t os::large_page_size() {
  3239   return _large_page_size;
  3242 // HugeTLBFS allows application to commit large page memory on demand;
  3243 // with SysV SHM the entire memory region must be allocated as shared
  3244 // memory.
  3245 bool os::can_commit_large_page_memory() {
  3246   return UseHugeTLBFS;
  3249 bool os::can_execute_large_page_memory() {
  3250   return UseHugeTLBFS;
  3253 // Reserve memory at an arbitrary address, only if that area is
  3254 // available (and not reserved for something else).
  3256 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3257   const int max_tries = 10;
  3258   char* base[max_tries];
  3259   size_t size[max_tries];
  3260   const size_t gap = 0x000000;
  3262   // Assert only that the size is a multiple of the page size, since
  3263   // that's all that mmap requires, and since that's all we really know
  3264   // about at this low abstraction level.  If we need higher alignment,
  3265   // we can either pass an alignment to this method or verify alignment
  3266   // in one of the methods further up the call chain.  See bug 5044738.
  3267   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3269   // Repeatedly allocate blocks until the block is allocated at the
  3270   // right spot. Give up after max_tries. Note that reserve_memory() will
  3271   // automatically update _highest_vm_reserved_address if the call is
  3272   // successful. The variable tracks the highest memory address every reserved
  3273   // by JVM. It is used to detect heap-stack collision if running with
  3274   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3275   // space than needed, it could confuse the collision detecting code. To
  3276   // solve the problem, save current _highest_vm_reserved_address and
  3277   // calculate the correct value before return.
  3278   address old_highest = _highest_vm_reserved_address;
  3280   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3281   // if kernel honors the hint then we can return immediately.
  3282   char * addr = anon_mmap(requested_addr, bytes, false);
  3283   if (addr == requested_addr) {
  3284      return requested_addr;
  3287   if (addr != NULL) {
  3288      // mmap() is successful but it fails to reserve at the requested address
  3289      anon_munmap(addr, bytes);
  3292   int i;
  3293   for (i = 0; i < max_tries; ++i) {
  3294     base[i] = reserve_memory(bytes);
  3296     if (base[i] != NULL) {
  3297       // Is this the block we wanted?
  3298       if (base[i] == requested_addr) {
  3299         size[i] = bytes;
  3300         break;
  3303       // Does this overlap the block we wanted? Give back the overlapped
  3304       // parts and try again.
  3306       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3307       if (top_overlap >= 0 && top_overlap < bytes) {
  3308         unmap_memory(base[i], top_overlap);
  3309         base[i] += top_overlap;
  3310         size[i] = bytes - top_overlap;
  3311       } else {
  3312         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3313         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3314           unmap_memory(requested_addr, bottom_overlap);
  3315           size[i] = bytes - bottom_overlap;
  3316         } else {
  3317           size[i] = bytes;
  3323   // Give back the unused reserved pieces.
  3325   for (int j = 0; j < i; ++j) {
  3326     if (base[j] != NULL) {
  3327       unmap_memory(base[j], size[j]);
  3331   if (i < max_tries) {
  3332     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3333     return requested_addr;
  3334   } else {
  3335     _highest_vm_reserved_address = old_highest;
  3336     return NULL;
  3340 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3341   return ::read(fd, buf, nBytes);
  3344 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3345 // Solaris uses poll(), linux uses park().
  3346 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3347 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3348 // SIGSEGV, see 4355769.
  3350 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3351   assert(thread == Thread::current(),  "thread consistency check");
  3353   ParkEvent * const slp = thread->_SleepEvent ;
  3354   slp->reset() ;
  3355   OrderAccess::fence() ;
  3357   if (interruptible) {
  3358     jlong prevtime = javaTimeNanos();
  3360     for (;;) {
  3361       if (os::is_interrupted(thread, true)) {
  3362         return OS_INTRPT;
  3365       jlong newtime = javaTimeNanos();
  3367       if (newtime - prevtime < 0) {
  3368         // time moving backwards, should only happen if no monotonic clock
  3369         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3370         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3371       } else {
  3372         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3375       if(millis <= 0) {
  3376         return OS_OK;
  3379       prevtime = newtime;
  3382         assert(thread->is_Java_thread(), "sanity check");
  3383         JavaThread *jt = (JavaThread *) thread;
  3384         ThreadBlockInVM tbivm(jt);
  3385         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3387         jt->set_suspend_equivalent();
  3388         // cleared by handle_special_suspend_equivalent_condition() or
  3389         // java_suspend_self() via check_and_wait_while_suspended()
  3391         slp->park(millis);
  3393         // were we externally suspended while we were waiting?
  3394         jt->check_and_wait_while_suspended();
  3397   } else {
  3398     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3399     jlong prevtime = javaTimeNanos();
  3401     for (;;) {
  3402       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3403       // the 1st iteration ...
  3404       jlong newtime = javaTimeNanos();
  3406       if (newtime - prevtime < 0) {
  3407         // time moving backwards, should only happen if no monotonic clock
  3408         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3409         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3410       } else {
  3411         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3414       if(millis <= 0) break ;
  3416       prevtime = newtime;
  3417       slp->park(millis);
  3419     return OS_OK ;
  3423 int os::naked_sleep() {
  3424   // %% make the sleep time an integer flag. for now use 1 millisec.
  3425   return os::sleep(Thread::current(), 1, false);
  3428 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3429 void os::infinite_sleep() {
  3430   while (true) {    // sleep forever ...
  3431     ::sleep(100);   // ... 100 seconds at a time
  3435 // Used to convert frequent JVM_Yield() to nops
  3436 bool os::dont_yield() {
  3437   return DontYieldALot;
  3440 void os::yield() {
  3441   sched_yield();
  3444 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3446 void os::yield_all(int attempts) {
  3447   // Yields to all threads, including threads with lower priorities
  3448   // Threads on Linux are all with same priority. The Solaris style
  3449   // os::yield_all() with nanosleep(1ms) is not necessary.
  3450   sched_yield();
  3453 // Called from the tight loops to possibly influence time-sharing heuristics
  3454 void os::loop_breaker(int attempts) {
  3455   os::yield_all(attempts);
  3458 ////////////////////////////////////////////////////////////////////////////////
  3459 // thread priority support
  3461 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3462 // only supports dynamic priority, static priority must be zero. For real-time
  3463 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3464 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3465 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3466 // of 5 runs - Sep 2005).
  3467 //
  3468 // The following code actually changes the niceness of kernel-thread/LWP. It
  3469 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3470 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3471 // threads. It has always been the case, but could change in the future. For
  3472 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3473 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3475 int os::java_to_os_priority[CriticalPriority + 1] = {
  3476   19,              // 0 Entry should never be used
  3478    4,              // 1 MinPriority
  3479    3,              // 2
  3480    2,              // 3
  3482    1,              // 4
  3483    0,              // 5 NormPriority
  3484   -1,              // 6
  3486   -2,              // 7
  3487   -3,              // 8
  3488   -4,              // 9 NearMaxPriority
  3490   -5,              // 10 MaxPriority
  3492   -5               // 11 CriticalPriority
  3493 };
  3495 static int prio_init() {
  3496   if (ThreadPriorityPolicy == 1) {
  3497     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3498     // if effective uid is not root. Perhaps, a more elegant way of doing
  3499     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3500     if (geteuid() != 0) {
  3501       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3502         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3504       ThreadPriorityPolicy = 0;
  3507   if (UseCriticalJavaThreadPriority) {
  3508     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3510   return 0;
  3513 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3514   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3516   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3517   return (ret == 0) ? OS_OK : OS_ERR;
  3520 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3521   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3522     *priority_ptr = java_to_os_priority[NormPriority];
  3523     return OS_OK;
  3526   errno = 0;
  3527   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3528   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3531 // Hint to the underlying OS that a task switch would not be good.
  3532 // Void return because it's a hint and can fail.
  3533 void os::hint_no_preempt() {}
  3535 ////////////////////////////////////////////////////////////////////////////////
  3536 // suspend/resume support
  3538 //  the low-level signal-based suspend/resume support is a remnant from the
  3539 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3540 //  within hotspot. Now there is a single use-case for this:
  3541 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3542 //      that runs in the watcher thread.
  3543 //  The remaining code is greatly simplified from the more general suspension
  3544 //  code that used to be used.
