src/share/vm/runtime/thread.cpp

Mon, 04 Jan 2010 18:38:08 +0100

author
twisti
date
Mon, 04 Jan 2010 18:38:08 +0100
changeset 1570
e66fd840cb6b
parent 1462
39b01ab7035a
child 1577
4ce7240d622c
permissions
-rw-r--r--

6893081: method handle & invokedynamic code needs additional cleanup (post 6815692, 6858164)
Summary: During the work for 6829187 we have fixed a number of basic bugs which are logically grouped with 6815692 and 6858164 but which must be reviewed and pushed separately.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_thread.cpp.incl"
    28 #ifdef DTRACE_ENABLED
    30 // Only bother with this argument setup if dtrace is available
    32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
    33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
    34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
    35   intptr_t, intptr_t, bool);
    36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
    37   intptr_t, intptr_t, bool);
    39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
    40   {                                                                        \
    41     ResourceMark rm(this);                                                 \
    42     int len = 0;                                                           \
    43     const char* name = (javathread)->get_thread_name();                    \
    44     len = strlen(name);                                                    \
    45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
    46       name, len,                                                           \
    47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
    48       (javathread)->osthread()->thread_id(),                               \
    49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
    50   }
    52 #else //  ndef DTRACE_ENABLED
    54 #define DTRACE_THREAD_PROBE(probe, javathread)
    56 #endif // ndef DTRACE_ENABLED
    58 // Class hierarchy
    59 // - Thread
    60 //   - VMThread
    61 //   - WatcherThread
    62 //   - ConcurrentMarkSweepThread
    63 //   - JavaThread
    64 //     - CompilerThread
    66 // ======= Thread ========
    68 // Support for forcing alignment of thread objects for biased locking
    69 void* Thread::operator new(size_t size) {
    70   if (UseBiasedLocking) {
    71     const int alignment = markOopDesc::biased_lock_alignment;
    72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
    73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
    74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
    75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
    76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
    77            "JavaThread alignment code overflowed allocated storage");
    78     if (TraceBiasedLocking) {
    79       if (aligned_addr != real_malloc_addr)
    80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
    81                       real_malloc_addr, aligned_addr);
    82     }
    83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
    84     return aligned_addr;
    85   } else {
    86     return CHeapObj::operator new(size);
    87   }
    88 }
    90 void Thread::operator delete(void* p) {
    91   if (UseBiasedLocking) {
    92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
    93     CHeapObj::operator delete(real_malloc_addr);
    94   } else {
    95     CHeapObj::operator delete(p);
    96   }
    97 }
   100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   101 // JavaThread
   104 Thread::Thread() {
   105   // stack
   106   _stack_base   = NULL;
   107   _stack_size   = 0;
   108   _self_raw_id  = 0;
   109   _lgrp_id      = -1;
   110   _osthread     = NULL;
   112   // allocated data structures
   113   set_resource_area(new ResourceArea());
   114   set_handle_area(new HandleArea(NULL));
   115   set_active_handles(NULL);
   116   set_free_handle_block(NULL);
   117   set_last_handle_mark(NULL);
   118   set_osthread(NULL);
   120   // This initial value ==> never claimed.
   121   _oops_do_parity = 0;
   123   // the handle mark links itself to last_handle_mark
   124   new HandleMark(this);
   126   // plain initialization
   127   debug_only(_owned_locks = NULL;)
   128   debug_only(_allow_allocation_count = 0;)
   129   NOT_PRODUCT(_allow_safepoint_count = 0;)
   130   NOT_PRODUCT(_skip_gcalot = false;)
   131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   132   _jvmti_env_iteration_count = 0;
   133   _vm_operation_started_count = 0;
   134   _vm_operation_completed_count = 0;
   135   _current_pending_monitor = NULL;
   136   _current_pending_monitor_is_from_java = true;
   137   _current_waiting_monitor = NULL;
   138   _num_nested_signal = 0;
   139   omFreeList = NULL ;
   140   omFreeCount = 0 ;
   141   omFreeProvision = 32 ;
   143   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   144   _suspend_flags = 0;
   146   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   147   _hashStateX = os::random() ;
   148   _hashStateY = 842502087 ;
   149   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   150   _hashStateW = 273326509 ;
   152   _OnTrap   = 0 ;
   153   _schedctl = NULL ;
   154   _Stalled  = 0 ;
   155   _TypeTag  = 0x2BAD ;
   157   // Many of the following fields are effectively final - immutable
   158   // Note that nascent threads can't use the Native Monitor-Mutex
   159   // construct until the _MutexEvent is initialized ...
   160   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   161   // we might instead use a stack of ParkEvents that we could provision on-demand.
   162   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   163   // and ::Release()
   164   _ParkEvent   = ParkEvent::Allocate (this) ;
   165   _SleepEvent  = ParkEvent::Allocate (this) ;
   166   _MutexEvent  = ParkEvent::Allocate (this) ;
   167   _MuxEvent    = ParkEvent::Allocate (this) ;
   169 #ifdef CHECK_UNHANDLED_OOPS
   170   if (CheckUnhandledOops) {
   171     _unhandled_oops = new UnhandledOops(this);
   172   }
   173 #endif // CHECK_UNHANDLED_OOPS
   174 #ifdef ASSERT
   175   if (UseBiasedLocking) {
   176     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   177     assert(this == _real_malloc_address ||
   178            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   179            "bug in forced alignment of thread objects");
   180   }
   181 #endif /* ASSERT */
   182 }
   184 void Thread::initialize_thread_local_storage() {
   185   // Note: Make sure this method only calls
   186   // non-blocking operations. Otherwise, it might not work
   187   // with the thread-startup/safepoint interaction.
   189   // During Java thread startup, safepoint code should allow this
   190   // method to complete because it may need to allocate memory to
   191   // store information for the new thread.
   193   // initialize structure dependent on thread local storage
   194   ThreadLocalStorage::set_thread(this);
   196   // set up any platform-specific state.
   197   os::initialize_thread();
   199 }
   201 void Thread::record_stack_base_and_size() {
   202   set_stack_base(os::current_stack_base());
   203   set_stack_size(os::current_stack_size());
   204 }
   207 Thread::~Thread() {
   208   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   209   ObjectSynchronizer::omFlush (this) ;
   211   // deallocate data structures
   212   delete resource_area();
   213   // since the handle marks are using the handle area, we have to deallocated the root
   214   // handle mark before deallocating the thread's handle area,
   215   assert(last_handle_mark() != NULL, "check we have an element");
   216   delete last_handle_mark();
   217   assert(last_handle_mark() == NULL, "check we have reached the end");
   219   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   220   // We NULL out the fields for good hygiene.
   221   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   222   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   223   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   224   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   226   delete handle_area();
   228   // osthread() can be NULL, if creation of thread failed.
   229   if (osthread() != NULL) os::free_thread(osthread());
   231   delete _SR_lock;
   233   // clear thread local storage if the Thread is deleting itself
   234   if (this == Thread::current()) {
   235     ThreadLocalStorage::set_thread(NULL);
   236   } else {
   237     // In the case where we're not the current thread, invalidate all the
   238     // caches in case some code tries to get the current thread or the
   239     // thread that was destroyed, and gets stale information.
   240     ThreadLocalStorage::invalidate_all();
   241   }
   242   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   243 }
   245 // NOTE: dummy function for assertion purpose.
   246 void Thread::run() {
   247   ShouldNotReachHere();
   248 }
   250 #ifdef ASSERT
   251 // Private method to check for dangling thread pointer
   252 void check_for_dangling_thread_pointer(Thread *thread) {
   253  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   254          "possibility of dangling Thread pointer");
   255 }
   256 #endif
   259 #ifndef PRODUCT
   260 // Tracing method for basic thread operations
   261 void Thread::trace(const char* msg, const Thread* const thread) {
   262   if (!TraceThreadEvents) return;
   263   ResourceMark rm;
   264   ThreadCritical tc;
   265   const char *name = "non-Java thread";
   266   int prio = -1;
   267   if (thread->is_Java_thread()
   268       && !thread->is_Compiler_thread()) {
   269     // The Threads_lock must be held to get information about
   270     // this thread but may not be in some situations when
   271     // tracing  thread events.
   272     bool release_Threads_lock = false;
   273     if (!Threads_lock->owned_by_self()) {
   274       Threads_lock->lock();
   275       release_Threads_lock = true;
   276     }
   277     JavaThread* jt = (JavaThread *)thread;
   278     name = (char *)jt->get_thread_name();
   279     oop thread_oop = jt->threadObj();
   280     if (thread_oop != NULL) {
   281       prio = java_lang_Thread::priority(thread_oop);
   282     }
   283     if (release_Threads_lock) {
   284       Threads_lock->unlock();
   285     }
   286   }
   287   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   288 }
   289 #endif
   292 ThreadPriority Thread::get_priority(const Thread* const thread) {
   293   trace("get priority", thread);
   294   ThreadPriority priority;
   295   // Can return an error!
   296   (void)os::get_priority(thread, priority);
   297   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   298   return priority;
   299 }
   301 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   302   trace("set priority", thread);
   303   debug_only(check_for_dangling_thread_pointer(thread);)
   304   // Can return an error!
   305   (void)os::set_priority(thread, priority);
   306 }
   309 void Thread::start(Thread* thread) {
   310   trace("start", thread);
   311   // Start is different from resume in that its safety is guaranteed by context or
   312   // being called from a Java method synchronized on the Thread object.
   313   if (!DisableStartThread) {
   314     if (thread->is_Java_thread()) {
   315       // Initialize the thread state to RUNNABLE before starting this thread.
   316       // Can not set it after the thread started because we do not know the
   317       // exact thread state at that time. It could be in MONITOR_WAIT or
   318       // in SLEEPING or some other state.
   319       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   320                                           java_lang_Thread::RUNNABLE);
   321     }
   322     os::start_thread(thread);
   323   }
   324 }
   326 // Enqueue a VM_Operation to do the job for us - sometime later
   327 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   328   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   329   VMThread::execute(vm_stop);
   330 }
   333 //
   334 // Check if an external suspend request has completed (or has been
   335 // cancelled). Returns true if the thread is externally suspended and
   336 // false otherwise.
   337 //
   338 // The bits parameter returns information about the code path through
   339 // the routine. Useful for debugging:
   340 //
   341 // set in is_ext_suspend_completed():
   342 // 0x00000001 - routine was entered
   343 // 0x00000010 - routine return false at end
   344 // 0x00000100 - thread exited (return false)
   345 // 0x00000200 - suspend request cancelled (return false)
   346 // 0x00000400 - thread suspended (return true)
   347 // 0x00001000 - thread is in a suspend equivalent state (return true)
   348 // 0x00002000 - thread is native and walkable (return true)
   349 // 0x00004000 - thread is native_trans and walkable (needed retry)
   350 //
   351 // set in wait_for_ext_suspend_completion():
   352 // 0x00010000 - routine was entered
   353 // 0x00020000 - suspend request cancelled before loop (return false)
   354 // 0x00040000 - thread suspended before loop (return true)
   355 // 0x00080000 - suspend request cancelled in loop (return false)
   356 // 0x00100000 - thread suspended in loop (return true)
   357 // 0x00200000 - suspend not completed during retry loop (return false)
   358 //
   360 // Helper class for tracing suspend wait debug bits.
   361 //
   362 // 0x00000100 indicates that the target thread exited before it could
   363 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   364 // 0x00080000 each indicate a cancelled suspend request so they don't
   365 // count as wait failures either.
   366 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   368 class TraceSuspendDebugBits : public StackObj {
   369  private:
   370   JavaThread * jt;
   371   bool         is_wait;
   372   bool         called_by_wait;  // meaningful when !is_wait
   373   uint32_t *   bits;
   375  public:
   376   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   377                         uint32_t *_bits) {
   378     jt             = _jt;
   379     is_wait        = _is_wait;
   380     called_by_wait = _called_by_wait;
   381     bits           = _bits;
   382   }
   384   ~TraceSuspendDebugBits() {
   385     if (!is_wait) {
   386 #if 1
   387       // By default, don't trace bits for is_ext_suspend_completed() calls.
   388       // That trace is very chatty.
   389       return;
   390 #else
   391       if (!called_by_wait) {
   392         // If tracing for is_ext_suspend_completed() is enabled, then only
   393         // trace calls to it from wait_for_ext_suspend_completion()
   394         return;
   395       }
   396 #endif
   397     }
   399     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   400       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   401         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   402         ResourceMark rm;
   404         tty->print_cr(
   405             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   406             jt->get_thread_name(), *bits);
   408         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   409       }
   410     }
   411   }
   412 };
   413 #undef DEBUG_FALSE_BITS
   416 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   417   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   419   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   420   bool do_trans_retry;           // flag to force the retry
   422   *bits |= 0x00000001;
   424   do {
   425     do_trans_retry = false;
   427     if (is_exiting()) {
   428       // Thread is in the process of exiting. This is always checked
   429       // first to reduce the risk of dereferencing a freed JavaThread.
   430       *bits |= 0x00000100;
   431       return false;
   432     }
   434     if (!is_external_suspend()) {
   435       // Suspend request is cancelled. This is always checked before
   436       // is_ext_suspended() to reduce the risk of a rogue resume
   437       // confusing the thread that made the suspend request.
   438       *bits |= 0x00000200;
   439       return false;
   440     }
   442     if (is_ext_suspended()) {
   443       // thread is suspended
   444       *bits |= 0x00000400;
   445       return true;
   446     }
   448     // Now that we no longer do hard suspends of threads running
   449     // native code, the target thread can be changing thread state
   450     // while we are in this routine:
   451     //
   452     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   453     //
   454     // We save a copy of the thread state as observed at this moment
   455     // and make our decision about suspend completeness based on the
   456     // copy. This closes the race where the thread state is seen as
   457     // _thread_in_native_trans in the if-thread_blocked check, but is
   458     // seen as _thread_blocked in if-thread_in_native_trans check.
   459     JavaThreadState save_state = thread_state();
   461     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   462       // If the thread's state is _thread_blocked and this blocking
   463       // condition is known to be equivalent to a suspend, then we can
   464       // consider the thread to be externally suspended. This means that
   465       // the code that sets _thread_blocked has been modified to do
   466       // self-suspension if the blocking condition releases. We also
   467       // used to check for CONDVAR_WAIT here, but that is now covered by
   468       // the _thread_blocked with self-suspension check.
   469       //
   470       // Return true since we wouldn't be here unless there was still an
   471       // external suspend request.
   472       *bits |= 0x00001000;
   473       return true;
   474     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   475       // Threads running native code will self-suspend on native==>VM/Java
   476       // transitions. If its stack is walkable (should always be the case
   477       // unless this function is called before the actual java_suspend()
   478       // call), then the wait is done.
   479       *bits |= 0x00002000;
   480       return true;
   481     } else if (!called_by_wait && !did_trans_retry &&
   482                save_state == _thread_in_native_trans &&
   483                frame_anchor()->walkable()) {
   484       // The thread is transitioning from thread_in_native to another
   485       // thread state. check_safepoint_and_suspend_for_native_trans()
   486       // will force the thread to self-suspend. If it hasn't gotten
   487       // there yet we may have caught the thread in-between the native
   488       // code check above and the self-suspend. Lucky us. If we were
   489       // called by wait_for_ext_suspend_completion(), then it
   490       // will be doing the retries so we don't have to.
   491       //
   492       // Since we use the saved thread state in the if-statement above,
   493       // there is a chance that the thread has already transitioned to
   494       // _thread_blocked by the time we get here. In that case, we will
   495       // make a single unnecessary pass through the logic below. This
   496       // doesn't hurt anything since we still do the trans retry.
