src/share/vm/opto/lcm.cpp

Mon, 04 Jan 2010 18:38:08 +0100

author
twisti
date
Mon, 04 Jan 2010 18:38:08 +0100
changeset 1570
e66fd840cb6b
parent 1535
f96a1a986f7b
child 1572
97125851f396
permissions
-rw-r--r--

6893081: method handle & invokedynamic code needs additional cleanup (post 6815692, 6858164)
Summary: During the work for 6829187 we have fixed a number of basic bugs which are logically grouped with 6815692 and 6858164 but which must be reviewed and pushed separately.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_lcm.cpp.incl"
    30 //------------------------------implicit_null_check----------------------------
    31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    33 // I can generate a memory op if there is not one nearby.
    34 // The proj is the control projection for the not-null case.
    35 // The val is the pointer being checked for nullness.
    36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    37   // Assume if null check need for 0 offset then always needed
    38   // Intel solaris doesn't support any null checks yet and no
    39   // mechanism exists (yet) to set the switches at an os_cpu level
    40   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    42   // Make sure the ptr-is-null path appears to be uncommon!
    43   float f = end()->as_MachIf()->_prob;
    44   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    45   if( f > PROB_UNLIKELY_MAG(4) ) return;
    47   uint bidx = 0;                // Capture index of value into memop
    48   bool was_store;               // Memory op is a store op
    50   // Get the successor block for if the test ptr is non-null
    51   Block* not_null_block;  // this one goes with the proj
    52   Block* null_block;
    53   if (_nodes[_nodes.size()-1] == proj) {
    54     null_block     = _succs[0];
    55     not_null_block = _succs[1];
    56   } else {
    57     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    58     not_null_block = _succs[0];
    59     null_block     = _succs[1];
    60   }
    61   while (null_block->is_Empty() == Block::empty_with_goto) {
    62     null_block     = null_block->_succs[0];
    63   }
    65   // Search the exception block for an uncommon trap.
    66   // (See Parse::do_if and Parse::do_ifnull for the reason
    67   // we need an uncommon trap.  Briefly, we need a way to
    68   // detect failure of this optimization, as in 6366351.)
    69   {
    70     bool found_trap = false;
    71     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    72       Node* nn = null_block->_nodes[i1];
    73       if (nn->is_MachCall() &&
    74           nn->as_MachCall()->entry_point() ==
    75           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
    76         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
    77         if (trtype->isa_int() && trtype->is_int()->is_con()) {
    78           jint tr_con = trtype->is_int()->get_con();
    79           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
    80           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
    81           assert((int)reason < (int)BitsPerInt, "recode bit map");
    82           if (is_set_nth_bit(allowed_reasons, (int) reason)
    83               && action != Deoptimization::Action_none) {
    84             // This uncommon trap is sure to recompile, eventually.
    85             // When that happens, C->too_many_traps will prevent
    86             // this transformation from happening again.
    87             found_trap = true;
    88           }
    89         }
    90         break;
    91       }
    92     }
    93     if (!found_trap) {
    94       // We did not find an uncommon trap.
    95       return;
    96     }
    97   }
    99   // Search the successor block for a load or store who's base value is also
   100   // the tested value.  There may be several.
   101   Node_List *out = new Node_List(Thread::current()->resource_area());
   102   MachNode *best = NULL;        // Best found so far
   103   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   104     Node *m = val->out(i);
   105     if( !m->is_Mach() ) continue;
   106     MachNode *mach = m->as_Mach();
   107     was_store = false;
   108     switch( mach->ideal_Opcode() ) {
   109     case Op_LoadB:
   110     case Op_LoadUS:
   111     case Op_LoadD:
   112     case Op_LoadF:
   113     case Op_LoadI:
   114     case Op_LoadL:
   115     case Op_LoadP:
   116     case Op_LoadN:
   117     case Op_LoadS:
   118     case Op_LoadKlass:
   119     case Op_LoadNKlass:
   120     case Op_LoadRange:
   121     case Op_LoadD_unaligned:
   122     case Op_LoadL_unaligned:
   123       break;
   124     case Op_StoreB:
   125     case Op_StoreC:
   126     case Op_StoreCM:
   127     case Op_StoreD:
   128     case Op_StoreF:
   129     case Op_StoreI:
   130     case Op_StoreL:
   131     case Op_StoreP:
   132     case Op_StoreN:
   133       was_store = true;         // Memory op is a store op
   134       // Stores will have their address in slot 2 (memory in slot 1).
