src/share/vm/opto/mulnode.cpp

Mon, 04 Jan 2010 18:38:08 +0100

author
twisti
date
Mon, 04 Jan 2010 18:38:08 +0100
changeset 1570
e66fd840cb6b
parent 1332
52898b0c43e9
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6893081: method handle & invokedynamic code needs additional cleanup (post 6815692, 6858164)
Summary: During the work for 6829187 we have fixed a number of basic bugs which are logically grouped with 6815692 and 6858164 but which must be reviewed and pushed separately.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_mulnode.cpp.incl"
    31 //=============================================================================
    32 //------------------------------hash-------------------------------------------
    33 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
    34 // (commute) inputs to MulNodes willy-nilly so the hash function must return
    35 // the same value in the presence of edge swapping.
    36 uint MulNode::hash() const {
    37   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    38 }
    40 //------------------------------Identity---------------------------------------
    41 // Multiplying a one preserves the other argument
    42 Node *MulNode::Identity( PhaseTransform *phase ) {
    43   register const Type *one = mul_id();  // The multiplicative identity
    44   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
    45   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
    47   return this;
    48 }
    50 //------------------------------Ideal------------------------------------------
    51 // We also canonicalize the Node, moving constants to the right input,
    52 // and flatten expressions (so that 1+x+2 becomes x+3).
    53 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
    54   const Type *t1 = phase->type( in(1) );
    55   const Type *t2 = phase->type( in(2) );
    56   Node *progress = NULL;        // Progress flag
    57   // We are OK if right is a constant, or right is a load and
    58   // left is a non-constant.
    59   if( !(t2->singleton() ||
    60         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
    61     if( t1->singleton() ||       // Left input is a constant?
    62         // Otherwise, sort inputs (commutativity) to help value numbering.
    63         (in(1)->_idx > in(2)->_idx) ) {
    64       swap_edges(1, 2);
    65       const Type *t = t1;
    66       t1 = t2;
    67       t2 = t;
    68       progress = this;            // Made progress
    69     }
    70   }
    72   // If the right input is a constant, and the left input is a product of a
    73   // constant, flatten the expression tree.
    74   uint op = Opcode();
    75   if( t2->singleton() &&        // Right input is a constant?
    76       op != Op_MulF &&          // Float & double cannot reassociate
    77       op != Op_MulD ) {
    78     if( t2 == Type::TOP ) return NULL;
    79     Node *mul1 = in(1);
    80 #ifdef ASSERT
    81     // Check for dead loop
    82     int   op1 = mul1->Opcode();
    83     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
    84         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
    85         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
    86           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
    87       assert(false, "dead loop in MulNode::Ideal");
    88 #endif
    90     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
    91       // Mul of a constant?
    92       const Type *t12 = phase->type( mul1->in(2) );
    93       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
    94         // Compute new constant; check for overflow
    95         const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12);
    96         if( tcon01->singleton() ) {
    97           // The Mul of the flattened expression
    98           set_req(1, mul1->in(1));
    99           set_req(2, phase->makecon( tcon01 ));
   100           t2 = tcon01;
   101           progress = this;      // Made progress
   102         }
   103       }
   104     }
   105     // If the right input is a constant, and the left input is an add of a
   106     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
   107     const Node *add1 = in(1);
   108     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
   109       // Add of a constant?
   110       const Type *t12 = phase->type( add1->in(2) );
   111       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   112         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
   113         // Compute new constant; check for overflow
   114         const Type *tcon01 = mul_ring(t2,t12);
   115         if( tcon01->singleton() ) {
   117         // Convert (X+con1)*con0 into X*con0
   118           Node *mul = clone();    // mul = ()*con0
   119           mul->set_req(1,add1->in(1));  // mul = X*con0
   120           mul = phase->transform(mul);
   122           Node *add2 = add1->clone();
   123           add2->set_req(1, mul);        // X*con0 + con0*con1
   124           add2->set_req(2, phase->makecon(tcon01) );
   125           progress = add2;
   126         }
   127       }
   128     } // End of is left input an add
   129   } // End of is right input a Mul
   131   return progress;
   132 }
   134 //------------------------------Value-----------------------------------------
   135 const Type *MulNode::Value( PhaseTransform *phase ) const {
   136   const Type *t1 = phase->type( in(1) );
   137   const Type *t2 = phase->type( in(2) );
   138   // Either input is TOP ==> the result is TOP
   139   if( t1 == Type::TOP ) return Type::TOP;
   140   if( t2 == Type::TOP ) return Type::TOP;
   142   // Either input is ZERO ==> the result is ZERO.
   143   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
   144   int op = Opcode();
   145   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
   146     const Type *zero = add_id();        // The multiplicative zero
   147     if( t1->higher_equal( zero ) ) return zero;
   148     if( t2->higher_equal( zero ) ) return zero;
   149   }
   151   // Either input is BOTTOM ==> the result is the local BOTTOM
   152   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
   153     return bottom_type();
   155 #if defined(IA32)
   156   // Can't trust native compilers to properly fold strict double
   157   // multiplication with round-to-zero on this platform.
   158   if (op == Op_MulD && phase->C->method()->is_strict()) {
   159     return TypeD::DOUBLE;
   160   }
   161 #endif
   163   return mul_ring(t1,t2);            // Local flavor of type multiplication
   164 }
   167 //=============================================================================
   168 //------------------------------Ideal------------------------------------------
   169 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
   170 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   171   // Swap constant to right
   172   jint con;
   173   if ((con = in(1)->find_int_con(0)) != 0) {
   174     swap_edges(1, 2);
   175     // Finish rest of method to use info in 'con'
   176   } else if ((con = in(2)->find_int_con(0)) == 0) {
   177     return MulNode::Ideal(phase, can_reshape);
   178   }
   180   // Now we have a constant Node on the right and the constant in con
   181   if( con == 0 ) return NULL;   // By zero is handled by Value call
   182   if( con == 1 ) return NULL;   // By one  is handled by Identity call
   184   // Check for negative constant; if so negate the final result
   185   bool sign_flip = false;
   186   if( con < 0 ) {
   187     con = -con;
   188     sign_flip = true;
   189   }
   191   // Get low bit; check for being the only bit
   192   Node *res = NULL;
   193   jint bit1 = con & -con;       // Extract low bit
   194   if( bit1 == con ) {           // Found a power of 2?
