src/cpu/x86/vm/templateTable_x86_64.cpp

Mon, 04 Jan 2010 18:38:08 +0100

author
twisti
date
Mon, 04 Jan 2010 18:38:08 +0100
changeset 1570
e66fd840cb6b
parent 1543
85f13cdfbc1d
child 1683
455df1b81409
permissions
-rw-r--r--

6893081: method handle & invokedynamic code needs additional cleanup (post 6815692, 6858164)
Summary: During the work for 6829187 we have fixed a number of basic bugs which are logically grouped with 6815692 and 6858164 but which must be reviewed and pushed separately.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_64.cpp.incl"
    28 #ifndef CC_INTERP
    30 #define __ _masm->
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No amd64 specific initialization
    36 }
    38 // Address computation: local variables
    40 static inline Address iaddress(int n) {
    41   return Address(r14, Interpreter::local_offset_in_bytes(n));
    42 }
    44 static inline Address laddress(int n) {
    45   return iaddress(n + 1);
    46 }
    48 static inline Address faddress(int n) {
    49   return iaddress(n);
    50 }
    52 static inline Address daddress(int n) {
    53   return laddress(n);
    54 }
    56 static inline Address aaddress(int n) {
    57   return iaddress(n);
    58 }
    60 static inline Address iaddress(Register r) {
    61   return Address(r14, r, Address::times_8, Interpreter::value_offset_in_bytes());
    62 }
    64 static inline Address laddress(Register r) {
    65   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    66 }
    68 static inline Address faddress(Register r) {
    69   return iaddress(r);
    70 }
    72 static inline Address daddress(Register r) {
    73   return laddress(r);
    74 }
    76 static inline Address aaddress(Register r) {
    77   return iaddress(r);
    78 }
    80 static inline Address at_rsp() {
    81   return Address(rsp, 0);
    82 }
    84 // At top of Java expression stack which may be different than esp().  It
    85 // isn't for category 1 objects.
    86 static inline Address at_tos   () {
    87   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    88 }
    90 static inline Address at_tos_p1() {
    91   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    92 }
    94 static inline Address at_tos_p2() {
    95   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    96 }
    98 static inline Address at_tos_p3() {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   100 }
   102 // Condition conversion
   103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   104   switch (cc) {
   105   case TemplateTable::equal        : return Assembler::notEqual;
   106   case TemplateTable::not_equal    : return Assembler::equal;
   107   case TemplateTable::less         : return Assembler::greaterEqual;
   108   case TemplateTable::less_equal   : return Assembler::greater;
   109   case TemplateTable::greater      : return Assembler::lessEqual;
   110   case TemplateTable::greater_equal: return Assembler::less;
   111   }
   112   ShouldNotReachHere();
   113   return Assembler::zero;
   114 }
   117 // Miscelaneous helper routines
   118 // Store an oop (or NULL) at the address described by obj.
   119 // If val == noreg this means store a NULL
   121 static void do_oop_store(InterpreterMacroAssembler* _masm,
   122                          Address obj,
   123                          Register val,
   124                          BarrierSet::Name barrier,
   125                          bool precise) {
   126   assert(val == noreg || val == rax, "parameter is just for looks");
   127   switch (barrier) {
   128 #ifndef SERIALGC
   129     case BarrierSet::G1SATBCT:
   130     case BarrierSet::G1SATBCTLogging:
   131       {
   132         // flatten object address if needed
   133         if (obj.index() == noreg && obj.disp() == 0) {
   134           if (obj.base() != rdx) {
   135             __ movq(rdx, obj.base());
   136           }
   137         } else {
   138           __ leaq(rdx, obj);
   139         }
   140         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
   141         if (val == noreg) {
   142           __ store_heap_oop_null(Address(rdx, 0));
   143         } else {
   144           __ store_heap_oop(Address(rdx, 0), val);
   145           __ g1_write_barrier_post(rdx, val, r8, rbx);
   146         }
   148       }
   149       break;
   150 #endif // SERIALGC
   151     case BarrierSet::CardTableModRef:
   152     case BarrierSet::CardTableExtension:
   153       {
   154         if (val == noreg) {
   155           __ store_heap_oop_null(obj);
   156         } else {
   157           __ store_heap_oop(obj, val);
   158           // flatten object address if needed
   159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   160             __ store_check(obj.base());
   161           } else {
   162             __ leaq(rdx, obj);
   163             __ store_check(rdx);
   164           }
   165         }
   166       }
   167       break;
   168     case BarrierSet::ModRef:
   169     case BarrierSet::Other:
   170       if (val == noreg) {
   171         __ store_heap_oop_null(obj);
   172       } else {
   173         __ store_heap_oop(obj, val);
   174       }
   175       break;
   176     default      :
   177       ShouldNotReachHere();
   179   }
   180 }
   182 Address TemplateTable::at_bcp(int offset) {
   183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   184   return Address(r13, offset);
   185 }
   187 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   188                                    Register scratch,
   189                                    bool load_bc_into_scratch/*=true*/) {
   190   if (!RewriteBytecodes) {
   191     return;
   192   }
   193   // the pair bytecodes have already done the load.