   135       // If the value being nul-checked is in another slot, it means we
   136       // are storing the checked value, which does NOT check the value!
   137       if( mach->in(2) != val ) continue;
   138       break;                    // Found a memory op?
   139     case Op_StrComp:
   140     case Op_StrEquals:
   141     case Op_StrIndexOf:
   142     case Op_AryEq:
   143       // Not a legit memory op for implicit null check regardless of
   144       // embedded loads
   145       continue;
   146     default:                    // Also check for embedded loads
   147       if( !mach->needs_anti_dependence_check() )
   148         continue;               // Not an memory op; skip it
   149       break;
   150     }
   151     // check if the offset is not too high for implicit exception
   152     {
   153       intptr_t offset = 0;
   154       const TypePtr *adr_type = NULL;  // Do not need this return value here
   155       const Node* base = mach->get_base_and_disp(offset, adr_type);
   156       if (base == NULL || base == NodeSentinel) {
   157         // Narrow oop address doesn't have base, only index
   158         if( val->bottom_type()->isa_narrowoop() &&
   159             MacroAssembler::needs_explicit_null_check(offset) )
   160           continue;             // Give up if offset is beyond page size
   161         // cannot reason about it; is probably not implicit null exception
   162       } else {
   163         const TypePtr* tptr;
   164         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
   165           // 32-bits narrow oop can be the base of address expressions
   166           tptr = base->bottom_type()->make_ptr();
   167         } else {
   168           // only regular oops are expected here
   169           tptr = base->bottom_type()->is_ptr();
   170         }
   171         // Give up if offset is not a compile-time constant
   172         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   173           continue;
   174         offset += tptr->_offset; // correct if base is offseted
   175         if( MacroAssembler::needs_explicit_null_check(offset) )
   176           continue;             // Give up is reference is beyond 4K page size
   177       }
   178     }
   180     // Check ctrl input to see if the null-check dominates the memory op
   181     Block *cb = cfg->_bbs[mach->_idx];
   182     cb = cb->_idom;             // Always hoist at least 1 block
   183     if( !was_store ) {          // Stores can be hoisted only one block
   184       while( cb->_dom_depth > (_dom_depth + 1))
   185         cb = cb->_idom;         // Hoist loads as far as we want
   186       // The non-null-block should dominate the memory op, too. Live
   187       // range spilling will insert a spill in the non-null-block if it is
   188       // needs to spill the memory op for an implicit null check.
   189       if (cb->_dom_depth == (_dom_depth + 1)) {
   190         if (cb != not_null_block) continue;
   191         cb = cb->_idom;
   192       }
   193     }
   194     if( cb != this ) continue;
   196     // Found a memory user; see if it can be hoisted to check-block
   197     uint vidx = 0;              // Capture index of value into memop
   198     uint j;
   199     for( j = mach->req()-1; j > 0; j-- ) {
   200       if( mach->in(j) == val ) vidx = j;
   201       // Block of memory-op input
   202       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   203       Block *b = this;          // Start from nul check
   204       while( b != inb && b->_dom_depth > inb->_dom_depth )
   205         b = b->_idom;           // search upwards for input
   206       // See if input dominates null check
   207       if( b != inb )
   208         break;
   209     }
   210     if( j > 0 )
   211       continue;
   212     Block *mb = cfg->_bbs[mach->_idx];
   213     // Hoisting stores requires more checks for the anti-dependence case.
   214     // Give up hoisting if we have to move the store past any load.