   498       *bits |= 0x00004000;
   500       // Once the thread leaves thread_in_native_trans for another
   501       // thread state, we break out of this retry loop. We shouldn't
   502       // need this flag to prevent us from getting back here, but
   503       // sometimes paranoia is good.
   504       did_trans_retry = true;
   506       // We wait for the thread to transition to a more usable state.
   507       for (int i = 1; i <= SuspendRetryCount; i++) {
   508         // We used to do an "os::yield_all(i)" call here with the intention
   509         // that yielding would increase on each retry. However, the parameter
   510         // is ignored on Linux which means the yield didn't scale up. Waiting
   511         // on the SR_lock below provides a much more predictable scale up for
   512         // the delay. It also provides a simple/direct point to check for any
   513         // safepoint requests from the VMThread
   515         // temporarily drops SR_lock while doing wait with safepoint check
   516         // (if we're a JavaThread - the WatcherThread can also call this)
   517         // and increase delay with each retry
   518         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   520         // check the actual thread state instead of what we saved above
   521         if (thread_state() != _thread_in_native_trans) {
   522           // the thread has transitioned to another thread state so
   523           // try all the checks (except this one) one more time.
   524           do_trans_retry = true;
   525           break;
   526         }
   527       } // end retry loop
   530     }
   531   } while (do_trans_retry);
   533   *bits |= 0x00000010;
   534   return false;
   535 }
   537 //
   538 // Wait for an external suspend request to complete (or be cancelled).
   539 // Returns true if the thread is externally suspended and false otherwise.
   540 //
   541 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   542        uint32_t *bits) {
   543   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   544                              false /* !called_by_wait */, bits);
   546   // local flag copies to minimize SR_lock hold time
   547   bool is_suspended;
   548   bool pending;
   549   uint32_t reset_bits;
   551   // set a marker so is_ext_suspend_completed() knows we are the caller
   552   *bits |= 0x00010000;
   554   // We use reset_bits to reinitialize the bits value at the top of
   555   // each retry loop. This allows the caller to make use of any
   556   // unused bits for their own marking purposes.
   557   reset_bits = *bits;
   559   {
   560     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   561     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   562                                             delay, bits);
   563     pending = is_external_suspend();
   564   }
   565   // must release SR_lock to allow suspension to complete
   567   if (!pending) {
   568     // A cancelled suspend request is the only false return from
   569     // is_ext_suspend_completed() that keeps us from entering the
   570     // retry loop.
   571     *bits |= 0x00020000;
   572     return false;
   573   }
   575   if (is_suspended) {
   576     *bits |= 0x00040000;
   577     return true;
   578   }
   580   for (int i = 1; i <= retries; i++) {
   581     *bits = reset_bits;  // reinit to only track last retry
   583     // We used to do an "os::yield_all(i)" call here with the intention
   584     // that yielding would increase on each retry. However, the parameter
   585     // is ignored on Linux which means the yield didn't scale up. Waiting
   586     // on the SR_lock below provides a much more predictable scale up for
   587     // the delay. It also provides a simple/direct point to check for any
   588     // safepoint requests from the VMThread
   590     {
   591       MutexLocker ml(SR_lock());
   592       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   593       // can also call this)  and increase delay with each retry
   594       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   596       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   597                                               delay, bits);
   599       // It is possible for the external suspend request to be cancelled
   600       // (by a resume) before the actual suspend operation is completed.
   601       // Refresh our local copy to see if we still need to wait.
   602       pending = is_external_suspend();
   603     }
   605     if (!pending) {
   606       // A cancelled suspend request is the only false return from
   607       // is_ext_suspend_completed() that keeps us from staying in the
   608       // retry loop.
   609       *bits |= 0x00080000;
   610       return false;
   611     }
   613     if (is_suspended) {
   614       *bits |= 0x00100000;
   615       return true;
   616     }
   617   } // end retry loop
   619   // thread did not suspend after all our retries
   620   *bits |= 0x00200000;
   621   return false;
   622 }
   624 #ifndef PRODUCT
   625 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   627   // This should not need to be atomic as the only way for simultaneous
   628   // updates is via interrupts. Even then this should be rare or non-existant
   629   // and we don't care that much anyway.
   631   int index = _jmp_ring_index;
   632   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   633   _jmp_ring[index]._target = (intptr_t) target;
   634   _jmp_ring[index]._instruction = (intptr_t) instr;
   635   _jmp_ring[index]._file = file;
   636   _jmp_ring[index]._line = line;
   637 }
   638 #endif /* PRODUCT */
   640 // Called by flat profiler
   641 // Callers have already called wait_for_ext_suspend_completion
   642 // The assertion for that is currently too complex to put here:
   643 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   644   bool gotframe = false;
   645   // self suspension saves needed state.
   646   if (has_last_Java_frame() && _anchor.walkable()) {
   647      *_fr = pd_last_frame();
   648      gotframe = true;
   649   }
   650   return gotframe;
   651 }
   653 void Thread::interrupt(Thread* thread) {
   654   trace("interrupt", thread);
   655   debug_only(check_for_dangling_thread_pointer(thread);)
   656   os::interrupt(thread);
   657 }
   659 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   660   trace("is_interrupted", thread);
   661   debug_only(check_for_dangling_thread_pointer(thread);)
   662   // Note:  If clear_interrupted==false, this simply fetches and
   663   // returns the value of the field osthread()->interrupted().
   664   return os::is_interrupted(thread, clear_interrupted);
   665 }
   668 // GC Support
   669 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   670   jint thread_parity = _oops_do_parity;
   671   if (thread_parity != strong_roots_parity) {
   672     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   673     if (res == thread_parity) return true;
   674     else {
   675       guarantee(res == strong_roots_parity, "Or else what?");
   676       assert(SharedHeap::heap()->n_par_threads() > 0,
   677              "Should only fail when parallel.");
   678       return false;
   679     }
   680   }
   681   assert(SharedHeap::heap()->n_par_threads() > 0,
   682          "Should only fail when parallel.");
   683   return false;
   684 }
   686 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   687   active_handles()->oops_do(f);
   688   // Do oop for ThreadShadow
   689   f->do_oop((oop*)&_pending_exception);
   690   handle_area()->oops_do(f);
   691 }
   693 void Thread::nmethods_do(CodeBlobClosure* cf) {
   694   // no nmethods in a generic thread...
   695 }
   697 void Thread::print_on(outputStream* st) const {
   698   // get_priority assumes osthread initialized
   699   if (osthread() != NULL) {
   700     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   701     osthread()->print_on(st);
   702   }
   703   debug_only(if (WizardMode) print_owned_locks_on(st);)
   704 }
   706 // Thread::print_on_error() is called by fatal error handler. Don't use
   707 // any lock or allocate memory.
   708 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   709   if      (is_VM_thread())                  st->print("VMThread");
   710   else if (is_Compiler_thread())            st->print("CompilerThread");
   711   else if (is_Java_thread())                st->print("JavaThread");
   712   else if (is_GC_task_thread())             st->print("GCTaskThread");
   713   else if (is_Watcher_thread())             st->print("WatcherThread");
   714   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   715   else st->print("Thread");
   717   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   718             _stack_base - _stack_size, _stack_base);
   720   if (osthread()) {
   721     st->print(" [id=%d]", osthread()->thread_id());
   722   }
   723 }
   725 #ifdef ASSERT
   726 void Thread::print_owned_locks_on(outputStream* st) const {
   727   Monitor *cur = _owned_locks;
   728   if (cur == NULL) {
   729     st->print(" (no locks) ");
   730   } else {
   731     st->print_cr(" Locks owned:");
   732     while(cur) {
   733       cur->print_on(st);
   734       cur = cur->next();
   735     }
   736   }
   737 }
   739 static int ref_use_count  = 0;
   741 bool Thread::owns_locks_but_compiled_lock() const {
   742   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   743     if (cur != Compile_lock) return true;
   744   }
   745   return false;
   746 }
   749 #endif
   751 #ifndef PRODUCT
   753 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   754 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   755 // no threads which allow_vm_block's are held
   756 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   757     // Check if current thread is allowed to block at a safepoint
   758     if (!(_allow_safepoint_count == 0))
   759       fatal("Possible safepoint reached by thread that does not allow it");
   760     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   761       fatal("LEAF method calling lock?");
   762     }
   764 #ifdef ASSERT
   765     if (potential_vm_operation && is_Java_thread()
   766         && !Universe::is_bootstrapping()) {
   767       // Make sure we do not hold any locks that the VM thread also uses.
   768       // This could potentially lead to deadlocks
   769       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   770         // Threads_lock is special, since the safepoint synchronization will not start before this is
   771         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   772         // since it is used to transfer control between JavaThreads and the VMThread
   773         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   774         if ( (cur->allow_vm_block() &&
   775               cur != Threads_lock &&
   776               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   777               cur != VMOperationRequest_lock &&
   778               cur != VMOperationQueue_lock) ||
   779               cur->rank() == Mutex::special) {
   780           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   781         }
   782       }
   783     }
   785     if (GCALotAtAllSafepoints) {
   786       // We could enter a safepoint here and thus have a gc
   787       InterfaceSupport::check_gc_alot();
   788     }
   789 #endif
   790 }
   791 #endif
   793 bool Thread::is_in_stack(address adr) const {
   794   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   795   address end = os::current_stack_pointer();
   796   if (stack_base() >= adr && adr >= end) return true;
   798   return false;
   799 }
   802 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   803 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   804 // used for compilation in the future. If that change is made, the need for these methods
   805 // should be revisited, and they should be removed if possible.
   807 bool Thread::is_lock_owned(address adr) const {
   808   return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
   809 }
   811 bool Thread::set_as_starting_thread() {
   812  // NOTE: this must be called inside the main thread.
   813   return os::create_main_thread((JavaThread*)this);
   814 }
   816 static void initialize_class(symbolHandle class_name, TRAPS) {
   817   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   818   instanceKlass::cast(klass)->initialize(CHECK);
   819 }
   822 // Creates the initial ThreadGroup
   823 static Handle create_initial_thread_group(TRAPS) {
   824   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   825   instanceKlassHandle klass (THREAD, k);
   827   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   828   {
   829     JavaValue result(T_VOID);
   830     JavaCalls::call_special(&result,
   831                             system_instance,
   832                             klass,
   833                             vmSymbolHandles::object_initializer_name(),
   834                             vmSymbolHandles::void_method_signature(),
   835                             CHECK_NH);
   836   }
   837   Universe::set_system_thread_group(system_instance());
   839   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   840   {
   841     JavaValue result(T_VOID);
   842     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   843     JavaCalls::call_special(&result,
   844                             main_instance,
   845                             klass,
   846                             vmSymbolHandles::object_initializer_name(),
   847                             vmSymbolHandles::threadgroup_string_void_signature(),
   848                             system_instance,
   849                             string,
   850                             CHECK_NH);
   851   }
   852   return main_instance;
   853 }
   855 // Creates the initial Thread
   856 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   857   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   858   instanceKlassHandle klass (THREAD, k);
   859   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   861   java_lang_Thread::set_thread(thread_oop(), thread);
   862   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   863   thread->set_threadObj(thread_oop());
   865   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   867   JavaValue result(T_VOID);
   868   JavaCalls::call_special(&result, thread_oop,
   869                                    klass,
   870                                    vmSymbolHandles::object_initializer_name(),
   871                                    vmSymbolHandles::threadgroup_string_void_signature(),
   872                                    thread_group,
   873                                    string,
   874                                    CHECK_NULL);
   875   return thread_oop();
   876 }
   878 static void call_initializeSystemClass(TRAPS) {
   879   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   880   instanceKlassHandle klass (THREAD, k);
   882   JavaValue result(T_VOID);
   883   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   884                                          vmSymbolHandles::void_method_signature(), CHECK);
   885 }
   887 static void reset_vm_info_property(TRAPS) {
   888   // the vm info string
   889   ResourceMark rm(THREAD);
   890   const char *vm_info = VM_Version::vm_info_string();
   892   // java.lang.System class
   893   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   894   instanceKlassHandle klass (THREAD, k);
   896   // setProperty arguments
   897   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   898   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   900   // return value
   901   JavaValue r(T_OBJECT);
   903   // public static String setProperty(String key, String value);
   904   JavaCalls::call_static(&r,
   905                          klass,
   906                          vmSymbolHandles::setProperty_name(),
   907                          vmSymbolHandles::string_string_string_signature(),
   908                          key_str,
   909                          value_str,
   910                          CHECK);
   911 }
   914 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
   915   assert(thread_group.not_null(), "thread group should be specified");
   916   assert(threadObj() == NULL, "should only create Java thread object once");
   918   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
   919   instanceKlassHandle klass (THREAD, k);
   920   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   922   java_lang_Thread::set_thread(thread_oop(), this);
   923   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   924   set_threadObj(thread_oop());
   926   JavaValue result(T_VOID);
   927   if (thread_name != NULL) {
   928     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
   929     // Thread gets assigned specified name and null target
   930     JavaCalls::call_special(&result,
   931                             thread_oop,
   932                             klass,
   933                             vmSymbolHandles::object_initializer_name(),
   934                             vmSymbolHandles::threadgroup_string_void_signature(),
   935                             thread_group, // Argument 1
   936                             name,         // Argument 2
   937                             THREAD);
   938   } else {
   939     // Thread gets assigned name "Thread-nnn" and null target
   940     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
   941     JavaCalls::call_special(&result,
   942                             thread_oop,
   943                             klass,
   944                             vmSymbolHandles::object_initializer_name(),
   945                             vmSymbolHandles::threadgroup_runnable_void_signature(),
   946                             thread_group, // Argument 1
   947                             Handle(),     // Argument 2
   948                             THREAD);
   949   }
   952   if (daemon) {
   953       java_lang_Thread::set_daemon(thread_oop());
   954   }
   956   if (HAS_PENDING_EXCEPTION) {
   957     return;
   958   }
   960   KlassHandle group(this, SystemDictionary::threadGroup_klass());
   961   Handle threadObj(this, this->threadObj());
   963   JavaCalls::call_special(&result,
   964                          thread_group,
   965                          group,
   966                          vmSymbolHandles::add_method_name(),
   967                          vmSymbolHandles::thread_void_signature(),
   968                          threadObj,          // Arg 1
   969                          THREAD);
   972 }
   974 // NamedThread --  non-JavaThread subclasses with multiple
   975 // uniquely named instances should derive from this.
   976 NamedThread::NamedThread() : Thread() {
   977   _name = NULL;
   978 }
   980 NamedThread::~NamedThread() {
   981   if (_name != NULL) {
   982     FREE_C_HEAP_ARRAY(char, _name);
   983     _name = NULL;
   984   }
   985 }
   987 void NamedThread::set_name(const char* format, ...) {
   988   guarantee(_name == NULL, "Only get to set name once.");
   989   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
   990   guarantee(_name != NULL, "alloc failure");
   991   va_list ap;
   992   va_start(ap, format);
   993   jio_vsnprintf(_name, max_name_len, format, ap);
   994   va_end(ap);
   995 }
   997 // ======= WatcherThread ========
   999 // The watcher thread exists to simulate timer interrupts.  It should
  1000 // be replaced by an abstraction over whatever native support for
  1001 // timer interrupts exists on the platform.
  1003 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1004 bool           WatcherThread::_should_terminate = false;
  1006 WatcherThread::WatcherThread() : Thread() {
  1007   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1008   if (os::create_thread(this, os::watcher_thread)) {
  1009     _watcher_thread = this;
  1011     // Set the watcher thread to the highest OS priority which should not be
  1012     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1013     // is created. The only normal thread using this priority is the reference
  1014     // handler thread, which runs for very short intervals only.