   195     res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
   196   } else {
   198     // Check for constant with 2 bits set
   199     jint bit2 = con-bit1;
   200     bit2 = bit2 & -bit2;          // Extract 2nd bit
   201     if( bit2 + bit1 == con ) {    // Found all bits in con?
   202       Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
   203       Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
   204       res = new (phase->C, 3) AddINode( n2, n1 );
   206     } else if (is_power_of_2(con+1)) {
   207       // Sleezy: power-of-2 -1.  Next time be generic.
   208       jint temp = (jint) (con + 1);
   209       Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
   210       res = new (phase->C, 3) SubINode( n1, in(1) );
   211     } else {
   212       return MulNode::Ideal(phase, can_reshape);
   213     }
   214   }
   216   if( sign_flip ) {             // Need to negate result?
   217     res = phase->transform(res);// Transform, before making the zero con
   218     res = new (phase->C, 3) SubINode(phase->intcon(0),res);
   219   }
   221   return res;                   // Return final result
   222 }
   224 //------------------------------mul_ring---------------------------------------
   225 // Compute the product type of two integer ranges into this node.
   226 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
   227   const TypeInt *r0 = t0->is_int(); // Handy access
   228   const TypeInt *r1 = t1->is_int();
   230   // Fetch endpoints of all ranges
   231   int32 lo0 = r0->_lo;
   232   double a = (double)lo0;
   233   int32 hi0 = r0->_hi;
   234   double b = (double)hi0;
   235   int32 lo1 = r1->_lo;
   236   double c = (double)lo1;
   237   int32 hi1 = r1->_hi;
   238   double d = (double)hi1;
   240   // Compute all endpoints & check for overflow
   241   int32 A = lo0*lo1;
   242   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
   243   int32 B = lo0*hi1;
   244   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
   245   int32 C = hi0*lo1;
   246   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
   247   int32 D = hi0*hi1;
   248   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
   250   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
   251   else { lo0 = B; hi0 = A; }
   252   if( C < D ) {
   253     if( C < lo0 ) lo0 = C;
   254     if( D > hi0 ) hi0 = D;
   255   } else {
   256     if( D < lo0 ) lo0 = D;
   257     if( C > hi0 ) hi0 = C;
   258   }
   259   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
   260 }
   263 //=============================================================================
   264 //------------------------------Ideal------------------------------------------
   265 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
   266 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   267   // Swap constant to right
   268   jlong con;
   269   if ((con = in(1)->find_long_con(0)) != 0) {
   270     swap_edges(1, 2);
   271     // Finish rest of method to use info in 'con'
   272   } else if ((con = in(2)->find_long_con(0)) == 0) {
   273     return MulNode::Ideal(phase, can_reshape);
   274   }
   276   // Now we have a constant Node on the right and the constant in con
   277   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
   278   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
   280   // Check for negative constant; if so negate the final result
   281   bool sign_flip = false;
   282   if( con < 0 ) {
   283     con = -con;
   284     sign_flip = true;
   285   }
   287   // Get low bit; check for being the only bit
   288   Node *res = NULL;
   289   jlong bit1 = con & -con;      // Extract low bit
   290   if( bit1 == con ) {           // Found a power of 2?
   291     res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
   292   } else {
   294     // Check for constant with 2 bits set
   295     jlong bit2 = con-bit1;
   296     bit2 = bit2 & -bit2;          // Extract 2nd bit
   297     if( bit2 + bit1 == con ) {    // Found all bits in con?
   298       Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
   299       Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
   300       res = new (phase->C, 3) AddLNode( n2, n1 );
   302     } else if (is_power_of_2_long(con+1)) {
   303       // Sleezy: power-of-2 -1.  Next time be generic.
   304       jlong temp = (jlong) (con + 1);
   305       Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
   306       res = new (phase->C, 3) SubLNode( n1, in(1) );
   307     } else {
   308       return MulNode::Ideal(phase, can_reshape);
   309     }
   310   }
   312   if( sign_flip ) {             // Need to negate result?
   313     res = phase->transform(res);// Transform, before making the zero con
   314     res = new (phase->C, 3) SubLNode(phase->longcon(0),res);
   315   }
   317   return res;                   // Return final result
   318 }
   320 //------------------------------mul_ring---------------------------------------
   321 // Compute the product type of two integer ranges into this node.
   322 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
   323   const TypeLong *r0 = t0->is_long(); // Handy access
   324   const TypeLong *r1 = t1->is_long();
   326   // Fetch endpoints of all ranges
   327   jlong lo0 = r0->_lo;
   328   double a = (double)lo0;
   329   jlong hi0 = r0->_hi;
   330   double b = (double)hi0;
   331   jlong lo1 = r1->_lo;
   332   double c = (double)lo1;
   333   jlong hi1 = r1->_hi;
   334   double d = (double)hi1;
   336   // Compute all endpoints & check for overflow
   337   jlong A = lo0*lo1;
   338   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
   339   jlong B = lo0*hi1;
   340   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
   341   jlong C = hi0*lo1;
   342   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
   343   jlong D = hi0*hi1;
   344   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
   346   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
   347   else { lo0 = B; hi0 = A; }
   348   if( C < D ) {
   349     if( C < lo0 ) lo0 = C;
   350     if( D > hi0 ) hi0 = D;
   351   } else {
   352     if( D < lo0 ) lo0 = D;
   353     if( C > hi0 ) hi0 = C;
   354   }
   355   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
   356 }
   358 //=============================================================================
   359 //------------------------------mul_ring---------------------------------------
   360 // Compute the product type of two double ranges into this node.