   215     if( was_store ) {
   216       Block *b = mb;            // Start searching here for a local load
   217       // mach use (faulting) trying to hoist
   218       // n might be blocker to hoisting
   219       while( b != this ) {
   220         uint k;
   221         for( k = 1; k < b->_nodes.size(); k++ ) {
   222           Node *n = b->_nodes[k];
   223           if( n->needs_anti_dependence_check() &&
   224               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   225             break;              // Found anti-dependent load
   226         }
   227         if( k < b->_nodes.size() )
   228           break;                // Found anti-dependent load
   229         // Make sure control does not do a merge (would have to check allpaths)
   230         if( b->num_preds() != 2 ) break;
   231         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   232       }
   233       if( b != this ) continue;
   234     }
   236     // Make sure this memory op is not already being used for a NullCheck
   237     Node *e = mb->end();
   238     if( e->is_MachNullCheck() && e->in(1) == mach )
   239       continue;                 // Already being used as a NULL check
   241     // Found a candidate!  Pick one with least dom depth - the highest
   242     // in the dom tree should be closest to the null check.
   243     if( !best ||
   244         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   245       best = mach;
   246       bidx = vidx;
   248     }
   249   }
   250   // No candidate!
   251   if( !best ) return;
   253   // ---- Found an implicit null check
   254   extern int implicit_null_checks;
   255   implicit_null_checks++;
   257   // Hoist the memory candidate up to the end of the test block.
   258   Block *old_block = cfg->_bbs[best->_idx];
   259   old_block->find_remove(best);
   260   add_inst(best);
   261   cfg->_bbs.map(best->_idx,this);
   263   // Move the control dependence
   264   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   265     best->set_req(0, _nodes[0]);
   267   // Check for flag-killing projections that also need to be hoisted
   268   // Should be DU safe because no edge updates.
   269   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   270     Node* n = best->fast_out(j);
   271     if( n->Opcode() == Op_MachProj ) {
   272       cfg->_bbs[n->_idx]->find_remove(n);
   273       add_inst(n);
   274       cfg->_bbs.map(n->_idx,this);
   275     }
   276   }
   278   Compile *C = cfg->C;
   279   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   280   // One of two graph shapes got matched:
   281   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   282   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   283   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   284   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   285   // We need to flip the projections to keep the same semantics.
   286   if( proj->Opcode() == Op_IfTrue ) {
   287     // Swap order of projections in basic block to swap branch targets
   288     Node *tmp1 = _nodes[end_idx()+1];
   289     Node *tmp2 = _nodes[end_idx()+2];
   290     _nodes.map(end_idx()+1, tmp2);
   291     _nodes.map(end_idx()+2, tmp1);
   292     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
   293     tmp1->replace_by(tmp);
   294     tmp2->replace_by(tmp1);
   295     tmp->replace_by(tmp2);
   296     tmp->destruct();
   297   }
   299   // Remove the existing null check; use a new implicit null check instead.
   300   // Since schedule-local needs precise def-use info, we need to correct
   301   // it as well.
   302   Node *old_tst = proj->in(0);
   303   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   304   _nodes.map(end_idx(),nul_chk);
   305   cfg->_bbs.map(nul_chk->_idx,this);
   306   // Redirect users of old_test to nul_chk
   307   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   308     old_tst->last_out(i2)->set_req(0, nul_chk);
   309   // Clean-up any dead code
   310   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   311     old_tst->set_req(i3, NULL);
   313   cfg->latency_from_uses(nul_chk);
   314   cfg->latency_from_uses(best);
   315 }
   318 //------------------------------select-----------------------------------------
   319 // Select a nice fellow from the worklist to schedule next. If there is only
   320 // one choice, then use it. Projections take top priority for correctness
   321 // reasons - if I see a projection, then it is next.  There are a number of
   322 // other special cases, for instructions that consume condition codes, et al.
   323 // These are chosen immediately. Some instructions are required to immediately
   324 // precede the last instruction in the block, and these are taken last. Of the
   325 // remaining cases (most), choose the instruction with the greatest latency
   326 // (that is, the most number of pseudo-cycles required to the end of the
   327 // routine). If there is a tie, choose the instruction with the most inputs.
   328 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
   330   // If only a single entry on the stack, use it
   331   uint cnt = worklist.size();
   332   if (cnt == 1) {
   333     Node *n = worklist[0];
   334     worklist.map(0,worklist.pop());
   335     return n;
   336   }
   338   uint choice  = 0; // Bigger is most important
   339   uint latency = 0; // Bigger is scheduled first
   340   uint score   = 0; // Bigger is better
   341   int idx = -1;     // Index in worklist
   343   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   344     // Order in worklist is used to break ties.