   194   if (load_bc_into_scratch) {
   195     __ movl(bc, bytecode);
   196   }
   197   Label patch_done;
   198   if (JvmtiExport::can_post_breakpoint()) {
   199     Label fast_patch;
   200     // if a breakpoint is present we can't rewrite the stream directly
   201     __ movzbl(scratch, at_bcp(0));
   202     __ cmpl(scratch, Bytecodes::_breakpoint);
   203     __ jcc(Assembler::notEqual, fast_patch);
   204     __ get_method(scratch);
   205     // Let breakpoint table handling rewrite to quicker bytecode
   206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
   207 #ifndef ASSERT
   208     __ jmpb(patch_done);
   209 #else
   210     __ jmp(patch_done);
   211 #endif
   212     __ bind(fast_patch);
   213   }
   214 #ifdef ASSERT
   215   Label okay;
   216   __ load_unsigned_byte(scratch, at_bcp(0));
   217   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   218   __ jcc(Assembler::equal, okay);
   219   __ cmpl(scratch, bc);
   220   __ jcc(Assembler::equal, okay);
   221   __ stop("patching the wrong bytecode");
   222   __ bind(okay);
   223 #endif
   224   // patch bytecode
   225   __ movb(at_bcp(0), bc);
   226   __ bind(patch_done);
   227 }
   230 // Individual instructions
   232 void TemplateTable::nop() {
   233   transition(vtos, vtos);
   234   // nothing to do
   235 }
   237 void TemplateTable::shouldnotreachhere() {
   238   transition(vtos, vtos);
   239   __ stop("shouldnotreachhere bytecode");
   240 }
   242 void TemplateTable::aconst_null() {
   243   transition(vtos, atos);
   244   __ xorl(rax, rax);
   245 }
   247 void TemplateTable::iconst(int value) {
   248   transition(vtos, itos);
   249   if (value == 0) {
   250     __ xorl(rax, rax);
   251   } else {
   252     __ movl(rax, value);
   253   }
   254 }
   256 void TemplateTable::lconst(int value) {
   257   transition(vtos, ltos);
   258   if (value == 0) {
   259     __ xorl(rax, rax);
   260   } else {
   261     __ movl(rax, value);
   262   }
   263 }
   265 void TemplateTable::fconst(int value) {
   266   transition(vtos, ftos);
   267   static float one = 1.0f, two = 2.0f;
   268   switch (value) {
   269   case 0:
   270     __ xorps(xmm0, xmm0);
   271     break;
   272   case 1:
   273     __ movflt(xmm0, ExternalAddress((address) &one));
   274     break;
   275   case 2:
   276     __ movflt(xmm0, ExternalAddress((address) &two));
   277     break;
   278   default:
   279     ShouldNotReachHere();
   280     break;
   281   }
   282 }
   284 void TemplateTable::dconst(int value) {
   285   transition(vtos, dtos);
   286   static double one = 1.0;
   287   switch (value) {
   288   case 0:
   289     __ xorpd(xmm0, xmm0);
   290     break;
   291   case 1:
   292     __ movdbl(xmm0, ExternalAddress((address) &one));
   293     break;
   294   default:
   295     ShouldNotReachHere();
   296     break;
   297   }
   298 }
   300 void TemplateTable::bipush() {
   301   transition(vtos, itos);
   302   __ load_signed_byte(rax, at_bcp(1));
   303 }
   305 void TemplateTable::sipush() {
   306   transition(vtos, itos);
   307   __ load_unsigned_short(rax, at_bcp(1));
   308   __ bswapl(rax);
   309   __ sarl(rax, 16);
   310 }
   312 void TemplateTable::ldc(bool wide) {
   313   transition(vtos, vtos);
   314   Label call_ldc, notFloat, notClass, Done;
   316   if (wide) {
   317     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   318   } else {
   319     __ load_unsigned_byte(rbx, at_bcp(1));
   320   }
   322   __ get_cpool_and_tags(rcx, rax);
   323   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   324   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   326   // get type