  1015     // If the VMThread's priority is not lower than the WatcherThread profiling
  1016     // will be inaccurate.
  1017     os::set_priority(this, MaxPriority);
  1018     if (!DisableStartThread) {
  1019       os::start_thread(this);
  1024 void WatcherThread::run() {
  1025   assert(this == watcher_thread(), "just checking");
  1027   this->record_stack_base_and_size();
  1028   this->initialize_thread_local_storage();
  1029   this->set_active_handles(JNIHandleBlock::allocate_block());
  1030   while(!_should_terminate) {
  1031     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1032     assert(watcher_thread() == this,  "thread consistency check");
  1034     // Calculate how long it'll be until the next PeriodicTask work
  1035     // should be done, and sleep that amount of time.
  1036     const size_t time_to_wait = PeriodicTask::time_to_wait();
  1037     os::sleep(this, time_to_wait, false);
  1039     if (is_error_reported()) {
  1040       // A fatal error has happened, the error handler(VMError::report_and_die)
  1041       // should abort JVM after creating an error log file. However in some
  1042       // rare cases, the error handler itself might deadlock. Here we try to
  1043       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1044       //
  1045       // This code is in WatcherThread because WatcherThread wakes up
  1046       // periodically so the fatal error handler doesn't need to do anything;
  1047       // also because the WatcherThread is less likely to crash than other
  1048       // threads.
  1050       for (;;) {
  1051         if (!ShowMessageBoxOnError
  1052          && (OnError == NULL || OnError[0] == '\0')
  1053          && Arguments::abort_hook() == NULL) {
  1054              os::sleep(this, 2 * 60 * 1000, false);
  1055              fdStream err(defaultStream::output_fd());
  1056              err.print_raw_cr("# [ timer expired, abort... ]");
  1057              // skip atexit/vm_exit/vm_abort hooks
  1058              os::die();
  1061         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1062         // ShowMessageBoxOnError when it is ready to abort.
  1063         os::sleep(this, 5 * 1000, false);
  1067     PeriodicTask::real_time_tick(time_to_wait);
  1069     // If we have no more tasks left due to dynamic disenrollment,
  1070     // shut down the thread since we don't currently support dynamic enrollment
  1071     if (PeriodicTask::num_tasks() == 0) {
  1072       _should_terminate = true;
  1076   // Signal that it is terminated
  1078     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1079     _watcher_thread = NULL;
  1080     Terminator_lock->notify();
  1083   // Thread destructor usually does this..
  1084   ThreadLocalStorage::set_thread(NULL);
  1087 void WatcherThread::start() {
  1088   if (watcher_thread() == NULL) {
  1089     _should_terminate = false;
  1090     // Create the single instance of WatcherThread
  1091     new WatcherThread();
  1095 void WatcherThread::stop() {
  1096   // it is ok to take late safepoints here, if needed
  1097   MutexLocker mu(Terminator_lock);
  1098   _should_terminate = true;
  1099   while(watcher_thread() != NULL) {
  1100     // This wait should make safepoint checks, wait without a timeout,
  1101     // and wait as a suspend-equivalent condition.
  1102     //
  1103     // Note: If the FlatProfiler is running, then this thread is waiting
  1104     // for the WatcherThread to terminate and the WatcherThread, via the
  1105     // FlatProfiler task, is waiting for the external suspend request on
  1106     // this thread to complete. wait_for_ext_suspend_completion() will
  1107     // eventually timeout, but that takes time. Making this wait a
  1108     // suspend-equivalent condition solves that timeout problem.
  1109     //
  1110     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1111                           Mutex::_as_suspend_equivalent_flag);
  1115 void WatcherThread::print_on(outputStream* st) const {
  1116   st->print("\"%s\" ", name());
  1117   Thread::print_on(st);
  1118   st->cr();
  1121 // ======= JavaThread ========
  1123 // A JavaThread is a normal Java thread
  1125 void JavaThread::initialize() {
  1126   // Initialize fields
  1128   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1129   set_claimed_par_id(-1);
  1131   set_saved_exception_pc(NULL);
  1132   set_threadObj(NULL);
  1133   _anchor.clear();
  1134   set_entry_point(NULL);
  1135   set_jni_functions(jni_functions());
  1136   set_callee_target(NULL);
  1137   set_vm_result(NULL);
  1138   set_vm_result_2(NULL);
  1139   set_vframe_array_head(NULL);
  1140   set_vframe_array_last(NULL);
  1141   set_deferred_locals(NULL);
  1142   set_deopt_mark(NULL);
  1143   clear_must_deopt_id();
  1144   set_monitor_chunks(NULL);
  1145   set_next(NULL);
  1146   set_thread_state(_thread_new);
  1147   _terminated = _not_terminated;
  1148   _privileged_stack_top = NULL;
  1149   _array_for_gc = NULL;
  1150   _suspend_equivalent = false;
  1151   _in_deopt_handler = 0;
  1152   _doing_unsafe_access = false;
  1153   _stack_guard_state = stack_guard_unused;
  1154   _exception_oop = NULL;
  1155   _exception_pc  = 0;
  1156   _exception_handler_pc = 0;
  1157   _exception_stack_size = 0;
  1158   _jvmti_thread_state= NULL;
  1159   _jvmti_get_loaded_classes_closure = NULL;
  1160   _interp_only_mode    = 0;
  1161   _special_runtime_exit_condition = _no_async_condition;
  1162   _pending_async_exception = NULL;
  1163   _is_compiling = false;
  1164   _thread_stat = NULL;
  1165   _thread_stat = new ThreadStatistics();
  1166   _blocked_on_compilation = false;
  1167   _jni_active_critical = 0;
  1168   _do_not_unlock_if_synchronized = false;
  1169   _cached_monitor_info = NULL;
  1170   _parker = Parker::Allocate(this) ;
  1172 #ifndef PRODUCT
  1173   _jmp_ring_index = 0;
  1174   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1175     record_jump(NULL, NULL, NULL, 0);
  1177 #endif /* PRODUCT */
  1179   set_thread_profiler(NULL);
  1180   if (FlatProfiler::is_active()) {
  1181     // This is where we would decide to either give each thread it's own profiler
  1182     // or use one global one from FlatProfiler,
  1183     // or up to some count of the number of profiled threads, etc.
  1184     ThreadProfiler* pp = new ThreadProfiler();
  1185     pp->engage();
  1186     set_thread_profiler(pp);
  1189   // Setup safepoint state info for this thread
  1190   ThreadSafepointState::create(this);
  1192   debug_only(_java_call_counter = 0);
  1194   // JVMTI PopFrame support
  1195   _popframe_condition = popframe_inactive;
  1196   _popframe_preserved_args = NULL;
  1197   _popframe_preserved_args_size = 0;
  1199   pd_initialize();
  1202 #ifndef SERIALGC
  1203 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1204 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1205 #endif // !SERIALGC
  1207 JavaThread::JavaThread(bool is_attaching) :
  1208   Thread()
  1209 #ifndef SERIALGC
  1210   , _satb_mark_queue(&_satb_mark_queue_set),
  1211   _dirty_card_queue(&_dirty_card_queue_set)
  1212 #endif // !SERIALGC
  1214   initialize();
  1215   _is_attaching = is_attaching;
  1216   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1219 bool JavaThread::reguard_stack(address cur_sp) {
  1220   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1221     return true; // Stack already guarded or guard pages not needed.
  1224   if (register_stack_overflow()) {
  1225     // For those architectures which have separate register and
  1226     // memory stacks, we must check the register stack to see if
  1227     // it has overflowed.
  1228     return false;
  1231   // Java code never executes within the yellow zone: the latter is only
  1232   // there to provoke an exception during stack banging.  If java code
  1233   // is executing there, either StackShadowPages should be larger, or
  1234   // some exception code in c1, c2 or the interpreter isn't unwinding
  1235   // when it should.
  1236   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1238   enable_stack_yellow_zone();
  1239   return true;
  1242 bool JavaThread::reguard_stack(void) {
  1243   return reguard_stack(os::current_stack_pointer());
  1247 void JavaThread::block_if_vm_exited() {
  1248   if (_terminated == _vm_exited) {
  1249     // _vm_exited is set at safepoint, and Threads_lock is never released
  1250     // we will block here forever
  1251     Threads_lock->lock_without_safepoint_check();
  1252     ShouldNotReachHere();
  1257 // Remove this ifdef when C1 is ported to the compiler interface.
  1258 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1260 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1261   Thread()
  1262 #ifndef SERIALGC
  1263   , _satb_mark_queue(&_satb_mark_queue_set),
  1264   _dirty_card_queue(&_dirty_card_queue_set)
  1265 #endif // !SERIALGC
  1267   if (TraceThreadEvents) {
  1268     tty->print_cr("creating thread %p", this);
  1270   initialize();
  1271   _is_attaching = false;
  1272   set_entry_point(entry_point);
  1273   // Create the native thread itself.
  1274   // %note runtime_23
  1275   os::ThreadType thr_type = os::java_thread;
  1276   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1277                                                      os::java_thread;
  1278   os::create_thread(this, thr_type, stack_sz);
  1280   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1281   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1282   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1283   // the exception consists of creating the exception object & initializing it, initialization
  1284   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1285   //
  1286   // The thread is still suspended when we reach here. Thread must be explicit started
  1287   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1288   // by calling Threads:add. The reason why this is not done here, is because the thread
  1289   // object must be fully initialized (take a look at JVM_Start)
  1292 JavaThread::~JavaThread() {
  1293   if (TraceThreadEvents) {
  1294       tty->print_cr("terminate thread %p", this);
  1297   // JSR166 -- return the parker to the free list
  1298   Parker::Release(_parker);
  1299   _parker = NULL ;
  1301   // Free any remaining  previous UnrollBlock
  1302   vframeArray* old_array = vframe_array_last();
  1304   if (old_array != NULL) {
  1305     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1306     old_array->set_unroll_block(NULL);
  1307     delete old_info;
  1308     delete old_array;
  1311   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1312   if (deferred != NULL) {
  1313     // This can only happen if thread is destroyed before deoptimization occurs.
  1314     assert(deferred->length() != 0, "empty array!");
  1315     do {
  1316       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1317       deferred->remove_at(0);
  1318       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1319       delete dlv;
  1320     } while (deferred->length() != 0);
  1321     delete deferred;
  1324   // All Java related clean up happens in exit
  1325   ThreadSafepointState::destroy(this);
  1326   if (_thread_profiler != NULL) delete _thread_profiler;
  1327   if (_thread_stat != NULL) delete _thread_stat;
  1331 // The first routine called by a new Java thread
  1332 void JavaThread::run() {
  1333   // initialize thread-local alloc buffer related fields
  1334   this->initialize_tlab();
  1336   // used to test validitity of stack trace backs
  1337   this->record_base_of_stack_pointer();
  1339   // Record real stack base and size.
  1340   this->record_stack_base_and_size();
  1342   // Initialize thread local storage; set before calling MutexLocker
  1343   this->initialize_thread_local_storage();
  1345   this->create_stack_guard_pages();
  1347   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1348   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1349   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1351   assert(JavaThread::current() == this, "sanity check");
  1352   assert(!Thread::current()->owns_locks(), "sanity check");
  1354   DTRACE_THREAD_PROBE(start, this);
  1356   // This operation might block. We call that after all safepoint checks for a new thread has
  1357   // been completed.
  1358   this->set_active_handles(JNIHandleBlock::allocate_block());
  1360   if (JvmtiExport::should_post_thread_life()) {
  1361     JvmtiExport::post_thread_start(this);
  1364   // We call another function to do the rest so we are sure that the stack addresses used
  1365   // from there will be lower than the stack base just computed
  1366   thread_main_inner();
  1368   // Note, thread is no longer valid at this point!
  1372 void JavaThread::thread_main_inner() {
  1373   assert(JavaThread::current() == this, "sanity check");
  1374   assert(this->threadObj() != NULL, "just checking");
  1376   // Execute thread entry point. If this thread is being asked to restart,
  1377   // or has been stopped before starting, do not reexecute entry point.
  1378   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1379   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1380     // enter the thread's entry point only if we have no pending exceptions
  1381     HandleMark hm(this);
  1382     this->entry_point()(this, this);
  1385   DTRACE_THREAD_PROBE(stop, this);
  1387   this->exit(false);
  1388   delete this;
  1392 static void ensure_join(JavaThread* thread) {
  1393   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1394   Handle threadObj(thread, thread->threadObj());
  1395   assert(threadObj.not_null(), "java thread object must exist");
  1396   ObjectLocker lock(threadObj, thread);
  1397   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1398   thread->clear_pending_exception();
  1399   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1400   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1401   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1402   // is dead when it gets notified.
  1403   java_lang_Thread::set_stillborn(threadObj());
  1404   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1405   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1406   java_lang_Thread::set_thread(threadObj(), NULL);
  1407   lock.notify_all(thread);
  1408   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1409   thread->clear_pending_exception();
  1413 // For any new cleanup additions, please check to see if they need to be applied to
  1414 // cleanup_failed_attach_current_thread as well.
  1415 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1416   assert(this == JavaThread::current(),  "thread consistency check");
  1417   if (!InitializeJavaLangSystem) return;
  1419   HandleMark hm(this);
  1420   Handle uncaught_exception(this, this->pending_exception());
  1421   this->clear_pending_exception();
  1422   Handle threadObj(this, this->threadObj());
  1423   assert(threadObj.not_null(), "Java thread object should be created");
  1425   if (get_thread_profiler() != NULL) {
  1426     get_thread_profiler()->disengage();
  1427     ResourceMark rm;
  1428     get_thread_profiler()->print(get_thread_name());
  1432   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1434     EXCEPTION_MARK;
  1436     CLEAR_PENDING_EXCEPTION;
  1438   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1439   // has to be fixed by a runtime query method
  1440   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1441     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1442     // java.lang.Thread.dispatchUncaughtException
  1443     if (uncaught_exception.not_null()) {
  1444       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1445       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1446         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1448         EXCEPTION_MARK;
  1449         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1450         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1451         // so call ThreadGroup.uncaughtException()
  1452         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1453         CallInfo callinfo;
  1454         KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
  1455         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1456                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1457                                            vmSymbolHandles::throwable_void_signature(),
  1458                                            KlassHandle(), false, false, THREAD);
  1459         CLEAR_PENDING_EXCEPTION;
  1460         methodHandle method = callinfo.selected_method();
  1461         if (method.not_null()) {
  1462           JavaValue result(T_VOID);
  1463           JavaCalls::call_virtual(&result,
  1464                                   threadObj, thread_klass,
  1465                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1466                                   vmSymbolHandles::throwable_void_signature(),
  1467                                   uncaught_exception,
  1468                                   THREAD);
  1469         } else {
  1470           KlassHandle thread_group(THREAD, SystemDictionary::threadGroup_klass());
  1471           JavaValue result(T_VOID);
  1472           JavaCalls::call_virtual(&result,
  1473                                   group, thread_group,
  1474                                   vmSymbolHandles::uncaughtException_name(),
  1475                                   vmSymbolHandles::thread_throwable_void_signature(),
  1476                                   threadObj,           // Arg 1
  1477                                   uncaught_exception,  // Arg 2
  1478                                   THREAD);
  1480         CLEAR_PENDING_EXCEPTION;
  1484     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1485     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1486     // is deprecated anyhow.
