src/cpu/x86/vm/x86_64.ad

Mon, 04 Jan 2010 18:38:08 +0100

author
twisti
date
Mon, 04 Jan 2010 18:38:08 +0100
changeset 1570
e66fd840cb6b
parent 1424
148e5441d916
child 1572
97125851f396
permissions
-rw-r--r--

6893081: method handle & invokedynamic code needs additional cleanup (post 6815692, 6858164)
Summary: During the work for 6829187 we have fixed a number of basic bugs which are logically grouped with 6815692 and 6858164 but which must be reviewed and pushed separately.
Reviewed-by: kvn, never

     1 //
     2 // Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // AMD64 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
    64 // used as byte registers)
    66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
    67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
    70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
    71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
    73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
    74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
    76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
    77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
    79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
    80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
    82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
    83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
    85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
    86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
    87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
    89 #ifdef _WIN64
    91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
    92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
    94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
    95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
    97 #else
    99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
   100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
   102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
   103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
   105 #endif
   107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
   108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
   110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
   111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
   113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
   114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
   116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
   117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
   119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
   120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
   122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
   123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
   125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
   126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
   128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
   129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
   132 // Floating Point Registers
   134 // XMM registers.  128-bit registers or 4 words each, labeled (a)-d.
   135 // Word a in each register holds a Float, words ab hold a Double.  We
   136 // currently do not use the SIMD capabilities, so registers cd are
   137 // unused at the moment.
   138 // XMM8-XMM15 must be encoded with REX.
   139 // Linux ABI:   No register preserved across function calls
   140 //              XMM0-XMM7 might hold parameters
   141 // Windows ABI: XMM6-XMM15 preserved across function calls
   142 //              XMM0-XMM3 might hold parameters
   144 reg_def XMM0   (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg());
   145 reg_def XMM0_H (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg()->next());
   147 reg_def XMM1   (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg());
   148 reg_def XMM1_H (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg()->next());
   150 reg_def XMM2   (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg());
   151 reg_def XMM2_H (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg()->next());
   153 reg_def XMM3   (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg());
   154 reg_def XMM3_H (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg()->next());
   156 reg_def XMM4   (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg());
   157 reg_def XMM4_H (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg()->next());
   159 reg_def XMM5   (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg());
   160 reg_def XMM5_H (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg()->next());
   162 #ifdef _WIN64
   164 reg_def XMM6   (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg());
   165 reg_def XMM6_H (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg()->next());
   167 reg_def XMM7   (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg());
   168 reg_def XMM7_H (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg()->next());
   170 reg_def XMM8   (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg());
   171 reg_def XMM8_H (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg()->next());
   173 reg_def XMM9   (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg());
   174 reg_def XMM9_H (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg()->next());
   176 reg_def XMM10  (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
   177 reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
   179 reg_def XMM11  (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
   180 reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
   182 reg_def XMM12  (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
   183 reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
   185 reg_def XMM13  (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
   186 reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
   188 reg_def XMM14  (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
   189 reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
   191 reg_def XMM15  (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
   192 reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
   194 #else
   196 reg_def XMM6   (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg());
   197 reg_def XMM6_H (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg()->next());
   199 reg_def XMM7   (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg());
   200 reg_def XMM7_H (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg()->next());
   202 reg_def XMM8   (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg());
   203 reg_def XMM8_H (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg()->next());
   205 reg_def XMM9   (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg());
   206 reg_def XMM9_H (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg()->next());
   208 reg_def XMM10  (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
   209 reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
   211 reg_def XMM11  (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
   212 reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
   214 reg_def XMM12  (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
   215 reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
   217 reg_def XMM13  (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
   218 reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
   220 reg_def XMM14  (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
   221 reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
   223 reg_def XMM15  (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
   224 reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
   226 #endif // _WIN64
   228 reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
   230 // Specify priority of register selection within phases of register
   231 // allocation.  Highest priority is first.  A useful heuristic is to
   232 // give registers a low priority when they are required by machine
   233 // instructions, like EAX and EDX on I486, and choose no-save registers
   234 // before save-on-call, & save-on-call before save-on-entry.  Registers
   235 // which participate in fixed calling sequences should come last.
   236 // Registers which are used as pairs must fall on an even boundary.
   238 alloc_class chunk0(R10,         R10_H,
   239                    R11,         R11_H,
   240                    R8,          R8_H,
   241                    R9,          R9_H,
   242                    R12,         R12_H,
   243                    RCX,         RCX_H,
   244                    RBX,         RBX_H,
   245                    RDI,         RDI_H,
   246                    RDX,         RDX_H,
   247                    RSI,         RSI_H,
   248                    RAX,         RAX_H,
   249                    RBP,         RBP_H,
   250                    R13,         R13_H,
   251                    R14,         R14_H,
   252                    R15,         R15_H,
   253                    RSP,         RSP_H);
   255 // XXX probably use 8-15 first on Linux
   256 alloc_class chunk1(XMM0,  XMM0_H,
   257                    XMM1,  XMM1_H,
   258                    XMM2,  XMM2_H,
   259                    XMM3,  XMM3_H,
   260                    XMM4,  XMM4_H,
   261                    XMM5,  XMM5_H,
   262                    XMM6,  XMM6_H,
   263                    XMM7,  XMM7_H,
   264                    XMM8,  XMM8_H,
   265                    XMM9,  XMM9_H,
   266                    XMM10, XMM10_H,
   267                    XMM11, XMM11_H,
   268                    XMM12, XMM12_H,
   269                    XMM13, XMM13_H,
   270                    XMM14, XMM14_H,
   271                    XMM15, XMM15_H);
   273 alloc_class chunk2(RFLAGS);
   276 //----------Architecture Description Register Classes--------------------------
   277 // Several register classes are automatically defined based upon information in
   278 // this architecture description.
   279 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   280 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   281 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // Class for all pointer registers (including RSP)
   286 reg_class any_reg(RAX, RAX_H,
   287                   RDX, RDX_H,
   288                   RBP, RBP_H,
   289                   RDI, RDI_H,
   290                   RSI, RSI_H,
   291                   RCX, RCX_H,
   292                   RBX, RBX_H,
   293                   RSP, RSP_H,
   294                   R8,  R8_H,
   295                   R9,  R9_H,
   296                   R10, R10_H,
   297                   R11, R11_H,
   298                   R12, R12_H,
   299                   R13, R13_H,
   300                   R14, R14_H,
   301                   R15, R15_H);
   303 // Class for all pointer registers except RSP
   304 reg_class ptr_reg(RAX, RAX_H,
   305                   RDX, RDX_H,
   306                   RBP, RBP_H,
   307                   RDI, RDI_H,
   308                   RSI, RSI_H,
   309                   RCX, RCX_H,
   310                   RBX, RBX_H,
   311                   R8,  R8_H,
   312                   R9,  R9_H,
   313                   R10, R10_H,
   314                   R11, R11_H,
   315                   R13, R13_H,
   316                   R14, R14_H);
   318 // Class for all pointer registers except RAX and RSP
   319 reg_class ptr_no_rax_reg(RDX, RDX_H,
   320                          RBP, RBP_H,
   321                          RDI, RDI_H,
   322                          RSI, RSI_H,
   323                          RCX, RCX_H,
   324                          RBX, RBX_H,
   325                          R8,  R8_H,
   326                          R9,  R9_H,
   327                          R10, R10_H,
   328                          R11, R11_H,
   329                          R13, R13_H,
   330                          R14, R14_H);
   332 reg_class ptr_no_rbp_reg(RDX, RDX_H,
   333                          RAX, RAX_H,
   334                          RDI, RDI_H,
   335                          RSI, RSI_H,
   336                          RCX, RCX_H,
   337                          RBX, RBX_H,
   338                          R8,  R8_H,
   339                          R9,  R9_H,
   340                          R10, R10_H,
   341                          R11, R11_H,
   342                          R13, R13_H,
   343                          R14, R14_H);
   345 // Class for all pointer registers except RAX, RBX and RSP
   346 reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
   347                              RBP, RBP_H,
   348                              RDI, RDI_H,
   349                              RSI, RSI_H,
   350                              RCX, RCX_H,
   351                              R8,  R8_H,
   352                              R9,  R9_H,
   353                              R10, R10_H,
   354                              R11, R11_H,
   355                              R13, R13_H,
   356                              R14, R14_H);
   358 // Singleton class for RAX pointer register
   359 reg_class ptr_rax_reg(RAX, RAX_H);
   361 // Singleton class for RBX pointer register
   362 reg_class ptr_rbx_reg(RBX, RBX_H);
   364 // Singleton class for RSI pointer register
   365 reg_class ptr_rsi_reg(RSI, RSI_H);
   367 // Singleton class for RDI pointer register
   368 reg_class ptr_rdi_reg(RDI, RDI_H);
   370 // Singleton class for RBP pointer register
   371 reg_class ptr_rbp_reg(RBP, RBP_H);
   373 // Singleton class for stack pointer
   374 reg_class ptr_rsp_reg(RSP, RSP_H);
   376 // Singleton class for TLS pointer
   377 reg_class ptr_r15_reg(R15, R15_H);
   379 // Class for all long registers (except RSP)
   380 reg_class long_reg(RAX, RAX_H,
   381                    RDX, RDX_H,
   382                    RBP, RBP_H,
   383                    RDI, RDI_H,
   384                    RSI, RSI_H,
   385                    RCX, RCX_H,
   386                    RBX, RBX_H,
   387                    R8,  R8_H,
   388                    R9,  R9_H,
   389                    R10, R10_H,
   390                    R11, R11_H,
   391                    R13, R13_H,
   392                    R14, R14_H);
   394 // Class for all long registers except RAX, RDX (and RSP)
   395 reg_class long_no_rax_rdx_reg(RBP, RBP_H,
   396                               RDI, RDI_H,
   397                               RSI, RSI_H,
   398                               RCX, RCX_H,
   399                               RBX, RBX_H,
   400                               R8,  R8_H,
   401                               R9,  R9_H,
   402                               R10, R10_H,
   403                               R11, R11_H,
   404                               R13, R13_H,
   405                               R14, R14_H);
   407 // Class for all long registers except RCX (and RSP)
   408 reg_class long_no_rcx_reg(RBP, RBP_H,
   409                           RDI, RDI_H,
   410                           RSI, RSI_H,
   411                           RAX, RAX_H,
   412                           RDX, RDX_H,
   413                           RBX, RBX_H,
   414                           R8,  R8_H,
   415                           R9,  R9_H,
   416                           R10, R10_H,
   417                           R11, R11_H,
   418                           R13, R13_H,
   419                           R14, R14_H);
   421 // Class for all long registers except RAX (and RSP)
   422 reg_class long_no_rax_reg(RBP, RBP_H,
   423                           RDX, RDX_H,
   424                           RDI, RDI_H,
   425                           RSI, RSI_H,
   426                           RCX, RCX_H,
   427                           RBX, RBX_H,
   428                           R8,  R8_H,
   429                           R9,  R9_H,
   430                           R10, R10_H,
   431                           R11, R11_H,
   432                           R13, R13_H,
   433                           R14, R14_H);
   435 // Singleton class for RAX long register
   436 reg_class long_rax_reg(RAX, RAX_H);
   438 // Singleton class for RCX long register
   439 reg_class long_rcx_reg(RCX, RCX_H);
   441 // Singleton class for RDX long register
   442 reg_class long_rdx_reg(RDX, RDX_H);
   444 // Class for all int registers (except RSP)
   445 reg_class int_reg(RAX,
   446                   RDX,
   447                   RBP,
   448                   RDI,
   449                   RSI,
   450                   RCX,
   451                   RBX,
   452                   R8,
   453                   R9,
   454                   R10,
   455                   R11,
   456                   R13,
   457                   R14);
   459 // Class for all int registers except RCX (and RSP)
   460 reg_class int_no_rcx_reg(RAX,
   461                          RDX,
   462                          RBP,
   463                          RDI,
   464                          RSI,
   465                          RBX,
   466                          R8,
   467                          R9,
   468                          R10,
   469                          R11,
   470                          R13,
   471                          R14);
   473 // Class for all int registers except RAX, RDX (and RSP)
   474 reg_class int_no_rax_rdx_reg(RBP,
   475                              RDI,
   476                              RSI,
   477                              RCX,
   478                              RBX,
   479                              R8,
   480                              R9,
   481                              R10,
   482                              R11,
   483                              R13,
   484                              R14);
   486 // Singleton class for RAX int register
   487 reg_class int_rax_reg(RAX);
   489 // Singleton class for RBX int register
   490 reg_class int_rbx_reg(RBX);
   492 // Singleton class for RCX int register
   493 reg_class int_rcx_reg(RCX);
   495 // Singleton class for RCX int register
   496 reg_class int_rdx_reg(RDX);
   498 // Singleton class for RCX int register
   499 reg_class int_rdi_reg(RDI);
   501 // Singleton class for instruction pointer
   502 // reg_class ip_reg(RIP);
   504 // Singleton class for condition codes
   505 reg_class int_flags(RFLAGS);
   507 // Class for all float registers
   508 reg_class float_reg(XMM0,
   509                     XMM1,
   510                     XMM2,
   511                     XMM3,
   512                     XMM4,
   513                     XMM5,
   514                     XMM6,
   515                     XMM7,
   516                     XMM8,
   517                     XMM9,
   518                     XMM10,
   519                     XMM11,
   520                     XMM12,
   521                     XMM13,
   522                     XMM14,
   523                     XMM15);
   525 // Class for all double registers
   526 reg_class double_reg(XMM0,  XMM0_H,
   527                      XMM1,  XMM1_H,
   528                      XMM2,  XMM2_H,
   529                      XMM3,  XMM3_H,
   530                      XMM4,  XMM4_H,
   531                      XMM5,  XMM5_H,
   532                      XMM6,  XMM6_H,
   533                      XMM7,  XMM7_H,
   534                      XMM8,  XMM8_H,
   535                      XMM9,  XMM9_H,
   536                      XMM10, XMM10_H,
   537                      XMM11, XMM11_H,
   538                      XMM12, XMM12_H,
   539                      XMM13, XMM13_H,
   540                      XMM14, XMM14_H,
   541                      XMM15, XMM15_H);
   542 %}
   545 //----------SOURCE BLOCK-------------------------------------------------------
   546 // This is a block of C++ code which provides values, functions, and
   547 // definitions necessary in the rest of the architecture description
   548 source %{
   549 #define   RELOC_IMM64    Assembler::imm_operand
   550 #define   RELOC_DISP32   Assembler::disp32_operand
   552 #define __ _masm.
   554 // !!!!! Special hack to get all types of calls to specify the byte offset
   555 //       from the start of the call to the point where the return address
   556 //       will point.
   557 int MachCallStaticJavaNode::ret_addr_offset()
   558 {
   559   return 5; // 5 bytes from start of call to where return address points
   560 }
   562 int MachCallDynamicJavaNode::ret_addr_offset()
   563 {
   564   return 15; // 15 bytes from start of call to where return address points
   565 }
   567 // In os_cpu .ad file
   568 // int MachCallRuntimeNode::ret_addr_offset()
   570 // Indicate if the safepoint node needs the polling page as an input.
   571 // Since amd64 does not have absolute addressing but RIP-relative
   572 // addressing and the polling page is within 2G, it doesn't.
   573 bool SafePointNode::needs_polling_address_input()
   574 {
   575   return false;
   576 }
   578 //
   579 // Compute padding required for nodes which need alignment
   580 //
   582 // The address of the call instruction needs to be 4-byte aligned to
   583 // ensure that it does not span a cache line so that it can be patched.
   584 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
   585 {
   586   current_offset += 1; // skip call opcode byte
   587   return round_to(current_offset, alignment_required()) - current_offset;
   588 }
   590 // The address of the call instruction needs to be 4-byte aligned to
   591 // ensure that it does not span a cache line so that it can be patched.
   592 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
   593 {
   594   current_offset += 11; // skip movq instruction + call opcode byte
   595   return round_to(current_offset, alignment_required()) - current_offset;
   596 }
   598 #ifndef PRODUCT
   599 void MachBreakpointNode::format(PhaseRegAlloc*, outputStream* st) const
   600 {
   601   st->print("INT3");
   602 }
   603 #endif
   605 // EMIT_RM()
   606 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3)
   607 {
   608   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
   609   *(cbuf.code_end()) = c;
   610   cbuf.set_code_end(cbuf.code_end() + 1);
   611 }
   613 // EMIT_CC()
   614 void emit_cc(CodeBuffer &cbuf, int f1, int f2)
   615 {
   616   unsigned char c = (unsigned char) (f1 | f2);
   617   *(cbuf.code_end()) = c;
   618   cbuf.set_code_end(cbuf.code_end() + 1);
   619 }
   621 // EMIT_OPCODE()
   622 void emit_opcode(CodeBuffer &cbuf, int code)
   623 {
   624   *(cbuf.code_end()) = (unsigned char) code;
   625   cbuf.set_code_end(cbuf.code_end() + 1);
   626 }
   628 // EMIT_OPCODE() w/ relocation information
   629 void emit_opcode(CodeBuffer &cbuf,
   630                  int code, relocInfo::relocType reloc, int offset, int format)
   631 {
   632   cbuf.relocate(cbuf.inst_mark() + offset, reloc, format);
   633   emit_opcode(cbuf, code);
   634 }
   636 // EMIT_D8()
   637 void emit_d8(CodeBuffer &cbuf, int d8)
   638 {
   639   *(cbuf.code_end()) = (unsigned char) d8;
   640   cbuf.set_code_end(cbuf.code_end() + 1);
   641 }
   643 // EMIT_D16()
   644 void emit_d16(CodeBuffer &cbuf, int d16)
   645 {
   646   *((short *)(cbuf.code_end())) = d16;
   647   cbuf.set_code_end(cbuf.code_end() + 2);
   648 }
   650 // EMIT_D32()
   651 void emit_d32(CodeBuffer &cbuf, int d32)
   652 {
   653   *((int *)(cbuf.code_end())) = d32;
   654   cbuf.set_code_end(cbuf.code_end() + 4);
   655 }
   657 // EMIT_D64()
   658 void emit_d64(CodeBuffer &cbuf, int64_t d64)
   659 {
   660   *((int64_t*) (cbuf.code_end())) = d64;
   661   cbuf.set_code_end(cbuf.code_end() + 8);
   662 }
   664 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   665 void emit_d32_reloc(CodeBuffer& cbuf,
   666                     int d32,
   667                     relocInfo::relocType reloc,
   668                     int format)
   669 {
   670   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
   671   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   673   *((int*) (cbuf.code_end())) = d32;
   674   cbuf.set_code_end(cbuf.code_end() + 4);
   675 }
   677 // emit 32 bit value and construct relocation entry from RelocationHolder
   678 void emit_d32_reloc(CodeBuffer& cbuf,
   679                     int d32,
   680                     RelocationHolder const& rspec,
   681                     int format)
   682 {
   683 #ifdef ASSERT
   684   if (rspec.reloc()->type() == relocInfo::oop_type &&
   685       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
   686     assert(oop((intptr_t)d32)->is_oop() && (ScavengeRootsInCode || !oop((intptr_t)d32)->is_scavengable()), "cannot embed scavengable oops in code");
   687   }
   688 #endif
   689   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   691   *((int* )(cbuf.code_end())) = d32;
   692   cbuf.set_code_end(cbuf.code_end() + 4);
   693 }
   695 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
   696   address next_ip = cbuf.code_end() + 4;
   697   emit_d32_reloc(cbuf, (int) (addr - next_ip),
   698                  external_word_Relocation::spec(addr),
   699                  RELOC_DISP32);
   700 }
   703 // emit 64 bit value and construct relocation entry from relocInfo::relocType
   704 void emit_d64_reloc(CodeBuffer& cbuf,
   705                     int64_t d64,
   706                     relocInfo::relocType reloc,
   707                     int format)
   708 {
   709   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   711   *((int64_t*) (cbuf.code_end())) = d64;
   712   cbuf.set_code_end(cbuf.code_end() + 8);
   713 }
   715 // emit 64 bit value and construct relocation entry from RelocationHolder
   716 void emit_d64_reloc(CodeBuffer& cbuf,
   717                     int64_t d64,
   718                     RelocationHolder const& rspec,
   719                     int format)
   720 {
   721 #ifdef ASSERT
   722   if (rspec.reloc()->type() == relocInfo::oop_type &&
   723       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
   724     assert(oop(d64)->is_oop() && (ScavengeRootsInCode || !oop(d64)->is_scavengable()),
   725            "cannot embed scavengable oops in code");
   726   }
   727 #endif
   728   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   730   *((int64_t*) (cbuf.code_end())) = d64;
   731   cbuf.set_code_end(cbuf.code_end() + 8);
   732 }
   734 // Access stack slot for load or store
   735 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
   736 {
   737   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
   738   if (-0x80 <= disp && disp < 0x80) {
   739     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
   740     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   741     emit_d8(cbuf, disp);     // Displacement  // R/M byte
   742   } else {
   743     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
   744     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   745     emit_d32(cbuf, disp);     // Displacement // R/M byte
   746   }
   747 }
   749    // rRegI ereg, memory mem) %{    // emit_reg_mem
   750 void encode_RegMem(CodeBuffer &cbuf,
   751                    int reg,
   752                    int base, int index, int scale, int disp, bool disp_is_oop)
   753 {
   754   assert(!disp_is_oop, "cannot have disp");
   755   int regenc = reg & 7;
   756   int baseenc = base & 7;
   757   int indexenc = index & 7;
   759   // There is no index & no scale, use form without SIB byte
   760   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
   761     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   762     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   763       emit_rm(cbuf, 0x0, regenc, baseenc); // *
   764     } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   765       // If 8-bit displacement, mode 0x1
   766       emit_rm(cbuf, 0x1, regenc, baseenc); // *
   767       emit_d8(cbuf, disp);
   768     } else {
   769       // If 32-bit displacement
   770       if (base == -1) { // Special flag for absolute address
   771         emit_rm(cbuf, 0x0, regenc, 0x5); // *
   772         if (disp_is_oop) {
   773           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   774         } else {
   775           emit_d32(cbuf, disp);
   776         }
   777       } else {
   778         // Normal base + offset
   779         emit_rm(cbuf, 0x2, regenc, baseenc); // *
   780         if (disp_is_oop) {
   781           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   782         } else {
   783           emit_d32(cbuf, disp);
   784         }
   785       }
   786     }
   787   } else {
   788     // Else, encode with the SIB byte
   789     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   790     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   791       // If no displacement
   792       emit_rm(cbuf, 0x0, regenc, 0x4); // *
   793       emit_rm(cbuf, scale, indexenc, baseenc);
   794     } else {
   795       if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   796         // If 8-bit displacement, mode 0x1
   797         emit_rm(cbuf, 0x1, regenc, 0x4); // *
   798         emit_rm(cbuf, scale, indexenc, baseenc);
   799         emit_d8(cbuf, disp);
   800       } else {
   801         // If 32-bit displacement
   802         if (base == 0x04 ) {
   803           emit_rm(cbuf, 0x2, regenc, 0x4);
   804           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
   805         } else {
   806           emit_rm(cbuf, 0x2, regenc, 0x4);
   807           emit_rm(cbuf, scale, indexenc, baseenc); // *
   808         }
   809         if (disp_is_oop) {
   810           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   811         } else {
   812           emit_d32(cbuf, disp);
   813         }
   814       }
   815     }
   816   }
   817 }
   819 void encode_copy(CodeBuffer &cbuf, int dstenc, int srcenc)
   820 {
   821   if (dstenc != srcenc) {
   822     if (dstenc < 8) {
   823       if (srcenc >= 8) {
   824         emit_opcode(cbuf, Assembler::REX_B);
   825         srcenc -= 8;
   826       }
   827     } else {
   828       if (srcenc < 8) {
   829         emit_opcode(cbuf, Assembler::REX_R);
   830       } else {
   831         emit_opcode(cbuf, Assembler::REX_RB);
   832         srcenc -= 8;
   833       }
   834       dstenc -= 8;
   835     }
   837     emit_opcode(cbuf, 0x8B);
   838     emit_rm(cbuf, 0x3, dstenc, srcenc);
   839   }
   840 }
   842 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   843   if( dst_encoding == src_encoding ) {
   844     // reg-reg copy, use an empty encoding
   845   } else {
   846     MacroAssembler _masm(&cbuf);
   848     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   849   }
   850 }
   853 //=============================================================================
   854 #ifndef PRODUCT
   855 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   856 {
   857   Compile* C = ra_->C;
   859   int framesize = C->frame_slots() << LogBytesPerInt;
   860   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   861   // Remove wordSize for return adr already pushed
   862   // and another for the RBP we are going to save
   863   framesize -= 2*wordSize;
   864   bool need_nop = true;
   866   // Calls to C2R adapters often do not accept exceptional returns.
   867   // We require that their callers must bang for them.  But be
   868   // careful, because some VM calls (such as call site linkage) can
   869   // use several kilobytes of stack.  But the stack safety zone should
   870   // account for that.  See bugs 4446381, 4468289, 4497237.
   871   if (C->need_stack_bang(framesize)) {
   872     st->print_cr("# stack bang"); st->print("\t");
   873     need_nop = false;
   874   }
   875   st->print_cr("pushq   rbp"); st->print("\t");
   877   if (VerifyStackAtCalls) {
   878     // Majik cookie to verify stack depth
   879     st->print_cr("pushq   0xffffffffbadb100d"
   880                   "\t# Majik cookie for stack depth check");
   881     st->print("\t");
   882     framesize -= wordSize; // Remove 2 for cookie
   883     need_nop = false;
   884   }
   886   if (framesize) {
   887     st->print("subq    rsp, #%d\t# Create frame", framesize);
   888     if (framesize < 0x80 && need_nop) {
   889       st->print("\n\tnop\t# nop for patch_verified_entry");
   890     }
   891   }
   892 }
   893 #endif
   895 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
   896 {
   897   Compile* C = ra_->C;
   899   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   900   // NativeJump::patch_verified_entry will be able to patch out the entry
   901   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   902   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   903   // 6 bytes. So if we don't do the fldcw or the push then we must
   904   // use the 6 byte frame allocation even if we have no frame. :-(
   905   // If method sets FPU control word do it now
   907   int framesize = C->frame_slots() << LogBytesPerInt;
   908   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   909   // Remove wordSize for return adr already pushed
   910   // and another for the RBP we are going to save
   911   framesize -= 2*wordSize;
   912   bool need_nop = true;
   914   // Calls to C2R adapters often do not accept exceptional returns.
   915   // We require that their callers must bang for them.  But be
   916   // careful, because some VM calls (such as call site linkage) can
   917   // use several kilobytes of stack.  But the stack safety zone should
   918   // account for that.  See bugs 4446381, 4468289, 4497237.
   919   if (C->need_stack_bang(framesize)) {
   920     MacroAssembler masm(&cbuf);
   921     masm.generate_stack_overflow_check(framesize);
   922     need_nop = false;
   923   }
   925   // We always push rbp so that on return to interpreter rbp will be
   926   // restored correctly and we can correct the stack.
   927   emit_opcode(cbuf, 0x50 | RBP_enc);
   929   if (VerifyStackAtCalls) {
   930     // Majik cookie to verify stack depth
   931     emit_opcode(cbuf, 0x68); // pushq (sign-extended) 0xbadb100d
   932     emit_d32(cbuf, 0xbadb100d);
   933     framesize -= wordSize; // Remove 2 for cookie
   934     need_nop = false;
   935   }
   937   if (framesize) {
   938     emit_opcode(cbuf, Assembler::REX_W);
   939     if (framesize < 0x80) {
   940       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   941       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   942       emit_d8(cbuf, framesize);
   943       if (need_nop) {
   944         emit_opcode(cbuf, 0x90); // nop
   945       }
   946     } else {
   947       emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   948       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   949       emit_d32(cbuf, framesize);
   950     }
   951   }
   953   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   955 #ifdef ASSERT
   956   if (VerifyStackAtCalls) {
   957     Label L;
   958     MacroAssembler masm(&cbuf);
   959     masm.push(rax);
   960     masm.mov(rax, rsp);
   961     masm.andptr(rax, StackAlignmentInBytes-1);
   962     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   963     masm.pop(rax);
   964     masm.jcc(Assembler::equal, L);
   965     masm.stop("Stack is not properly aligned!");
   966     masm.bind(L);
   967   }
   968 #endif
   969 }
   971 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
   972 {
   973   return MachNode::size(ra_); // too many variables; just compute it
   974                               // the hard way
   975 }
   977 int MachPrologNode::reloc() const
   978 {
   979   return 0; // a large enough number
   980 }
   982 //=============================================================================
   983 #ifndef PRODUCT
   984 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   985 {
   986   Compile* C = ra_->C;
   987   int framesize = C->frame_slots() << LogBytesPerInt;
   988   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   989   // Remove word for return adr already pushed
   990   // and RBP
   991   framesize -= 2*wordSize;
   993   if (framesize) {
   994     st->print_cr("addq\trsp, %d\t# Destroy frame", framesize);
   995     st->print("\t");
   996   }
   998   st->print_cr("popq\trbp");
   999   if (do_polling() && C->is_method_compilation()) {
  1000     st->print_cr("\ttestl\trax, [rip + #offset_to_poll_page]\t"
  1001                   "# Safepoint: poll for GC");
  1002     st->print("\t");
  1005 #endif
  1007 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1009   Compile* C = ra_->C;
  1010   int framesize = C->frame_slots() << LogBytesPerInt;
  1011   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1012   // Remove word for return adr already pushed
  1013   // and RBP
  1014   framesize -= 2*wordSize;
  1016   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
  1018   if (framesize) {
  1019     emit_opcode(cbuf, Assembler::REX_W);
  1020     if (framesize < 0x80) {
  1021       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
  1022       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1023       emit_d8(cbuf, framesize);
  1024     } else {
  1025       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
  1026       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1027       emit_d32(cbuf, framesize);
  1031   // popq rbp
  1032   emit_opcode(cbuf, 0x58 | RBP_enc);
  1034   if (do_polling() && C->is_method_compilation()) {
  1035     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  1036     // XXX reg_mem doesn't support RIP-relative addressing yet
  1037     cbuf.set_inst_mark();
  1038     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_return_type, 0); // XXX
  1039     emit_opcode(cbuf, 0x85); // testl
  1040     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  1041     // cbuf.inst_mark() is beginning of instruction
  1042     emit_d32_reloc(cbuf, os::get_polling_page());
  1043 //                    relocInfo::poll_return_type,
  1047 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
  1049   Compile* C = ra_->C;
  1050   int framesize = C->frame_slots() << LogBytesPerInt;
  1051   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1052   // Remove word for return adr already pushed
  1053   // and RBP
  1054   framesize -= 2*wordSize;
  1056   uint size = 0;
  1058   if (do_polling() && C->is_method_compilation()) {
  1059     size += 6;
  1062   // count popq rbp
  1063   size++;
  1065   if (framesize) {
  1066     if (framesize < 0x80) {
  1067       size += 4;
  1068     } else if (framesize) {
  1069       size += 7;
  1073   return size;
  1076 int MachEpilogNode::reloc() const
  1078   return 2; // a large enough number
  1081 const Pipeline* MachEpilogNode::pipeline() const
  1083   return MachNode::pipeline_class();
  1086 int MachEpilogNode::safepoint_offset() const
  1088   return 0;
  1091 //=============================================================================
  1093 enum RC {
  1094   rc_bad,
  1095   rc_int,
  1096   rc_float,
  1097   rc_stack
  1098 };
  1100 static enum RC rc_class(OptoReg::Name reg)
  1102   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1104   if (OptoReg::is_stack(reg)) return rc_stack;
  1106   VMReg r = OptoReg::as_VMReg(reg);
  1108   if (r->is_Register()) return rc_int;
  1110   assert(r->is_XMMRegister(), "must be");
  1111   return rc_float;
  1114 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
  1115                                        PhaseRegAlloc* ra_,
  1116                                        bool do_size,
  1117                                        outputStream* st) const
  1120   // Get registers to move
  1121   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1122   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1123   OptoReg::Name dst_second = ra_->get_reg_second(this);
  1124   OptoReg::Name dst_first = ra_->get_reg_first(this);
  1126   enum RC src_second_rc = rc_class(src_second);
  1127   enum RC src_first_rc = rc_class(src_first);
  1128   enum RC dst_second_rc = rc_class(dst_second);
  1129   enum RC dst_first_rc = rc_class(dst_first);
  1131   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
  1132          "must move at least 1 register" );
  1134   if (src_first == dst_first && src_second == dst_second) {
  1135     // Self copy, no move
  1136     return 0;
  1137   } else if (src_first_rc == rc_stack) {
  1138     // mem ->
  1139     if (dst_first_rc == rc_stack) {
  1140       // mem -> mem
  1141       assert(src_second != dst_first, "overlap");
  1142       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1143           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1144         // 64-bit
  1145         int src_offset = ra_->reg2offset(src_first);
  1146         int dst_offset = ra_->reg2offset(dst_first);
  1147         if (cbuf) {
  1148           emit_opcode(*cbuf, 0xFF);
  1149           encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
  1151           emit_opcode(*cbuf, 0x8F);
  1152           encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
  1154 #ifndef PRODUCT
  1155         } else if (!do_size) {
  1156           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
  1157                      "popq    [rsp + #%d]",
  1158                      src_offset,
  1159                      dst_offset);
  1160 #endif
  1162         return
  1163           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
  1164           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
  1165       } else {
  1166         // 32-bit
  1167         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1168         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1169         // No pushl/popl, so:
  1170         int src_offset = ra_->reg2offset(src_first);
  1171         int dst_offset = ra_->reg2offset(dst_first);
  1172         if (cbuf) {
  1173           emit_opcode(*cbuf, Assembler::REX_W);
  1174           emit_opcode(*cbuf, 0x89);
  1175           emit_opcode(*cbuf, 0x44);
  1176           emit_opcode(*cbuf, 0x24);
  1177           emit_opcode(*cbuf, 0xF8);
  1179           emit_opcode(*cbuf, 0x8B);
  1180           encode_RegMem(*cbuf,
  1181                         RAX_enc,
  1182                         RSP_enc, 0x4, 0, src_offset,
  1183                         false);
  1185           emit_opcode(*cbuf, 0x89);
  1186           encode_RegMem(*cbuf,
  1187                         RAX_enc,
  1188                         RSP_enc, 0x4, 0, dst_offset,
  1189                         false);
  1191           emit_opcode(*cbuf, Assembler::REX_W);
  1192           emit_opcode(*cbuf, 0x8B);
  1193           emit_opcode(*cbuf, 0x44);
  1194           emit_opcode(*cbuf, 0x24);
  1195           emit_opcode(*cbuf, 0xF8);
  1197 #ifndef PRODUCT
  1198         } else if (!do_size) {
  1199           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
  1200                      "movl    rax, [rsp + #%d]\n\t"
  1201                      "movl    [rsp + #%d], rax\n\t"
  1202                      "movq    rax, [rsp - #8]",
  1203                      src_offset,
  1204                      dst_offset);
  1205 #endif
  1207         return
  1208           5 + // movq
  1209           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
  1210           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
  1211           5; // movq
  1213     } else if (dst_first_rc == rc_int) {
  1214       // mem -> gpr
  1215       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1216           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1217         // 64-bit
  1218         int offset = ra_->reg2offset(src_first);
  1219         if (cbuf) {
  1220           if (Matcher::_regEncode[dst_first] < 8) {
  1221             emit_opcode(*cbuf, Assembler::REX_W);
  1222           } else {
  1223             emit_opcode(*cbuf, Assembler::REX_WR);
  1225           emit_opcode(*cbuf, 0x8B);
  1226           encode_RegMem(*cbuf,
  1227                         Matcher::_regEncode[dst_first],
  1228                         RSP_enc, 0x4, 0, offset,
  1229                         false);
  1230 #ifndef PRODUCT
  1231         } else if (!do_size) {
  1232           st->print("movq    %s, [rsp + #%d]\t# spill",
  1233                      Matcher::regName[dst_first],
  1234                      offset);
  1235 #endif
  1237         return
  1238           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1239       } else {
  1240         // 32-bit
  1241         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1242         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1243         int offset = ra_->reg2offset(src_first);
  1244         if (cbuf) {
  1245           if (Matcher::_regEncode[dst_first] >= 8) {
  1246             emit_opcode(*cbuf, Assembler::REX_R);
  1248           emit_opcode(*cbuf, 0x8B);
  1249           encode_RegMem(*cbuf,
  1250                         Matcher::_regEncode[dst_first],
  1251                         RSP_enc, 0x4, 0, offset,
  1252                         false);
  1253 #ifndef PRODUCT
  1254         } else if (!do_size) {
  1255           st->print("movl    %s, [rsp + #%d]\t# spill",
  1256                      Matcher::regName[dst_first],
  1257                      offset);
  1258 #endif
  1260         return
  1261           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1262           ((Matcher::_regEncode[dst_first] < 8)
  1263            ? 3
  1264            : 4); // REX
  1266     } else if (dst_first_rc == rc_float) {
  1267       // mem-> xmm
  1268       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1269           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1270         // 64-bit
  1271         int offset = ra_->reg2offset(src_first);
  1272         if (cbuf) {
  1273           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  1274           if (Matcher::_regEncode[dst_first] >= 8) {
  1275             emit_opcode(*cbuf, Assembler::REX_R);
  1277           emit_opcode(*cbuf, 0x0F);
  1278           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  1279           encode_RegMem(*cbuf,
  1280                         Matcher::_regEncode[dst_first],
  1281                         RSP_enc, 0x4, 0, offset,
  1282                         false);
  1283 #ifndef PRODUCT
  1284         } else if (!do_size) {
  1285           st->print("%s  %s, [rsp + #%d]\t# spill",
  1286                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
  1287                      Matcher::regName[dst_first],
  1288                      offset);
  1289 #endif
  1291         return
  1292           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1293           ((Matcher::_regEncode[dst_first] < 8)
  1294            ? 5
  1295            : 6); // REX
  1296       } else {
  1297         // 32-bit
  1298         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1299         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1300         int offset = ra_->reg2offset(src_first);
  1301         if (cbuf) {
  1302           emit_opcode(*cbuf, 0xF3);
  1303           if (Matcher::_regEncode[dst_first] >= 8) {
  1304             emit_opcode(*cbuf, Assembler::REX_R);
  1306           emit_opcode(*cbuf, 0x0F);
  1307           emit_opcode(*cbuf, 0x10);
  1308           encode_RegMem(*cbuf,
  1309                         Matcher::_regEncode[dst_first],
  1310                         RSP_enc, 0x4, 0, offset,
  1311                         false);
  1312 #ifndef PRODUCT
  1313         } else if (!do_size) {
  1314           st->print("movss   %s, [rsp + #%d]\t# spill",
  1315                      Matcher::regName[dst_first],
  1316                      offset);
  1317 #endif
  1319         return
  1320           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1321           ((Matcher::_regEncode[dst_first] < 8)
  1322            ? 5
  1323            : 6); // REX
  1326   } else if (src_first_rc == rc_int) {
  1327     // gpr ->
  1328     if (dst_first_rc == rc_stack) {
  1329       // gpr -> mem
  1330       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1331           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1332         // 64-bit
  1333         int offset = ra_->reg2offset(dst_first);
  1334         if (cbuf) {
  1335           if (Matcher::_regEncode[src_first] < 8) {
  1336             emit_opcode(*cbuf, Assembler::REX_W);
  1337           } else {
  1338             emit_opcode(*cbuf, Assembler::REX_WR);
  1340           emit_opcode(*cbuf, 0x89);
  1341           encode_RegMem(*cbuf,
  1342                         Matcher::_regEncode[src_first],
  1343                         RSP_enc, 0x4, 0, offset,
  1344                         false);
  1345 #ifndef PRODUCT
  1346         } else if (!do_size) {
  1347           st->print("movq    [rsp + #%d], %s\t# spill",
  1348                      offset,
  1349                      Matcher::regName[src_first]);
  1350 #endif
  1352         return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1353       } else {
  1354         // 32-bit
  1355         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1356         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1357         int offset = ra_->reg2offset(dst_first);
  1358         if (cbuf) {
  1359           if (Matcher::_regEncode[src_first] >= 8) {
  1360             emit_opcode(*cbuf, Assembler::REX_R);
  1362           emit_opcode(*cbuf, 0x89);
  1363           encode_RegMem(*cbuf,
  1364                         Matcher::_regEncode[src_first],
  1365                         RSP_enc, 0x4, 0, offset,
  1366                         false);
  1367 #ifndef PRODUCT
  1368         } else if (!do_size) {
  1369           st->print("movl    [rsp + #%d], %s\t# spill",
  1370                      offset,
  1371                      Matcher::regName[src_first]);
  1372 #endif
  1374         return
  1375           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1376           ((Matcher::_regEncode[src_first] < 8)
  1377            ? 3
  1378            : 4); // REX
  1380     } else if (dst_first_rc == rc_int) {
  1381       // gpr -> gpr
  1382       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1383           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1384         // 64-bit
  1385         if (cbuf) {
  1386           if (Matcher::_regEncode[dst_first] < 8) {
  1387             if (Matcher::_regEncode[src_first] < 8) {
  1388               emit_opcode(*cbuf, Assembler::REX_W);
  1389             } else {
  1390               emit_opcode(*cbuf, Assembler::REX_WB);
  1392           } else {
  1393             if (Matcher::_regEncode[src_first] < 8) {
  1394               emit_opcode(*cbuf, Assembler::REX_WR);
  1395             } else {
  1396               emit_opcode(*cbuf, Assembler::REX_WRB);
  1399           emit_opcode(*cbuf, 0x8B);
  1400           emit_rm(*cbuf, 0x3,
  1401                   Matcher::_regEncode[dst_first] & 7,
  1402                   Matcher::_regEncode[src_first] & 7);
  1403 #ifndef PRODUCT
  1404         } else if (!do_size) {
  1405           st->print("movq    %s, %s\t# spill",
  1406                      Matcher::regName[dst_first],
  1407                      Matcher::regName[src_first]);
  1408 #endif
  1410         return 3; // REX
  1411       } else {
  1412         // 32-bit
  1413         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1414         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1415         if (cbuf) {
  1416           if (Matcher::_regEncode[dst_first] < 8) {
  1417             if (Matcher::_regEncode[src_first] >= 8) {
  1418               emit_opcode(*cbuf, Assembler::REX_B);
  1420           } else {
  1421             if (Matcher::_regEncode[src_first] < 8) {
  1422               emit_opcode(*cbuf, Assembler::REX_R);
  1423             } else {
  1424               emit_opcode(*cbuf, Assembler::REX_RB);
  1427           emit_opcode(*cbuf, 0x8B);
  1428           emit_rm(*cbuf, 0x3,
  1429                   Matcher::_regEncode[dst_first] & 7,
  1430                   Matcher::_regEncode[src_first] & 7);
  1431 #ifndef PRODUCT
  1432         } else if (!do_size) {
  1433           st->print("movl    %s, %s\t# spill",
  1434                      Matcher::regName[dst_first],
  1435                      Matcher::regName[src_first]);
  1436 #endif
  1438         return
  1439           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1440           ? 2
  1441           : 3; // REX
  1443     } else if (dst_first_rc == rc_float) {
  1444       // gpr -> xmm
  1445       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1446           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1447         // 64-bit
  1448         if (cbuf) {
  1449           emit_opcode(*cbuf, 0x66);
  1450           if (Matcher::_regEncode[dst_first] < 8) {
  1451             if (Matcher::_regEncode[src_first] < 8) {
  1452               emit_opcode(*cbuf, Assembler::REX_W);
  1453             } else {
  1454               emit_opcode(*cbuf, Assembler::REX_WB);
  1456           } else {
  1457             if (Matcher::_regEncode[src_first] < 8) {
  1458               emit_opcode(*cbuf, Assembler::REX_WR);
  1459             } else {
  1460               emit_opcode(*cbuf, Assembler::REX_WRB);
  1463           emit_opcode(*cbuf, 0x0F);
  1464           emit_opcode(*cbuf, 0x6E);
  1465           emit_rm(*cbuf, 0x3,
  1466                   Matcher::_regEncode[dst_first] & 7,
  1467                   Matcher::_regEncode[src_first] & 7);
  1468 #ifndef PRODUCT
  1469         } else if (!do_size) {
  1470           st->print("movdq   %s, %s\t# spill",
  1471                      Matcher::regName[dst_first],
  1472                      Matcher::regName[src_first]);
  1473 #endif
  1475         return 5; // REX
  1476       } else {
  1477         // 32-bit
  1478         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1479         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1480         if (cbuf) {
  1481           emit_opcode(*cbuf, 0x66);
  1482           if (Matcher::_regEncode[dst_first] < 8) {
  1483             if (Matcher::_regEncode[src_first] >= 8) {
  1484               emit_opcode(*cbuf, Assembler::REX_B);
  1486           } else {
  1487             if (Matcher::_regEncode[src_first] < 8) {
  1488               emit_opcode(*cbuf, Assembler::REX_R);
  1489             } else {
  1490               emit_opcode(*cbuf, Assembler::REX_RB);
  1493           emit_opcode(*cbuf, 0x0F);
  1494           emit_opcode(*cbuf, 0x6E);
  1495           emit_rm(*cbuf, 0x3,
  1496                   Matcher::_regEncode[dst_first] & 7,
  1497                   Matcher::_regEncode[src_first] & 7);
  1498 #ifndef PRODUCT
  1499         } else if (!do_size) {
  1500           st->print("movdl   %s, %s\t# spill",
  1501                      Matcher::regName[dst_first],
  1502                      Matcher::regName[src_first]);
  1503 #endif
  1505         return
  1506           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1507           ? 4
  1508           : 5; // REX
  1511   } else if (src_first_rc == rc_float) {
  1512     // xmm ->
  1513     if (dst_first_rc == rc_stack) {
  1514       // xmm -> mem
  1515       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1516           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1517         // 64-bit
  1518         int offset = ra_->reg2offset(dst_first);
  1519         if (cbuf) {
  1520           emit_opcode(*cbuf, 0xF2);
  1521           if (Matcher::_regEncode[src_first] >= 8) {
  1522               emit_opcode(*cbuf, Assembler::REX_R);
  1524           emit_opcode(*cbuf, 0x0F);
  1525           emit_opcode(*cbuf, 0x11);
  1526           encode_RegMem(*cbuf,
  1527                         Matcher::_regEncode[src_first],
  1528                         RSP_enc, 0x4, 0, offset,
  1529                         false);
  1530 #ifndef PRODUCT
  1531         } else if (!do_size) {
  1532           st->print("movsd   [rsp + #%d], %s\t# spill",
  1533                      offset,
  1534                      Matcher::regName[src_first]);
  1535 #endif
  1537         return
  1538           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1539           ((Matcher::_regEncode[src_first] < 8)
  1540            ? 5
  1541            : 6); // REX
  1542       } else {
  1543         // 32-bit
  1544         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1545         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1546         int offset = ra_->reg2offset(dst_first);
  1547         if (cbuf) {
  1548           emit_opcode(*cbuf, 0xF3);
  1549           if (Matcher::_regEncode[src_first] >= 8) {
  1550               emit_opcode(*cbuf, Assembler::REX_R);
  1552           emit_opcode(*cbuf, 0x0F);
  1553           emit_opcode(*cbuf, 0x11);
  1554           encode_RegMem(*cbuf,
  1555                         Matcher::_regEncode[src_first],
  1556                         RSP_enc, 0x4, 0, offset,
  1557                         false);
  1558 #ifndef PRODUCT
  1559         } else if (!do_size) {
  1560           st->print("movss   [rsp + #%d], %s\t# spill",
  1561                      offset,
  1562                      Matcher::regName[src_first]);
  1563 #endif
  1565         return
  1566           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1567           ((Matcher::_regEncode[src_first] < 8)
  1568            ? 5
  1569            : 6); // REX
  1571     } else if (dst_first_rc == rc_int) {
  1572       // xmm -> gpr
  1573       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1574           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1575         // 64-bit
  1576         if (cbuf) {
  1577           emit_opcode(*cbuf, 0x66);
  1578           if (Matcher::_regEncode[dst_first] < 8) {
  1579             if (Matcher::_regEncode[src_first] < 8) {
  1580               emit_opcode(*cbuf, Assembler::REX_W);
  1581             } else {
  1582               emit_opcode(*cbuf, Assembler::REX_WR); // attention!
  1584           } else {
  1585             if (Matcher::_regEncode[src_first] < 8) {
  1586               emit_opcode(*cbuf, Assembler::REX_WB); // attention!
  1587             } else {
  1588               emit_opcode(*cbuf, Assembler::REX_WRB);
  1591           emit_opcode(*cbuf, 0x0F);
  1592           emit_opcode(*cbuf, 0x7E);
  1593           emit_rm(*cbuf, 0x3,
  1594                   Matcher::_regEncode[dst_first] & 7,
  1595                   Matcher::_regEncode[src_first] & 7);
  1596 #ifndef PRODUCT
  1597         } else if (!do_size) {
  1598           st->print("movdq   %s, %s\t# spill",
  1599                      Matcher::regName[dst_first],
  1600                      Matcher::regName[src_first]);
  1601 #endif
  1603         return 5; // REX
  1604       } else {
  1605         // 32-bit
  1606         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1607         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1608         if (cbuf) {
  1609           emit_opcode(*cbuf, 0x66);
  1610           if (Matcher::_regEncode[dst_first] < 8) {
  1611             if (Matcher::_regEncode[src_first] >= 8) {
  1612               emit_opcode(*cbuf, Assembler::REX_R); // attention!