   327   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   329   // unresolved string - get the resolved string
   330   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   331   __ jccb(Assembler::equal, call_ldc);
   333   // unresolved class - get the resolved class
   334   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   335   __ jccb(Assembler::equal, call_ldc);
   337   // unresolved class in error state - call into runtime to throw the error
   338   // from the first resolution attempt
   339   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   340   __ jccb(Assembler::equal, call_ldc);
   342   // resolved class - need to call vm to get java mirror of the class
   343   __ cmpl(rdx, JVM_CONSTANT_Class);
   344   __ jcc(Assembler::notEqual, notClass);
   346   __ bind(call_ldc);
   347   __ movl(c_rarg1, wide);
   348   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   349   __ push_ptr(rax);
   350   __ verify_oop(rax);
   351   __ jmp(Done);
   353   __ bind(notClass);
   354   __ cmpl(rdx, JVM_CONSTANT_Float);
   355   __ jccb(Assembler::notEqual, notFloat);
   356   // ftos
   357   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   358   __ push_f();
   359   __ jmp(Done);
   361   __ bind(notFloat);
   362 #ifdef ASSERT
   363   {
   364     Label L;
   365     __ cmpl(rdx, JVM_CONSTANT_Integer);
   366     __ jcc(Assembler::equal, L);
   367     __ cmpl(rdx, JVM_CONSTANT_String);
   368     __ jcc(Assembler::equal, L);
   369     __ stop("unexpected tag type in ldc");
   370     __ bind(L);
   371   }
   372 #endif
   373   // atos and itos
   374   Label isOop;
   375   __ cmpl(rdx, JVM_CONSTANT_Integer);
   376   __ jcc(Assembler::notEqual, isOop);
   377   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   378   __ push_i(rax);
   379   __ jmp(Done);
   381   __ bind(isOop);
   382   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   383   __ push_ptr(rax);
   385   if (VerifyOops) {
   386     __ verify_oop(rax);
   387   }
   389   __ bind(Done);
   390 }
   392 void TemplateTable::ldc2_w() {
   393   transition(vtos, vtos);
   394   Label Long, Done;
   395   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   397   __ get_cpool_and_tags(rcx, rax);
   398   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   399   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   401   // get type
   402   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   403           JVM_CONSTANT_Double);
   404   __ jccb(Assembler::notEqual, Long);
   405   // dtos
   406   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   407   __ push_d();
   408   __ jmpb(Done);
   410   __ bind(Long);
   411   // ltos
   412   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   413   __ push_l();
   415   __ bind(Done);
   416 }
   418 void TemplateTable::locals_index(Register reg, int offset) {
   419   __ load_unsigned_byte(reg, at_bcp(offset));
   420   __ negptr(reg);
   421   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
   422 }
   424 void TemplateTable::iload() {
   425   transition(vtos, itos);
   426   if (RewriteFrequentPairs) {
   427     Label rewrite, done;
   428     const Register bc = c_rarg3;
   429     assert(rbx != bc, "register damaged");
   431     // get next byte
   432     __ load_unsigned_byte(rbx,
   433                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   434     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   435     // last two iloads in a pair.  Comparing against fast_iload means that
   436     // the next bytecode is neither an iload or a caload, and therefore
   437     // an iload pair.