  3545 //
  3546 //  The protocol is quite simple:
  3547 //  - suspend:
  3548 //      - sends a signal to the target thread
  3549 //      - polls the suspend state of the osthread using a yield loop
  3550 //      - target thread signal handler (SR_handler) sets suspend state
  3551 //        and blocks in sigsuspend until continued
  3552 //  - resume:
  3553 //      - sets target osthread state to continue
  3554 //      - sends signal to end the sigsuspend loop in the SR_handler
  3555 //
  3556 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3557 //
  3559 static void resume_clear_context(OSThread *osthread) {
  3560   osthread->set_ucontext(NULL);
  3561   osthread->set_siginfo(NULL);
  3563   // notify the suspend action is completed, we have now resumed
  3564   osthread->sr.clear_suspended();
  3567 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3568   osthread->set_ucontext(context);
  3569   osthread->set_siginfo(siginfo);
  3572 //
  3573 // Handler function invoked when a thread's execution is suspended or
  3574 // resumed. We have to be careful that only async-safe functions are
  3575 // called here (Note: most pthread functions are not async safe and
  3576 // should be avoided.)
  3577 //
  3578 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3579 // interface point of view, but sigwait() prevents the signal hander
  3580 // from being run. libpthread would get very confused by not having
  3581 // its signal handlers run and prevents sigwait()'s use with the
  3582 // mutex granting granting signal.
  3583 //
  3584 // Currently only ever called on the VMThread
  3585 //
  3586 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3587   // Save and restore errno to avoid confusing native code with EINTR
  3588   // after sigsuspend.
  3589   int old_errno = errno;
  3591   Thread* thread = Thread::current();
  3592   OSThread* osthread = thread->osthread();
  3593   assert(thread->is_VM_thread(), "Must be VMThread");
  3594   // read current suspend action
  3595   int action = osthread->sr.suspend_action();
  3596   if (action == os::Linux::SuspendResume::SR_SUSPEND) {
  3597     suspend_save_context(osthread, siginfo, context);
  3599     // Notify the suspend action is about to be completed. do_suspend()
  3600     // waits until SR_SUSPENDED is set and then returns. We will wait
  3601     // here for a resume signal and that completes the suspend-other
  3602     // action. do_suspend/do_resume is always called as a pair from
  3603     // the same thread - so there are no races
  3605     // notify the caller
  3606     osthread->sr.set_suspended();
  3608     sigset_t suspend_set;  // signals for sigsuspend()
  3610     // get current set of blocked signals and unblock resume signal
  3611     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3612     sigdelset(&suspend_set, SR_signum);
  3614     // wait here until we are resumed
  3615     do {
  3616       sigsuspend(&suspend_set);
  3617       // ignore all returns until we get a resume signal
  3618     } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
  3620     resume_clear_context(osthread);
  3622   } else {
  3623     assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
  3624     // nothing special to do - just leave the handler
  3627   errno = old_errno;
  3631 static int SR_initialize() {
  3632   struct sigaction act;
  3633   char *s;
  3634   /* Get signal number to use for suspend/resume */
  3635   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3636     int sig = ::strtol(s, 0, 10);
  3637     if (sig > 0 || sig < _NSIG) {
  3638         SR_signum = sig;
  3642   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3643         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3645   sigemptyset(&SR_sigset);
  3646   sigaddset(&SR_sigset, SR_signum);
  3648   /* Set up signal handler for suspend/resume */
  3649   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3650   act.sa_handler = (void (*)(int)) SR_handler;
  3652   // SR_signum is blocked by default.
  3653   // 4528190 - We also need to block pthread restart signal (32 on all
  3654   // supported Linux platforms). Note that LinuxThreads need to block
  3655   // this signal for all threads to work properly. So we don't have
  3656   // to use hard-coded signal number when setting up the mask.
  3657   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3659   if (sigaction(SR_signum, &act, 0) == -1) {
  3660     return -1;
  3663   // Save signal flag
  3664   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3665   return 0;
  3669 // returns true on success and false on error - really an error is fatal
  3670 // but this seems the normal response to library errors
  3671 static bool do_suspend(OSThread* osthread) {
  3672   // mark as suspended and send signal
  3673   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
  3674   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3675   assert_status(status == 0, status, "pthread_kill");
  3677   // check status and wait until notified of suspension
  3678   if (status == 0) {
  3679     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3680       os::yield_all(i);
  3682     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
  3683     return true;
  3685   else {
  3686     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
  3687     return false;
  3691 static void do_resume(OSThread* osthread) {
  3692   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3693   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
  3695   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3696   assert_status(status == 0, status, "pthread_kill");
  3697   // check status and wait unit notified of resumption
  3698   if (status == 0) {
  3699     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3700       os::yield_all(i);
  3703   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
  3706 ////////////////////////////////////////////////////////////////////////////////
  3707 // interrupt support
  3709 void os::interrupt(Thread* thread) {
  3710   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3711     "possibility of dangling Thread pointer");
  3713   OSThread* osthread = thread->osthread();
  3715   if (!osthread->interrupted()) {
  3716     osthread->set_interrupted(true);
  3717     // More than one thread can get here with the same value of osthread,
  3718     // resulting in multiple notifications.  We do, however, want the store
  3719     // to interrupted() to be visible to other threads before we execute unpark().
  3720     OrderAccess::fence();
  3721     ParkEvent * const slp = thread->_SleepEvent ;
  3722     if (slp != NULL) slp->unpark() ;
  3725   // For JSR166. Unpark even if interrupt status already was set
  3726   if (thread->is_Java_thread())
  3727     ((JavaThread*)thread)->parker()->unpark();
  3729   ParkEvent * ev = thread->_ParkEvent ;
  3730   if (ev != NULL) ev->unpark() ;
  3734 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3735   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3736     "possibility of dangling Thread pointer");
  3738   OSThread* osthread = thread->osthread();
  3740   bool interrupted = osthread->interrupted();
  3742   if (interrupted && clear_interrupted) {
  3743     osthread->set_interrupted(false);
  3744     // consider thread->_SleepEvent->reset() ... optional optimization
  3747   return interrupted;
  3750 ///////////////////////////////////////////////////////////////////////////////////
  3751 // signal handling (except suspend/resume)
  3753 // This routine may be used by user applications as a "hook" to catch signals.
  3754 // The user-defined signal handler must pass unrecognized signals to this
  3755 // routine, and if it returns true (non-zero), then the signal handler must
  3756 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3757 // routine will never retun false (zero), but instead will execute a VM panic
  3758 // routine kill the process.
  3759 //
  3760 // If this routine returns false, it is OK to call it again.  This allows
  3761 // the user-defined signal handler to perform checks either before or after
  3762 // the VM performs its own checks.  Naturally, the user code would be making
  3763 // a serious error if it tried to handle an exception (such as a null check
  3764 // or breakpoint) that the VM was generating for its own correct operation.
  3765 //
  3766 // This routine may recognize any of the following kinds of signals:
  3767 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3768 // It should be consulted by handlers for any of those signals.
  3769 //
  3770 // The caller of this routine must pass in the three arguments supplied
  3771 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3772 // field of the structure passed to sigaction().  This routine assumes that
  3773 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3774 //
  3775 // Note that the VM will print warnings if it detects conflicting signal
  3776 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3777 //
  3778 extern "C" JNIEXPORT int
  3779 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3780                         void* ucontext, int abort_if_unrecognized);
  3782 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3783   assert(info != NULL && uc != NULL, "it must be old kernel");
  3784   int orig_errno = errno;  // Preserve errno value over signal handler.
  3785   JVM_handle_linux_signal(sig, info, uc, true);
  3786   errno = orig_errno;
  3790 // This boolean allows users to forward their own non-matching signals
  3791 // to JVM_handle_linux_signal, harmlessly.
  3792 bool os::Linux::signal_handlers_are_installed = false;
  3794 // For signal-chaining
  3795 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3796 unsigned int os::Linux::sigs = 0;
  3797 bool os::Linux::libjsig_is_loaded = false;
  3798 typedef struct sigaction *(*get_signal_t)(int);
  3799 get_signal_t os::Linux::get_signal_action = NULL;
  3801 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3802   struct sigaction *actp = NULL;
  3804   if (libjsig_is_loaded) {
  3805     // Retrieve the old signal handler from libjsig
  3806     actp = (*get_signal_action)(sig);
  3808   if (actp == NULL) {
  3809     // Retrieve the preinstalled signal handler from jvm
  3810     actp = get_preinstalled_handler(sig);
  3813   return actp;
  3816 static bool call_chained_handler(struct sigaction *actp, int sig,
  3817                                  siginfo_t *siginfo, void *context) {
  3818   // Call the old signal handler
  3819   if (actp->sa_handler == SIG_DFL) {
  3820     // It's more reasonable to let jvm treat it as an unexpected exception
  3821     // instead of taking the default action.