  1614           } else {
  1615             if (Matcher::_regEncode[src_first] < 8) {
  1616               emit_opcode(*cbuf, Assembler::REX_B); // attention!
  1617             } else {
  1618               emit_opcode(*cbuf, Assembler::REX_RB);
  1621           emit_opcode(*cbuf, 0x0F);
  1622           emit_opcode(*cbuf, 0x7E);
  1623           emit_rm(*cbuf, 0x3,
  1624                   Matcher::_regEncode[dst_first] & 7,
  1625                   Matcher::_regEncode[src_first] & 7);
  1626 #ifndef PRODUCT
  1627         } else if (!do_size) {
  1628           st->print("movdl   %s, %s\t# spill",
  1629                      Matcher::regName[dst_first],
  1630                      Matcher::regName[src_first]);
  1631 #endif
  1633         return
  1634           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1635           ? 4
  1636           : 5; // REX
  1638     } else if (dst_first_rc == rc_float) {
  1639       // xmm -> xmm
  1640       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1641           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1642         // 64-bit
  1643         if (cbuf) {
  1644           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  1645           if (Matcher::_regEncode[dst_first] < 8) {
  1646             if (Matcher::_regEncode[src_first] >= 8) {
  1647               emit_opcode(*cbuf, Assembler::REX_B);
  1649           } else {
  1650             if (Matcher::_regEncode[src_first] < 8) {
  1651               emit_opcode(*cbuf, Assembler::REX_R);
  1652             } else {
  1653               emit_opcode(*cbuf, Assembler::REX_RB);
  1656           emit_opcode(*cbuf, 0x0F);
  1657           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1658           emit_rm(*cbuf, 0x3,
  1659                   Matcher::_regEncode[dst_first] & 7,
  1660                   Matcher::_regEncode[src_first] & 7);
  1661 #ifndef PRODUCT
  1662         } else if (!do_size) {
  1663           st->print("%s  %s, %s\t# spill",
  1664                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
  1665                      Matcher::regName[dst_first],
  1666                      Matcher::regName[src_first]);
  1667 #endif
  1669         return
  1670           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1671           ? 4
  1672           : 5; // REX
  1673       } else {
  1674         // 32-bit
  1675         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1676         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1677         if (cbuf) {
  1678           if (!UseXmmRegToRegMoveAll)
  1679             emit_opcode(*cbuf, 0xF3);
  1680           if (Matcher::_regEncode[dst_first] < 8) {
  1681             if (Matcher::_regEncode[src_first] >= 8) {
  1682               emit_opcode(*cbuf, Assembler::REX_B);
  1684           } else {
  1685             if (Matcher::_regEncode[src_first] < 8) {
  1686               emit_opcode(*cbuf, Assembler::REX_R);
  1687             } else {
  1688               emit_opcode(*cbuf, Assembler::REX_RB);
  1691           emit_opcode(*cbuf, 0x0F);
  1692           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1693           emit_rm(*cbuf, 0x3,
  1694                   Matcher::_regEncode[dst_first] & 7,
  1695                   Matcher::_regEncode[src_first] & 7);
  1696 #ifndef PRODUCT
  1697         } else if (!do_size) {
  1698           st->print("%s  %s, %s\t# spill",
  1699                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
  1700                      Matcher::regName[dst_first],
  1701                      Matcher::regName[src_first]);
  1702 #endif
  1704         return
  1705           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1706           ? (UseXmmRegToRegMoveAll ? 3 : 4)
  1707           : (UseXmmRegToRegMoveAll ? 4 : 5); // REX
  1712   assert(0," foo ");
  1713   Unimplemented();
  1715   return 0;
  1718 #ifndef PRODUCT
  1719 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
  1721   implementation(NULL, ra_, false, st);
  1723 #endif
  1725 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
  1727   implementation(&cbuf, ra_, false, NULL);
  1730 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
  1732   return implementation(NULL, ra_, true, NULL);
  1735 //=============================================================================
  1736 #ifndef PRODUCT
  1737 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const
  1739   st->print("nop \t# %d bytes pad for loops and calls", _count);
  1741 #endif
  1743 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const
  1745   MacroAssembler _masm(&cbuf);
  1746   __ nop(_count);
  1749 uint MachNopNode::size(PhaseRegAlloc*) const
  1751   return _count;
  1755 //=============================================================================
  1756 #ifndef PRODUCT
  1757 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1759   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1760   int reg = ra_->get_reg_first(this);
  1761   st->print("leaq    %s, [rsp + #%d]\t# box lock",
  1762             Matcher::regName[reg], offset);
  1764 #endif
  1766 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1768   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1769   int reg = ra_->get_encode(this);
  1770   if (offset >= 0x80) {
  1771     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1772     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1773     emit_rm(cbuf, 0x2, reg & 7, 0x04);
  1774     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1775     emit_d32(cbuf, offset);
  1776   } else {
  1777     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1778     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1779     emit_rm(cbuf, 0x1, reg & 7, 0x04);
  1780     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1781     emit_d8(cbuf, offset);
  1785 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
  1787   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1788   return (offset < 0x80) ? 5 : 8; // REX
  1791 //=============================================================================
  1793 // emit call stub, compiled java to interpreter
  1794 void emit_java_to_interp(CodeBuffer& cbuf)
  1796   // Stub is fixed up when the corresponding call is converted from
  1797   // calling compiled code to calling interpreted code.
  1798   // movq rbx, 0
  1799   // jmp -5 # to self
  1801   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1803   // Note that the code buffer's inst_mark is always relative to insts.
  1804   // That's why we must use the macroassembler to generate a stub.
  1805   MacroAssembler _masm(&cbuf);
  1807   address base =
  1808   __ start_a_stub(Compile::MAX_stubs_size);
  1809   if (base == NULL)  return;  // CodeBuffer::expand failed
  1810   // static stub relocation stores the instruction address of the call
  1811   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
  1812   // static stub relocation also tags the methodOop in the code-stream.
  1813   __ movoop(rbx, (jobject) NULL);  // method is zapped till fixup time
  1814   // This is recognized as unresolved by relocs/nativeinst/ic code
  1815   __ jump(RuntimeAddress(__ pc()));
  1817   // Update current stubs pointer and restore code_end.
  1818   __ end_a_stub();
  1821 // size of call stub, compiled java to interpretor
  1822 uint size_java_to_interp()
  1824   return 15;  // movq (1+1+8); jmp (1+4)
  1827 // relocation entries for call stub, compiled java to interpretor
  1828 uint reloc_java_to_interp()
  1830   return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1833 //=============================================================================
  1834 #ifndef PRODUCT
  1835 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1837   if (UseCompressedOops) {
  1838     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t", oopDesc::klass_offset_in_bytes());
  1839     if (Universe::narrow_oop_shift() != 0) {
  1840       st->print_cr("leaq    rscratch1, [r12_heapbase, r, Address::times_8, 0]");
  1842     st->print_cr("cmpq    rax, rscratch1\t # Inline cache check");
  1843   } else {
  1844     st->print_cr("cmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t"
  1845                  "# Inline cache check", oopDesc::klass_offset_in_bytes());
  1847   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
  1848   st->print_cr("\tnop");
  1849   if (!OptoBreakpoint) {
  1850     st->print_cr("\tnop");
  1853 #endif
  1855 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1857   MacroAssembler masm(&cbuf);
  1858 #ifdef ASSERT
  1859   uint code_size = cbuf.code_size();
  1860 #endif
  1861   if (UseCompressedOops) {
  1862     masm.load_klass(rscratch1, j_rarg0);
  1863     masm.cmpptr(rax, rscratch1);
  1864   } else {
  1865     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
  1868   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1870   /* WARNING these NOPs are critical so that verified entry point is properly
  1871      aligned for patching by NativeJump::patch_verified_entry() */
  1872   int nops_cnt = 1;
  1873   if (!OptoBreakpoint) {
  1874     // Leave space for int3
  1875      nops_cnt += 1;
  1877   if (UseCompressedOops) {
  1878     // ??? divisible by 4 is aligned?
  1879     nops_cnt += 1;
  1881   masm.nop(nops_cnt);
  1883   assert(cbuf.code_size() - code_size == size(ra_),
  1884          "checking code size of inline cache node");
  1887 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
  1889   if (UseCompressedOops) {
  1890     if (Universe::narrow_oop_shift() == 0) {
  1891       return OptoBreakpoint ? 15 : 16;
  1892     } else {
  1893       return OptoBreakpoint ? 19 : 20;
  1895   } else {
  1896     return OptoBreakpoint ? 11 : 12;
  1901 //=============================================================================
  1902 uint size_exception_handler()
  1904   // NativeCall instruction size is the same as NativeJump.
  1905   // Note that this value is also credited (in output.cpp) to
  1906   // the size of the code section.
  1907   return NativeJump::instruction_size;
  1910 // Emit exception handler code.
  1911 int emit_exception_handler(CodeBuffer& cbuf)
  1914   // Note that the code buffer's inst_mark is always relative to insts.
  1915   // That's why we must use the macroassembler to generate a handler.
  1916   MacroAssembler _masm(&cbuf);
  1917   address base =
  1918   __ start_a_stub(size_exception_handler());
  1919   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1920   int offset = __ offset();
  1921   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1922   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1923   __ end_a_stub();
  1924   return offset;
  1927 uint size_deopt_handler()
  1929   // three 5 byte instructions
  1930   return 15;
  1933 // Emit deopt handler code.
  1934 int emit_deopt_handler(CodeBuffer& cbuf)
  1937   // Note that the code buffer's inst_mark is always relative to insts.
  1938   // That's why we must use the macroassembler to generate a handler.
  1939   MacroAssembler _masm(&cbuf);
  1940   address base =
  1941   __ start_a_stub(size_deopt_handler());
  1942   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1943   int offset = __ offset();
  1944   address the_pc = (address) __ pc();
  1945   Label next;
  1946   // push a "the_pc" on the stack without destroying any registers
  1947   // as they all may be live.
  1949   // push address of "next"
  1950   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
  1951   __ bind(next);
  1952   // adjust it so it matches "the_pc"
  1953   __ subptr(Address(rsp, 0), __ offset() - offset);
  1954   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1955   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1956   __ end_a_stub();
  1957   return offset;
  1960 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1961   int mark = cbuf.insts()->mark_off();
  1962   MacroAssembler _masm(&cbuf);
  1963   address double_address = __ double_constant(x);
  1964   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1965   emit_d32_reloc(cbuf,
  1966                  (int) (double_address - cbuf.code_end() - 4),
  1967                  internal_word_Relocation::spec(double_address),
  1968                  RELOC_DISP32);
  1971 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1972   int mark = cbuf.insts()->mark_off();
  1973   MacroAssembler _masm(&cbuf);
  1974   address float_address = __ float_constant(x);
  1975   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1976   emit_d32_reloc(cbuf,
  1977                  (int) (float_address - cbuf.code_end() - 4),
  1978                  internal_word_Relocation::spec(float_address),
  1979                  RELOC_DISP32);
  1983 const bool Matcher::match_rule_supported(int opcode) {
  1984   if (!has_match_rule(opcode))
  1985     return false;
  1987   return true;  // Per default match rules are supported.
  1990 int Matcher::regnum_to_fpu_offset(int regnum)
  1992   return regnum - 32; // The FP registers are in the second chunk
  1995 // This is UltraSparc specific, true just means we have fast l2f conversion
  1996 const bool Matcher::convL2FSupported(void) {
  1997   return true;
  2000 // Vector width in bytes
  2001 const uint Matcher::vector_width_in_bytes(void) {
  2002   return 8;
  2005 // Vector ideal reg
  2006 const uint Matcher::vector_ideal_reg(void) {
  2007   return Op_RegD;
  2010 // Is this branch offset short enough that a short branch can be used?
  2011 //
  2012 // NOTE: If the platform does not provide any short branch variants, then
  2013 //       this method should return false for offset 0.
  2014 bool Matcher::is_short_branch_offset(int rule, int offset) {
  2015   // the short version of jmpConUCF2 contains multiple branches,
  2016   // making the reach slightly less
  2017   if (rule == jmpConUCF2_rule)
  2018     return (-126 <= offset && offset <= 125);
  2019   return (-128 <= offset && offset <= 127);
  2022 const bool Matcher::isSimpleConstant64(jlong value) {
  2023   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  2024   //return value == (int) value;  // Cf. storeImmL and immL32.
  2026   // Probably always true, even if a temp register is required.
  2027   return true;
  2030 // The ecx parameter to rep stosq for the ClearArray node is in words.
  2031 const bool Matcher::init_array_count_is_in_bytes = false;
  2033 // Threshold size for cleararray.
  2034 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2036 // Should the Matcher clone shifts on addressing modes, expecting them
  2037 // to be subsumed into complex addressing expressions or compute them
  2038 // into registers?  True for Intel but false for most RISCs
  2039 const bool Matcher::clone_shift_expressions = true;
  2041 // Is it better to copy float constants, or load them directly from
  2042 // memory?  Intel can load a float constant from a direct address,
  2043 // requiring no extra registers.  Most RISCs will have to materialize
  2044 // an address into a register first, so they would do better to copy
  2045 // the constant from stack.
  2046 const bool Matcher::rematerialize_float_constants = true; // XXX
  2048 // If CPU can load and store mis-aligned doubles directly then no
  2049 // fixup is needed.  Else we split the double into 2 integer pieces
  2050 // and move it piece-by-piece.  Only happens when passing doubles into
  2051 // C code as the Java calling convention forces doubles to be aligned.
  2052 const bool Matcher::misaligned_doubles_ok = true;
  2054 // No-op on amd64
  2055 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
  2057 // Advertise here if the CPU requires explicit rounding operations to
  2058 // implement the UseStrictFP mode.
  2059 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  2061 // Do floats take an entire double register or just half?
  2062 const bool Matcher::float_in_double = true;
  2063 // Do ints take an entire long register or just half?
  2064 const bool Matcher::int_in_long = true;
  2066 // Return whether or not this register is ever used as an argument.
  2067 // This function is used on startup to build the trampoline stubs in
  2068 // generateOptoStub.  Registers not mentioned will be killed by the VM
  2069 // call in the trampoline, and arguments in those registers not be
  2070 // available to the callee.
  2071 bool Matcher::can_be_java_arg(int reg)
  2073   return
  2074     reg ==  RDI_num || reg ==  RDI_H_num ||
  2075     reg ==  RSI_num || reg ==  RSI_H_num ||
  2076     reg ==  RDX_num || reg ==  RDX_H_num ||
  2077     reg ==  RCX_num || reg ==  RCX_H_num ||
  2078     reg ==   R8_num || reg ==   R8_H_num ||
  2079     reg ==   R9_num || reg ==   R9_H_num ||
  2080     reg ==  R12_num || reg ==  R12_H_num ||
  2081     reg == XMM0_num || reg == XMM0_H_num ||
  2082     reg == XMM1_num || reg == XMM1_H_num ||
  2083     reg == XMM2_num || reg == XMM2_H_num ||
  2084     reg == XMM3_num || reg == XMM3_H_num ||
  2085     reg == XMM4_num || reg == XMM4_H_num ||
  2086     reg == XMM5_num || reg == XMM5_H_num ||
  2087     reg == XMM6_num || reg == XMM6_H_num ||
  2088     reg == XMM7_num || reg == XMM7_H_num;
  2091 bool Matcher::is_spillable_arg(int reg)
  2093   return can_be_java_arg(reg);
  2096 // Register for DIVI projection of divmodI
  2097 RegMask Matcher::divI_proj_mask() {
  2098   return INT_RAX_REG_mask;
  2101 // Register for MODI projection of divmodI
  2102 RegMask Matcher::modI_proj_mask() {
  2103   return INT_RDX_REG_mask;
  2106 // Register for DIVL projection of divmodL
  2107 RegMask Matcher::divL_proj_mask() {
  2108   return LONG_RAX_REG_mask;
  2111 // Register for MODL projection of divmodL
  2112 RegMask Matcher::modL_proj_mask() {
  2113   return LONG_RDX_REG_mask;
  2116 static Address build_address(int b, int i, int s, int d) {
  2117   Register index = as_Register(i);
  2118   Address::ScaleFactor scale = (Address::ScaleFactor)s;
  2119   if (index == rsp) {
  2120     index = noreg;
  2121     scale = Address::no_scale;
  2123   Address addr(as_Register(b), index, scale, d);
  2124   return addr;
  2127 %}
  2129 //----------ENCODING BLOCK-----------------------------------------------------
  2130 // This block specifies the encoding classes used by the compiler to
  2131 // output byte streams.  Encoding classes are parameterized macros
  2132 // used by Machine Instruction Nodes in order to generate the bit
  2133 // encoding of the instruction.  Operands specify their base encoding
  2134 // interface with the interface keyword.  There are currently
  2135 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
  2136 // COND_INTER.  REG_INTER causes an operand to generate a function
  2137 // which returns its register number when queried.  CONST_INTER causes
  2138 // an operand to generate a function which returns the value of the
  2139 // constant when queried.  MEMORY_INTER causes an operand to generate
  2140 // four functions which return the Base Register, the Index Register,
  2141 // the Scale Value, and the Offset Value of the operand when queried.
  2142 // COND_INTER causes an operand to generate six functions which return
  2143 // the encoding code (ie - encoding bits for the instruction)
  2144 // associated with each basic boolean condition for a conditional
  2145 // instruction.
  2146 //
  2147 // Instructions specify two basic values for encoding.  Again, a
  2148 // function is available to check if the constant displacement is an
  2149 // oop. They use the ins_encode keyword to specify their encoding
  2150 // classes (which must be a sequence of enc_class names, and their
  2151 // parameters, specified in the encoding block), and they use the
  2152 // opcode keyword to specify, in order, their primary, secondary, and
  2153 // tertiary opcode.  Only the opcode sections which a particular
  2154 // instruction needs for encoding need to be specified.
  2155 encode %{
  2156   // Build emit functions for each basic byte or larger field in the
  2157   // intel encoding scheme (opcode, rm, sib, immediate), and call them
  2158   // from C++ code in the enc_class source block.  Emit functions will
  2159   // live in the main source block for now.  In future, we can
  2160   // generalize this by adding a syntax that specifies the sizes of
  2161   // fields in an order, so that the adlc can build the emit functions
  2162   // automagically
  2164   // Emit primary opcode
  2165   enc_class OpcP
  2166   %{
  2167     emit_opcode(cbuf, $primary);
  2168   %}
  2170   // Emit secondary opcode
  2171   enc_class OpcS
  2172   %{
  2173     emit_opcode(cbuf, $secondary);
  2174   %}
  2176   // Emit tertiary opcode
  2177   enc_class OpcT
  2178   %{
  2179     emit_opcode(cbuf, $tertiary);
  2180   %}
  2182   // Emit opcode directly
  2183   enc_class Opcode(immI d8)
  2184   %{
  2185     emit_opcode(cbuf, $d8$$constant);
  2186   %}
  2188   // Emit size prefix
  2189   enc_class SizePrefix
  2190   %{
  2191     emit_opcode(cbuf, 0x66);
  2192   %}
  2194   enc_class reg(rRegI reg)
  2195   %{
  2196     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
  2197   %}
  2199   enc_class reg_reg(rRegI dst, rRegI src)
  2200   %{
  2201     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2202   %}
  2204   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
  2205   %{
  2206     emit_opcode(cbuf, $opcode$$constant);
  2207     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2208   %}
  2210   enc_class cmpfp_fixup()
  2211   %{
  2212     // jnp,s exit
  2213     emit_opcode(cbuf, 0x7B);
  2214     emit_d8(cbuf, 0x0A);
  2216     // pushfq
  2217     emit_opcode(cbuf, 0x9C);
  2219     // andq $0xffffff2b, (%rsp)
  2220     emit_opcode(cbuf, Assembler::REX_W);
  2221     emit_opcode(cbuf, 0x81);
  2222     emit_opcode(cbuf, 0x24);
  2223     emit_opcode(cbuf, 0x24);
  2224     emit_d32(cbuf, 0xffffff2b);
  2226     // popfq
  2227     emit_opcode(cbuf, 0x9D);
  2229     // nop (target for branch to avoid branch to branch)
  2230     emit_opcode(cbuf, 0x90);
  2231   %}
  2233   enc_class cmpfp3(rRegI dst)
  2234   %{
  2235     int dstenc = $dst$$reg;
  2237     // movl $dst, -1
  2238     if (dstenc >= 8) {
  2239       emit_opcode(cbuf, Assembler::REX_B);
  2241     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  2242     emit_d32(cbuf, -1);
  2244     // jp,s done
  2245     emit_opcode(cbuf, 0x7A);
  2246     emit_d8(cbuf, dstenc < 4 ? 0x08 : 0x0A);
  2248     // jb,s done
  2249     emit_opcode(cbuf, 0x72);
  2250     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  2252     // setne $dst
  2253     if (dstenc >= 4) {
  2254       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  2256     emit_opcode(cbuf, 0x0F);
  2257     emit_opcode(cbuf, 0x95);
  2258     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  2260     // movzbl $dst, $dst
  2261     if (dstenc >= 4) {
  2262       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  2264     emit_opcode(cbuf, 0x0F);
  2265     emit_opcode(cbuf, 0xB6);
  2266     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  2267   %}
  2269   enc_class cdql_enc(no_rax_rdx_RegI div)
  2270   %{
  2271     // Full implementation of Java idiv and irem; checks for
  2272     // special case as described in JVM spec., p.243 & p.271.
  2273     //
  2274     //         normal case                           special case
  2275     //
  2276     // input : rax: dividend                         min_int
  2277     //         reg: divisor                          -1
  2278     //
  2279     // output: rax: quotient  (= rax idiv reg)       min_int
  2280     //         rdx: remainder (= rax irem reg)       0
  2281     //
  2282     //  Code sequnce:
  2283     //
  2284     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
  2285     //    5:   75 07/08                jne    e <normal>
  2286     //    7:   33 d2                   xor    %edx,%edx
  2287     //  [div >= 8 -> offset + 1]
  2288     //  [REX_B]
  2289     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
  2290     //    c:   74 03/04                je     11 <done>
  2291     // 000000000000000e <normal>:
  2292     //    e:   99                      cltd
  2293     //  [div >= 8 -> offset + 1]
  2294     //  [REX_B]
  2295     //    f:   f7 f9                   idiv   $div
  2296     // 0000000000000011 <done>:
  2298     // cmp    $0x80000000,%eax
  2299     emit_opcode(cbuf, 0x3d);
  2300     emit_d8(cbuf, 0x00);
  2301     emit_d8(cbuf, 0x00);
  2302     emit_d8(cbuf, 0x00);
  2303     emit_d8(cbuf, 0x80);
  2305     // jne    e <normal>
  2306     emit_opcode(cbuf, 0x75);
  2307     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
  2309     // xor    %edx,%edx
  2310     emit_opcode(cbuf, 0x33);
  2311     emit_d8(cbuf, 0xD2);
  2313     // cmp    $0xffffffffffffffff,%ecx
  2314     if ($div$$reg >= 8) {
  2315       emit_opcode(cbuf, Assembler::REX_B);
  2317     emit_opcode(cbuf, 0x83);
  2318     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2319     emit_d8(cbuf, 0xFF);
  2321     // je     11 <done>
  2322     emit_opcode(cbuf, 0x74);
  2323     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
  2325     // <normal>
  2326     // cltd
  2327     emit_opcode(cbuf, 0x99);
  2329     // idivl (note: must be emitted by the user of this rule)
  2330     // <done>
  2331   %}
  2333   enc_class cdqq_enc(no_rax_rdx_RegL div)
  2334   %{
  2335     // Full implementation of Java ldiv and lrem; checks for
  2336     // special case as described in JVM spec., p.243 & p.271.
  2337     //
  2338     //         normal case                           special case
  2339     //
  2340     // input : rax: dividend                         min_long
  2341     //         reg: divisor                          -1
  2342     //
  2343     // output: rax: quotient  (= rax idiv reg)       min_long
  2344     //         rdx: remainder (= rax irem reg)       0
  2345     //
  2346     //  Code sequnce:
  2347     //
  2348     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
  2349     //    7:   00 00 80
  2350     //    a:   48 39 d0                cmp    %rdx,%rax
  2351     //    d:   75 08                   jne    17 <normal>
  2352     //    f:   33 d2                   xor    %edx,%edx
  2353     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
  2354     //   15:   74 05                   je     1c <done>
  2355     // 0000000000000017 <normal>:
  2356     //   17:   48 99                   cqto
  2357     //   19:   48 f7 f9                idiv   $div
  2358     // 000000000000001c <done>:
  2360     // mov    $0x8000000000000000,%rdx
  2361     emit_opcode(cbuf, Assembler::REX_W);
  2362     emit_opcode(cbuf, 0xBA);
  2363     emit_d8(cbuf, 0x00);
  2364     emit_d8(cbuf, 0x00);
  2365     emit_d8(cbuf, 0x00);
  2366     emit_d8(cbuf, 0x00);
  2367     emit_d8(cbuf, 0x00);
  2368     emit_d8(cbuf, 0x00);
  2369     emit_d8(cbuf, 0x00);
  2370     emit_d8(cbuf, 0x80);
  2372     // cmp    %rdx,%rax
  2373     emit_opcode(cbuf, Assembler::REX_W);
  2374     emit_opcode(cbuf, 0x39);
  2375     emit_d8(cbuf, 0xD0);
  2377     // jne    17 <normal>
  2378     emit_opcode(cbuf, 0x75);
  2379     emit_d8(cbuf, 0x08);
  2381     // xor    %edx,%edx
  2382     emit_opcode(cbuf, 0x33);
  2383     emit_d8(cbuf, 0xD2);
  2385     // cmp    $0xffffffffffffffff,$div
  2386     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
  2387     emit_opcode(cbuf, 0x83);
  2388     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2389     emit_d8(cbuf, 0xFF);
  2391     // je     1e <done>
  2392     emit_opcode(cbuf, 0x74);
  2393     emit_d8(cbuf, 0x05);
  2395     // <normal>
  2396     // cqto
  2397     emit_opcode(cbuf, Assembler::REX_W);
  2398     emit_opcode(cbuf, 0x99);
  2400     // idivq (note: must be emitted by the user of this rule)
  2401     // <done>
  2402   %}
  2404   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  2405   enc_class OpcSE(immI imm)
  2406   %{
  2407     // Emit primary opcode and set sign-extend bit
  2408     // Check for 8-bit immediate, and set sign extend bit in opcode
  2409     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2410       emit_opcode(cbuf, $primary | 0x02);
  2411     } else {
  2412       // 32-bit immediate
  2413       emit_opcode(cbuf, $primary);
  2415   %}
  2417   enc_class OpcSErm(rRegI dst, immI imm)
  2418   %{
  2419     // OpcSEr/m
  2420     int dstenc = $dst$$reg;
  2421     if (dstenc >= 8) {
  2422       emit_opcode(cbuf, Assembler::REX_B);
  2423       dstenc -= 8;
  2425     // Emit primary opcode and set sign-extend bit
  2426     // Check for 8-bit immediate, and set sign extend bit in opcode
  2427     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2428       emit_opcode(cbuf, $primary | 0x02);
  2429     } else {
  2430       // 32-bit immediate
  2431       emit_opcode(cbuf, $primary);
  2433     // Emit r/m byte with secondary opcode, after primary opcode.
  2434     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2435   %}
  2437   enc_class OpcSErm_wide(rRegL dst, immI imm)
  2438   %{
  2439     // OpcSEr/m
  2440     int dstenc = $dst$$reg;
  2441     if (dstenc < 8) {
  2442       emit_opcode(cbuf, Assembler::REX_W);
  2443     } else {
  2444       emit_opcode(cbuf, Assembler::REX_WB);
  2445       dstenc -= 8;
  2447     // Emit primary opcode and set sign-extend bit
  2448     // Check for 8-bit immediate, and set sign extend bit in opcode
  2449     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2450       emit_opcode(cbuf, $primary | 0x02);
  2451     } else {
  2452       // 32-bit immediate
  2453       emit_opcode(cbuf, $primary);
  2455     // Emit r/m byte with secondary opcode, after primary opcode.
  2456     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2457   %}
  2459   enc_class Con8or32(immI imm)
  2460   %{
  2461     // Check for 8-bit immediate, and set sign extend bit in opcode
  2462     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2463       $$$emit8$imm$$constant;
  2464     } else {
  2465       // 32-bit immediate
  2466       $$$emit32$imm$$constant;
  2468   %}
  2470   enc_class Lbl(label labl)
  2471   %{
  2472     // JMP, CALL
  2473     Label* l = $labl$$label;
  2474     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2475   %}
  2477   enc_class LblShort(label labl)
  2478   %{
  2479     // JMP, CALL
  2480     Label* l = $labl$$label;
  2481     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2482     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2483     emit_d8(cbuf, disp);
  2484   %}
  2486   enc_class opc2_reg(rRegI dst)
  2487   %{
  2488     // BSWAP
  2489     emit_cc(cbuf, $secondary, $dst$$reg);
  2490   %}
  2492   enc_class opc3_reg(rRegI dst)
  2493   %{
  2494     // BSWAP
  2495     emit_cc(cbuf, $tertiary, $dst$$reg);
  2496   %}
  2498   enc_class reg_opc(rRegI div)
  2499   %{
  2500     // INC, DEC, IDIV, IMOD, JMP indirect, ...
  2501     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
  2502   %}
  2504   enc_class Jcc(cmpOp cop, label labl)
  2505   %{
  2506     // JCC
  2507     Label* l = $labl$$label;
  2508     $$$emit8$primary;
  2509     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2510     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2511   %}
  2513   enc_class JccShort (cmpOp cop, label labl)
  2514   %{
  2515   // JCC
  2516     Label *l = $labl$$label;
  2517     emit_cc(cbuf, $primary, $cop$$cmpcode);
  2518     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2519     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2520     emit_d8(cbuf, disp);
  2521   %}
  2523   enc_class enc_cmov(cmpOp cop)
  2524   %{
  2525     // CMOV
  2526     $$$emit8$primary;
  2527     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2528   %}
  2530   enc_class enc_cmovf_branch(cmpOp cop, regF dst, regF src)
  2531   %{
  2532     // Invert sense of branch from sense of cmov
  2533     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2534     emit_d8(cbuf, ($dst$$reg < 8 && $src$$reg < 8)
  2535                   ? (UseXmmRegToRegMoveAll ? 3 : 4)
  2536                   : (UseXmmRegToRegMoveAll ? 4 : 5) ); // REX
  2537     // UseXmmRegToRegMoveAll ? movaps(dst, src) : movss(dst, src)
  2538     if (!UseXmmRegToRegMoveAll) emit_opcode(cbuf, 0xF3);
  2539     if ($dst$$reg < 8) {
  2540       if ($src$$reg >= 8) {
  2541         emit_opcode(cbuf, Assembler::REX_B);
  2543     } else {
  2544       if ($src$$reg < 8) {
  2545         emit_opcode(cbuf, Assembler::REX_R);
  2546       } else {
  2547         emit_opcode(cbuf, Assembler::REX_RB);
  2550     emit_opcode(cbuf, 0x0F);
  2551     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2552     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2553   %}
  2555   enc_class enc_cmovd_branch(cmpOp cop, regD dst, regD src)
  2556   %{
  2557     // Invert sense of branch from sense of cmov
  2558     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2559     emit_d8(cbuf, $dst$$reg < 8 && $src$$reg < 8 ? 4 : 5); // REX
  2561     //  UseXmmRegToRegMoveAll ? movapd(dst, src) : movsd(dst, src)
  2562     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  2563     if ($dst$$reg < 8) {
  2564       if ($src$$reg >= 8) {
  2565         emit_opcode(cbuf, Assembler::REX_B);
  2567     } else {
  2568       if ($src$$reg < 8) {
  2569         emit_opcode(cbuf, Assembler::REX_R);
  2570       } else {
  2571         emit_opcode(cbuf, Assembler::REX_RB);
  2574     emit_opcode(cbuf, 0x0F);
  2575     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2576     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2577   %}
  2579   enc_class enc_PartialSubtypeCheck()
  2580   %{
  2581     Register Rrdi = as_Register(RDI_enc); // result register
  2582     Register Rrax = as_Register(RAX_enc); // super class
  2583     Register Rrcx = as_Register(RCX_enc); // killed
  2584     Register Rrsi = as_Register(RSI_enc); // sub class
  2585     Label miss;
  2586     const bool set_cond_codes = true;
  2588     MacroAssembler _masm(&cbuf);
  2589     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
  2590                                      NULL, &miss,
  2591                                      /*set_cond_codes:*/ true);
  2592     if ($primary) {
  2593       __ xorptr(Rrdi, Rrdi);
  2595     __ bind(miss);
  2596   %}
  2598   enc_class Java_To_Interpreter(method meth)
  2599   %{
  2600     // CALL Java_To_Interpreter
  2601     // This is the instruction starting address for relocation info.
  2602     cbuf.set_inst_mark();
  2603     $$$emit8$primary;
  2604     // CALL directly to the runtime
  2605     emit_d32_reloc(cbuf,
  2606                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2607                    runtime_call_Relocation::spec(),
  2608                    RELOC_DISP32);
  2609   %}
  2611   enc_class Java_Static_Call(method meth)
  2612   %{
  2613     // JAVA STATIC CALL
  2614     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
  2615     // determine who we intended to call.
  2616     cbuf.set_inst_mark();
  2617     $$$emit8$primary;
  2619     if (!_method) {
  2620       emit_d32_reloc(cbuf,
  2621                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2622                      runtime_call_Relocation::spec(),
  2623                      RELOC_DISP32);
  2624     } else if (_optimized_virtual) {
  2625       emit_d32_reloc(cbuf,
  2626                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2627                      opt_virtual_call_Relocation::spec(),
  2628                      RELOC_DISP32);
  2629     } else {
  2630       emit_d32_reloc(cbuf,
  2631                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2632                      static_call_Relocation::spec(),
  2633                      RELOC_DISP32);
  2635     if (_method) {
  2636       // Emit stub for static call
  2637       emit_java_to_interp(cbuf);
  2639   %}
  2641   enc_class Java_Dynamic_Call(method meth)
  2642   %{
  2643     // JAVA DYNAMIC CALL
  2644     // !!!!!
  2645     // Generate  "movq rax, -1", placeholder instruction to load oop-info
  2646     // emit_call_dynamic_prologue( cbuf );
  2647     cbuf.set_inst_mark();
  2649     // movq rax, -1
  2650     emit_opcode(cbuf, Assembler::REX_W);
  2651     emit_opcode(cbuf, 0xB8 | RAX_enc);
  2652     emit_d64_reloc(cbuf,
  2653                    (int64_t) Universe::non_oop_word(),
  2654                    oop_Relocation::spec_for_immediate(), RELOC_IMM64);
  2655     address virtual_call_oop_addr = cbuf.inst_mark();
  2656     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2657     // who we intended to call.
  2658     cbuf.set_inst_mark();
  2659     $$$emit8$primary;
  2660     emit_d32_reloc(cbuf,
  2661                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2662                    virtual_call_Relocation::spec(virtual_call_oop_addr),
  2663                    RELOC_DISP32);
  2664   %}
  2666   enc_class Java_Compiled_Call(method meth)
  2667   %{
  2668     // JAVA COMPILED CALL
  2669     int disp = in_bytes(methodOopDesc:: from_compiled_offset());
  2671     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
  2672     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
  2674     // callq *disp(%rax)
  2675     cbuf.set_inst_mark();
  2676     $$$emit8$primary;
  2677     if (disp < 0x80) {
  2678       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
  2679       emit_d8(cbuf, disp); // Displacement
  2680     } else {
  2681       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
  2682       emit_d32(cbuf, disp); // Displacement
  2684   %}
  2686   enc_class reg_opc_imm(rRegI dst, immI8 shift)
  2687   %{
  2688     // SAL, SAR, SHR
  2689     int dstenc = $dst$$reg;
  2690     if (dstenc >= 8) {
  2691       emit_opcode(cbuf, Assembler::REX_B);
  2692       dstenc -= 8;
  2694     $$$emit8$primary;
  2695     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2696     $$$emit8$shift$$constant;
  2697   %}
  2699   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
  2700   %{
  2701     // SAL, SAR, SHR
  2702     int dstenc = $dst$$reg;
  2703     if (dstenc < 8) {
  2704       emit_opcode(cbuf, Assembler::REX_W);
  2705     } else {
  2706       emit_opcode(cbuf, Assembler::REX_WB);
  2707       dstenc -= 8;
  2709     $$$emit8$primary;
  2710     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2711     $$$emit8$shift$$constant;
  2712   %}
  2714   enc_class load_immI(rRegI dst, immI src)
  2715   %{
  2716     int dstenc = $dst$$reg;
  2717     if (dstenc >= 8) {
  2718       emit_opcode(cbuf, Assembler::REX_B);
  2719       dstenc -= 8;
  2721     emit_opcode(cbuf, 0xB8 | dstenc);
  2722     $$$emit32$src$$constant;
  2723   %}
  2725   enc_class load_immL(rRegL dst, immL src)
  2726   %{
  2727     int dstenc = $dst$$reg;
  2728     if (dstenc < 8) {
  2729       emit_opcode(cbuf, Assembler::REX_W);
  2730     } else {
  2731       emit_opcode(cbuf, Assembler::REX_WB);
  2732       dstenc -= 8;
  2734     emit_opcode(cbuf, 0xB8 | dstenc);
  2735     emit_d64(cbuf, $src$$constant);
  2736   %}
  2738   enc_class load_immUL32(rRegL dst, immUL32 src)
  2739   %{
  2740     // same as load_immI, but this time we care about zeroes in the high word
  2741     int dstenc = $dst$$reg;
  2742     if (dstenc >= 8) {
  2743       emit_opcode(cbuf, Assembler::REX_B);
  2744       dstenc -= 8;
  2746     emit_opcode(cbuf, 0xB8 | dstenc);
  2747     $$$emit32$src$$constant;
  2748   %}
  2750   enc_class load_immL32(rRegL dst, immL32 src)
  2751   %{
  2752     int dstenc = $dst$$reg;
  2753     if (dstenc < 8) {
  2754       emit_opcode(cbuf, Assembler::REX_W);
  2755     } else {
  2756       emit_opcode(cbuf, Assembler::REX_WB);
  2757       dstenc -= 8;
  2759     emit_opcode(cbuf, 0xC7);
  2760     emit_rm(cbuf, 0x03, 0x00, dstenc);
  2761     $$$emit32$src$$constant;
  2762   %}
  2764   enc_class load_immP31(rRegP dst, immP32 src)
  2765   %{
  2766     // same as load_immI, but this time we care about zeroes in the high word
  2767     int dstenc = $dst$$reg;
  2768     if (dstenc >= 8) {
  2769       emit_opcode(cbuf, Assembler::REX_B);
  2770       dstenc -= 8;
  2772     emit_opcode(cbuf, 0xB8 | dstenc);
  2773     $$$emit32$src$$constant;
  2774   %}
  2776   enc_class load_immP(rRegP dst, immP src)
  2777   %{
  2778     int dstenc = $dst$$reg;
  2779     if (dstenc < 8) {
  2780       emit_opcode(cbuf, Assembler::REX_W);
  2781     } else {
  2782       emit_opcode(cbuf, Assembler::REX_WB);
  2783       dstenc -= 8;
  2785     emit_opcode(cbuf, 0xB8 | dstenc);
  2786     // This next line should be generated from ADLC
  2787     if ($src->constant_is_oop()) {
  2788       emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
  2789     } else {
  2790       emit_d64(cbuf, $src$$constant);
  2792   %}
  2794   enc_class load_immF(regF dst, immF con)
  2795   %{
  2796     // XXX reg_mem doesn't support RIP-relative addressing yet
  2797     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2798     emit_float_constant(cbuf, $con$$constant);
  2799   %}
  2801   enc_class load_immD(regD dst, immD con)
  2802   %{
  2803     // XXX reg_mem doesn't support RIP-relative addressing yet
  2804     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2805     emit_double_constant(cbuf, $con$$constant);
  2806   %}
  2808   enc_class load_conF (regF dst, immF con) %{    // Load float constant
  2809     emit_opcode(cbuf, 0xF3);
  2810     if ($dst$$reg >= 8) {
  2811       emit_opcode(cbuf, Assembler::REX_R);
  2813     emit_opcode(cbuf, 0x0F);
  2814     emit_opcode(cbuf, 0x10);
  2815     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2816     emit_float_constant(cbuf, $con$$constant);
  2817   %}
  2819   enc_class load_conD (regD dst, immD con) %{    // Load double constant
  2820     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2821     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2822     if ($dst$$reg >= 8) {
  2823       emit_opcode(cbuf, Assembler::REX_R);
  2825     emit_opcode(cbuf, 0x0F);
  2826     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2827     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2828     emit_double_constant(cbuf, $con$$constant);
  2829   %}
  2831   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2832   enc_class enc_copy(rRegI dst, rRegI src)
  2833   %{
  2834     encode_copy(cbuf, $dst$$reg, $src$$reg);
  2835   %}
  2837   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2838   enc_class enc_CopyXD( RegD dst, RegD src ) %{
  2839     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2840   %}
  2842   enc_class enc_copy_always(rRegI dst, rRegI src)
  2843   %{
  2844     int srcenc = $src$$reg;
  2845     int dstenc = $dst$$reg;
  2847     if (dstenc < 8) {
  2848       if (srcenc >= 8) {
  2849         emit_opcode(cbuf, Assembler::REX_B);
  2850         srcenc -= 8;
  2852     } else {
  2853       if (srcenc < 8) {
  2854         emit_opcode(cbuf, Assembler::REX_R);
  2855       } else {
  2856         emit_opcode(cbuf, Assembler::REX_RB);
  2857         srcenc -= 8;
  2859       dstenc -= 8;
  2862     emit_opcode(cbuf, 0x8B);
  2863     emit_rm(cbuf, 0x3, dstenc, srcenc);
  2864   %}
  2866   enc_class enc_copy_wide(rRegL dst, rRegL src)
  2867   %{
  2868     int srcenc = $src$$reg;
  2869     int dstenc = $dst$$reg;
  2871     if (dstenc != srcenc) {
  2872       if (dstenc < 8) {
  2873         if (srcenc < 8) {
  2874           emit_opcode(cbuf, Assembler::REX_W);
  2875         } else {
  2876           emit_opcode(cbuf, Assembler::REX_WB);
  2877           srcenc -= 8;
  2879       } else {
  2880         if (srcenc < 8) {
  2881           emit_opcode(cbuf, Assembler::REX_WR);
  2882         } else {
  2883           emit_opcode(cbuf, Assembler::REX_WRB);
  2884           srcenc -= 8;
  2886         dstenc -= 8;
  2888       emit_opcode(cbuf, 0x8B);
  2889       emit_rm(cbuf, 0x3, dstenc, srcenc);
  2891   %}
  2893   enc_class Con32(immI src)
  2894   %{
  2895     // Output immediate
  2896     $$$emit32$src$$constant;
  2897   %}
  2899   enc_class Con64(immL src)
  2900   %{
  2901     // Output immediate
  2902     emit_d64($src$$constant);
  2903   %}
  2905   enc_class Con32F_as_bits(immF src)
  2906   %{
  2907     // Output Float immediate bits
  2908     jfloat jf = $src$$constant;
  2909     jint jf_as_bits = jint_cast(jf);
  2910     emit_d32(cbuf, jf_as_bits);
  2911   %}
  2913   enc_class Con16(immI src)
  2914   %{
  2915     // Output immediate
  2916     $$$emit16$src$$constant;
  2917   %}
  2919   // How is this different from Con32??? XXX
  2920   enc_class Con_d32(immI src)
  2921   %{
  2922     emit_d32(cbuf,$src$$constant);
  2923   %}
  2925   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
  2926     // Output immediate memory reference
  2927     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2928     emit_d32(cbuf, 0x00);
  2929   %}
  2931   enc_class jump_enc(rRegL switch_val, rRegI dest) %{
  2932     MacroAssembler masm(&cbuf);
  2934     Register switch_reg = as_Register($switch_val$$reg);
  2935     Register dest_reg   = as_Register($dest$$reg);
  2936     address table_base  = masm.address_table_constant(_index2label);
  2938     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2939     // to do that and the compiler is using that register as one it can allocate.
  2940     // So we build it all by hand.
  2941     // Address index(noreg, switch_reg, Address::times_1);
  2942     // ArrayAddress dispatch(table, index);
  2944     Address dispatch(dest_reg, switch_reg, Address::times_1);
  2946     masm.lea(dest_reg, InternalAddress(table_base));
  2947     masm.jmp(dispatch);
  2948   %}
  2950   enc_class jump_enc_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  2951     MacroAssembler masm(&cbuf);
  2953     Register switch_reg = as_Register($switch_val$$reg);
  2954     Register dest_reg   = as_Register($dest$$reg);
  2955     address table_base  = masm.address_table_constant(_index2label);
  2957     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2958     // to do that and the compiler is using that register as one it can allocate.
  2959     // So we build it all by hand.
  2960     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2961     // ArrayAddress dispatch(table, index);
  2963     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2965     masm.lea(dest_reg, InternalAddress(table_base));
  2966     masm.jmp(dispatch);
  2967   %}
  2969   enc_class jump_enc_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  2970     MacroAssembler masm(&cbuf);
  2972     Register switch_reg = as_Register($switch_val$$reg);
  2973     Register dest_reg   = as_Register($dest$$reg);
  2974     address table_base  = masm.address_table_constant(_index2label);
  2976     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2977     // to do that and the compiler is using that register as one it can allocate.
  2978     // So we build it all by hand.