   438     __ cmpl(rbx, Bytecodes::_iload);
   439     __ jcc(Assembler::equal, done);
   441     __ cmpl(rbx, Bytecodes::_fast_iload);
   442     __ movl(bc, Bytecodes::_fast_iload2);
   443     __ jccb(Assembler::equal, rewrite);
   445     // if _caload, rewrite to fast_icaload
   446     __ cmpl(rbx, Bytecodes::_caload);
   447     __ movl(bc, Bytecodes::_fast_icaload);
   448     __ jccb(Assembler::equal, rewrite);
   450     // rewrite so iload doesn't check again.
   451     __ movl(bc, Bytecodes::_fast_iload);
   453     // rewrite
   454     // bc: fast bytecode
   455     __ bind(rewrite);
   456     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   457     __ bind(done);
   458   }
   460   // Get the local value into tos
   461   locals_index(rbx);
   462   __ movl(rax, iaddress(rbx));
   463   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   464 }
   466 void TemplateTable::fast_iload2() {
   467   transition(vtos, itos);
   468   locals_index(rbx);
   469   __ movl(rax, iaddress(rbx));
   470   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   471   __ push(itos);
   472   locals_index(rbx, 3);
   473   __ movl(rax, iaddress(rbx));
   474   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   475 }
   477 void TemplateTable::fast_iload() {
   478   transition(vtos, itos);
   479   locals_index(rbx);
   480   __ movl(rax, iaddress(rbx));
   481   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   482 }
   484 void TemplateTable::lload() {
   485   transition(vtos, ltos);
   486   locals_index(rbx);
   487   __ movq(rax, laddress(rbx));
   488   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   489 }
   491 void TemplateTable::fload() {
   492   transition(vtos, ftos);
   493   locals_index(rbx);
   494   __ movflt(xmm0, faddress(rbx));
   495   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   496 }
   498 void TemplateTable::dload() {
   499   transition(vtos, dtos);
   500   locals_index(rbx);
   501   __ movdbl(xmm0, daddress(rbx));
   502   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   503 }
   505 void TemplateTable::aload() {
   506   transition(vtos, atos);
   507   locals_index(rbx);
   508   __ movptr(rax, aaddress(rbx));
   509   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   510 }
   512 void TemplateTable::locals_index_wide(Register reg) {
   513   __ movl(reg, at_bcp(2));
   514   __ bswapl(reg);
   515   __ shrl(reg, 16);
   516   __ negptr(reg);
   517   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
   518 }
   520 void TemplateTable::wide_iload() {
   521   transition(vtos, itos);
   522   locals_index_wide(rbx);
   523   __ movl(rax, iaddress(rbx));
   524   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   525 }
   527 void TemplateTable::wide_lload() {
   528   transition(vtos, ltos);
   529   locals_index_wide(rbx);
   530   __ movq(rax, laddress(rbx));
   531   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   532 }
   534 void TemplateTable::wide_fload() {
   535   transition(vtos, ftos);
   536   locals_index_wide(rbx);
   537   __ movflt(xmm0, faddress(rbx));
   538   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   539 }
   541 void TemplateTable::wide_dload() {
   542   transition(vtos, dtos);
   543   locals_index_wide(rbx);
   544   __ movdbl(xmm0, daddress(rbx));
   545   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   546 }
   548 void TemplateTable::wide_aload() {
   549   transition(vtos, atos);
   550   locals_index_wide(rbx);
   551   __ movptr(rax, aaddress(rbx));
   552   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   553 }
   555 void TemplateTable::index_check(Register array, Register index) {
   556   // destroys rbx
   557   // check array
   558   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   559   // sign extend index for use by indexed load
   560   __ movl2ptr(index, index);
   561   // check index
   562   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   563   if (index != rbx) {
   564     // ??? convention: move aberrant index into ebx for exception message
   565     assert(rbx != array, "different registers");
   566     __ movl(rbx, index);
   567   }
   568   __ jump_cc(Assembler::aboveEqual,
   569              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   570 }
   572 void TemplateTable::iaload() {
   573   transition(itos, itos);
   574   __ pop_ptr(rdx);
   575   // eax: index
   576   // rdx: array
   577   index_check(rdx, rax); // kills rbx
   578   __ movl(rax, Address(rdx, rax,
   579                        Address::times_4,
   580                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   581 }
   583 void TemplateTable::laload() {
   584   transition(itos, ltos);
   585   __ pop_ptr(rdx);
   586   // eax: index