   345     // See caller for how this is used to delay scheduling
   346     // of induction variable increments to after the other
   347     // uses of the phi are scheduled.
   348     Node *n = worklist[i];      // Get Node on worklist
   350     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   351     if( n->is_Proj() ||         // Projections always win
   352         n->Opcode()== Op_Con || // So does constant 'Top'
   353         iop == Op_CreateEx ||   // Create-exception must start block
   354         iop == Op_CheckCastPP
   355         ) {
   356       worklist.map(i,worklist.pop());
   357       return n;
   358     }
   360     // Final call in a block must be adjacent to 'catch'
   361     Node *e = end();
   362     if( e->is_Catch() && e->in(0)->in(0) == n )
   363       continue;
   365     // Memory op for an implicit null check has to be at the end of the block
   366     if( e->is_MachNullCheck() && e->in(1) == n )
   367       continue;
   369     uint n_choice  = 2;
   371     // See if this instruction is consumed by a branch. If so, then (as the
   372     // branch is the last instruction in the basic block) force it to the
   373     // end of the basic block
   374     if ( must_clone[iop] ) {
   375       // See if any use is a branch
   376       bool found_machif = false;
   378       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   379         Node* use = n->fast_out(j);
   381         // The use is a conditional branch, make them adjacent
   382         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   383           found_machif = true;
   384           break;
   385         }
   387         // More than this instruction pending for successor to be ready,
   388         // don't choose this if other opportunities are ready
   389         if (ready_cnt[use->_idx] > 1)
   390           n_choice = 1;
   391       }
   393       // loop terminated, prefer not to use this instruction
   394       if (found_machif)
   395         continue;
   396     }
   398     // See if this has a predecessor that is "must_clone", i.e. sets the
   399     // condition code. If so, choose this first
   400     for (uint j = 0; j < n->req() ; j++) {
   401       Node *inn = n->in(j);
   402       if (inn) {
   403         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   404           n_choice = 3;
   405           break;
   406         }
   407       }
   408     }
   410     // MachTemps should be scheduled last so they are near their uses
   411     if (n->is_MachTemp()) {
   412       n_choice = 1;
   413     }
   415     uint n_latency = cfg->_node_latency.at_grow(n->_idx);
   416     uint n_score   = n->req();   // Many inputs get high score to break ties
   418     // Keep best latency found
   419     if( choice < n_choice ||
   420         ( choice == n_choice &&
   421           ( latency < n_latency ||
   422             ( latency == n_latency &&
   423               ( score < n_score ))))) {
   424       choice  = n_choice;
   425       latency = n_latency;
   426       score   = n_score;
   427       idx     = i;               // Also keep index in worklist
   428     }
   429   } // End of for all ready nodes in worklist
   431   assert(idx >= 0, "index should be set");
   432   Node *n = worklist[(uint)idx];      // Get the winner
   434   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   435   return n;
   436 }
   439 //------------------------------set_next_call----------------------------------
   440 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   441   if( next_call.test_set(n->_idx) ) return;
   442   for( uint i=0; i<n->len(); i++ ) {
   443     Node *m = n->in(i);
   444     if( !m ) continue;  // must see all nodes in block that precede call
   445     if( bbs[m->_idx] == this )
   446       set_next_call( m, next_call, bbs );
   447   }
   448 }
   450 //------------------------------needed_for_next_call---------------------------
   451 // Set the flag 'next_call' for each Node that is needed for the next call to
   452 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   453 // next subroutine call get priority - basically it moves things NOT needed
   454 // for the next call till after the call.  This prevents me from trying to
   455 // carry lots of stuff live across a call.
   456 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   457   // Find the next control-defining Node in this block
   458   Node* call = NULL;
   459   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   460     Node* m = this_call->fast_out(i);
   461     if( bbs[m->_idx] == this && // Local-block user
   462         m != this_call &&       // Not self-start node
   463         m->is_Call() )
   464       call = m;
   465       break;
   466   }
   467   if (call == NULL)  return;    // No next call (e.g., block end is near)
   468   // Set next-call for all inputs to this call
   469   set_next_call(call, next_call, bbs);
   470 }
   472 //------------------------------sched_call-------------------------------------
   473 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   474   RegMask regs;
   476   // Schedule all the users of the call right now.  All the users are
   477   // projection Nodes, so they must be scheduled next to the call.