   361 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
   362   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
   363   return TypeF::make( t0->getf() * t1->getf() );
   364 }
   366 //=============================================================================
   367 //------------------------------mul_ring---------------------------------------
   368 // Compute the product type of two double ranges into this node.
   369 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
   370   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
   371   // We must be multiplying 2 double constants.
   372   return TypeD::make( t0->getd() * t1->getd() );
   373 }
   375 //=============================================================================
   376 //------------------------------Value------------------------------------------
   377 const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
   378   // Either input is TOP ==> the result is TOP
   379   const Type *t1 = phase->type( in(1) );
   380   const Type *t2 = phase->type( in(2) );
   381   if( t1 == Type::TOP ) return Type::TOP;
   382   if( t2 == Type::TOP ) return Type::TOP;
   384   // Either input is BOTTOM ==> the result is the local BOTTOM
   385   const Type *bot = bottom_type();
   386   if( (t1 == bot) || (t2 == bot) ||
   387       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   388     return bot;
   390   // It is not worth trying to constant fold this stuff!
   391   return TypeLong::LONG;
   392 }
   394 //=============================================================================
   395 //------------------------------mul_ring---------------------------------------
   396 // Supplied function returns the product of the inputs IN THE CURRENT RING.
   397 // For the logical operations the ring's MUL is really a logical AND function.
   398 // This also type-checks the inputs for sanity.  Guaranteed never to
   399 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   400 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
   401   const TypeInt *r0 = t0->is_int(); // Handy access
   402   const TypeInt *r1 = t1->is_int();
   403   int widen = MAX2(r0->_widen,r1->_widen);
   405   // If either input is a constant, might be able to trim cases
   406   if( !r0->is_con() && !r1->is_con() )
   407     return TypeInt::INT;        // No constants to be had
   409   // Both constants?  Return bits
   410   if( r0->is_con() && r1->is_con() )
   411     return TypeInt::make( r0->get_con() & r1->get_con() );
   413   if( r0->is_con() && r0->get_con() > 0 )
   414     return TypeInt::make(0, r0->get_con(), widen);
   416   if( r1->is_con() && r1->get_con() > 0 )
   417     return TypeInt::make(0, r1->get_con(), widen);
   419   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
   420     return TypeInt::BOOL;
   421   }
   423   return TypeInt::INT;          // No constants to be had
   424 }
   426 //------------------------------Identity---------------------------------------
   427 // Masking off the high bits of an unsigned load is not required
   428 Node *AndINode::Identity( PhaseTransform *phase ) {
   430   // x & x => x
   431   if (phase->eqv(in(1), in(2))) return in(1);
   433   Node* in1 = in(1);
   434   uint op = in1->Opcode();
   435   const TypeInt* t2 = phase->type(in(2))->isa_int();
   436   if (t2 && t2->is_con()) {
   437     int con = t2->get_con();
   438     // Masking off high bits which are always zero is useless.
   439     const TypeInt* t1 = phase->type( in(1) )->isa_int();
   440     if (t1 != NULL && t1->_lo >= 0) {
   441       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
   442       if ((t1_support & con) == t1_support)
   443         return in1;
   444     }
   445     // Masking off the high bits of a unsigned-shift-right is not
   446     // needed either.
   447     if (op == Op_URShiftI) {
   448       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
   449       if (t12 && t12->is_con()) {  // Shift is by a constant
   450         int shift = t12->get_con();
   451         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
   452         int mask = max_juint >> shift;
   453         if ((mask & con) == mask)  // If AND is useless, skip it
   454           return in1;
   455       }
   456     }
   457   }
   458   return MulNode::Identity(phase);
   459 }
   461 //------------------------------Ideal------------------------------------------
   462 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   463   // Special case constant AND mask
   464   const TypeInt *t2 = phase->type( in(2) )->isa_int();
   465   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
   466   const int mask = t2->get_con();
   467   Node *load = in(1);
   468   uint lop = load->Opcode();
   470   // Masking bits off of a Character?  Hi bits are already zero.
   471   if( lop == Op_LoadUS &&
   472       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
   473     return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));
   475   // Masking bits off of a Short?  Loading a Character does some masking
   476   if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
   477     Node *ldus = new (phase->C, 3) LoadUSNode(load->in(MemNode::Control),
   478                                               load->in(MemNode::Memory),
   479                                               load->in(MemNode::Address),
   480                                               load->adr_type());
   481     ldus = phase->transform(ldus);
   482     return new (phase->C, 3) AndINode(ldus, phase->intcon(mask & 0xFFFF));
   483   }
   485   // Masking sign bits off of a Byte?  Do an unsigned byte load plus
   486   // an and.
   487   if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
   488     Node* ldub = new (phase->C, 3) LoadUBNode(load->in(MemNode::Control),
   489                                               load->in(MemNode::Memory),
   490                                               load->in(MemNode::Address),
   491                                               load->adr_type());
   492     ldub = phase->transform(ldub);
   493     return new (phase->C, 3) AndINode(ldub, phase->intcon(mask));
   494   }
   496   // Masking off sign bits?  Dont make them!
   497   if( lop == Op_RShiftI ) {
   498     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
   499     if( t12 && t12->is_con() ) { // Shift is by a constant
   500       int shift = t12->get_con();
   501       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   502       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
   503       // If the AND'ing of the 2 masks has no bits, then only original shifted
   504       // bits survive.  NO sign-extension bits survive the maskings.
   505       if( (sign_bits_mask & mask) == 0 ) {
   506         // Use zero-fill shift instead
   507         Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2)));
   508         return new (phase->C, 3) AndINode( zshift, in(2) );
   509       }
   510     }
   511   }
   513   // Check for 'negate/and-1', a pattern emitted when someone asks for
   514   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
   515   // plus 1) and the mask is of the low order bit.  Skip the negate.
   516   if( lop == Op_SubI && mask == 1 && load->in(1) &&
   517       phase->type(load->in(1)) == TypeInt::ZERO )
   518     return new (phase->C, 3) AndINode( load->in(2), in(2) );
   520   return MulNode::Ideal(phase, can_reshape);
   521 }
   523 //=============================================================================
   524 //------------------------------mul_ring---------------------------------------
   525 // Supplied function returns the product of the inputs IN THE CURRENT RING.