   587   // rdx: array
   588   index_check(rdx, rax); // kills rbx
   589   __ movq(rax, Address(rdx, rbx,
   590                        Address::times_8,
   591                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   592 }
   594 void TemplateTable::faload() {
   595   transition(itos, ftos);
   596   __ pop_ptr(rdx);
   597   // eax: index
   598   // rdx: array
   599   index_check(rdx, rax); // kills rbx
   600   __ movflt(xmm0, Address(rdx, rax,
   601                          Address::times_4,
   602                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   603 }
   605 void TemplateTable::daload() {
   606   transition(itos, dtos);
   607   __ pop_ptr(rdx);
   608   // eax: index
   609   // rdx: array
   610   index_check(rdx, rax); // kills rbx
   611   __ movdbl(xmm0, Address(rdx, rax,
   612                           Address::times_8,
   613                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   614 }
   616 void TemplateTable::aaload() {
   617   transition(itos, atos);
   618   __ pop_ptr(rdx);
   619   // eax: index
   620   // rdx: array
   621   index_check(rdx, rax); // kills rbx
   622   __ load_heap_oop(rax, Address(rdx, rax,
   623                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   624                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   625 }
   627 void TemplateTable::baload() {
   628   transition(itos, itos);
   629   __ pop_ptr(rdx);
   630   // eax: index
   631   // rdx: array
   632   index_check(rdx, rax); // kills rbx
   633   __ load_signed_byte(rax,
   634                       Address(rdx, rax,
   635                               Address::times_1,
   636                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   637 }
   639 void TemplateTable::caload() {
   640   transition(itos, itos);
   641   __ pop_ptr(rdx);
   642   // eax: index
   643   // rdx: array
   644   index_check(rdx, rax); // kills rbx
   645   __ load_unsigned_short(rax,
   646                          Address(rdx, rax,
   647                                  Address::times_2,
   648                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   649 }
   651 // iload followed by caload frequent pair
   652 void TemplateTable::fast_icaload() {
   653   transition(vtos, itos);
   654   // load index out of locals
   655   locals_index(rbx);
   656   __ movl(rax, iaddress(rbx));
   657   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   659   // eax: index
   660   // rdx: array
   661   __ pop_ptr(rdx);
   662   index_check(rdx, rax); // kills rbx
   663   __ load_unsigned_short(rax,
   664                          Address(rdx, rax,
   665                                  Address::times_2,
   666                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   667 }
   669 void TemplateTable::saload() {
   670   transition(itos, itos);
   671   __ pop_ptr(rdx);
   672   // eax: index
   673   // rdx: array
   674   index_check(rdx, rax); // kills rbx
   675   __ load_signed_short(rax,
   676                        Address(rdx, rax,
   677                                Address::times_2,
   678                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   679 }
   681 void TemplateTable::iload(int n) {
   682   transition(vtos, itos);
   683   __ movl(rax, iaddress(n));
   684   debug_only(__ verify_local_tag(frame::TagValue, n));
   685 }
   687 void TemplateTable::lload(int n) {
   688   transition(vtos, ltos);
   689   __ movq(rax, laddress(n));
   690   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   691 }
   693 void TemplateTable::fload(int n) {
   694   transition(vtos, ftos);
   695   __ movflt(xmm0, faddress(n));
   696   debug_only(__ verify_local_tag(frame::TagValue, n));
   697 }
   699 void TemplateTable::dload(int n) {
   700   transition(vtos, dtos);
   701   __ movdbl(xmm0, daddress(n));
   702   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   703 }
   705 void TemplateTable::aload(int n) {
   706   transition(vtos, atos);
   707   __ movptr(rax, aaddress(n));
   708   debug_only(__ verify_local_tag(frame::TagReference, n));
   709 }
   711 void TemplateTable::aload_0() {
   712   transition(vtos, atos);
   713   // According to bytecode histograms, the pairs:
   714   //
   715   // _aload_0, _fast_igetfield
   716   // _aload_0, _fast_agetfield
   717   // _aload_0, _fast_fgetfield
   718   //
   719   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   720   // _aload_0 bytecode checks if the next bytecode is either
   721   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   722   // rewrites the current bytecode into a pair bytecode; otherwise it
   723   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   724   // the pair check anymore.