  1487     { int count = 3;
  1488       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1489         EXCEPTION_MARK;
  1490         JavaValue result(T_VOID);
  1491         KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
  1492         JavaCalls::call_virtual(&result,
  1493                               threadObj, thread_klass,
  1494                               vmSymbolHandles::exit_method_name(),
  1495                               vmSymbolHandles::void_method_signature(),
  1496                               THREAD);
  1497         CLEAR_PENDING_EXCEPTION;
  1501     // notify JVMTI
  1502     if (JvmtiExport::should_post_thread_life()) {
  1503       JvmtiExport::post_thread_end(this);
  1506     // We have notified the agents that we are exiting, before we go on,
  1507     // we must check for a pending external suspend request and honor it
  1508     // in order to not surprise the thread that made the suspend request.
  1509     while (true) {
  1511         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1512         if (!is_external_suspend()) {
  1513           set_terminated(_thread_exiting);
  1514           ThreadService::current_thread_exiting(this);
  1515           break;
  1517         // Implied else:
  1518         // Things get a little tricky here. We have a pending external
  1519         // suspend request, but we are holding the SR_lock so we
  1520         // can't just self-suspend. So we temporarily drop the lock
  1521         // and then self-suspend.
  1524       ThreadBlockInVM tbivm(this);
  1525       java_suspend_self();
  1527       // We're done with this suspend request, but we have to loop around
  1528       // and check again. Eventually we will get SR_lock without a pending
  1529       // external suspend request and will be able to mark ourselves as
  1530       // exiting.
  1532     // no more external suspends are allowed at this point
  1533   } else {
  1534     // before_exit() has already posted JVMTI THREAD_END events
  1537   // Notify waiters on thread object. This has to be done after exit() is called
  1538   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1539   // group should have the destroyed bit set before waiters are notified).
  1540   ensure_join(this);
  1541   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1543   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1544   // held by this thread must be released.  A detach operation must only
  1545   // get here if there are no Java frames on the stack.  Therefore, any
  1546   // owned monitors at this point MUST be JNI-acquired monitors which are
  1547   // pre-inflated and in the monitor cache.
  1548   //
  1549   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1550   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1551     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1552     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1553     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1556   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1557   // is in a consistent state, in case GC happens
  1558   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1560   if (active_handles() != NULL) {
  1561     JNIHandleBlock* block = active_handles();
  1562     set_active_handles(NULL);
  1563     JNIHandleBlock::release_block(block);
  1566   if (free_handle_block() != NULL) {
  1567     JNIHandleBlock* block = free_handle_block();
  1568     set_free_handle_block(NULL);
  1569     JNIHandleBlock::release_block(block);
  1572   // These have to be removed while this is still a valid thread.
  1573   remove_stack_guard_pages();
  1575   if (UseTLAB) {
  1576     tlab().make_parsable(true);  // retire TLAB
  1579   if (jvmti_thread_state() != NULL) {
  1580     JvmtiExport::cleanup_thread(this);
  1583 #ifndef SERIALGC
  1584   // We must flush G1-related buffers before removing a thread from
  1585   // the list of active threads.
  1586   if (UseG1GC) {
  1587     flush_barrier_queues();
  1589 #endif
  1591   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1592   Threads::remove(this);
  1595 #ifndef SERIALGC
  1596 // Flush G1-related queues.
  1597 void JavaThread::flush_barrier_queues() {
  1598   satb_mark_queue().flush();
  1599   dirty_card_queue().flush();
  1601 #endif
  1603 void JavaThread::cleanup_failed_attach_current_thread() {
  1604   if (get_thread_profiler() != NULL) {
  1605     get_thread_profiler()->disengage();
  1606     ResourceMark rm;
  1607     get_thread_profiler()->print(get_thread_name());
  1610   if (active_handles() != NULL) {
  1611     JNIHandleBlock* block = active_handles();
  1612     set_active_handles(NULL);
  1613     JNIHandleBlock::release_block(block);
  1616   if (free_handle_block() != NULL) {
  1617     JNIHandleBlock* block = free_handle_block();
  1618     set_free_handle_block(NULL);
  1619     JNIHandleBlock::release_block(block);
  1622   if (UseTLAB) {
  1623     tlab().make_parsable(true);  // retire TLAB, if any
  1626 #ifndef SERIALGC
  1627   if (UseG1GC) {
  1628     flush_barrier_queues();
  1630 #endif
  1632   Threads::remove(this);
  1633   delete this;
  1639 JavaThread* JavaThread::active() {
  1640   Thread* thread = ThreadLocalStorage::thread();
  1641   assert(thread != NULL, "just checking");
  1642   if (thread->is_Java_thread()) {
  1643     return (JavaThread*) thread;
  1644   } else {
  1645     assert(thread->is_VM_thread(), "this must be a vm thread");
  1646     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1647     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1648     assert(ret->is_Java_thread(), "must be a Java thread");
  1649     return ret;
  1653 bool JavaThread::is_lock_owned(address adr) const {
  1654   if (Thread::is_lock_owned(adr)) return true;
  1656   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1657     if (chunk->contains(adr)) return true;
  1660   return false;
  1664 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1665   chunk->set_next(monitor_chunks());
  1666   set_monitor_chunks(chunk);
  1669 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1670   guarantee(monitor_chunks() != NULL, "must be non empty");
  1671   if (monitor_chunks() == chunk) {
  1672     set_monitor_chunks(chunk->next());
  1673   } else {
  1674     MonitorChunk* prev = monitor_chunks();
  1675     while (prev->next() != chunk) prev = prev->next();
  1676     prev->set_next(chunk->next());
  1680 // JVM support.
  1682 // Note: this function shouldn't block if it's called in
  1683 // _thread_in_native_trans state (such as from
  1684 // check_special_condition_for_native_trans()).
  1685 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1687   if (has_last_Java_frame() && has_async_condition()) {
  1688     // If we are at a polling page safepoint (not a poll return)
  1689     // then we must defer async exception because live registers
  1690     // will be clobbered by the exception path. Poll return is
  1691     // ok because the call we a returning from already collides
  1692     // with exception handling registers and so there is no issue.
  1693     // (The exception handling path kills call result registers but
  1694     //  this is ok since the exception kills the result anyway).
  1696     if (is_at_poll_safepoint()) {
  1697       // if the code we are returning to has deoptimized we must defer
  1698       // the exception otherwise live registers get clobbered on the
  1699       // exception path before deoptimization is able to retrieve them.
  1700       //
  1701       RegisterMap map(this, false);
  1702       frame caller_fr = last_frame().sender(&map);
  1703       assert(caller_fr.is_compiled_frame(), "what?");
  1704       if (caller_fr.is_deoptimized_frame()) {
  1705         if (TraceExceptions) {
  1706           ResourceMark rm;
  1707           tty->print_cr("deferred async exception at compiled safepoint");
  1709         return;
  1714   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1715   if (condition == _no_async_condition) {
  1716     // Conditions have changed since has_special_runtime_exit_condition()
  1717     // was called:
  1718     // - if we were here only because of an external suspend request,
  1719     //   then that was taken care of above (or cancelled) so we are done
  1720     // - if we were here because of another async request, then it has
  1721     //   been cleared between the has_special_runtime_exit_condition()
  1722     //   and now so again we are done
  1723     return;
  1726   // Check for pending async. exception
  1727   if (_pending_async_exception != NULL) {
  1728     // Only overwrite an already pending exception, if it is not a threadDeath.
  1729     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::threaddeath_klass())) {
  1731       // We cannot call Exceptions::_throw(...) here because we cannot block
  1732       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1734       if (TraceExceptions) {
  1735         ResourceMark rm;
  1736         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1737         if (has_last_Java_frame() ) {
  1738           frame f = last_frame();
  1739           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1741         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1743       _pending_async_exception = NULL;
  1744       clear_has_async_exception();
  1748   if (check_unsafe_error &&
  1749       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1750     condition = _no_async_condition;  // done
  1751     switch (thread_state()) {
  1752     case _thread_in_vm:
  1754         JavaThread* THREAD = this;
  1755         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1757     case _thread_in_native:
  1759         ThreadInVMfromNative tiv(this);
  1760         JavaThread* THREAD = this;
  1761         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1763     case _thread_in_Java:
  1765         ThreadInVMfromJava tiv(this);
  1766         JavaThread* THREAD = this;
  1767         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1769     default:
  1770       ShouldNotReachHere();
  1774   assert(condition == _no_async_condition || has_pending_exception() ||
  1775          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1776          "must have handled the async condition, if no exception");
  1779 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1780   //
  1781   // Check for pending external suspend. Internal suspend requests do
  1782   // not use handle_special_runtime_exit_condition().
  1783   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1784   // thread is not the current thread. In older versions of jdbx, jdbx
  1785   // threads could call into the VM with another thread's JNIEnv so we
  1786   // can be here operating on behalf of a suspended thread (4432884).
  1787   bool do_self_suspend = is_external_suspend_with_lock();
  1788   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1789     //
  1790     // Because thread is external suspended the safepoint code will count
  1791     // thread as at a safepoint. This can be odd because we can be here
  1792     // as _thread_in_Java which would normally transition to _thread_blocked
  1793     // at a safepoint. We would like to mark the thread as _thread_blocked
  1794     // before calling java_suspend_self like all other callers of it but
  1795     // we must then observe proper safepoint protocol. (We can't leave
  1796     // _thread_blocked with a safepoint in progress). However we can be
  1797     // here as _thread_in_native_trans so we can't use a normal transition
  1798     // constructor/destructor pair because they assert on that type of
  1799     // transition. We could do something like:
  1800     //
  1801     // JavaThreadState state = thread_state();
  1802     // set_thread_state(_thread_in_vm);
  1803     // {
  1804     //   ThreadBlockInVM tbivm(this);
  1805     //   java_suspend_self()
  1806     // }
  1807     // set_thread_state(_thread_in_vm_trans);
  1808     // if (safepoint) block;
  1809     // set_thread_state(state);
  1810     //
  1811     // but that is pretty messy. Instead we just go with the way the
  1812     // code has worked before and note that this is the only path to
  1813     // java_suspend_self that doesn't put the thread in _thread_blocked
  1814     // mode.
  1816     frame_anchor()->make_walkable(this);
  1817     java_suspend_self();
  1819     // We might be here for reasons in addition to the self-suspend request
  1820     // so check for other async requests.
  1823   if (check_asyncs) {
  1824     check_and_handle_async_exceptions();
  1828 void JavaThread::send_thread_stop(oop java_throwable)  {
  1829   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1830   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1831   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1833   // Do not throw asynchronous exceptions against the compiler thread
  1834   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1835   if (is_Compiler_thread()) return;
  1837   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  1838   if (java_throwable->is_a(SystemDictionary::threaddeath_klass())) {
  1839     java_lang_Thread::set_stillborn(threadObj());
  1843     // Actually throw the Throwable against the target Thread - however
  1844     // only if there is no thread death exception installed already.
  1845     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::threaddeath_klass())) {
  1846       // If the topmost frame is a runtime stub, then we are calling into
  1847       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1848       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1849       // may not be valid
  1850       if (has_last_Java_frame()) {
  1851         frame f = last_frame();
  1852         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  1853           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  1854           RegisterMap reg_map(this, UseBiasedLocking);
  1855           frame compiled_frame = f.sender(&reg_map);
  1856           if (compiled_frame.can_be_deoptimized()) {
  1857             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  1862       // Set async. pending exception in thread.
  1863       set_pending_async_exception(java_throwable);
  1865       if (TraceExceptions) {
  1866        ResourceMark rm;
  1867        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1869       // for AbortVMOnException flag
  1870       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  1875   // Interrupt thread so it will wake up from a potential wait()
  1876   Thread::interrupt(this);
  1879 // External suspension mechanism.
  1880 //
  1881 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  1882 // to any VM_locks and it is at a transition
  1883 // Self-suspension will happen on the transition out of the vm.
  1884 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  1885 //
  1886 // Guarantees on return:
  1887 //   + Target thread will not execute any new bytecode (that's why we need to
  1888 //     force a safepoint)
  1889 //   + Target thread will not enter any new monitors
  1890 //
  1891 void JavaThread::java_suspend() {
  1892   { MutexLocker mu(Threads_lock);
  1893     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  1894        return;
  1898   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1899     if (!is_external_suspend()) {
  1900       // a racing resume has cancelled us; bail out now
  1901       return;
  1904     // suspend is done
  1905     uint32_t debug_bits = 0;
  1906     // Warning: is_ext_suspend_completed() may temporarily drop the
  1907     // SR_lock to allow the thread to reach a stable thread state if
  1908     // it is currently in a transient thread state.
  1909     if (is_ext_suspend_completed(false /* !called_by_wait */,
  1910                                  SuspendRetryDelay, &debug_bits) ) {
  1911       return;
  1915   VM_ForceSafepoint vm_suspend;
  1916   VMThread::execute(&vm_suspend);
  1919 // Part II of external suspension.
  1920 // A JavaThread self suspends when it detects a pending external suspend
  1921 // request. This is usually on transitions. It is also done in places
  1922 // where continuing to the next transition would surprise the caller,
  1923 // e.g., monitor entry.
  1924 //
  1925 // Returns the number of times that the thread self-suspended.
  1926 //
  1927 // Note: DO NOT call java_suspend_self() when you just want to block current
  1928 //       thread. java_suspend_self() is the second stage of cooperative
  1929 //       suspension for external suspend requests and should only be used
  1930 //       to complete an external suspend request.
  1931 //
  1932 int JavaThread::java_suspend_self() {
  1933   int ret = 0;
  1935   // we are in the process of exiting so don't suspend
  1936   if (is_exiting()) {
  1937      clear_external_suspend();
  1938      return ret;
  1941   assert(_anchor.walkable() ||
  1942     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  1943     "must have walkable stack");
  1945   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1947   assert(!this->is_ext_suspended(),
  1948     "a thread trying to self-suspend should not already be suspended");
  1950   if (this->is_suspend_equivalent()) {
  1951     // If we are self-suspending as a result of the lifting of a
  1952     // suspend equivalent condition, then the suspend_equivalent
  1953     // flag is not cleared until we set the ext_suspended flag so
  1954     // that wait_for_ext_suspend_completion() returns consistent
  1955     // results.
  1956     this->clear_suspend_equivalent();
  1959   // A racing resume may have cancelled us before we grabbed SR_lock
  1960   // above. Or another external suspend request could be waiting for us
  1961   // by the time we return from SR_lock()->wait(). The thread
  1962   // that requested the suspension may already be trying to walk our
  1963   // stack and if we return now, we can change the stack out from under
  1964   // it. This would be a "bad thing (TM)" and cause the stack walker
  1965   // to crash. We stay self-suspended until there are no more pending
  1966   // external suspend requests.
  1967   while (is_external_suspend()) {
  1968     ret++;
  1969     this->set_ext_suspended();
  1971     // _ext_suspended flag is cleared by java_resume()
  1972     while (is_ext_suspended()) {
  1973       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  1977   return ret;
  1980 #ifdef ASSERT
  1981 // verify the JavaThread has not yet been published in the Threads::list, and
  1982 // hence doesn't need protection from concurrent access at this stage
  1983 void JavaThread::verify_not_published() {
  1984   if (!Threads_lock->owned_by_self()) {
  1985    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  1986    assert( !Threads::includes(this),
  1987            "java thread shouldn't have been published yet!");
  1989   else {
  1990    assert( !Threads::includes(this),
  1991            "java thread shouldn't have been published yet!");
  1994 #endif
  1996 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  1997 // progress or when _suspend_flags is non-zero.
  1998 // Current thread needs to self-suspend if there is a suspend request and/or
  1999 // block if a safepoint is in progress.
  2000 // Async exception ISN'T checked.
  2001 // Note only the ThreadInVMfromNative transition can call this function
  2002 // directly and when thread state is _thread_in_native_trans
  2003 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2004   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2006   JavaThread *curJT = JavaThread::current();
  2007   bool do_self_suspend = thread->is_external_suspend();
  2009   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2011   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2012   // thread is not the current thread. In older versions of jdbx, jdbx
  2013   // threads could call into the VM with another thread's JNIEnv so we
  2014   // can be here operating on behalf of a suspended thread (4432884).