   478   // Collect all the defined registers.
   479   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   480     Node* n = mcall->fast_out(i);
   481     assert( n->Opcode()==Op_MachProj, "" );
   482     --ready_cnt[n->_idx];
   483     assert( !ready_cnt[n->_idx], "" );
   484     // Schedule next to call
   485     _nodes.map(node_cnt++, n);
   486     // Collect defined registers
   487     regs.OR(n->out_RegMask());
   488     // Check for scheduling the next control-definer
   489     if( n->bottom_type() == Type::CONTROL )
   490       // Warm up next pile of heuristic bits
   491       needed_for_next_call(n, next_call, bbs);
   493     // Children of projections are now all ready
   494     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   495       Node* m = n->fast_out(j); // Get user
   496       if( bbs[m->_idx] != this ) continue;
   497       if( m->is_Phi() ) continue;
   498       if( !--ready_cnt[m->_idx] )
   499         worklist.push(m);
   500     }
   502   }
   504   // Act as if the call defines the Frame Pointer.
   505   // Certainly the FP is alive and well after the call.
   506   regs.Insert(matcher.c_frame_pointer());
   508   // Set all registers killed and not already defined by the call.
   509   uint r_cnt = mcall->tf()->range()->cnt();
   510   int op = mcall->ideal_Opcode();
   511   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   512   bbs.map(proj->_idx,this);
   513   _nodes.insert(node_cnt++, proj);
   515   // Select the right register save policy.
   516   const char * save_policy;
   517   switch (op) {
   518     case Op_CallRuntime:
   519     case Op_CallLeaf:
   520     case Op_CallLeafNoFP:
   521       // Calling C code so use C calling convention
   522       save_policy = matcher._c_reg_save_policy;
   523       break;
   525     case Op_CallStaticJava:
   526     case Op_CallDynamicJava:
   527       // Calling Java code so use Java calling convention
   528       save_policy = matcher._register_save_policy;
   529       break;
   531     default:
   532       ShouldNotReachHere();
   533   }
   535   // When using CallRuntime mark SOE registers as killed by the call
   536   // so values that could show up in the RegisterMap aren't live in a
   537   // callee saved register since the register wouldn't know where to
   538   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   539   // have debug info on them.  Strictly speaking this only needs to be
   540   // done for oops since idealreg2debugmask takes care of debug info
   541   // references but there no way to handle oops differently than other
   542   // pointers as far as the kill mask goes.
   543   bool exclude_soe = op == Op_CallRuntime;
   545   // Fill in the kill mask for the call
   546   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   547     if( !regs.Member(r) ) {     // Not already defined by the call
   548       // Save-on-call register?
   549       if ((save_policy[r] == 'C') ||
   550           (save_policy[r] == 'A') ||
   551           ((save_policy[r] == 'E') && exclude_soe)) {
   552         proj->_rout.Insert(r);
   553       }
   554     }
   555   }
   557   return node_cnt;
   558 }
   561 //------------------------------schedule_local---------------------------------
   562 // Topological sort within a block.  Someday become a real scheduler.
   563 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
   564   // Already "sorted" are the block start Node (as the first entry), and
   565   // the block-ending Node and any trailing control projections.  We leave
   566   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   567   // Node.  Everything else gets topo-sorted.
   569 #ifndef PRODUCT
   570     if (cfg->trace_opto_pipelining()) {
   571       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   572       for (uint i = 0;i < _nodes.size();i++) {
   573         tty->print("# ");
   574         _nodes[i]->fast_dump();
   575       }
   576       tty->print_cr("#");
   577     }
   578 #endif
   580   // RootNode is already sorted
   581   if( _nodes.size() == 1 ) return true;
   583   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   584   uint node_cnt = end_idx();
   585   uint phi_cnt = 1;
   586   uint i;
   587   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   588     Node *n = _nodes[i];
   589     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   590         (n->is_Proj()  && n->in(0) == head()) ) {
   591       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   592       _nodes.map(i,_nodes[phi_cnt]);
   593       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   594     } else {                    // All others
   595       // Count block-local inputs to 'n'
   596       uint cnt = n->len();      // Input count
   597       uint local = 0;
   598       for( uint j=0; j<cnt; j++ ) {
   599         Node *m = n->in(j);
   600         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   601           local++;              // One more block-local input
   602       }
   603       ready_cnt[n->_idx] = local; // Count em up
   605       // A few node types require changing a required edge to a precedence edge
   606       // before allocation.