  2979     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  2980     // ArrayAddress dispatch(table, index);
  2982     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  2983     masm.lea(dest_reg, InternalAddress(table_base));
  2984     masm.jmp(dispatch);
  2986   %}
  2988   enc_class lock_prefix()
  2989   %{
  2990     if (os::is_MP()) {
  2991       emit_opcode(cbuf, 0xF0); // lock
  2993   %}
  2995   enc_class REX_mem(memory mem)
  2996   %{
  2997     if ($mem$$base >= 8) {
  2998       if ($mem$$index < 8) {
  2999         emit_opcode(cbuf, Assembler::REX_B);
  3000       } else {
  3001         emit_opcode(cbuf, Assembler::REX_XB);
  3003     } else {
  3004       if ($mem$$index >= 8) {
  3005         emit_opcode(cbuf, Assembler::REX_X);
  3008   %}
  3010   enc_class REX_mem_wide(memory mem)
  3011   %{
  3012     if ($mem$$base >= 8) {
  3013       if ($mem$$index < 8) {
  3014         emit_opcode(cbuf, Assembler::REX_WB);
  3015       } else {
  3016         emit_opcode(cbuf, Assembler::REX_WXB);
  3018     } else {
  3019       if ($mem$$index < 8) {
  3020         emit_opcode(cbuf, Assembler::REX_W);
  3021       } else {
  3022         emit_opcode(cbuf, Assembler::REX_WX);
  3025   %}
  3027   // for byte regs
  3028   enc_class REX_breg(rRegI reg)
  3029   %{
  3030     if ($reg$$reg >= 4) {
  3031       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3033   %}
  3035   // for byte regs
  3036   enc_class REX_reg_breg(rRegI dst, rRegI src)
  3037   %{
  3038     if ($dst$$reg < 8) {
  3039       if ($src$$reg >= 4) {
  3040         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3042     } else {
  3043       if ($src$$reg < 8) {
  3044         emit_opcode(cbuf, Assembler::REX_R);
  3045       } else {
  3046         emit_opcode(cbuf, Assembler::REX_RB);
  3049   %}
  3051   // for byte regs
  3052   enc_class REX_breg_mem(rRegI reg, memory mem)
  3053   %{
  3054     if ($reg$$reg < 8) {
  3055       if ($mem$$base < 8) {
  3056         if ($mem$$index >= 8) {
  3057           emit_opcode(cbuf, Assembler::REX_X);
  3058         } else if ($reg$$reg >= 4) {
  3059           emit_opcode(cbuf, Assembler::REX);
  3061       } else {
  3062         if ($mem$$index < 8) {
  3063           emit_opcode(cbuf, Assembler::REX_B);
  3064         } else {
  3065           emit_opcode(cbuf, Assembler::REX_XB);
  3068     } else {
  3069       if ($mem$$base < 8) {
  3070         if ($mem$$index < 8) {
  3071           emit_opcode(cbuf, Assembler::REX_R);
  3072         } else {
  3073           emit_opcode(cbuf, Assembler::REX_RX);
  3075       } else {
  3076         if ($mem$$index < 8) {
  3077           emit_opcode(cbuf, Assembler::REX_RB);
  3078         } else {
  3079           emit_opcode(cbuf, Assembler::REX_RXB);
  3083   %}
  3085   enc_class REX_reg(rRegI reg)
  3086   %{
  3087     if ($reg$$reg >= 8) {
  3088       emit_opcode(cbuf, Assembler::REX_B);
  3090   %}
  3092   enc_class REX_reg_wide(rRegI reg)
  3093   %{
  3094     if ($reg$$reg < 8) {
  3095       emit_opcode(cbuf, Assembler::REX_W);
  3096     } else {
  3097       emit_opcode(cbuf, Assembler::REX_WB);
  3099   %}
  3101   enc_class REX_reg_reg(rRegI dst, rRegI src)
  3102   %{
  3103     if ($dst$$reg < 8) {
  3104       if ($src$$reg >= 8) {
  3105         emit_opcode(cbuf, Assembler::REX_B);
  3107     } else {
  3108       if ($src$$reg < 8) {
  3109         emit_opcode(cbuf, Assembler::REX_R);
  3110       } else {
  3111         emit_opcode(cbuf, Assembler::REX_RB);
  3114   %}
  3116   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
  3117   %{
  3118     if ($dst$$reg < 8) {
  3119       if ($src$$reg < 8) {
  3120         emit_opcode(cbuf, Assembler::REX_W);
  3121       } else {
  3122         emit_opcode(cbuf, Assembler::REX_WB);
  3124     } else {
  3125       if ($src$$reg < 8) {
  3126         emit_opcode(cbuf, Assembler::REX_WR);
  3127       } else {
  3128         emit_opcode(cbuf, Assembler::REX_WRB);
  3131   %}
  3133   enc_class REX_reg_mem(rRegI reg, memory mem)
  3134   %{
  3135     if ($reg$$reg < 8) {
  3136       if ($mem$$base < 8) {
  3137         if ($mem$$index >= 8) {
  3138           emit_opcode(cbuf, Assembler::REX_X);
  3140       } else {
  3141         if ($mem$$index < 8) {
  3142           emit_opcode(cbuf, Assembler::REX_B);
  3143         } else {
  3144           emit_opcode(cbuf, Assembler::REX_XB);
  3147     } else {
  3148       if ($mem$$base < 8) {
  3149         if ($mem$$index < 8) {
  3150           emit_opcode(cbuf, Assembler::REX_R);
  3151         } else {
  3152           emit_opcode(cbuf, Assembler::REX_RX);
  3154       } else {
  3155         if ($mem$$index < 8) {
  3156           emit_opcode(cbuf, Assembler::REX_RB);
  3157         } else {
  3158           emit_opcode(cbuf, Assembler::REX_RXB);
  3162   %}
  3164   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
  3165   %{
  3166     if ($reg$$reg < 8) {
  3167       if ($mem$$base < 8) {
  3168         if ($mem$$index < 8) {
  3169           emit_opcode(cbuf, Assembler::REX_W);
  3170         } else {
  3171           emit_opcode(cbuf, Assembler::REX_WX);
  3173       } else {
  3174         if ($mem$$index < 8) {
  3175           emit_opcode(cbuf, Assembler::REX_WB);
  3176         } else {
  3177           emit_opcode(cbuf, Assembler::REX_WXB);
  3180     } else {
  3181       if ($mem$$base < 8) {
  3182         if ($mem$$index < 8) {
  3183           emit_opcode(cbuf, Assembler::REX_WR);
  3184         } else {
  3185           emit_opcode(cbuf, Assembler::REX_WRX);
  3187       } else {
  3188         if ($mem$$index < 8) {
  3189           emit_opcode(cbuf, Assembler::REX_WRB);
  3190         } else {
  3191           emit_opcode(cbuf, Assembler::REX_WRXB);
  3195   %}
  3197   enc_class reg_mem(rRegI ereg, memory mem)
  3198   %{
  3199     // High registers handle in encode_RegMem
  3200     int reg = $ereg$$reg;
  3201     int base = $mem$$base;
  3202     int index = $mem$$index;
  3203     int scale = $mem$$scale;
  3204     int disp = $mem$$disp;
  3205     bool disp_is_oop = $mem->disp_is_oop();
  3207     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
  3208   %}
  3210   enc_class RM_opc_mem(immI rm_opcode, memory mem)
  3211   %{
  3212     int rm_byte_opcode = $rm_opcode$$constant;
  3214     // High registers handle in encode_RegMem
  3215     int base = $mem$$base;
  3216     int index = $mem$$index;
  3217     int scale = $mem$$scale;
  3218     int displace = $mem$$disp;
  3220     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
  3221                                             // working with static
  3222                                             // globals
  3223     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
  3224                   disp_is_oop);
  3225   %}
  3227   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
  3228   %{
  3229     int reg_encoding = $dst$$reg;
  3230     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  3231     int index        = 0x04;            // 0x04 indicates no index
  3232     int scale        = 0x00;            // 0x00 indicates no scale
  3233     int displace     = $src1$$constant; // 0x00 indicates no displacement
  3234     bool disp_is_oop = false;
  3235     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
  3236                   disp_is_oop);
  3237   %}
  3239   enc_class neg_reg(rRegI dst)
  3240   %{
  3241     int dstenc = $dst$$reg;
  3242     if (dstenc >= 8) {
  3243       emit_opcode(cbuf, Assembler::REX_B);
  3244       dstenc -= 8;
  3246     // NEG $dst
  3247     emit_opcode(cbuf, 0xF7);
  3248     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3249   %}
  3251   enc_class neg_reg_wide(rRegI dst)
  3252   %{
  3253     int dstenc = $dst$$reg;
  3254     if (dstenc < 8) {
  3255       emit_opcode(cbuf, Assembler::REX_W);
  3256     } else {
  3257       emit_opcode(cbuf, Assembler::REX_WB);
  3258       dstenc -= 8;
  3260     // NEG $dst
  3261     emit_opcode(cbuf, 0xF7);
  3262     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3263   %}
  3265   enc_class setLT_reg(rRegI dst)
  3266   %{
  3267     int dstenc = $dst$$reg;
  3268     if (dstenc >= 8) {
  3269       emit_opcode(cbuf, Assembler::REX_B);
  3270       dstenc -= 8;
  3271     } else if (dstenc >= 4) {
  3272       emit_opcode(cbuf, Assembler::REX);
  3274     // SETLT $dst
  3275     emit_opcode(cbuf, 0x0F);
  3276     emit_opcode(cbuf, 0x9C);
  3277     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3278   %}
  3280   enc_class setNZ_reg(rRegI dst)
  3281   %{
  3282     int dstenc = $dst$$reg;
  3283     if (dstenc >= 8) {
  3284       emit_opcode(cbuf, Assembler::REX_B);
  3285       dstenc -= 8;
  3286     } else if (dstenc >= 4) {
  3287       emit_opcode(cbuf, Assembler::REX);
  3289     // SETNZ $dst
  3290     emit_opcode(cbuf, 0x0F);
  3291     emit_opcode(cbuf, 0x95);
  3292     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3293   %}
  3295   enc_class enc_cmpLTP(no_rcx_RegI p, no_rcx_RegI q, no_rcx_RegI y,
  3296                        rcx_RegI tmp)
  3297   %{
  3298     // cadd_cmpLT
  3300     int tmpReg = $tmp$$reg;
  3302     int penc = $p$$reg;
  3303     int qenc = $q$$reg;
  3304     int yenc = $y$$reg;
  3306     // subl $p,$q
  3307     if (penc < 8) {
  3308       if (qenc >= 8) {
  3309         emit_opcode(cbuf, Assembler::REX_B);
  3311     } else {
  3312       if (qenc < 8) {
  3313         emit_opcode(cbuf, Assembler::REX_R);
  3314       } else {
  3315         emit_opcode(cbuf, Assembler::REX_RB);
  3318     emit_opcode(cbuf, 0x2B);
  3319     emit_rm(cbuf, 0x3, penc & 7, qenc & 7);
  3321     // sbbl $tmp, $tmp
  3322     emit_opcode(cbuf, 0x1B);
  3323     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  3325     // andl $tmp, $y
  3326     if (yenc >= 8) {
  3327       emit_opcode(cbuf, Assembler::REX_B);
  3329     emit_opcode(cbuf, 0x23);
  3330     emit_rm(cbuf, 0x3, tmpReg, yenc & 7);
  3332     // addl $p,$tmp
  3333     if (penc >= 8) {
  3334         emit_opcode(cbuf, Assembler::REX_R);
  3336     emit_opcode(cbuf, 0x03);
  3337     emit_rm(cbuf, 0x3, penc & 7, tmpReg);
  3338   %}
  3340   // Compare the lonogs and set -1, 0, or 1 into dst
  3341   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
  3342   %{
  3343     int src1enc = $src1$$reg;
  3344     int src2enc = $src2$$reg;
  3345     int dstenc = $dst$$reg;
  3347     // cmpq $src1, $src2
  3348     if (src1enc < 8) {
  3349       if (src2enc < 8) {
  3350         emit_opcode(cbuf, Assembler::REX_W);
  3351       } else {
  3352         emit_opcode(cbuf, Assembler::REX_WB);
  3354     } else {
  3355       if (src2enc < 8) {
  3356         emit_opcode(cbuf, Assembler::REX_WR);
  3357       } else {
  3358         emit_opcode(cbuf, Assembler::REX_WRB);
  3361     emit_opcode(cbuf, 0x3B);
  3362     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
  3364     // movl $dst, -1
  3365     if (dstenc >= 8) {
  3366       emit_opcode(cbuf, Assembler::REX_B);
  3368     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  3369     emit_d32(cbuf, -1);
  3371     // jl,s done
  3372     emit_opcode(cbuf, 0x7C);
  3373     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  3375     // setne $dst
  3376     if (dstenc >= 4) {
  3377       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  3379     emit_opcode(cbuf, 0x0F);
  3380     emit_opcode(cbuf, 0x95);
  3381     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  3383     // movzbl $dst, $dst
  3384     if (dstenc >= 4) {
  3385       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  3387     emit_opcode(cbuf, 0x0F);
  3388     emit_opcode(cbuf, 0xB6);
  3389     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  3390   %}
  3392   enc_class Push_ResultXD(regD dst) %{
  3393     int dstenc = $dst$$reg;
  3395     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [RSP]
  3397     // UseXmmLoadAndClearUpper ? movsd dst,[rsp] : movlpd dst,[rsp]
  3398     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  3399     if (dstenc >= 8) {
  3400       emit_opcode(cbuf, Assembler::REX_R);
  3402     emit_opcode  (cbuf, 0x0F );
  3403     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12 );
  3404     encode_RegMem(cbuf, dstenc, RSP_enc, 0x4, 0, 0, false);
  3406     // add rsp,8
  3407     emit_opcode(cbuf, Assembler::REX_W);
  3408     emit_opcode(cbuf,0x83);
  3409     emit_rm(cbuf,0x3, 0x0, RSP_enc);
  3410     emit_d8(cbuf,0x08);
  3411   %}
  3413   enc_class Push_SrcXD(regD src) %{
  3414     int srcenc = $src$$reg;
  3416     // subq rsp,#8
  3417     emit_opcode(cbuf, Assembler::REX_W);
  3418     emit_opcode(cbuf, 0x83);
  3419     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3420     emit_d8(cbuf, 0x8);
  3422     // movsd [rsp],src
  3423     emit_opcode(cbuf, 0xF2);
  3424     if (srcenc >= 8) {
  3425       emit_opcode(cbuf, Assembler::REX_R);
  3427     emit_opcode(cbuf, 0x0F);
  3428     emit_opcode(cbuf, 0x11);
  3429     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false);
  3431     // fldd [rsp]
  3432     emit_opcode(cbuf, 0x66);
  3433     emit_opcode(cbuf, 0xDD);
  3434     encode_RegMem(cbuf, 0x0, RSP_enc, 0x4, 0, 0, false);
  3435   %}
  3438   enc_class movq_ld(regD dst, memory mem) %{
  3439     MacroAssembler _masm(&cbuf);
  3440     __ movq($dst$$XMMRegister, $mem$$Address);
  3441   %}
  3443   enc_class movq_st(memory mem, regD src) %{
  3444     MacroAssembler _masm(&cbuf);
  3445     __ movq($mem$$Address, $src$$XMMRegister);
  3446   %}
  3448   enc_class pshufd_8x8(regF dst, regF src) %{
  3449     MacroAssembler _masm(&cbuf);
  3451     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3452     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3453     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3454   %}
  3456   enc_class pshufd_4x16(regF dst, regF src) %{
  3457     MacroAssembler _masm(&cbuf);
  3459     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3460   %}
  3462   enc_class pshufd(regD dst, regD src, int mode) %{
  3463     MacroAssembler _masm(&cbuf);
  3465     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3466   %}
  3468   enc_class pxor(regD dst, regD src) %{
  3469     MacroAssembler _masm(&cbuf);
  3471     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3472   %}
  3474   enc_class mov_i2x(regD dst, rRegI src) %{
  3475     MacroAssembler _masm(&cbuf);
  3477     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3478   %}
  3480   // obj: object to lock
  3481   // box: box address (header location) -- killed
  3482   // tmp: rax -- killed
  3483   // scr: rbx -- killed
  3484   //
  3485   // What follows is a direct transliteration of fast_lock() and fast_unlock()
  3486   // from i486.ad.  See that file for comments.
  3487   // TODO: where possible switch from movq (r, 0) to movl(r,0) and
  3488   // use the shorter encoding.  (Movl clears the high-order 32-bits).
  3491   enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
  3492   %{
  3493     Register objReg = as_Register((int)$obj$$reg);
  3494     Register boxReg = as_Register((int)$box$$reg);
  3495     Register tmpReg = as_Register($tmp$$reg);
  3496     Register scrReg = as_Register($scr$$reg);
  3497     MacroAssembler masm(&cbuf);
  3499     // Verify uniqueness of register assignments -- necessary but not sufficient
  3500     assert (objReg != boxReg && objReg != tmpReg &&
  3501             objReg != scrReg && tmpReg != scrReg, "invariant") ;
  3503     if (_counters != NULL) {
  3504       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3506     if (EmitSync & 1) {
  3507         // Without cast to int32_t a movptr will destroy r10 which is typically obj
  3508         masm.movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ; 
  3509         masm.cmpptr(rsp, (int32_t)NULL_WORD) ; 
  3510     } else
  3511     if (EmitSync & 2) {
  3512         Label DONE_LABEL;
  3513         if (UseBiasedLocking) {
  3514            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3515           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3517         // QQQ was movl...
  3518         masm.movptr(tmpReg, 0x1);
  3519         masm.orptr(tmpReg, Address(objReg, 0));
  3520         masm.movptr(Address(boxReg, 0), tmpReg);
  3521         if (os::is_MP()) {
  3522           masm.lock();
  3524         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
  3525         masm.jcc(Assembler::equal, DONE_LABEL);
  3527         // Recursive locking
  3528         masm.subptr(tmpReg, rsp);
  3529         masm.andptr(tmpReg, 7 - os::vm_page_size());
  3530         masm.movptr(Address(boxReg, 0), tmpReg);
  3532         masm.bind(DONE_LABEL);
  3533         masm.nop(); // avoid branch to branch
  3534     } else {
  3535         Label DONE_LABEL, IsInflated, Egress;
  3537         masm.movptr(tmpReg, Address(objReg, 0)) ; 
  3538         masm.testl (tmpReg, 0x02) ;         // inflated vs stack-locked|neutral|biased
  3539         masm.jcc   (Assembler::notZero, IsInflated) ; 
  3541         // it's stack-locked, biased or neutral
  3542         // TODO: optimize markword triage order to reduce the number of
  3543         // conditional branches in the most common cases.
  3544         // Beware -- there's a subtle invariant that fetch of the markword
  3545         // at [FETCH], below, will never observe a biased encoding (*101b).
  3546         // If this invariant is not held we'll suffer exclusion (safety) failure.
  3548         if (UseBiasedLocking && !UseOptoBiasInlining) {
  3549           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
  3550           masm.movptr(tmpReg, Address(objReg, 0)) ;        // [FETCH]
  3553         // was q will it destroy high?
  3554         masm.orl   (tmpReg, 1) ; 
  3555         masm.movptr(Address(boxReg, 0), tmpReg) ;  
  3556         if (os::is_MP()) { masm.lock(); } 
  3557         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
  3558         if (_counters != NULL) {
  3559            masm.cond_inc32(Assembler::equal,
  3560                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3562         masm.jcc   (Assembler::equal, DONE_LABEL);
  3564         // Recursive locking
  3565         masm.subptr(tmpReg, rsp);
  3566         masm.andptr(tmpReg, 7 - os::vm_page_size());
  3567         masm.movptr(Address(boxReg, 0), tmpReg);
  3568         if (_counters != NULL) {
  3569            masm.cond_inc32(Assembler::equal,
  3570                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3572         masm.jmp   (DONE_LABEL) ;
  3574         masm.bind  (IsInflated) ;
  3575         // It's inflated
  3577         // TODO: someday avoid the ST-before-CAS penalty by
  3578         // relocating (deferring) the following ST.
  3579         // We should also think about trying a CAS without having
  3580         // fetched _owner.  If the CAS is successful we may
  3581         // avoid an RTO->RTS upgrade on the $line.
  3582         // Without cast to int32_t a movptr will destroy r10 which is typically obj
  3583         masm.movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ; 
  3585         masm.mov    (boxReg, tmpReg) ; 
  3586         masm.movptr (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3587         masm.testptr(tmpReg, tmpReg) ;   
  3588         masm.jcc    (Assembler::notZero, DONE_LABEL) ; 
  3590         // It's inflated and appears unlocked
  3591         if (os::is_MP()) { masm.lock(); } 
  3592         masm.cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3593         // Intentional fall-through into DONE_LABEL ...
  3595         masm.bind  (DONE_LABEL) ;
  3596         masm.nop   () ;                 // avoid jmp to jmp
  3598   %}
  3600   // obj: object to unlock
  3601   // box: box address (displaced header location), killed
  3602   // RBX: killed tmp; cannot be obj nor box
  3603   enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
  3604   %{
  3606     Register objReg = as_Register($obj$$reg);
  3607     Register boxReg = as_Register($box$$reg);
  3608     Register tmpReg = as_Register($tmp$$reg);
  3609     MacroAssembler masm(&cbuf);
  3611     if (EmitSync & 4) { 
  3612        masm.cmpptr(rsp, 0) ; 
  3613     } else
  3614     if (EmitSync & 8) {
  3615        Label DONE_LABEL;
  3616        if (UseBiasedLocking) {
  3617          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3620        // Check whether the displaced header is 0
  3621        //(=> recursive unlock)
  3622        masm.movptr(tmpReg, Address(boxReg, 0));
  3623        masm.testptr(tmpReg, tmpReg);
  3624        masm.jcc(Assembler::zero, DONE_LABEL);
  3626        // If not recursive lock, reset the header to displaced header
  3627        if (os::is_MP()) {
  3628          masm.lock();
  3630        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3631        masm.bind(DONE_LABEL);
  3632        masm.nop(); // avoid branch to branch
  3633     } else {
  3634        Label DONE_LABEL, Stacked, CheckSucc ;
  3636        if (UseBiasedLocking && !UseOptoBiasInlining) {
  3637          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3640        masm.movptr(tmpReg, Address(objReg, 0)) ; 
  3641        masm.cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD) ; 
  3642        masm.jcc   (Assembler::zero, DONE_LABEL) ; 
  3643        masm.testl (tmpReg, 0x02) ; 
  3644        masm.jcc   (Assembler::zero, Stacked) ; 
  3646        // It's inflated
  3647        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3648        masm.xorptr(boxReg, r15_thread) ; 
  3649        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ; 
  3650        masm.jcc   (Assembler::notZero, DONE_LABEL) ; 
  3651        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3652        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3653        masm.jcc   (Assembler::notZero, CheckSucc) ; 
  3654        masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ; 
  3655        masm.jmp   (DONE_LABEL) ; 
  3657        if ((EmitSync & 65536) == 0) { 
  3658          Label LSuccess, LGoSlowPath ;
  3659          masm.bind  (CheckSucc) ;
  3660          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3661          masm.jcc   (Assembler::zero, LGoSlowPath) ;
  3663          // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
  3664          // the explicit ST;MEMBAR combination, but masm doesn't currently support
  3665          // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
  3666          // are all faster when the write buffer is populated.
  3667          masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3668          if (os::is_MP()) {
  3669             masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
  3671          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3672          masm.jcc   (Assembler::notZero, LSuccess) ;
  3674          masm.movptr (boxReg, (int32_t)NULL_WORD) ;                   // box is really EAX
  3675          if (os::is_MP()) { masm.lock(); }
  3676          masm.cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3677          masm.jcc   (Assembler::notEqual, LSuccess) ;
  3678          // Intentional fall-through into slow-path
  3680          masm.bind  (LGoSlowPath) ;
  3681          masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3682          masm.jmp   (DONE_LABEL) ;
  3684          masm.bind  (LSuccess) ;
  3685          masm.testl (boxReg, 0) ;                      // set ICC.ZF=1 to indicate success
  3686          masm.jmp   (DONE_LABEL) ;
  3689        masm.bind  (Stacked) ; 
  3690        masm.movptr(tmpReg, Address (boxReg, 0)) ;      // re-fetch
  3691        if (os::is_MP()) { masm.lock(); } 
  3692        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3694        if (EmitSync & 65536) {
  3695           masm.bind (CheckSucc) ;
  3697        masm.bind(DONE_LABEL);
  3698        if (EmitSync & 32768) {
  3699           masm.nop();                      // avoid branch to branch
  3702   %}
  3705   enc_class enc_rethrow()
  3706   %{
  3707     cbuf.set_inst_mark();
  3708     emit_opcode(cbuf, 0xE9); // jmp entry
  3709     emit_d32_reloc(cbuf,
  3710                    (int) (OptoRuntime::rethrow_stub() - cbuf.code_end() - 4),
  3711                    runtime_call_Relocation::spec(),
  3712                    RELOC_DISP32);
  3713   %}
  3715   enc_class absF_encoding(regF dst)
  3716   %{
  3717     int dstenc = $dst$$reg;
  3718     address signmask_address = (address) StubRoutines::x86::float_sign_mask();
  3720     cbuf.set_inst_mark();
  3721     if (dstenc >= 8) {
  3722       emit_opcode(cbuf, Assembler::REX_R);
  3723       dstenc -= 8;
  3725     // XXX reg_mem doesn't support RIP-relative addressing yet
  3726     emit_opcode(cbuf, 0x0F);
  3727     emit_opcode(cbuf, 0x54);
  3728     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3729     emit_d32_reloc(cbuf, signmask_address);
  3730   %}
  3732   enc_class absD_encoding(regD dst)
  3733   %{
  3734     int dstenc = $dst$$reg;
  3735     address signmask_address = (address) StubRoutines::x86::double_sign_mask();
  3737     cbuf.set_inst_mark();
  3738     emit_opcode(cbuf, 0x66);
  3739     if (dstenc >= 8) {
  3740       emit_opcode(cbuf, Assembler::REX_R);
  3741       dstenc -= 8;
  3743     // XXX reg_mem doesn't support RIP-relative addressing yet
  3744     emit_opcode(cbuf, 0x0F);
  3745     emit_opcode(cbuf, 0x54);
  3746     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3747     emit_d32_reloc(cbuf, signmask_address);
  3748   %}
  3750   enc_class negF_encoding(regF dst)
  3751   %{
  3752     int dstenc = $dst$$reg;
  3753     address signflip_address = (address) StubRoutines::x86::float_sign_flip();
  3755     cbuf.set_inst_mark();
  3756     if (dstenc >= 8) {
  3757       emit_opcode(cbuf, Assembler::REX_R);
  3758       dstenc -= 8;
  3760     // XXX reg_mem doesn't support RIP-relative addressing yet
  3761     emit_opcode(cbuf, 0x0F);
  3762     emit_opcode(cbuf, 0x57);
  3763     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3764     emit_d32_reloc(cbuf, signflip_address);
  3765   %}
  3767   enc_class negD_encoding(regD dst)
  3768   %{
  3769     int dstenc = $dst$$reg;
  3770     address signflip_address = (address) StubRoutines::x86::double_sign_flip();
  3772     cbuf.set_inst_mark();
  3773     emit_opcode(cbuf, 0x66);
  3774     if (dstenc >= 8) {
  3775       emit_opcode(cbuf, Assembler::REX_R);
  3776       dstenc -= 8;
  3778     // XXX reg_mem doesn't support RIP-relative addressing yet
  3779     emit_opcode(cbuf, 0x0F);
  3780     emit_opcode(cbuf, 0x57);
  3781     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3782     emit_d32_reloc(cbuf, signflip_address);
  3783   %}
  3785   enc_class f2i_fixup(rRegI dst, regF src)
  3786   %{
  3787     int dstenc = $dst$$reg;
  3788     int srcenc = $src$$reg;
  3790     // cmpl $dst, #0x80000000
  3791     if (dstenc >= 8) {
  3792       emit_opcode(cbuf, Assembler::REX_B);
  3794     emit_opcode(cbuf, 0x81);
  3795     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  3796     emit_d32(cbuf, 0x80000000);
  3798     // jne,s done
  3799     emit_opcode(cbuf, 0x75);
  3800     if (srcenc < 8 && dstenc < 8) {
  3801       emit_d8(cbuf, 0xF);
  3802     } else if (srcenc >= 8 && dstenc >= 8) {
  3803       emit_d8(cbuf, 0x11);
  3804     } else {
  3805       emit_d8(cbuf, 0x10);
  3808     // subq rsp, #8
  3809     emit_opcode(cbuf, Assembler::REX_W);
  3810     emit_opcode(cbuf, 0x83);
  3811     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3812     emit_d8(cbuf, 8);
  3814     // movss [rsp], $src
  3815     emit_opcode(cbuf, 0xF3);
  3816     if (srcenc >= 8) {
  3817       emit_opcode(cbuf, Assembler::REX_R);
  3819     emit_opcode(cbuf, 0x0F);
  3820     emit_opcode(cbuf, 0x11);
  3821     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  3823     // call f2i_fixup
  3824     cbuf.set_inst_mark();
  3825     emit_opcode(cbuf, 0xE8);
  3826     emit_d32_reloc(cbuf,
  3827                    (int)
  3828                    (StubRoutines::x86::f2i_fixup() - cbuf.code_end() - 4),
  3829                    runtime_call_Relocation::spec(),
  3830                    RELOC_DISP32);
  3832     // popq $dst
  3833     if (dstenc >= 8) {
  3834       emit_opcode(cbuf, Assembler::REX_B);
  3836     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  3838     // done:
  3839   %}
  3841   enc_class f2l_fixup(rRegL dst, regF src)
  3842   %{
  3843     int dstenc = $dst$$reg;
  3844     int srcenc = $src$$reg;
  3845     address const_address = (address) StubRoutines::x86::double_sign_flip();
  3847     // cmpq $dst, [0x8000000000000000]
  3848     cbuf.set_inst_mark();
  3849     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  3850     emit_opcode(cbuf, 0x39);
  3851     // XXX reg_mem doesn't support RIP-relative addressing yet
  3852     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  3853     emit_d32_reloc(cbuf, const_address);
  3856     // jne,s done
  3857     emit_opcode(cbuf, 0x75);
  3858     if (srcenc < 8 && dstenc < 8) {
  3859       emit_d8(cbuf, 0xF);
  3860     } else if (srcenc >= 8 && dstenc >= 8) {
  3861       emit_d8(cbuf, 0x11);
  3862     } else {
  3863       emit_d8(cbuf, 0x10);
  3866     // subq rsp, #8
  3867     emit_opcode(cbuf, Assembler::REX_W);
  3868     emit_opcode(cbuf, 0x83);
  3869     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3870     emit_d8(cbuf, 8);
  3872     // movss [rsp], $src
  3873     emit_opcode(cbuf, 0xF3);
  3874     if (srcenc >= 8) {
  3875       emit_opcode(cbuf, Assembler::REX_R);
  3877     emit_opcode(cbuf, 0x0F);
  3878     emit_opcode(cbuf, 0x11);
  3879     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  3881     // call f2l_fixup
  3882     cbuf.set_inst_mark();
  3883     emit_opcode(cbuf, 0xE8);
  3884     emit_d32_reloc(cbuf,
  3885                    (int)
  3886                    (StubRoutines::x86::f2l_fixup() - cbuf.code_end() - 4),
  3887                    runtime_call_Relocation::spec(),
  3888                    RELOC_DISP32);
  3890     // popq $dst
  3891     if (dstenc >= 8) {
  3892       emit_opcode(cbuf, Assembler::REX_B);
  3894     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  3896     // done:
  3897   %}
  3899   enc_class d2i_fixup(rRegI dst, regD src)
  3900   %{
  3901     int dstenc = $dst$$reg;
  3902     int srcenc = $src$$reg;
  3904     // cmpl $dst, #0x80000000
  3905     if (dstenc >= 8) {
  3906       emit_opcode(cbuf, Assembler::REX_B);
  3908     emit_opcode(cbuf, 0x81);
  3909     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  3910     emit_d32(cbuf, 0x80000000);
  3912     // jne,s done
  3913     emit_opcode(cbuf, 0x75);
  3914     if (srcenc < 8 && dstenc < 8) {
  3915       emit_d8(cbuf, 0xF);
  3916     } else if (srcenc >= 8 && dstenc >= 8) {
  3917       emit_d8(cbuf, 0x11);
  3918     } else {
  3919       emit_d8(cbuf, 0x10);
  3922     // subq rsp, #8
  3923     emit_opcode(cbuf, Assembler::REX_W);
  3924     emit_opcode(cbuf, 0x83);
  3925     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3926     emit_d8(cbuf, 8);
  3928     // movsd [rsp], $src
  3929     emit_opcode(cbuf, 0xF2);
  3930     if (srcenc >= 8) {
  3931       emit_opcode(cbuf, Assembler::REX_R);
  3933     emit_opcode(cbuf, 0x0F);
  3934     emit_opcode(cbuf, 0x11);
  3935     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  3937     // call d2i_fixup
  3938     cbuf.set_inst_mark();
  3939     emit_opcode(cbuf, 0xE8);
  3940     emit_d32_reloc(cbuf,
  3941                    (int)
  3942                    (StubRoutines::x86::d2i_fixup() - cbuf.code_end() - 4),
  3943                    runtime_call_Relocation::spec(),
  3944                    RELOC_DISP32);
  3946     // popq $dst
  3947     if (dstenc >= 8) {
  3948       emit_opcode(cbuf, Assembler::REX_B);
  3950     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  3952     // done:
  3953   %}
  3955   enc_class d2l_fixup(rRegL dst, regD src)
  3956   %{
  3957     int dstenc = $dst$$reg;
  3958     int srcenc = $src$$reg;
  3959     address const_address = (address) StubRoutines::x86::double_sign_flip();
  3961     // cmpq $dst, [0x8000000000000000]
  3962     cbuf.set_inst_mark();
  3963     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  3964     emit_opcode(cbuf, 0x39);
  3965     // XXX reg_mem doesn't support RIP-relative addressing yet
  3966     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  3967     emit_d32_reloc(cbuf, const_address);
  3970     // jne,s done
  3971     emit_opcode(cbuf, 0x75);
  3972     if (srcenc < 8 && dstenc < 8) {
  3973       emit_d8(cbuf, 0xF);
  3974     } else if (srcenc >= 8 && dstenc >= 8) {
  3975       emit_d8(cbuf, 0x11);
  3976     } else {
  3977       emit_d8(cbuf, 0x10);
  3980     // subq rsp, #8
  3981     emit_opcode(cbuf, Assembler::REX_W);
  3982     emit_opcode(cbuf, 0x83);
  3983     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3984     emit_d8(cbuf, 8);
  3986     // movsd [rsp], $src
  3987     emit_opcode(cbuf, 0xF2);
  3988     if (srcenc >= 8) {
  3989       emit_opcode(cbuf, Assembler::REX_R);
  3991     emit_opcode(cbuf, 0x0F);
  3992     emit_opcode(cbuf, 0x11);
  3993     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  3995     // call d2l_fixup
  3996     cbuf.set_inst_mark();
  3997     emit_opcode(cbuf, 0xE8);
  3998     emit_d32_reloc(cbuf,
  3999                    (int)
  4000                    (StubRoutines::x86::d2l_fixup() - cbuf.code_end() - 4),
  4001                    runtime_call_Relocation::spec(),
  4002                    RELOC_DISP32);
  4004     // popq $dst
  4005     if (dstenc >= 8) {
  4006       emit_opcode(cbuf, Assembler::REX_B);
  4008     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4010     // done:
  4011   %}
  4013   // Safepoint Poll.  This polls the safepoint page, and causes an
  4014   // exception if it is not readable. Unfortunately, it kills
  4015   // RFLAGS in the process.
  4016   enc_class enc_safepoint_poll
  4017   %{
  4018     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  4019     // XXX reg_mem doesn't support RIP-relative addressing yet
  4020     cbuf.set_inst_mark();
  4021     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); // XXX
  4022     emit_opcode(cbuf, 0x85); // testl
  4023     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  4024     // cbuf.inst_mark() is beginning of instruction
  4025     emit_d32_reloc(cbuf, os::get_polling_page());
  4026 //                    relocInfo::poll_type,
  4027   %}
  4028 %}
  4032 //----------FRAME--------------------------------------------------------------
  4033 // Definition of frame structure and management information.
  4034 //
  4035 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4036 //                             |   (to get allocators register number
  4037 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4038 //  r   CALLER     |        |
  4039 //  o     |        +--------+      pad to even-align allocators stack-slot
  4040 //  w     V        |  pad0  |        numbers; owned by CALLER
  4041 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4042 //  h     ^        |   in   |  5
  4043 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4044 //  |     |        |        |  3
  4045 //  |     |        +--------+
  4046 //  V     |        | old out|      Empty on Intel, window on Sparc
  4047 //        |    old |preserve|      Must be even aligned.
  4048 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4049 //        |        |   in   |  3   area for Intel ret address
  4050 //     Owned by    |preserve|      Empty on Sparc.
  4051 //       SELF      +--------+
  4052 //        |        |  pad2  |  2   pad to align old SP
  4053 //        |        +--------+  1
  4054 //        |        | locks  |  0
  4055 //        |        +--------+----> OptoReg::stack0(), even aligned
  4056 //        |        |  pad1  | 11   pad to align new SP
  4057 //        |        +--------+
  4058 //        |        |        | 10
  4059 //        |        | spills |  9   spills
  4060 //        V        |        |  8   (pad0 slot for callee)
  4061 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4062 //        ^        |  out   |  7
  4063 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4064 //     Owned by    +--------+
  4065 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4066 //        |    new |preserve|      Must be even-aligned.
  4067 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4068 //        |        |        |
  4069 //
  4070 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4071 //         known from SELF's arguments and the Java calling convention.
  4072 //         Region 6-7 is determined per call site.
  4073 // Note 2: If the calling convention leaves holes in the incoming argument
  4074 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4075 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4076 //         incoming area, as the Java calling convention is completely under
  4077 //         the control of the AD file.  Doubles can be sorted and packed to
  4078 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4079 //         varargs C calling conventions.
  4080 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4081 //         even aligned with pad0 as needed.
  4082 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4083 //         region 6-11 is even aligned; it may be padded out more so that
  4084 //         the region from SP to FP meets the minimum stack alignment.
  4085 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  4086 //         alignment.  Region 11, pad1, may be dynamically extended so that
  4087 //         SP meets the minimum alignment.
  4089 frame
  4090 %{
  4091   // What direction does stack grow in (assumed to be same for C & Java)
  4092   stack_direction(TOWARDS_LOW);
  4094   // These three registers define part of the calling convention
  4095   // between compiled code and the interpreter.
  4096   inline_cache_reg(RAX);                // Inline Cache Register
  4097   interpreter_method_oop_reg(RBX);      // Method Oop Register when
  4098                                         // calling interpreter
  4100   // Optional: name the operand used by cisc-spilling to access
  4101   // [stack_pointer + offset]
  4102   cisc_spilling_operand_name(indOffset32);
  4104   // Number of stack slots consumed by locking an object
  4105   sync_stack_slots(2);
  4107   // Compiled code's Frame Pointer
  4108   frame_pointer(RSP);
  4110   // Interpreter stores its frame pointer in a register which is
  4111   // stored to the stack by I2CAdaptors.
  4112   // I2CAdaptors convert from interpreted java to compiled java.
  4113   interpreter_frame_pointer(RBP);
  4115   // Stack alignment requirement
  4116   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
  4118   // Number of stack slots between incoming argument block and the start of
  4119   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4120   // EPILOG must remove this many slots.  amd64 needs two slots for
  4121   // return address.
  4122   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
  4124   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4125   // for calls to C.  Supports the var-args backing area for register parms.
  4126   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
  4128   // The after-PROLOG location of the return address.  Location of
  4129   // return address specifies a type (REG or STACK) and a number
  4130   // representing the register number (i.e. - use a register name) or
  4131   // stack slot.
  4132   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4133   // Otherwise, it is above the locks and verification slot and alignment word
  4134   return_addr(STACK - 2 +
  4135               round_to(2 + 2 * VerifyStackAtCalls +
  4136                        Compile::current()->fixed_slots(),
  4137                        WordsPerLong * 2));
  4139   // Body of function which returns an integer array locating
  4140   // arguments either in registers or in stack slots.  Passed an array
  4141   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4142   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4143   // arguments for a CALLEE.  Incoming stack arguments are
  4144   // automatically biased by the preserve_stack_slots field above.
  4146   calling_convention
  4147   %{
  4148     // No difference between ingoing/outgoing just pass false
  4149     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4150   %}
  4152   c_calling_convention
  4153   %{
  4154     // This is obviously always outgoing
  4155     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4156   %}
  4158   // Location of compiled Java return values.  Same as C for now.
  4159   return_value
  4160   %{
  4161     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
  4162            "only return normal values");
  4164     static const int lo[Op_RegL + 1] = {
  4165       0,
  4166       0,
  4167       RAX_num,  // Op_RegN
  4168       RAX_num,  // Op_RegI
  4169       RAX_num,  // Op_RegP
  4170       XMM0_num, // Op_RegF
  4171       XMM0_num, // Op_RegD
  4172       RAX_num   // Op_RegL
  4173     };
  4174     static const int hi[Op_RegL + 1] = {
  4175       0,
  4176       0,
  4177       OptoReg::Bad, // Op_RegN
  4178       OptoReg::Bad, // Op_RegI
  4179       RAX_H_num,    // Op_RegP
  4180       OptoReg::Bad, // Op_RegF
  4181       XMM0_H_num,   // Op_RegD
  4182       RAX_H_num     // Op_RegL
  4183     };
  4184     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 1, "missing type");
  4185     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
  4186   %}
  4187 %}
  4189 //----------ATTRIBUTES---------------------------------------------------------
  4190 //----------Operand Attributes-------------------------------------------------
  4191 op_attrib op_cost(0);        // Required cost attribute
  4193 //----------Instruction Attributes---------------------------------------------
  4194 ins_attrib ins_cost(100);       // Required cost attribute
  4195 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4196 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4197 ins_attrib ins_short_branch(0); // Required flag: is this instruction
  4198                                 // a non-matching short branch variant
  4199                                 // of some long branch?
  4200 ins_attrib ins_alignment(1);    // Required alignment attribute (must
  4201                                 // be a power of 2) specifies the
  4202                                 // alignment that some part of the
  4203                                 // instruction (not necessarily the
  4204                                 // start) requires.  If > 1, a
  4205                                 // compute_padding() function must be
  4206                                 // provided for the instruction
  4208 //----------OPERANDS-----------------------------------------------------------
  4209 // Operand definitions must precede instruction definitions for correct parsing
  4210 // in the ADLC because operands constitute user defined types which are used in
  4211 // instruction definitions.
  4213 //----------Simple Operands----------------------------------------------------
  4214 // Immediate Operands
  4215 // Integer Immediate
  4216 operand immI()
  4217 %{
  4218   match(ConI);
  4220   op_cost(10);
  4221   format %{ %}
  4222   interface(CONST_INTER);
  4223 %}
  4225 // Constant for test vs zero
  4226 operand immI0()
  4227 %{
  4228   predicate(n->get_int() == 0);
  4229   match(ConI);
  4231   op_cost(0);
  4232   format %{ %}
  4233   interface(CONST_INTER);
  4234 %}
  4236 // Constant for increment
  4237 operand immI1()
  4238 %{
  4239   predicate(n->get_int() == 1);
  4240   match(ConI);
  4242   op_cost(0);
  4243   format %{ %}
  4244   interface(CONST_INTER);
  4245 %}
  4247 // Constant for decrement
  4248 operand immI_M1()
  4249 %{
  4250   predicate(n->get_int() == -1);
  4251   match(ConI);
  4253   op_cost(0);
  4254   format %{ %}
  4255   interface(CONST_INTER);
  4256 %}
  4258 // Valid scale values for addressing modes
  4259 operand immI2()
  4260 %{
  4261   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4262   match(ConI);
  4264   format %{ %}
  4265   interface(CONST_INTER);
  4266 %}
  4268 operand immI8()
  4269 %{
  4270   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
  4271   match(ConI);
  4273   op_cost(5);
  4274   format %{ %}
  4275   interface(CONST_INTER);
  4276 %}
  4278 operand immI16()
  4279 %{
  4280   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4281   match(ConI);
  4283   op_cost(10);
  4284   format %{ %}
  4285   interface(CONST_INTER);
  4286 %}
  4288 // Constant for long shifts
  4289 operand immI_32()
  4290 %{
  4291   predicate( n->get_int() == 32 );
  4292   match(ConI);
  4294   op_cost(0);
  4295   format %{ %}
  4296   interface(CONST_INTER);
  4297 %}
  4299 // Constant for long shifts
  4300 operand immI_64()
  4301 %{
  4302   predicate( n->get_int() == 64 );
  4303   match(ConI);
  4305   op_cost(0);
  4306   format %{ %}
  4307   interface(CONST_INTER);
  4308 %}
  4310 // Pointer Immediate
  4311 operand immP()
  4312 %{
  4313   match(ConP);
  4315   op_cost(10);
  4316   format %{ %}
  4317   interface(CONST_INTER);
  4318 %}
  4320 // NULL Pointer Immediate
  4321 operand immP0()
  4322 %{
  4323   predicate(n->get_ptr() == 0);
  4324   match(ConP);
  4326   op_cost(5);
  4327   format %{ %}
  4328   interface(CONST_INTER);
  4329 %}
  4331 // Pointer Immediate
  4332 operand immN() %{
  4333   match(ConN);
  4335   op_cost(10);
  4336   format %{ %}
  4337   interface(CONST_INTER);
  4338 %}
  4340 // NULL Pointer Immediate
  4341 operand immN0() %{
  4342   predicate(n->get_narrowcon() == 0);
  4343   match(ConN);
  4345   op_cost(5);
  4346   format %{ %}
  4347   interface(CONST_INTER);
  4348 %}
  4350 operand immP31()
  4351 %{
  4352   predicate(!n->as_Type()->type()->isa_oopptr()
  4353             && (n->get_ptr() >> 31) == 0);
  4354   match(ConP);
  4356   op_cost(5);
  4357   format %{ %}
  4358   interface(CONST_INTER);
  4359 %}
  4362 // Long Immediate
  4363 operand immL()
  4364 %{
  4365   match(ConL);
  4367   op_cost(20);
  4368   format %{ %}
  4369   interface(CONST_INTER);
  4370 %}
  4372 // Long Immediate 8-bit
  4373 operand immL8()
  4374 %{
  4375   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  4376   match(ConL);
  4378   op_cost(5);
  4379   format %{ %}
  4380   interface(CONST_INTER);
  4381 %}
  4383 // Long Immediate 32-bit unsigned
  4384 operand immUL32()
  4385 %{
  4386   predicate(n->get_long() == (unsigned int) (n->get_long()));
  4387   match(ConL);
  4389   op_cost(10);
  4390   format %{ %}
  4391   interface(CONST_INTER);
  4392 %}
  4394 // Long Immediate 32-bit signed
  4395 operand immL32()
  4396 %{
  4397   predicate(n->get_long() == (int) (n->get_long()));
  4398   match(ConL);
  4400   op_cost(15);
  4401   format %{ %}
  4402   interface(CONST_INTER);
  4403 %}
  4405 // Long Immediate zero
  4406 operand immL0()
  4407 %{
  4408   predicate(n->get_long() == 0L);
  4409   match(ConL);
  4411   op_cost(10);
  4412   format %{ %}
  4413   interface(CONST_INTER);
  4414 %}
  4416 // Constant for increment
  4417 operand immL1()
  4418 %{
  4419   predicate(n->get_long() == 1);
  4420   match(ConL);
  4422   format %{ %}
  4423   interface(CONST_INTER);
  4424 %}
  4426 // Constant for decrement
  4427 operand immL_M1()
  4428 %{
  4429   predicate(n->get_long() == -1);
  4430   match(ConL);
  4432   format %{ %}
  4433   interface(CONST_INTER);
  4434 %}
  4436 // Long Immediate: the value 10
  4437 operand immL10()
  4438 %{
  4439   predicate(n->get_long() == 10);
  4440   match(ConL);
  4442   format %{ %}
  4443   interface(CONST_INTER);
  4444 %}
  4446 // Long immediate from 0 to 127.
  4447 // Used for a shorter form of long mul by 10.
  4448 operand immL_127()
  4449 %{
  4450   predicate(0 <= n->get_long() && n->get_long() < 0x80);
  4451   match(ConL);
  4453   op_cost(10);
  4454   format %{ %}
  4455   interface(CONST_INTER);
  4456 %}
  4458 // Long Immediate: low 32-bit mask
  4459 operand immL_32bits()
  4460 %{
  4461   predicate(n->get_long() == 0xFFFFFFFFL);
  4462   match(ConL);
  4463   op_cost(20);
  4465   format %{ %}
  4466   interface(CONST_INTER);
  4467 %}
  4469 // Float Immediate zero
  4470 operand immF0()
  4471 %{
  4472   predicate(jint_cast(n->getf()) == 0);
  4473   match(ConF);
  4475   op_cost(5);
  4476   format %{ %}
  4477   interface(CONST_INTER);
  4478 %}
  4480 // Float Immediate
  4481 operand immF()
  4482 %{
  4483   match(ConF);
  4485   op_cost(15);
  4486   format %{ %}
  4487   interface(CONST_INTER);
  4488 %}
  4490 // Double Immediate zero
  4491 operand immD0()
  4492 %{
  4493   predicate(jlong_cast(n->getd()) == 0);
  4494   match(ConD);
  4496   op_cost(5);
  4497   format %{ %}
  4498   interface(CONST_INTER);
  4499 %}
  4501 // Double Immediate
  4502 operand immD()
  4503 %{
  4504   match(ConD);
  4506   op_cost(15);
  4507   format %{ %}
  4508   interface(CONST_INTER);
  4509 %}
  4511 // Immediates for special shifts (sign extend)
  4513 // Constants for increment
  4514 operand immI_16()
  4515 %{
  4516   predicate(n->get_int() == 16);
  4517   match(ConI);
  4519   format %{ %}
  4520   interface(CONST_INTER);
  4521 %}
  4523 operand immI_24()
  4524 %{
  4525   predicate(n->get_int() == 24);
  4526   match(ConI);
  4528   format %{ %}
  4529   interface(CONST_INTER);
  4530 %}
  4532 // Constant for byte-wide masking
  4533 operand immI_255()
  4534 %{
  4535   predicate(n->get_int() == 255);
  4536   match(ConI);
  4538   format %{ %}
  4539   interface(CONST_INTER);
  4540 %}
  4542 // Constant for short-wide masking
  4543 operand immI_65535()
  4544 %{
  4545   predicate(n->get_int() == 65535);
  4546   match(ConI);
  4548   format %{ %}
  4549   interface(CONST_INTER);
  4550 %}
  4552 // Constant for byte-wide masking
  4553 operand immL_255()
  4554 %{
  4555   predicate(n->get_long() == 255);
  4556   match(ConL);
  4558   format %{ %}
  4559   interface(CONST_INTER);
  4560 %}
  4562 // Constant for short-wide masking
  4563 operand immL_65535()
  4564 %{
  4565   predicate(n->get_long() == 65535);
  4566   match(ConL);
  4568   format %{ %}
  4569   interface(CONST_INTER);
  4570 %}
  4572 // Register Operands
  4573 // Integer Register
  4574 operand rRegI()
  4575 %{
  4576   constraint(ALLOC_IN_RC(int_reg));
  4577   match(RegI);
  4579   match(rax_RegI);
  4580   match(rbx_RegI);
  4581   match(rcx_RegI);
  4582   match(rdx_RegI);
  4583   match(rdi_RegI);
  4585   format %{ %}
  4586   interface(REG_INTER);
  4587 %}
  4589 // Special Registers
  4590 operand rax_RegI()
  4591 %{
  4592   constraint(ALLOC_IN_RC(int_rax_reg));
  4593   match(RegI);
  4594   match(rRegI);
  4596   format %{ "RAX" %}
  4597   interface(REG_INTER);
  4598 %}
  4600 // Special Registers
  4601 operand rbx_RegI()
  4602 %{
  4603   constraint(ALLOC_IN_RC(int_rbx_reg));
  4604   match(RegI);
  4605   match(rRegI);
  4607   format %{ "RBX" %}
  4608   interface(REG_INTER);
  4609 %}
  4611 operand rcx_RegI()
  4612 %{
  4613   constraint(ALLOC_IN_RC(int_rcx_reg));
  4614   match(RegI);
  4615   match(rRegI);
  4617   format %{ "RCX" %}
  4618   interface(REG_INTER);
  4619 %}
  4621 operand rdx_RegI()
  4622 %{
  4623   constraint(ALLOC_IN_RC(int_rdx_reg));
  4624   match(RegI);
  4625   match(rRegI);
  4627   format %{ "RDX" %}
  4628   interface(REG_INTER);
  4629 %}
  4631 operand rdi_RegI()
  4632 %{
  4633   constraint(ALLOC_IN_RC(int_rdi_reg));
  4634   match(RegI);
  4635   match(rRegI);
  4637   format %{ "RDI" %}
  4638   interface(REG_INTER);
  4639 %}
  4641 operand no_rcx_RegI()
  4642 %{
  4643   constraint(ALLOC_IN_RC(int_no_rcx_reg));
  4644   match(RegI);
  4645   match(rax_RegI);
  4646   match(rbx_RegI);
  4647   match(rdx_RegI);
  4648   match(rdi_RegI);
  4650   format %{ %}
  4651   interface(REG_INTER);
  4652 %}
  4654 operand no_rax_rdx_RegI()
  4655 %{
  4656   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
  4657   match(RegI);
  4658   match(rbx_RegI);
  4659   match(rcx_RegI);
  4660   match(rdi_RegI);
  4662   format %{ %}
  4663   interface(REG_INTER);
  4664 %}
  4666 // Pointer Register
  4667 operand any_RegP()
  4668 %{
  4669   constraint(ALLOC_IN_RC(any_reg));
  4670   match(RegP);
  4671   match(rax_RegP);
  4672   match(rbx_RegP);
  4673   match(rdi_RegP);
  4674   match(rsi_RegP);
  4675   match(rbp_RegP);
  4676   match(r15_RegP);
  4677   match(rRegP);
  4679   format %{ %}
  4680   interface(REG_INTER);
  4681 %}
  4683 operand rRegP()
  4684 %{
  4685   constraint(ALLOC_IN_RC(ptr_reg));
  4686   match(RegP);
  4687   match(rax_RegP);
  4688   match(rbx_RegP);
  4689   match(rdi_RegP);
  4690   match(rsi_RegP);
  4691   match(rbp_RegP);
  4692   match(r15_RegP);  // See Q&A below about r15_RegP.