  2015   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2016     JavaThreadState state = thread->thread_state();
  2018     // We mark this thread_blocked state as a suspend-equivalent so
  2019     // that a caller to is_ext_suspend_completed() won't be confused.
  2020     // The suspend-equivalent state is cleared by java_suspend_self().
  2021     thread->set_suspend_equivalent();
  2023     // If the safepoint code sees the _thread_in_native_trans state, it will
  2024     // wait until the thread changes to other thread state. There is no
  2025     // guarantee on how soon we can obtain the SR_lock and complete the
  2026     // self-suspend request. It would be a bad idea to let safepoint wait for
  2027     // too long. Temporarily change the state to _thread_blocked to
  2028     // let the VM thread know that this thread is ready for GC. The problem
  2029     // of changing thread state is that safepoint could happen just after
  2030     // java_suspend_self() returns after being resumed, and VM thread will
  2031     // see the _thread_blocked state. We must check for safepoint
  2032     // after restoring the state and make sure we won't leave while a safepoint
  2033     // is in progress.
  2034     thread->set_thread_state(_thread_blocked);
  2035     thread->java_suspend_self();
  2036     thread->set_thread_state(state);
  2037     // Make sure new state is seen by VM thread
  2038     if (os::is_MP()) {
  2039       if (UseMembar) {
  2040         // Force a fence between the write above and read below
  2041         OrderAccess::fence();
  2042       } else {
  2043         // Must use this rather than serialization page in particular on Windows
  2044         InterfaceSupport::serialize_memory(thread);
  2049   if (SafepointSynchronize::do_call_back()) {
  2050     // If we are safepointing, then block the caller which may not be
  2051     // the same as the target thread (see above).
  2052     SafepointSynchronize::block(curJT);
  2055   if (thread->is_deopt_suspend()) {
  2056     thread->clear_deopt_suspend();
  2057     RegisterMap map(thread, false);
  2058     frame f = thread->last_frame();
  2059     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2060       f = f.sender(&map);
  2062     if (f.id() == thread->must_deopt_id()) {
  2063       thread->clear_must_deopt_id();
  2064       // Since we know we're safe to deopt the current state is a safe state
  2065       f.deoptimize(thread, true);
  2066     } else {
  2067       fatal("missed deoptimization!");
  2072 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2073 // progress or when _suspend_flags is non-zero.
  2074 // Current thread needs to self-suspend if there is a suspend request and/or
  2075 // block if a safepoint is in progress.
  2076 // Also check for pending async exception (not including unsafe access error).
  2077 // Note only the native==>VM/Java barriers can call this function and when
  2078 // thread state is _thread_in_native_trans.
  2079 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2080   check_safepoint_and_suspend_for_native_trans(thread);
  2082   if (thread->has_async_exception()) {
  2083     // We are in _thread_in_native_trans state, don't handle unsafe
  2084     // access error since that may block.
  2085     thread->check_and_handle_async_exceptions(false);
  2089 // We need to guarantee the Threads_lock here, since resumes are not
  2090 // allowed during safepoint synchronization
  2091 // Can only resume from an external suspension
  2092 void JavaThread::java_resume() {
  2093   assert_locked_or_safepoint(Threads_lock);
  2095   // Sanity check: thread is gone, has started exiting or the thread
  2096   // was not externally suspended.
  2097   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2098     return;
  2101   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2103   clear_external_suspend();
  2105   if (is_ext_suspended()) {
  2106     clear_ext_suspended();
  2107     SR_lock()->notify_all();
  2111 void JavaThread::create_stack_guard_pages() {
  2112   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2113   address low_addr = stack_base() - stack_size();
  2114   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2116   int allocate = os::allocate_stack_guard_pages();
  2117   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2119   if (allocate && !os::commit_memory((char *) low_addr, len)) {
  2120     warning("Attempt to allocate stack guard pages failed.");
  2121     return;
  2124   if (os::guard_memory((char *) low_addr, len)) {
  2125     _stack_guard_state = stack_guard_enabled;
  2126   } else {
  2127     warning("Attempt to protect stack guard pages failed.");
  2128     if (os::uncommit_memory((char *) low_addr, len)) {
  2129       warning("Attempt to deallocate stack guard pages failed.");
  2134 void JavaThread::remove_stack_guard_pages() {
  2135   if (_stack_guard_state == stack_guard_unused) return;
  2136   address low_addr = stack_base() - stack_size();
  2137   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2139   if (os::allocate_stack_guard_pages()) {
  2140     if (os::uncommit_memory((char *) low_addr, len)) {
  2141       _stack_guard_state = stack_guard_unused;
  2142     } else {
  2143       warning("Attempt to deallocate stack guard pages failed.");
  2145   } else {
  2146     if (_stack_guard_state == stack_guard_unused) return;
  2147     if (os::unguard_memory((char *) low_addr, len)) {
  2148       _stack_guard_state = stack_guard_unused;
  2149     } else {
  2150         warning("Attempt to unprotect stack guard pages failed.");
  2155 void JavaThread::enable_stack_yellow_zone() {
  2156   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2157   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2159   // The base notation is from the stacks point of view, growing downward.
  2160   // We need to adjust it to work correctly with guard_memory()
  2161   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2163   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2164   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2166   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2167     _stack_guard_state = stack_guard_enabled;
  2168   } else {
  2169     warning("Attempt to guard stack yellow zone failed.");
  2171   enable_register_stack_guard();
  2174 void JavaThread::disable_stack_yellow_zone() {
  2175   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2176   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2178   // Simply return if called for a thread that does not use guard pages.
  2179   if (_stack_guard_state == stack_guard_unused) return;
  2181   // The base notation is from the stacks point of view, growing downward.
  2182   // We need to adjust it to work correctly with guard_memory()
  2183   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2185   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2186     _stack_guard_state = stack_guard_yellow_disabled;
  2187   } else {
  2188     warning("Attempt to unguard stack yellow zone failed.");
  2190   disable_register_stack_guard();
  2193 void JavaThread::enable_stack_red_zone() {
  2194   // The base notation is from the stacks point of view, growing downward.
  2195   // We need to adjust it to work correctly with guard_memory()
  2196   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2197   address base = stack_red_zone_base() - stack_red_zone_size();
  2199   guarantee(base < stack_base(),"Error calculating stack red zone");
  2200   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2202   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2203     warning("Attempt to guard stack red zone failed.");
  2207 void JavaThread::disable_stack_red_zone() {
  2208   // The base notation is from the stacks point of view, growing downward.
  2209   // We need to adjust it to work correctly with guard_memory()
  2210   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2211   address base = stack_red_zone_base() - stack_red_zone_size();
  2212   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2213     warning("Attempt to unguard stack red zone failed.");
  2217 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2218   // ignore is there is no stack
  2219   if (!has_last_Java_frame()) return;
  2220   // traverse the stack frames. Starts from top frame.
  2221   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2222     frame* fr = fst.current();
  2223     f(fr, fst.register_map());
  2228 #ifndef PRODUCT
  2229 // Deoptimization
  2230 // Function for testing deoptimization
  2231 void JavaThread::deoptimize() {
  2232   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2233   StackFrameStream fst(this, UseBiasedLocking);
  2234   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2235   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2236   // Iterate over all frames in the thread and deoptimize
  2237   for(; !fst.is_done(); fst.next()) {
  2238     if(fst.current()->can_be_deoptimized()) {
  2240       if (only_at) {
  2241         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2242         // consists of comma or carriage return separated numbers so
  2243         // search for the current bci in that string.
  2244         address pc = fst.current()->pc();
  2245         nmethod* nm =  (nmethod*) fst.current()->cb();
  2246         ScopeDesc* sd = nm->scope_desc_at( pc);
  2247         char buffer[8];
  2248         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2249         size_t len = strlen(buffer);
  2250         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2251         while (found != NULL) {
  2252           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2253               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2254             // Check that the bci found is bracketed by terminators.
  2255             break;
  2257           found = strstr(found + 1, buffer);
  2259         if (!found) {
  2260           continue;
  2264       if (DebugDeoptimization && !deopt) {
  2265         deopt = true; // One-time only print before deopt
  2266         tty->print_cr("[BEFORE Deoptimization]");
  2267         trace_frames();
  2268         trace_stack();
  2270       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2274   if (DebugDeoptimization && deopt) {
  2275     tty->print_cr("[AFTER Deoptimization]");
  2276     trace_frames();
  2281 // Make zombies
  2282 void JavaThread::make_zombies() {
  2283   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2284     if (fst.current()->can_be_deoptimized()) {
  2285       // it is a Java nmethod
  2286       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2287       nm->make_not_entrant();
  2291 #endif // PRODUCT
  2294 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2295   if (!has_last_Java_frame()) return;
  2296   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2297   StackFrameStream fst(this, UseBiasedLocking);
  2298   for(; !fst.is_done(); fst.next()) {
  2299     if (fst.current()->should_be_deoptimized()) {
  2300       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2306 // GC support
  2307 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2309 void JavaThread::gc_epilogue() {
  2310   frames_do(frame_gc_epilogue);
  2314 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2316 void JavaThread::gc_prologue() {
  2317   frames_do(frame_gc_prologue);
  2321 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2322   // Flush deferred store-barriers, if any, associated with
  2323   // initializing stores done by this JavaThread in the current epoch.
  2324   Universe::heap()->flush_deferred_store_barrier(this);
  2326   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2327   // since there may be more than one thread using each ThreadProfiler.
  2329   // Traverse the GCHandles
  2330   Thread::oops_do(f, cf);
  2332   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2333           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2335   if (has_last_Java_frame()) {
  2337     // Traverse the privileged stack
  2338     if (_privileged_stack_top != NULL) {
  2339       _privileged_stack_top->oops_do(f);
  2342     // traverse the registered growable array
  2343     if (_array_for_gc != NULL) {
  2344       for (int index = 0; index < _array_for_gc->length(); index++) {
  2345         f->do_oop(_array_for_gc->adr_at(index));
  2349     // Traverse the monitor chunks
  2350     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2351       chunk->oops_do(f);
  2354     // Traverse the execution stack
  2355     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2356       fst.current()->oops_do(f, cf, fst.register_map());
  2360   // callee_target is never live across a gc point so NULL it here should
  2361   // it still contain a methdOop.
  2363   set_callee_target(NULL);
  2365   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2366   // If we have deferred set_locals there might be oops waiting to be
  2367   // written
  2368   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2369   if (list != NULL) {
  2370     for (int i = 0; i < list->length(); i++) {
  2371       list->at(i)->oops_do(f);
  2375   // Traverse instance variables at the end since the GC may be moving things
  2376   // around using this function
  2377   f->do_oop((oop*) &_threadObj);
  2378   f->do_oop((oop*) &_vm_result);
  2379   f->do_oop((oop*) &_vm_result_2);
  2380   f->do_oop((oop*) &_exception_oop);
  2381   f->do_oop((oop*) &_pending_async_exception);
  2383   if (jvmti_thread_state() != NULL) {
  2384     jvmti_thread_state()->oops_do(f);
  2388 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2389   Thread::nmethods_do(cf);  // (super method is a no-op)
  2391   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2392           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2394   if (has_last_Java_frame()) {
  2395     // Traverse the execution stack
  2396     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2397       fst.current()->nmethods_do(cf);
  2402 // Printing
  2403 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2404   switch (_thread_state) {
  2405   case _thread_uninitialized:     return "_thread_uninitialized";
  2406   case _thread_new:               return "_thread_new";
  2407   case _thread_new_trans:         return "_thread_new_trans";
  2408   case _thread_in_native:         return "_thread_in_native";
  2409   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2410   case _thread_in_vm:             return "_thread_in_vm";
  2411   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2412   case _thread_in_Java:           return "_thread_in_Java";
  2413   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2414   case _thread_blocked:           return "_thread_blocked";
  2415   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2416   default:                        return "unknown thread state";
  2420 #ifndef PRODUCT
  2421 void JavaThread::print_thread_state_on(outputStream *st) const {
  2422   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2423 };
  2424 void JavaThread::print_thread_state() const {
  2425   print_thread_state_on(tty);
  2426 };
  2427 #endif // PRODUCT
  2429 // Called by Threads::print() for VM_PrintThreads operation
  2430 void JavaThread::print_on(outputStream *st) const {
  2431   st->print("\"%s\" ", get_thread_name());
  2432   oop thread_oop = threadObj();
  2433   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2434   Thread::print_on(st);
  2435   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2436   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2437   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2438     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2440 #ifndef PRODUCT
  2441   print_thread_state_on(st);
  2442   _safepoint_state->print_on(st);
  2443 #endif // PRODUCT
  2446 // Called by fatal error handler. The difference between this and
  2447 // JavaThread::print() is that we can't grab lock or allocate memory.
  2448 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2449   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2450   oop thread_obj = threadObj();
  2451   if (thread_obj != NULL) {
  2452      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2454   st->print(" [");
  2455   st->print("%s", _get_thread_state_name(_thread_state));
  2456   if (osthread()) {
  2457     st->print(", id=%d", osthread()->thread_id());
  2459   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2460             _stack_base - _stack_size, _stack_base);
  2461   st->print("]");
  2462   return;
  2465 // Verification
  2467 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2469 void JavaThread::verify() {
  2470   // Verify oops in the thread.
  2471   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2473   // Verify the stack frames.
  2474   frames_do(frame_verify);
  2477 // CR 6300358 (sub-CR 2137150)
  2478 // Most callers of this method assume that it can't return NULL but a
  2479 // thread may not have a name whilst it is in the process of attaching to
  2480 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2481 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2482 // if vm exit occurs during initialization). These cases can all be accounted
  2483 // for such that this method never returns NULL.
  2484 const char* JavaThread::get_thread_name() const {
  2485 #ifdef ASSERT
  2486   // early safepoints can hit while current thread does not yet have TLS
  2487   if (!SafepointSynchronize::is_at_safepoint()) {
  2488     Thread *cur = Thread::current();
  2489     if (!(cur->is_Java_thread() && cur == this)) {
  2490       // Current JavaThreads are allowed to get their own name without
  2491       // the Threads_lock.
  2492       assert_locked_or_safepoint(Threads_lock);
  2495 #endif // ASSERT
  2496     return get_thread_name_string();
  2499 // Returns a non-NULL representation of this thread's name, or a suitable
  2500 // descriptive string if there is no set name
  2501 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2502   const char* name_str;
  2503   oop thread_obj = threadObj();
  2504   if (thread_obj != NULL) {
  2505     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2506     if (name != NULL) {
  2507       if (buf == NULL) {
  2508         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2510       else {
  2511         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2514     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2515       name_str = "<no-name - thread is attaching>";
  2517     else {
  2518       name_str = Thread::name();
  2521   else {
  2522     name_str = Thread::name();
  2524   assert(name_str != NULL, "unexpected NULL thread name");
  2525   return name_str;
  2529 const char* JavaThread::get_threadgroup_name() const {
  2530   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2531   oop thread_obj = threadObj();
  2532   if (thread_obj != NULL) {
  2533     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2534     if (thread_group != NULL) {
  2535       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2536       // ThreadGroup.name can be null
  2537       if (name != NULL) {
  2538         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2539         return str;
  2543   return NULL;
  2546 const char* JavaThread::get_parent_name() const {
  2547   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2548   oop thread_obj = threadObj();
  2549   if (thread_obj != NULL) {
  2550     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2551     if (thread_group != NULL) {
  2552       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2553       if (parent != NULL) {
  2554         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2555         // ThreadGroup.name can be null
  2556         if (name != NULL) {
  2557           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2558           return str;
  2563   return NULL;
  2566 ThreadPriority JavaThread::java_priority() const {
  2567   oop thr_oop = threadObj();
  2568   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2569   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2570   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2571   return priority;
  2574 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2576   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2577   // Link Java Thread object <-> C++ Thread
  2579   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2580   // and put it into a new Handle.  The Handle "thread_oop" can then
  2581   // be used to pass the C++ thread object to other methods.