   526 // For the logical operations the ring's MUL is really a logical AND function.
   527 // This also type-checks the inputs for sanity.  Guaranteed never to
   528 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   529 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
   530   const TypeLong *r0 = t0->is_long(); // Handy access
   531   const TypeLong *r1 = t1->is_long();
   532   int widen = MAX2(r0->_widen,r1->_widen);
   534   // If either input is a constant, might be able to trim cases
   535   if( !r0->is_con() && !r1->is_con() )
   536     return TypeLong::LONG;      // No constants to be had
   538   // Both constants?  Return bits
   539   if( r0->is_con() && r1->is_con() )
   540     return TypeLong::make( r0->get_con() & r1->get_con() );
   542   if( r0->is_con() && r0->get_con() > 0 )
   543     return TypeLong::make(CONST64(0), r0->get_con(), widen);
   545   if( r1->is_con() && r1->get_con() > 0 )
   546     return TypeLong::make(CONST64(0), r1->get_con(), widen);
   548   return TypeLong::LONG;        // No constants to be had
   549 }
   551 //------------------------------Identity---------------------------------------
   552 // Masking off the high bits of an unsigned load is not required
   553 Node *AndLNode::Identity( PhaseTransform *phase ) {
   555   // x & x => x
   556   if (phase->eqv(in(1), in(2))) return in(1);
   558   Node *usr = in(1);
   559   const TypeLong *t2 = phase->type( in(2) )->isa_long();
   560   if( t2 && t2->is_con() ) {
   561     jlong con = t2->get_con();
   562     // Masking off high bits which are always zero is useless.
   563     const TypeLong* t1 = phase->type( in(1) )->isa_long();
   564     if (t1 != NULL && t1->_lo >= 0) {
   565       jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
   566       if ((t1_support & con) == t1_support)
   567         return usr;
   568     }
   569     uint lop = usr->Opcode();
   570     // Masking off the high bits of a unsigned-shift-right is not
   571     // needed either.
   572     if( lop == Op_URShiftL ) {
   573       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
   574       if( t12 && t12->is_con() ) {  // Shift is by a constant
   575         int shift = t12->get_con();
   576         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
   577         jlong mask = max_julong >> shift;
   578         if( (mask&con) == mask )  // If AND is useless, skip it
   579           return usr;
   580       }
   581     }
   582   }
   583   return MulNode::Identity(phase);
   584 }
   586 //------------------------------Ideal------------------------------------------
   587 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   588   // Special case constant AND mask
   589   const TypeLong *t2 = phase->type( in(2) )->isa_long();
   590   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
   591   const jlong mask = t2->get_con();
   593   Node* in1 = in(1);
   594   uint op = in1->Opcode();
   596   // Masking sign bits off of an integer?  Do an unsigned integer to
   597   // long load.
   598   // NOTE: This check must be *before* we try to convert the AndLNode
   599   // to an AndINode and commute it with ConvI2LNode because
   600   // 0xFFFFFFFFL masks the whole integer and we get a sign extension,
   601   // which is wrong.
   602   if (op == Op_ConvI2L && in1->in(1)->Opcode() == Op_LoadI && mask == CONST64(0x00000000FFFFFFFF)) {
   603     Node* load = in1->in(1);
   604     return new (phase->C, 3) LoadUI2LNode(load->in(MemNode::Control),
   605                                           load->in(MemNode::Memory),
   606                                           load->in(MemNode::Address),
   607                                           load->adr_type());
   608   }
   610   // Are we masking a long that was converted from an int with a mask
   611   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
   612   // convert masks which would cause a sign extension of the integer
   613   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
   614   // would be optimized away later in Identity.
   615   if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) {
   616     Node* andi = new (phase->C, 3) AndINode(in1->in(1), phase->intcon(mask));
   617     andi = phase->transform(andi);
   618     return new (phase->C, 2) ConvI2LNode(andi);
   619   }
   621   // Masking off sign bits?  Dont make them!
   622   if (op == Op_RShiftL) {
   623     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
   624     if( t12 && t12->is_con() ) { // Shift is by a constant
   625       int shift = t12->get_con();
   626       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
   627       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
   628       // If the AND'ing of the 2 masks has no bits, then only original shifted
   629       // bits survive.  NO sign-extension bits survive the maskings.
   630       if( (sign_bits_mask & mask) == 0 ) {
   631         // Use zero-fill shift instead
   632         Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(in1->in(1), in1->in(2)));
   633         return new (phase->C, 3) AndLNode(zshift, in(2));
   634       }
   635     }
   636   }
   638   return MulNode::Ideal(phase, can_reshape);
   639 }
   641 //=============================================================================
   642 //------------------------------Identity---------------------------------------
   643 Node *LShiftINode::Identity( PhaseTransform *phase ) {
   644   const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
   645   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
   646 }
   648 //------------------------------Ideal------------------------------------------
   649 // If the right input is a constant, and the left input is an add of a
   650 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
   651 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   652   const Type *t  = phase->type( in(2) );
   653   if( t == Type::TOP ) return NULL;       // Right input is dead
   654   const TypeInt *t2 = t->isa_int();
   655   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   656   const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
   658   if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
   660   // Left input is an add of a constant?
   661   Node *add1 = in(1);
   662   int add1_op = add1->Opcode();
   663   if( add1_op == Op_AddI ) {    // Left input is an add?
   664     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
   665     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
   666     if( t12 && t12->is_con() ){ // Left input is an add of a con?