  4694   format %{ %}
  4695   interface(REG_INTER);
  4696 %}
  4698 operand rRegN() %{
  4699   constraint(ALLOC_IN_RC(int_reg));
  4700   match(RegN);
  4702   format %{ %}
  4703   interface(REG_INTER);
  4704 %}
  4706 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
  4707 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
  4708 // It's fine for an instruction input which expects rRegP to match a r15_RegP.
  4709 // The output of an instruction is controlled by the allocator, which respects
  4710 // register class masks, not match rules.  Unless an instruction mentions
  4711 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
  4712 // by the allocator as an input.
  4714 operand no_rax_RegP()
  4715 %{
  4716   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
  4717   match(RegP);
  4718   match(rbx_RegP);
  4719   match(rsi_RegP);
  4720   match(rdi_RegP);
  4722   format %{ %}
  4723   interface(REG_INTER);
  4724 %}
  4726 operand no_rbp_RegP()
  4727 %{
  4728   constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
  4729   match(RegP);
  4730   match(rbx_RegP);
  4731   match(rsi_RegP);
  4732   match(rdi_RegP);
  4734   format %{ %}
  4735   interface(REG_INTER);
  4736 %}
  4738 operand no_rax_rbx_RegP()
  4739 %{
  4740   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
  4741   match(RegP);
  4742   match(rsi_RegP);
  4743   match(rdi_RegP);
  4745   format %{ %}
  4746   interface(REG_INTER);
  4747 %}
  4749 // Special Registers
  4750 // Return a pointer value
  4751 operand rax_RegP()
  4752 %{
  4753   constraint(ALLOC_IN_RC(ptr_rax_reg));
  4754   match(RegP);
  4755   match(rRegP);
  4757   format %{ %}
  4758   interface(REG_INTER);
  4759 %}
  4761 // Special Registers
  4762 // Return a compressed pointer value
  4763 operand rax_RegN()
  4764 %{
  4765   constraint(ALLOC_IN_RC(int_rax_reg));
  4766   match(RegN);
  4767   match(rRegN);
  4769   format %{ %}
  4770   interface(REG_INTER);
  4771 %}
  4773 // Used in AtomicAdd
  4774 operand rbx_RegP()
  4775 %{
  4776   constraint(ALLOC_IN_RC(ptr_rbx_reg));
  4777   match(RegP);
  4778   match(rRegP);
  4780   format %{ %}
  4781   interface(REG_INTER);
  4782 %}
  4784 operand rsi_RegP()
  4785 %{
  4786   constraint(ALLOC_IN_RC(ptr_rsi_reg));
  4787   match(RegP);
  4788   match(rRegP);
  4790   format %{ %}
  4791   interface(REG_INTER);
  4792 %}
  4794 // Used in rep stosq
  4795 operand rdi_RegP()
  4796 %{
  4797   constraint(ALLOC_IN_RC(ptr_rdi_reg));
  4798   match(RegP);
  4799   match(rRegP);
  4801   format %{ %}
  4802   interface(REG_INTER);
  4803 %}
  4805 operand rbp_RegP()
  4806 %{
  4807   constraint(ALLOC_IN_RC(ptr_rbp_reg));
  4808   match(RegP);
  4809   match(rRegP);
  4811   format %{ %}
  4812   interface(REG_INTER);
  4813 %}
  4815 operand r15_RegP()
  4816 %{
  4817   constraint(ALLOC_IN_RC(ptr_r15_reg));
  4818   match(RegP);
  4819   match(rRegP);
  4821   format %{ %}
  4822   interface(REG_INTER);
  4823 %}
  4825 operand rRegL()
  4826 %{
  4827   constraint(ALLOC_IN_RC(long_reg));
  4828   match(RegL);
  4829   match(rax_RegL);
  4830   match(rdx_RegL);
  4832   format %{ %}
  4833   interface(REG_INTER);
  4834 %}
  4836 // Special Registers
  4837 operand no_rax_rdx_RegL()
  4838 %{
  4839   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  4840   match(RegL);
  4841   match(rRegL);
  4843   format %{ %}
  4844   interface(REG_INTER);
  4845 %}
  4847 operand no_rax_RegL()
  4848 %{
  4849   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  4850   match(RegL);
  4851   match(rRegL);
  4852   match(rdx_RegL);
  4854   format %{ %}
  4855   interface(REG_INTER);
  4856 %}
  4858 operand no_rcx_RegL()
  4859 %{
  4860   constraint(ALLOC_IN_RC(long_no_rcx_reg));
  4861   match(RegL);
  4862   match(rRegL);
  4864   format %{ %}
  4865   interface(REG_INTER);
  4866 %}
  4868 operand rax_RegL()
  4869 %{
  4870   constraint(ALLOC_IN_RC(long_rax_reg));
  4871   match(RegL);
  4872   match(rRegL);
  4874   format %{ "RAX" %}
  4875   interface(REG_INTER);
  4876 %}
  4878 operand rcx_RegL()
  4879 %{
  4880   constraint(ALLOC_IN_RC(long_rcx_reg));
  4881   match(RegL);
  4882   match(rRegL);
  4884   format %{ %}
  4885   interface(REG_INTER);
  4886 %}
  4888 operand rdx_RegL()
  4889 %{
  4890   constraint(ALLOC_IN_RC(long_rdx_reg));
  4891   match(RegL);
  4892   match(rRegL);
  4894   format %{ %}
  4895   interface(REG_INTER);
  4896 %}
  4898 // Flags register, used as output of compare instructions
  4899 operand rFlagsReg()
  4900 %{
  4901   constraint(ALLOC_IN_RC(int_flags));
  4902   match(RegFlags);
  4904   format %{ "RFLAGS" %}
  4905   interface(REG_INTER);
  4906 %}
  4908 // Flags register, used as output of FLOATING POINT compare instructions
  4909 operand rFlagsRegU()
  4910 %{
  4911   constraint(ALLOC_IN_RC(int_flags));
  4912   match(RegFlags);
  4914   format %{ "RFLAGS_U" %}
  4915   interface(REG_INTER);
  4916 %}
  4918 operand rFlagsRegUCF() %{
  4919   constraint(ALLOC_IN_RC(int_flags));
  4920   match(RegFlags);
  4921   predicate(false);
  4923   format %{ "RFLAGS_U_CF" %}
  4924   interface(REG_INTER);
  4925 %}
  4927 // Float register operands
  4928 operand regF()
  4929 %{
  4930   constraint(ALLOC_IN_RC(float_reg));
  4931   match(RegF);
  4933   format %{ %}
  4934   interface(REG_INTER);
  4935 %}
  4937 // Double register operands
  4938 operand regD() 
  4939 %{
  4940   constraint(ALLOC_IN_RC(double_reg));
  4941   match(RegD);
  4943   format %{ %}
  4944   interface(REG_INTER);
  4945 %}
  4948 //----------Memory Operands----------------------------------------------------
  4949 // Direct Memory Operand
  4950 // operand direct(immP addr)
  4951 // %{
  4952 //   match(addr);
  4954 //   format %{ "[$addr]" %}
  4955 //   interface(MEMORY_INTER) %{
  4956 //     base(0xFFFFFFFF);
  4957 //     index(0x4);
  4958 //     scale(0x0);
  4959 //     disp($addr);
  4960 //   %}
  4961 // %}
  4963 // Indirect Memory Operand
  4964 operand indirect(any_RegP reg)
  4965 %{
  4966   constraint(ALLOC_IN_RC(ptr_reg));
  4967   match(reg);
  4969   format %{ "[$reg]" %}
  4970   interface(MEMORY_INTER) %{
  4971     base($reg);
  4972     index(0x4);
  4973     scale(0x0);
  4974     disp(0x0);
  4975   %}
  4976 %}
  4978 // Indirect Memory Plus Short Offset Operand
  4979 operand indOffset8(any_RegP reg, immL8 off)
  4980 %{
  4981   constraint(ALLOC_IN_RC(ptr_reg));
  4982   match(AddP reg off);
  4984   format %{ "[$reg + $off (8-bit)]" %}
  4985   interface(MEMORY_INTER) %{
  4986     base($reg);
  4987     index(0x4);
  4988     scale(0x0);
  4989     disp($off);
  4990   %}
  4991 %}
  4993 // Indirect Memory Plus Long Offset Operand
  4994 operand indOffset32(any_RegP reg, immL32 off)
  4995 %{
  4996   constraint(ALLOC_IN_RC(ptr_reg));
  4997   match(AddP reg off);
  4999   format %{ "[$reg + $off (32-bit)]" %}
  5000   interface(MEMORY_INTER) %{
  5001     base($reg);
  5002     index(0x4);
  5003     scale(0x0);
  5004     disp($off);
  5005   %}
  5006 %}
  5008 // Indirect Memory Plus Index Register Plus Offset Operand
  5009 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
  5010 %{
  5011   constraint(ALLOC_IN_RC(ptr_reg));
  5012   match(AddP (AddP reg lreg) off);
  5014   op_cost(10);
  5015   format %{"[$reg + $off + $lreg]" %}
  5016   interface(MEMORY_INTER) %{
  5017     base($reg);
  5018     index($lreg);
  5019     scale(0x0);
  5020     disp($off);
  5021   %}
  5022 %}
  5024 // Indirect Memory Plus Index Register Plus Offset Operand
  5025 operand indIndex(any_RegP reg, rRegL lreg)
  5026 %{
  5027   constraint(ALLOC_IN_RC(ptr_reg));
  5028   match(AddP reg lreg);
  5030   op_cost(10);
  5031   format %{"[$reg + $lreg]" %}
  5032   interface(MEMORY_INTER) %{
  5033     base($reg);
  5034     index($lreg);
  5035     scale(0x0);
  5036     disp(0x0);
  5037   %}
  5038 %}
  5040 // Indirect Memory Times Scale Plus Index Register
  5041 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
  5042 %{
  5043   constraint(ALLOC_IN_RC(ptr_reg));
  5044   match(AddP reg (LShiftL lreg scale));
  5046   op_cost(10);
  5047   format %{"[$reg + $lreg << $scale]" %}
  5048   interface(MEMORY_INTER) %{
  5049     base($reg);
  5050     index($lreg);
  5051     scale($scale);
  5052     disp(0x0);
  5053   %}
  5054 %}
  5056 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5057 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
  5058 %{
  5059   constraint(ALLOC_IN_RC(ptr_reg));
  5060   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5062   op_cost(10);
  5063   format %{"[$reg + $off + $lreg << $scale]" %}
  5064   interface(MEMORY_INTER) %{
  5065     base($reg);
  5066     index($lreg);
  5067     scale($scale);
  5068     disp($off);
  5069   %}
  5070 %}
  5072 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
  5073 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
  5074 %{
  5075   constraint(ALLOC_IN_RC(ptr_reg));
  5076   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5077   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
  5079   op_cost(10);
  5080   format %{"[$reg + $off + $idx << $scale]" %}
  5081   interface(MEMORY_INTER) %{
  5082     base($reg);
  5083     index($idx);
  5084     scale($scale);
  5085     disp($off);
  5086   %}
  5087 %}
  5089 // Indirect Narrow Oop Plus Offset Operand
  5090 // Note: x86 architecture doesn't support "scale * index + offset" without a base
  5091 // we can't free r12 even with Universe::narrow_oop_base() == NULL.
  5092 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
  5093   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
  5094   constraint(ALLOC_IN_RC(ptr_reg));
  5095   match(AddP (DecodeN reg) off);
  5097   op_cost(10);
  5098   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
  5099   interface(MEMORY_INTER) %{
  5100     base(0xc); // R12
  5101     index($reg);
  5102     scale(0x3);
  5103     disp($off);
  5104   %}
  5105 %}
  5107 // Indirect Memory Operand
  5108 operand indirectNarrow(rRegN reg)
  5109 %{
  5110   predicate(Universe::narrow_oop_shift() == 0);
  5111   constraint(ALLOC_IN_RC(ptr_reg));
  5112   match(DecodeN reg);
  5114   format %{ "[$reg]" %}
  5115   interface(MEMORY_INTER) %{
  5116     base($reg);
  5117     index(0x4);
  5118     scale(0x0);
  5119     disp(0x0);
  5120   %}
  5121 %}
  5123 // Indirect Memory Plus Short Offset Operand
  5124 operand indOffset8Narrow(rRegN reg, immL8 off)
  5125 %{
  5126   predicate(Universe::narrow_oop_shift() == 0);
  5127   constraint(ALLOC_IN_RC(ptr_reg));
  5128   match(AddP (DecodeN reg) off);
  5130   format %{ "[$reg + $off (8-bit)]" %}
  5131   interface(MEMORY_INTER) %{
  5132     base($reg);
  5133     index(0x4);
  5134     scale(0x0);
  5135     disp($off);
  5136   %}
  5137 %}
  5139 // Indirect Memory Plus Long Offset Operand
  5140 operand indOffset32Narrow(rRegN reg, immL32 off)
  5141 %{
  5142   predicate(Universe::narrow_oop_shift() == 0);
  5143   constraint(ALLOC_IN_RC(ptr_reg));
  5144   match(AddP (DecodeN reg) off);
  5146   format %{ "[$reg + $off (32-bit)]" %}
  5147   interface(MEMORY_INTER) %{
  5148     base($reg);
  5149     index(0x4);
  5150     scale(0x0);
  5151     disp($off);
  5152   %}
  5153 %}
  5155 // Indirect Memory Plus Index Register Plus Offset Operand
  5156 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
  5157 %{
  5158   predicate(Universe::narrow_oop_shift() == 0);
  5159   constraint(ALLOC_IN_RC(ptr_reg));
  5160   match(AddP (AddP (DecodeN reg) lreg) off);
  5162   op_cost(10);
  5163   format %{"[$reg + $off + $lreg]" %}
  5164   interface(MEMORY_INTER) %{
  5165     base($reg);
  5166     index($lreg);
  5167     scale(0x0);
  5168     disp($off);
  5169   %}
  5170 %}
  5172 // Indirect Memory Plus Index Register Plus Offset Operand
  5173 operand indIndexNarrow(rRegN reg, rRegL lreg)
  5174 %{
  5175   predicate(Universe::narrow_oop_shift() == 0);
  5176   constraint(ALLOC_IN_RC(ptr_reg));
  5177   match(AddP (DecodeN reg) lreg);
  5179   op_cost(10);
  5180   format %{"[$reg + $lreg]" %}
  5181   interface(MEMORY_INTER) %{
  5182     base($reg);
  5183     index($lreg);
  5184     scale(0x0);
  5185     disp(0x0);
  5186   %}
  5187 %}
  5189 // Indirect Memory Times Scale Plus Index Register
  5190 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
  5191 %{
  5192   predicate(Universe::narrow_oop_shift() == 0);
  5193   constraint(ALLOC_IN_RC(ptr_reg));
  5194   match(AddP (DecodeN reg) (LShiftL lreg scale));
  5196   op_cost(10);
  5197   format %{"[$reg + $lreg << $scale]" %}
  5198   interface(MEMORY_INTER) %{
  5199     base($reg);
  5200     index($lreg);
  5201     scale($scale);
  5202     disp(0x0);
  5203   %}
  5204 %}
  5206 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5207 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
  5208 %{
  5209   predicate(Universe::narrow_oop_shift() == 0);
  5210   constraint(ALLOC_IN_RC(ptr_reg));
  5211   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
  5213   op_cost(10);
  5214   format %{"[$reg + $off + $lreg << $scale]" %}
  5215   interface(MEMORY_INTER) %{
  5216     base($reg);
  5217     index($lreg);
  5218     scale($scale);
  5219     disp($off);
  5220   %}
  5221 %}
  5223 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
  5224 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
  5225 %{
  5226   constraint(ALLOC_IN_RC(ptr_reg));
  5227   predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5228   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
  5230   op_cost(10);
  5231   format %{"[$reg + $off + $idx << $scale]" %}
  5232   interface(MEMORY_INTER) %{
  5233     base($reg);
  5234     index($idx);
  5235     scale($scale);
  5236     disp($off);
  5237   %}
  5238 %}
  5241 //----------Special Memory Operands--------------------------------------------
  5242 // Stack Slot Operand - This operand is used for loading and storing temporary
  5243 //                      values on the stack where a match requires a value to
  5244 //                      flow through memory.
  5245 operand stackSlotP(sRegP reg)
  5246 %{
  5247   constraint(ALLOC_IN_RC(stack_slots));
  5248   // No match rule because this operand is only generated in matching
  5250   format %{ "[$reg]" %}
  5251   interface(MEMORY_INTER) %{
  5252     base(0x4);   // RSP
  5253     index(0x4);  // No Index
  5254     scale(0x0);  // No Scale
  5255     disp($reg);  // Stack Offset
  5256   %}
  5257 %}
  5259 operand stackSlotI(sRegI reg)
  5260 %{
  5261   constraint(ALLOC_IN_RC(stack_slots));
  5262   // No match rule because this operand is only generated in matching
  5264   format %{ "[$reg]" %}
  5265   interface(MEMORY_INTER) %{
  5266     base(0x4);   // RSP
  5267     index(0x4);  // No Index
  5268     scale(0x0);  // No Scale
  5269     disp($reg);  // Stack Offset
  5270   %}
  5271 %}
  5273 operand stackSlotF(sRegF reg)
  5274 %{
  5275   constraint(ALLOC_IN_RC(stack_slots));
  5276   // No match rule because this operand is only generated in matching
  5278   format %{ "[$reg]" %}
  5279   interface(MEMORY_INTER) %{
  5280     base(0x4);   // RSP
  5281     index(0x4);  // No Index
  5282     scale(0x0);  // No Scale
  5283     disp($reg);  // Stack Offset
  5284   %}
  5285 %}
  5287 operand stackSlotD(sRegD reg)
  5288 %{
  5289   constraint(ALLOC_IN_RC(stack_slots));
  5290   // No match rule because this operand is only generated in matching
  5292   format %{ "[$reg]" %}
  5293   interface(MEMORY_INTER) %{
  5294     base(0x4);   // RSP
  5295     index(0x4);  // No Index
  5296     scale(0x0);  // No Scale
  5297     disp($reg);  // Stack Offset
  5298   %}
  5299 %}
  5300 operand stackSlotL(sRegL reg)
  5301 %{
  5302   constraint(ALLOC_IN_RC(stack_slots));
  5303   // No match rule because this operand is only generated in matching
  5305   format %{ "[$reg]" %}
  5306   interface(MEMORY_INTER) %{
  5307     base(0x4);   // RSP
  5308     index(0x4);  // No Index
  5309     scale(0x0);  // No Scale
  5310     disp($reg);  // Stack Offset
  5311   %}
  5312 %}
  5314 //----------Conditional Branch Operands----------------------------------------
  5315 // Comparison Op  - This is the operation of the comparison, and is limited to
  5316 //                  the following set of codes:
  5317 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5318 //
  5319 // Other attributes of the comparison, such as unsignedness, are specified
  5320 // by the comparison instruction that sets a condition code flags register.
  5321 // That result is represented by a flags operand whose subtype is appropriate
  5322 // to the unsignedness (etc.) of the comparison.
  5323 //
  5324 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5325 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5326 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5328 // Comparision Code
  5329 operand cmpOp()
  5330 %{
  5331   match(Bool);
  5333   format %{ "" %}
  5334   interface(COND_INTER) %{
  5335     equal(0x4, "e");
  5336     not_equal(0x5, "ne");
  5337     less(0xC, "l");
  5338     greater_equal(0xD, "ge");
  5339     less_equal(0xE, "le");
  5340     greater(0xF, "g");
  5341   %}
  5342 %}
  5344 // Comparison Code, unsigned compare.  Used by FP also, with
  5345 // C2 (unordered) turned into GT or LT already.  The other bits
  5346 // C0 and C3 are turned into Carry & Zero flags.
  5347 operand cmpOpU()
  5348 %{
  5349   match(Bool);
  5351   format %{ "" %}
  5352   interface(COND_INTER) %{
  5353     equal(0x4, "e");
  5354     not_equal(0x5, "ne");
  5355     less(0x2, "b");
  5356     greater_equal(0x3, "nb");
  5357     less_equal(0x6, "be");
  5358     greater(0x7, "nbe");
  5359   %}
  5360 %}
  5363 // Floating comparisons that don't require any fixup for the unordered case
  5364 operand cmpOpUCF() %{
  5365   match(Bool);
  5366   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5367             n->as_Bool()->_test._test == BoolTest::ge ||
  5368             n->as_Bool()->_test._test == BoolTest::le ||
  5369             n->as_Bool()->_test._test == BoolTest::gt);
  5370   format %{ "" %}
  5371   interface(COND_INTER) %{
  5372     equal(0x4, "e");
  5373     not_equal(0x5, "ne");
  5374     less(0x2, "b");
  5375     greater_equal(0x3, "nb");
  5376     less_equal(0x6, "be");
  5377     greater(0x7, "nbe");
  5378   %}
  5379 %}
  5382 // Floating comparisons that can be fixed up with extra conditional jumps
  5383 operand cmpOpUCF2() %{
  5384   match(Bool);
  5385   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5386             n->as_Bool()->_test._test == BoolTest::eq);
  5387   format %{ "" %}
  5388   interface(COND_INTER) %{
  5389     equal(0x4, "e");
  5390     not_equal(0x5, "ne");
  5391     less(0x2, "b");
  5392     greater_equal(0x3, "nb");
  5393     less_equal(0x6, "be");
  5394     greater(0x7, "nbe");
  5395   %}
  5396 %}
  5399 //----------OPERAND CLASSES----------------------------------------------------
  5400 // Operand Classes are groups of operands that are used as to simplify
  5401 // instruction definitions by not requiring the AD writer to specify separate
  5402 // instructions for every form of operand when the instruction accepts
  5403 // multiple operand types with the same basic encoding and format.  The classic
  5404 // case of this is memory operands.
  5406 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
  5407                indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
  5408                indCompressedOopOffset,
  5409                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
  5410                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
  5411                indIndexScaleOffsetNarrow, indPosIndexScaleOffsetNarrow);
  5413 //----------PIPELINE-----------------------------------------------------------
  5414 // Rules which define the behavior of the target architectures pipeline.
  5415 pipeline %{
  5417 //----------ATTRIBUTES---------------------------------------------------------
  5418 attributes %{
  5419   variable_size_instructions;        // Fixed size instructions
  5420   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5421   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5422   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5423   instruction_fetch_units = 1;       // of 16 bytes
  5425   // List of nop instructions
  5426   nops( MachNop );
  5427 %}
  5429 //----------RESOURCES----------------------------------------------------------
  5430 // Resources are the functional units available to the machine
  5432 // Generic P2/P3 pipeline
  5433 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5434 // 3 instructions decoded per cycle.
  5435 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5436 // 3 ALU op, only ALU0 handles mul instructions.
  5437 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5438            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
  5439            BR, FPU,
  5440            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
  5442 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5443 // Pipeline Description specifies the stages in the machine's pipeline
  5445 // Generic P2/P3 pipeline
  5446 pipe_desc(S0, S1, S2, S3, S4, S5);
  5448 //----------PIPELINE CLASSES---------------------------------------------------
  5449 // Pipeline Classes describe the stages in which input and output are
  5450 // referenced by the hardware pipeline.
  5452 // Naming convention: ialu or fpu
  5453 // Then: _reg
  5454 // Then: _reg if there is a 2nd register
  5455 // Then: _long if it's a pair of instructions implementing a long
  5456 // Then: _fat if it requires the big decoder
  5457 //   Or: _mem if it requires the big decoder and a memory unit.
  5459 // Integer ALU reg operation
  5460 pipe_class ialu_reg(rRegI dst)
  5461 %{
  5462     single_instruction;
  5463     dst    : S4(write);
  5464     dst    : S3(read);
  5465     DECODE : S0;        // any decoder
  5466     ALU    : S3;        // any alu
  5467 %}
  5469 // Long ALU reg operation
  5470 pipe_class ialu_reg_long(rRegL dst)
  5471 %{
  5472     instruction_count(2);
  5473     dst    : S4(write);
  5474     dst    : S3(read);
  5475     DECODE : S0(2);     // any 2 decoders
  5476     ALU    : S3(2);     // both alus
  5477 %}
  5479 // Integer ALU reg operation using big decoder
  5480 pipe_class ialu_reg_fat(rRegI dst)
  5481 %{
  5482     single_instruction;
  5483     dst    : S4(write);
  5484     dst    : S3(read);
  5485     D0     : S0;        // big decoder only
  5486     ALU    : S3;        // any alu
  5487 %}
  5489 // Long ALU reg operation using big decoder
  5490 pipe_class ialu_reg_long_fat(rRegL dst)
  5491 %{
  5492     instruction_count(2);
  5493     dst    : S4(write);
  5494     dst    : S3(read);
  5495     D0     : S0(2);     // big decoder only; twice
  5496     ALU    : S3(2);     // any 2 alus
  5497 %}
  5499 // Integer ALU reg-reg operation
  5500 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
  5501 %{
  5502     single_instruction;
  5503     dst    : S4(write);
  5504     src    : S3(read);
  5505     DECODE : S0;        // any decoder
  5506     ALU    : S3;        // any alu
  5507 %}
  5509 // Long ALU reg-reg operation
  5510 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
  5511 %{
  5512     instruction_count(2);
  5513     dst    : S4(write);
  5514     src    : S3(read);
  5515     DECODE : S0(2);     // any 2 decoders
  5516     ALU    : S3(2);     // both alus
  5517 %}
  5519 // Integer ALU reg-reg operation
  5520 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
  5521 %{
  5522     single_instruction;
  5523     dst    : S4(write);
  5524     src    : S3(read);
  5525     D0     : S0;        // big decoder only
  5526     ALU    : S3;        // any alu
  5527 %}
  5529 // Long ALU reg-reg operation
  5530 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
  5531 %{
  5532     instruction_count(2);
  5533     dst    : S4(write);
  5534     src    : S3(read);
  5535     D0     : S0(2);     // big decoder only; twice
  5536     ALU    : S3(2);     // both alus
  5537 %}
  5539 // Integer ALU reg-mem operation
  5540 pipe_class ialu_reg_mem(rRegI dst, memory mem)
  5541 %{
  5542     single_instruction;
  5543     dst    : S5(write);
  5544     mem    : S3(read);
  5545     D0     : S0;        // big decoder only
  5546     ALU    : S4;        // any alu
  5547     MEM    : S3;        // any mem
  5548 %}
  5550 // Integer mem operation (prefetch)
  5551 pipe_class ialu_mem(memory mem)
  5552 %{
  5553     single_instruction;
  5554     mem    : S3(read);
  5555     D0     : S0;        // big decoder only
  5556     MEM    : S3;        // any mem
  5557 %}
  5559 // Integer Store to Memory
  5560 pipe_class ialu_mem_reg(memory mem, rRegI src)
  5561 %{
  5562     single_instruction;
  5563     mem    : S3(read);
  5564     src    : S5(read);
  5565     D0     : S0;        // big decoder only
  5566     ALU    : S4;        // any alu
  5567     MEM    : S3;
  5568 %}
  5570 // // Long Store to Memory
  5571 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
  5572 // %{
  5573 //     instruction_count(2);
  5574 //     mem    : S3(read);
  5575 //     src    : S5(read);
  5576 //     D0     : S0(2);          // big decoder only; twice
  5577 //     ALU    : S4(2);     // any 2 alus
  5578 //     MEM    : S3(2);  // Both mems
  5579 // %}
  5581 // Integer Store to Memory
  5582 pipe_class ialu_mem_imm(memory mem)
  5583 %{
  5584     single_instruction;
  5585     mem    : S3(read);
  5586     D0     : S0;        // big decoder only
  5587     ALU    : S4;        // any alu
  5588     MEM    : S3;
  5589 %}
  5591 // Integer ALU0 reg-reg operation
  5592 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
  5593 %{
  5594     single_instruction;
  5595     dst    : S4(write);
  5596     src    : S3(read);
  5597     D0     : S0;        // Big decoder only
  5598     ALU0   : S3;        // only alu0
  5599 %}
  5601 // Integer ALU0 reg-mem operation
  5602 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
  5603 %{
  5604     single_instruction;
  5605     dst    : S5(write);
  5606     mem    : S3(read);
  5607     D0     : S0;        // big decoder only
  5608     ALU0   : S4;        // ALU0 only
  5609     MEM    : S3;        // any mem
  5610 %}
  5612 // Integer ALU reg-reg operation
  5613 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
  5614 %{
  5615     single_instruction;
  5616     cr     : S4(write);
  5617     src1   : S3(read);
  5618     src2   : S3(read);
  5619     DECODE : S0;        // any decoder
  5620     ALU    : S3;        // any alu
  5621 %}
  5623 // Integer ALU reg-imm operation
  5624 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
  5625 %{
  5626     single_instruction;
  5627     cr     : S4(write);
  5628     src1   : S3(read);
  5629     DECODE : S0;        // any decoder
  5630     ALU    : S3;        // any alu
  5631 %}
  5633 // Integer ALU reg-mem operation
  5634 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
  5635 %{
  5636     single_instruction;
  5637     cr     : S4(write);
  5638     src1   : S3(read);
  5639     src2   : S3(read);
  5640     D0     : S0;        // big decoder only
  5641     ALU    : S4;        // any alu
  5642     MEM    : S3;
  5643 %}
  5645 // Conditional move reg-reg
  5646 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
  5647 %{
  5648     instruction_count(4);
  5649     y      : S4(read);
  5650     q      : S3(read);
  5651     p      : S3(read);
  5652     DECODE : S0(4);     // any decoder
  5653 %}
  5655 // Conditional move reg-reg
  5656 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
  5657 %{
  5658     single_instruction;
  5659     dst    : S4(write);
  5660     src    : S3(read);
  5661     cr     : S3(read);
  5662     DECODE : S0;        // any decoder
  5663 %}
  5665 // Conditional move reg-mem
  5666 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
  5667 %{
  5668     single_instruction;
  5669     dst    : S4(write);
  5670     src    : S3(read);
  5671     cr     : S3(read);
  5672     DECODE : S0;        // any decoder
  5673     MEM    : S3;
  5674 %}
  5676 // Conditional move reg-reg long
  5677 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
  5678 %{
  5679     single_instruction;
  5680     dst    : S4(write);
  5681     src    : S3(read);
  5682     cr     : S3(read);
  5683     DECODE : S0(2);     // any 2 decoders
  5684 %}
  5686 // XXX
  5687 // // Conditional move double reg-reg
  5688 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
  5689 // %{
  5690 //     single_instruction;
  5691 //     dst    : S4(write);
  5692 //     src    : S3(read);
  5693 //     cr     : S3(read);
  5694 //     DECODE : S0;     // any decoder
  5695 // %}
  5697 // Float reg-reg operation
  5698 pipe_class fpu_reg(regD dst)
  5699 %{
  5700     instruction_count(2);
  5701     dst    : S3(read);
  5702     DECODE : S0(2);     // any 2 decoders
  5703     FPU    : S3;
  5704 %}
  5706 // Float reg-reg operation
  5707 pipe_class fpu_reg_reg(regD dst, regD src)
  5708 %{
  5709     instruction_count(2);
  5710     dst    : S4(write);
  5711     src    : S3(read);
  5712     DECODE : S0(2);     // any 2 decoders
  5713     FPU    : S3;
  5714 %}
  5716 // Float reg-reg operation
  5717 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
  5718 %{
  5719     instruction_count(3);
  5720     dst    : S4(write);
  5721     src1   : S3(read);
  5722     src2   : S3(read);
  5723     DECODE : S0(3);     // any 3 decoders
  5724     FPU    : S3(2);
  5725 %}
  5727 // Float reg-reg operation
  5728 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
  5729 %{
  5730     instruction_count(4);
  5731     dst    : S4(write);
  5732     src1   : S3(read);
  5733     src2   : S3(read);
  5734     src3   : S3(read);
  5735     DECODE : S0(4);     // any 3 decoders
  5736     FPU    : S3(2);
  5737 %}
  5739 // Float reg-reg operation
  5740 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
  5741 %{
  5742     instruction_count(4);
  5743     dst    : S4(write);
  5744     src1   : S3(read);
  5745     src2   : S3(read);
  5746     src3   : S3(read);
  5747     DECODE : S1(3);     // any 3 decoders
  5748     D0     : S0;        // Big decoder only
  5749     FPU    : S3(2);
  5750     MEM    : S3;
  5751 %}
  5753 // Float reg-mem operation
  5754 pipe_class fpu_reg_mem(regD dst, memory mem)
  5755 %{
  5756     instruction_count(2);
  5757     dst    : S5(write);
  5758     mem    : S3(read);
  5759     D0     : S0;        // big decoder only
  5760     DECODE : S1;        // any decoder for FPU POP
  5761     FPU    : S4;
  5762     MEM    : S3;        // any mem
  5763 %}
  5765 // Float reg-mem operation
  5766 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
  5767 %{
  5768     instruction_count(3);
  5769     dst    : S5(write);
  5770     src1   : S3(read);
  5771     mem    : S3(read);
  5772     D0     : S0;        // big decoder only
  5773     DECODE : S1(2);     // any decoder for FPU POP
  5774     FPU    : S4;
  5775     MEM    : S3;        // any mem
  5776 %}
  5778 // Float mem-reg operation
  5779 pipe_class fpu_mem_reg(memory mem, regD src)
  5780 %{
  5781     instruction_count(2);
  5782     src    : S5(read);
  5783     mem    : S3(read);
  5784     DECODE : S0;        // any decoder for FPU PUSH
  5785     D0     : S1;        // big decoder only
  5786     FPU    : S4;
  5787     MEM    : S3;        // any mem
  5788 %}
  5790 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
  5791 %{
  5792     instruction_count(3);
  5793     src1   : S3(read);
  5794     src2   : S3(read);
  5795     mem    : S3(read);
  5796     DECODE : S0(2);     // any decoder for FPU PUSH
  5797     D0     : S1;        // big decoder only
  5798     FPU    : S4;
  5799     MEM    : S3;        // any mem
  5800 %}
  5802 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
  5803 %{
  5804     instruction_count(3);
  5805     src1   : S3(read);
  5806     src2   : S3(read);
  5807     mem    : S4(read);
  5808     DECODE : S0;        // any decoder for FPU PUSH
  5809     D0     : S0(2);     // big decoder only
  5810     FPU    : S4;
  5811     MEM    : S3(2);     // any mem
  5812 %}
  5814 pipe_class fpu_mem_mem(memory dst, memory src1)
  5815 %{
  5816     instruction_count(2);
  5817     src1   : S3(read);
  5818     dst    : S4(read);
  5819     D0     : S0(2);     // big decoder only
  5820     MEM    : S3(2);     // any mem
  5821 %}
  5823 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
  5824 %{
  5825     instruction_count(3);
  5826     src1   : S3(read);
  5827     src2   : S3(read);
  5828     dst    : S4(read);
  5829     D0     : S0(3);     // big decoder only
  5830     FPU    : S4;
  5831     MEM    : S3(3);     // any mem
  5832 %}
  5834 pipe_class fpu_mem_reg_con(memory mem, regD src1)
  5835 %{
  5836     instruction_count(3);
  5837     src1   : S4(read);
  5838     mem    : S4(read);
  5839     DECODE : S0;        // any decoder for FPU PUSH
  5840     D0     : S0(2);     // big decoder only
  5841     FPU    : S4;
  5842     MEM    : S3(2);     // any mem
  5843 %}
  5845 // Float load constant
  5846 pipe_class fpu_reg_con(regD dst)
  5847 %{
  5848     instruction_count(2);
  5849     dst    : S5(write);
  5850     D0     : S0;        // big decoder only for the load
  5851     DECODE : S1;        // any decoder for FPU POP
  5852     FPU    : S4;
  5853     MEM    : S3;        // any mem
  5854 %}
  5856 // Float load constant
  5857 pipe_class fpu_reg_reg_con(regD dst, regD src)
  5858 %{
  5859     instruction_count(3);
  5860     dst    : S5(write);
  5861     src    : S3(read);
  5862     D0     : S0;        // big decoder only for the load
  5863     DECODE : S1(2);     // any decoder for FPU POP
  5864     FPU    : S4;
  5865     MEM    : S3;        // any mem
  5866 %}
  5868 // UnConditional branch
  5869 pipe_class pipe_jmp(label labl)
  5870 %{
  5871     single_instruction;
  5872     BR   : S3;
  5873 %}
  5875 // Conditional branch
  5876 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
  5877 %{
  5878     single_instruction;
  5879     cr    : S1(read);
  5880     BR    : S3;
  5881 %}
  5883 // Allocation idiom
  5884 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
  5885 %{
  5886     instruction_count(1); force_serialization;
  5887     fixed_latency(6);
  5888     heap_ptr : S3(read);
  5889     DECODE   : S0(3);
  5890     D0       : S2;
  5891     MEM      : S3;
  5892     ALU      : S3(2);
  5893     dst      : S5(write);
  5894     BR       : S5;
  5895 %}
  5897 // Generic big/slow expanded idiom
  5898 pipe_class pipe_slow()
  5899 %{
  5900     instruction_count(10); multiple_bundles; force_serialization;
  5901     fixed_latency(100);
  5902     D0  : S0(2);
  5903     MEM : S3(2);
  5904 %}
  5906 // The real do-nothing guy
  5907 pipe_class empty()
  5908 %{
  5909     instruction_count(0);
  5910 %}
  5912 // Define the class for the Nop node
  5913 define
  5914 %{
  5915    MachNop = empty;
  5916 %}
  5918 %}
  5920 //----------INSTRUCTIONS-------------------------------------------------------
  5921 //
  5922 // match      -- States which machine-independent subtree may be replaced
  5923 //               by this instruction.
  5924 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5925 //               selection to identify a minimum cost tree of machine
  5926 //               instructions that matches a tree of machine-independent
  5927 //               instructions.
  5928 // format     -- A string providing the disassembly for this instruction.
  5929 //               The value of an instruction's operand may be inserted
  5930 //               by referring to it with a '$' prefix.
  5931 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5932 //               to within an encode class as $primary, $secondary, and $tertiary
  5933 //               rrspectively.  The primary opcode is commonly used to
  5934 //               indicate the type of machine instruction, while secondary
  5935 //               and tertiary are often used for prefix options or addressing
  5936 //               modes.
  5937 // ins_encode -- A list of encode classes with parameters. The encode class
  5938 //               name must have been defined in an 'enc_class' specification
  5939 //               in the encode section of the architecture description.