   725   //
   726   // Note: If the next bytecode is _getfield, the rewrite must be
   727   //       delayed, otherwise we may miss an opportunity for a pair.
   728   //
   729   // Also rewrite frequent pairs
   730   //   aload_0, aload_1
   731   //   aload_0, iload_1
   732   // These bytecodes with a small amount of code are most profitable
   733   // to rewrite
   734   if (RewriteFrequentPairs) {
   735     Label rewrite, done;
   736     const Register bc = c_rarg3;
   737     assert(rbx != bc, "register damaged");
   738     // get next byte
   739     __ load_unsigned_byte(rbx,
   740                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   742     // do actual aload_0
   743     aload(0);
   745     // if _getfield then wait with rewrite
   746     __ cmpl(rbx, Bytecodes::_getfield);
   747     __ jcc(Assembler::equal, done);
   749     // if _igetfield then reqrite to _fast_iaccess_0
   750     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   751            Bytecodes::_aload_0,
   752            "fix bytecode definition");
   753     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   754     __ movl(bc, Bytecodes::_fast_iaccess_0);
   755     __ jccb(Assembler::equal, rewrite);
   757     // if _agetfield then reqrite to _fast_aaccess_0
   758     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   759            Bytecodes::_aload_0,
   760            "fix bytecode definition");
   761     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   762     __ movl(bc, Bytecodes::_fast_aaccess_0);
   763     __ jccb(Assembler::equal, rewrite);
   765     // if _fgetfield then reqrite to _fast_faccess_0
   766     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   767            Bytecodes::_aload_0,
   768            "fix bytecode definition");
   769     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   770     __ movl(bc, Bytecodes::_fast_faccess_0);
   771     __ jccb(Assembler::equal, rewrite);
   773     // else rewrite to _fast_aload0
   774     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   775            Bytecodes::_aload_0,
   776            "fix bytecode definition");
   777     __ movl(bc, Bytecodes::_fast_aload_0);
   779     // rewrite
   780     // bc: fast bytecode
   781     __ bind(rewrite);
   782     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   784     __ bind(done);
   785   } else {
   786     aload(0);
   787   }
   788 }
   790 void TemplateTable::istore() {
   791   transition(itos, vtos);
   792   locals_index(rbx);
   793   __ movl(iaddress(rbx), rax);
   794   __ tag_local(frame::TagValue, rbx);
   795 }
   797 void TemplateTable::lstore() {
   798   transition(ltos, vtos);
   799   locals_index(rbx);
   800   __ movq(laddress(rbx), rax);
   801   __ tag_local(frame::TagCategory2, rbx);
   802 }
   804 void TemplateTable::fstore() {
   805   transition(ftos, vtos);
   806   locals_index(rbx);
   807   __ movflt(faddress(rbx), xmm0);
   808   __ tag_local(frame::TagValue, rbx);
   809 }
   811 void TemplateTable::dstore() {
   812   transition(dtos, vtos);
   813   locals_index(rbx);
   814   __ movdbl(daddress(rbx), xmm0);
   815   __ tag_local(frame::TagCategory2, rbx);
   816 }
   818 void TemplateTable::astore() {
   819   transition(vtos, vtos);
   820   __ pop_ptr(rax, rdx);    // will need to pop tag too
   821   locals_index(rbx);
   822   __ movptr(aaddress(rbx), rax);
   823   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   824 }
   826 void TemplateTable::wide_istore() {
   827   transition(vtos, vtos);
   828   __ pop_i();
   829   locals_index_wide(rbx);
   830   __ movl(iaddress(rbx), rax);
   831   __ tag_local(frame::TagValue, rbx);
   832 }
   834 void TemplateTable::wide_lstore() {
   835   transition(vtos, vtos);
   836   __ pop_l();
   837   locals_index_wide(rbx);
   838   __ movq(laddress(rbx), rax);
   839   __ tag_local(frame::TagCategory2, rbx);
   840 }
   842 void TemplateTable::wide_fstore() {
   843   transition(vtos, vtos);
   844   __ pop_f();
   845   locals_index_wide(rbx);
   846   __ movflt(faddress(rbx), xmm0);
   847   __ tag_local(frame::TagValue, rbx);
   848 }
   850 void TemplateTable::wide_dstore() {