   607       if( UseConcMarkSweepGC || UseG1GC ) {
   608         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   609           // Note: Required edges with an index greater than oper_input_base
   610           // are not supported by the allocator.
   611           // Note2: Can only depend on unmatched edge being last,
   612           // can not depend on its absolute position.
   613           Node *oop_store = n->in(n->req() - 1);
   614           n->del_req(n->req() - 1);
   615           n->add_prec(oop_store);
   616           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   617         }
   618       }
   619       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   620           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   621            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   622         // MemBarAcquire could be created without Precedent edge.
   623         // del_req() replaces the specified edge with the last input edge
   624         // and then removes the last edge. If the specified edge > number of
   625         // edges the last edge will be moved outside of the input edges array
   626         // and the edge will be lost. This is why this code should be
   627         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   628         Node *x = n->in(TypeFunc::Parms);
   629         n->del_req(TypeFunc::Parms);
   630         n->add_prec(x);
   631       }
   632     }
   633   }
   634   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   635     ready_cnt[_nodes[i2]->_idx] = 0;
   637   // All the prescheduled guys do not hold back internal nodes
   638   uint i3;
   639   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   640     Node *n = _nodes[i3];       // Get pre-scheduled
   641     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   642       Node* m = n->fast_out(j);
   643       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
   644         ready_cnt[m->_idx]--;   // Fix ready count
   645     }
   646   }
   648   Node_List delay;
   649   // Make a worklist
   650   Node_List worklist;
   651   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   652     Node *m = _nodes[i4];
   653     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
   654       if (m->is_iteratively_computed()) {
   655         // Push induction variable increments last to allow other uses
   656         // of the phi to be scheduled first. The select() method breaks
   657         // ties in scheduling by worklist order.
   658         delay.push(m);
   659       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   660         // Force the CreateEx to the top of the list so it's processed
   661         // first and ends up at the start of the block.
   662         worklist.insert(0, m);
   663       } else {
   664         worklist.push(m);         // Then on to worklist!
   665       }
   666     }
   667   }
   668   while (delay.size()) {
   669     Node* d = delay.pop();
   670     worklist.push(d);
   671   }
   673   // Warm up the 'next_call' heuristic bits
   674   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   676 #ifndef PRODUCT
   677     if (cfg->trace_opto_pipelining()) {
   678       for (uint j=0; j<_nodes.size(); j++) {
   679         Node     *n = _nodes[j];
   680         int     idx = n->_idx;
   681         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
   682         tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
   683         tty->print("%4d: %s\n", idx, n->Name());
   684       }
   685     }
   686 #endif
   688   // Pull from worklist and schedule
   689   while( worklist.size() ) {    // Worklist is not ready
   691 #ifndef PRODUCT
   692     if (cfg->trace_opto_pipelining()) {
   693       tty->print("#   ready list:");
   694       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   695         Node *n = worklist[i];      // Get Node on worklist
   696         tty->print(" %d", n->_idx);
   697       }
   698       tty->cr();
   699     }
   700 #endif
   702     // Select and pop a ready guy from worklist
   703     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   704     _nodes.map(phi_cnt++,n);    // Schedule him next
   706 #ifndef PRODUCT
   707     if (cfg->trace_opto_pipelining()) {
   708       tty->print("#    select %d: %s", n->_idx, n->Name());
   709       tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
   710       n->dump();
   711       if (Verbose) {
   712         tty->print("#   ready list:");
   713         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   714           Node *n = worklist[i];      // Get Node on worklist
   715           tty->print(" %d", n->_idx);
   716         }
   717         tty->cr();
   718       }
   719     }
   721 #endif
   722     if( n->is_MachCall() ) {
   723       MachCallNode *mcall = n->as_MachCall();
   724       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   725       continue;
   726     }
   727     // Children are now all ready
   728     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   729       Node* m = n->fast_out(i5); // Get user
   730       if( cfg->_bbs[m->_idx] != this ) continue;
   731       if( m->is_Phi() ) continue;
   732       if( !--ready_cnt[m->_idx] )
   733         worklist.push(m);
   734     }
   735   }
   737   if( phi_cnt != end_idx() ) {
   738     // did not schedule all.  Retry, Bailout, or Die
   739     Compile* C = matcher.C;
   740     if (C->subsume_loads() == true && !C->failing()) {
   741       // Retry with subsume_loads == false
   742       // If this is the first failure, the sentinel string will "stick"
   743       // to the Compile object, and the C2Compiler will see it and retry.