  5942 //----------Load/Store/Move Instructions---------------------------------------
  5943 //----------Load Instructions--------------------------------------------------
  5945 // Load Byte (8 bit signed)
  5946 instruct loadB(rRegI dst, memory mem)
  5947 %{
  5948   match(Set dst (LoadB mem));
  5950   ins_cost(125);
  5951   format %{ "movsbl  $dst, $mem\t# byte" %}
  5953   ins_encode %{
  5954     __ movsbl($dst$$Register, $mem$$Address);
  5955   %}
  5957   ins_pipe(ialu_reg_mem);
  5958 %}
  5960 // Load Byte (8 bit signed) into Long Register
  5961 instruct loadB2L(rRegL dst, memory mem)
  5962 %{
  5963   match(Set dst (ConvI2L (LoadB mem)));
  5965   ins_cost(125);
  5966   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
  5968   ins_encode %{
  5969     __ movsbq($dst$$Register, $mem$$Address);
  5970   %}
  5972   ins_pipe(ialu_reg_mem);
  5973 %}
  5975 // Load Unsigned Byte (8 bit UNsigned)
  5976 instruct loadUB(rRegI dst, memory mem)
  5977 %{
  5978   match(Set dst (LoadUB mem));
  5980   ins_cost(125);
  5981   format %{ "movzbl  $dst, $mem\t# ubyte" %}
  5983   ins_encode %{
  5984     __ movzbl($dst$$Register, $mem$$Address);
  5985   %}
  5987   ins_pipe(ialu_reg_mem);
  5988 %}
  5990 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5991 instruct loadUB2L(rRegL dst, memory mem)
  5992 %{
  5993   match(Set dst (ConvI2L (LoadUB mem)));
  5995   ins_cost(125);
  5996   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
  5998   ins_encode %{
  5999     __ movzbq($dst$$Register, $mem$$Address);
  6000   %}
  6002   ins_pipe(ialu_reg_mem);
  6003 %}
  6005 // Load Unsigned Byte (8 bit UNsigned) with a 8-bit mask into Long Register
  6006 instruct loadUB2L_immI8(rRegL dst, memory mem, immI8 mask, rFlagsReg cr) %{
  6007   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6008   effect(KILL cr);
  6010   format %{ "movzbq  $dst, $mem\t# ubyte & 8-bit mask -> long\n\t"
  6011             "andl    $dst, $mask" %}
  6012   ins_encode %{
  6013     Register Rdst = $dst$$Register;
  6014     __ movzbq(Rdst, $mem$$Address);
  6015     __ andl(Rdst, $mask$$constant);
  6016   %}
  6017   ins_pipe(ialu_reg_mem);
  6018 %}
  6020 // Load Short (16 bit signed)
  6021 instruct loadS(rRegI dst, memory mem)
  6022 %{
  6023   match(Set dst (LoadS mem));
  6025   ins_cost(125);
  6026   format %{ "movswl $dst, $mem\t# short" %}
  6028   ins_encode %{
  6029     __ movswl($dst$$Register, $mem$$Address);
  6030   %}
  6032   ins_pipe(ialu_reg_mem);
  6033 %}
  6035 // Load Short (16 bit signed) to Byte (8 bit signed)
  6036 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  6037   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6039   ins_cost(125);
  6040   format %{ "movsbl $dst, $mem\t# short -> byte" %}
  6041   ins_encode %{
  6042     __ movsbl($dst$$Register, $mem$$Address);
  6043   %}
  6044   ins_pipe(ialu_reg_mem);
  6045 %}
  6047 // Load Short (16 bit signed) into Long Register
  6048 instruct loadS2L(rRegL dst, memory mem)
  6049 %{
  6050   match(Set dst (ConvI2L (LoadS mem)));
  6052   ins_cost(125);
  6053   format %{ "movswq $dst, $mem\t# short -> long" %}
  6055   ins_encode %{
  6056     __ movswq($dst$$Register, $mem$$Address);
  6057   %}
  6059   ins_pipe(ialu_reg_mem);
  6060 %}
  6062 // Load Unsigned Short/Char (16 bit UNsigned)
  6063 instruct loadUS(rRegI dst, memory mem)
  6064 %{
  6065   match(Set dst (LoadUS mem));
  6067   ins_cost(125);
  6068   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
  6070   ins_encode %{
  6071     __ movzwl($dst$$Register, $mem$$Address);
  6072   %}
  6074   ins_pipe(ialu_reg_mem);
  6075 %}
  6077 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6078 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  6079   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6081   ins_cost(125);
  6082   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
  6083   ins_encode %{
  6084     __ movsbl($dst$$Register, $mem$$Address);
  6085   %}
  6086   ins_pipe(ialu_reg_mem);
  6087 %}
  6089 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6090 instruct loadUS2L(rRegL dst, memory mem)
  6091 %{
  6092   match(Set dst (ConvI2L (LoadUS mem)));
  6094   ins_cost(125);
  6095   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
  6097   ins_encode %{
  6098     __ movzwq($dst$$Register, $mem$$Address);
  6099   %}
  6101   ins_pipe(ialu_reg_mem);
  6102 %}
  6104 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6105 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
  6106   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6108   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
  6109   ins_encode %{
  6110     __ movzbq($dst$$Register, $mem$$Address);
  6111   %}
  6112   ins_pipe(ialu_reg_mem);
  6113 %}
  6115 // Load Unsigned Short/Char (16 bit UNsigned) with mask into Long Register
  6116 instruct loadUS2L_immI16(rRegL dst, memory mem, immI16 mask, rFlagsReg cr) %{
  6117   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6118   effect(KILL cr);
  6120   format %{ "movzwq  $dst, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6121             "andl    $dst, $mask" %}
  6122   ins_encode %{
  6123     Register Rdst = $dst$$Register;
  6124     __ movzwq(Rdst, $mem$$Address);
  6125     __ andl(Rdst, $mask$$constant);
  6126   %}
  6127   ins_pipe(ialu_reg_mem);
  6128 %}
  6130 // Load Integer
  6131 instruct loadI(rRegI dst, memory mem)
  6132 %{
  6133   match(Set dst (LoadI mem));
  6135   ins_cost(125);
  6136   format %{ "movl    $dst, $mem\t# int" %}
  6138   ins_encode %{
  6139     __ movl($dst$$Register, $mem$$Address);
  6140   %}
  6142   ins_pipe(ialu_reg_mem);
  6143 %}
  6145 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6146 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  6147   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6149   ins_cost(125);
  6150   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
  6151   ins_encode %{
  6152     __ movsbl($dst$$Register, $mem$$Address);
  6153   %}
  6154   ins_pipe(ialu_reg_mem);
  6155 %}
  6157 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6158 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  6159   match(Set dst (AndI (LoadI mem) mask));
  6161   ins_cost(125);
  6162   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
  6163   ins_encode %{
  6164     __ movzbl($dst$$Register, $mem$$Address);
  6165   %}
  6166   ins_pipe(ialu_reg_mem);
  6167 %}
  6169 // Load Integer (32 bit signed) to Short (16 bit signed)
  6170 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  6171   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6173   ins_cost(125);
  6174   format %{ "movswl  $dst, $mem\t# int -> short" %}
  6175   ins_encode %{
  6176     __ movswl($dst$$Register, $mem$$Address);
  6177   %}
  6178   ins_pipe(ialu_reg_mem);
  6179 %}
  6181 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6182 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  6183   match(Set dst (AndI (LoadI mem) mask));
  6185   ins_cost(125);
  6186   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
  6187   ins_encode %{
  6188     __ movzwl($dst$$Register, $mem$$Address);
  6189   %}
  6190   ins_pipe(ialu_reg_mem);
  6191 %}
  6193 // Load Integer into Long Register
  6194 instruct loadI2L(rRegL dst, memory mem)
  6195 %{
  6196   match(Set dst (ConvI2L (LoadI mem)));
  6198   ins_cost(125);
  6199   format %{ "movslq  $dst, $mem\t# int -> long" %}
  6201   ins_encode %{
  6202     __ movslq($dst$$Register, $mem$$Address);
  6203   %}
  6205   ins_pipe(ialu_reg_mem);
  6206 %}
  6208 // Load Integer with mask 0xFF into Long Register
  6209 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
  6210   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6212   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
  6213   ins_encode %{
  6214     __ movzbq($dst$$Register, $mem$$Address);
  6215   %}
  6216   ins_pipe(ialu_reg_mem);
  6217 %}
  6219 // Load Integer with mask 0xFFFF into Long Register
  6220 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
  6221   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6223   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
  6224   ins_encode %{
  6225     __ movzwq($dst$$Register, $mem$$Address);
  6226   %}
  6227   ins_pipe(ialu_reg_mem);
  6228 %}
  6230 // Load Integer with a 32-bit mask into Long Register
  6231 instruct loadI2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
  6232   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6233   effect(KILL cr);
  6235   format %{ "movl    $dst, $mem\t# int & 32-bit mask -> long\n\t"
  6236             "andl    $dst, $mask" %}
  6237   ins_encode %{
  6238     Register Rdst = $dst$$Register;
  6239     __ movl(Rdst, $mem$$Address);
  6240     __ andl(Rdst, $mask$$constant);
  6241   %}
  6242   ins_pipe(ialu_reg_mem);
  6243 %}
  6245 // Load Unsigned Integer into Long Register
  6246 instruct loadUI2L(rRegL dst, memory mem)
  6247 %{
  6248   match(Set dst (LoadUI2L mem));
  6250   ins_cost(125);
  6251   format %{ "movl    $dst, $mem\t# uint -> long" %}
  6253   ins_encode %{
  6254     __ movl($dst$$Register, $mem$$Address);
  6255   %}
  6257   ins_pipe(ialu_reg_mem);
  6258 %}
  6260 // Load Long
  6261 instruct loadL(rRegL dst, memory mem)
  6262 %{
  6263   match(Set dst (LoadL mem));
  6265   ins_cost(125);
  6266   format %{ "movq    $dst, $mem\t# long" %}
  6268   ins_encode %{
  6269     __ movq($dst$$Register, $mem$$Address);
  6270   %}
  6272   ins_pipe(ialu_reg_mem); // XXX
  6273 %}
  6275 // Load Range
  6276 instruct loadRange(rRegI dst, memory mem)
  6277 %{
  6278   match(Set dst (LoadRange mem));
  6280   ins_cost(125); // XXX
  6281   format %{ "movl    $dst, $mem\t# range" %}
  6282   opcode(0x8B);
  6283   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
  6284   ins_pipe(ialu_reg_mem);
  6285 %}
  6287 // Load Pointer
  6288 instruct loadP(rRegP dst, memory mem)
  6289 %{
  6290   match(Set dst (LoadP mem));
  6292   ins_cost(125); // XXX
  6293   format %{ "movq    $dst, $mem\t# ptr" %}
  6294   opcode(0x8B);
  6295   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6296   ins_pipe(ialu_reg_mem); // XXX
  6297 %}
  6299 // Load Compressed Pointer
  6300 instruct loadN(rRegN dst, memory mem)
  6301 %{
  6302    match(Set dst (LoadN mem));
  6304    ins_cost(125); // XXX
  6305    format %{ "movl    $dst, $mem\t# compressed ptr" %}
  6306    ins_encode %{
  6307      __ movl($dst$$Register, $mem$$Address);
  6308    %}
  6309    ins_pipe(ialu_reg_mem); // XXX
  6310 %}
  6313 // Load Klass Pointer
  6314 instruct loadKlass(rRegP dst, memory mem)
  6315 %{
  6316   match(Set dst (LoadKlass mem));
  6318   ins_cost(125); // XXX
  6319   format %{ "movq    $dst, $mem\t# class" %}
  6320   opcode(0x8B);
  6321   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6322   ins_pipe(ialu_reg_mem); // XXX
  6323 %}
  6325 // Load narrow Klass Pointer
  6326 instruct loadNKlass(rRegN dst, memory mem)
  6327 %{
  6328   match(Set dst (LoadNKlass mem));
  6330   ins_cost(125); // XXX
  6331   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
  6332   ins_encode %{
  6333     __ movl($dst$$Register, $mem$$Address);
  6334   %}
  6335   ins_pipe(ialu_reg_mem); // XXX
  6336 %}
  6338 // Load Float
  6339 instruct loadF(regF dst, memory mem)
  6340 %{
  6341   match(Set dst (LoadF mem));
  6343   ins_cost(145); // XXX
  6344   format %{ "movss   $dst, $mem\t# float" %}
  6345   opcode(0xF3, 0x0F, 0x10);
  6346   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6347   ins_pipe(pipe_slow); // XXX
  6348 %}
  6350 // Load Double
  6351 instruct loadD_partial(regD dst, memory mem)
  6352 %{
  6353   predicate(!UseXmmLoadAndClearUpper);
  6354   match(Set dst (LoadD mem));
  6356   ins_cost(145); // XXX
  6357   format %{ "movlpd  $dst, $mem\t# double" %}
  6358   opcode(0x66, 0x0F, 0x12);
  6359   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6360   ins_pipe(pipe_slow); // XXX
  6361 %}
  6363 instruct loadD(regD dst, memory mem)
  6364 %{
  6365   predicate(UseXmmLoadAndClearUpper);
  6366   match(Set dst (LoadD mem));
  6368   ins_cost(145); // XXX
  6369   format %{ "movsd   $dst, $mem\t# double" %}
  6370   opcode(0xF2, 0x0F, 0x10);
  6371   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6372   ins_pipe(pipe_slow); // XXX
  6373 %}
  6375 // Load Aligned Packed Byte to XMM register
  6376 instruct loadA8B(regD dst, memory mem) %{
  6377   match(Set dst (Load8B mem));
  6378   ins_cost(125);
  6379   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6380   ins_encode( movq_ld(dst, mem));
  6381   ins_pipe( pipe_slow );
  6382 %}
  6384 // Load Aligned Packed Short to XMM register
  6385 instruct loadA4S(regD dst, memory mem) %{
  6386   match(Set dst (Load4S mem));
  6387   ins_cost(125);
  6388   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6389   ins_encode( movq_ld(dst, mem));
  6390   ins_pipe( pipe_slow );
  6391 %}
  6393 // Load Aligned Packed Char to XMM register
  6394 instruct loadA4C(regD dst, memory mem) %{
  6395   match(Set dst (Load4C mem));
  6396   ins_cost(125);
  6397   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6398   ins_encode( movq_ld(dst, mem));
  6399   ins_pipe( pipe_slow );
  6400 %}
  6402 // Load Aligned Packed Integer to XMM register
  6403 instruct load2IU(regD dst, memory mem) %{
  6404   match(Set dst (Load2I mem));
  6405   ins_cost(125);
  6406   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6407   ins_encode( movq_ld(dst, mem));
  6408   ins_pipe( pipe_slow );
  6409 %}
  6411 // Load Aligned Packed Single to XMM
  6412 instruct loadA2F(regD dst, memory mem) %{
  6413   match(Set dst (Load2F mem));
  6414   ins_cost(145);
  6415   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6416   ins_encode( movq_ld(dst, mem));
  6417   ins_pipe( pipe_slow );
  6418 %}
  6420 // Load Effective Address
  6421 instruct leaP8(rRegP dst, indOffset8 mem)
  6422 %{
  6423   match(Set dst mem);
  6425   ins_cost(110); // XXX
  6426   format %{ "leaq    $dst, $mem\t# ptr 8" %}
  6427   opcode(0x8D);
  6428   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6429   ins_pipe(ialu_reg_reg_fat);
  6430 %}
  6432 instruct leaP32(rRegP dst, indOffset32 mem)
  6433 %{
  6434   match(Set dst mem);
  6436   ins_cost(110);
  6437   format %{ "leaq    $dst, $mem\t# ptr 32" %}
  6438   opcode(0x8D);
  6439   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6440   ins_pipe(ialu_reg_reg_fat);
  6441 %}
  6443 // instruct leaPIdx(rRegP dst, indIndex mem)
  6444 // %{
  6445 //   match(Set dst mem);
  6447 //   ins_cost(110);
  6448 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
  6449 //   opcode(0x8D);
  6450 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6451 //   ins_pipe(ialu_reg_reg_fat);
  6452 // %}
  6454 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
  6455 %{
  6456   match(Set dst mem);
  6458   ins_cost(110);
  6459   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
  6460   opcode(0x8D);
  6461   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6462   ins_pipe(ialu_reg_reg_fat);
  6463 %}
  6465 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
  6466 %{
  6467   match(Set dst mem);
  6469   ins_cost(110);
  6470   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
  6471   opcode(0x8D);
  6472   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6473   ins_pipe(ialu_reg_reg_fat);
  6474 %}
  6476 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
  6477 %{
  6478   match(Set dst mem);
  6480   ins_cost(110);
  6481   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
  6482   opcode(0x8D);
  6483   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6484   ins_pipe(ialu_reg_reg_fat);
  6485 %}
  6487 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
  6488 %{
  6489   match(Set dst mem);
  6491   ins_cost(110);
  6492   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
  6493   opcode(0x8D);
  6494   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6495   ins_pipe(ialu_reg_reg_fat);
  6496 %}
  6498 // Load Effective Address which uses Narrow (32-bits) oop
  6499 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
  6500 %{
  6501   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
  6502   match(Set dst mem);
  6504   ins_cost(110);
  6505   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
  6506   opcode(0x8D);
  6507   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6508   ins_pipe(ialu_reg_reg_fat);
  6509 %}
  6511 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
  6512 %{
  6513   predicate(Universe::narrow_oop_shift() == 0);
  6514   match(Set dst mem);
  6516   ins_cost(110); // XXX
  6517   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
  6518   opcode(0x8D);
  6519   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6520   ins_pipe(ialu_reg_reg_fat);
  6521 %}
  6523 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
  6524 %{
  6525   predicate(Universe::narrow_oop_shift() == 0);
  6526   match(Set dst mem);
  6528   ins_cost(110);
  6529   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
  6530   opcode(0x8D);
  6531   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6532   ins_pipe(ialu_reg_reg_fat);
  6533 %}
  6535 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
  6536 %{
  6537   predicate(Universe::narrow_oop_shift() == 0);
  6538   match(Set dst mem);
  6540   ins_cost(110);
  6541   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
  6542   opcode(0x8D);
  6543   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6544   ins_pipe(ialu_reg_reg_fat);
  6545 %}
  6547 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
  6548 %{
  6549   predicate(Universe::narrow_oop_shift() == 0);
  6550   match(Set dst mem);
  6552   ins_cost(110);
  6553   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
  6554   opcode(0x8D);
  6555   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6556   ins_pipe(ialu_reg_reg_fat);
  6557 %}
  6559 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
  6560 %{
  6561   predicate(Universe::narrow_oop_shift() == 0);
  6562   match(Set dst mem);
  6564   ins_cost(110);
  6565   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
  6566   opcode(0x8D);
  6567   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6568   ins_pipe(ialu_reg_reg_fat);
  6569 %}
  6571 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
  6572 %{
  6573   predicate(Universe::narrow_oop_shift() == 0);
  6574   match(Set dst mem);
  6576   ins_cost(110);
  6577   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
  6578   opcode(0x8D);
  6579   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6580   ins_pipe(ialu_reg_reg_fat);
  6581 %}
  6583 instruct loadConI(rRegI dst, immI src)
  6584 %{
  6585   match(Set dst src);
  6587   format %{ "movl    $dst, $src\t# int" %}
  6588   ins_encode(load_immI(dst, src));
  6589   ins_pipe(ialu_reg_fat); // XXX
  6590 %}
  6592 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
  6593 %{
  6594   match(Set dst src);
  6595   effect(KILL cr);
  6597   ins_cost(50);
  6598   format %{ "xorl    $dst, $dst\t# int" %}
  6599   opcode(0x33); /* + rd */
  6600   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6601   ins_pipe(ialu_reg);
  6602 %}
  6604 instruct loadConL(rRegL dst, immL src)
  6605 %{
  6606   match(Set dst src);
  6608   ins_cost(150);
  6609   format %{ "movq    $dst, $src\t# long" %}
  6610   ins_encode(load_immL(dst, src));
  6611   ins_pipe(ialu_reg);
  6612 %}
  6614 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
  6615 %{
  6616   match(Set dst src);
  6617   effect(KILL cr);
  6619   ins_cost(50);
  6620   format %{ "xorl    $dst, $dst\t# long" %}
  6621   opcode(0x33); /* + rd */
  6622   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6623   ins_pipe(ialu_reg); // XXX
  6624 %}
  6626 instruct loadConUL32(rRegL dst, immUL32 src)
  6627 %{
  6628   match(Set dst src);
  6630   ins_cost(60);
  6631   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
  6632   ins_encode(load_immUL32(dst, src));
  6633   ins_pipe(ialu_reg);
  6634 %}
  6636 instruct loadConL32(rRegL dst, immL32 src)
  6637 %{
  6638   match(Set dst src);
  6640   ins_cost(70);
  6641   format %{ "movq    $dst, $src\t# long (32-bit)" %}
  6642   ins_encode(load_immL32(dst, src));
  6643   ins_pipe(ialu_reg);
  6644 %}
  6646 instruct loadConP(rRegP dst, immP src)
  6647 %{
  6648   match(Set dst src);
  6650   format %{ "movq    $dst, $src\t# ptr" %}
  6651   ins_encode(load_immP(dst, src));
  6652   ins_pipe(ialu_reg_fat); // XXX
  6653 %}
  6655 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
  6656 %{
  6657   match(Set dst src);
  6658   effect(KILL cr);
  6660   ins_cost(50);
  6661   format %{ "xorl    $dst, $dst\t# ptr" %}
  6662   opcode(0x33); /* + rd */
  6663   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6664   ins_pipe(ialu_reg);
  6665 %}
  6667 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
  6668 %{
  6669   match(Set dst src);
  6670   effect(KILL cr);
  6672   ins_cost(60);
  6673   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
  6674   ins_encode(load_immP31(dst, src));
  6675   ins_pipe(ialu_reg);
  6676 %}
  6678 instruct loadConF(regF dst, immF src)
  6679 %{
  6680   match(Set dst src);
  6681   ins_cost(125);
  6683   format %{ "movss   $dst, [$src]" %}
  6684   ins_encode(load_conF(dst, src));
  6685   ins_pipe(pipe_slow);
  6686 %}
  6688 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
  6689   match(Set dst src);
  6690   effect(KILL cr);
  6691   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
  6692   ins_encode %{
  6693     __ xorq($dst$$Register, $dst$$Register);
  6694   %}
  6695   ins_pipe(ialu_reg);
  6696 %}
  6698 instruct loadConN(rRegN dst, immN src) %{
  6699   match(Set dst src);
  6701   ins_cost(125);
  6702   format %{ "movl    $dst, $src\t# compressed ptr" %}
  6703   ins_encode %{
  6704     address con = (address)$src$$constant;
  6705     if (con == NULL) {
  6706       ShouldNotReachHere();
  6707     } else {
  6708       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
  6710   %}
  6711   ins_pipe(ialu_reg_fat); // XXX
  6712 %}
  6714 instruct loadConF0(regF dst, immF0 src)
  6715 %{
  6716   match(Set dst src);
  6717   ins_cost(100);
  6719   format %{ "xorps   $dst, $dst\t# float 0.0" %}
  6720   opcode(0x0F, 0x57);
  6721   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  6722   ins_pipe(pipe_slow);
  6723 %}
  6725 // Use the same format since predicate() can not be used here.
  6726 instruct loadConD(regD dst, immD src)
  6727 %{
  6728   match(Set dst src);
  6729   ins_cost(125);
  6731   format %{ "movsd   $dst, [$src]" %}
  6732   ins_encode(load_conD(dst, src));
  6733   ins_pipe(pipe_slow);
  6734 %}
  6736 instruct loadConD0(regD dst, immD0 src)
  6737 %{
  6738   match(Set dst src);
  6739   ins_cost(100);
  6741   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
  6742   opcode(0x66, 0x0F, 0x57);
  6743   ins_encode(OpcP, REX_reg_reg(dst, dst), OpcS, OpcT, reg_reg(dst, dst));
  6744   ins_pipe(pipe_slow);
  6745 %}
  6747 instruct loadSSI(rRegI dst, stackSlotI src)
  6748 %{
  6749   match(Set dst src);
  6751   ins_cost(125);
  6752   format %{ "movl    $dst, $src\t# int stk" %}
  6753   opcode(0x8B);
  6754   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  6755   ins_pipe(ialu_reg_mem);
  6756 %}
  6758 instruct loadSSL(rRegL dst, stackSlotL src)
  6759 %{
  6760   match(Set dst src);
  6762   ins_cost(125);
  6763   format %{ "movq    $dst, $src\t# long stk" %}
  6764   opcode(0x8B);
  6765   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6766   ins_pipe(ialu_reg_mem);
  6767 %}
  6769 instruct loadSSP(rRegP dst, stackSlotP src)
  6770 %{
  6771   match(Set dst src);
  6773   ins_cost(125);
  6774   format %{ "movq    $dst, $src\t# ptr stk" %}
  6775   opcode(0x8B);
  6776   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6777   ins_pipe(ialu_reg_mem);
  6778 %}
  6780 instruct loadSSF(regF dst, stackSlotF src)
  6781 %{
  6782   match(Set dst src);
  6784   ins_cost(125);
  6785   format %{ "movss   $dst, $src\t# float stk" %}
  6786   opcode(0xF3, 0x0F, 0x10);
  6787   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  6788   ins_pipe(pipe_slow); // XXX
  6789 %}
  6791 // Use the same format since predicate() can not be used here.
  6792 instruct loadSSD(regD dst, stackSlotD src)
  6793 %{
  6794   match(Set dst src);
  6796   ins_cost(125);
  6797   format %{ "movsd   $dst, $src\t# double stk" %}
  6798   ins_encode  %{
  6799     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
  6800   %}
  6801   ins_pipe(pipe_slow); // XXX
  6802 %}
  6804 // Prefetch instructions.
  6805 // Must be safe to execute with invalid address (cannot fault).
  6807 instruct prefetchr( memory mem ) %{
  6808   predicate(ReadPrefetchInstr==3);
  6809   match(PrefetchRead mem);
  6810   ins_cost(125);
  6812   format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
  6813   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /0 */
  6814   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6815   ins_pipe(ialu_mem);
  6816 %}
  6818 instruct prefetchrNTA( memory mem ) %{
  6819   predicate(ReadPrefetchInstr==0);
  6820   match(PrefetchRead mem);
  6821   ins_cost(125);
  6823   format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
  6824   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6825   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6826   ins_pipe(ialu_mem);
  6827 %}
  6829 instruct prefetchrT0( memory mem ) %{
  6830   predicate(ReadPrefetchInstr==1);
  6831   match(PrefetchRead mem);
  6832   ins_cost(125);
  6834   format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
  6835   opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
  6836   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6837   ins_pipe(ialu_mem);
  6838 %}
  6840 instruct prefetchrT2( memory mem ) %{
  6841   predicate(ReadPrefetchInstr==2);
  6842   match(PrefetchRead mem);
  6843   ins_cost(125);
  6845   format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
  6846   opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
  6847   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6848   ins_pipe(ialu_mem);
  6849 %}
  6851 instruct prefetchw( memory mem ) %{
  6852   predicate(AllocatePrefetchInstr==3);
  6853   match(PrefetchWrite mem);
  6854   ins_cost(125);
  6856   format %{ "PREFETCHW $mem\t# Prefetch into level 1 cache and mark modified" %}
  6857   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  6858   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6859   ins_pipe(ialu_mem);
  6860 %}
  6862 instruct prefetchwNTA( memory mem ) %{
  6863   predicate(AllocatePrefetchInstr==0);
  6864   match(PrefetchWrite mem);
  6865   ins_cost(125);
  6867   format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
  6868   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6869   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6870   ins_pipe(ialu_mem);
  6871 %}
  6873 instruct prefetchwT0( memory mem ) %{
  6874   predicate(AllocatePrefetchInstr==1);
  6875   match(PrefetchWrite mem);
  6876   ins_cost(125);
  6878   format %{ "PREFETCHT0 $mem\t# Prefetch to level 1 and 2 caches for write" %}
  6879   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  6880   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6881   ins_pipe(ialu_mem);
  6882 %}
  6884 instruct prefetchwT2( memory mem ) %{
  6885   predicate(AllocatePrefetchInstr==2);
  6886   match(PrefetchWrite mem);
  6887   ins_cost(125);
  6889   format %{ "PREFETCHT2 $mem\t# Prefetch to level 2 cache for write" %}
  6890   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  6891   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6892   ins_pipe(ialu_mem);
  6893 %}
  6895 //----------Store Instructions-------------------------------------------------
  6897 // Store Byte
  6898 instruct storeB(memory mem, rRegI src)
  6899 %{
  6900   match(Set mem (StoreB mem src));
  6902   ins_cost(125); // XXX
  6903   format %{ "movb    $mem, $src\t# byte" %}
  6904   opcode(0x88);
  6905   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
  6906   ins_pipe(ialu_mem_reg);
  6907 %}
  6909 // Store Char/Short
  6910 instruct storeC(memory mem, rRegI src)
  6911 %{
  6912   match(Set mem (StoreC mem src));
  6914   ins_cost(125); // XXX
  6915   format %{ "movw    $mem, $src\t# char/short" %}
  6916   opcode(0x89);
  6917   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6918   ins_pipe(ialu_mem_reg);
  6919 %}
  6921 // Store Integer
  6922 instruct storeI(memory mem, rRegI src)
  6923 %{
  6924   match(Set mem (StoreI mem src));
  6926   ins_cost(125); // XXX
  6927   format %{ "movl    $mem, $src\t# int" %}
  6928   opcode(0x89);
  6929   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6930   ins_pipe(ialu_mem_reg);
  6931 %}
  6933 // Store Long
  6934 instruct storeL(memory mem, rRegL src)
  6935 %{
  6936   match(Set mem (StoreL mem src));
  6938   ins_cost(125); // XXX
  6939   format %{ "movq    $mem, $src\t# long" %}
  6940   opcode(0x89);
  6941   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6942   ins_pipe(ialu_mem_reg); // XXX
  6943 %}
  6945 // Store Pointer
  6946 instruct storeP(memory mem, any_RegP src)
  6947 %{
  6948   match(Set mem (StoreP mem src));
  6950   ins_cost(125); // XXX
  6951   format %{ "movq    $mem, $src\t# ptr" %}
  6952   opcode(0x89);
  6953   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6954   ins_pipe(ialu_mem_reg);
  6955 %}
  6957 instruct storeImmP0(memory mem, immP0 zero)
  6958 %{
  6959   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  6960   match(Set mem (StoreP mem zero));
  6962   ins_cost(125); // XXX
  6963   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
  6964   ins_encode %{
  6965     __ movq($mem$$Address, r12);
  6966   %}
  6967   ins_pipe(ialu_mem_reg);
  6968 %}
  6970 // Store NULL Pointer, mark word, or other simple pointer constant.
  6971 instruct storeImmP(memory mem, immP31 src)
  6972 %{
  6973   match(Set mem (StoreP mem src));
  6975   ins_cost(150); // XXX
  6976   format %{ "movq    $mem, $src\t# ptr" %}
  6977   opcode(0xC7); /* C7 /0 */
  6978   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  6979   ins_pipe(ialu_mem_imm);
  6980 %}
  6982 // Store Compressed Pointer
  6983 instruct storeN(memory mem, rRegN src)
  6984 %{
  6985   match(Set mem (StoreN mem src));
  6987   ins_cost(125); // XXX
  6988   format %{ "movl    $mem, $src\t# compressed ptr" %}
  6989   ins_encode %{
  6990     __ movl($mem$$Address, $src$$Register);
  6991   %}
  6992   ins_pipe(ialu_mem_reg);
  6993 %}
  6995 instruct storeImmN0(memory mem, immN0 zero)
  6996 %{
  6997   predicate(Universe::narrow_oop_base() == NULL);
  6998   match(Set mem (StoreN mem zero));
  7000   ins_cost(125); // XXX
  7001   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
  7002   ins_encode %{
  7003     __ movl($mem$$Address, r12);
  7004   %}
  7005   ins_pipe(ialu_mem_reg);
  7006 %}
  7008 instruct storeImmN(memory mem, immN src)
  7009 %{
  7010   match(Set mem (StoreN mem src));
  7012   ins_cost(150); // XXX
  7013   format %{ "movl    $mem, $src\t# compressed ptr" %}
  7014   ins_encode %{
  7015     address con = (address)$src$$constant;
  7016     if (con == NULL) {
  7017       __ movl($mem$$Address, (int32_t)0);
  7018     } else {
  7019       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
  7021   %}
  7022   ins_pipe(ialu_mem_imm);
  7023 %}
  7025 // Store Integer Immediate
  7026 instruct storeImmI0(memory mem, immI0 zero)
  7027 %{
  7028   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7029   match(Set mem (StoreI mem zero));
  7031   ins_cost(125); // XXX
  7032   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
  7033   ins_encode %{
  7034     __ movl($mem$$Address, r12);
  7035   %}
  7036   ins_pipe(ialu_mem_reg);
  7037 %}
  7039 instruct storeImmI(memory mem, immI src)
  7040 %{
  7041   match(Set mem (StoreI mem src));
  7043   ins_cost(150);
  7044   format %{ "movl    $mem, $src\t# int" %}
  7045   opcode(0xC7); /* C7 /0 */
  7046   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  7047   ins_pipe(ialu_mem_imm);
  7048 %}
  7050 // Store Long Immediate
  7051 instruct storeImmL0(memory mem, immL0 zero)
  7052 %{
  7053   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7054   match(Set mem (StoreL mem zero));
  7056   ins_cost(125); // XXX
  7057   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
  7058   ins_encode %{
  7059     __ movq($mem$$Address, r12);
  7060   %}
  7061   ins_pipe(ialu_mem_reg);
  7062 %}
  7064 instruct storeImmL(memory mem, immL32 src)
  7065 %{
  7066   match(Set mem (StoreL mem src));
  7068   ins_cost(150);
  7069   format %{ "movq    $mem, $src\t# long" %}
  7070   opcode(0xC7); /* C7 /0 */
  7071   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  7072   ins_pipe(ialu_mem_imm);
  7073 %}
  7075 // Store Short/Char Immediate
  7076 instruct storeImmC0(memory mem, immI0 zero)
  7077 %{
  7078   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7079   match(Set mem (StoreC mem zero));
  7081   ins_cost(125); // XXX
  7082   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
  7083   ins_encode %{
  7084     __ movw($mem$$Address, r12);
  7085   %}
  7086   ins_pipe(ialu_mem_reg);
  7087 %}
  7089 instruct storeImmI16(memory mem, immI16 src)
  7090 %{
  7091   predicate(UseStoreImmI16);
  7092   match(Set mem (StoreC mem src));
  7094   ins_cost(150);
  7095   format %{ "movw    $mem, $src\t# short/char" %}
  7096   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
  7097   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
  7098   ins_pipe(ialu_mem_imm);
  7099 %}
  7101 // Store Byte Immediate
  7102 instruct storeImmB0(memory mem, immI0 zero)
  7103 %{
  7104   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7105   match(Set mem (StoreB mem zero));
  7107   ins_cost(125); // XXX
  7108   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
  7109   ins_encode %{
  7110     __ movb($mem$$Address, r12);
  7111   %}
  7112   ins_pipe(ialu_mem_reg);
  7113 %}
  7115 instruct storeImmB(memory mem, immI8 src)
  7116 %{
  7117   match(Set mem (StoreB mem src));
  7119   ins_cost(150); // XXX
  7120   format %{ "movb    $mem, $src\t# byte" %}
  7121   opcode(0xC6); /* C6 /0 */
  7122   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  7123   ins_pipe(ialu_mem_imm);
  7124 %}
  7126 // Store Aligned Packed Byte XMM register to memory
  7127 instruct storeA8B(memory mem, regD src) %{
  7128   match(Set mem (Store8B mem src));
  7129   ins_cost(145);
  7130   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7131   ins_encode( movq_st(mem, src));
  7132   ins_pipe( pipe_slow );
  7133 %}
  7135 // Store Aligned Packed Char/Short XMM register to memory
  7136 instruct storeA4C(memory mem, regD src) %{
  7137   match(Set mem (Store4C mem src));
  7138   ins_cost(145);
  7139   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7140   ins_encode( movq_st(mem, src));
  7141   ins_pipe( pipe_slow );
  7142 %}
  7144 // Store Aligned Packed Integer XMM register to memory
  7145 instruct storeA2I(memory mem, regD src) %{
  7146   match(Set mem (Store2I mem src));
  7147   ins_cost(145);
  7148   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7149   ins_encode( movq_st(mem, src));
  7150   ins_pipe( pipe_slow );
  7151 %}
  7153 // Store CMS card-mark Immediate
  7154 instruct storeImmCM0_reg(memory mem, immI0 zero)
  7155 %{
  7156   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7157   match(Set mem (StoreCM mem zero));
  7159   ins_cost(125); // XXX
  7160   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
  7161   ins_encode %{
  7162     __ movb($mem$$Address, r12);
  7163   %}
  7164   ins_pipe(ialu_mem_reg);
  7165 %}
  7167 instruct storeImmCM0(memory mem, immI0 src)
  7168 %{
  7169   match(Set mem (StoreCM mem src));
  7171   ins_cost(150); // XXX
  7172   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
  7173   opcode(0xC6); /* C6 /0 */
  7174   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  7175   ins_pipe(ialu_mem_imm);
  7176 %}
  7178 // Store Aligned Packed Single Float XMM register to memory
  7179 instruct storeA2F(memory mem, regD src) %{
  7180   match(Set mem (Store2F mem src));
  7181   ins_cost(145);
  7182   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7183   ins_encode( movq_st(mem, src));
  7184   ins_pipe( pipe_slow );
  7185 %}
  7187 // Store Float
  7188 instruct storeF(memory mem, regF src)
  7189 %{
  7190   match(Set mem (StoreF mem src));
  7192   ins_cost(95); // XXX
  7193   format %{ "movss   $mem, $src\t# float" %}
  7194   opcode(0xF3, 0x0F, 0x11);
  7195   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  7196   ins_pipe(pipe_slow); // XXX
  7197 %}
  7199 // Store immediate Float value (it is faster than store from XMM register)
  7200 instruct storeF0(memory mem, immF0 zero)
  7201 %{
  7202   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7203   match(Set mem (StoreF mem zero));
  7205   ins_cost(25); // XXX
  7206   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
  7207   ins_encode %{
  7208     __ movl($mem$$Address, r12);
  7209   %}
  7210   ins_pipe(ialu_mem_reg);
  7211 %}
  7213 instruct storeF_imm(memory mem, immF src)
  7214 %{
  7215   match(Set mem (StoreF mem src));
  7217   ins_cost(50);
  7218   format %{ "movl    $mem, $src\t# float" %}
  7219   opcode(0xC7); /* C7 /0 */
  7220   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  7221   ins_pipe(ialu_mem_imm);
  7222 %}
  7224 // Store Double
  7225 instruct storeD(memory mem, regD src)
  7226 %{
  7227   match(Set mem (StoreD mem src));
  7229   ins_cost(95); // XXX
  7230   format %{ "movsd   $mem, $src\t# double" %}
  7231   opcode(0xF2, 0x0F, 0x11);
  7232   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  7233   ins_pipe(pipe_slow); // XXX
  7234 %}
  7236 // Store immediate double 0.0 (it is faster than store from XMM register)
  7237 instruct storeD0_imm(memory mem, immD0 src)
  7238 %{
  7239   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
  7240   match(Set mem (StoreD mem src));
  7242   ins_cost(50);
  7243   format %{ "movq    $mem, $src\t# double 0." %}
  7244   opcode(0xC7); /* C7 /0 */
  7245   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  7246   ins_pipe(ialu_mem_imm);
  7247 %}
  7249 instruct storeD0(memory mem, immD0 zero)
  7250 %{
  7251   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
  7252   match(Set mem (StoreD mem zero));
  7254   ins_cost(25); // XXX
  7255   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
  7256   ins_encode %{
  7257     __ movq($mem$$Address, r12);
  7258   %}
  7259   ins_pipe(ialu_mem_reg);
  7260 %}
  7262 instruct storeSSI(stackSlotI dst, rRegI src)
  7263 %{
  7264   match(Set dst src);
  7266   ins_cost(100);
  7267   format %{ "movl    $dst, $src\t# int stk" %}
  7268   opcode(0x89);
  7269   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  7270   ins_pipe( ialu_mem_reg );
  7271 %}
  7273 instruct storeSSL(stackSlotL dst, rRegL src)
  7274 %{
  7275   match(Set dst src);
  7277   ins_cost(100);
  7278   format %{ "movq    $dst, $src\t# long stk" %}
  7279   opcode(0x89);
  7280   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  7281   ins_pipe(ialu_mem_reg);
  7282 %}
  7284 instruct storeSSP(stackSlotP dst, rRegP src)
  7285 %{
  7286   match(Set dst src);
  7288   ins_cost(100);
  7289   format %{ "movq    $dst, $src\t# ptr stk" %}
  7290   opcode(0x89);
  7291   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  7292   ins_pipe(ialu_mem_reg);
  7293 %}
  7295 instruct storeSSF(stackSlotF dst, regF src)
  7296 %{
  7297   match(Set dst src);
  7299   ins_cost(95); // XXX
  7300   format %{ "movss   $dst, $src\t# float stk" %}
  7301   opcode(0xF3, 0x0F, 0x11);
  7302   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  7303   ins_pipe(pipe_slow); // XXX
  7304 %}
  7306 instruct storeSSD(stackSlotD dst, regD src)
  7307 %{
  7308   match(Set dst src);
  7310   ins_cost(95); // XXX
  7311   format %{ "movsd   $dst, $src\t# double stk" %}
  7312   opcode(0xF2, 0x0F, 0x11);
  7313   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  7314   ins_pipe(pipe_slow); // XXX
  7315 %}
  7317 //----------BSWAP Instructions-------------------------------------------------
  7318 instruct bytes_reverse_int(rRegI dst) %{
  7319   match(Set dst (ReverseBytesI dst));
  7321   format %{ "bswapl  $dst" %}
  7322   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
  7323   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
  7324   ins_pipe( ialu_reg );
  7325 %}
  7327 instruct bytes_reverse_long(rRegL dst) %{
  7328   match(Set dst (ReverseBytesL dst));
  7330   format %{ "bswapq  $dst" %}
  7332   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
  7333   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
  7334   ins_pipe( ialu_reg);
  7335 %}
  7337 instruct loadI_reversed(rRegI dst, memory src) %{
  7338   match(Set dst (ReverseBytesI (LoadI src)));
  7340   format %{ "bswap_movl $dst, $src" %}
  7341   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  7342   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src), REX_reg(dst), OpcS, opc3_reg(dst));
  7343   ins_pipe( ialu_reg_mem );
  7344 %}
  7346 instruct loadL_reversed(rRegL dst, memory src) %{
  7347   match(Set dst (ReverseBytesL (LoadL src)));
  7349   format %{ "bswap_movq $dst, $src" %}
  7350   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  7351   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src), REX_reg_wide(dst), OpcS, opc3_reg(dst));
  7352   ins_pipe( ialu_reg_mem );
  7353 %}
  7355 instruct storeI_reversed(memory dst, rRegI src) %{
  7356   match(Set dst (StoreI dst (ReverseBytesI  src)));
  7358   format %{ "movl_bswap $dst, $src" %}
  7359   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  7360   ins_encode( REX_reg(src), OpcP, opc2_reg(src), REX_reg_mem(src, dst), OpcT, reg_mem(src, dst) );
  7361   ins_pipe( ialu_mem_reg );
  7362 %}
  7364 instruct storeL_reversed(memory dst, rRegL src) %{
  7365   match(Set dst (StoreL dst (ReverseBytesL  src)));
  7367   format %{ "movq_bswap $dst, $src" %}
  7368   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  7369   ins_encode( REX_reg_wide(src), OpcP, opc2_reg(src), REX_reg_mem_wide(src, dst), OpcT, reg_mem(src, dst) );
  7370   ins_pipe( ialu_mem_reg );
  7371 %}
  7374 //---------- Zeros Count Instructions ------------------------------------------
  7376 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
  7377   predicate(UseCountLeadingZerosInstruction);
  7378   match(Set dst (CountLeadingZerosI src));
  7379   effect(KILL cr);
  7381   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
  7382   ins_encode %{
  7383     __ lzcntl($dst$$Register, $src$$Register);
  7384   %}
  7385   ins_pipe(ialu_reg);
  7386 %}
  7388 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
  7389   predicate(!UseCountLeadingZerosInstruction);
  7390   match(Set dst (CountLeadingZerosI src));
  7391   effect(KILL cr);
  7393   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
  7394             "jnz     skip\n\t"
  7395             "movl    $dst, -1\n"
  7396       "skip:\n\t"
  7397             "negl    $dst\n\t"
  7398             "addl    $dst, 31" %}
  7399   ins_encode %{
  7400     Register Rdst = $dst$$Register;
  7401     Register Rsrc = $src$$Register;
  7402     Label skip;
  7403     __ bsrl(Rdst, Rsrc);
  7404     __ jccb(Assembler::notZero, skip);
  7405     __ movl(Rdst, -1);
  7406     __ bind(skip);
  7407     __ negl(Rdst);
  7408     __ addl(Rdst, BitsPerInt - 1);
  7409   %}
  7410   ins_pipe(ialu_reg);
  7411 %}
  7413 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
  7414   predicate(UseCountLeadingZerosInstruction);
  7415   match(Set dst (CountLeadingZerosL src));
  7416   effect(KILL cr);
  7418   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
  7419   ins_encode %{
  7420     __ lzcntq($dst$$Register, $src$$Register);
  7421   %}
  7422   ins_pipe(ialu_reg);
  7423 %}
  7425 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
  7426   predicate(!UseCountLeadingZerosInstruction);
  7427   match(Set dst (CountLeadingZerosL src));
  7428   effect(KILL cr);
  7430   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
  7431             "jnz     skip\n\t"
  7432             "movl    $dst, -1\n"
  7433       "skip:\n\t"
  7434             "negl    $dst\n\t"
  7435             "addl    $dst, 63" %}
  7436   ins_encode %{
  7437     Register Rdst = $dst$$Register;
  7438     Register Rsrc = $src$$Register;
  7439     Label skip;
  7440     __ bsrq(Rdst, Rsrc);
  7441     __ jccb(Assembler::notZero, skip);
  7442     __ movl(Rdst, -1);
  7443     __ bind(skip);
  7444     __ negl(Rdst);
  7445     __ addl(Rdst, BitsPerLong - 1);
  7446   %}
  7447   ins_pipe(ialu_reg);
  7448 %}
  7450 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
  7451   match(Set dst (CountTrailingZerosI src));
  7452   effect(KILL cr);
  7454   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
  7455             "jnz     done\n\t"
  7456             "movl    $dst, 32\n"
  7457       "done:" %}
  7458   ins_encode %{
  7459     Register Rdst = $dst$$Register;
  7460     Label done;
  7461     __ bsfl(Rdst, $src$$Register);
  7462     __ jccb(Assembler::notZero, done);
  7463     __ movl(Rdst, BitsPerInt);
  7464     __ bind(done);
  7465   %}
  7466   ins_pipe(ialu_reg);
  7467 %}
  7469 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
  7470   match(Set dst (CountTrailingZerosL src));
  7471   effect(KILL cr);
  7473   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
  7474             "jnz     done\n\t"
  7475             "movl    $dst, 64\n"
  7476       "done:" %}
  7477   ins_encode %{
  7478     Register Rdst = $dst$$Register;
  7479     Label done;
  7480     __ bsfq(Rdst, $src$$Register);
  7481     __ jccb(Assembler::notZero, done);
  7482     __ movl(Rdst, BitsPerLong);
  7483     __ bind(done);
  7484   %}
  7485   ins_pipe(ialu_reg);
  7486 %}
  7489 //---------- Population Count Instructions -------------------------------------
  7491 instruct popCountI(rRegI dst, rRegI src) %{
  7492   predicate(UsePopCountInstruction);
  7493   match(Set dst (PopCountI src));
  7495   format %{ "popcnt  $dst, $src" %}
  7496   ins_encode %{
  7497     __ popcntl($dst$$Register, $src$$Register);
  7498   %}
  7499   ins_pipe(ialu_reg);
  7500 %}
  7502 instruct popCountI_mem(rRegI dst, memory mem) %{
  7503   predicate(UsePopCountInstruction);
  7504   match(Set dst (PopCountI (LoadI mem)));
  7506   format %{ "popcnt  $dst, $mem" %}
  7507   ins_encode %{
  7508     __ popcntl($dst$$Register, $mem$$Address);
  7509   %}
  7510   ins_pipe(ialu_reg);
  7511 %}
  7513 // Note: Long.bitCount(long) returns an int.
  7514 instruct popCountL(rRegI dst, rRegL src) %{
  7515   predicate(UsePopCountInstruction);
  7516   match(Set dst (PopCountL src));
  7518   format %{ "popcnt  $dst, $src" %}
  7519   ins_encode %{
  7520     __ popcntq($dst$$Register, $src$$Register);
  7521   %}
  7522   ins_pipe(ialu_reg);
  7523 %}
  7525 // Note: Long.bitCount(long) returns an int.
  7526 instruct popCountL_mem(rRegI dst, memory mem) %{
  7527   predicate(UsePopCountInstruction);
  7528   match(Set dst (PopCountL (LoadL mem)));
  7530   format %{ "popcnt  $dst, $mem" %}
  7531   ins_encode %{
  7532     __ popcntq($dst$$Register, $mem$$Address);
  7533   %}
  7534   ins_pipe(ialu_reg);
  7535 %}
  7538 //----------MemBar Instructions-----------------------------------------------
  7539 // Memory barrier flavors
  7541 instruct membar_acquire()
  7542 %{
  7543   match(MemBarAcquire);
  7544   ins_cost(0);
  7546   size(0);
  7547   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7548   ins_encode();
  7549   ins_pipe(empty);
  7550 %}
  7552 instruct membar_acquire_lock()
  7553 %{
  7554   match(MemBarAcquire);
  7555   predicate(Matcher::prior_fast_lock(n));
  7556   ins_cost(0);
  7558   size(0);
  7559   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7560   ins_encode();
  7561   ins_pipe(empty);
  7562 %}
  7564 instruct membar_release()
  7565 %{
  7566   match(MemBarRelease);
  7567   ins_cost(0);
  7569   size(0);
  7570   format %{ "MEMBAR-release ! (empty encoding)" %}
  7571   ins_encode();
  7572   ins_pipe(empty);
  7573 %}
  7575 instruct membar_release_lock()
  7576 %{
  7577   match(MemBarRelease);
  7578   predicate(Matcher::post_fast_unlock(n));
  7579   ins_cost(0);
  7581   size(0);
  7582   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7583   ins_encode();
  7584   ins_pipe(empty);
  7585 %}
  7587 instruct membar_volatile(rFlagsReg cr) %{
  7588   match(MemBarVolatile);
  7589   effect(KILL cr);
  7590   ins_cost(400);
  7592   format %{ 
  7593     $$template
  7594     if (os::is_MP()) {
  7595       $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
  7596     } else {
  7597       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7599   %}
  7600   ins_encode %{
  7601     __ membar(Assembler::StoreLoad);
  7602   %}
  7603   ins_pipe(pipe_slow);
  7604 %}
  7606 instruct unnecessary_membar_volatile()
  7607 %{
  7608   match(MemBarVolatile);
  7609   predicate(Matcher::post_store_load_barrier(n));
  7610   ins_cost(0);
  7612   size(0);
  7613   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7614   ins_encode();
  7615   ins_pipe(empty);
  7616 %}
  7618 //----------Move Instructions--------------------------------------------------
  7620 instruct castX2P(rRegP dst, rRegL src)
  7621 %{
  7622   match(Set dst (CastX2P src));
  7624   format %{ "movq    $dst, $src\t# long->ptr" %}
  7625   ins_encode(enc_copy_wide(dst, src));
  7626   ins_pipe(ialu_reg_reg); // XXX
  7627 %}
  7629 instruct castP2X(rRegL dst, rRegP src)
  7630 %{
  7631   match(Set dst (CastP2X src));
  7633   format %{ "movq    $dst, $src\t# ptr -> long" %}
  7634   ins_encode(enc_copy_wide(dst, src));
  7635   ins_pipe(ialu_reg_reg); // XXX
  7636 %}
  7639 // Convert oop pointer into compressed form
  7640 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
  7641   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  7642   match(Set dst (EncodeP src));
  7643   effect(KILL cr);
  7644   format %{ "encode_heap_oop $dst,$src" %}
  7645   ins_encode %{
  7646     Register s = $src$$Register;
  7647     Register d = $dst$$Register;
  7648     if (s != d) {
  7649       __ movq(d, s);
  7651     __ encode_heap_oop(d);
  7652   %}
  7653   ins_pipe(ialu_reg_long);
  7654 %}
  7656 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
  7657   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  7658   match(Set dst (EncodeP src));
  7659   effect(KILL cr);
  7660   format %{ "encode_heap_oop_not_null $dst,$src" %}
  7661   ins_encode %{
  7662     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
  7663   %}
  7664   ins_pipe(ialu_reg_long);
  7665 %}
  7667 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
  7668   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  7669             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  7670   match(Set dst (DecodeN src));
  7671   effect(KILL cr);
  7672   format %{ "decode_heap_oop $dst,$src" %}
  7673   ins_encode %{
  7674     Register s = $src$$Register;
  7675     Register d = $dst$$Register;
  7676     if (s != d) {
  7677       __ movq(d, s);
  7679     __ decode_heap_oop(d);
  7680   %}
  7681   ins_pipe(ialu_reg_long);
  7682 %}
  7684 instruct decodeHeapOop_not_null(rRegP dst, rRegN src) %{
  7685   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  7686             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  7687   match(Set dst (DecodeN src));
  7688   format %{ "decode_heap_oop_not_null $dst,$src" %}
  7689   ins_encode %{
  7690     Register s = $src$$Register;
  7691     Register d = $dst$$Register;
  7692     if (s != d) {
  7693       __ decode_heap_oop_not_null(d, s);
  7694     } else {
  7695       __ decode_heap_oop_not_null(d);
  7697   %}
  7698   ins_pipe(ialu_reg_long);
  7699 %}
  7702 //----------Conditional Move---------------------------------------------------
  7703 // Jump
  7704 // dummy instruction for generating temp registers
  7705 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  7706   match(Jump (LShiftL switch_val shift));
  7707   ins_cost(350);
  7708   predicate(false);
  7709   effect(TEMP dest);
  7711   format %{ "leaq    $dest, table_base\n\t"
  7712             "jmp     [$dest + $switch_val << $shift]\n\t" %}
  7713   ins_encode(jump_enc_offset(switch_val, shift, dest));
  7714   ins_pipe(pipe_jmp);
  7715   ins_pc_relative(1);
  7716 %}
  7718 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  7719   match(Jump (AddL (LShiftL switch_val shift) offset));
  7720   ins_cost(350);
  7721   effect(TEMP dest);
  7723   format %{ "leaq    $dest, table_base\n\t"
  7724             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
  7725   ins_encode(jump_enc_addr(switch_val, shift, offset, dest));
  7726   ins_pipe(pipe_jmp);
  7727   ins_pc_relative(1);
  7728 %}
  7730 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
  7731   match(Jump switch_val);
  7732   ins_cost(350);
  7733   effect(TEMP dest);
  7735   format %{ "leaq    $dest, table_base\n\t"
  7736             "jmp     [$dest + $switch_val]\n\t" %}
  7737   ins_encode(jump_enc(switch_val, dest));
  7738   ins_pipe(pipe_jmp);
  7739   ins_pc_relative(1);
  7740 %}
  7742 // Conditional move
  7743 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
  7744 %{
  7745   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7747   ins_cost(200); // XXX
  7748   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7749   opcode(0x0F, 0x40);
  7750   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7751   ins_pipe(pipe_cmov_reg);
  7752 %}
  7754 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
  7755   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7757   ins_cost(200); // XXX
  7758   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7759   opcode(0x0F, 0x40);
  7760   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7761   ins_pipe(pipe_cmov_reg);
  7762 %}
  7764 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
  7765   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7766   ins_cost(200);
  7767   expand %{
  7768     cmovI_regU(cop, cr, dst, src);
  7769   %}
  7770 %}
  7772 // Conditional move
  7773 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
  7774   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7776   ins_cost(250); // XXX
  7777   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7778   opcode(0x0F, 0x40);
  7779   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7780   ins_pipe(pipe_cmov_mem);
  7781 %}
  7783 // Conditional move
  7784 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
  7785 %{
  7786   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7788   ins_cost(250); // XXX
  7789   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7790   opcode(0x0F, 0x40);
  7791   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7792   ins_pipe(pipe_cmov_mem);
  7793 %}
  7795 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
  7796   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7797   ins_cost(250);
  7798   expand %{
  7799     cmovI_memU(cop, cr, dst, src);
  7800   %}
  7801 %}
  7803 // Conditional move
  7804 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
  7805 %{
  7806   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7808   ins_cost(200); // XXX
  7809   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
  7810   opcode(0x0F, 0x40);
  7811   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7812   ins_pipe(pipe_cmov_reg);
  7813 %}
  7815 // Conditional move
  7816 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
  7817 %{
  7818   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7820   ins_cost(200); // XXX
  7821   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
  7822   opcode(0x0F, 0x40);
  7823   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7824   ins_pipe(pipe_cmov_reg);
  7825 %}
  7827 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
  7828   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7829   ins_cost(200);
  7830   expand %{
  7831     cmovN_regU(cop, cr, dst, src);
  7832   %}
  7833 %}
  7835 // Conditional move
  7836 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
  7837 %{
  7838   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7840   ins_cost(200); // XXX
  7841   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
  7842   opcode(0x0F, 0x40);
  7843   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7844   ins_pipe(pipe_cmov_reg);  // XXX
  7845 %}
  7847 // Conditional move
  7848 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
  7849 %{
  7850   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7852   ins_cost(200); // XXX
  7853   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
  7854   opcode(0x0F, 0x40);
  7855   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7856   ins_pipe(pipe_cmov_reg); // XXX
  7857 %}
  7859 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
  7860   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7861   ins_cost(200);
  7862   expand %{
  7863     cmovP_regU(cop, cr, dst, src);
  7864   %}
  7865 %}
  7867 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7868 // correctly meets the two pointer arguments; one is an incoming
  7869 // register but the other is a memory operand.  ALSO appears to
  7870 // be buggy with implicit null checks.