  3822     return false;
  3823   } else if (actp->sa_handler != SIG_IGN) {
  3824     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3825       // automaticlly block the signal
  3826       sigaddset(&(actp->sa_mask), sig);
  3829     sa_handler_t hand;
  3830     sa_sigaction_t sa;
  3831     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3832     // retrieve the chained handler
  3833     if (siginfo_flag_set) {
  3834       sa = actp->sa_sigaction;
  3835     } else {
  3836       hand = actp->sa_handler;
  3839     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3840       actp->sa_handler = SIG_DFL;
  3843     // try to honor the signal mask
  3844     sigset_t oset;
  3845     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3847     // call into the chained handler
  3848     if (siginfo_flag_set) {
  3849       (*sa)(sig, siginfo, context);
  3850     } else {
  3851       (*hand)(sig);
  3854     // restore the signal mask
  3855     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3857   // Tell jvm's signal handler the signal is taken care of.
  3858   return true;
  3861 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3862   bool chained = false;
  3863   // signal-chaining
  3864   if (UseSignalChaining) {
  3865     struct sigaction *actp = get_chained_signal_action(sig);
  3866     if (actp != NULL) {
  3867       chained = call_chained_handler(actp, sig, siginfo, context);
  3870   return chained;
  3873 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3874   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3875     return &sigact[sig];
  3877   return NULL;
  3880 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3881   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3882   sigact[sig] = oldAct;
  3883   sigs |= (unsigned int)1 << sig;
  3886 // for diagnostic
  3887 int os::Linux::sigflags[MAXSIGNUM];
  3889 int os::Linux::get_our_sigflags(int sig) {
  3890   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3891   return sigflags[sig];
  3894 void os::Linux::set_our_sigflags(int sig, int flags) {
  3895   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3896   sigflags[sig] = flags;
  3899 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3900   // Check for overwrite.
  3901   struct sigaction oldAct;
  3902   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3904   void* oldhand = oldAct.sa_sigaction
  3905                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3906                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3907   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3908       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3909       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3910     if (AllowUserSignalHandlers || !set_installed) {
  3911       // Do not overwrite; user takes responsibility to forward to us.
  3912       return;
  3913     } else if (UseSignalChaining) {
  3914       // save the old handler in jvm
  3915       save_preinstalled_handler(sig, oldAct);
  3916       // libjsig also interposes the sigaction() call below and saves the
  3917       // old sigaction on it own.
  3918     } else {
  3919       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3920                     "%#lx for signal %d.", (long)oldhand, sig));
  3924   struct sigaction sigAct;
  3925   sigfillset(&(sigAct.sa_mask));
  3926   sigAct.sa_handler = SIG_DFL;
  3927   if (!set_installed) {
  3928     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3929   } else {
  3930     sigAct.sa_sigaction = signalHandler;
  3931     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3933   // Save flags, which are set by ours
  3934   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3935   sigflags[sig] = sigAct.sa_flags;
  3937   int ret = sigaction(sig, &sigAct, &oldAct);
  3938   assert(ret == 0, "check");
  3940   void* oldhand2  = oldAct.sa_sigaction
  3941                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3942                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3943   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3946 // install signal handlers for signals that HotSpot needs to
  3947 // handle in order to support Java-level exception handling.
  3949 void os::Linux::install_signal_handlers() {
  3950   if (!signal_handlers_are_installed) {
  3951     signal_handlers_are_installed = true;
  3953     // signal-chaining
  3954     typedef void (*signal_setting_t)();
  3955     signal_setting_t begin_signal_setting = NULL;
  3956     signal_setting_t end_signal_setting = NULL;
  3957     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3958                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3959     if (begin_signal_setting != NULL) {
  3960       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3961                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3962       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3963                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3964       libjsig_is_loaded = true;
  3965       assert(UseSignalChaining, "should enable signal-chaining");
  3967     if (libjsig_is_loaded) {
  3968       // Tell libjsig jvm is setting signal handlers
  3969       (*begin_signal_setting)();
  3972     set_signal_handler(SIGSEGV, true);
  3973     set_signal_handler(SIGPIPE, true);
  3974     set_signal_handler(SIGBUS, true);
  3975     set_signal_handler(SIGILL, true);
  3976     set_signal_handler(SIGFPE, true);
  3977     set_signal_handler(SIGXFSZ, true);
  3979     if (libjsig_is_loaded) {
  3980       // Tell libjsig jvm finishes setting signal handlers
  3981       (*end_signal_setting)();
  3984     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3985     // and if UserSignalHandler is installed all bets are off.
  3986     // Log that signal checking is off only if -verbose:jni is specified.
  3987     if (CheckJNICalls) {
  3988       if (libjsig_is_loaded) {
  3989         if (PrintJNIResolving) {
  3990           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3992         check_signals = false;
  3994       if (AllowUserSignalHandlers) {
  3995         if (PrintJNIResolving) {
  3996           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3998         check_signals = false;
  4004 // This is the fastest way to get thread cpu time on Linux.
  4005 // Returns cpu time (user+sys) for any thread, not only for current.
  4006 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4007 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4008 // For reference, please, see IEEE Std 1003.1-2004:
  4009 //   http://www.unix.org/single_unix_specification
  4011 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4012   struct timespec tp;
  4013   int rc = os::Linux::clock_gettime(clockid, &tp);
  4014   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4016   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4019 /////
  4020 // glibc on Linux platform uses non-documented flag
  4021 // to indicate, that some special sort of signal
  4022 // trampoline is used.
  4023 // We will never set this flag, and we should
  4024 // ignore this flag in our diagnostic
  4025 #ifdef SIGNIFICANT_SIGNAL_MASK
  4026 #undef SIGNIFICANT_SIGNAL_MASK
  4027 #endif
  4028 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4030 static const char* get_signal_handler_name(address handler,
  4031                                            char* buf, int buflen) {
  4032   int offset;
  4033   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4034   if (found) {
  4035     // skip directory names
  4036     const char *p1, *p2;
  4037     p1 = buf;
  4038     size_t len = strlen(os::file_separator());
  4039     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4040     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4041   } else {
  4042     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4044   return buf;
  4047 static void print_signal_handler(outputStream* st, int sig,
  4048                                  char* buf, size_t buflen) {
  4049   struct sigaction sa;
  4051   sigaction(sig, NULL, &sa);
  4053   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4054   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4056   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4058   address handler = (sa.sa_flags & SA_SIGINFO)
  4059     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4060     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4062   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4063     st->print("SIG_DFL");
  4064   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4065     st->print("SIG_IGN");
  4066   } else {
  4067     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4070   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  4072   address rh = VMError::get_resetted_sighandler(sig);
  4073   // May be, handler was resetted by VMError?
  4074   if(rh != NULL) {
  4075     handler = rh;
  4076     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4079   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  4081   // Check: is it our handler?
  4082   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4083      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4084     // It is our signal handler
  4085     // check for flags, reset system-used one!