   667       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
   668       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
   669       if( con < 16 ) {
   670         // Compute X << con0
   671         Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) );
   672         // Compute X<<con0 + (con1<<con0)
   673         return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con));
   674       }
   675     }
   676   }
   678   // Check for "(x>>c0)<<c0" which just masks off low bits
   679   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
   680       add1->in(2) == in(2) )
   681     // Convert to "(x & -(1<<c0))"
   682     return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con)));
   684   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
   685   if( add1_op == Op_AndI ) {
   686     Node *add2 = add1->in(1);
   687     int add2_op = add2->Opcode();
   688     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
   689         add2->in(2) == in(2) ) {
   690       // Convert to "(x & (Y<<c0))"
   691       Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) );
   692       return new (phase->C, 3) AndINode( add2->in(1), y_sh );
   693     }
   694   }
   696   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
   697   // before shifting them away.
   698   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
   699   if( add1_op == Op_AndI &&
   700       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
   701     return new (phase->C, 3) LShiftINode( add1->in(1), in(2) );
   703   return NULL;
   704 }
   706 //------------------------------Value------------------------------------------
   707 // A LShiftINode shifts its input2 left by input1 amount.
   708 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
   709   const Type *t1 = phase->type( in(1) );
   710   const Type *t2 = phase->type( in(2) );
   711   // Either input is TOP ==> the result is TOP
   712   if( t1 == Type::TOP ) return Type::TOP;
   713   if( t2 == Type::TOP ) return Type::TOP;
   715   // Left input is ZERO ==> the result is ZERO.
   716   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   717   // Shift by zero does nothing
   718   if( t2 == TypeInt::ZERO ) return t1;
   720   // Either input is BOTTOM ==> the result is BOTTOM
   721   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
   722       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   723     return TypeInt::INT;
   725   const TypeInt *r1 = t1->is_int(); // Handy access
   726   const TypeInt *r2 = t2->is_int(); // Handy access
   728   if (!r2->is_con())
   729     return TypeInt::INT;
   731   uint shift = r2->get_con();
   732   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   733   // Shift by a multiple of 32 does nothing:
   734   if (shift == 0)  return t1;
   736   // If the shift is a constant, shift the bounds of the type,
   737   // unless this could lead to an overflow.
   738   if (!r1->is_con()) {
   739     jint lo = r1->_lo, hi = r1->_hi;
   740     if (((lo << shift) >> shift) == lo &&
   741         ((hi << shift) >> shift) == hi) {
   742       // No overflow.  The range shifts up cleanly.
   743       return TypeInt::make((jint)lo << (jint)shift,
   744                            (jint)hi << (jint)shift,
   745                            MAX2(r1->_widen,r2->_widen));
   746     }
   747     return TypeInt::INT;
   748   }
   750   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
   751 }
   753 //=============================================================================
   754 //------------------------------Identity---------------------------------------
   755 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
   756   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
   757   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
   758 }
   760 //------------------------------Ideal------------------------------------------
   761 // If the right input is a constant, and the left input is an add of a
   762 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
   763 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   764   const Type *t  = phase->type( in(2) );
   765   if( t == Type::TOP ) return NULL;       // Right input is dead
   766   const TypeInt *t2 = t->isa_int();
   767   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   768   const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
   770   if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
   772   // Left input is an add of a constant?
   773   Node *add1 = in(1);
   774   int add1_op = add1->Opcode();
   775   if( add1_op == Op_AddL ) {    // Left input is an add?
   776     // Avoid dead data cycles from dead loops
   777     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
   778     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
   779     if( t12 && t12->is_con() ){ // Left input is an add of a con?
   780       // Compute X << con0
   781       Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) );
   782       // Compute X<<con0 + (con1<<con0)
   783       return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con));
   784     }
   785   }
   787   // Check for "(x>>c0)<<c0" which just masks off low bits
   788   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
   789       add1->in(2) == in(2) )
   790     // Convert to "(x & -(1<<c0))"
   791     return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
   793   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
   794   if( add1_op == Op_AndL ) {
   795     Node *add2 = add1->in(1);
   796     int add2_op = add2->Opcode();
   797     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
   798         add2->in(2) == in(2) ) {
   799       // Convert to "(x & (Y<<c0))"
   800       Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) );
   801       return new (phase->C, 3) AndLNode( add2->in(1), y_sh );
   802     }
   803   }
   805   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
   806   // before shifting them away.
   807   const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) - CONST64(1);
   808   if( add1_op == Op_AndL &&
   809       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
   810     return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );
   812   return NULL;
   813 }
   815 //------------------------------Value------------------------------------------
   816 // A LShiftLNode shifts its input2 left by input1 amount.
   817 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
   818   const Type *t1 = phase->type( in(1) );
   819   const Type *t2 = phase->type( in(2) );
   820   // Either input is TOP ==> the result is TOP
   821   if( t1 == Type::TOP ) return Type::TOP;
   822   if( t2 == Type::TOP ) return Type::TOP;
   824   // Left input is ZERO ==> the result is ZERO.
   825   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
   826   // Shift by zero does nothing
   827   if( t2 == TypeInt::ZERO ) return t1;
   829   // Either input is BOTTOM ==> the result is BOTTOM
   830   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
   831       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   832     return TypeLong::LONG;
   834   const TypeLong *r1 = t1->is_long(); // Handy access
   835   const TypeInt  *r2 = t2->is_int();  // Handy access
   837   if (!r2->is_con())
   838     return TypeLong::LONG;
   840   uint shift = r2->get_con();
   841   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
   842   // Shift by a multiple of 64 does nothing:
   843   if (shift == 0)  return t1;
   845   // If the shift is a constant, shift the bounds of the type,
   846   // unless this could lead to an overflow.
   847   if (!r1->is_con()) {
   848     jlong lo = r1->_lo, hi = r1->_hi;
   849     if (((lo << shift) >> shift) == lo &&
   850         ((hi << shift) >> shift) == hi) {
   851       // No overflow.  The range shifts up cleanly.