  2583   // Set the Java level thread object (jthread) field of the
  2584   // new thread (a JavaThread *) to C++ thread object using the
  2585   // "thread_oop" handle.
  2587   // Set the thread field (a JavaThread *) of the
  2588   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2590   Handle thread_oop(Thread::current(),
  2591                     JNIHandles::resolve_non_null(jni_thread));
  2592   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2593     "must be initialized");
  2594   set_threadObj(thread_oop());
  2595   java_lang_Thread::set_thread(thread_oop(), this);
  2597   if (prio == NoPriority) {
  2598     prio = java_lang_Thread::priority(thread_oop());
  2599     assert(prio != NoPriority, "A valid priority should be present");
  2602   // Push the Java priority down to the native thread; needs Threads_lock
  2603   Thread::set_priority(this, prio);
  2605   // Add the new thread to the Threads list and set it in motion.
  2606   // We must have threads lock in order to call Threads::add.
  2607   // It is crucial that we do not block before the thread is
  2608   // added to the Threads list for if a GC happens, then the java_thread oop
  2609   // will not be visited by GC.
  2610   Threads::add(this);
  2613 oop JavaThread::current_park_blocker() {
  2614   // Support for JSR-166 locks
  2615   oop thread_oop = threadObj();
  2616   if (thread_oop != NULL &&
  2617       JDK_Version::current().supports_thread_park_blocker()) {
  2618     return java_lang_Thread::park_blocker(thread_oop);
  2620   return NULL;
  2624 void JavaThread::print_stack_on(outputStream* st) {
  2625   if (!has_last_Java_frame()) return;
  2626   ResourceMark rm;
  2627   HandleMark   hm;
  2629   RegisterMap reg_map(this);
  2630   vframe* start_vf = last_java_vframe(&reg_map);
  2631   int count = 0;
  2632   for (vframe* f = start_vf; f; f = f->sender() ) {
  2633     if (f->is_java_frame()) {
  2634       javaVFrame* jvf = javaVFrame::cast(f);
  2635       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2637       // Print out lock information
  2638       if (JavaMonitorsInStackTrace) {
  2639         jvf->print_lock_info_on(st, count);
  2641     } else {
  2642       // Ignore non-Java frames
  2645     // Bail-out case for too deep stacks
  2646     count++;
  2647     if (MaxJavaStackTraceDepth == count) return;
  2652 // JVMTI PopFrame support
  2653 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2654   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2655   if (in_bytes(size_in_bytes) != 0) {
  2656     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2657     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2658     Copy::conjoint_bytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2662 void* JavaThread::popframe_preserved_args() {
  2663   return _popframe_preserved_args;
  2666 ByteSize JavaThread::popframe_preserved_args_size() {
  2667   return in_ByteSize(_popframe_preserved_args_size);
  2670 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2671   int sz = in_bytes(popframe_preserved_args_size());
  2672   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2673   return in_WordSize(sz / wordSize);
  2676 void JavaThread::popframe_free_preserved_args() {
  2677   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2678   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2679   _popframe_preserved_args = NULL;
  2680   _popframe_preserved_args_size = 0;
  2683 #ifndef PRODUCT
  2685 void JavaThread::trace_frames() {
  2686   tty->print_cr("[Describe stack]");
  2687   int frame_no = 1;
  2688   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2689     tty->print("  %d. ", frame_no++);
  2690     fst.current()->print_value_on(tty,this);
  2691     tty->cr();
  2696 void JavaThread::trace_stack_from(vframe* start_vf) {
  2697   ResourceMark rm;
  2698   int vframe_no = 1;
  2699   for (vframe* f = start_vf; f; f = f->sender() ) {
  2700     if (f->is_java_frame()) {
  2701       javaVFrame::cast(f)->print_activation(vframe_no++);
  2702     } else {
  2703       f->print();
  2705     if (vframe_no > StackPrintLimit) {
  2706       tty->print_cr("...<more frames>...");
  2707       return;
  2713 void JavaThread::trace_stack() {
  2714   if (!has_last_Java_frame()) return;
  2715   ResourceMark rm;
  2716   HandleMark   hm;
  2717   RegisterMap reg_map(this);
  2718   trace_stack_from(last_java_vframe(&reg_map));
  2722 #endif // PRODUCT
  2725 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2726   assert(reg_map != NULL, "a map must be given");
  2727   frame f = last_frame();
  2728   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2729     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2731   return NULL;
  2735 klassOop JavaThread::security_get_caller_class(int depth) {
  2736   vframeStream vfst(this);
  2737   vfst.security_get_caller_frame(depth);
  2738   if (!vfst.at_end()) {
  2739     return vfst.method()->method_holder();
  2741   return NULL;
  2744 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2745   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2746   CompileBroker::compiler_thread_loop();
  2749 // Create a CompilerThread
  2750 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2751 : JavaThread(&compiler_thread_entry) {
  2752   _env   = NULL;
  2753   _log   = NULL;
  2754   _task  = NULL;
  2755   _queue = queue;
  2756   _counters = counters;
  2758 #ifndef PRODUCT
  2759   _ideal_graph_printer = NULL;
  2760 #endif
  2764 // ======= Threads ========
  2766 // The Threads class links together all active threads, and provides
  2767 // operations over all threads.  It is protected by its own Mutex
  2768 // lock, which is also used in other contexts to protect thread
  2769 // operations from having the thread being operated on from exiting
  2770 // and going away unexpectedly (e.g., safepoint synchronization)
  2772 JavaThread* Threads::_thread_list = NULL;
  2773 int         Threads::_number_of_threads = 0;
  2774 int         Threads::_number_of_non_daemon_threads = 0;
  2775 int         Threads::_return_code = 0;
  2776 size_t      JavaThread::_stack_size_at_create = 0;
  2778 // All JavaThreads
  2779 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2781 void os_stream();
  2783 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2784 void Threads::threads_do(ThreadClosure* tc) {
  2785   assert_locked_or_safepoint(Threads_lock);
  2786   // ALL_JAVA_THREADS iterates through all JavaThreads
  2787   ALL_JAVA_THREADS(p) {
  2788     tc->do_thread(p);
  2790   // Someday we could have a table or list of all non-JavaThreads.
  2791   // For now, just manually iterate through them.
  2792   tc->do_thread(VMThread::vm_thread());
  2793   Universe::heap()->gc_threads_do(tc);
  2794   WatcherThread *wt = WatcherThread::watcher_thread();
  2795   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2796   // the data for WatcherThread is still valid upon being examined. However,
  2797   // considering that WatchThread terminates when the VM is on the way to
  2798   // exit at safepoint, the chance of the above is extremely small. The right
  2799   // way to prevent termination of WatcherThread would be to acquire
  2800   // Terminator_lock, but we can't do that without violating the lock rank
  2801   // checking in some cases.
  2802   if (wt != NULL)
  2803     tc->do_thread(wt);
  2805   // If CompilerThreads ever become non-JavaThreads, add them here
  2808 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2810   extern void JDK_Version_init();
  2812   // Check version
  2813   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2815   // Initialize the output stream module
  2816   ostream_init();
  2818   // Process java launcher properties.
  2819   Arguments::process_sun_java_launcher_properties(args);
  2821   // Initialize the os module before using TLS
  2822   os::init();
  2824   // Initialize system properties.
  2825   Arguments::init_system_properties();
  2827   // So that JDK version can be used as a discrimintor when parsing arguments
  2828   JDK_Version_init();
  2830   // Parse arguments
  2831   jint parse_result = Arguments::parse(args);
  2832   if (parse_result != JNI_OK) return parse_result;
  2834   if (PauseAtStartup) {
  2835     os::pause();
  2838   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  2840   // Record VM creation timing statistics
  2841   TraceVmCreationTime create_vm_timer;
  2842   create_vm_timer.start();
  2844   // Timing (must come after argument parsing)
  2845   TraceTime timer("Create VM", TraceStartupTime);
  2847   // Initialize the os module after parsing the args
  2848   jint os_init_2_result = os::init_2();
  2849   if (os_init_2_result != JNI_OK) return os_init_2_result;
  2851   // Initialize output stream logging
  2852   ostream_init_log();
  2854   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  2855   // Must be before create_vm_init_agents()
  2856   if (Arguments::init_libraries_at_startup()) {
  2857     convert_vm_init_libraries_to_agents();
  2860   // Launch -agentlib/-agentpath and converted -Xrun agents
  2861   if (Arguments::init_agents_at_startup()) {
  2862     create_vm_init_agents();
  2865   // Initialize Threads state
  2866   _thread_list = NULL;
  2867   _number_of_threads = 0;
  2868   _number_of_non_daemon_threads = 0;
  2870   // Initialize TLS
  2871   ThreadLocalStorage::init();
  2873   // Initialize global data structures and create system classes in heap
  2874   vm_init_globals();
  2876   // Attach the main thread to this os thread
  2877   JavaThread* main_thread = new JavaThread();
  2878   main_thread->set_thread_state(_thread_in_vm);
  2879   // must do this before set_active_handles and initialize_thread_local_storage
  2880   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  2881   // change the stack size recorded here to one based on the java thread
  2882   // stacksize. This adjusted size is what is used to figure the placement
  2883   // of the guard pages.
  2884   main_thread->record_stack_base_and_size();
  2885   main_thread->initialize_thread_local_storage();
  2887   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  2889   if (!main_thread->set_as_starting_thread()) {
  2890     vm_shutdown_during_initialization(
  2891       "Failed necessary internal allocation. Out of swap space");
  2892     delete main_thread;
  2893     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2894     return JNI_ENOMEM;
  2897   // Enable guard page *after* os::create_main_thread(), otherwise it would
  2898   // crash Linux VM, see notes in os_linux.cpp.
  2899   main_thread->create_stack_guard_pages();
  2901   // Initialize Java-Leve synchronization subsystem
  2902   ObjectSynchronizer::Initialize() ;
  2904   // Initialize global modules
  2905   jint status = init_globals();
  2906   if (status != JNI_OK) {
  2907     delete main_thread;
  2908     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2909     return status;
  2912   HandleMark hm;
  2914   { MutexLocker mu(Threads_lock);
  2915     Threads::add(main_thread);
  2918   // Any JVMTI raw monitors entered in onload will transition into
  2919   // real raw monitor. VM is setup enough here for raw monitor enter.
  2920   JvmtiExport::transition_pending_onload_raw_monitors();
  2922   if (VerifyBeforeGC &&
  2923       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  2924     Universe::heap()->prepare_for_verify();
  2925     Universe::verify();   // make sure we're starting with a clean slate
  2928   // Create the VMThread
  2929   { TraceTime timer("Start VMThread", TraceStartupTime);
  2930     VMThread::create();
  2931     Thread* vmthread = VMThread::vm_thread();
  2933     if (!os::create_thread(vmthread, os::vm_thread))
  2934       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  2936     // Wait for the VM thread to become ready, and VMThread::run to initialize
  2937     // Monitors can have spurious returns, must always check another state flag
  2939       MutexLocker ml(Notify_lock);
  2940       os::start_thread(vmthread);
  2941       while (vmthread->active_handles() == NULL) {
  2942         Notify_lock->wait();
  2947   assert (Universe::is_fully_initialized(), "not initialized");
  2948   EXCEPTION_MARK;
  2950   // At this point, the Universe is initialized, but we have not executed
  2951   // any byte code.  Now is a good time (the only time) to dump out the
  2952   // internal state of the JVM for sharing.
  2954   if (DumpSharedSpaces) {
  2955     Universe::heap()->preload_and_dump(CHECK_0);
  2956     ShouldNotReachHere();
  2959   // Always call even when there are not JVMTI environments yet, since environments
  2960   // may be attached late and JVMTI must track phases of VM execution
  2961   JvmtiExport::enter_start_phase();
  2963   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  2964   JvmtiExport::post_vm_start();
  2967     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  2969     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  2970       create_vm_init_libraries();
  2973     if (InitializeJavaLangString) {
  2974       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  2975     } else {
  2976       warning("java.lang.String not initialized");
  2979     if (AggressiveOpts) {
  2981         // Forcibly initialize java/util/HashMap and mutate the private
  2982         // static final "frontCacheEnabled" field before we start creating instances
  2983 #ifdef ASSERT
  2984         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  2985         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  2986 #endif
  2987         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  2988         KlassHandle k = KlassHandle(THREAD, k_o);
  2989         guarantee(k.not_null(), "Must find java/util/HashMap");
  2990         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  2991         ik->initialize(CHECK_0);
  2992         fieldDescriptor fd;
  2993         // Possible we might not find this field; if so, don't break
  2994         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  2995           k()->bool_field_put(fd.offset(), true);
  2999       if (UseStringCache) {
  3000         // Forcibly initialize java/lang/StringValue and mutate the private
  3001         // static final "stringCacheEnabled" field before we start creating instances
  3002         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3003         // Possible that StringValue isn't present: if so, silently don't break
  3004         if (k_o != NULL) {
  3005           KlassHandle k = KlassHandle(THREAD, k_o);
  3006           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3007           ik->initialize(CHECK_0);
  3008           fieldDescriptor fd;
  3009           // Possible we might not find this field: if so, silently don't break
  3010           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3011             k()->bool_field_put(fd.offset(), true);
  3017     // Initialize java_lang.System (needed before creating the thread)
  3018     if (InitializeJavaLangSystem) {
  3019       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3020       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3021       Handle thread_group = create_initial_thread_group(CHECK_0);
  3022       Universe::set_main_thread_group(thread_group());
  3023       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3024       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3025       main_thread->set_threadObj(thread_object);
  3026       // Set thread status to running since main thread has
  3027       // been started and running.
  3028       java_lang_Thread::set_thread_status(thread_object,
  3029                                           java_lang_Thread::RUNNABLE);
  3031       // The VM preresolve methods to these classes. Make sure that get initialized
  3032       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3033       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3034       // The VM creates & returns objects of this class. Make sure it's initialized.
  3035       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3036       call_initializeSystemClass(CHECK_0);
  3037     } else {
  3038       warning("java.lang.System not initialized");
  3041     // an instance of OutOfMemory exception has been allocated earlier
  3042     if (InitializeJavaLangExceptionsErrors) {
  3043       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3044       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3045       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3046       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3047       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3048       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3049       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3050     } else {
  3051       warning("java.lang.OutOfMemoryError has not been initialized");
  3052       warning("java.lang.NullPointerException has not been initialized");
  3053       warning("java.lang.ClassCastException has not been initialized");
  3054       warning("java.lang.ArrayStoreException has not been initialized");
  3055       warning("java.lang.ArithmeticException has not been initialized");
  3056       warning("java.lang.StackOverflowError has not been initialized");
  3059     if (EnableInvokeDynamic) {
  3060       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
  3061       // the compiler.
  3062       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
  3066   // See        : bugid 4211085.
  3067   // Background : the static initializer of java.lang.Compiler tries to read
  3068   //              property"java.compiler" and read & write property "java.vm.info".
  3069   //              When a security manager is installed through the command line
  3070   //              option "-Djava.security.manager", the above properties are not
  3071   //              readable and the static initializer for java.lang.Compiler fails
  3072   //              resulting in a NoClassDefFoundError.  This can happen in any
  3073   //              user code which calls methods in java.lang.Compiler.