  4086     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4087       st->print(
  4088                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4089                 os::Linux::get_our_sigflags(sig));
  4092   st->cr();
  4096 #define DO_SIGNAL_CHECK(sig) \
  4097   if (!sigismember(&check_signal_done, sig)) \
  4098     os::Linux::check_signal_handler(sig)
  4100 // This method is a periodic task to check for misbehaving JNI applications
  4101 // under CheckJNI, we can add any periodic checks here
  4103 void os::run_periodic_checks() {
  4105   if (check_signals == false) return;
  4107   // SEGV and BUS if overridden could potentially prevent
  4108   // generation of hs*.log in the event of a crash, debugging
  4109   // such a case can be very challenging, so we absolutely
  4110   // check the following for a good measure:
  4111   DO_SIGNAL_CHECK(SIGSEGV);
  4112   DO_SIGNAL_CHECK(SIGILL);
  4113   DO_SIGNAL_CHECK(SIGFPE);
  4114   DO_SIGNAL_CHECK(SIGBUS);
  4115   DO_SIGNAL_CHECK(SIGPIPE);
  4116   DO_SIGNAL_CHECK(SIGXFSZ);
  4119   // ReduceSignalUsage allows the user to override these handlers
  4120   // see comments at the very top and jvm_solaris.h
  4121   if (!ReduceSignalUsage) {
  4122     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4123     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4124     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4125     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4128   DO_SIGNAL_CHECK(SR_signum);
  4129   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4132 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4134 static os_sigaction_t os_sigaction = NULL;
  4136 void os::Linux::check_signal_handler(int sig) {
  4137   char buf[O_BUFLEN];
  4138   address jvmHandler = NULL;
  4141   struct sigaction act;
  4142   if (os_sigaction == NULL) {
  4143     // only trust the default sigaction, in case it has been interposed
  4144     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4145     if (os_sigaction == NULL) return;
  4148   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4151   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4153   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4154     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4155     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4158   switch(sig) {
  4159   case SIGSEGV:
  4160   case SIGBUS:
  4161   case SIGFPE:
  4162   case SIGPIPE:
  4163   case SIGILL:
  4164   case SIGXFSZ:
  4165     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4166     break;
  4168   case SHUTDOWN1_SIGNAL:
  4169   case SHUTDOWN2_SIGNAL:
  4170   case SHUTDOWN3_SIGNAL:
  4171   case BREAK_SIGNAL:
  4172     jvmHandler = (address)user_handler();
  4173     break;
  4175   case INTERRUPT_SIGNAL:
  4176     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4177     break;
  4179   default:
  4180     if (sig == SR_signum) {
  4181       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4182     } else {
  4183       return;
  4185     break;
  4188   if (thisHandler != jvmHandler) {
  4189     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4190     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4191     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4192     // No need to check this sig any longer
  4193     sigaddset(&check_signal_done, sig);
  4194   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4195     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4196     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4197     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4198     // No need to check this sig any longer
  4199     sigaddset(&check_signal_done, sig);
  4202   // Dump all the signal
  4203   if (sigismember(&check_signal_done, sig)) {
  4204     print_signal_handlers(tty, buf, O_BUFLEN);
  4208 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4210 extern bool signal_name(int signo, char* buf, size_t len);
  4212 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4213   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4214     // signal
  4215     if (!signal_name(exception_code, buf, size)) {
  4216       jio_snprintf(buf, size, "SIG%d", exception_code);
  4218     return buf;
  4219   } else {
  4220     return NULL;
  4224 // this is called _before_ the most of global arguments have been parsed
  4225 void os::init(void) {
  4226   char dummy;   /* used to get a guess on initial stack address */
  4227 //  first_hrtime = gethrtime();
  4229   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4230   // is different than the pid of the java launcher thread.
  4231   // So, on Linux, the launcher thread pid is passed to the VM
  4232   // via the sun.java.launcher.pid property.
  4233   // Use this property instead of getpid() if it was correctly passed.
  4234   // See bug 6351349.
  4235   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4237   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4239   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4241   init_random(1234567);
  4243   ThreadCritical::initialize();
  4245   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4246   if (Linux::page_size() == -1) {
  4247     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4248                   strerror(errno)));
  4250   init_page_sizes((size_t) Linux::page_size());
  4252   Linux::initialize_system_info();
  4254   // main_thread points to the aboriginal thread
  4255   Linux::_main_thread = pthread_self();
  4257   Linux::clock_init();
  4258   initial_time_count = os::elapsed_counter();
  4259   pthread_mutex_init(&dl_mutex, NULL);
  4261   // If the pagesize of the VM is greater than 8K determine the appropriate
  4262   // number of initial guard pages.  The user can change this with the
  4263   // command line arguments, if needed.
  4264   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4265     StackYellowPages = 1;
  4266     StackRedPages = 1;
  4267     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4271 // To install functions for atexit system call
  4272 extern "C" {
  4273   static void perfMemory_exit_helper() {
  4274     perfMemory_exit();
  4278 // this is called _after_ the global arguments have been parsed
  4279 jint os::init_2(void)
  4281   Linux::fast_thread_clock_init();
  4283   // Allocate a single page and mark it as readable for safepoint polling
  4284   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4285   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4287   os::set_polling_page( polling_page );
  4289 #ifndef PRODUCT
  4290   if(Verbose && PrintMiscellaneous)
  4291     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4292 #endif
  4294   if (!UseMembar) {
  4295     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4296     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4297     os::set_memory_serialize_page( mem_serialize_page );
  4299 #ifndef PRODUCT
  4300     if(Verbose && PrintMiscellaneous)
  4301       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4302 #endif
  4305   os::large_page_init();
  4307   // initialize suspend/resume support - must do this before signal_sets_init()
  4308   if (SR_initialize() != 0) {
  4309     perror("SR_initialize failed");
  4310     return JNI_ERR;
  4313   Linux::signal_sets_init();
  4314   Linux::install_signal_handlers();
  4316   // Check minimum allowable stack size for thread creation and to initialize
  4317   // the java system classes, including StackOverflowError - depends on page
  4318   // size.  Add a page for compiler2 recursion in main thread.
  4319   // Add in 2*BytesPerWord times page size to account for VM stack during
  4320   // class initialization depending on 32 or 64 bit VM.
  4321   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4322             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4323                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4325   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4326   if (threadStackSizeInBytes != 0 &&
  4327       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4328         tty->print_cr("\nThe stack size specified is too small, "
  4329                       "Specify at least %dk",
  4330                       os::Linux::min_stack_allowed/ K);
  4331         return JNI_ERR;
  4334   // Make the stack size a multiple of the page size so that
  4335   // the yellow/red zones can be guarded.
  4336   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4337         vm_page_size()));
  4339   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4341   Linux::libpthread_init();
  4342   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4343      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4344           Linux::glibc_version(), Linux::libpthread_version(),
  4345           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4348   if (UseNUMA) {
  4349     if (!Linux::libnuma_init()) {
  4350       UseNUMA = false;
  4351     } else {
  4352       if ((Linux::numa_max_node() < 1)) {
  4353         // There's only one node(they start from 0), disable NUMA.
  4354         UseNUMA = false;
  4357     // With SHM large pages we cannot uncommit a page, so there's not way
  4358     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4359     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4360     // disable adaptive resizing.
  4361     if (UseNUMA && UseLargePages && UseSHM) {
  4362       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4363         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4364           UseLargePages = false;
  4365         } else {
  4366           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4367           UseAdaptiveSizePolicy = false;
  4368           UseAdaptiveNUMAChunkSizing = false;
  4370       } else {
  4371         UseNUMA = false;
  4374     if (!UseNUMA && ForceNUMA) {
  4375       UseNUMA = true;
  4379   if (MaxFDLimit) {
  4380     // set the number of file descriptors to max. print out error
  4381     // if getrlimit/setrlimit fails but continue regardless.
  4382     struct rlimit nbr_files;
  4383     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4384     if (status != 0) {
  4385       if (PrintMiscellaneous && (Verbose || WizardMode))
  4386         perror("os::init_2 getrlimit failed");
  4387     } else {
  4388       nbr_files.rlim_cur = nbr_files.rlim_max;
  4389       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4390       if (status != 0) {
  4391         if (PrintMiscellaneous && (Verbose || WizardMode))
  4392           perror("os::init_2 setrlimit failed");
  4397   // Initialize lock used to serialize thread creation (see os::create_thread)
  4398   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4400   // at-exit methods are called in the reverse order of their registration.
  4401   // atexit functions are called on return from main or as a result of a
  4402   // call to exit(3C). There can be only 32 of these functions registered
  4403   // and atexit() does not set errno.
  4405   if (PerfAllowAtExitRegistration) {
  4406     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4407     // atexit functions can be delayed until process exit time, which
  4408     // can be problematic for embedded VM situations. Embedded VMs should
  4409     // call DestroyJavaVM() to assure that VM resources are released.
  4411     // note: perfMemory_exit_helper atexit function may be removed in
  4412     // the future if the appropriate cleanup code can be added to the
  4413     // VM_Exit VMOperation's doit method.
  4414     if (atexit(perfMemory_exit_helper) != 0) {
  4415       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4419   // initialize thread priority policy
  4420   prio_init();
  4422   return JNI_OK;
  4425 // this is called at the end of vm_initialization
  4426 void os::init_3(void)
  4428 #ifdef JAVASE_EMBEDDED
  4429   // Start the MemNotifyThread
  4430   if (LowMemoryProtection) {
  4431     MemNotifyThread::start();
  4433   return;
  4434 #endif
  4437 // Mark the polling page as unreadable
  4438 void os::make_polling_page_unreadable(void) {
  4439   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4440     fatal("Could not disable polling page");
  4441 };
  4443 // Mark the polling page as readable
  4444 void os::make_polling_page_readable(void) {
  4445   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4446     fatal("Could not enable polling page");
  4448 };
  4450 int os::active_processor_count() {
  4451   // Linux doesn't yet have a (official) notion of processor sets,
  4452   // so just return the number of online processors.