   852       return TypeLong::make((jlong)lo << (jint)shift,
   853                             (jlong)hi << (jint)shift,
   854                             MAX2(r1->_widen,r2->_widen));
   855     }
   856     return TypeLong::LONG;
   857   }
   859   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
   860 }
   862 //=============================================================================
   863 //------------------------------Identity---------------------------------------
   864 Node *RShiftINode::Identity( PhaseTransform *phase ) {
   865   const TypeInt *t2 = phase->type(in(2))->isa_int();
   866   if( !t2 ) return this;
   867   if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
   868     return in(1);
   870   // Check for useless sign-masking
   871   if( in(1)->Opcode() == Op_LShiftI &&
   872       in(1)->req() == 3 &&
   873       in(1)->in(2) == in(2) &&
   874       t2->is_con() ) {
   875     uint shift = t2->get_con();
   876     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
   877     // Compute masks for which this shifting doesn't change
   878     int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
   879     int hi = ~lo;               // 00007FFF
   880     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
   881     if( !t11 ) return this;
   882     // Does actual value fit inside of mask?
   883     if( lo <= t11->_lo && t11->_hi <= hi )
   884       return in(1)->in(1);      // Then shifting is a nop
   885   }
   887   return this;
   888 }
   890 //------------------------------Ideal------------------------------------------
   891 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   892   // Inputs may be TOP if they are dead.
   893   const TypeInt *t1 = phase->type( in(1) )->isa_int();
   894   if( !t1 ) return NULL;        // Left input is an integer
   895   const TypeInt *t2 = phase->type( in(2) )->isa_int();
   896   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
   897   const TypeInt *t3;  // type of in(1).in(2)
   898   int shift = t2->get_con();
   899   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   901   if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
   903   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
   904   // Such expressions arise normally from shift chains like (byte)(x >> 24).
   905   const Node *mask = in(1);
   906   if( mask->Opcode() == Op_AndI &&
   907       (t3 = phase->type(mask->in(2))->isa_int()) &&
   908       t3->is_con() ) {
   909     Node *x = mask->in(1);
   910     jint maskbits = t3->get_con();
   911     // Convert to "(x >> shift) & (mask >> shift)"
   912     Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) );
   913     return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
   914   }
   916   // Check for "(short[i] <<16)>>16" which simply sign-extends
   917   const Node *shl = in(1);
   918   if( shl->Opcode() != Op_LShiftI ) return NULL;
   920   if( shift == 16 &&
   921       (t3 = phase->type(shl->in(2))->isa_int()) &&
   922       t3->is_con(16) ) {
   923     Node *ld = shl->in(1);
   924     if( ld->Opcode() == Op_LoadS ) {
   925       // Sign extension is just useless here.  Return a RShiftI of zero instead
   926       // returning 'ld' directly.  We cannot return an old Node directly as
   927       // that is the job of 'Identity' calls and Identity calls only work on
   928       // direct inputs ('ld' is an extra Node removed from 'this').  The
   929       // combined optimization requires Identity only return direct inputs.
   930       set_req(1, ld);
   931       set_req(2, phase->intcon(0));
   932       return this;
   933     }
   934     else if( ld->Opcode() == Op_LoadUS )
   935       // Replace zero-extension-load with sign-extension-load
   936       return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
   937                                 ld->in(MemNode::Memory),
   938                                 ld->in(MemNode::Address),
   939                                 ld->adr_type());
   940   }
   942   // Check for "(byte[i] <<24)>>24" which simply sign-extends
   943   if( shift == 24 &&
   944       (t3 = phase->type(shl->in(2))->isa_int()) &&
   945       t3->is_con(24) ) {
   946     Node *ld = shl->in(1);
   947     if( ld->Opcode() == Op_LoadB ) {
   948       // Sign extension is just useless here
   949       set_req(1, ld);
   950       set_req(2, phase->intcon(0));
   951       return this;
   952     }
   953   }
   955   return NULL;
   956 }
   958 //------------------------------Value------------------------------------------
   959 // A RShiftINode shifts its input2 right by input1 amount.
   960 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
   961   const Type *t1 = phase->type( in(1) );
   962   const Type *t2 = phase->type( in(2) );
   963   // Either input is TOP ==> the result is TOP
   964   if( t1 == Type::TOP ) return Type::TOP;
   965   if( t2 == Type::TOP ) return Type::TOP;
   967   // Left input is ZERO ==> the result is ZERO.
   968   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   969   // Shift by zero does nothing
   970   if( t2 == TypeInt::ZERO ) return t1;
   972   // Either input is BOTTOM ==> the result is BOTTOM
   973   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
   974     return TypeInt::INT;
   976   if (t2 == TypeInt::INT)
   977     return TypeInt::INT;
   979   const TypeInt *r1 = t1->is_int(); // Handy access
   980   const TypeInt *r2 = t2->is_int(); // Handy access
   982   // If the shift is a constant, just shift the bounds of the type.
   983   // For example, if the shift is 31, we just propagate sign bits.
   984   if (r2->is_con()) {
   985     uint shift = r2->get_con();
   986     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
   987     // Shift by a multiple of 32 does nothing:
   988     if (shift == 0)  return t1;
   989     // Calculate reasonably aggressive bounds for the result.
   990     // This is necessary if we are to correctly type things
   991     // like (x<<24>>24) == ((byte)x).
   992     jint lo = (jint)r1->_lo >> (jint)shift;
   993     jint hi = (jint)r1->_hi >> (jint)shift;
   994     assert(lo <= hi, "must have valid bounds");
   995     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
   996 #ifdef ASSERT
   997     // Make sure we get the sign-capture idiom correct.
   998     if (shift == BitsPerJavaInteger-1) {
   999       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
  1000       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
  1002 #endif
  1003     return ti;
  1006   if( !r1->is_con() || !r2->is_con() )
  1007     return TypeInt::INT;
  1009   // Signed shift right
  1010   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
  1013 //=============================================================================
  1014 //------------------------------Identity---------------------------------------
  1015 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
  1016   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  1017   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
  1020 //------------------------------Value------------------------------------------
  1021 // A RShiftLNode shifts its input2 right by input1 amount.