  7871 //
  7872 //// Conditional move
  7873 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
  7874 //%{
  7875 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7876 //  ins_cost(250);
  7877 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7878 //  opcode(0x0F,0x40);
  7879 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7880 //  ins_pipe( pipe_cmov_mem );
  7881 //%}
  7882 //
  7883 //// Conditional move
  7884 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
  7885 //%{
  7886 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7887 //  ins_cost(250);
  7888 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7889 //  opcode(0x0F,0x40);
  7890 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7891 //  ins_pipe( pipe_cmov_mem );
  7892 //%}
  7894 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
  7895 %{
  7896   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7898   ins_cost(200); // XXX
  7899   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7900   opcode(0x0F, 0x40);
  7901   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7902   ins_pipe(pipe_cmov_reg);  // XXX
  7903 %}
  7905 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
  7906 %{
  7907   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7909   ins_cost(200); // XXX
  7910   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7911   opcode(0x0F, 0x40);
  7912   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7913   ins_pipe(pipe_cmov_mem);  // XXX
  7914 %}
  7916 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
  7917 %{
  7918   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7920   ins_cost(200); // XXX
  7921   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7922   opcode(0x0F, 0x40);
  7923   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7924   ins_pipe(pipe_cmov_reg); // XXX
  7925 %}
  7927 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
  7928   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7929   ins_cost(200);
  7930   expand %{
  7931     cmovL_regU(cop, cr, dst, src);
  7932   %}
  7933 %}
  7935 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
  7936 %{
  7937   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7939   ins_cost(200); // XXX
  7940   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7941   opcode(0x0F, 0x40);
  7942   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7943   ins_pipe(pipe_cmov_mem); // XXX
  7944 %}
  7946 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
  7947   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7948   ins_cost(200);
  7949   expand %{
  7950     cmovL_memU(cop, cr, dst, src);
  7951   %}
  7952 %}
  7954 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
  7955 %{
  7956   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7958   ins_cost(200); // XXX
  7959   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7960             "movss     $dst, $src\n"
  7961     "skip:" %}
  7962   ins_encode(enc_cmovf_branch(cop, dst, src));
  7963   ins_pipe(pipe_slow);
  7964 %}
  7966 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
  7967 // %{
  7968 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
  7970 //   ins_cost(200); // XXX
  7971 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7972 //             "movss     $dst, $src\n"
  7973 //     "skip:" %}
  7974 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
  7975 //   ins_pipe(pipe_slow);
  7976 // %}
  7978 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
  7979 %{
  7980   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7982   ins_cost(200); // XXX
  7983   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
  7984             "movss     $dst, $src\n"
  7985     "skip:" %}
  7986   ins_encode(enc_cmovf_branch(cop, dst, src));
  7987   ins_pipe(pipe_slow);
  7988 %}
  7990 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
  7991   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7992   ins_cost(200);
  7993   expand %{
  7994     cmovF_regU(cop, cr, dst, src);
  7995   %}
  7996 %}
  7998 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
  7999 %{
  8000   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8002   ins_cost(200); // XXX
  8003   format %{ "jn$cop    skip\t# signed cmove double\n\t"
  8004             "movsd     $dst, $src\n"
  8005     "skip:" %}
  8006   ins_encode(enc_cmovd_branch(cop, dst, src));
  8007   ins_pipe(pipe_slow);
  8008 %}
  8010 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
  8011 %{
  8012   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8014   ins_cost(200); // XXX
  8015   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
  8016             "movsd     $dst, $src\n"
  8017     "skip:" %}
  8018   ins_encode(enc_cmovd_branch(cop, dst, src));
  8019   ins_pipe(pipe_slow);
  8020 %}
  8022 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
  8023   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8024   ins_cost(200);
  8025   expand %{
  8026     cmovD_regU(cop, cr, dst, src);
  8027   %}
  8028 %}
  8030 //----------Arithmetic Instructions--------------------------------------------
  8031 //----------Addition Instructions----------------------------------------------
  8033 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8034 %{
  8035   match(Set dst (AddI dst src));
  8036   effect(KILL cr);
  8038   format %{ "addl    $dst, $src\t# int" %}
  8039   opcode(0x03);
  8040   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  8041   ins_pipe(ialu_reg_reg);
  8042 %}
  8044 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  8045 %{
  8046   match(Set dst (AddI dst src));
  8047   effect(KILL cr);
  8049   format %{ "addl    $dst, $src\t# int" %}
  8050   opcode(0x81, 0x00); /* /0 id */
  8051   ins_encode(OpcSErm(dst, src), Con8or32(src));
  8052   ins_pipe( ialu_reg );
  8053 %}
  8055 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  8056 %{
  8057   match(Set dst (AddI dst (LoadI src)));
  8058   effect(KILL cr);
  8060   ins_cost(125); // XXX
  8061   format %{ "addl    $dst, $src\t# int" %}
  8062   opcode(0x03);
  8063   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  8064   ins_pipe(ialu_reg_mem);
  8065 %}
  8067 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  8068 %{
  8069   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8070   effect(KILL cr);
  8072   ins_cost(150); // XXX
  8073   format %{ "addl    $dst, $src\t# int" %}
  8074   opcode(0x01); /* Opcode 01 /r */
  8075   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  8076   ins_pipe(ialu_mem_reg);
  8077 %}
  8079 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
  8080 %{
  8081   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8082   effect(KILL cr);
  8084   ins_cost(125); // XXX
  8085   format %{ "addl    $dst, $src\t# int" %}
  8086   opcode(0x81); /* Opcode 81 /0 id */
  8087   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  8088   ins_pipe(ialu_mem_imm);
  8089 %}
  8091 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
  8092 %{
  8093   predicate(UseIncDec);
  8094   match(Set dst (AddI dst src));
  8095   effect(KILL cr);
  8097   format %{ "incl    $dst\t# int" %}
  8098   opcode(0xFF, 0x00); // FF /0
  8099   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8100   ins_pipe(ialu_reg);
  8101 %}
  8103 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
  8104 %{
  8105   predicate(UseIncDec);
  8106   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8107   effect(KILL cr);
  8109   ins_cost(125); // XXX
  8110   format %{ "incl    $dst\t# int" %}
  8111   opcode(0xFF); /* Opcode FF /0 */
  8112   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
  8113   ins_pipe(ialu_mem_imm);
  8114 %}
  8116 // XXX why does that use AddI
  8117 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
  8118 %{
  8119   predicate(UseIncDec);
  8120   match(Set dst (AddI dst src));
  8121   effect(KILL cr);
  8123   format %{ "decl    $dst\t# int" %}
  8124   opcode(0xFF, 0x01); // FF /1
  8125   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8126   ins_pipe(ialu_reg);
  8127 %}
  8129 // XXX why does that use AddI
  8130 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
  8131 %{
  8132   predicate(UseIncDec);
  8133   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8134   effect(KILL cr);
  8136   ins_cost(125); // XXX
  8137   format %{ "decl    $dst\t# int" %}
  8138   opcode(0xFF); /* Opcode FF /1 */
  8139   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
  8140   ins_pipe(ialu_mem_imm);
  8141 %}
  8143 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
  8144 %{
  8145   match(Set dst (AddI src0 src1));
  8147   ins_cost(110);
  8148   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
  8149   opcode(0x8D); /* 0x8D /r */
  8150   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  8151   ins_pipe(ialu_reg_reg);
  8152 %}
  8154 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8155 %{
  8156   match(Set dst (AddL dst src));
  8157   effect(KILL cr);
  8159   format %{ "addq    $dst, $src\t# long" %}
  8160   opcode(0x03);
  8161   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8162   ins_pipe(ialu_reg_reg);
  8163 %}
  8165 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  8166 %{
  8167   match(Set dst (AddL dst src));
  8168   effect(KILL cr);
  8170   format %{ "addq    $dst, $src\t# long" %}
  8171   opcode(0x81, 0x00); /* /0 id */
  8172   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  8173   ins_pipe( ialu_reg );
  8174 %}
  8176 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  8177 %{
  8178   match(Set dst (AddL dst (LoadL src)));
  8179   effect(KILL cr);
  8181   ins_cost(125); // XXX
  8182   format %{ "addq    $dst, $src\t# long" %}
  8183   opcode(0x03);
  8184   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  8185   ins_pipe(ialu_reg_mem);
  8186 %}
  8188 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  8189 %{
  8190   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8191   effect(KILL cr);
  8193   ins_cost(150); // XXX
  8194   format %{ "addq    $dst, $src\t# long" %}
  8195   opcode(0x01); /* Opcode 01 /r */
  8196   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  8197   ins_pipe(ialu_mem_reg);
  8198 %}
  8200 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  8201 %{
  8202   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8203   effect(KILL cr);
  8205   ins_cost(125); // XXX
  8206   format %{ "addq    $dst, $src\t# long" %}
  8207   opcode(0x81); /* Opcode 81 /0 id */
  8208   ins_encode(REX_mem_wide(dst),
  8209              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  8210   ins_pipe(ialu_mem_imm);
  8211 %}
  8213 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
  8214 %{
  8215   predicate(UseIncDec);
  8216   match(Set dst (AddL dst src));
  8217   effect(KILL cr);
  8219   format %{ "incq    $dst\t# long" %}
  8220   opcode(0xFF, 0x00); // FF /0
  8221   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8222   ins_pipe(ialu_reg);
  8223 %}
  8225 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
  8226 %{
  8227   predicate(UseIncDec);
  8228   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8229   effect(KILL cr);
  8231   ins_cost(125); // XXX
  8232   format %{ "incq    $dst\t# long" %}
  8233   opcode(0xFF); /* Opcode FF /0 */
  8234   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
  8235   ins_pipe(ialu_mem_imm);
  8236 %}
  8238 // XXX why does that use AddL
  8239 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
  8240 %{
  8241   predicate(UseIncDec);
  8242   match(Set dst (AddL dst src));
  8243   effect(KILL cr);
  8245   format %{ "decq    $dst\t# long" %}
  8246   opcode(0xFF, 0x01); // FF /1
  8247   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8248   ins_pipe(ialu_reg);
  8249 %}
  8251 // XXX why does that use AddL
  8252 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
  8253 %{
  8254   predicate(UseIncDec);
  8255   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  8256   effect(KILL cr);
  8258   ins_cost(125); // XXX
  8259   format %{ "decq    $dst\t# long" %}
  8260   opcode(0xFF); /* Opcode FF /1 */
  8261   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
  8262   ins_pipe(ialu_mem_imm);
  8263 %}
  8265 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
  8266 %{
  8267   match(Set dst (AddL src0 src1));
  8269   ins_cost(110);
  8270   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
  8271   opcode(0x8D); /* 0x8D /r */
  8272   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  8273   ins_pipe(ialu_reg_reg);
  8274 %}
  8276 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
  8277 %{
  8278   match(Set dst (AddP dst src));
  8279   effect(KILL cr);
  8281   format %{ "addq    $dst, $src\t# ptr" %}
  8282   opcode(0x03);
  8283   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8284   ins_pipe(ialu_reg_reg);
  8285 %}
  8287 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
  8288 %{
  8289   match(Set dst (AddP dst src));
  8290   effect(KILL cr);
  8292   format %{ "addq    $dst, $src\t# ptr" %}
  8293   opcode(0x81, 0x00); /* /0 id */
  8294   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  8295   ins_pipe( ialu_reg );
  8296 %}
  8298 // XXX addP mem ops ????
  8300 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
  8301 %{
  8302   match(Set dst (AddP src0 src1));
  8304   ins_cost(110);
  8305   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
  8306   opcode(0x8D); /* 0x8D /r */
  8307   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
  8308   ins_pipe(ialu_reg_reg);
  8309 %}
  8311 instruct checkCastPP(rRegP dst)
  8312 %{
  8313   match(Set dst (CheckCastPP dst));
  8315   size(0);
  8316   format %{ "# checkcastPP of $dst" %}
  8317   ins_encode(/* empty encoding */);
  8318   ins_pipe(empty);
  8319 %}
  8321 instruct castPP(rRegP dst)
  8322 %{
  8323   match(Set dst (CastPP dst));
  8325   size(0);
  8326   format %{ "# castPP of $dst" %}
  8327   ins_encode(/* empty encoding */);
  8328   ins_pipe(empty);
  8329 %}
  8331 instruct castII(rRegI dst)
  8332 %{
  8333   match(Set dst (CastII dst));
  8335   size(0);
  8336   format %{ "# castII of $dst" %}
  8337   ins_encode(/* empty encoding */);
  8338   ins_cost(0);
  8339   ins_pipe(empty);
  8340 %}
  8342 // LoadP-locked same as a regular LoadP when used with compare-swap
  8343 instruct loadPLocked(rRegP dst, memory mem)
  8344 %{
  8345   match(Set dst (LoadPLocked mem));
  8347   ins_cost(125); // XXX
  8348   format %{ "movq    $dst, $mem\t# ptr locked" %}
  8349   opcode(0x8B);
  8350   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  8351   ins_pipe(ialu_reg_mem); // XXX
  8352 %}
  8354 // LoadL-locked - same as a regular LoadL when used with compare-swap
  8355 instruct loadLLocked(rRegL dst, memory mem)
  8356 %{
  8357   match(Set dst (LoadLLocked mem));
  8359   ins_cost(125); // XXX
  8360   format %{ "movq    $dst, $mem\t# long locked" %}
  8361   opcode(0x8B);
  8362   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  8363   ins_pipe(ialu_reg_mem); // XXX
  8364 %}
  8366 // Conditional-store of the updated heap-top.
  8367 // Used during allocation of the shared heap.
  8368 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8370 instruct storePConditional(memory heap_top_ptr,
  8371                            rax_RegP oldval, rRegP newval,
  8372                            rFlagsReg cr)
  8373 %{
  8374   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8376   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
  8377             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
  8378   opcode(0x0F, 0xB1);
  8379   ins_encode(lock_prefix,
  8380              REX_reg_mem_wide(newval, heap_top_ptr),
  8381              OpcP, OpcS,
  8382              reg_mem(newval, heap_top_ptr));
  8383   ins_pipe(pipe_cmpxchg);
  8384 %}
  8386 // Conditional-store of an int value.
  8387 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
  8388 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
  8389 %{
  8390   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8391   effect(KILL oldval);
  8393   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
  8394   opcode(0x0F, 0xB1);
  8395   ins_encode(lock_prefix,
  8396              REX_reg_mem(newval, mem),
  8397              OpcP, OpcS,
  8398              reg_mem(newval, mem));
  8399   ins_pipe(pipe_cmpxchg);
  8400 %}
  8402 // Conditional-store of a long value.
  8403 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
  8404 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
  8405 %{
  8406   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8407   effect(KILL oldval);
  8409   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
  8410   opcode(0x0F, 0xB1);
  8411   ins_encode(lock_prefix,
  8412              REX_reg_mem_wide(newval, mem),
  8413              OpcP, OpcS,
  8414              reg_mem(newval, mem));
  8415   ins_pipe(pipe_cmpxchg);
  8416 %}
  8419 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8420 instruct compareAndSwapP(rRegI res,
  8421                          memory mem_ptr,
  8422                          rax_RegP oldval, rRegP newval,
  8423                          rFlagsReg cr)
  8424 %{
  8425   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8426   effect(KILL cr, KILL oldval);
  8428   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  8429             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8430             "sete    $res\n\t"
  8431             "movzbl  $res, $res" %}
  8432   opcode(0x0F, 0xB1);
  8433   ins_encode(lock_prefix,
  8434              REX_reg_mem_wide(newval, mem_ptr),
  8435              OpcP, OpcS,
  8436              reg_mem(newval, mem_ptr),
  8437              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8438              REX_reg_breg(res, res), // movzbl
  8439              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8440   ins_pipe( pipe_cmpxchg );
  8441 %}
  8443 instruct compareAndSwapL(rRegI res,
  8444                          memory mem_ptr,
  8445                          rax_RegL oldval, rRegL newval,
  8446                          rFlagsReg cr)
  8447 %{
  8448   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8449   effect(KILL cr, KILL oldval);
  8451   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  8452             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8453             "sete    $res\n\t"
  8454             "movzbl  $res, $res" %}
  8455   opcode(0x0F, 0xB1);
  8456   ins_encode(lock_prefix,
  8457              REX_reg_mem_wide(newval, mem_ptr),
  8458              OpcP, OpcS,
  8459              reg_mem(newval, mem_ptr),
  8460              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8461              REX_reg_breg(res, res), // movzbl
  8462              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8463   ins_pipe( pipe_cmpxchg );
  8464 %}
  8466 instruct compareAndSwapI(rRegI res,
  8467                          memory mem_ptr,
  8468                          rax_RegI oldval, rRegI newval,
  8469                          rFlagsReg cr)
  8470 %{
  8471   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8472   effect(KILL cr, KILL oldval);
  8474   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  8475             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8476             "sete    $res\n\t"
  8477             "movzbl  $res, $res" %}
  8478   opcode(0x0F, 0xB1);
  8479   ins_encode(lock_prefix,
  8480              REX_reg_mem(newval, mem_ptr),
  8481              OpcP, OpcS,
  8482              reg_mem(newval, mem_ptr),
  8483              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8484              REX_reg_breg(res, res), // movzbl
  8485              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8486   ins_pipe( pipe_cmpxchg );
  8487 %}
  8490 instruct compareAndSwapN(rRegI res,
  8491                           memory mem_ptr,
  8492                           rax_RegN oldval, rRegN newval,
  8493                           rFlagsReg cr) %{
  8494   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  8495   effect(KILL cr, KILL oldval);
  8497   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  8498             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8499             "sete    $res\n\t"
  8500             "movzbl  $res, $res" %}
  8501   opcode(0x0F, 0xB1);
  8502   ins_encode(lock_prefix,
  8503              REX_reg_mem(newval, mem_ptr),
  8504              OpcP, OpcS,
  8505              reg_mem(newval, mem_ptr),
  8506              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8507              REX_reg_breg(res, res), // movzbl
  8508              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8509   ins_pipe( pipe_cmpxchg );
  8510 %}
  8512 //----------Subtraction Instructions-------------------------------------------
  8514 // Integer Subtraction Instructions
  8515 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8516 %{
  8517   match(Set dst (SubI dst src));
  8518   effect(KILL cr);
  8520   format %{ "subl    $dst, $src\t# int" %}
  8521   opcode(0x2B);
  8522   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  8523   ins_pipe(ialu_reg_reg);
  8524 %}
  8526 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  8527 %{
  8528   match(Set dst (SubI dst src));
  8529   effect(KILL cr);
  8531   format %{ "subl    $dst, $src\t# int" %}
  8532   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  8533   ins_encode(OpcSErm(dst, src), Con8or32(src));
  8534   ins_pipe(ialu_reg);
  8535 %}
  8537 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  8538 %{
  8539   match(Set dst (SubI dst (LoadI src)));
  8540   effect(KILL cr);
  8542   ins_cost(125);
  8543   format %{ "subl    $dst, $src\t# int" %}
  8544   opcode(0x2B);
  8545   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  8546   ins_pipe(ialu_reg_mem);
  8547 %}
  8549 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  8550 %{
  8551   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8552   effect(KILL cr);
  8554   ins_cost(150);
  8555   format %{ "subl    $dst, $src\t# int" %}
  8556   opcode(0x29); /* Opcode 29 /r */
  8557   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  8558   ins_pipe(ialu_mem_reg);
  8559 %}
  8561 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
  8562 %{
  8563   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8564   effect(KILL cr);
  8566   ins_cost(125); // XXX
  8567   format %{ "subl    $dst, $src\t# int" %}
  8568   opcode(0x81); /* Opcode 81 /5 id */
  8569   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  8570   ins_pipe(ialu_mem_imm);
  8571 %}
  8573 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8574 %{
  8575   match(Set dst (SubL dst src));
  8576   effect(KILL cr);
  8578   format %{ "subq    $dst, $src\t# long" %}
  8579   opcode(0x2B);
  8580   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8581   ins_pipe(ialu_reg_reg);
  8582 %}
  8584 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
  8585 %{
  8586   match(Set dst (SubL dst src));
  8587   effect(KILL cr);
  8589   format %{ "subq    $dst, $src\t# long" %}
  8590   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  8591   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  8592   ins_pipe(ialu_reg);
  8593 %}
  8595 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  8596 %{
  8597   match(Set dst (SubL dst (LoadL src)));
  8598   effect(KILL cr);
  8600   ins_cost(125);
  8601   format %{ "subq    $dst, $src\t# long" %}
  8602   opcode(0x2B);
  8603   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  8604   ins_pipe(ialu_reg_mem);
  8605 %}
  8607 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  8608 %{
  8609   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  8610   effect(KILL cr);
  8612   ins_cost(150);
  8613   format %{ "subq    $dst, $src\t# long" %}
  8614   opcode(0x29); /* Opcode 29 /r */
  8615   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  8616   ins_pipe(ialu_mem_reg);
  8617 %}
  8619 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  8620 %{
  8621   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  8622   effect(KILL cr);
  8624   ins_cost(125); // XXX
  8625   format %{ "subq    $dst, $src\t# long" %}
  8626   opcode(0x81); /* Opcode 81 /5 id */
  8627   ins_encode(REX_mem_wide(dst),
  8628              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  8629   ins_pipe(ialu_mem_imm);
  8630 %}
  8632 // Subtract from a pointer
  8633 // XXX hmpf???
  8634 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
  8635 %{
  8636   match(Set dst (AddP dst (SubI zero src)));
  8637   effect(KILL cr);
  8639   format %{ "subq    $dst, $src\t# ptr - int" %}
  8640   opcode(0x2B);
  8641   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8642   ins_pipe(ialu_reg_reg);
  8643 %}
  8645 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
  8646 %{
  8647   match(Set dst (SubI zero dst));
  8648   effect(KILL cr);
  8650   format %{ "negl    $dst\t# int" %}
  8651   opcode(0xF7, 0x03);  // Opcode F7 /3
  8652   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8653   ins_pipe(ialu_reg);
  8654 %}
  8656 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
  8657 %{
  8658   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
  8659   effect(KILL cr);
  8661   format %{ "negl    $dst\t# int" %}
  8662   opcode(0xF7, 0x03);  // Opcode F7 /3
  8663   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8664   ins_pipe(ialu_reg);
  8665 %}
  8667 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
  8668 %{
  8669   match(Set dst (SubL zero dst));
  8670   effect(KILL cr);
  8672   format %{ "negq    $dst\t# long" %}
  8673   opcode(0xF7, 0x03);  // Opcode F7 /3
  8674   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8675   ins_pipe(ialu_reg);
  8676 %}
  8678 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
  8679 %{
  8680   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
  8681   effect(KILL cr);
  8683   format %{ "negq    $dst\t# long" %}
  8684   opcode(0xF7, 0x03);  // Opcode F7 /3
  8685   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8686   ins_pipe(ialu_reg);
  8687 %}
  8690 //----------Multiplication/Division Instructions-------------------------------
  8691 // Integer Multiplication Instructions
  8692 // Multiply Register
  8694 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8695 %{
  8696   match(Set dst (MulI dst src));
  8697   effect(KILL cr);
  8699   ins_cost(300);
  8700   format %{ "imull   $dst, $src\t# int" %}
  8701   opcode(0x0F, 0xAF);
  8702   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8703   ins_pipe(ialu_reg_reg_alu0);
  8704 %}
  8706 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
  8707 %{
  8708   match(Set dst (MulI src imm));
  8709   effect(KILL cr);
  8711   ins_cost(300);
  8712   format %{ "imull   $dst, $src, $imm\t# int" %}
  8713   opcode(0x69); /* 69 /r id */
  8714   ins_encode(REX_reg_reg(dst, src),
  8715              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  8716   ins_pipe(ialu_reg_reg_alu0);
  8717 %}
  8719 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
  8720 %{
  8721   match(Set dst (MulI dst (LoadI src)));
  8722   effect(KILL cr);
  8724   ins_cost(350);
  8725   format %{ "imull   $dst, $src\t# int" %}
  8726   opcode(0x0F, 0xAF);
  8727   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
  8728   ins_pipe(ialu_reg_mem_alu0);
  8729 %}
  8731 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
  8732 %{
  8733   match(Set dst (MulI (LoadI src) imm));
  8734   effect(KILL cr);
  8736   ins_cost(300);
  8737   format %{ "imull   $dst, $src, $imm\t# int" %}
  8738   opcode(0x69); /* 69 /r id */
  8739   ins_encode(REX_reg_mem(dst, src),
  8740              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  8741   ins_pipe(ialu_reg_mem_alu0);
  8742 %}
  8744 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8745 %{
  8746   match(Set dst (MulL dst src));
  8747   effect(KILL cr);
  8749   ins_cost(300);
  8750   format %{ "imulq   $dst, $src\t# long" %}
  8751   opcode(0x0F, 0xAF);
  8752   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8753   ins_pipe(ialu_reg_reg_alu0);
  8754 %}
  8756 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
  8757 %{
  8758   match(Set dst (MulL src imm));
  8759   effect(KILL cr);
  8761   ins_cost(300);
  8762   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8763   opcode(0x69); /* 69 /r id */
  8764   ins_encode(REX_reg_reg_wide(dst, src),
  8765              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  8766   ins_pipe(ialu_reg_reg_alu0);
  8767 %}
  8769 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
  8770 %{
  8771   match(Set dst (MulL dst (LoadL src)));
  8772   effect(KILL cr);
  8774   ins_cost(350);
  8775   format %{ "imulq   $dst, $src\t# long" %}
  8776   opcode(0x0F, 0xAF);
  8777   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
  8778   ins_pipe(ialu_reg_mem_alu0);
  8779 %}
  8781 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
  8782 %{
  8783   match(Set dst (MulL (LoadL src) imm));
  8784   effect(KILL cr);
  8786   ins_cost(300);
  8787   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8788   opcode(0x69); /* 69 /r id */
  8789   ins_encode(REX_reg_mem_wide(dst, src),
  8790              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  8791   ins_pipe(ialu_reg_mem_alu0);
  8792 %}
  8794 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
  8795 %{
  8796   match(Set dst (MulHiL src rax));
  8797   effect(USE_KILL rax, KILL cr);
  8799   ins_cost(300);
  8800   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
  8801   opcode(0xF7, 0x5); /* Opcode F7 /5 */
  8802   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
  8803   ins_pipe(ialu_reg_reg_alu0);
  8804 %}
  8806 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8807                    rFlagsReg cr)
  8808 %{
  8809   match(Set rax (DivI rax div));
  8810   effect(KILL rdx, KILL cr);
  8812   ins_cost(30*100+10*100); // XXX
  8813   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8814             "jne,s   normal\n\t"
  8815             "xorl    rdx, rdx\n\t"
  8816             "cmpl    $div, -1\n\t"
  8817             "je,s    done\n"
  8818     "normal: cdql\n\t"
  8819             "idivl   $div\n"
  8820     "done:"        %}
  8821   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8822   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8823   ins_pipe(ialu_reg_reg_alu0);
  8824 %}
  8826 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8827                    rFlagsReg cr)
  8828 %{
  8829   match(Set rax (DivL rax div));
  8830   effect(KILL rdx, KILL cr);
  8832   ins_cost(30*100+10*100); // XXX
  8833   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8834             "cmpq    rax, rdx\n\t"
  8835             "jne,s   normal\n\t"
  8836             "xorl    rdx, rdx\n\t"
  8837             "cmpq    $div, -1\n\t"
  8838             "je,s    done\n"
  8839     "normal: cdqq\n\t"
  8840             "idivq   $div\n"
  8841     "done:"        %}
  8842   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8843   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8844   ins_pipe(ialu_reg_reg_alu0);
  8845 %}
  8847 // Integer DIVMOD with Register, both quotient and mod results
  8848 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8849                              rFlagsReg cr)
  8850 %{
  8851   match(DivModI rax div);
  8852   effect(KILL cr);
  8854   ins_cost(30*100+10*100); // XXX
  8855   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8856             "jne,s   normal\n\t"
  8857             "xorl    rdx, rdx\n\t"
  8858             "cmpl    $div, -1\n\t"
  8859             "je,s    done\n"
  8860     "normal: cdql\n\t"
  8861             "idivl   $div\n"
  8862     "done:"        %}
  8863   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8864   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8865   ins_pipe(pipe_slow);
  8866 %}
  8868 // Long DIVMOD with Register, both quotient and mod results
  8869 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8870                              rFlagsReg cr)
  8871 %{
  8872   match(DivModL rax div);
  8873   effect(KILL cr);
  8875   ins_cost(30*100+10*100); // XXX
  8876   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8877             "cmpq    rax, rdx\n\t"
  8878             "jne,s   normal\n\t"
  8879             "xorl    rdx, rdx\n\t"
  8880             "cmpq    $div, -1\n\t"
  8881             "je,s    done\n"
  8882     "normal: cdqq\n\t"
  8883             "idivq   $div\n"
  8884     "done:"        %}
  8885   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8886   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8887   ins_pipe(pipe_slow);
  8888 %}
  8890 //----------- DivL-By-Constant-Expansions--------------------------------------
  8891 // DivI cases are handled by the compiler
  8893 // Magic constant, reciprocal of 10
  8894 instruct loadConL_0x6666666666666667(rRegL dst)
  8895 %{
  8896   effect(DEF dst);
  8898   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
  8899   ins_encode(load_immL(dst, 0x6666666666666667));
  8900   ins_pipe(ialu_reg);
  8901 %}
  8903 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
  8904 %{
  8905   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
  8907   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
  8908   opcode(0xF7, 0x5); /* Opcode F7 /5 */
  8909   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
  8910   ins_pipe(ialu_reg_reg_alu0);
  8911 %}
  8913 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
  8914 %{
  8915   effect(USE_DEF dst, KILL cr);
  8917   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
  8918   opcode(0xC1, 0x7); /* C1 /7 ib */
  8919   ins_encode(reg_opc_imm_wide(dst, 0x3F));
  8920   ins_pipe(ialu_reg);
  8921 %}
  8923 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
  8924 %{
  8925   effect(USE_DEF dst, KILL cr);
  8927   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
  8928   opcode(0xC1, 0x7); /* C1 /7 ib */
  8929   ins_encode(reg_opc_imm_wide(dst, 0x2));
  8930   ins_pipe(ialu_reg);
  8931 %}
  8933 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
  8934 %{
  8935   match(Set dst (DivL src div));
  8937   ins_cost((5+8)*100);
  8938   expand %{
  8939     rax_RegL rax;                     // Killed temp
  8940     rFlagsReg cr;                     // Killed
  8941     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
  8942     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
  8943     sarL_rReg_63(src, cr);            // sarq  src, 63
  8944     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
  8945     subL_rReg(dst, src, cr);          // subl  rdx, src
  8946   %}
  8947 %}
  8949 //-----------------------------------------------------------------------------
  8951 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
  8952                    rFlagsReg cr)
  8953 %{
  8954   match(Set rdx (ModI rax div));
  8955   effect(KILL rax, KILL cr);
  8957   ins_cost(300); // XXX
  8958   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
  8959             "jne,s   normal\n\t"
  8960             "xorl    rdx, rdx\n\t"
  8961             "cmpl    $div, -1\n\t"
  8962             "je,s    done\n"
  8963     "normal: cdql\n\t"
  8964             "idivl   $div\n"
  8965     "done:"        %}
  8966   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8967   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8968   ins_pipe(ialu_reg_reg_alu0);
  8969 %}
  8971 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
  8972                    rFlagsReg cr)
  8973 %{
  8974   match(Set rdx (ModL rax div));
  8975   effect(KILL rax, KILL cr);
  8977   ins_cost(300); // XXX
  8978   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
  8979             "cmpq    rax, rdx\n\t"
  8980             "jne,s   normal\n\t"
  8981             "xorl    rdx, rdx\n\t"
  8982             "cmpq    $div, -1\n\t"
  8983             "je,s    done\n"
  8984     "normal: cdqq\n\t"
  8985             "idivq   $div\n"
  8986     "done:"        %}
  8987   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8988   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8989   ins_pipe(ialu_reg_reg_alu0);
  8990 %}
  8992 // Integer Shift Instructions
  8993 // Shift Left by one
  8994 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8995 %{
  8996   match(Set dst (LShiftI dst shift));
  8997   effect(KILL cr);
  8999   format %{ "sall    $dst, $shift" %}
  9000   opcode(0xD1, 0x4); /* D1 /4 */
  9001   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9002   ins_pipe(ialu_reg);
  9003 %}
  9005 // Shift Left by one
  9006 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9007 %{
  9008   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  9009   effect(KILL cr);
  9011   format %{ "sall    $dst, $shift\t" %}
  9012   opcode(0xD1, 0x4); /* D1 /4 */
  9013   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9014   ins_pipe(ialu_mem_imm);
  9015 %}
  9017 // Shift Left by 8-bit immediate
  9018 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  9019 %{
  9020   match(Set dst (LShiftI dst shift));
  9021   effect(KILL cr);
  9023   format %{ "sall    $dst, $shift" %}
  9024   opcode(0xC1, 0x4); /* C1 /4 ib */
  9025   ins_encode(reg_opc_imm(dst, shift));
  9026   ins_pipe(ialu_reg);
  9027 %}
  9029 // Shift Left by 8-bit immediate
  9030 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9031 %{
  9032   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  9033   effect(KILL cr);
  9035   format %{ "sall    $dst, $shift" %}
  9036   opcode(0xC1, 0x4); /* C1 /4 ib */
  9037   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  9038   ins_pipe(ialu_mem_imm);
  9039 %}
  9041 // Shift Left by variable
  9042 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  9043 %{
  9044   match(Set dst (LShiftI dst shift));
  9045   effect(KILL cr);
  9047   format %{ "sall    $dst, $shift" %}
  9048   opcode(0xD3, 0x4); /* D3 /4 */
  9049   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9050   ins_pipe(ialu_reg_reg);
  9051 %}
  9053 // Shift Left by variable
  9054 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9055 %{
  9056   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  9057   effect(KILL cr);
  9059   format %{ "sall    $dst, $shift" %}
  9060   opcode(0xD3, 0x4); /* D3 /4 */
  9061   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9062   ins_pipe(ialu_mem_reg);
  9063 %}
  9065 // Arithmetic shift right by one
  9066 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  9067 %{
  9068   match(Set dst (RShiftI dst shift));
  9069   effect(KILL cr);
  9071   format %{ "sarl    $dst, $shift" %}
  9072   opcode(0xD1, 0x7); /* D1 /7 */
  9073   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9074   ins_pipe(ialu_reg);
  9075 %}
  9077 // Arithmetic shift right by one
  9078 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9079 %{
  9080   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9081   effect(KILL cr);
  9083   format %{ "sarl    $dst, $shift" %}
  9084   opcode(0xD1, 0x7); /* D1 /7 */
  9085   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9086   ins_pipe(ialu_mem_imm);
  9087 %}
  9089 // Arithmetic Shift Right by 8-bit immediate
  9090 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  9091 %{
  9092   match(Set dst (RShiftI dst shift));
  9093   effect(KILL cr);
  9095   format %{ "sarl    $dst, $shift" %}
  9096   opcode(0xC1, 0x7); /* C1 /7 ib */
  9097   ins_encode(reg_opc_imm(dst, shift));
  9098   ins_pipe(ialu_mem_imm);
  9099 %}
  9101 // Arithmetic Shift Right by 8-bit immediate
  9102 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9103 %{
  9104   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9105   effect(KILL cr);
  9107   format %{ "sarl    $dst, $shift" %}
  9108   opcode(0xC1, 0x7); /* C1 /7 ib */
  9109   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  9110   ins_pipe(ialu_mem_imm);
  9111 %}
  9113 // Arithmetic Shift Right by variable
  9114 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  9115 %{
  9116   match(Set dst (RShiftI dst shift));
  9117   effect(KILL cr);
  9119   format %{ "sarl    $dst, $shift" %}
  9120   opcode(0xD3, 0x7); /* D3 /7 */
  9121   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9122   ins_pipe(ialu_reg_reg);
  9123 %}
  9125 // Arithmetic Shift Right by variable
  9126 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9127 %{
  9128   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9129   effect(KILL cr);
  9131   format %{ "sarl    $dst, $shift" %}
  9132   opcode(0xD3, 0x7); /* D3 /7 */
  9133   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9134   ins_pipe(ialu_mem_reg);
  9135 %}
  9137 // Logical shift right by one
  9138 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  9139 %{
  9140   match(Set dst (URShiftI dst shift));
  9141   effect(KILL cr);
  9143   format %{ "shrl    $dst, $shift" %}
  9144   opcode(0xD1, 0x5); /* D1 /5 */
  9145   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9146   ins_pipe(ialu_reg);
  9147 %}
  9149 // Logical shift right by one
  9150 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9151 %{
  9152   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  9153   effect(KILL cr);
  9155   format %{ "shrl    $dst, $shift" %}
  9156   opcode(0xD1, 0x5); /* D1 /5 */
  9157   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9158   ins_pipe(ialu_mem_imm);
  9159 %}
  9161 // Logical Shift Right by 8-bit immediate
  9162 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  9163 %{
  9164   match(Set dst (URShiftI dst shift));
  9165   effect(KILL cr);
  9167   format %{ "shrl    $dst, $shift" %}
  9168   opcode(0xC1, 0x5); /* C1 /5 ib */
  9169   ins_encode(reg_opc_imm(dst, shift));
  9170   ins_pipe(ialu_reg);
  9171 %}
  9173 // Logical Shift Right by 8-bit immediate
  9174 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9175 %{
  9176   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  9177   effect(KILL cr);
  9179   format %{ "shrl    $dst, $shift" %}
  9180   opcode(0xC1, 0x5); /* C1 /5 ib */
  9181   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  9182   ins_pipe(ialu_mem_imm);
  9183 %}
  9185 // Logical Shift Right by variable
  9186 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  9187 %{
  9188   match(Set dst (URShiftI dst shift));
  9189   effect(KILL cr);
  9191   format %{ "shrl    $dst, $shift" %}
  9192   opcode(0xD3, 0x5); /* D3 /5 */
  9193   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9194   ins_pipe(ialu_reg_reg);
  9195 %}
  9197 // Logical Shift Right by variable
  9198 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9199 %{
  9200   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  9201   effect(KILL cr);
  9203   format %{ "shrl    $dst, $shift" %}
  9204   opcode(0xD3, 0x5); /* D3 /5 */
  9205   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  9206   ins_pipe(ialu_mem_reg);
  9207 %}
  9209 // Long Shift Instructions
  9210 // Shift Left by one
  9211 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  9212 %{
  9213   match(Set dst (LShiftL dst shift));
  9214   effect(KILL cr);
  9216   format %{ "salq    $dst, $shift" %}
  9217   opcode(0xD1, 0x4); /* D1 /4 */
  9218   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9219   ins_pipe(ialu_reg);
  9220 %}
  9222 // Shift Left by one
  9223 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9224 %{
  9225   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  9226   effect(KILL cr);
  9228   format %{ "salq    $dst, $shift" %}
  9229   opcode(0xD1, 0x4); /* D1 /4 */
  9230   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9231   ins_pipe(ialu_mem_imm);
  9232 %}
  9234 // Shift Left by 8-bit immediate
  9235 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  9236 %{
  9237   match(Set dst (LShiftL dst shift));
  9238   effect(KILL cr);
  9240   format %{ "salq    $dst, $shift" %}
  9241   opcode(0xC1, 0x4); /* C1 /4 ib */
  9242   ins_encode(reg_opc_imm_wide(dst, shift));
  9243   ins_pipe(ialu_reg);
  9244 %}
  9246 // Shift Left by 8-bit immediate
  9247 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9248 %{
  9249   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  9250   effect(KILL cr);
  9252   format %{ "salq    $dst, $shift" %}
  9253   opcode(0xC1, 0x4); /* C1 /4 ib */
  9254   ins_encode(REX_mem_wide(dst), OpcP,
  9255              RM_opc_mem(secondary, dst), Con8or32(shift));
  9256   ins_pipe(ialu_mem_imm);
  9257 %}
  9259 // Shift Left by variable
  9260 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  9261 %{
  9262   match(Set dst (LShiftL dst shift));
  9263   effect(KILL cr);
  9265   format %{ "salq    $dst, $shift" %}
  9266   opcode(0xD3, 0x4); /* D3 /4 */
  9267   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9268   ins_pipe(ialu_reg_reg);
  9269 %}
  9271 // Shift Left by variable
  9272 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9273 %{
  9274   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  9275   effect(KILL cr);
  9277   format %{ "salq    $dst, $shift" %}
  9278   opcode(0xD3, 0x4); /* D3 /4 */
  9279   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9280   ins_pipe(ialu_mem_reg);
  9281 %}
  9283 // Arithmetic shift right by one
  9284 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  9285 %{
  9286   match(Set dst (RShiftL dst shift));
  9287   effect(KILL cr);
  9289   format %{ "sarq    $dst, $shift" %}
  9290   opcode(0xD1, 0x7); /* D1 /7 */
  9291   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9292   ins_pipe(ialu_reg);
  9293 %}
  9295 // Arithmetic shift right by one
  9296 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9297 %{
  9298   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  9299   effect(KILL cr);
  9301   format %{ "sarq    $dst, $shift" %}
  9302   opcode(0xD1, 0x7); /* D1 /7 */
  9303   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9304   ins_pipe(ialu_mem_imm);
  9305 %}
  9307 // Arithmetic Shift Right by 8-bit immediate
  9308 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  9309 %{
  9310   match(Set dst (RShiftL dst shift));
  9311   effect(KILL cr);
  9313   format %{ "sarq    $dst, $shift" %}
  9314   opcode(0xC1, 0x7); /* C1 /7 ib */
  9315   ins_encode(reg_opc_imm_wide(dst, shift));
  9316   ins_pipe(ialu_mem_imm);
  9317 %}
  9319 // Arithmetic Shift Right by 8-bit immediate
  9320 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9321 %{
  9322   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  9323   effect(KILL cr);
  9325   format %{ "sarq    $dst, $shift" %}
  9326   opcode(0xC1, 0x7); /* C1 /7 ib */
  9327   ins_encode(REX_mem_wide(dst), OpcP,
  9328              RM_opc_mem(secondary, dst), Con8or32(shift));
  9329   ins_pipe(ialu_mem_imm);
  9330 %}
  9332 // Arithmetic Shift Right by variable
  9333 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  9334 %{
  9335   match(Set dst (RShiftL dst shift));
  9336   effect(KILL cr);
  9338   format %{ "sarq    $dst, $shift" %}
  9339   opcode(0xD3, 0x7); /* D3 /7 */
  9340   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9341   ins_pipe(ialu_reg_reg);
  9342 %}
  9344 // Arithmetic Shift Right by variable
  9345 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9346 %{
  9347   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  9348   effect(KILL cr);
  9350   format %{ "sarq    $dst, $shift" %}
  9351   opcode(0xD3, 0x7); /* D3 /7 */
  9352   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9353   ins_pipe(ialu_mem_reg);
  9354 %}
  9356 // Logical shift right by one
  9357 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  9358 %{
  9359   match(Set dst (URShiftL dst shift));
  9360   effect(KILL cr);
  9362   format %{ "shrq    $dst, $shift" %}
  9363   opcode(0xD1, 0x5); /* D1 /5 */
  9364   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
  9365   ins_pipe(ialu_reg);
  9366 %}
  9368 // Logical shift right by one
  9369 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  9370 %{
  9371   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  9372   effect(KILL cr);
  9374   format %{ "shrq    $dst, $shift" %}
  9375   opcode(0xD1, 0x5); /* D1 /5 */
  9376   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9377   ins_pipe(ialu_mem_imm);
  9378 %}
  9380 // Logical Shift Right by 8-bit immediate
  9381 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  9382 %{
  9383   match(Set dst (URShiftL dst shift));
  9384   effect(KILL cr);
  9386   format %{ "shrq    $dst, $shift" %}
  9387   opcode(0xC1, 0x5); /* C1 /5 ib */
  9388   ins_encode(reg_opc_imm_wide(dst, shift));
  9389   ins_pipe(ialu_reg);
  9390 %}
  9393 // Logical Shift Right by 8-bit immediate
  9394 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  9395 %{
  9396   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  9397   effect(KILL cr);
  9399   format %{ "shrq    $dst, $shift" %}
  9400   opcode(0xC1, 0x5); /* C1 /5 ib */
  9401   ins_encode(REX_mem_wide(dst), OpcP,
  9402              RM_opc_mem(secondary, dst), Con8or32(shift));
  9403   ins_pipe(ialu_mem_imm);
  9404 %}
  9406 // Logical Shift Right by variable
  9407 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  9408 %{
  9409   match(Set dst (URShiftL dst shift));
  9410   effect(KILL cr);
  9412   format %{ "shrq    $dst, $shift" %}
  9413   opcode(0xD3, 0x5); /* D3 /5 */
  9414   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9415   ins_pipe(ialu_reg_reg);
  9416 %}
  9418 // Logical Shift Right by variable
  9419 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  9420 %{
  9421   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  9422   effect(KILL cr);
  9424   format %{ "shrq    $dst, $shift" %}
  9425   opcode(0xD3, 0x5); /* D3 /5 */
  9426   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  9427   ins_pipe(ialu_mem_reg);
  9428 %}
  9430 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  9431 // This idiom is used by the compiler for the i2b bytecode.
  9432 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
  9433 %{
  9434   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  9436   format %{ "movsbl  $dst, $src\t# i2b" %}
  9437   opcode(0x0F, 0xBE);
  9438   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9439   ins_pipe(ialu_reg_reg);
  9440 %}
  9442 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  9443 // This idiom is used by the compiler the i2s bytecode.