  4453   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4454   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4455   return online_cpus;
  4458 void os::set_native_thread_name(const char *name) {
  4459   // Not yet implemented.
  4460   return;
  4463 bool os::distribute_processes(uint length, uint* distribution) {
  4464   // Not yet implemented.
  4465   return false;
  4468 bool os::bind_to_processor(uint processor_id) {
  4469   // Not yet implemented.
  4470   return false;
  4473 ///
  4475 // Suspends the target using the signal mechanism and then grabs the PC before
  4476 // resuming the target. Used by the flat-profiler only
  4477 ExtendedPC os::get_thread_pc(Thread* thread) {
  4478   // Make sure that it is called by the watcher for the VMThread
  4479   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4480   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4482   ExtendedPC epc;
  4484   OSThread* osthread = thread->osthread();
  4485   if (do_suspend(osthread)) {
  4486     if (osthread->ucontext() != NULL) {
  4487       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4488     } else {
  4489       // NULL context is unexpected, double-check this is the VMThread
  4490       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4492     do_resume(osthread);
  4494   // failure means pthread_kill failed for some reason - arguably this is
  4495   // a fatal problem, but such problems are ignored elsewhere
  4497   return epc;
  4500 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4502    if (is_NPTL()) {
  4503       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4504    } else {
  4505       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4506       // word back to default 64bit precision if condvar is signaled. Java
  4507       // wants 53bit precision.  Save and restore current value.
  4508       int fpu = get_fpu_control_word();
  4509       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4510       set_fpu_control_word(fpu);
  4511       return status;
  4515 ////////////////////////////////////////////////////////////////////////////////
  4516 // debug support
  4518 bool os::find(address addr, outputStream* st) {
  4519   Dl_info dlinfo;
  4520   memset(&dlinfo, 0, sizeof(dlinfo));
  4521   if (dladdr(addr, &dlinfo)) {
  4522     st->print(PTR_FORMAT ": ", addr);
  4523     if (dlinfo.dli_sname != NULL) {
  4524       st->print("%s+%#x", dlinfo.dli_sname,
  4525                  addr - (intptr_t)dlinfo.dli_saddr);
  4526     } else if (dlinfo.dli_fname) {
  4527       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4528     } else {
  4529       st->print("<absolute address>");
  4531     if (dlinfo.dli_fname) {
  4532       st->print(" in %s", dlinfo.dli_fname);
  4534     if (dlinfo.dli_fbase) {
  4535       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4537     st->cr();
  4539     if (Verbose) {
  4540       // decode some bytes around the PC
  4541       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  4542       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  4543       address       lowest = (address) dlinfo.dli_sname;
  4544       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4545       if (begin < lowest)  begin = lowest;
  4546       Dl_info dlinfo2;
  4547       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4548           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4549         end = (address) dlinfo2.dli_saddr;
  4550       Disassembler::decode(begin, end, st);
  4552     return true;
  4554   return false;
  4557 ////////////////////////////////////////////////////////////////////////////////
  4558 // misc
  4560 // This does not do anything on Linux. This is basically a hook for being
  4561 // able to use structured exception handling (thread-local exception filters)
  4562 // on, e.g., Win32.
  4563 void
  4564 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4565                          JavaCallArguments* args, Thread* thread) {
  4566   f(value, method, args, thread);
  4569 void os::print_statistics() {
  4572 int os::message_box(const char* title, const char* message) {
  4573   int i;
  4574   fdStream err(defaultStream::error_fd());
  4575   for (i = 0; i < 78; i++) err.print_raw("=");
  4576   err.cr();
  4577   err.print_raw_cr(title);
  4578   for (i = 0; i < 78; i++) err.print_raw("-");
  4579   err.cr();
  4580   err.print_raw_cr(message);
  4581   for (i = 0; i < 78; i++) err.print_raw("=");
  4582   err.cr();
  4584   char buf[16];
  4585   // Prevent process from exiting upon "read error" without consuming all CPU
  4586   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4588   return buf[0] == 'y' || buf[0] == 'Y';
  4591 int os::stat(const char *path, struct stat *sbuf) {
  4592   char pathbuf[MAX_PATH];
  4593   if (strlen(path) > MAX_PATH - 1) {
  4594     errno = ENAMETOOLONG;
  4595     return -1;
  4597   os::native_path(strcpy(pathbuf, path));
  4598   return ::stat(pathbuf, sbuf);
  4601 bool os::check_heap(bool force) {
  4602   return true;
  4605 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4606   return ::vsnprintf(buf, count, format, args);
  4609 // Is a (classpath) directory empty?
  4610 bool os::dir_is_empty(const char* path) {
  4611   DIR *dir = NULL;
  4612   struct dirent *ptr;
  4614   dir = opendir(path);
  4615   if (dir == NULL) return true;
  4617   /* Scan the directory */
  4618   bool result = true;
  4619   char buf[sizeof(struct dirent) + MAX_PATH];
  4620   while (result && (ptr = ::readdir(dir)) != NULL) {
  4621     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4622       result = false;
  4625   closedir(dir);
  4626   return result;
  4629 // This code originates from JDK's sysOpen and open64_w
  4630 // from src/solaris/hpi/src/system_md.c
  4632 #ifndef O_DELETE
  4633 #define O_DELETE 0x10000
  4634 #endif
  4636 // Open a file. Unlink the file immediately after open returns
  4637 // if the specified oflag has the O_DELETE flag set.
  4638 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4640 int os::open(const char *path, int oflag, int mode) {
  4642   if (strlen(path) > MAX_PATH - 1) {
  4643     errno = ENAMETOOLONG;
  4644     return -1;
  4646   int fd;
  4647   int o_delete = (oflag & O_DELETE);
  4648   oflag = oflag & ~O_DELETE;
  4650   fd = ::open64(path, oflag, mode);
  4651   if (fd == -1) return -1;
  4653   //If the open succeeded, the file might still be a directory
  4655     struct stat64 buf64;
  4656     int ret = ::fstat64(fd, &buf64);
  4657     int st_mode = buf64.st_mode;
  4659     if (ret != -1) {
  4660       if ((st_mode & S_IFMT) == S_IFDIR) {
  4661         errno = EISDIR;
  4662         ::close(fd);
  4663         return -1;
  4665     } else {
  4666       ::close(fd);
  4667       return -1;
  4671     /*
  4672      * All file descriptors that are opened in the JVM and not
  4673      * specifically destined for a subprocess should have the
  4674      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4675      * party native code might fork and exec without closing all
  4676      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4677      * UNIXProcess.c), and this in turn might:
  4679      * - cause end-of-file to fail to be detected on some file
  4680      *   descriptors, resulting in mysterious hangs, or
  4682      * - might cause an fopen in the subprocess to fail on a system
  4683      *   suffering from bug 1085341.
  4685      * (Yes, the default setting of the close-on-exec flag is a Unix
  4686      * design flaw)
  4688      * See:
  4689      * 1085341: 32-bit stdio routines should support file descriptors >255
  4690      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4691      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4692      */
  4693 #ifdef FD_CLOEXEC
  4695         int flags = ::fcntl(fd, F_GETFD);
  4696         if (flags != -1)
  4697             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4699 #endif
  4701   if (o_delete != 0) {
  4702     ::unlink(path);
  4704   return fd;
  4708 // create binary file, rewriting existing file if required
  4709 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4710   int oflags = O_WRONLY | O_CREAT;
  4711   if (!rewrite_existing) {
  4712     oflags |= O_EXCL;
  4714   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4717 // return current position of file pointer
  4718 jlong os::current_file_offset(int fd) {
  4719   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4722 // move file pointer to the specified offset
  4723 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4724   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4727 // This code originates from JDK's sysAvailable
  4728 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4730 int os::available(int fd, jlong *bytes) {
  4731   jlong cur, end;
  4732   int mode;
  4733   struct stat64 buf64;
  4735   if (::fstat64(fd, &buf64) >= 0) {
  4736     mode = buf64.st_mode;
  4737     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4738       /*
  4739       * XXX: is the following call interruptible? If so, this might
  4740       * need to go through the INTERRUPT_IO() wrapper as for other
  4741       * blocking, interruptible calls in this file.