  3074   // Hack :       the hack is to pre-load and initialize this class, so that only
  3075   //              system domains are on the stack when the properties are read.
  3076   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3077   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3078   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3079   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3080   //              Once that is done, we should remove this hack.
  3081   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3083   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3084   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3085   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3086   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3087   // This should also be taken out as soon as 4211383 gets fixed.
  3088   reset_vm_info_property(CHECK_0);
  3090   quicken_jni_functions();
  3092   // Set flag that basic initialization has completed. Used by exceptions and various
  3093   // debug stuff, that does not work until all basic classes have been initialized.
  3094   set_init_completed();
  3096   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3098   // record VM initialization completion time
  3099   Management::record_vm_init_completed();
  3101   // Compute system loader. Note that this has to occur after set_init_completed, since
  3102   // valid exceptions may be thrown in the process.
  3103   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3104   // set_init_completed has just been called, causing exceptions not to be shortcut
  3105   // anymore. We call vm_exit_during_initialization directly instead.
  3106   SystemDictionary::compute_java_system_loader(THREAD);
  3107   if (HAS_PENDING_EXCEPTION) {
  3108     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3111 #ifndef SERIALGC
  3112   // Support for ConcurrentMarkSweep. This should be cleaned up
  3113   // and better encapsulated. The ugly nested if test would go away
  3114   // once things are properly refactored. XXX YSR
  3115   if (UseConcMarkSweepGC || UseG1GC) {
  3116     if (UseConcMarkSweepGC) {
  3117       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3118     } else {
  3119       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3121     if (HAS_PENDING_EXCEPTION) {
  3122       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3125 #endif // SERIALGC
  3127   // Always call even when there are not JVMTI environments yet, since environments
  3128   // may be attached late and JVMTI must track phases of VM execution
  3129   JvmtiExport::enter_live_phase();
  3131   // Signal Dispatcher needs to be started before VMInit event is posted
  3132   os::signal_init();
  3134   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3135   if (!DisableAttachMechanism) {
  3136     if (StartAttachListener || AttachListener::init_at_startup()) {
  3137       AttachListener::init();
  3141   // Launch -Xrun agents
  3142   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3143   // back-end can launch with -Xdebug -Xrunjdwp.
  3144   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3145     create_vm_init_libraries();
  3148   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3149   JvmtiExport::post_vm_initialized();
  3151   Chunk::start_chunk_pool_cleaner_task();
  3153   // initialize compiler(s)
  3154   CompileBroker::compilation_init();
  3156   Management::initialize(THREAD);
  3157   if (HAS_PENDING_EXCEPTION) {
  3158     // management agent fails to start possibly due to
  3159     // configuration problem and is responsible for printing
  3160     // stack trace if appropriate. Simply exit VM.
  3161     vm_exit(1);
  3164   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3165   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3166   if (MemProfiling)                   MemProfiler::engage();
  3167   StatSampler::engage();
  3168   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3170   BiasedLocking::init();
  3173   // Start up the WatcherThread if there are any periodic tasks
  3174   // NOTE:  All PeriodicTasks should be registered by now. If they
  3175   //   aren't, late joiners might appear to start slowly (we might
  3176   //   take a while to process their first tick).
  3177   if (PeriodicTask::num_tasks() > 0) {
  3178     WatcherThread::start();
  3181   create_vm_timer.end();
  3182   return JNI_OK;
  3185 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3186 extern "C" {
  3187   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3189 // Find a command line agent library and return its entry point for
  3190 //         -agentlib:  -agentpath:   -Xrun
  3191 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3192 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3193   OnLoadEntry_t on_load_entry = NULL;
  3194   void *library = agent->os_lib();  // check if we have looked it up before
  3196   if (library == NULL) {
  3197     char buffer[JVM_MAXPATHLEN];
  3198     char ebuf[1024];
  3199     const char *name = agent->name();
  3201     if (agent->is_absolute_path()) {
  3202       library = hpi::dll_load(name, ebuf, sizeof ebuf);
  3203       if (library == NULL) {
  3204         // If we can't find the agent, exit.
  3205         vm_exit_during_initialization("Could not find agent library in absolute path", name);
  3207     } else {
  3208       // Try to load the agent from the standard dll directory
  3209       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3210       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3211 #ifdef KERNEL
  3212       // Download instrument dll
  3213       if (library == NULL && strcmp(name, "instrument") == 0) {
  3214         char *props = Arguments::get_kernel_properties();
  3215         char *home  = Arguments::get_java_home();
  3216         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3217                       " sun.jkernel.DownloadManager -download client_jvm";
  3218         int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3219         char *cmd = AllocateHeap(length);
  3220         jio_snprintf(cmd, length, fmt, home, props);
  3221         int status = os::fork_and_exec(cmd);
  3222         FreeHeap(props);
  3223         FreeHeap(cmd);
  3224         if (status == -1) {
  3225           warning(cmd);
  3226           vm_exit_during_initialization("fork_and_exec failed: %s",
  3227                                          strerror(errno));
  3229         // when this comes back the instrument.dll should be where it belongs.
  3230         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3232 #endif // KERNEL
  3233       if (library == NULL) { // Try the local directory
  3234         char ns[1] = {0};
  3235         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
  3236         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3237         if (library == NULL) {
  3238           // If we can't find the agent, exit.
  3239           vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
  3243     agent->set_os_lib(library);
  3246   // Find the OnLoad function.
  3247   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3248     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
  3249     if (on_load_entry != NULL) break;
  3251   return on_load_entry;
  3254 // Find the JVM_OnLoad entry point
  3255 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3256   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3257   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3260 // Find the Agent_OnLoad entry point
  3261 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3262   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3263   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3266 // For backwards compatibility with -Xrun
  3267 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3268 // treated like -agentpath:
  3269 // Must be called before agent libraries are created
  3270 void Threads::convert_vm_init_libraries_to_agents() {
  3271   AgentLibrary* agent;
  3272   AgentLibrary* next;
  3274   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3275     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3276     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3278     // If there is an JVM_OnLoad function it will get called later,
  3279     // otherwise see if there is an Agent_OnLoad
  3280     if (on_load_entry == NULL) {
  3281       on_load_entry = lookup_agent_on_load(agent);
  3282       if (on_load_entry != NULL) {
  3283         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3284         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3285         Arguments::convert_library_to_agent(agent);
  3286       } else {
  3287         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3293 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3294 // Invokes Agent_OnLoad
  3295 // Called very early -- before JavaThreads exist
  3296 void Threads::create_vm_init_agents() {
  3297   extern struct JavaVM_ main_vm;
  3298   AgentLibrary* agent;
  3300   JvmtiExport::enter_onload_phase();
  3301   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3302     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3304     if (on_load_entry != NULL) {
  3305       // Invoke the Agent_OnLoad function
  3306       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3307       if (err != JNI_OK) {
  3308         vm_exit_during_initialization("agent library failed to init", agent->name());
  3310     } else {
  3311       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3314   JvmtiExport::enter_primordial_phase();
  3317 extern "C" {
  3318   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3321 void Threads::shutdown_vm_agents() {
  3322   // Send any Agent_OnUnload notifications
  3323   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3324   extern struct JavaVM_ main_vm;
  3325   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3327     // Find the Agent_OnUnload function.
  3328     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3329       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3330                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3332       // Invoke the Agent_OnUnload function
  3333       if (unload_entry != NULL) {
  3334         JavaThread* thread = JavaThread::current();
  3335         ThreadToNativeFromVM ttn(thread);
  3336         HandleMark hm(thread);
  3337         (*unload_entry)(&main_vm);
  3338         break;
  3344 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3345 // Invokes JVM_OnLoad
  3346 void Threads::create_vm_init_libraries() {
  3347   extern struct JavaVM_ main_vm;
  3348   AgentLibrary* agent;
  3350   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3351     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3353     if (on_load_entry != NULL) {
  3354       // Invoke the JVM_OnLoad function
  3355       JavaThread* thread = JavaThread::current();
  3356       ThreadToNativeFromVM ttn(thread);
  3357       HandleMark hm(thread);
  3358       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3359       if (err != JNI_OK) {
  3360         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3362     } else {
  3363       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3368 // Last thread running calls java.lang.Shutdown.shutdown()
  3369 void JavaThread::invoke_shutdown_hooks() {
  3370   HandleMark hm(this);
  3372   // We could get here with a pending exception, if so clear it now.
  3373   if (this->has_pending_exception()) {
  3374     this->clear_pending_exception();
  3377   EXCEPTION_MARK;
  3378   klassOop k =
  3379     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3380                                       THREAD);
  3381   if (k != NULL) {
  3382     // SystemDictionary::resolve_or_null will return null if there was
  3383     // an exception.  If we cannot load the Shutdown class, just don't
  3384     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3385     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3386     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3387     // was called, the Shutdown class would have already been loaded
  3388     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3389     instanceKlassHandle shutdown_klass (THREAD, k);
  3390     JavaValue result(T_VOID);
  3391     JavaCalls::call_static(&result,
  3392                            shutdown_klass,
  3393                            vmSymbolHandles::shutdown_method_name(),
  3394                            vmSymbolHandles::void_method_signature(),
  3395                            THREAD);
  3397   CLEAR_PENDING_EXCEPTION;
  3400 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3401 // the program falls off the end of main(). Another VM exit path is through
  3402 // vm_exit() when the program calls System.exit() to return a value or when
  3403 // there is a serious error in VM. The two shutdown paths are not exactly
  3404 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3405 // and VM_Exit op at VM level.
  3406 //
  3407 // Shutdown sequence:
  3408 //   + Wait until we are the last non-daemon thread to execute
  3409 //     <-- every thing is still working at this moment -->
  3410 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3411 //        shutdown hooks, run finalizers if finalization-on-exit
  3412 //   + Call before_exit(), prepare for VM exit
  3413 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3414 //        currently the only user of this mechanism is File.deleteOnExit())
  3415 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3416 //        post thread end and vm death events to JVMTI,
  3417 //        stop signal thread
  3418 //   + Call JavaThread::exit(), it will:
  3419 //      > release JNI handle blocks, remove stack guard pages
  3420 //      > remove this thread from Threads list
  3421 //     <-- no more Java code from this thread after this point -->
  3422 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3423 //     the compiler threads at safepoint
  3424 //     <-- do not use anything that could get blocked by Safepoint -->
  3425 //   + Disable tracing at JNI/JVM barriers
  3426 //   + Set _vm_exited flag for threads that are still running native code
  3427 //   + Delete this thread
  3428 //   + Call exit_globals()
  3429 //      > deletes tty
  3430 //      > deletes PerfMemory resources
  3431 //   + Return to caller
  3433 bool Threads::destroy_vm() {
  3434   JavaThread* thread = JavaThread::current();
  3436   // Wait until we are the last non-daemon thread to execute
  3437   { MutexLocker nu(Threads_lock);
  3438     while (Threads::number_of_non_daemon_threads() > 1 )
  3439       // This wait should make safepoint checks, wait without a timeout,
  3440       // and wait as a suspend-equivalent condition.
  3441       //
  3442       // Note: If the FlatProfiler is running and this thread is waiting
  3443       // for another non-daemon thread to finish, then the FlatProfiler
  3444       // is waiting for the external suspend request on this thread to
  3445       // complete. wait_for_ext_suspend_completion() will eventually
  3446       // timeout, but that takes time. Making this wait a suspend-
  3447       // equivalent condition solves that timeout problem.
  3448       //
  3449       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3450                          Mutex::_as_suspend_equivalent_flag);
  3453   // Hang forever on exit if we are reporting an error.
  3454   if (ShowMessageBoxOnError && is_error_reported()) {
  3455     os::infinite_sleep();
  3458   if (JDK_Version::is_jdk12x_version()) {
  3459     // We are the last thread running, so check if finalizers should be run.
  3460     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3461     HandleMark rm(thread);
  3462     Universe::run_finalizers_on_exit();
  3463   } else {
  3464     // run Java level shutdown hooks
  3465     thread->invoke_shutdown_hooks();
  3468   before_exit(thread);
  3470   thread->exit(true);
  3472   // Stop VM thread.
  3474     // 4945125 The vm thread comes to a safepoint during exit.
  3475     // GC vm_operations can get caught at the safepoint, and the
  3476     // heap is unparseable if they are caught. Grab the Heap_lock
  3477     // to prevent this. The GC vm_operations will not be able to
  3478     // queue until after the vm thread is dead.
  3479     MutexLocker ml(Heap_lock);
  3481     VMThread::wait_for_vm_thread_exit();
  3482     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3483     VMThread::destroy();
  3486   // clean up ideal graph printers
  3487 #if defined(COMPILER2) && !defined(PRODUCT)
  3488   IdealGraphPrinter::clean_up();
  3489 #endif
  3491   // Now, all Java threads are gone except daemon threads. Daemon threads
  3492   // running Java code or in VM are stopped by the Safepoint. However,
  3493   // daemon threads executing native code are still running.  But they
  3494   // will be stopped at native=>Java/VM barriers. Note that we can't
  3495   // simply kill or suspend them, as it is inherently deadlock-prone.
  3497 #ifndef PRODUCT
  3498   // disable function tracing at JNI/JVM barriers
  3499   TraceHPI = false;
  3500   TraceJNICalls = false;
  3501   TraceJVMCalls = false;
  3502   TraceRuntimeCalls = false;
  3503 #endif
  3505   VM_Exit::set_vm_exited();
  3507   notify_vm_shutdown();
  3509   delete thread;
  3511   // exit_globals() will delete tty
  3512   exit_globals();
  3514   return true;
  3518 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3519   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3520   return is_supported_jni_version(version);
  3524 jboolean Threads::is_supported_jni_version(jint version) {
  3525   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3526   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3527   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3528   return JNI_FALSE;
  3532 void Threads::add(JavaThread* p, bool force_daemon) {
  3533   // The threads lock must be owned at this point
  3534   assert_locked_or_safepoint(Threads_lock);
  3535   p->set_next(_thread_list);
  3536   _thread_list = p;
  3537   _number_of_threads++;
  3538   oop threadObj = p->threadObj();
  3539   bool daemon = true;
  3540   // Bootstrapping problem: threadObj can be null for initial
  3541   // JavaThread (or for threads attached via JNI)
  3542   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3543     _number_of_non_daemon_threads++;
  3544     daemon = false;
  3547   ThreadService::add_thread(p, daemon);
  3549   // Possible GC point.
  3550   Events::log("Thread added: " INTPTR_FORMAT, p);
  3553 void Threads::remove(JavaThread* p) {
  3554   // Extra scope needed for Thread_lock, so we can check
  3555   // that we do not remove thread without safepoint code notice
  3556   { MutexLocker ml(Threads_lock);
  3558     assert(includes(p), "p must be present");
  3560     JavaThread* current = _thread_list;
  3561     JavaThread* prev    = NULL;
  3563     while (current != p) {
  3564       prev    = current;
  3565       current = current->next();
  3568     if (prev) {
  3569       prev->set_next(current->next());
  3570     } else {
  3571       _thread_list = p->next();
  3573     _number_of_threads--;
  3574     oop threadObj = p->threadObj();
  3575     bool daemon = true;
  3576     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3577       _number_of_non_daemon_threads--;
  3578       daemon = false;
  3580       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3581       // on destroy_vm will wake up.
  3582       if (number_of_non_daemon_threads() == 1)
  3583         Threads_lock->notify_all();
  3585     ThreadService::remove_thread(p, daemon);
  3587     // Make sure that safepoint code disregard this thread. This is needed since
  3588     // the thread might mess around with locks after this point. This can cause it
  3589     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3590     // of this thread since it is removed from the queue.