   744       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   745     }
   746     // assert( phi_cnt == end_idx(), "did not schedule all" );
   747     return false;
   748   }
   750 #ifndef PRODUCT
   751   if (cfg->trace_opto_pipelining()) {
   752     tty->print_cr("#");
   753     tty->print_cr("# after schedule_local");
   754     for (uint i = 0;i < _nodes.size();i++) {
   755       tty->print("# ");
   756       _nodes[i]->fast_dump();
   757     }
   758     tty->cr();
   759   }
   760 #endif
   763   return true;
   764 }
   766 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   767 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   768   for (uint l = 0; l < use->len(); l++) {
   769     if (use->in(l) == old_def) {
   770       if (l < use->req()) {
   771         use->set_req(l, new_def);
   772       } else {
   773         use->rm_prec(l);
   774         use->add_prec(new_def);
   775         l--;
   776       }
   777     }
   778   }
   779 }
   781 //------------------------------catch_cleanup_find_cloned_def------------------
   782 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   783   assert( use_blk != def_blk, "Inter-block cleanup only");
   785   // The use is some block below the Catch.  Find and return the clone of the def
   786   // that dominates the use. If there is no clone in a dominating block, then
   787   // create a phi for the def in a dominating block.
   789   // Find which successor block dominates this use.  The successor
   790   // blocks must all be single-entry (from the Catch only; I will have
   791   // split blocks to make this so), hence they all dominate.
   792   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   793     use_blk = use_blk->_idom;
   795   // Find the successor
   796   Node *fixup = NULL;
   798   uint j;
   799   for( j = 0; j < def_blk->_num_succs; j++ )
   800     if( use_blk == def_blk->_succs[j] )
   801       break;
   803   if( j == def_blk->_num_succs ) {
   804     // Block at same level in dom-tree is not a successor.  It needs a
   805     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   806     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   807     for(uint k = 1; k < use_blk->num_preds(); k++) {
   808       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   809     }
   811     // Check to see if the use_blk already has an identical phi inserted.
   812     // If it exists, it will be at the first position since all uses of a
   813     // def are processed together.
   814     Node *phi = use_blk->_nodes[1];
   815     if( phi->is_Phi() ) {
   816       fixup = phi;
   817       for (uint k = 1; k < use_blk->num_preds(); k++) {
   818         if (phi->in(k) != inputs[k]) {
   819           // Not a match
   820           fixup = NULL;
   821           break;
   822         }
   823       }
   824     }
   826     // If an existing PhiNode was not found, make a new one.
   827     if (fixup == NULL) {
   828       Node *new_phi = PhiNode::make(use_blk->head(), def);
   829       use_blk->_nodes.insert(1, new_phi);
   830       bbs.map(new_phi->_idx, use_blk);
   831       for (uint k = 1; k < use_blk->num_preds(); k++) {
   832         new_phi->set_req(k, inputs[k]);
   833       }
   834       fixup = new_phi;
   835     }
   837   } else {
   838     // Found the use just below the Catch.  Make it use the clone.
   839     fixup = use_blk->_nodes[n_clone_idx];
   840   }
   842   return fixup;
   843 }
   845 //--------------------------catch_cleanup_intra_block--------------------------
   846 // Fix all input edges in use that reference "def".  The use is in the same
   847 // block as the def and both have been cloned in each successor block.
   848 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   850   // Both the use and def have been cloned. For each successor block,
   851   // get the clone of the use, and make its input the clone of the def
   852   // found in that block.