  4742       */
  4743       int n;
  4744       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4745         *bytes = n;
  4746         return 1;
  4750   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  4751     return 0;
  4752   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  4753     return 0;
  4754   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  4755     return 0;
  4757   *bytes = end - cur;
  4758   return 1;
  4761 int os::socket_available(int fd, jint *pbytes) {
  4762   // Linux doc says EINTR not returned, unlike Solaris
  4763   int ret = ::ioctl(fd, FIONREAD, pbytes);
  4765   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4766   // is expected to return 0 on failure and 1 on success to the jdk.
  4767   return (ret < 0) ? 0 : 1;
  4770 // Map a block of memory.
  4771 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4772                      char *addr, size_t bytes, bool read_only,
  4773                      bool allow_exec) {
  4774   int prot;
  4775   int flags = MAP_PRIVATE;
  4777   if (read_only) {
  4778     prot = PROT_READ;
  4779   } else {
  4780     prot = PROT_READ | PROT_WRITE;
  4783   if (allow_exec) {
  4784     prot |= PROT_EXEC;
  4787   if (addr != NULL) {
  4788     flags |= MAP_FIXED;
  4791   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4792                                      fd, file_offset);
  4793   if (mapped_address == MAP_FAILED) {
  4794     return NULL;
  4796   return mapped_address;
  4800 // Remap a block of memory.
  4801 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4802                        char *addr, size_t bytes, bool read_only,
  4803                        bool allow_exec) {
  4804   // same as map_memory() on this OS
  4805   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4806                         allow_exec);
  4810 // Unmap a block of memory.
  4811 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4812   return munmap(addr, bytes) == 0;
  4815 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4817 static clockid_t thread_cpu_clockid(Thread* thread) {
  4818   pthread_t tid = thread->osthread()->pthread_id();
  4819   clockid_t clockid;
  4821   // Get thread clockid
  4822   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4823   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4824   return clockid;
  4827 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4828 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4829 // of a thread.
  4830 //
  4831 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4832 // the fast estimate available on the platform.
  4834 jlong os::current_thread_cpu_time() {
  4835   if (os::Linux::supports_fast_thread_cpu_time()) {
  4836     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4837   } else {
  4838     // return user + sys since the cost is the same
  4839     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4843 jlong os::thread_cpu_time(Thread* thread) {
  4844   // consistent with what current_thread_cpu_time() returns
  4845   if (os::Linux::supports_fast_thread_cpu_time()) {
  4846     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4847   } else {
  4848     return slow_thread_cpu_time(thread, true /* user + sys */);
  4852 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4853   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4854     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4855   } else {
  4856     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4860 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4861   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4862     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4863   } else {
  4864     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4868 //
  4869 //  -1 on error.
  4870 //
  4872 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4873   static bool proc_task_unchecked = true;
  4874   static const char *proc_stat_path = "/proc/%d/stat";
  4875   pid_t  tid = thread->osthread()->thread_id();
  4876   char *s;
  4877   char stat[2048];
  4878   int statlen;
  4879   char proc_name[64];
  4880   int count;
  4881   long sys_time, user_time;
  4882   char cdummy;
  4883   int idummy;
  4884   long ldummy;
  4885   FILE *fp;
  4887   // The /proc/<tid>/stat aggregates per-process usage on
  4888   // new Linux kernels 2.6+ where NPTL is supported.
  4889   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4890   // See bug 6328462.
  4891   // There possibly can be cases where there is no directory
  4892   // /proc/self/task, so we check its availability.
  4893   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4894     // This is executed only once
  4895     proc_task_unchecked = false;
  4896     fp = fopen("/proc/self/task", "r");
  4897     if (fp != NULL) {
  4898       proc_stat_path = "/proc/self/task/%d/stat";
  4899       fclose(fp);
  4903   sprintf(proc_name, proc_stat_path, tid);
  4904   fp = fopen(proc_name, "r");
  4905   if ( fp == NULL ) return -1;
  4906   statlen = fread(stat, 1, 2047, fp);
  4907   stat[statlen] = '\0';
  4908   fclose(fp);
  4910   // Skip pid and the command string. Note that we could be dealing with
  4911   // weird command names, e.g. user could decide to rename java launcher
  4912   // to "java 1.4.2 :)", then the stat file would look like
  4913   //                1234 (java 1.4.2 :)) R ... ...
  4914   // We don't really need to know the command string, just find the last
  4915   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4916   s = strrchr(stat, ')');
  4917   if (s == NULL ) return -1;
  4919   // Skip blank chars
  4920   do s++; while (isspace(*s));
  4922   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4923                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4924                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4925                  &user_time, &sys_time);
  4926   if ( count != 13 ) return -1;
  4927   if (user_sys_cpu_time) {
  4928     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4929   } else {
  4930     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4934 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4935   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4936   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4937   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4938   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4941 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4942   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4943   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4944   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4945   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4948 bool os::is_thread_cpu_time_supported() {
  4949   return true;
  4952 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4953 // Linux doesn't yet have a (official) notion of processor sets,
  4954 // so just return the system wide load average.
  4955 int os::loadavg(double loadavg[], int nelem) {
  4956   return ::getloadavg(loadavg, nelem);
  4959 void os::pause() {
  4960   char filename[MAX_PATH];
  4961   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4962     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4963   } else {
  4964     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4967   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4968   if (fd != -1) {
  4969     struct stat buf;
  4970     ::close(fd);
  4971     while (::stat(filename, &buf) == 0) {
  4972       (void)::poll(NULL, 0, 100);
  4974   } else {
  4975     jio_fprintf(stderr,
  4976       "Could not open pause file '%s', continuing immediately.\n", filename);
  4981 // Refer to the comments in os_solaris.cpp park-unpark.
  4982 //
  4983 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4984 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4985 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4986 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4987 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4988 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4989 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4990 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4991 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4992 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4993 // of libpthread avoids the problem, but isn't practical.
  4994 //
  4995 // Possible remedies:
  4996 //
  4997 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4998 //      This is palliative and probabilistic, however.  If the thread is preempted
  4999 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5000 //      than the minimum period may have passed, and the abstime may be stale (in the
  5001 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5002 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5003 //
  5004 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5005 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5006 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5007 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5008 //      thread.
  5009 //
  5010 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5011 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5012 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5013 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5014 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5015 //      timers in a graceful fashion.
  5016 //
  5017 // 4.   When the abstime value is in the past it appears that control returns
  5018 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5019 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5020 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5021 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5022 //      It may be possible to avoid reinitialization by checking the return
  5023 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5024 //      condvar we must establish the invariant that cond_signal() is only called
  5025 //      within critical sections protected by the adjunct mutex.  This prevents
  5026 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5027 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5028 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5029 //
  5030 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5031 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5032 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5033 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5034 //
  5035 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5036 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5037 // and only enabling the work-around for vulnerable environments.
  5039 // utility to compute the abstime argument to timedwait:
  5040 // millis is the relative timeout time
  5041 // abstime will be the absolute timeout time
  5042 // TODO: replace compute_abstime() with unpackTime()
  5044 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5045   if (millis < 0)  millis = 0;
  5046   struct timeval now;
  5047   int status = gettimeofday(&now, NULL);
  5048   assert(status == 0, "gettimeofday");
  5049   jlong seconds = millis / 1000;
  5050   millis %= 1000;
  5051   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5052     seconds = 50000000;
  5054   abstime->tv_sec = now.tv_sec  + seconds;
  5055   long       usec = now.tv_usec + millis * 1000;
  5056   if (usec >= 1000000) {
  5057     abstime->tv_sec += 1;
  5058     usec -= 1000000;
  5060   abstime->tv_nsec = usec * 1000;
  5061   return abstime;
  5065 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5066 // Conceptually TryPark() should be equivalent to park(0).
  5068 int os::PlatformEvent::TryPark() {
  5069   for (;;) {
  5070     const int v = _Event ;
  5071     guarantee ((v == 0) || (v == 1), "invariant") ;
  5072     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5076 void os::PlatformEvent::park() {       // AKA "down()"
  5077   // Invariant: Only the thread associated with the Event/PlatformEvent
  5078   // may call park().
  5079   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5080   int v ;
  5081   for (;;) {
  5082       v = _Event ;
  5083       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5085   guarantee (v >= 0, "invariant") ;
  5086   if (v == 0) {
  5087      // Do this the hard way by blocking ...