  9444 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
  9445 %{
  9446   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  9448   format %{ "movswl  $dst, $src\t# i2s" %}
  9449   opcode(0x0F, 0xBF);
  9450   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9451   ins_pipe(ialu_reg_reg);
  9452 %}
  9454 // ROL/ROR instructions
  9456 // ROL expand
  9457 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
  9458   effect(KILL cr, USE_DEF dst);
  9460   format %{ "roll    $dst" %}
  9461   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  9462   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9463   ins_pipe(ialu_reg);
  9464 %}
  9466 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
  9467   effect(USE_DEF dst, USE shift, KILL cr);
  9469   format %{ "roll    $dst, $shift" %}
  9470   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  9471   ins_encode( reg_opc_imm(dst, shift) );
  9472   ins_pipe(ialu_reg);
  9473 %}
  9475 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  9476 %{
  9477   effect(USE_DEF dst, USE shift, KILL cr);
  9479   format %{ "roll    $dst, $shift" %}
  9480   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  9481   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9482   ins_pipe(ialu_reg_reg);
  9483 %}
  9484 // end of ROL expand
  9486 // Rotate Left by one
  9487 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  9488 %{
  9489   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9491   expand %{
  9492     rolI_rReg_imm1(dst, cr);
  9493   %}
  9494 %}
  9496 // Rotate Left by 8-bit immediate
  9497 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  9498 %{
  9499   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9500   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9502   expand %{
  9503     rolI_rReg_imm8(dst, lshift, cr);
  9504   %}
  9505 %}
  9507 // Rotate Left by variable
  9508 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9509 %{
  9510   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9512   expand %{
  9513     rolI_rReg_CL(dst, shift, cr);
  9514   %}
  9515 %}
  9517 // Rotate Left by variable
  9518 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  9519 %{
  9520   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9522   expand %{
  9523     rolI_rReg_CL(dst, shift, cr);
  9524   %}
  9525 %}
  9527 // ROR expand
  9528 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
  9529 %{
  9530   effect(USE_DEF dst, KILL cr);
  9532   format %{ "rorl    $dst" %}
  9533   opcode(0xD1, 0x1); /* D1 /1 */
  9534   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9535   ins_pipe(ialu_reg);
  9536 %}
  9538 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
  9539 %{
  9540   effect(USE_DEF dst, USE shift, KILL cr);
  9542   format %{ "rorl    $dst, $shift" %}
  9543   opcode(0xC1, 0x1); /* C1 /1 ib */
  9544   ins_encode(reg_opc_imm(dst, shift));
  9545   ins_pipe(ialu_reg);
  9546 %}
  9548 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  9549 %{
  9550   effect(USE_DEF dst, USE shift, KILL cr);
  9552   format %{ "rorl    $dst, $shift" %}
  9553   opcode(0xD3, 0x1); /* D3 /1 */
  9554   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9555   ins_pipe(ialu_reg_reg);
  9556 %}
  9557 // end of ROR expand
  9559 // Rotate Right by one
  9560 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  9561 %{
  9562   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9564   expand %{
  9565     rorI_rReg_imm1(dst, cr);
  9566   %}
  9567 %}
  9569 // Rotate Right by 8-bit immediate
  9570 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  9571 %{
  9572   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9573   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9575   expand %{
  9576     rorI_rReg_imm8(dst, rshift, cr);
  9577   %}
  9578 %}
  9580 // Rotate Right by variable
  9581 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9582 %{
  9583   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9585   expand %{
  9586     rorI_rReg_CL(dst, shift, cr);
  9587   %}
  9588 %}
  9590 // Rotate Right by variable
  9591 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  9592 %{
  9593   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9595   expand %{
  9596     rorI_rReg_CL(dst, shift, cr);
  9597   %}
  9598 %}
  9600 // for long rotate
  9601 // ROL expand
  9602 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
  9603   effect(USE_DEF dst, KILL cr);
  9605   format %{ "rolq    $dst" %}
  9606   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  9607   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9608   ins_pipe(ialu_reg);
  9609 %}
  9611 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
  9612   effect(USE_DEF dst, USE shift, KILL cr);
  9614   format %{ "rolq    $dst, $shift" %}
  9615   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  9616   ins_encode( reg_opc_imm_wide(dst, shift) );
  9617   ins_pipe(ialu_reg);
  9618 %}
  9620 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  9621 %{
  9622   effect(USE_DEF dst, USE shift, KILL cr);
  9624   format %{ "rolq    $dst, $shift" %}
  9625   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  9626   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9627   ins_pipe(ialu_reg_reg);
  9628 %}
  9629 // end of ROL expand
  9631 // Rotate Left by one
  9632 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  9633 %{
  9634   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  9636   expand %{
  9637     rolL_rReg_imm1(dst, cr);
  9638   %}
  9639 %}
  9641 // Rotate Left by 8-bit immediate
  9642 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  9643 %{
  9644   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  9645   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  9647   expand %{
  9648     rolL_rReg_imm8(dst, lshift, cr);
  9649   %}
  9650 %}
  9652 // Rotate Left by variable
  9653 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9654 %{
  9655   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
  9657   expand %{
  9658     rolL_rReg_CL(dst, shift, cr);
  9659   %}
  9660 %}
  9662 // Rotate Left by variable
  9663 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  9664 %{
  9665   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
  9667   expand %{
  9668     rolL_rReg_CL(dst, shift, cr);
  9669   %}
  9670 %}
  9672 // ROR expand
  9673 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
  9674 %{
  9675   effect(USE_DEF dst, KILL cr);
  9677   format %{ "rorq    $dst" %}
  9678   opcode(0xD1, 0x1); /* D1 /1 */
  9679   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9680   ins_pipe(ialu_reg);
  9681 %}
  9683 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
  9684 %{
  9685   effect(USE_DEF dst, USE shift, KILL cr);
  9687   format %{ "rorq    $dst, $shift" %}
  9688   opcode(0xC1, 0x1); /* C1 /1 ib */
  9689   ins_encode(reg_opc_imm_wide(dst, shift));
  9690   ins_pipe(ialu_reg);
  9691 %}
  9693 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  9694 %{
  9695   effect(USE_DEF dst, USE shift, KILL cr);
  9697   format %{ "rorq    $dst, $shift" %}
  9698   opcode(0xD3, 0x1); /* D3 /1 */
  9699   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9700   ins_pipe(ialu_reg_reg);
  9701 %}
  9702 // end of ROR expand
  9704 // Rotate Right by one
  9705 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  9706 %{
  9707   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  9709   expand %{
  9710     rorL_rReg_imm1(dst, cr);
  9711   %}
  9712 %}
  9714 // Rotate Right by 8-bit immediate
  9715 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  9716 %{
  9717   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  9718   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  9720   expand %{
  9721     rorL_rReg_imm8(dst, rshift, cr);
  9722   %}
  9723 %}
  9725 // Rotate Right by variable
  9726 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9727 %{
  9728   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
  9730   expand %{
  9731     rorL_rReg_CL(dst, shift, cr);
  9732   %}
  9733 %}
  9735 // Rotate Right by variable
  9736 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  9737 %{
  9738   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
  9740   expand %{
  9741     rorL_rReg_CL(dst, shift, cr);
  9742   %}
  9743 %}
  9745 // Logical Instructions
  9747 // Integer Logical Instructions
  9749 // And Instructions
  9750 // And Register with Register
  9751 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9752 %{
  9753   match(Set dst (AndI dst src));
  9754   effect(KILL cr);
  9756   format %{ "andl    $dst, $src\t# int" %}
  9757   opcode(0x23);
  9758   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9759   ins_pipe(ialu_reg_reg);
  9760 %}
  9762 // And Register with Immediate 255
  9763 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
  9764 %{
  9765   match(Set dst (AndI dst src));
  9767   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
  9768   opcode(0x0F, 0xB6);
  9769   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9770   ins_pipe(ialu_reg);
  9771 %}
  9773 // And Register with Immediate 255 and promote to long
  9774 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
  9775 %{
  9776   match(Set dst (ConvI2L (AndI src mask)));
  9778   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
  9779   opcode(0x0F, 0xB6);
  9780   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9781   ins_pipe(ialu_reg);
  9782 %}
  9784 // And Register with Immediate 65535
  9785 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
  9786 %{
  9787   match(Set dst (AndI dst src));
  9789   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
  9790   opcode(0x0F, 0xB7);
  9791   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9792   ins_pipe(ialu_reg);
  9793 %}
  9795 // And Register with Immediate 65535 and promote to long
  9796 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
  9797 %{
  9798   match(Set dst (ConvI2L (AndI src mask)));
  9800   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
  9801   opcode(0x0F, 0xB7);
  9802   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9803   ins_pipe(ialu_reg);
  9804 %}
  9806 // And Register with Immediate
  9807 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9808 %{
  9809   match(Set dst (AndI dst src));
  9810   effect(KILL cr);
  9812   format %{ "andl    $dst, $src\t# int" %}
  9813   opcode(0x81, 0x04); /* Opcode 81 /4 */
  9814   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9815   ins_pipe(ialu_reg);
  9816 %}
  9818 // And Register with Memory
  9819 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9820 %{
  9821   match(Set dst (AndI dst (LoadI src)));
  9822   effect(KILL cr);
  9824   ins_cost(125);
  9825   format %{ "andl    $dst, $src\t# int" %}
  9826   opcode(0x23);
  9827   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9828   ins_pipe(ialu_reg_mem);
  9829 %}
  9831 // And Memory with Register
  9832 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9833 %{
  9834   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9835   effect(KILL cr);
  9837   ins_cost(150);
  9838   format %{ "andl    $dst, $src\t# int" %}
  9839   opcode(0x21); /* Opcode 21 /r */
  9840   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9841   ins_pipe(ialu_mem_reg);
  9842 %}
  9844 // And Memory with Immediate
  9845 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9846 %{
  9847   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9848   effect(KILL cr);
  9850   ins_cost(125);
  9851   format %{ "andl    $dst, $src\t# int" %}
  9852   opcode(0x81, 0x4); /* Opcode 81 /4 id */
  9853   ins_encode(REX_mem(dst), OpcSE(src),
  9854              RM_opc_mem(secondary, dst), Con8or32(src));
  9855   ins_pipe(ialu_mem_imm);
  9856 %}
  9858 // Or Instructions
  9859 // Or Register with Register
  9860 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9861 %{
  9862   match(Set dst (OrI dst src));
  9863   effect(KILL cr);
  9865   format %{ "orl     $dst, $src\t# int" %}
  9866   opcode(0x0B);
  9867   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9868   ins_pipe(ialu_reg_reg);
  9869 %}
  9871 // Or Register with Immediate
  9872 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9873 %{
  9874   match(Set dst (OrI dst src));
  9875   effect(KILL cr);
  9877   format %{ "orl     $dst, $src\t# int" %}
  9878   opcode(0x81, 0x01); /* Opcode 81 /1 id */
  9879   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9880   ins_pipe(ialu_reg);
  9881 %}
  9883 // Or Register with Memory
  9884 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9885 %{
  9886   match(Set dst (OrI dst (LoadI src)));
  9887   effect(KILL cr);
  9889   ins_cost(125);
  9890   format %{ "orl     $dst, $src\t# int" %}
  9891   opcode(0x0B);
  9892   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9893   ins_pipe(ialu_reg_mem);
  9894 %}
  9896 // Or Memory with Register
  9897 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9898 %{
  9899   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9900   effect(KILL cr);
  9902   ins_cost(150);
  9903   format %{ "orl     $dst, $src\t# int" %}
  9904   opcode(0x09); /* Opcode 09 /r */
  9905   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9906   ins_pipe(ialu_mem_reg);
  9907 %}
  9909 // Or Memory with Immediate
  9910 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9911 %{
  9912   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9913   effect(KILL cr);
  9915   ins_cost(125);
  9916   format %{ "orl     $dst, $src\t# int" %}
  9917   opcode(0x81, 0x1); /* Opcode 81 /1 id */
  9918   ins_encode(REX_mem(dst), OpcSE(src),
  9919              RM_opc_mem(secondary, dst), Con8or32(src));
  9920   ins_pipe(ialu_mem_imm);
  9921 %}
  9923 // Xor Instructions
  9924 // Xor Register with Register
  9925 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9926 %{
  9927   match(Set dst (XorI dst src));
  9928   effect(KILL cr);
  9930   format %{ "xorl    $dst, $src\t# int" %}
  9931   opcode(0x33);
  9932   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9933   ins_pipe(ialu_reg_reg);
  9934 %}
  9936 // Xor Register with Immediate -1
  9937 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
  9938   match(Set dst (XorI dst imm));  
  9940   format %{ "not    $dst" %}  
  9941   ins_encode %{
  9942      __ notl($dst$$Register);
  9943   %}
  9944   ins_pipe(ialu_reg);
  9945 %}
  9947 // Xor Register with Immediate
  9948 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9949 %{
  9950   match(Set dst (XorI dst src));
  9951   effect(KILL cr);
  9953   format %{ "xorl    $dst, $src\t# int" %}
  9954   opcode(0x81, 0x06); /* Opcode 81 /6 id */
  9955   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9956   ins_pipe(ialu_reg);
  9957 %}
  9959 // Xor Register with Memory
  9960 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9961 %{
  9962   match(Set dst (XorI dst (LoadI src)));
  9963   effect(KILL cr);
  9965   ins_cost(125);
  9966   format %{ "xorl    $dst, $src\t# int" %}
  9967   opcode(0x33);
  9968   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9969   ins_pipe(ialu_reg_mem);
  9970 %}
  9972 // Xor Memory with Register
  9973 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9974 %{
  9975   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9976   effect(KILL cr);
  9978   ins_cost(150);
  9979   format %{ "xorl    $dst, $src\t# int" %}
  9980   opcode(0x31); /* Opcode 31 /r */
  9981   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9982   ins_pipe(ialu_mem_reg);
  9983 %}
  9985 // Xor Memory with Immediate
  9986 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9987 %{
  9988   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9989   effect(KILL cr);
  9991   ins_cost(125);
  9992   format %{ "xorl    $dst, $src\t# int" %}
  9993   opcode(0x81, 0x6); /* Opcode 81 /6 id */
  9994   ins_encode(REX_mem(dst), OpcSE(src),
  9995              RM_opc_mem(secondary, dst), Con8or32(src));
  9996   ins_pipe(ialu_mem_imm);
  9997 %}
 10000 // Long Logical Instructions
 10002 // And Instructions
 10003 // And Register with Register
 10004 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 10005 %{
 10006   match(Set dst (AndL dst src));
 10007   effect(KILL cr);
 10009   format %{ "andq    $dst, $src\t# long" %}
 10010   opcode(0x23);
 10011   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
 10012   ins_pipe(ialu_reg_reg);
 10013 %}
 10015 // And Register with Immediate 255
 10016 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
 10017 %{
 10018   match(Set dst (AndL dst src));
 10020   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
 10021   opcode(0x0F, 0xB6);
 10022   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
 10023   ins_pipe(ialu_reg);
 10024 %}
 10026 // And Register with Immediate 65535
 10027 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
 10028 %{
 10029   match(Set dst (AndL dst src));
 10031   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
 10032   opcode(0x0F, 0xB7);
 10033   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
 10034   ins_pipe(ialu_reg);
 10035 %}
 10037 // And Register with Immediate
 10038 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 10039 %{
 10040   match(Set dst (AndL dst src));
 10041   effect(KILL cr);
 10043   format %{ "andq    $dst, $src\t# long" %}
 10044   opcode(0x81, 0x04); /* Opcode 81 /4 */
 10045   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
 10046   ins_pipe(ialu_reg);
 10047 %}
 10049 // And Register with Memory
 10050 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 10051 %{
 10052   match(Set dst (AndL dst (LoadL src)));
 10053   effect(KILL cr);
 10055   ins_cost(125);
 10056   format %{ "andq    $dst, $src\t# long" %}
 10057   opcode(0x23);
 10058   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 10059   ins_pipe(ialu_reg_mem);
 10060 %}
 10062 // And Memory with Register
 10063 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 10064 %{
 10065   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
 10066   effect(KILL cr);
 10068   ins_cost(150);
 10069   format %{ "andq    $dst, $src\t# long" %}
 10070   opcode(0x21); /* Opcode 21 /r */
 10071   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 10072   ins_pipe(ialu_mem_reg);
 10073 %}
 10075 // And Memory with Immediate
 10076 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 10077 %{
 10078   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
 10079   effect(KILL cr);
 10081   ins_cost(125);
 10082   format %{ "andq    $dst, $src\t# long" %}
 10083   opcode(0x81, 0x4); /* Opcode 81 /4 id */
 10084   ins_encode(REX_mem_wide(dst), OpcSE(src),
 10085              RM_opc_mem(secondary, dst), Con8or32(src));
 10086   ins_pipe(ialu_mem_imm);
 10087 %}
 10089 // Or Instructions
 10090 // Or Register with Register
 10091 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 10092 %{
 10093   match(Set dst (OrL dst src));
 10094   effect(KILL cr);
 10096   format %{ "orq     $dst, $src\t# long" %}
 10097   opcode(0x0B);
 10098   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
 10099   ins_pipe(ialu_reg_reg);
 10100 %}
 10102 // Use any_RegP to match R15 (TLS register) without spilling.
 10103 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
 10104   match(Set dst (OrL dst (CastP2X src)));
 10105   effect(KILL cr);
 10107   format %{ "orq     $dst, $src\t# long" %}
 10108   opcode(0x0B);
 10109   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
 10110   ins_pipe(ialu_reg_reg);
 10111 %}
 10114 // Or Register with Immediate
 10115 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 10116 %{
 10117   match(Set dst (OrL dst src));
 10118   effect(KILL cr);
 10120   format %{ "orq     $dst, $src\t# long" %}
 10121   opcode(0x81, 0x01); /* Opcode 81 /1 id */
 10122   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
 10123   ins_pipe(ialu_reg);
 10124 %}
 10126 // Or Register with Memory
 10127 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 10128 %{
 10129   match(Set dst (OrL dst (LoadL src)));
 10130   effect(KILL cr);
 10132   ins_cost(125);
 10133   format %{ "orq     $dst, $src\t# long" %}
 10134   opcode(0x0B);
 10135   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 10136   ins_pipe(ialu_reg_mem);
 10137 %}
 10139 // Or Memory with Register
 10140 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 10141 %{
 10142   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
 10143   effect(KILL cr);
 10145   ins_cost(150);
 10146   format %{ "orq     $dst, $src\t# long" %}
 10147   opcode(0x09); /* Opcode 09 /r */
 10148   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 10149   ins_pipe(ialu_mem_reg);
 10150 %}
 10152 // Or Memory with Immediate
 10153 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 10154 %{
 10155   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
 10156   effect(KILL cr);
 10158   ins_cost(125);
 10159   format %{ "orq     $dst, $src\t# long" %}
 10160   opcode(0x81, 0x1); /* Opcode 81 /1 id */
 10161   ins_encode(REX_mem_wide(dst), OpcSE(src),
 10162              RM_opc_mem(secondary, dst), Con8or32(src));
 10163   ins_pipe(ialu_mem_imm);
 10164 %}
 10166 // Xor Instructions
 10167 // Xor Register with Register
 10168 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
 10169 %{
 10170   match(Set dst (XorL dst src));
 10171   effect(KILL cr);
 10173   format %{ "xorq    $dst, $src\t# long" %}
 10174   opcode(0x33);
 10175   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
 10176   ins_pipe(ialu_reg_reg);
 10177 %}
 10179 // Xor Register with Immediate -1
 10180 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
 10181   match(Set dst (XorL dst imm));  
 10183   format %{ "notq   $dst" %}  
 10184   ins_encode %{
 10185      __ notq($dst$$Register);
 10186   %}
 10187   ins_pipe(ialu_reg);
 10188 %}
 10190 // Xor Register with Immediate
 10191 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
 10192 %{
 10193   match(Set dst (XorL dst src));
 10194   effect(KILL cr);
 10196   format %{ "xorq    $dst, $src\t# long" %}
 10197   opcode(0x81, 0x06); /* Opcode 81 /6 id */
 10198   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
 10199   ins_pipe(ialu_reg);
 10200 %}
 10202 // Xor Register with Memory
 10203 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
 10204 %{
 10205   match(Set dst (XorL dst (LoadL src)));
 10206   effect(KILL cr);
 10208   ins_cost(125);
 10209   format %{ "xorq    $dst, $src\t# long" %}
 10210   opcode(0x33);
 10211   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 10212   ins_pipe(ialu_reg_mem);
 10213 %}
 10215 // Xor Memory with Register
 10216 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
 10217 %{
 10218   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
 10219   effect(KILL cr);
 10221   ins_cost(150);
 10222   format %{ "xorq    $dst, $src\t# long" %}
 10223   opcode(0x31); /* Opcode 31 /r */
 10224   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 10225   ins_pipe(ialu_mem_reg);
 10226 %}
 10228 // Xor Memory with Immediate
 10229 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
 10230 %{
 10231   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
 10232   effect(KILL cr);
 10234   ins_cost(125);
 10235   format %{ "xorq    $dst, $src\t# long" %}
 10236   opcode(0x81, 0x6); /* Opcode 81 /6 id */
 10237   ins_encode(REX_mem_wide(dst), OpcSE(src),
 10238              RM_opc_mem(secondary, dst), Con8or32(src));
 10239   ins_pipe(ialu_mem_imm);
 10240 %}
 10242 // Convert Int to Boolean
 10243 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
 10244 %{
 10245   match(Set dst (Conv2B src));
 10246   effect(KILL cr);
 10248   format %{ "testl   $src, $src\t# ci2b\n\t"
 10249             "setnz   $dst\n\t"
 10250             "movzbl  $dst, $dst" %}
 10251   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
 10252              setNZ_reg(dst),
 10253              REX_reg_breg(dst, dst), // movzbl
 10254              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
 10255   ins_pipe(pipe_slow); // XXX
 10256 %}
 10258 // Convert Pointer to Boolean
 10259 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
 10260 %{
 10261   match(Set dst (Conv2B src));
 10262   effect(KILL cr);
 10264   format %{ "testq   $src, $src\t# cp2b\n\t"
 10265             "setnz   $dst\n\t"
 10266             "movzbl  $dst, $dst" %}
 10267   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
 10268              setNZ_reg(dst),
 10269              REX_reg_breg(dst, dst), // movzbl
 10270              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
 10271   ins_pipe(pipe_slow); // XXX
 10272 %}
 10274 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
 10275 %{
 10276   match(Set dst (CmpLTMask p q));
 10277   effect(KILL cr);
 10279   ins_cost(400); // XXX
 10280   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
 10281             "setlt   $dst\n\t"
 10282             "movzbl  $dst, $dst\n\t"
 10283             "negl    $dst" %}
 10284   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
 10285              setLT_reg(dst),
 10286              REX_reg_breg(dst, dst), // movzbl
 10287              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
 10288              neg_reg(dst));
 10289   ins_pipe(pipe_slow);
 10290 %}
 10292 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
 10293 %{
 10294   match(Set dst (CmpLTMask dst zero));
 10295   effect(KILL cr);
 10297   ins_cost(100); // XXX
 10298   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
 10299   opcode(0xC1, 0x7);  /* C1 /7 ib */
 10300   ins_encode(reg_opc_imm(dst, 0x1F));
 10301   ins_pipe(ialu_reg);
 10302 %}
 10305 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y,
 10306                          rRegI tmp,
 10307                          rFlagsReg cr)
 10308 %{
 10309   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
 10310   effect(TEMP tmp, KILL cr);
 10312   ins_cost(400); // XXX
 10313   format %{ "subl    $p, $q\t# cadd_cmpLTMask1\n\t"
 10314             "sbbl    $tmp, $tmp\n\t"
 10315             "andl    $tmp, $y\n\t"
 10316             "addl    $p, $tmp" %}
 10317   ins_encode(enc_cmpLTP(p, q, y, tmp));
 10318   ins_pipe(pipe_cmplt);
 10319 %}
 10321 /* If I enable this, I encourage spilling in the inner loop of compress.
 10322 instruct cadd_cmpLTMask_mem( rRegI p, rRegI q, memory y, rRegI tmp, rFlagsReg cr )
 10323 %{
 10324   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
 10325   effect( TEMP tmp, KILL cr );
 10326   ins_cost(400);
 10328   format %{ "SUB    $p,$q\n\t"
 10329             "SBB    RCX,RCX\n\t"
 10330             "AND    RCX,$y\n\t"
 10331             "ADD    $p,RCX" %}
 10332   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
 10333 %}
 10334 */
 10336 //---------- FP Instructions------------------------------------------------
 10338 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
 10339 %{
 10340   match(Set cr (CmpF src1 src2));
 10342   ins_cost(145);
 10343   format %{ "ucomiss $src1, $src2\n\t"
 10344             "jnp,s   exit\n\t"
 10345             "pushfq\t# saw NaN, set CF\n\t"
 10346             "andq    [rsp], #0xffffff2b\n\t"
 10347             "popfq\n"
 10348     "exit:   nop\t# avoid branch to branch" %}
 10349   opcode(0x0F, 0x2E);
 10350   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
 10351              cmpfp_fixup);
 10352   ins_pipe(pipe_slow);
 10353 %}
 10355 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
 10356   match(Set cr (CmpF src1 src2));
 10358   ins_cost(145);
 10359   format %{ "ucomiss $src1, $src2" %}
 10360   ins_encode %{
 10361     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10362   %}
 10363   ins_pipe(pipe_slow);
 10364 %}
 10366 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
 10367 %{
 10368   match(Set cr (CmpF src1 (LoadF src2)));
 10370   ins_cost(145);
 10371   format %{ "ucomiss $src1, $src2\n\t"
 10372             "jnp,s   exit\n\t"
 10373             "pushfq\t# saw NaN, set CF\n\t"
 10374             "andq    [rsp], #0xffffff2b\n\t"
 10375             "popfq\n"
 10376     "exit:   nop\t# avoid branch to branch" %}
 10377   opcode(0x0F, 0x2E);
 10378   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
 10379              cmpfp_fixup);
 10380   ins_pipe(pipe_slow);
 10381 %}
 10383 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
 10384   match(Set cr (CmpF src1 (LoadF src2)));
 10386   ins_cost(100);
 10387   format %{ "ucomiss $src1, $src2" %}
 10388   opcode(0x0F, 0x2E);
 10389   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2));
 10390   ins_pipe(pipe_slow);
 10391 %}
 10393 instruct cmpF_cc_imm(rFlagsRegU cr, regF src1, immF src2)
 10394 %{
 10395   match(Set cr (CmpF src1 src2));
 10397   ins_cost(145);
 10398   format %{ "ucomiss $src1, $src2\n\t"
 10399             "jnp,s   exit\n\t"
 10400             "pushfq\t# saw NaN, set CF\n\t"
 10401             "andq    [rsp], #0xffffff2b\n\t"
 10402             "popfq\n"
 10403     "exit:   nop\t# avoid branch to branch" %}
 10404   opcode(0x0F, 0x2E);
 10405   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
 10406              cmpfp_fixup);
 10407   ins_pipe(pipe_slow);
 10408 %}
 10410 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src1, immF src2) %{
 10411   match(Set cr (CmpF src1 src2));
 10413   ins_cost(100);
 10414   format %{ "ucomiss $src1, $src2" %}
 10415   opcode(0x0F, 0x2E);
 10416   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2));
 10417   ins_pipe(pipe_slow);
 10418 %}
 10420 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
 10421 %{
 10422   match(Set cr (CmpD src1 src2));
 10424   ins_cost(145);
 10425   format %{ "ucomisd $src1, $src2\n\t"
 10426             "jnp,s   exit\n\t"
 10427             "pushfq\t# saw NaN, set CF\n\t"
 10428             "andq    [rsp], #0xffffff2b\n\t"
 10429             "popfq\n"
 10430     "exit:   nop\t# avoid branch to branch" %}
 10431   opcode(0x66, 0x0F, 0x2E);
 10432   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
 10433              cmpfp_fixup);
 10434   ins_pipe(pipe_slow);
 10435 %}
 10437 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
 10438   match(Set cr (CmpD src1 src2));
 10440   ins_cost(100);
 10441   format %{ "ucomisd $src1, $src2 test" %}
 10442   ins_encode %{
 10443     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
 10444   %}
 10445   ins_pipe(pipe_slow);
 10446 %}
 10448 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
 10449 %{
 10450   match(Set cr (CmpD src1 (LoadD src2)));
 10452   ins_cost(145);
 10453   format %{ "ucomisd $src1, $src2\n\t"
 10454             "jnp,s   exit\n\t"
 10455             "pushfq\t# saw NaN, set CF\n\t"
 10456             "andq    [rsp], #0xffffff2b\n\t"
 10457             "popfq\n"
 10458     "exit:   nop\t# avoid branch to branch" %}
 10459   opcode(0x66, 0x0F, 0x2E);
 10460   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
 10461              cmpfp_fixup);
 10462   ins_pipe(pipe_slow);
 10463 %}
 10465 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
 10466   match(Set cr (CmpD src1 (LoadD src2)));
 10468   ins_cost(100);
 10469   format %{ "ucomisd $src1, $src2" %}
 10470   opcode(0x66, 0x0F, 0x2E);
 10471   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2));
 10472   ins_pipe(pipe_slow);
 10473 %}
 10475 instruct cmpD_cc_imm(rFlagsRegU cr, regD src1, immD src2)
 10476 %{
 10477   match(Set cr (CmpD src1 src2));
 10479   ins_cost(145);
 10480   format %{ "ucomisd $src1, [$src2]\n\t"
 10481             "jnp,s   exit\n\t"
 10482             "pushfq\t# saw NaN, set CF\n\t"
 10483             "andq    [rsp], #0xffffff2b\n\t"
 10484             "popfq\n"
 10485     "exit:   nop\t# avoid branch to branch" %}
 10486   opcode(0x66, 0x0F, 0x2E);
 10487   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
 10488              cmpfp_fixup);
 10489   ins_pipe(pipe_slow);
 10490 %}
 10492 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src1, immD src2) %{
 10493   match(Set cr (CmpD src1 src2));
 10495   ins_cost(100);
 10496   format %{ "ucomisd $src1, [$src2]" %}
 10497   opcode(0x66, 0x0F, 0x2E);
 10498   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2));
 10499   ins_pipe(pipe_slow);
 10500 %}
 10502 // Compare into -1,0,1
 10503 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
 10504 %{
 10505   match(Set dst (CmpF3 src1 src2));
 10506   effect(KILL cr);
 10508   ins_cost(275);
 10509   format %{ "ucomiss $src1, $src2\n\t"
 10510             "movl    $dst, #-1\n\t"
 10511             "jp,s    done\n\t"
 10512             "jb,s    done\n\t"
 10513             "setne   $dst\n\t"
 10514             "movzbl  $dst, $dst\n"
 10515     "done:" %}
 10517   opcode(0x0F, 0x2E);
 10518   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
 10519              cmpfp3(dst));
 10520   ins_pipe(pipe_slow);
 10521 %}
 10523 // Compare into -1,0,1
 10524 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
 10525 %{
 10526   match(Set dst (CmpF3 src1 (LoadF src2)));
 10527   effect(KILL cr);
 10529   ins_cost(275);
 10530   format %{ "ucomiss $src1, $src2\n\t"
 10531             "movl    $dst, #-1\n\t"
 10532             "jp,s    done\n\t"
 10533             "jb,s    done\n\t"
 10534             "setne   $dst\n\t"
 10535             "movzbl  $dst, $dst\n"
 10536     "done:" %}
 10538   opcode(0x0F, 0x2E);
 10539   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
 10540              cmpfp3(dst));
 10541   ins_pipe(pipe_slow);
 10542 %}
 10544 // Compare into -1,0,1
 10545 instruct cmpF_imm(rRegI dst, regF src1, immF src2, rFlagsReg cr)
 10546 %{
 10547   match(Set dst (CmpF3 src1 src2));
 10548   effect(KILL cr);
 10550   ins_cost(275);
 10551   format %{ "ucomiss $src1, [$src2]\n\t"
 10552             "movl    $dst, #-1\n\t"
 10553             "jp,s    done\n\t"
 10554             "jb,s    done\n\t"
 10555             "setne   $dst\n\t"
 10556             "movzbl  $dst, $dst\n"
 10557     "done:" %}
 10559   opcode(0x0F, 0x2E);
 10560   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
 10561              cmpfp3(dst));
 10562   ins_pipe(pipe_slow);
 10563 %}
 10565 // Compare into -1,0,1
 10566 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
 10567 %{
 10568   match(Set dst (CmpD3 src1 src2));
 10569   effect(KILL cr);
 10571   ins_cost(275);
 10572   format %{ "ucomisd $src1, $src2\n\t"
 10573             "movl    $dst, #-1\n\t"
 10574             "jp,s    done\n\t"
 10575             "jb,s    done\n\t"
 10576             "setne   $dst\n\t"
 10577             "movzbl  $dst, $dst\n"
 10578     "done:" %}
 10580   opcode(0x66, 0x0F, 0x2E);
 10581   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
 10582              cmpfp3(dst));
 10583   ins_pipe(pipe_slow);
 10584 %}
 10586 // Compare into -1,0,1
 10587 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
 10588 %{
 10589   match(Set dst (CmpD3 src1 (LoadD src2)));
 10590   effect(KILL cr);
 10592   ins_cost(275);
 10593   format %{ "ucomisd $src1, $src2\n\t"
 10594             "movl    $dst, #-1\n\t"
 10595             "jp,s    done\n\t"
 10596             "jb,s    done\n\t"
 10597             "setne   $dst\n\t"
 10598             "movzbl  $dst, $dst\n"
 10599     "done:" %}
 10601   opcode(0x66, 0x0F, 0x2E);
 10602   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
 10603              cmpfp3(dst));
 10604   ins_pipe(pipe_slow);
 10605 %}
 10607 // Compare into -1,0,1
 10608 instruct cmpD_imm(rRegI dst, regD src1, immD src2, rFlagsReg cr)
 10609 %{
 10610   match(Set dst (CmpD3 src1 src2));
 10611   effect(KILL cr);
 10613   ins_cost(275);
 10614   format %{ "ucomisd $src1, [$src2]\n\t"
 10615             "movl    $dst, #-1\n\t"
 10616             "jp,s    done\n\t"
 10617             "jb,s    done\n\t"
 10618             "setne   $dst\n\t"
 10619             "movzbl  $dst, $dst\n"
 10620     "done:" %}
 10622   opcode(0x66, 0x0F, 0x2E);
 10623   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
 10624              cmpfp3(dst));
 10625   ins_pipe(pipe_slow);
 10626 %}
 10628 instruct addF_reg(regF dst, regF src)
 10629 %{
 10630   match(Set dst (AddF dst src));
 10632   format %{ "addss   $dst, $src" %}
 10633   ins_cost(150); // XXX
 10634   opcode(0xF3, 0x0F, 0x58);
 10635   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10636   ins_pipe(pipe_slow);
 10637 %}
 10639 instruct addF_mem(regF dst, memory src)
 10640 %{
 10641   match(Set dst (AddF dst (LoadF src)));
 10643   format %{ "addss   $dst, $src" %}
 10644   ins_cost(150); // XXX
 10645   opcode(0xF3, 0x0F, 0x58);
 10646   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10647   ins_pipe(pipe_slow);
 10648 %}
 10650 instruct addF_imm(regF dst, immF src)
 10651 %{
 10652   match(Set dst (AddF dst src));
 10654   format %{ "addss   $dst, [$src]" %}
 10655   ins_cost(150); // XXX
 10656   opcode(0xF3, 0x0F, 0x58);
 10657   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10658   ins_pipe(pipe_slow);
 10659 %}
 10661 instruct addD_reg(regD dst, regD src)
 10662 %{
 10663   match(Set dst (AddD dst src));
 10665   format %{ "addsd   $dst, $src" %}
 10666   ins_cost(150); // XXX
 10667   opcode(0xF2, 0x0F, 0x58);
 10668   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10669   ins_pipe(pipe_slow);
 10670 %}
 10672 instruct addD_mem(regD dst, memory src)
 10673 %{
 10674   match(Set dst (AddD dst (LoadD src)));
 10676   format %{ "addsd   $dst, $src" %}
 10677   ins_cost(150); // XXX
 10678   opcode(0xF2, 0x0F, 0x58);
 10679   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10680   ins_pipe(pipe_slow);
 10681 %}
 10683 instruct addD_imm(regD dst, immD src)
 10684 %{
 10685   match(Set dst (AddD dst src));
 10687   format %{ "addsd   $dst, [$src]" %}
 10688   ins_cost(150); // XXX
 10689   opcode(0xF2, 0x0F, 0x58);
 10690   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10691   ins_pipe(pipe_slow);
 10692 %}
 10694 instruct subF_reg(regF dst, regF src)
 10695 %{
 10696   match(Set dst (SubF dst src));
 10698   format %{ "subss   $dst, $src" %}
 10699   ins_cost(150); // XXX
 10700   opcode(0xF3, 0x0F, 0x5C);
 10701   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10702   ins_pipe(pipe_slow);
 10703 %}
 10705 instruct subF_mem(regF dst, memory src)
 10706 %{
 10707   match(Set dst (SubF dst (LoadF src)));
 10709   format %{ "subss   $dst, $src" %}
 10710   ins_cost(150); // XXX
 10711   opcode(0xF3, 0x0F, 0x5C);
 10712   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10713   ins_pipe(pipe_slow);
 10714 %}
 10716 instruct subF_imm(regF dst, immF src)
 10717 %{
 10718   match(Set dst (SubF dst src));
 10720   format %{ "subss   $dst, [$src]" %}
 10721   ins_cost(150); // XXX
 10722   opcode(0xF3, 0x0F, 0x5C);
 10723   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10724   ins_pipe(pipe_slow);
 10725 %}
 10727 instruct subD_reg(regD dst, regD src)
 10728 %{
 10729   match(Set dst (SubD dst src));
 10731   format %{ "subsd   $dst, $src" %}
 10732   ins_cost(150); // XXX
 10733   opcode(0xF2, 0x0F, 0x5C);
 10734   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10735   ins_pipe(pipe_slow);
 10736 %}
 10738 instruct subD_mem(regD dst, memory src)
 10739 %{
 10740   match(Set dst (SubD dst (LoadD src)));
 10742   format %{ "subsd   $dst, $src" %}
 10743   ins_cost(150); // XXX
 10744   opcode(0xF2, 0x0F, 0x5C);
 10745   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10746   ins_pipe(pipe_slow);
 10747 %}
 10749 instruct subD_imm(regD dst, immD src)
 10750 %{
 10751   match(Set dst (SubD dst src));
 10753   format %{ "subsd   $dst, [$src]" %}
 10754   ins_cost(150); // XXX
 10755   opcode(0xF2, 0x0F, 0x5C);
 10756   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10757   ins_pipe(pipe_slow);
 10758 %}
 10760 instruct mulF_reg(regF dst, regF src)
 10761 %{
 10762   match(Set dst (MulF dst src));
 10764   format %{ "mulss   $dst, $src" %}
 10765   ins_cost(150); // XXX
 10766   opcode(0xF3, 0x0F, 0x59);
 10767   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10768   ins_pipe(pipe_slow);
 10769 %}
 10771 instruct mulF_mem(regF dst, memory src)
 10772 %{
 10773   match(Set dst (MulF dst (LoadF src)));
 10775   format %{ "mulss   $dst, $src" %}
 10776   ins_cost(150); // XXX
 10777   opcode(0xF3, 0x0F, 0x59);
 10778   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10779   ins_pipe(pipe_slow);
 10780 %}
 10782 instruct mulF_imm(regF dst, immF src)
 10783 %{
 10784   match(Set dst (MulF dst src));
 10786   format %{ "mulss   $dst, [$src]" %}
 10787   ins_cost(150); // XXX
 10788   opcode(0xF3, 0x0F, 0x59);
 10789   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10790   ins_pipe(pipe_slow);
 10791 %}
 10793 instruct mulD_reg(regD dst, regD src)
 10794 %{
 10795   match(Set dst (MulD dst src));
 10797   format %{ "mulsd   $dst, $src" %}
 10798   ins_cost(150); // XXX
 10799   opcode(0xF2, 0x0F, 0x59);
 10800   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10801   ins_pipe(pipe_slow);
 10802 %}
 10804 instruct mulD_mem(regD dst, memory src)
 10805 %{
 10806   match(Set dst (MulD dst (LoadD src)));
 10808   format %{ "mulsd   $dst, $src" %}
 10809   ins_cost(150); // XXX
 10810   opcode(0xF2, 0x0F, 0x59);
 10811   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10812   ins_pipe(pipe_slow);
 10813 %}
 10815 instruct mulD_imm(regD dst, immD src)
 10816 %{
 10817   match(Set dst (MulD dst src));
 10819   format %{ "mulsd   $dst, [$src]" %}
 10820   ins_cost(150); // XXX
 10821   opcode(0xF2, 0x0F, 0x59);
 10822   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10823   ins_pipe(pipe_slow);
 10824 %}
 10826 instruct divF_reg(regF dst, regF src)
 10827 %{
 10828   match(Set dst (DivF dst src));
 10830   format %{ "divss   $dst, $src" %}
 10831   ins_cost(150); // XXX
 10832   opcode(0xF3, 0x0F, 0x5E);
 10833   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10834   ins_pipe(pipe_slow);
 10835 %}
 10837 instruct divF_mem(regF dst, memory src)
 10838 %{
 10839   match(Set dst (DivF dst (LoadF src)));
 10841   format %{ "divss   $dst, $src" %}
 10842   ins_cost(150); // XXX
 10843   opcode(0xF3, 0x0F, 0x5E);
 10844   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10845   ins_pipe(pipe_slow);
 10846 %}
 10848 instruct divF_imm(regF dst, immF src)
 10849 %{
 10850   match(Set dst (DivF dst src));
 10852   format %{ "divss   $dst, [$src]" %}
 10853   ins_cost(150); // XXX
 10854   opcode(0xF3, 0x0F, 0x5E);
 10855   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10856   ins_pipe(pipe_slow);
 10857 %}
 10859 instruct divD_reg(regD dst, regD src)
 10860 %{
 10861   match(Set dst (DivD dst src));
 10863   format %{ "divsd   $dst, $src" %}
 10864   ins_cost(150); // XXX
 10865   opcode(0xF2, 0x0F, 0x5E);
 10866   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10867   ins_pipe(pipe_slow);
 10868 %}
 10870 instruct divD_mem(regD dst, memory src)
 10871 %{
 10872   match(Set dst (DivD dst (LoadD src)));
 10874   format %{ "divsd   $dst, $src" %}
 10875   ins_cost(150); // XXX
 10876   opcode(0xF2, 0x0F, 0x5E);
 10877   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10878   ins_pipe(pipe_slow);
 10879 %}
 10881 instruct divD_imm(regD dst, immD src)
 10882 %{
 10883   match(Set dst (DivD dst src));
 10885   format %{ "divsd   $dst, [$src]" %}
 10886   ins_cost(150); // XXX
 10887   opcode(0xF2, 0x0F, 0x5E);
 10888   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10889   ins_pipe(pipe_slow);
 10890 %}
 10892 instruct sqrtF_reg(regF dst, regF src)
 10893 %{
 10894   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10896   format %{ "sqrtss  $dst, $src" %}
 10897   ins_cost(150); // XXX
 10898   opcode(0xF3, 0x0F, 0x51);
 10899   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10900   ins_pipe(pipe_slow);
 10901 %}
 10903 instruct sqrtF_mem(regF dst, memory src)
 10904 %{
 10905   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF src)))));
 10907   format %{ "sqrtss  $dst, $src" %}
 10908   ins_cost(150); // XXX
 10909   opcode(0xF3, 0x0F, 0x51);
 10910   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10911   ins_pipe(pipe_slow);
 10912 %}
 10914 instruct sqrtF_imm(regF dst, immF src)
 10915 %{
 10916   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10918   format %{ "sqrtss  $dst, [$src]" %}
 10919   ins_cost(150); // XXX
 10920   opcode(0xF3, 0x0F, 0x51);
 10921   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10922   ins_pipe(pipe_slow);
 10923 %}
 10925 instruct sqrtD_reg(regD dst, regD src)
 10926 %{
 10927   match(Set dst (SqrtD src));
 10929   format %{ "sqrtsd  $dst, $src" %}
 10930   ins_cost(150); // XXX
 10931   opcode(0xF2, 0x0F, 0x51);
 10932   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10933   ins_pipe(pipe_slow);
 10934 %}
 10936 instruct sqrtD_mem(regD dst, memory src)
 10937 %{
 10938   match(Set dst (SqrtD (LoadD src)));
 10940   format %{ "sqrtsd  $dst, $src" %}
 10941   ins_cost(150); // XXX
 10942   opcode(0xF2, 0x0F, 0x51);
 10943   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10944   ins_pipe(pipe_slow);
 10945 %}
 10947 instruct sqrtD_imm(regD dst, immD src)
 10948 %{
 10949   match(Set dst (SqrtD src));
 10951   format %{ "sqrtsd  $dst, [$src]" %}
 10952   ins_cost(150); // XXX
 10953   opcode(0xF2, 0x0F, 0x51);
 10954   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10955   ins_pipe(pipe_slow);
 10956 %}
 10958 instruct absF_reg(regF dst)
 10959 %{
 10960   match(Set dst (AbsF dst));
 10962   format %{ "andps   $dst, [0x7fffffff]\t# abs float by sign masking" %}
 10963   ins_encode(absF_encoding(dst));
 10964   ins_pipe(pipe_slow);
 10965 %}
 10967 instruct absD_reg(regD dst)
 10968 %{
 10969   match(Set dst (AbsD dst));
 10971   format %{ "andpd   $dst, [0x7fffffffffffffff]\t"
 10972             "# abs double by sign masking" %}
 10973   ins_encode(absD_encoding(dst));
 10974   ins_pipe(pipe_slow);
 10975 %}
 10977 instruct negF_reg(regF dst)
 10978 %{
 10979   match(Set dst (NegF dst));
 10981   format %{ "xorps   $dst, [0x80000000]\t# neg float by sign flipping" %}
 10982   ins_encode(negF_encoding(dst));
 10983   ins_pipe(pipe_slow);
 10984 %}
 10986 instruct negD_reg(regD dst)
 10987 %{
 10988   match(Set dst (NegD dst));
 10990   format %{ "xorpd   $dst, [0x8000000000000000]\t"
 10991             "# neg double by sign flipping" %}
 10992   ins_encode(negD_encoding(dst));
 10993   ins_pipe(pipe_slow);
 10994 %}
 10996 // -----------Trig and Trancendental Instructions------------------------------
 10997 instruct cosD_reg(regD dst) %{
 10998   match(Set dst (CosD dst));
 11000   format %{ "dcos   $dst\n\t" %}
 11001   opcode(0xD9, 0xFF);
 11002   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 11003   ins_pipe( pipe_slow );
 11004 %}
 11006 instruct sinD_reg(regD dst) %{
 11007   match(Set dst (SinD dst));
 11009   format %{ "dsin   $dst\n\t" %}
 11010   opcode(0xD9, 0xFE);
 11011   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 11012   ins_pipe( pipe_slow );
 11013 %}
 11015 instruct tanD_reg(regD dst) %{
 11016   match(Set dst (TanD dst));
 11018   format %{ "dtan   $dst\n\t" %}
 11019   ins_encode( Push_SrcXD(dst),
 11020               Opcode(0xD9), Opcode(0xF2),   //fptan
 11021               Opcode(0xDD), Opcode(0xD8),   //fstp st
 11022               Push_ResultXD(dst) );
 11023   ins_pipe( pipe_slow );
 11024 %}
 11026 instruct log10D_reg(regD dst) %{
 11027   // The source and result Double operands in XMM registers
 11028   match(Set dst (Log10D dst));
 11029   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 11030   // fyl2x        ; compute log_10(2) * log_2(x)
 11031   format %{ "fldlg2\t\t\t#Log10\n\t"
 11032             "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
 11033          %}
 11034    ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
 11035               Push_SrcXD(dst),
 11036               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 11037               Push_ResultXD(dst));
 11039   ins_pipe( pipe_slow );
 11040 %}
 11042 instruct logD_reg(regD dst) %{
 11043   // The source and result Double operands in XMM registers
 11044   match(Set dst (LogD dst));
 11045   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 11046   // fyl2x        ; compute log_e(2) * log_2(x)
 11047   format %{ "fldln2\t\t\t#Log_e\n\t"
 11048             "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
 11049          %}
 11050   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 11051               Push_SrcXD(dst),
 11052               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 11053               Push_ResultXD(dst));
 11054   ins_pipe( pipe_slow );
 11055 %}
 11059 //----------Arithmetic Conversion Instructions---------------------------------
 11061 instruct roundFloat_nop(regF dst)
 11062 %{
 11063   match(Set dst (RoundFloat dst));
 11065   ins_cost(0);
 11066   ins_encode();
 11067   ins_pipe(empty);
 11068 %}
 11070 instruct roundDouble_nop(regD dst)
 11071 %{
 11072   match(Set dst (RoundDouble dst));
 11074   ins_cost(0);
 11075   ins_encode();
 11076   ins_pipe(empty);
 11077 %}
 11079 instruct convF2D_reg_reg(regD dst, regF src)
 11080 %{
 11081   match(Set dst (ConvF2D src));
 11083   format %{ "cvtss2sd $dst, $src" %}
 11084   opcode(0xF3, 0x0F, 0x5A);
 11085   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11086   ins_pipe(pipe_slow); // XXX
 11087 %}
 11089 instruct convF2D_reg_mem(regD dst, memory src)
 11090 %{
 11091   match(Set dst (ConvF2D (LoadF src)));
 11093   format %{ "cvtss2sd $dst, $src" %}
 11094   opcode(0xF3, 0x0F, 0x5A);
 11095   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11096   ins_pipe(pipe_slow); // XXX
 11097 %}
 11099 instruct convD2F_reg_reg(regF dst, regD src)
 11100 %{
 11101   match(Set dst (ConvD2F src));
 11103   format %{ "cvtsd2ss $dst, $src" %}
 11104   opcode(0xF2, 0x0F, 0x5A);
 11105   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11106   ins_pipe(pipe_slow); // XXX
 11107 %}
 11109 instruct convD2F_reg_mem(regF dst, memory src)
 11110 %{
 11111   match(Set dst (ConvD2F (LoadD src)));
 11113   format %{ "cvtsd2ss $dst, $src" %}
 11114   opcode(0xF2, 0x0F, 0x5A);
 11115   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11116   ins_pipe(pipe_slow); // XXX
 11117 %}
 11119 // XXX do mem variants
 11120 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
 11121 %{
 11122   match(Set dst (ConvF2I src));
 11123   effect(KILL cr);
 11125   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
 11126             "cmpl    $dst, #0x80000000\n\t"
 11127             "jne,s   done\n\t"
 11128             "subq    rsp, #8\n\t"
 11129             "movss   [rsp], $src\n\t"
 11130             "call    f2i_fixup\n\t"
 11131             "popq    $dst\n"
 11132     "done:   "%}
 11133   opcode(0xF3, 0x0F, 0x2C);
 11134   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11135              f2i_fixup(dst, src));
 11136   ins_pipe(pipe_slow);
 11137 %}
 11139 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
 11140 %{
 11141   match(Set dst (ConvF2L src));
 11142   effect(KILL cr);
 11144   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
 11145             "cmpq    $dst, [0x8000000000000000]\n\t"
 11146             "jne,s   done\n\t"
 11147             "subq    rsp, #8\n\t"
 11148             "movss   [rsp], $src\n\t"
 11149             "call    f2l_fixup\n\t"
 11150             "popq    $dst\n"
 11151     "done:   "%}
 11152   opcode(0xF3, 0x0F, 0x2C);
 11153   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11154              f2l_fixup(dst, src));
 11155   ins_pipe(pipe_slow);
 11156 %}
 11158 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
 11159 %{
 11160   match(Set dst (ConvD2I src));
 11161   effect(KILL cr);
 11163   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
 11164             "cmpl    $dst, #0x80000000\n\t"
 11165             "jne,s   done\n\t"
 11166             "subq    rsp, #8\n\t"
 11167             "movsd   [rsp], $src\n\t"
 11168             "call    d2i_fixup\n\t"
 11169             "popq    $dst\n"
 11170     "done:   "%}
 11171   opcode(0xF2, 0x0F, 0x2C);
 11172   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11173              d2i_fixup(dst, src));
 11174   ins_pipe(pipe_slow);
 11175 %}
 11177 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
 11178 %{
 11179   match(Set dst (ConvD2L src));
 11180   effect(KILL cr);
 11182   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
 11183             "cmpq    $dst, [0x8000000000000000]\n\t"
 11184             "jne,s   done\n\t"
 11185             "subq    rsp, #8\n\t"
 11186             "movsd   [rsp], $src\n\t"
 11187             "call    d2l_fixup\n\t"
 11188             "popq    $dst\n"
 11189     "done:   "%}
 11190   opcode(0xF2, 0x0F, 0x2C);
 11191   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 11192              d2l_fixup(dst, src));
 11193   ins_pipe(pipe_slow);
 11194 %}
 11196 instruct convI2F_reg_reg(regF dst, rRegI src)
 11197 %{
 11198   predicate(!UseXmmI2F);
 11199   match(Set dst (ConvI2F src));
 11201   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 11202   opcode(0xF3, 0x0F, 0x2A);
 11203   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11204   ins_pipe(pipe_slow); // XXX
 11205 %}
 11207 instruct convI2F_reg_mem(regF dst, memory src)
 11208 %{
 11209   match(Set dst (ConvI2F (LoadI src)));
 11211   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 11212   opcode(0xF3, 0x0F, 0x2A);
 11213   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11214   ins_pipe(pipe_slow); // XXX
 11215 %}
 11217 instruct convI2D_reg_reg(regD dst, rRegI src)
 11218 %{
 11219   predicate(!UseXmmI2D);
 11220   match(Set dst (ConvI2D src));
 11222   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 11223   opcode(0xF2, 0x0F, 0x2A);
 11224   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11225   ins_pipe(pipe_slow); // XXX
 11226 %}
 11228 instruct convI2D_reg_mem(regD dst, memory src)
 11229 %{
 11230   match(Set dst (ConvI2D (LoadI src)));
 11232   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 11233   opcode(0xF2, 0x0F, 0x2A);
 11234   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11235   ins_pipe(pipe_slow); // XXX
 11236 %}
 11238 instruct convXI2F_reg(regF dst, rRegI src)
 11239 %{
 11240   predicate(UseXmmI2F);
 11241   match(Set dst (ConvI2F src));
 11243   format %{ "movdl $dst, $src\n\t"
 11244             "cvtdq2psl $dst, $dst\t# i2f" %}
 11245   ins_encode %{
 11246     __ movdl($dst$$XMMRegister, $src$$Register);
 11247     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11248   %}
 11249   ins_pipe(pipe_slow); // XXX
 11250 %}
 11252 instruct convXI2D_reg(regD dst, rRegI src)
 11253 %{
 11254   predicate(UseXmmI2D);
 11255   match(Set dst (ConvI2D src));
 11257   format %{ "movdl $dst, $src\n\t"
 11258             "cvtdq2pdl $dst, $dst\t# i2d" %}
 11259   ins_encode %{
 11260     __ movdl($dst$$XMMRegister, $src$$Register);
 11261     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11262   %}
 11263   ins_pipe(pipe_slow); // XXX
 11264 %}
 11266 instruct convL2F_reg_reg(regF dst, rRegL src)
 11267 %{
 11268   match(Set dst (ConvL2F src));
 11270   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 11271   opcode(0xF3, 0x0F, 0x2A);
 11272   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11273   ins_pipe(pipe_slow); // XXX
 11274 %}
 11276 instruct convL2F_reg_mem(regF dst, memory src)
 11277 %{
 11278   match(Set dst (ConvL2F (LoadL src)));
 11280   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 11281   opcode(0xF3, 0x0F, 0x2A);
 11282   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11283   ins_pipe(pipe_slow); // XXX
 11284 %}
 11286 instruct convL2D_reg_reg(regD dst, rRegL src)
 11287 %{
 11288   match(Set dst (ConvL2D src));
 11290   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 11291   opcode(0xF2, 0x0F, 0x2A);
 11292   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 11293   ins_pipe(pipe_slow); // XXX
 11294 %}
 11296 instruct convL2D_reg_mem(regD dst, memory src)
 11297 %{
 11298   match(Set dst (ConvL2D (LoadL src)));
 11300   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 11301   opcode(0xF2, 0x0F, 0x2A);
 11302   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11303   ins_pipe(pipe_slow); // XXX
 11304 %}
 11306 instruct convI2L_reg_reg(rRegL dst, rRegI src)
 11307 %{
 11308   match(Set dst (ConvI2L src));
 11310   ins_cost(125);
 11311   format %{ "movslq  $dst, $src\t# i2l" %}
 11312   ins_encode %{
 11313     __ movslq($dst$$Register, $src$$Register);
 11314   %}
 11315   ins_pipe(ialu_reg_reg);
 11316 %}
 11318 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
 11319 // %{
 11320 //   match(Set dst (ConvI2L src));
 11321 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
 11322 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
 11323 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
 11324 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
 11325 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
 11326 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
 11328 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
 11329 //   ins_encode(enc_copy(dst, src));
 11330 // //   opcode(0x63); // needs REX.W
 11331 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
 11332 //   ins_pipe(ialu_reg_reg);
 11333 // %}
 11335 // Zero-extend convert int to long
 11336 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
 11337 %{
 11338   match(Set dst (AndL (ConvI2L src) mask));
 11340   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 11341   ins_encode(enc_copy(dst, src));
 11342   ins_pipe(ialu_reg_reg);
 11343 %}
 11345 // Zero-extend convert int to long
 11346 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
 11347 %{
 11348   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
 11350   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 11351   opcode(0x8B);
 11352   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 11353   ins_pipe(ialu_reg_mem);
 11354 %}
 11356 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
 11357 %{
 11358   match(Set dst (AndL src mask));
 11360   format %{ "movl    $dst, $src\t# zero-extend long" %}
 11361   ins_encode(enc_copy_always(dst, src));
 11362   ins_pipe(ialu_reg_reg);
 11363 %}
 11365 instruct convL2I_reg_reg(rRegI dst, rRegL src)
 11366 %{
 11367   match(Set dst (ConvL2I src));
 11369   format %{ "movl    $dst, $src\t# l2i" %}
 11370   ins_encode(enc_copy_always(dst, src));
 11371   ins_pipe(ialu_reg_reg);
 11372 %}
 11375 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11376   match(Set dst (MoveF2I src));
 11377   effect(DEF dst, USE src);
 11379   ins_cost(125);
 11380   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
 11381   opcode(0x8B);
 11382   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 11383   ins_pipe(ialu_reg_mem);
 11384 %}
 11386 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 11387   match(Set dst (MoveI2F src));
 11388   effect(DEF dst, USE src);
 11390   ins_cost(125);
 11391   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
 11392   opcode(0xF3, 0x0F, 0x10);
 11393   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11394   ins_pipe(pipe_slow);
 11395 %}
 11397 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
 11398   match(Set dst (MoveD2L src));
 11399   effect(DEF dst, USE src);
 11401   ins_cost(125);
 11402   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
 11403   opcode(0x8B);
 11404   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 11405   ins_pipe(ialu_reg_mem);
 11406 %}
 11408 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
 11409   predicate(!UseXmmLoadAndClearUpper);
 11410   match(Set dst (MoveL2D src));
 11411   effect(DEF dst, USE src);
 11413   ins_cost(125);
 11414   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
 11415   opcode(0x66, 0x0F, 0x12);
 11416   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11417   ins_pipe(pipe_slow);
 11418 %}
 11420 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 11421   predicate(UseXmmLoadAndClearUpper);
 11422   match(Set dst (MoveL2D src));
 11423   effect(DEF dst, USE src);
 11425   ins_cost(125);
 11426   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
 11427   opcode(0xF2, 0x0F, 0x10);
 11428   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 11429   ins_pipe(pipe_slow);
 11430 %}
 11433 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 11434   match(Set dst (MoveF2I src));
 11435   effect(DEF dst, USE src);
 11437   ins_cost(95); // XXX
 11438   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
 11439   opcode(0xF3, 0x0F, 0x11);
 11440   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 11441   ins_pipe(pipe_slow);
 11442 %}
 11444 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11445   match(Set dst (MoveI2F src));
 11446   effect(DEF dst, USE src);
 11448   ins_cost(100);
 11449   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
 11450   opcode(0x89);
 11451   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
 11452   ins_pipe( ialu_mem_reg );
 11453 %}
 11455 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 11456   match(Set dst (MoveD2L src));
 11457   effect(DEF dst, USE src);
 11459   ins_cost(95); // XXX
 11460   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
 11461   opcode(0xF2, 0x0F, 0x11);
 11462   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 11463   ins_pipe(pipe_slow);
 11464 %}
 11466 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
 11467   match(Set dst (MoveL2D src));
 11468   effect(DEF dst, USE src);
 11470   ins_cost(100);
 11471   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
 11472   opcode(0x89);
 11473   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 11474   ins_pipe(ialu_mem_reg);
 11475 %}
 11477 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
 11478   match(Set dst (MoveF2I src));
 11479   effect(DEF dst, USE src);
 11480   ins_cost(85);
 11481   format %{ "movd    $dst,$src\t# MoveF2I" %}
 11482   ins_encode %{ __ movdl($dst$$Register, $src$$XMMRegister); %}
 11483   ins_pipe( pipe_slow );
 11484 %}
 11486 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
 11487   match(Set dst (MoveD2L src));
 11488   effect(DEF dst, USE src);
 11489   ins_cost(85);
 11490   format %{ "movd    $dst,$src\t# MoveD2L" %}
 11491   ins_encode %{ __ movdq($dst$$Register, $src$$XMMRegister); %}
 11492   ins_pipe( pipe_slow );
 11493 %}
 11495 // The next instructions have long latency and use Int unit. Set high cost.