   854   uint use_idx = blk->find_node(use);
   855   uint offset_idx = use_idx - beg;
   856   for( uint k = 0; k < blk->_num_succs; k++ ) {
   857     // Get clone in each successor block
   858     Block *sb = blk->_succs[k];
   859     Node *clone = sb->_nodes[offset_idx+1];
   860     assert( clone->Opcode() == use->Opcode(), "" );
   862     // Make use-clone reference the def-clone
   863     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   864   }
   865 }
   867 //------------------------------catch_cleanup_inter_block---------------------
   868 // Fix all input edges in use that reference "def".  The use is in a different
   869 // block than the def.
   870 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   871   if( !use_blk ) return;        // Can happen if the use is a precedence edge
   873   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
   874   catch_cleanup_fix_all_inputs(use, def, new_def);
   875 }
   877 //------------------------------call_catch_cleanup-----------------------------
   878 // If we inserted any instructions between a Call and his CatchNode,
   879 // clone the instructions on all paths below the Catch.
   880 void Block::call_catch_cleanup(Block_Array &bbs) {
   882   // End of region to clone
   883   uint end = end_idx();
   884   if( !_nodes[end]->is_Catch() ) return;
   885   // Start of region to clone
   886   uint beg = end;
   887   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
   888         !_nodes[beg-1]->in(0)->is_Call() ) {
   889     beg--;
   890     assert(beg > 0,"Catch cleanup walking beyond block boundary");
   891   }
   892   // Range of inserted instructions is [beg, end)
   893   if( beg == end ) return;
   895   // Clone along all Catch output paths.  Clone area between the 'beg' and
   896   // 'end' indices.
   897   for( uint i = 0; i < _num_succs; i++ ) {
   898     Block *sb = _succs[i];
   899     // Clone the entire area; ignoring the edge fixup for now.
   900     for( uint j = end; j > beg; j-- ) {
   901       Node *clone = _nodes[j-1]->clone();
   902       sb->_nodes.insert( 1, clone );
   903       bbs.map(clone->_idx,sb);
   904     }
   905   }
   908   // Fixup edges.  Check the def-use info per cloned Node
   909   for(uint i2 = beg; i2 < end; i2++ ) {
   910     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
   911     Node *n = _nodes[i2];        // Node that got cloned
   912     // Need DU safe iterator because of edge manipulation in calls.
   913     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
   914     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
   915       out->push(n->fast_out(j1));
   916     }
   917     uint max = out->size();
   918     for (uint j = 0; j < max; j++) {// For all users
   919       Node *use = out->pop();
   920       Block *buse = bbs[use->_idx];
   921       if( use->is_Phi() ) {
   922         for( uint k = 1; k < use->req(); k++ )
   923           if( use->in(k) == n ) {
   924             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
   925             use->set_req(k, fixup);
   926           }
   927       } else {
   928         if (this == buse) {
   929           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
   930         } else {
   931           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
   932         }
   933       }
   934     } // End for all users
   936   } // End of for all Nodes in cloned area
   938   // Remove the now-dead cloned ops
   939   for(uint i3 = beg; i3 < end; i3++ ) {
   940     _nodes[beg]->disconnect_inputs(NULL);
   941     _nodes.remove(beg);
   942   }
   944   // If the successor blocks have a CreateEx node, move it back to the top
   945   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
   946     Block *sb = _succs[i4];
   947     uint new_cnt = end - beg;
   948     // Remove any newly created, but dead, nodes.
   949     for( uint j = new_cnt; j > 0; j-- ) {
   950       Node *n = sb->_nodes[j];
   951       if (n->outcnt() == 0 &&
   952           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
   953         n->disconnect_inputs(NULL);
   954         sb->_nodes.remove(j);
   955         new_cnt--;
   956       }
   957     }
   958     // If any newly created nodes remain, move the CreateEx node to the top
   959     if (new_cnt > 0) {
   960       Node *cex = sb->_nodes[1+new_cnt];
   961       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   962         sb->_nodes.remove(1+new_cnt);
   963         sb->_nodes.insert(1,cex);
   964       }
   965     }
   966   }
   967 }

mercurial