  1022 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
  1023   const Type *t1 = phase->type( in(1) );
  1024   const Type *t2 = phase->type( in(2) );
  1025   // Either input is TOP ==> the result is TOP
  1026   if( t1 == Type::TOP ) return Type::TOP;
  1027   if( t2 == Type::TOP ) return Type::TOP;
  1029   // Left input is ZERO ==> the result is ZERO.
  1030   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1031   // Shift by zero does nothing
  1032   if( t2 == TypeInt::ZERO ) return t1;
  1034   // Either input is BOTTOM ==> the result is BOTTOM
  1035   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1036     return TypeLong::LONG;
  1038   if (t2 == TypeInt::INT)
  1039     return TypeLong::LONG;
  1041   const TypeLong *r1 = t1->is_long(); // Handy access
  1042   const TypeInt  *r2 = t2->is_int (); // Handy access
  1044   // If the shift is a constant, just shift the bounds of the type.
  1045   // For example, if the shift is 63, we just propagate sign bits.
  1046   if (r2->is_con()) {
  1047     uint shift = r2->get_con();
  1048     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
  1049     // Shift by a multiple of 64 does nothing:
  1050     if (shift == 0)  return t1;
  1051     // Calculate reasonably aggressive bounds for the result.
  1052     // This is necessary if we are to correctly type things
  1053     // like (x<<24>>24) == ((byte)x).
  1054     jlong lo = (jlong)r1->_lo >> (jlong)shift;
  1055     jlong hi = (jlong)r1->_hi >> (jlong)shift;
  1056     assert(lo <= hi, "must have valid bounds");
  1057     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1058     #ifdef ASSERT
  1059     // Make sure we get the sign-capture idiom correct.
  1060     if (shift == (2*BitsPerJavaInteger)-1) {
  1061       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
  1062       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
  1064     #endif
  1065     return tl;
  1068   return TypeLong::LONG;                // Give up
  1071 //=============================================================================
  1072 //------------------------------Identity---------------------------------------
  1073 Node *URShiftINode::Identity( PhaseTransform *phase ) {
  1074   const TypeInt *ti = phase->type( in(2) )->isa_int();
  1075   if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
  1077   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
  1078   // Happens during new-array length computation.
  1079   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
  1080   Node *add = in(1);
  1081   if( add->Opcode() == Op_AddI ) {
  1082     const TypeInt *t2  = phase->type(add->in(2))->isa_int();
  1083     if( t2 && t2->is_con(wordSize - 1) &&
  1084         add->in(1)->Opcode() == Op_LShiftI ) {
  1085       // Check that shift_counts are LogBytesPerWord
  1086       Node          *lshift_count   = add->in(1)->in(2);
  1087       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
  1088       if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
  1089           t_lshift_count == phase->type(in(2)) ) {
  1090         Node          *x   = add->in(1)->in(1);
  1091         const TypeInt *t_x = phase->type(x)->isa_int();
  1092         if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
  1093           return x;
  1099   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
  1102 //------------------------------Ideal------------------------------------------
  1103 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1104   const TypeInt *t2 = phase->type( in(2) )->isa_int();
  1105   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  1106   const int con = t2->get_con() & 31; // Shift count is always masked
  1107   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  1108   // We'll be wanting the right-shift amount as a mask of that many bits
  1109   const int mask = right_n_bits(BitsPerJavaInteger - con);
  1111   int in1_op = in(1)->Opcode();
  1113   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
  1114   if( in1_op == Op_URShiftI ) {
  1115     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
  1116     if( t12 && t12->is_con() ) { // Right input is a constant
  1117       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
  1118       const int con2 = t12->get_con() & 31; // Shift count is always masked
  1119       const int con3 = con+con2;
  1120       if( con3 < 32 )           // Only merge shifts if total is < 32
  1121         return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) );
  1125   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  1126   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  1127   // If Q is "X << z" the rounding is useless.  Look for patterns like
  1128   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  1129   Node *add = in(1);
  1130   if( in1_op == Op_AddI ) {
  1131     Node *lshl = add->in(1);
  1132     if( lshl->Opcode() == Op_LShiftI &&
  1133         phase->type(lshl->in(2)) == t2 ) {
  1134       Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) );
  1135       Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) );
  1136       return new (phase->C, 3) AndINode( sum, phase->intcon(mask) );
  1140   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  1141   // This shortens the mask.  Also, if we are extracting a high byte and
  1142   // storing it to a buffer, the mask will be removed completely.
  1143   Node *andi = in(1);
  1144   if( in1_op == Op_AndI ) {
  1145     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
  1146     if( t3 && t3->is_con() ) { // Right input is a constant
  1147       jint mask2 = t3->get_con();
  1148       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
  1149       Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) );
  1150       return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2));
  1151       // The negative values are easier to materialize than positive ones.
  1152       // A typical case from address arithmetic is ((x & ~15) >> 4).
  1153       // It's better to change that to ((x >> 4) & ~0) versus
  1154       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
  1158   // Check for "(X << z ) >>> z" which simply zero-extends
  1159   Node *shl = in(1);
  1160   if( in1_op == Op_LShiftI &&
  1161       phase->type(shl->in(2)) == t2 )
  1162     return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) );
  1164   return NULL;
  1167 //------------------------------Value------------------------------------------
  1168 // A URShiftINode shifts its input2 right by input1 amount.
  1169 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
  1170   // (This is a near clone of RShiftINode::Value.)
  1171   const Type *t1 = phase->type( in(1) );
  1172   const Type *t2 = phase->type( in(2) );
  1173   // Either input is TOP ==> the result is TOP
  1174   if( t1 == Type::TOP ) return Type::TOP;
  1175   if( t2 == Type::TOP ) return Type::TOP;
  1177   // Left input is ZERO ==> the result is ZERO.