  5088      int status = pthread_mutex_lock(_mutex);
  5089      assert_status(status == 0, status, "mutex_lock");
  5090      guarantee (_nParked == 0, "invariant") ;
  5091      ++ _nParked ;
  5092      while (_Event < 0) {
  5093         status = pthread_cond_wait(_cond, _mutex);
  5094         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5095         // Treat this the same as if the wait was interrupted
  5096         if (status == ETIME) { status = EINTR; }
  5097         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5099      -- _nParked ;
  5101     _Event = 0 ;
  5102      status = pthread_mutex_unlock(_mutex);
  5103      assert_status(status == 0, status, "mutex_unlock");
  5104     // Paranoia to ensure our locked and lock-free paths interact
  5105     // correctly with each other.
  5106     OrderAccess::fence();
  5108   guarantee (_Event >= 0, "invariant") ;
  5111 int os::PlatformEvent::park(jlong millis) {
  5112   guarantee (_nParked == 0, "invariant") ;
  5114   int v ;
  5115   for (;;) {
  5116       v = _Event ;
  5117       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5119   guarantee (v >= 0, "invariant") ;
  5120   if (v != 0) return OS_OK ;
  5122   // We do this the hard way, by blocking the thread.
  5123   // Consider enforcing a minimum timeout value.
  5124   struct timespec abst;
  5125   compute_abstime(&abst, millis);
  5127   int ret = OS_TIMEOUT;
  5128   int status = pthread_mutex_lock(_mutex);
  5129   assert_status(status == 0, status, "mutex_lock");
  5130   guarantee (_nParked == 0, "invariant") ;
  5131   ++_nParked ;
  5133   // Object.wait(timo) will return because of
  5134   // (a) notification
  5135   // (b) timeout
  5136   // (c) thread.interrupt
  5137   //
  5138   // Thread.interrupt and object.notify{All} both call Event::set.
  5139   // That is, we treat thread.interrupt as a special case of notification.
  5140   // The underlying Solaris implementation, cond_timedwait, admits
  5141   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5142   // JVM from making those visible to Java code.  As such, we must
  5143   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5144   //
  5145   // TODO: properly differentiate simultaneous notify+interrupt.
  5146   // In that case, we should propagate the notify to another waiter.
  5148   while (_Event < 0) {
  5149     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5150     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5151       pthread_cond_destroy (_cond);
  5152       pthread_cond_init (_cond, NULL) ;
  5154     assert_status(status == 0 || status == EINTR ||
  5155                   status == ETIME || status == ETIMEDOUT,
  5156                   status, "cond_timedwait");
  5157     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5158     if (status == ETIME || status == ETIMEDOUT) break ;
  5159     // We consume and ignore EINTR and spurious wakeups.
  5161   --_nParked ;
  5162   if (_Event >= 0) {
  5163      ret = OS_OK;
  5165   _Event = 0 ;
  5166   status = pthread_mutex_unlock(_mutex);
  5167   assert_status(status == 0, status, "mutex_unlock");
  5168   assert (_nParked == 0, "invariant") ;
  5169   // Paranoia to ensure our locked and lock-free paths interact
  5170   // correctly with each other.
  5171   OrderAccess::fence();
  5172   return ret;
  5175 void os::PlatformEvent::unpark() {
  5176   // Transitions for _Event:
  5177   //    0 :=> 1
  5178   //    1 :=> 1
  5179   //   -1 :=> either 0 or 1; must signal target thread
  5180   //          That is, we can safely transition _Event from -1 to either
  5181   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5182   //          unpark() calls.
  5183   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5184   //
  5185   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5186   // that it will take two back-to-back park() calls for the owning
  5187   // thread to block. This has the benefit of forcing a spurious return
  5188   // from the first park() call after an unpark() call which will help
  5189   // shake out uses of park() and unpark() without condition variables.
  5191   if (Atomic::xchg(1, &_Event) >= 0) return;
  5193   // Wait for the thread associated with the event to vacate
  5194   int status = pthread_mutex_lock(_mutex);
  5195   assert_status(status == 0, status, "mutex_lock");
  5196   int AnyWaiters = _nParked;
  5197   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5198   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5199     AnyWaiters = 0;
  5200     pthread_cond_signal(_cond);
  5202   status = pthread_mutex_unlock(_mutex);
  5203   assert_status(status == 0, status, "mutex_unlock");
  5204   if (AnyWaiters != 0) {
  5205     status = pthread_cond_signal(_cond);
  5206     assert_status(status == 0, status, "cond_signal");
  5209   // Note that we signal() _after dropping the lock for "immortal" Events.
  5210   // This is safe and avoids a common class of  futile wakeups.  In rare
  5211   // circumstances this can cause a thread to return prematurely from
  5212   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5213   // simply re-test the condition and re-park itself.
  5217 // JSR166
  5218 // -------------------------------------------------------
  5220 /*
  5221  * The solaris and linux implementations of park/unpark are fairly
  5222  * conservative for now, but can be improved. They currently use a
  5223  * mutex/condvar pair, plus a a count.
  5224  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5225  * sets count to 1 and signals condvar.  Only one thread ever waits
  5226  * on the condvar. Contention seen when trying to park implies that someone
  5227  * is unparking you, so don't wait. And spurious returns are fine, so there
  5228  * is no need to track notifications.
  5229  */
  5231 #define MAX_SECS 100000000
  5232 /*
  5233  * This code is common to linux and solaris and will be moved to a
  5234  * common place in dolphin.
  5236  * The passed in time value is either a relative time in nanoseconds
  5237  * or an absolute time in milliseconds. Either way it has to be unpacked
  5238  * into suitable seconds and nanoseconds components and stored in the
  5239  * given timespec structure.
  5240  * Given time is a 64-bit value and the time_t used in the timespec is only
  5241  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5242  * overflow if times way in the future are given. Further on Solaris versions
  5243  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5244  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5245  * As it will be 28 years before "now + 100000000" will overflow we can
  5246  * ignore overflow and just impose a hard-limit on seconds using the value
  5247  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5248  * years from "now".
  5249  */
  5251 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5252   assert (time > 0, "convertTime");
  5254   struct timeval now;
  5255   int status = gettimeofday(&now, NULL);
  5256   assert(status == 0, "gettimeofday");
  5258   time_t max_secs = now.tv_sec + MAX_SECS;
  5260   if (isAbsolute) {
  5261     jlong secs = time / 1000;
  5262     if (secs > max_secs) {
  5263       absTime->tv_sec = max_secs;
  5265     else {
  5266       absTime->tv_sec = secs;
  5268     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5270   else {
  5271     jlong secs = time / NANOSECS_PER_SEC;
  5272     if (secs >= MAX_SECS) {
  5273       absTime->tv_sec = max_secs;
  5274       absTime->tv_nsec = 0;
  5276     else {
  5277       absTime->tv_sec = now.tv_sec + secs;
  5278       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5279       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5280         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5281         ++absTime->tv_sec; // note: this must be <= max_secs
  5285   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5286   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5287   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5288   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5291 void Parker::park(bool isAbsolute, jlong time) {
  5292   // Ideally we'd do something useful while spinning, such
  5293   // as calling unpackTime().
  5295   // Optional fast-path check:
  5296   // Return immediately if a permit is available.
  5297   // We depend on Atomic::xchg() having full barrier semantics
  5298   // since we are doing a lock-free update to _counter.
  5299   if (Atomic::xchg(0, &_counter) > 0) return;
  5301   Thread* thread = Thread::current();
  5302   assert(thread->is_Java_thread(), "Must be JavaThread");
  5303   JavaThread *jt = (JavaThread *)thread;
  5305   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5306   // Check interrupt before trying to wait
  5307   if (Thread::is_interrupted(thread, false)) {
  5308     return;
  5311   // Next, demultiplex/decode time arguments
  5312   timespec absTime;
  5313   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5314     return;
  5316   if (time > 0) {
  5317     unpackTime(&absTime, isAbsolute, time);
  5321   // Enter safepoint region
  5322   // Beware of deadlocks such as 6317397.
  5323   // The per-thread Parker:: mutex is a classic leaf-lock.