 11496 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
 11497   match(Set dst (MoveI2F src));
 11498   effect(DEF dst, USE src);
 11499   ins_cost(300);
 11500   format %{ "movd    $dst,$src\t# MoveI2F" %}
 11501   ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); %}
 11502   ins_pipe( pipe_slow );
 11503 %}
 11505 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
 11506   match(Set dst (MoveL2D src));
 11507   effect(DEF dst, USE src);
 11508   ins_cost(300);
 11509   format %{ "movd    $dst,$src\t# MoveL2D" %}
 11510   ins_encode %{ __ movdq($dst$$XMMRegister, $src$$Register); %}
 11511   ins_pipe( pipe_slow );
 11512 %}
 11514 // Replicate scalar to packed byte (1 byte) values in xmm
 11515 instruct Repl8B_reg(regD dst, regD src) %{
 11516   match(Set dst (Replicate8B src));
 11517   format %{ "MOVDQA  $dst,$src\n\t"
 11518             "PUNPCKLBW $dst,$dst\n\t"
 11519             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11520   ins_encode( pshufd_8x8(dst, src));
 11521   ins_pipe( pipe_slow );
 11522 %}
 11524 // Replicate scalar to packed byte (1 byte) values in xmm
 11525 instruct Repl8B_rRegI(regD dst, rRegI src) %{
 11526   match(Set dst (Replicate8B src));
 11527   format %{ "MOVD    $dst,$src\n\t"
 11528             "PUNPCKLBW $dst,$dst\n\t"
 11529             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11530   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 11531   ins_pipe( pipe_slow );
 11532 %}
 11534 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11535 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 11536   match(Set dst (Replicate8B zero));
 11537   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11538   ins_encode( pxor(dst, dst));
 11539   ins_pipe( fpu_reg_reg );
 11540 %}
 11542 // Replicate scalar to packed shore (2 byte) values in xmm
 11543 instruct Repl4S_reg(regD dst, regD src) %{
 11544   match(Set dst (Replicate4S src));
 11545   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11546   ins_encode( pshufd_4x16(dst, src));
 11547   ins_pipe( fpu_reg_reg );
 11548 %}
 11550 // Replicate scalar to packed shore (2 byte) values in xmm
 11551 instruct Repl4S_rRegI(regD dst, rRegI src) %{
 11552   match(Set dst (Replicate4S src));
 11553   format %{ "MOVD    $dst,$src\n\t"
 11554             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11555   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11556   ins_pipe( fpu_reg_reg );
 11557 %}
 11559 // Replicate scalar zero to packed short (2 byte) values in xmm
 11560 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 11561   match(Set dst (Replicate4S zero));
 11562   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11563   ins_encode( pxor(dst, dst));
 11564   ins_pipe( fpu_reg_reg );
 11565 %}
 11567 // Replicate scalar to packed char (2 byte) values in xmm
 11568 instruct Repl4C_reg(regD dst, regD src) %{
 11569   match(Set dst (Replicate4C src));
 11570   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11571   ins_encode( pshufd_4x16(dst, src));
 11572   ins_pipe( fpu_reg_reg );
 11573 %}
 11575 // Replicate scalar to packed char (2 byte) values in xmm
 11576 instruct Repl4C_rRegI(regD dst, rRegI src) %{
 11577   match(Set dst (Replicate4C src));
 11578   format %{ "MOVD    $dst,$src\n\t"
 11579             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 11580   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11581   ins_pipe( fpu_reg_reg );
 11582 %}
 11584 // Replicate scalar zero to packed char (2 byte) values in xmm
 11585 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 11586   match(Set dst (Replicate4C zero));
 11587   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 11588   ins_encode( pxor(dst, dst));
 11589   ins_pipe( fpu_reg_reg );
 11590 %}
 11592 // Replicate scalar to packed integer (4 byte) values in xmm
 11593 instruct Repl2I_reg(regD dst, regD src) %{
 11594   match(Set dst (Replicate2I src));
 11595   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 11596   ins_encode( pshufd(dst, src, 0x00));
 11597   ins_pipe( fpu_reg_reg );
 11598 %}
 11600 // Replicate scalar to packed integer (4 byte) values in xmm
 11601 instruct Repl2I_rRegI(regD dst, rRegI src) %{
 11602   match(Set dst (Replicate2I src));
 11603   format %{ "MOVD   $dst,$src\n\t"
 11604             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 11605   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 11606   ins_pipe( fpu_reg_reg );
 11607 %}
 11609 // Replicate scalar zero to packed integer (2 byte) values in xmm
 11610 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 11611   match(Set dst (Replicate2I zero));
 11612   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 11613   ins_encode( pxor(dst, dst));
 11614   ins_pipe( fpu_reg_reg );
 11615 %}
 11617 // Replicate scalar to packed single precision floating point values in xmm
 11618 instruct Repl2F_reg(regD dst, regD src) %{
 11619   match(Set dst (Replicate2F src));
 11620   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11621   ins_encode( pshufd(dst, src, 0xe0));
 11622   ins_pipe( fpu_reg_reg );
 11623 %}
 11625 // Replicate scalar to packed single precision floating point values in xmm
 11626 instruct Repl2F_regF(regD dst, regF src) %{
 11627   match(Set dst (Replicate2F src));
 11628   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11629   ins_encode( pshufd(dst, src, 0xe0));
 11630   ins_pipe( fpu_reg_reg );
 11631 %}
 11633 // Replicate scalar to packed single precision floating point values in xmm
 11634 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 11635   match(Set dst (Replicate2F zero));
 11636   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 11637   ins_encode( pxor(dst, dst));
 11638   ins_pipe( fpu_reg_reg );
 11639 %}
 11642 // =======================================================================
 11643 // fast clearing of an array
 11644 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
 11645                   rFlagsReg cr)
 11646 %{
 11647   match(Set dummy (ClearArray cnt base));
 11648   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11650   format %{ "xorl    rax, rax\t# ClearArray:\n\t"
 11651             "rep stosq\t# Store rax to *rdi++ while rcx--" %}
 11652   ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
 11653              Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
 11654   ins_pipe(pipe_slow);
 11655 %}
 11657 instruct string_compare(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rbx_RegI cnt2,
 11658                         rax_RegI result, regD tmp1, regD tmp2, rFlagsReg cr)
 11659 %{
 11660   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11661   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11663   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 11664   ins_encode %{
 11665     __ string_compare($str1$$Register, $str2$$Register,
 11666                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11667                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11668   %}
 11669   ins_pipe( pipe_slow );
 11670 %}
 11672 instruct string_indexof(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
 11673                         rbx_RegI result, regD tmp1, rcx_RegI tmp2, rFlagsReg cr)
 11674 %{
 11675   predicate(UseSSE42Intrinsics);
 11676   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11677   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 11679   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 11680   ins_encode %{
 11681     __ string_indexof($str1$$Register, $str2$$Register,
 11682                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11683                       $tmp1$$XMMRegister, $tmp2$$Register);
 11684   %}
 11685   ins_pipe( pipe_slow );
 11686 %}
 11688 // fast string equals
 11689 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
 11690                        regD tmp1, regD tmp2, rbx_RegI tmp3, rFlagsReg cr)
 11691 %{
 11692   match(Set result (StrEquals (Binary str1 str2) cnt));
 11693   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11695   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11696   ins_encode %{
 11697     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11698                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11699                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11700   %}
 11701   ins_pipe( pipe_slow );
 11702 %}
 11704 // fast array equals
 11705 instruct array_equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
 11706                       regD tmp1, regD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
 11707 %{
 11708   match(Set result (AryEq ary1 ary2));
 11709   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11710   //ins_cost(300);
 11712   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11713   ins_encode %{
 11714     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11715                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11716                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11717   %}
 11718   ins_pipe( pipe_slow );
 11719 %}
 11721 //----------Control Flow Instructions------------------------------------------
 11722 // Signed compare Instructions
 11724 // XXX more variants!!
 11725 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
 11726 %{
 11727   match(Set cr (CmpI op1 op2));
 11728   effect(DEF cr, USE op1, USE op2);
 11730   format %{ "cmpl    $op1, $op2" %}
 11731   opcode(0x3B);  /* Opcode 3B /r */
 11732   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 11733   ins_pipe(ialu_cr_reg_reg);
 11734 %}
 11736 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
 11737 %{
 11738   match(Set cr (CmpI op1 op2));
 11740   format %{ "cmpl    $op1, $op2" %}
 11741   opcode(0x81, 0x07); /* Opcode 81 /7 */
 11742   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 11743   ins_pipe(ialu_cr_reg_imm);
 11744 %}
 11746 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
 11747 %{
 11748   match(Set cr (CmpI op1 (LoadI op2)));
 11750   ins_cost(500); // XXX
 11751   format %{ "cmpl    $op1, $op2" %}
 11752   opcode(0x3B); /* Opcode 3B /r */
 11753   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 11754   ins_pipe(ialu_cr_reg_mem);
 11755 %}
 11757 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
 11758 %{
 11759   match(Set cr (CmpI src zero));
 11761   format %{ "testl   $src, $src" %}
 11762   opcode(0x85);
 11763   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 11764   ins_pipe(ialu_cr_reg_imm);
 11765 %}
 11767 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
 11768 %{
 11769   match(Set cr (CmpI (AndI src con) zero));
 11771   format %{ "testl   $src, $con" %}
 11772   opcode(0xF7, 0x00);
 11773   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
 11774   ins_pipe(ialu_cr_reg_imm);
 11775 %}
 11777 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
 11778 %{
 11779   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
 11781   format %{ "testl   $src, $mem" %}
 11782   opcode(0x85);
 11783   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
 11784   ins_pipe(ialu_cr_reg_mem);
 11785 %}
 11787 // Unsigned compare Instructions; really, same as signed except they
 11788 // produce an rFlagsRegU instead of rFlagsReg.
 11789 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
 11790 %{
 11791   match(Set cr (CmpU op1 op2));
 11793   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11794   opcode(0x3B); /* Opcode 3B /r */
 11795   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 11796   ins_pipe(ialu_cr_reg_reg);
 11797 %}
 11799 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
 11800 %{
 11801   match(Set cr (CmpU op1 op2));
 11803   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11804   opcode(0x81,0x07); /* Opcode 81 /7 */
 11805   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 11806   ins_pipe(ialu_cr_reg_imm);
 11807 %}
 11809 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
 11810 %{
 11811   match(Set cr (CmpU op1 (LoadI op2)));
 11813   ins_cost(500); // XXX
 11814   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11815   opcode(0x3B); /* Opcode 3B /r */
 11816   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 11817   ins_pipe(ialu_cr_reg_mem);
 11818 %}
 11820 // // // Cisc-spilled version of cmpU_rReg
 11821 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
 11822 // //%{
 11823 // //  match(Set cr (CmpU (LoadI op1) op2));
 11824 // //
 11825 // //  format %{ "CMPu   $op1,$op2" %}
 11826 // //  ins_cost(500);
 11827 // //  opcode(0x39);  /* Opcode 39 /r */
 11828 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 11829 // //%}
 11831 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
 11832 %{
 11833   match(Set cr (CmpU src zero));
 11835   format %{ "testl  $src, $src\t# unsigned" %}
 11836   opcode(0x85);
 11837   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 11838   ins_pipe(ialu_cr_reg_imm);
 11839 %}
 11841 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
 11842 %{
 11843   match(Set cr (CmpP op1 op2));
 11845   format %{ "cmpq    $op1, $op2\t# ptr" %}
 11846   opcode(0x3B); /* Opcode 3B /r */
 11847   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 11848   ins_pipe(ialu_cr_reg_reg);
 11849 %}
 11851 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
 11852 %{
 11853   match(Set cr (CmpP op1 (LoadP op2)));
 11855   ins_cost(500); // XXX
 11856   format %{ "cmpq    $op1, $op2\t# ptr" %}
 11857   opcode(0x3B); /* Opcode 3B /r */
 11858   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11859   ins_pipe(ialu_cr_reg_mem);
 11860 %}
 11862 // // // Cisc-spilled version of cmpP_rReg
 11863 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
 11864 // //%{
 11865 // //  match(Set cr (CmpP (LoadP op1) op2));
 11866 // //
 11867 // //  format %{ "CMPu   $op1,$op2" %}
 11868 // //  ins_cost(500);
 11869 // //  opcode(0x39);  /* Opcode 39 /r */
 11870 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 11871 // //%}
 11873 // XXX this is generalized by compP_rReg_mem???
 11874 // Compare raw pointer (used in out-of-heap check).
 11875 // Only works because non-oop pointers must be raw pointers
 11876 // and raw pointers have no anti-dependencies.
 11877 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
 11878 %{
 11879   predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
 11880   match(Set cr (CmpP op1 (LoadP op2)));
 11882   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
 11883   opcode(0x3B); /* Opcode 3B /r */
 11884   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11885   ins_pipe(ialu_cr_reg_mem);
 11886 %}
 11888 // This will generate a signed flags result. This should be OK since
 11889 // any compare to a zero should be eq/neq.
 11890 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
 11891 %{
 11892   match(Set cr (CmpP src zero));
 11894   format %{ "testq   $src, $src\t# ptr" %}
 11895   opcode(0x85);
 11896   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 11897   ins_pipe(ialu_cr_reg_imm);
 11898 %}
 11900 // This will generate a signed flags result. This should be OK since
 11901 // any compare to a zero should be eq/neq.
 11902 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
 11903 %{
 11904   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
 11905   match(Set cr (CmpP (LoadP op) zero));
 11907   ins_cost(500); // XXX
 11908   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
 11909   opcode(0xF7); /* Opcode F7 /0 */
 11910   ins_encode(REX_mem_wide(op),
 11911              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
 11912   ins_pipe(ialu_cr_reg_imm);
 11913 %}
 11915 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
 11916 %{
 11917   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL));
 11918   match(Set cr (CmpP (LoadP mem) zero));
 11920   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
 11921   ins_encode %{
 11922     __ cmpq(r12, $mem$$Address);
 11923   %}
 11924   ins_pipe(ialu_cr_reg_mem);
 11925 %}
 11927 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
 11928 %{
 11929   match(Set cr (CmpN op1 op2));
 11931   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
 11932   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
 11933   ins_pipe(ialu_cr_reg_reg);
 11934 %}
 11936 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
 11937 %{
 11938   match(Set cr (CmpN src (LoadN mem)));
 11940   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
 11941   ins_encode %{
 11942     __ cmpl($src$$Register, $mem$$Address);
 11943   %}
 11944   ins_pipe(ialu_cr_reg_mem);
 11945 %}
 11947 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
 11948   match(Set cr (CmpN op1 op2));
 11950   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
 11951   ins_encode %{
 11952     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
 11953   %}
 11954   ins_pipe(ialu_cr_reg_imm);
 11955 %}
 11957 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
 11958 %{
 11959   match(Set cr (CmpN src (LoadN mem)));
 11961   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
 11962   ins_encode %{
 11963     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
 11964   %}
 11965   ins_pipe(ialu_cr_reg_mem);
 11966 %}
 11968 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
 11969   match(Set cr (CmpN src zero));
 11971   format %{ "testl   $src, $src\t# compressed ptr" %}
 11972   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
 11973   ins_pipe(ialu_cr_reg_imm);
 11974 %}
 11976 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
 11977 %{
 11978   predicate(Universe::narrow_oop_base() != NULL);
 11979   match(Set cr (CmpN (LoadN mem) zero));
 11981   ins_cost(500); // XXX
 11982   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
 11983   ins_encode %{
 11984     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
 11985   %}
 11986   ins_pipe(ialu_cr_reg_mem);
 11987 %}
 11989 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
 11990 %{
 11991   predicate(Universe::narrow_oop_base() == NULL);
 11992   match(Set cr (CmpN (LoadN mem) zero));
 11994   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
 11995   ins_encode %{
 11996     __ cmpl(r12, $mem$$Address);
 11997   %}
 11998   ins_pipe(ialu_cr_reg_mem);
 11999 %}
 12001 // Yanked all unsigned pointer compare operations.
 12002 // Pointer compares are done with CmpP which is already unsigned.
 12004 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
 12005 %{
 12006   match(Set cr (CmpL op1 op2));
 12008   format %{ "cmpq    $op1, $op2" %}
 12009   opcode(0x3B);  /* Opcode 3B /r */
 12010   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 12011   ins_pipe(ialu_cr_reg_reg);
 12012 %}
 12014 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
 12015 %{
 12016   match(Set cr (CmpL op1 op2));
 12018   format %{ "cmpq    $op1, $op2" %}
 12019   opcode(0x81, 0x07); /* Opcode 81 /7 */
 12020   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
 12021   ins_pipe(ialu_cr_reg_imm);
 12022 %}
 12024 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
 12025 %{
 12026   match(Set cr (CmpL op1 (LoadL op2)));
 12028   format %{ "cmpq    $op1, $op2" %}
 12029   opcode(0x3B); /* Opcode 3B /r */
 12030   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 12031   ins_pipe(ialu_cr_reg_mem);
 12032 %}
 12034 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
 12035 %{
 12036   match(Set cr (CmpL src zero));
 12038   format %{ "testq   $src, $src" %}
 12039   opcode(0x85);
 12040   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 12041   ins_pipe(ialu_cr_reg_imm);
 12042 %}
 12044 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
 12045 %{
 12046   match(Set cr (CmpL (AndL src con) zero));
 12048   format %{ "testq   $src, $con\t# long" %}
 12049   opcode(0xF7, 0x00);
 12050   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
 12051   ins_pipe(ialu_cr_reg_imm);
 12052 %}
 12054 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
 12055 %{
 12056   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
 12058   format %{ "testq   $src, $mem" %}
 12059   opcode(0x85);
 12060   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
 12061   ins_pipe(ialu_cr_reg_mem);
 12062 %}
 12064 // Manifest a CmpL result in an integer register.  Very painful.
 12065 // This is the test to avoid.
 12066 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
 12067 %{
 12068   match(Set dst (CmpL3 src1 src2));
 12069   effect(KILL flags);
 12071   ins_cost(275); // XXX
 12072   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
 12073             "movl    $dst, -1\n\t"
 12074             "jl,s    done\n\t"
 12075             "setne   $dst\n\t"
 12076             "movzbl  $dst, $dst\n\t"
 12077     "done:" %}
 12078   ins_encode(cmpl3_flag(src1, src2, dst));
 12079   ins_pipe(pipe_slow);
 12080 %}
 12082 //----------Max and Min--------------------------------------------------------
 12083 // Min Instructions
 12085 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
 12086 %{
 12087   effect(USE_DEF dst, USE src, USE cr);
 12089   format %{ "cmovlgt $dst, $src\t# min" %}
 12090   opcode(0x0F, 0x4F);
 12091   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 12092   ins_pipe(pipe_cmov_reg);
 12093 %}
 12096 instruct minI_rReg(rRegI dst, rRegI src)
 12097 %{
 12098   match(Set dst (MinI dst src));
 12100   ins_cost(200);
 12101   expand %{
 12102     rFlagsReg cr;
 12103     compI_rReg(cr, dst, src);
 12104     cmovI_reg_g(dst, src, cr);
 12105   %}
 12106 %}
 12108 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
 12109 %{
 12110   effect(USE_DEF dst, USE src, USE cr);
 12112   format %{ "cmovllt $dst, $src\t# max" %}
 12113   opcode(0x0F, 0x4C);
 12114   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 12115   ins_pipe(pipe_cmov_reg);
 12116 %}
 12119 instruct maxI_rReg(rRegI dst, rRegI src)
 12120 %{
 12121   match(Set dst (MaxI dst src));
 12123   ins_cost(200);
 12124   expand %{
 12125     rFlagsReg cr;
 12126     compI_rReg(cr, dst, src);
 12127     cmovI_reg_l(dst, src, cr);
 12128   %}
 12129 %}
 12131 // ============================================================================
 12132 // Branch Instructions
 12134 // Jump Direct - Label defines a relative address from JMP+1
 12135 instruct jmpDir(label labl)
 12136 %{
 12137   match(Goto);
 12138   effect(USE labl);
 12140   ins_cost(300);
 12141   format %{ "jmp     $labl" %}
 12142   size(5);
 12143   opcode(0xE9);
 12144   ins_encode(OpcP, Lbl(labl));
 12145   ins_pipe(pipe_jmp);
 12146   ins_pc_relative(1);
 12147 %}
 12149 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12150 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
 12151 %{
 12152   match(If cop cr);
 12153   effect(USE labl);
 12155   ins_cost(300);
 12156   format %{ "j$cop     $labl" %}
 12157   size(6);
 12158   opcode(0x0F, 0x80);
 12159   ins_encode(Jcc(cop, labl));
 12160   ins_pipe(pipe_jcc);
 12161   ins_pc_relative(1);
 12162 %}
 12164 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12165 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
 12166 %{
 12167   match(CountedLoopEnd cop cr);
 12168   effect(USE labl);
 12170   ins_cost(300);
 12171   format %{ "j$cop     $labl\t# loop end" %}
 12172   size(6);
 12173   opcode(0x0F, 0x80);
 12174   ins_encode(Jcc(cop, labl));
 12175   ins_pipe(pipe_jcc);
 12176   ins_pc_relative(1);
 12177 %}
 12179 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12180 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12181   match(CountedLoopEnd cop cmp);
 12182   effect(USE labl);
 12184   ins_cost(300);
 12185   format %{ "j$cop,u   $labl\t# loop end" %}
 12186   size(6);
 12187   opcode(0x0F, 0x80);
 12188   ins_encode(Jcc(cop, labl));
 12189   ins_pipe(pipe_jcc);
 12190   ins_pc_relative(1);
 12191 %}
 12193 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12194   match(CountedLoopEnd cop cmp);
 12195   effect(USE labl);
 12197   ins_cost(200);
 12198   format %{ "j$cop,u   $labl\t# loop end" %}
 12199   size(6);
 12200   opcode(0x0F, 0x80);
 12201   ins_encode(Jcc(cop, labl));
 12202   ins_pipe(pipe_jcc);
 12203   ins_pc_relative(1);
 12204 %}
 12206 // Jump Direct Conditional - using unsigned comparison
 12207 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12208   match(If cop cmp);
 12209   effect(USE labl);
 12211   ins_cost(300);
 12212   format %{ "j$cop,u  $labl" %}
 12213   size(6);
 12214   opcode(0x0F, 0x80);
 12215   ins_encode(Jcc(cop, labl));
 12216   ins_pipe(pipe_jcc);
 12217   ins_pc_relative(1);
 12218 %}
 12220 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12221   match(If cop cmp);
 12222   effect(USE labl);
 12224   ins_cost(200);
 12225   format %{ "j$cop,u  $labl" %}
 12226   size(6);
 12227   opcode(0x0F, 0x80);
 12228   ins_encode(Jcc(cop, labl));
 12229   ins_pipe(pipe_jcc);
 12230   ins_pc_relative(1);
 12231 %}
 12233 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
 12234   match(If cop cmp);
 12235   effect(USE labl);
 12237   ins_cost(200);
 12238   format %{ $$template
 12239     if ($cop$$cmpcode == Assembler::notEqual) {
 12240       $$emit$$"jp,u   $labl\n\t"
 12241       $$emit$$"j$cop,u   $labl"
 12242     } else {
 12243       $$emit$$"jp,u   done\n\t"
 12244       $$emit$$"j$cop,u   $labl\n\t"
 12245       $$emit$$"done:"
 12247   %}
 12248   size(12);
 12249   opcode(0x0F, 0x80);
 12250   ins_encode %{
 12251     Label* l = $labl$$label;
 12252     $$$emit8$primary;
 12253     emit_cc(cbuf, $secondary, Assembler::parity);
 12254     int parity_disp = -1;
 12255     if ($cop$$cmpcode == Assembler::notEqual) {
 12256        // the two jumps 6 bytes apart so the jump distances are too
 12257        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12258     } else if ($cop$$cmpcode == Assembler::equal) {
 12259        parity_disp = 6;
 12260     } else {
 12261        ShouldNotReachHere();
 12263     emit_d32(cbuf, parity_disp);
 12264     $$$emit8$primary;
 12265     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12266     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12267     emit_d32(cbuf, disp);
 12268   %}
 12269   ins_pipe(pipe_jcc);
 12270   ins_pc_relative(1);
 12271 %}
 12273 // ============================================================================
 12274 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
 12275 // superklass array for an instance of the superklass.  Set a hidden
 12276 // internal cache on a hit (cache is checked with exposed code in
 12277 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
 12278 // encoding ALSO sets flags.
 12280 instruct partialSubtypeCheck(rdi_RegP result,
 12281                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 12282                              rFlagsReg cr)
 12283 %{
 12284   match(Set result (PartialSubtypeCheck sub super));
 12285   effect(KILL rcx, KILL cr);
 12287   ins_cost(1100);  // slightly larger than the next version
 12288   format %{ "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 12289             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 12290             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 12291             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
 12292             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
 12293             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 12294             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
 12295     "miss:\t" %}
 12297   opcode(0x1); // Force a XOR of RDI
 12298   ins_encode(enc_PartialSubtypeCheck());
 12299   ins_pipe(pipe_slow);
 12300 %}
 12302 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
 12303                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 12304                                      immP0 zero,
 12305                                      rdi_RegP result)
 12306 %{
 12307   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12308   effect(KILL rcx, KILL result);
 12310   ins_cost(1000);
 12311   format %{ "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 12312             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 12313             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 12314             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
 12315             "jne,s   miss\t\t# Missed: flags nz\n\t"
 12316             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 12317     "miss:\t" %}
 12319   opcode(0x0); // No need to XOR RDI
 12320   ins_encode(enc_PartialSubtypeCheck());
 12321   ins_pipe(pipe_slow);
 12322 %}
 12324 // ============================================================================
 12325 // Branch Instructions -- short offset versions
 12326 //
 12327 // These instructions are used to replace jumps of a long offset (the default
 12328 // match) with jumps of a shorter offset.  These instructions are all tagged
 12329 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12330 // match rules in general matching.  Instead, the ADLC generates a conversion
 12331 // method in the MachNode which can be used to do in-place replacement of the
 12332 // long variant with the shorter variant.  The compiler will determine if a
 12333 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12334 // specific code section of the file.
 12336 // Jump Direct - Label defines a relative address from JMP+1
 12337 instruct jmpDir_short(label labl) %{
 12338   match(Goto);
 12339   effect(USE labl);
 12341   ins_cost(300);
 12342   format %{ "jmp,s   $labl" %}
 12343   size(2);
 12344   opcode(0xEB);
 12345   ins_encode(OpcP, LblShort(labl));
 12346   ins_pipe(pipe_jmp);
 12347   ins_pc_relative(1);
 12348   ins_short_branch(1);
 12349 %}
 12351 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12352 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
 12353   match(If cop cr);
 12354   effect(USE labl);
 12356   ins_cost(300);
 12357   format %{ "j$cop,s   $labl" %}
 12358   size(2);
 12359   opcode(0x70);
 12360   ins_encode(JccShort(cop, labl));
 12361   ins_pipe(pipe_jcc);
 12362   ins_pc_relative(1);
 12363   ins_short_branch(1);
 12364 %}
 12366 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12367 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
 12368   match(CountedLoopEnd cop cr);
 12369   effect(USE labl);
 12371   ins_cost(300);
 12372   format %{ "j$cop,s   $labl\t# loop end" %}
 12373   size(2);
 12374   opcode(0x70);
 12375   ins_encode(JccShort(cop, labl));
 12376   ins_pipe(pipe_jcc);
 12377   ins_pc_relative(1);
 12378   ins_short_branch(1);
 12379 %}
 12381 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12382 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12383   match(CountedLoopEnd cop cmp);
 12384   effect(USE labl);
 12386   ins_cost(300);
 12387   format %{ "j$cop,us  $labl\t# loop end" %}
 12388   size(2);
 12389   opcode(0x70);
 12390   ins_encode(JccShort(cop, labl));
 12391   ins_pipe(pipe_jcc);
 12392   ins_pc_relative(1);
 12393   ins_short_branch(1);
 12394 %}
 12396 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12397   match(CountedLoopEnd cop cmp);
 12398   effect(USE labl);
 12400   ins_cost(300);
 12401   format %{ "j$cop,us  $labl\t# loop end" %}
 12402   size(2);
 12403   opcode(0x70);
 12404   ins_encode(JccShort(cop, labl));
 12405   ins_pipe(pipe_jcc);
 12406   ins_pc_relative(1);
 12407   ins_short_branch(1);
 12408 %}
 12410 // Jump Direct Conditional - using unsigned comparison
 12411 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 12412   match(If cop cmp);
 12413   effect(USE labl);
 12415   ins_cost(300);
 12416   format %{ "j$cop,us  $labl" %}
 12417   size(2);
 12418   opcode(0x70);
 12419   ins_encode(JccShort(cop, labl));
 12420   ins_pipe(pipe_jcc);
 12421   ins_pc_relative(1);
 12422   ins_short_branch(1);
 12423 %}
 12425 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 12426   match(If cop cmp);
 12427   effect(USE labl);
 12429   ins_cost(300);
 12430   format %{ "j$cop,us  $labl" %}
 12431   size(2);
 12432   opcode(0x70);
 12433   ins_encode(JccShort(cop, labl));
 12434   ins_pipe(pipe_jcc);
 12435   ins_pc_relative(1);
 12436   ins_short_branch(1);
 12437 %}
 12439 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
 12440   match(If cop cmp);
 12441   effect(USE labl);
 12443   ins_cost(300);
 12444   format %{ $$template
 12445     if ($cop$$cmpcode == Assembler::notEqual) {
 12446       $$emit$$"jp,u,s   $labl\n\t"
 12447       $$emit$$"j$cop,u,s   $labl"
 12448     } else {
 12449       $$emit$$"jp,u,s   done\n\t"
 12450       $$emit$$"j$cop,u,s  $labl\n\t"
 12451       $$emit$$"done:"
 12453   %}
 12454   size(4);
 12455   opcode(0x70);
 12456   ins_encode %{
 12457     Label* l = $labl$$label;
 12458     emit_cc(cbuf, $primary, Assembler::parity);
 12459     int parity_disp = -1;
 12460     if ($cop$$cmpcode == Assembler::notEqual) {
 12461       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12462     } else if ($cop$$cmpcode == Assembler::equal) {
 12463       parity_disp = 2;
 12464     } else {
 12465       ShouldNotReachHere();
 12467     emit_d8(cbuf, parity_disp);
 12468     emit_cc(cbuf, $primary, $cop$$cmpcode);
 12469     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12470     emit_d8(cbuf, disp);
 12471     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 12472     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 12473   %}
 12474   ins_pipe(pipe_jcc);
 12475   ins_pc_relative(1);
 12476   ins_short_branch(1);
 12477 %}
 12479 // ============================================================================
 12480 // inlined locking and unlocking
 12482 instruct cmpFastLock(rFlagsReg cr,
 12483                      rRegP object, rRegP box, rax_RegI tmp, rRegP scr)
 12484 %{
 12485   match(Set cr (FastLock object box));
 12486   effect(TEMP tmp, TEMP scr);
 12488   ins_cost(300);
 12489   format %{ "fastlock $object,$box,$tmp,$scr" %}
 12490   ins_encode(Fast_Lock(object, box, tmp, scr));
 12491   ins_pipe(pipe_slow);
 12492   ins_pc_relative(1);
 12493 %}
 12495 instruct cmpFastUnlock(rFlagsReg cr,
 12496                        rRegP object, rax_RegP box, rRegP tmp)
 12497 %{
 12498   match(Set cr (FastUnlock object box));
 12499   effect(TEMP tmp);
 12501   ins_cost(300);
 12502   format %{ "fastunlock $object, $box, $tmp" %}
 12503   ins_encode(Fast_Unlock(object, box, tmp));
 12504   ins_pipe(pipe_slow);
 12505   ins_pc_relative(1);
 12506 %}
 12509 // ============================================================================
 12510 // Safepoint Instructions
 12511 instruct safePoint_poll(rFlagsReg cr)
 12512 %{
 12513   match(SafePoint);
 12514   effect(KILL cr);
 12516   format %{ "testl   rax, [rip + #offset_to_poll_page]\t"
 12517             "# Safepoint: poll for GC" %}
 12518   size(6); // Opcode + ModRM + Disp32 == 6 bytes
 12519   ins_cost(125);
 12520   ins_encode(enc_safepoint_poll);
 12521   ins_pipe(ialu_reg_mem);
 12522 %}
 12524 // ============================================================================
 12525 // Procedure Call/Return Instructions
 12526 // Call Java Static Instruction
 12527 // Note: If this code changes, the corresponding ret_addr_offset() and
 12528 //       compute_padding() functions will have to be adjusted.
 12529 instruct CallStaticJavaDirect(method meth)
 12530 %{
 12531   match(CallStaticJava);
 12532   effect(USE meth);
 12534   ins_cost(300);
 12535   format %{ "call,static " %}
 12536   opcode(0xE8); /* E8 cd */
 12537   ins_encode(Java_Static_Call(meth), call_epilog);
 12538   ins_pipe(pipe_slow);
 12539   ins_pc_relative(1);
 12540   ins_alignment(4);
 12541 %}
 12543 // Call Java Dynamic Instruction
 12544 // Note: If this code changes, the corresponding ret_addr_offset() and
 12545 //       compute_padding() functions will have to be adjusted.
 12546 instruct CallDynamicJavaDirect(method meth)
 12547 %{
 12548   match(CallDynamicJava);
 12549   effect(USE meth);
 12551   ins_cost(300);
 12552   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
 12553             "call,dynamic " %}
 12554   opcode(0xE8); /* E8 cd */
 12555   ins_encode(Java_Dynamic_Call(meth), call_epilog);
 12556   ins_pipe(pipe_slow);
 12557   ins_pc_relative(1);
 12558   ins_alignment(4);
 12559 %}
 12561 // Call Runtime Instruction
 12562 instruct CallRuntimeDirect(method meth)
 12563 %{
 12564   match(CallRuntime);
 12565   effect(USE meth);
 12567   ins_cost(300);
 12568   format %{ "call,runtime " %}
 12569   opcode(0xE8); /* E8 cd */
 12570   ins_encode(Java_To_Runtime(meth));
 12571   ins_pipe(pipe_slow);
 12572   ins_pc_relative(1);
 12573 %}
 12575 // Call runtime without safepoint
 12576 instruct CallLeafDirect(method meth)
 12577 %{
 12578   match(CallLeaf);
 12579   effect(USE meth);
 12581   ins_cost(300);
 12582   format %{ "call_leaf,runtime " %}
 12583   opcode(0xE8); /* E8 cd */
 12584   ins_encode(Java_To_Runtime(meth));
 12585   ins_pipe(pipe_slow);
 12586   ins_pc_relative(1);
 12587 %}
 12589 // Call runtime without safepoint
 12590 instruct CallLeafNoFPDirect(method meth)
 12591 %{
 12592   match(CallLeafNoFP);
 12593   effect(USE meth);
 12595   ins_cost(300);
 12596   format %{ "call_leaf_nofp,runtime " %}
 12597   opcode(0xE8); /* E8 cd */
 12598   ins_encode(Java_To_Runtime(meth));
 12599   ins_pipe(pipe_slow);
 12600   ins_pc_relative(1);
 12601 %}
 12603 // Return Instruction
 12604 // Remove the return address & jump to it.
 12605 // Notice: We always emit a nop after a ret to make sure there is room
 12606 // for safepoint patching
 12607 instruct Ret()
 12608 %{
 12609   match(Return);
 12611   format %{ "ret" %}
 12612   opcode(0xC3);
 12613   ins_encode(OpcP);
 12614   ins_pipe(pipe_jmp);
 12615 %}
 12617 // Tail Call; Jump from runtime stub to Java code.
 12618 // Also known as an 'interprocedural jump'.
 12619 // Target of jump will eventually return to caller.
 12620 // TailJump below removes the return address.
 12621 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
 12622 %{
 12623   match(TailCall jump_target method_oop);
 12625   ins_cost(300);
 12626   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
 12627   opcode(0xFF, 0x4); /* Opcode FF /4 */
 12628   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
 12629   ins_pipe(pipe_jmp);
 12630 %}
 12632 // Tail Jump; remove the return address; jump to target.
 12633 // TailCall above leaves the return address around.
 12634 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
 12635 %{
 12636   match(TailJump jump_target ex_oop);
 12638   ins_cost(300);
 12639   format %{ "popq    rdx\t# pop return address\n\t"
 12640             "jmp     $jump_target" %}
 12641   opcode(0xFF, 0x4); /* Opcode FF /4 */
 12642   ins_encode(Opcode(0x5a), // popq rdx
 12643              REX_reg(jump_target), OpcP, reg_opc(jump_target));
 12644   ins_pipe(pipe_jmp);
 12645 %}
 12647 // Create exception oop: created by stack-crawling runtime code.
 12648 // Created exception is now available to this handler, and is setup
 12649 // just prior to jumping to this handler.  No code emitted.
 12650 instruct CreateException(rax_RegP ex_oop)
 12651 %{
 12652   match(Set ex_oop (CreateEx));
 12654   size(0);
 12655   // use the following format syntax
 12656   format %{ "# exception oop is in rax; no code emitted" %}
 12657   ins_encode();
 12658   ins_pipe(empty);
 12659 %}
 12661 // Rethrow exception:
 12662 // The exception oop will come in the first argument position.
 12663 // Then JUMP (not call) to the rethrow stub code.
 12664 instruct RethrowException()
 12665 %{
 12666   match(Rethrow);
 12668   // use the following format syntax
 12669   format %{ "jmp     rethrow_stub" %}
 12670   ins_encode(enc_rethrow);
 12671   ins_pipe(pipe_jmp);
 12672 %}
 12675 //----------PEEPHOLE RULES-----------------------------------------------------
 12676 // These must follow all instruction definitions as they use the names
 12677 // defined in the instructions definitions.
 12678 //
 12679 // peepmatch ( root_instr_name [preceding_instruction]* );
 12680 //
 12681 // peepconstraint %{
 12682 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12683 //  [, ...] );
 12684 // // instruction numbers are zero-based using left to right order in peepmatch
 12685 //
 12686 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 12687 // // provide an instruction_number.operand_name for each operand that appears
 12688 // // in the replacement instruction's match rule
 12689 //
 12690 // ---------VM FLAGS---------------------------------------------------------
 12691 //
 12692 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12693 //
 12694 // Each peephole rule is given an identifying number starting with zero and
 12695 // increasing by one in the order seen by the parser.  An individual peephole
 12696 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12697 // on the command-line.
 12698 //
 12699 // ---------CURRENT LIMITATIONS----------------------------------------------
 12700 //
 12701 // Only match adjacent instructions in same basic block
 12702 // Only equality constraints
 12703 // Only constraints between operands, not (0.dest_reg == RAX_enc)
 12704 // Only one replacement instruction
 12705 //
 12706 // ---------EXAMPLE----------------------------------------------------------
 12707 //
 12708 // // pertinent parts of existing instructions in architecture description
 12709 // instruct movI(rRegI dst, rRegI src)
 12710 // %{
 12711 //   match(Set dst (CopyI src));
 12712 // %}
 12713 //
 12714 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
 12715 // %{
 12716 //   match(Set dst (AddI dst src));
 12717 //   effect(KILL cr);
 12718 // %}
 12719 //
 12720 // // Change (inc mov) to lea
 12721 // peephole %{
 12722 //   // increment preceeded by register-register move
 12723 //   peepmatch ( incI_rReg movI );
 12724 //   // require that the destination register of the increment
 12725 //   // match the destination register of the move
 12726 //   peepconstraint ( 0.dst == 1.dst );
 12727 //   // construct a replacement instruction that sets
 12728 //   // the destination to ( move's source register + one )
 12729 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
 12730 // %}
 12731 //
 12733 // Implementation no longer uses movX instructions since
 12734 // machine-independent system no longer uses CopyX nodes.
 12735 //
 12736 // peephole
 12737 // %{
 12738 //   peepmatch (incI_rReg movI);
 12739 //   peepconstraint (0.dst == 1.dst);
 12740 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12741 // %}
 12743 // peephole
 12744 // %{
 12745 //   peepmatch (decI_rReg movI);
 12746 //   peepconstraint (0.dst == 1.dst);
 12747 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12748 // %}
 12750 // peephole
 12751 // %{
 12752 //   peepmatch (addI_rReg_imm movI);
 12753 //   peepconstraint (0.dst == 1.dst);
 12754 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12755 // %}
 12757 // peephole
 12758 // %{
 12759 //   peepmatch (incL_rReg movL);
 12760 //   peepconstraint (0.dst == 1.dst);
 12761 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12762 // %}
 12764 // peephole
 12765 // %{
 12766 //   peepmatch (decL_rReg movL);
 12767 //   peepconstraint (0.dst == 1.dst);
 12768 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12769 // %}
 12771 // peephole
 12772 // %{
 12773 //   peepmatch (addL_rReg_imm movL);
 12774 //   peepconstraint (0.dst == 1.dst);
 12775 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12776 // %}
 12778 // peephole
 12779 // %{
 12780 //   peepmatch (addP_rReg_imm movP);
 12781 //   peepconstraint (0.dst == 1.dst);
 12782 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
 12783 // %}
 12785 // // Change load of spilled value to only a spill
 12786 // instruct storeI(memory mem, rRegI src)
 12787 // %{
 12788 //   match(Set mem (StoreI mem src));
 12789 // %}
 12790 //
 12791 // instruct loadI(rRegI dst, memory mem)
 12792 // %{
 12793 //   match(Set dst (LoadI mem));
 12794 // %}
 12795 //
 12797 peephole
 12798 %{
 12799   peepmatch (loadI storeI);
 12800   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 12801   peepreplace (storeI(1.mem 1.mem 1.src));
 12802 %}
 12804 peephole
 12805 %{
 12806   peepmatch (loadL storeL);
 12807   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 12808   peepreplace (storeL(1.mem 1.mem 1.src));
 12809 %}
 12811 //----------SMARTSPILL RULES---------------------------------------------------
 12812 // These must follow all instruction definitions as they use the names
 12813 // defined in the instructions definitions.

mercurial