  1178   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  1179   // Shift by zero does nothing
  1180   if( t2 == TypeInt::ZERO ) return t1;
  1182   // Either input is BOTTOM ==> the result is BOTTOM
  1183   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1184     return TypeInt::INT;
  1186   if (t2 == TypeInt::INT)
  1187     return TypeInt::INT;
  1189   const TypeInt *r1 = t1->is_int();     // Handy access
  1190   const TypeInt *r2 = t2->is_int();     // Handy access
  1192   if (r2->is_con()) {
  1193     uint shift = r2->get_con();
  1194     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
  1195     // Shift by a multiple of 32 does nothing:
  1196     if (shift == 0)  return t1;
  1197     // Calculate reasonably aggressive bounds for the result.
  1198     jint lo = (juint)r1->_lo >> (juint)shift;
  1199     jint hi = (juint)r1->_hi >> (juint)shift;
  1200     if (r1->_hi >= 0 && r1->_lo < 0) {
  1201       // If the type has both negative and positive values,
  1202       // there are two separate sub-domains to worry about:
  1203       // The positive half and the negative half.
  1204       jint neg_lo = lo;
  1205       jint neg_hi = (juint)-1 >> (juint)shift;
  1206       jint pos_lo = (juint) 0 >> (juint)shift;
  1207       jint pos_hi = hi;
  1208       lo = MIN2(neg_lo, pos_lo);  // == 0
  1209       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
  1211     assert(lo <= hi, "must have valid bounds");
  1212     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1213     #ifdef ASSERT
  1214     // Make sure we get the sign-capture idiom correct.
  1215     if (shift == BitsPerJavaInteger-1) {
  1216       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
  1217       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
  1219     #endif
  1220     return ti;
  1223   //
  1224   // Do not support shifted oops in info for GC
  1225   //
  1226   // else if( t1->base() == Type::InstPtr ) {
  1227   //
  1228   //   const TypeInstPtr *o = t1->is_instptr();
  1229   //   if( t1->singleton() )
  1230   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  1231   // }
  1232   // else if( t1->base() == Type::KlassPtr ) {
  1233   //   const TypeKlassPtr *o = t1->is_klassptr();
  1234   //   if( t1->singleton() )
  1235   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
  1236   // }
  1238   return TypeInt::INT;
  1241 //=============================================================================
  1242 //------------------------------Identity---------------------------------------
  1243 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
  1244   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
  1245   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
  1248 //------------------------------Ideal------------------------------------------
  1249 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1250   const TypeInt *t2 = phase->type( in(2) )->isa_int();
  1251   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
  1252   const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
  1253   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
  1254                               // note: mask computation below does not work for 0 shift count
  1255   // We'll be wanting the right-shift amount as a mask of that many bits
  1256   const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) -1);
  1258   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
  1259   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
  1260   // If Q is "X << z" the rounding is useless.  Look for patterns like
  1261   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
  1262   Node *add = in(1);
  1263   if( add->Opcode() == Op_AddL ) {
  1264     Node *lshl = add->in(1);
  1265     if( lshl->Opcode() == Op_LShiftL &&
  1266         phase->type(lshl->in(2)) == t2 ) {
  1267       Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) );
  1268       Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) );
  1269       return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) );
  1273   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
  1274   // This shortens the mask.  Also, if we are extracting a high byte and
  1275   // storing it to a buffer, the mask will be removed completely.
  1276   Node *andi = in(1);
  1277   if( andi->Opcode() == Op_AndL ) {
  1278     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
  1279     if( t3 && t3->is_con() ) { // Right input is a constant
  1280       jlong mask2 = t3->get_con();
  1281       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
  1282       Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) );
  1283       return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2));
  1287   // Check for "(X << z ) >>> z" which simply zero-extends
  1288   Node *shl = in(1);
  1289   if( shl->Opcode() == Op_LShiftL &&
  1290       phase->type(shl->in(2)) == t2 )
  1291     return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) );
  1293   return NULL;
  1296 //------------------------------Value------------------------------------------
  1297 // A URShiftINode shifts its input2 right by input1 amount.
  1298 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
  1299   // (This is a near clone of RShiftLNode::Value.)
  1300   const Type *t1 = phase->type( in(1) );
  1301   const Type *t2 = phase->type( in(2) );
  1302   // Either input is TOP ==> the result is TOP
  1303   if( t1 == Type::TOP ) return Type::TOP;
  1304   if( t2 == Type::TOP ) return Type::TOP;
  1306   // Left input is ZERO ==> the result is ZERO.
  1307   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1308   // Shift by zero does nothing
  1309   if( t2 == TypeInt::ZERO ) return t1;
  1311   // Either input is BOTTOM ==> the result is BOTTOM
  1312   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
  1313     return TypeLong::LONG;
  1315   if (t2 == TypeInt::INT)
  1316     return TypeLong::LONG;
  1318   const TypeLong *r1 = t1->is_long(); // Handy access
  1319   const TypeInt  *r2 = t2->is_int (); // Handy access
  1321   if (r2->is_con()) {
  1322     uint shift = r2->get_con();
  1323     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
  1324     // Shift by a multiple of 64 does nothing:
  1325     if (shift == 0)  return t1;
  1326     // Calculate reasonably aggressive bounds for the result.
  1327     jlong lo = (julong)r1->_lo >> (juint)shift;
  1328     jlong hi = (julong)r1->_hi >> (juint)shift;
  1329     if (r1->_hi >= 0 && r1->_lo < 0) {
  1330       // If the type has both negative and positive values,
  1331       // there are two separate sub-domains to worry about:
  1332       // The positive half and the negative half.
  1333       jlong neg_lo = lo;
  1334       jlong neg_hi = (julong)-1 >> (juint)shift;
  1335       jlong pos_lo = (julong) 0 >> (juint)shift;
  1336       jlong pos_hi = hi;
  1337       //lo = MIN2(neg_lo, pos_lo);  // == 0
  1338       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
  1339       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
  1340       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
  1342     assert(lo <= hi, "must have valid bounds");
  1343     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
  1344     #ifdef ASSERT
  1345     // Make sure we get the sign-capture idiom correct.
  1346     if (shift == BitsPerJavaLong - 1) {
  1347       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
  1348       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
  1350     #endif
  1351     return tl;
  1354   return TypeLong::LONG;                // Give up

mercurial