  5324   // In particular a thread must never block on the Threads_lock while
  5325   // holding the Parker:: mutex.  If safepoints are pending both the
  5326   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5327   ThreadBlockInVM tbivm(jt);
  5329   // Don't wait if cannot get lock since interference arises from
  5330   // unblocking.  Also. check interrupt before trying wait
  5331   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5332     return;
  5335   int status ;
  5336   if (_counter > 0)  { // no wait needed
  5337     _counter = 0;
  5338     status = pthread_mutex_unlock(_mutex);
  5339     assert (status == 0, "invariant") ;
  5340     // Paranoia to ensure our locked and lock-free paths interact
  5341     // correctly with each other and Java-level accesses.
  5342     OrderAccess::fence();
  5343     return;
  5346 #ifdef ASSERT
  5347   // Don't catch signals while blocked; let the running threads have the signals.
  5348   // (This allows a debugger to break into the running thread.)
  5349   sigset_t oldsigs;
  5350   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5351   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5352 #endif
  5354   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5355   jt->set_suspend_equivalent();
  5356   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5358   if (time == 0) {
  5359     status = pthread_cond_wait (_cond, _mutex) ;
  5360   } else {
  5361     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5362     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5363       pthread_cond_destroy (_cond) ;
  5364       pthread_cond_init    (_cond, NULL);
  5367   assert_status(status == 0 || status == EINTR ||
  5368                 status == ETIME || status == ETIMEDOUT,
  5369                 status, "cond_timedwait");
  5371 #ifdef ASSERT
  5372   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5373 #endif
  5375   _counter = 0 ;
  5376   status = pthread_mutex_unlock(_mutex) ;
  5377   assert_status(status == 0, status, "invariant") ;
  5378   // Paranoia to ensure our locked and lock-free paths interact
  5379   // correctly with each other and Java-level accesses.
  5380   OrderAccess::fence();
  5382   // If externally suspended while waiting, re-suspend
  5383   if (jt->handle_special_suspend_equivalent_condition()) {
  5384     jt->java_suspend_self();
  5388 void Parker::unpark() {
  5389   int s, status ;
  5390   status = pthread_mutex_lock(_mutex);
  5391   assert (status == 0, "invariant") ;
  5392   s = _counter;
  5393   _counter = 1;
  5394   if (s < 1) {
  5395      if (WorkAroundNPTLTimedWaitHang) {
  5396         status = pthread_cond_signal (_cond) ;
  5397         assert (status == 0, "invariant") ;
  5398         status = pthread_mutex_unlock(_mutex);
  5399         assert (status == 0, "invariant") ;
  5400      } else {
  5401         status = pthread_mutex_unlock(_mutex);
  5402         assert (status == 0, "invariant") ;
  5403         status = pthread_cond_signal (_cond) ;
  5404         assert (status == 0, "invariant") ;
  5406   } else {
  5407     pthread_mutex_unlock(_mutex);
  5408     assert (status == 0, "invariant") ;
  5413 extern char** environ;
  5415 #ifndef __NR_fork
  5416 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5417 #endif
  5419 #ifndef __NR_execve
  5420 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5421 #endif
  5423 // Run the specified command in a separate process. Return its exit value,
  5424 // or -1 on failure (e.g. can't fork a new process).
  5425 // Unlike system(), this function can be called from signal handler. It
  5426 // doesn't block SIGINT et al.
  5427 int os::fork_and_exec(char* cmd) {
  5428   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5430   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5431   // pthread_atfork handlers and reset pthread library. All we need is a
  5432   // separate process to execve. Make a direct syscall to fork process.
  5433   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5434   // the best...
  5435   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5436               IA64_ONLY(fork();)
  5438   if (pid < 0) {
  5439     // fork failed
  5440     return -1;
  5442   } else if (pid == 0) {
  5443     // child process
  5445     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5446     // first to kill every thread on the thread list. Because this list is
  5447     // not reset by fork() (see notes above), execve() will instead kill
  5448     // every thread in the parent process. We know this is the only thread
  5449     // in the new process, so make a system call directly.
  5450     // IA64 should use normal execve() from glibc to match the glibc fork()
  5451     // above.
  5452     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5453     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5455     // execve failed
  5456     _exit(-1);
  5458   } else  {
  5459     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5460     // care about the actual exit code, for now.
  5462     int status;
  5464     // Wait for the child process to exit.  This returns immediately if
  5465     // the child has already exited. */
  5466     while (waitpid(pid, &status, 0) < 0) {
  5467         switch (errno) {
  5468         case ECHILD: return 0;
  5469         case EINTR: break;
  5470         default: return -1;
  5474     if (WIFEXITED(status)) {
  5475        // The child exited normally; get its exit code.
  5476        return WEXITSTATUS(status);
  5477     } else if (WIFSIGNALED(status)) {
  5478        // The child exited because of a signal
  5479        // The best value to return is 0x80 + signal number,
  5480        // because that is what all Unix shells do, and because
  5481        // it allows callers to distinguish between process exit and
  5482        // process death by signal.
  5483        return 0x80 + WTERMSIG(status);
  5484     } else {
  5485        // Unknown exit code; pass it through
  5486        return status;
  5491 // is_headless_jre()
  5492 //
  5493 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  5494 // in order to report if we are running in a headless jre
  5495 //
  5496 // Since JDK8 xawt/libmawt.so was moved into the same directory
  5497 // as libawt.so, and renamed libawt_xawt.so
  5498 //
  5499 bool os::is_headless_jre() {
  5500     struct stat statbuf;
  5501     char buf[MAXPATHLEN];
  5502     char libmawtpath[MAXPATHLEN];
  5503     const char *xawtstr  = "/xawt/libmawt.so";
  5504     const char *new_xawtstr = "/libawt_xawt.so";
  5505     char *p;
  5507     // Get path to libjvm.so
  5508     os::jvm_path(buf, sizeof(buf));
  5510     // Get rid of libjvm.so
  5511     p = strrchr(buf, '/');
  5512     if (p == NULL) return false;
  5513     else *p = '\0';
  5515     // Get rid of client or server
  5516     p = strrchr(buf, '/');
  5517     if (p == NULL) return false;
  5518     else *p = '\0';
  5520     // check xawt/libmawt.so
  5521     strcpy(libmawtpath, buf);
  5522     strcat(libmawtpath, xawtstr);
  5523     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5525     // check libawt_xawt.so
  5526     strcpy(libmawtpath, buf);
  5527     strcat(libmawtpath, new_xawtstr);
  5528     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5530     return true;
  5533 // Get the default path to the core file
  5534 // Returns the length of the string
  5535 int os::get_core_path(char* buffer, size_t bufferSize) {
  5536   const char* p = get_current_directory(buffer, bufferSize);
  5538   if (p == NULL) {
  5539     assert(p != NULL, "failed to get current directory");
  5540     return 0;
  5543   return strlen(buffer);
  5546 #ifdef JAVASE_EMBEDDED
  5547 //
  5548 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  5549 //
  5550 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  5552 // ctor
  5553 //
  5554 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  5555   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  5556   _fd = fd;
  5558   if (os::create_thread(this, os::os_thread)) {
  5559     _memnotify_thread = this;
  5560     os::set_priority(this, NearMaxPriority);
  5561     os::start_thread(this);
  5565 // Where all the work gets done
  5566 //
  5567 void MemNotifyThread::run() {
  5568   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  5570   // Set up the select arguments
  5571   fd_set rfds;
  5572   if (_fd != -1) {
  5573     FD_ZERO(&rfds);
  5574     FD_SET(_fd, &rfds);
  5577   // Now wait for the mem_notify device to wake up
  5578   while (1) {
  5579     // Wait for the mem_notify device to signal us..
  5580     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  5581     if (rc == -1) {
  5582       perror("select!\n");
  5583       break;
  5584     } else if (rc) {
  5585       //ssize_t free_before = os::available_memory();
  5586       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  5588       // The kernel is telling us there is not much memory left...
  5589       // try to do something about that
  5591       // If we are not already in a GC, try one.
  5592       if (!Universe::heap()->is_gc_active()) {
  5593         Universe::heap()->collect(GCCause::_allocation_failure);
  5595         //ssize_t free_after = os::available_memory();
  5596         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  5597         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  5599       // We might want to do something like the following if we find the GC's are not helping...
  5600       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  5605 //
  5606 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  5607 //
  5608 void MemNotifyThread::start() {
  5609   int    fd;
  5610   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  5611   if (fd < 0) {
  5612       return;
  5615   if (memnotify_thread() == NULL) {
  5616     new MemNotifyThread(fd);
  5619 #endif // JAVASE_EMBEDDED

mercurial