  3591     p->set_terminated_value();
  3592   } // unlock Threads_lock
  3594   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3595   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3598 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3599 bool Threads::includes(JavaThread* p) {
  3600   assert(Threads_lock->is_locked(), "sanity check");
  3601   ALL_JAVA_THREADS(q) {
  3602     if (q == p ) {
  3603       return true;
  3606   return false;
  3609 // Operations on the Threads list for GC.  These are not explicitly locked,
  3610 // but the garbage collector must provide a safe context for them to run.
  3611 // In particular, these things should never be called when the Threads_lock
  3612 // is held by some other thread. (Note: the Safepoint abstraction also
  3613 // uses the Threads_lock to gurantee this property. It also makes sure that
  3614 // all threads gets blocked when exiting or starting).
  3616 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3617   ALL_JAVA_THREADS(p) {
  3618     p->oops_do(f, cf);
  3620   VMThread::vm_thread()->oops_do(f, cf);
  3623 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3624   // Introduce a mechanism allowing parallel threads to claim threads as
  3625   // root groups.  Overhead should be small enough to use all the time,
  3626   // even in sequential code.
  3627   SharedHeap* sh = SharedHeap::heap();
  3628   bool is_par = (sh->n_par_threads() > 0);
  3629   int cp = SharedHeap::heap()->strong_roots_parity();
  3630   ALL_JAVA_THREADS(p) {
  3631     if (p->claim_oops_do(is_par, cp)) {
  3632       p->oops_do(f, cf);
  3635   VMThread* vmt = VMThread::vm_thread();
  3636   if (vmt->claim_oops_do(is_par, cp))
  3637     vmt->oops_do(f, cf);
  3640 #ifndef SERIALGC
  3641 // Used by ParallelScavenge
  3642 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3643   ALL_JAVA_THREADS(p) {
  3644     q->enqueue(new ThreadRootsTask(p));
  3646   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3649 // Used by Parallel Old
  3650 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3651   ALL_JAVA_THREADS(p) {
  3652     q->enqueue(new ThreadRootsMarkingTask(p));
  3654   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3656 #endif // SERIALGC
  3658 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3659   ALL_JAVA_THREADS(p) {
  3660     p->nmethods_do(cf);
  3662   VMThread::vm_thread()->nmethods_do(cf);
  3665 void Threads::gc_epilogue() {
  3666   ALL_JAVA_THREADS(p) {
  3667     p->gc_epilogue();
  3671 void Threads::gc_prologue() {
  3672   ALL_JAVA_THREADS(p) {
  3673     p->gc_prologue();
  3677 void Threads::deoptimized_wrt_marked_nmethods() {
  3678   ALL_JAVA_THREADS(p) {
  3679     p->deoptimized_wrt_marked_nmethods();
  3684 // Get count Java threads that are waiting to enter the specified monitor.
  3685 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3686   address monitor, bool doLock) {
  3687   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3688     "must grab Threads_lock or be at safepoint");
  3689   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3691   int i = 0;
  3693     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3694     ALL_JAVA_THREADS(p) {
  3695       if (p->is_Compiler_thread()) continue;
  3697       address pending = (address)p->current_pending_monitor();
  3698       if (pending == monitor) {             // found a match
  3699         if (i < count) result->append(p);   // save the first count matches
  3700         i++;
  3704   return result;
  3708 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3709   assert(doLock ||
  3710          Threads_lock->owned_by_self() ||
  3711          SafepointSynchronize::is_at_safepoint(),
  3712          "must grab Threads_lock or be at safepoint");
  3714   // NULL owner means not locked so we can skip the search
  3715   if (owner == NULL) return NULL;
  3718     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3719     ALL_JAVA_THREADS(p) {
  3720       // first, see if owner is the address of a Java thread
  3721       if (owner == (address)p) return p;
  3724   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3725   if (UseHeavyMonitors) return NULL;
  3727   //
  3728   // If we didn't find a matching Java thread and we didn't force use of
  3729   // heavyweight monitors, then the owner is the stack address of the
  3730   // Lock Word in the owning Java thread's stack.
  3731   //
  3732   JavaThread* the_owner = NULL;
  3734     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3735     ALL_JAVA_THREADS(q) {
  3736       if (q->is_lock_owned(owner)) {
  3737         the_owner = q;
  3738         break;
  3742   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3743   return the_owner;
  3746 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3747 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3748   char buf[32];
  3749   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3751   st->print_cr("Full thread dump %s (%s %s):",
  3752                 Abstract_VM_Version::vm_name(),
  3753                 Abstract_VM_Version::vm_release(),
  3754                 Abstract_VM_Version::vm_info_string()
  3755                );
  3756   st->cr();
  3758 #ifndef SERIALGC
  3759   // Dump concurrent locks
  3760   ConcurrentLocksDump concurrent_locks;
  3761   if (print_concurrent_locks) {
  3762     concurrent_locks.dump_at_safepoint();
  3764 #endif // SERIALGC
  3766   ALL_JAVA_THREADS(p) {
  3767     ResourceMark rm;
  3768     p->print_on(st);
  3769     if (print_stacks) {
  3770       if (internal_format) {
  3771         p->trace_stack();
  3772       } else {
  3773         p->print_stack_on(st);
  3776     st->cr();
  3777 #ifndef SERIALGC
  3778     if (print_concurrent_locks) {
  3779       concurrent_locks.print_locks_on(p, st);
  3781 #endif // SERIALGC
  3784   VMThread::vm_thread()->print_on(st);
  3785   st->cr();
  3786   Universe::heap()->print_gc_threads_on(st);
  3787   WatcherThread* wt = WatcherThread::watcher_thread();
  3788   if (wt != NULL) wt->print_on(st);
  3789   st->cr();
  3790   CompileBroker::print_compiler_threads_on(st);
  3791   st->flush();
  3794 // Threads::print_on_error() is called by fatal error handler. It's possible
  3795 // that VM is not at safepoint and/or current thread is inside signal handler.
  3796 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3797 // memory (even in resource area), it might deadlock the error handler.
  3798 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3799   bool found_current = false;
  3800   st->print_cr("Java Threads: ( => current thread )");
  3801   ALL_JAVA_THREADS(thread) {
  3802     bool is_current = (current == thread);
  3803     found_current = found_current || is_current;
  3805     st->print("%s", is_current ? "=>" : "  ");
  3807     st->print(PTR_FORMAT, thread);
  3808     st->print(" ");
  3809     thread->print_on_error(st, buf, buflen);
  3810     st->cr();
  3812   st->cr();
  3814   st->print_cr("Other Threads:");
  3815   if (VMThread::vm_thread()) {
  3816     bool is_current = (current == VMThread::vm_thread());
  3817     found_current = found_current || is_current;
  3818     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  3820     st->print(PTR_FORMAT, VMThread::vm_thread());
  3821     st->print(" ");
  3822     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  3823     st->cr();
  3825   WatcherThread* wt = WatcherThread::watcher_thread();
  3826   if (wt != NULL) {
  3827     bool is_current = (current == wt);
  3828     found_current = found_current || is_current;
  3829     st->print("%s", is_current ? "=>" : "  ");
  3831     st->print(PTR_FORMAT, wt);
  3832     st->print(" ");
  3833     wt->print_on_error(st, buf, buflen);
  3834     st->cr();
  3836   if (!found_current) {
  3837     st->cr();
  3838     st->print("=>" PTR_FORMAT " (exited) ", current);
  3839     current->print_on_error(st, buf, buflen);
  3840     st->cr();
  3845 // Lifecycle management for TSM ParkEvents.
  3846 // ParkEvents are type-stable (TSM).
  3847 // In our particular implementation they happen to be immortal.
  3848 //
  3849 // We manage concurrency on the FreeList with a CAS-based
  3850 // detach-modify-reattach idiom that avoids the ABA problems
  3851 // that would otherwise be present in a simple CAS-based
  3852 // push-pop implementation.   (push-one and pop-all)
  3853 //
  3854 // Caveat: Allocate() and Release() may be called from threads
  3855 // other than the thread associated with the Event!
  3856 // If we need to call Allocate() when running as the thread in
  3857 // question then look for the PD calls to initialize native TLS.
  3858 // Native TLS (Win32/Linux/Solaris) can only be initialized or
  3859 // accessed by the associated thread.
  3860 // See also pd_initialize().
  3861 //
  3862 // Note that we could defer associating a ParkEvent with a thread
  3863 // until the 1st time the thread calls park().  unpark() calls to
  3864 // an unprovisioned thread would be ignored.  The first park() call
  3865 // for a thread would allocate and associate a ParkEvent and return
  3866 // immediately.
  3868 volatile int ParkEvent::ListLock = 0 ;
  3869 ParkEvent * volatile ParkEvent::FreeList = NULL ;
  3871 ParkEvent * ParkEvent::Allocate (Thread * t) {
  3872   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
  3873   ParkEvent * ev ;
  3875   // Start by trying to recycle an existing but unassociated
  3876   // ParkEvent from the global free list.
  3877   for (;;) {
  3878     ev = FreeList ;
  3879     if (ev == NULL) break ;
  3880     // 1: Detach - sequester or privatize the list
  3881     // Tantamount to ev = Swap (&FreeList, NULL)
  3882     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
  3883        continue ;
  3886     // We've detached the list.  The list in-hand is now
  3887     // local to this thread.   This thread can operate on the
  3888     // list without risk of interference from other threads.
  3889     // 2: Extract -- pop the 1st element from the list.
  3890     ParkEvent * List = ev->FreeNext ;
  3891     if (List == NULL) break ;
  3892     for (;;) {
  3893         // 3: Try to reattach the residual list
  3894         guarantee (List != NULL, "invariant") ;
  3895         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  3896         if (Arv == NULL) break ;
  3898         // New nodes arrived.  Try to detach the recent arrivals.
  3899         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  3900             continue ;
  3902         guarantee (Arv != NULL, "invariant") ;
  3903         // 4: Merge Arv into List
  3904         ParkEvent * Tail = List ;
  3905         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  3906         Tail->FreeNext = Arv ;
  3908     break ;
  3911   if (ev != NULL) {
  3912     guarantee (ev->AssociatedWith == NULL, "invariant") ;
  3913   } else {
  3914     // Do this the hard way -- materialize a new ParkEvent.
  3915     // In rare cases an allocating thread might detach a long list --
  3916     // installing null into FreeList -- and then stall or be obstructed.
  3917     // A 2nd thread calling Allocate() would see FreeList == null.
  3918     // The list held privately by the 1st thread is unavailable to the 2nd thread.
  3919     // In that case the 2nd thread would have to materialize a new ParkEvent,
  3920     // even though free ParkEvents existed in the system.  In this case we end up
  3921     // with more ParkEvents in circulation than we need, but the race is
  3922     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
  3923     // is equal to the maximum # of threads that existed at any one time.
  3924     // Because of the race mentioned above, segments of the freelist
  3925     // can be transiently inaccessible.  At worst we may end up with the
  3926     // # of ParkEvents in circulation slightly above the ideal.
  3927     // Note that if we didn't have the TSM/immortal constraint, then
  3928     // when reattaching, above, we could trim the list.
  3929     ev = new ParkEvent () ;
  3930     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
  3932   ev->reset() ;                     // courtesy to caller
  3933   ev->AssociatedWith = t ;          // Associate ev with t
  3934   ev->FreeNext       = NULL ;
  3935   return ev ;
  3938 void ParkEvent::Release (ParkEvent * ev) {
  3939   if (ev == NULL) return ;
  3940   guarantee (ev->FreeNext == NULL      , "invariant") ;
  3941   ev->AssociatedWith = NULL ;
  3942   for (;;) {
  3943     // Push ev onto FreeList
  3944     // The mechanism is "half" lock-free.
  3945     ParkEvent * List = FreeList ;
  3946     ev->FreeNext = List ;
  3947     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
  3951 // Override operator new and delete so we can ensure that the
  3952 // least significant byte of ParkEvent addresses is 0.
  3953 // Beware that excessive address alignment is undesirable
  3954 // as it can result in D$ index usage imbalance as
  3955 // well as bank access imbalance on Niagara-like platforms,
  3956 // although Niagara's hash function should help.
  3958 void * ParkEvent::operator new (size_t sz) {
  3959   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
  3962 void ParkEvent::operator delete (void * a) {
  3963   // ParkEvents are type-stable and immortal ...
  3964   ShouldNotReachHere();
  3968 // 6399321 As a temporary measure we copied & modified the ParkEvent::
  3969 // allocate() and release() code for use by Parkers.  The Parker:: forms
  3970 // will eventually be removed as we consolide and shift over to ParkEvents
  3971 // for both builtin synchronization and JSR166 operations.
  3973 volatile int Parker::ListLock = 0 ;
  3974 Parker * volatile Parker::FreeList = NULL ;
  3976 Parker * Parker::Allocate (JavaThread * t) {
  3977   guarantee (t != NULL, "invariant") ;
  3978   Parker * p ;
  3980   // Start by trying to recycle an existing but unassociated
  3981   // Parker from the global free list.
  3982   for (;;) {
  3983     p = FreeList ;
  3984     if (p  == NULL) break ;
  3985     // 1: Detach
  3986     // Tantamount to p = Swap (&FreeList, NULL)
  3987     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
  3988        continue ;
  3991     // We've detached the list.  The list in-hand is now
  3992     // local to this thread.   This thread can operate on the
  3993     // list without risk of interference from other threads.
  3994     // 2: Extract -- pop the 1st element from the list.
  3995     Parker * List = p->FreeNext ;
  3996     if (List == NULL) break ;
  3997     for (;;) {
  3998         // 3: Try to reattach the residual list
  3999         guarantee (List != NULL, "invariant") ;
  4000         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  4001         if (Arv == NULL) break ;
  4003         // New nodes arrived.  Try to detach the recent arrivals.
  4004         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  4005             continue ;
  4007         guarantee (Arv != NULL, "invariant") ;
  4008         // 4: Merge Arv into List
  4009         Parker * Tail = List ;
  4010         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  4011         Tail->FreeNext = Arv ;
  4013     break ;
  4016   if (p != NULL) {
  4017     guarantee (p->AssociatedWith == NULL, "invariant") ;
  4018   } else {
  4019     // Do this the hard way -- materialize a new Parker..
  4020     // In rare cases an allocating thread might detach
  4021     // a long list -- installing null into FreeList --and
  4022     // then stall.  Another thread calling Allocate() would see
  4023     // FreeList == null and then invoke the ctor.  In this case we
  4024     // end up with more Parkers in circulation than we need, but
  4025     // the race is rare and the outcome is benign.
  4026     // Ideally, the # of extant Parkers is equal to the
  4027     // maximum # of threads that existed at any one time.
  4028     // Because of the race mentioned above, segments of the
  4029     // freelist can be transiently inaccessible.  At worst
  4030     // we may end up with the # of Parkers in circulation
  4031     // slightly above the ideal.
  4032     p = new Parker() ;
  4034   p->AssociatedWith = t ;          // Associate p with t
  4035   p->FreeNext       = NULL ;
  4036   return p ;
  4040 void Parker::Release (Parker * p) {
  4041   if (p == NULL) return ;
  4042   guarantee (p->AssociatedWith != NULL, "invariant") ;
  4043   guarantee (p->FreeNext == NULL      , "invariant") ;
  4044   p->AssociatedWith = NULL ;
  4045   for (;;) {
  4046     // Push p onto FreeList
  4047     Parker * List = FreeList ;
  4048     p->FreeNext = List ;
  4049     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
  4053 void Threads::verify() {
  4054   ALL_JAVA_THREADS(p) {
  4055     p->verify();
  4057   VMThread* thread = VMThread::vm_thread();
  4058   if (thread != NULL) thread->verify();

mercurial