   851   transition(vtos, vtos);
   852   __ pop_d();
   853   locals_index_wide(rbx);
   854   __ movdbl(daddress(rbx), xmm0);
   855   __ tag_local(frame::TagCategory2, rbx);
   856 }
   858 void TemplateTable::wide_astore() {
   859   transition(vtos, vtos);
   860   __ pop_ptr(rax, rdx);    // will need to pop tag too
   861   locals_index_wide(rbx);
   862   __ movptr(aaddress(rbx), rax);
   863   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   864 }
   866 void TemplateTable::iastore() {
   867   transition(itos, vtos);
   868   __ pop_i(rbx);
   869   __ pop_ptr(rdx);
   870   // eax: value
   871   // ebx: index
   872   // rdx: array
   873   index_check(rdx, rbx); // prefer index in ebx
   874   __ movl(Address(rdx, rbx,
   875                   Address::times_4,
   876                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   877           rax);
   878 }
   880 void TemplateTable::lastore() {
   881   transition(ltos, vtos);
   882   __ pop_i(rbx);
   883   __ pop_ptr(rdx);
   884   // rax: value
   885   // ebx: index
   886   // rdx: array
   887   index_check(rdx, rbx); // prefer index in ebx
   888   __ movq(Address(rdx, rbx,
   889                   Address::times_8,
   890                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   891           rax);
   892 }
   894 void TemplateTable::fastore() {
   895   transition(ftos, vtos);
   896   __ pop_i(rbx);
   897   __ pop_ptr(rdx);
   898   // xmm0: value
   899   // ebx:  index
   900   // rdx:  array
   901   index_check(rdx, rbx); // prefer index in ebx
   902   __ movflt(Address(rdx, rbx,
   903                    Address::times_4,
   904                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   905            xmm0);
   906 }
   908 void TemplateTable::dastore() {
   909   transition(dtos, vtos);
   910   __ pop_i(rbx);
   911   __ pop_ptr(rdx);
   912   // xmm0: value
   913   // ebx:  index
   914   // rdx:  array
   915   index_check(rdx, rbx); // prefer index in ebx
   916   __ movdbl(Address(rdx, rbx,
   917                    Address::times_8,
   918                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   919            xmm0);
   920 }
   922 void TemplateTable::aastore() {
   923   Label is_null, ok_is_subtype, done;
   924   transition(vtos, vtos);
   925   // stack: ..., array, index, value
   926   __ movptr(rax, at_tos());    // value
   927   __ movl(rcx, at_tos_p1()); // index
   928   __ movptr(rdx, at_tos_p2()); // array
   930   Address element_address(rdx, rcx,
   931                           UseCompressedOops? Address::times_4 : Address::times_8,
   932                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   934   index_check(rdx, rcx);     // kills rbx
   935   // do array store check - check for NULL value first
   936   __ testptr(rax, rax);
   937   __ jcc(Assembler::zero, is_null);
   939   // Move subklass into rbx
   940   __ load_klass(rbx, rax);
   941   // Move superklass into rax
   942   __ load_klass(rax, rdx);
   943   __ movptr(rax, Address(rax,
   944                          sizeof(oopDesc) +
   945                          objArrayKlass::element_klass_offset_in_bytes()));
   946   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   947   __ lea(rdx, element_address);
   949   // Generate subtype check.  Blows rcx, rdi
   950   // Superklass in rax.  Subklass in rbx.
   951   __ gen_subtype_check(rbx, ok_is_subtype);
   953   // Come here on failure
   954   // object is at TOS
   955   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   957   // Come here on success
   958   __ bind(ok_is_subtype);
   960   // Get the value we will store
   961   __ movptr(rax, at_tos());
   962   // Now store using the appropriate barrier
   963   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   964   __ jmp(done);
   966   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   967   __ bind(is_null);
   968   __ profile_null_seen(rbx);
   970   // Store a NULL
   971   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   973   // Pop stack arguments
   974   __ bind(done);
   975   __ addptr(rsp, 3 * Interpreter::stackElementSize());
   976 }
   978 void TemplateTable::bastore() {
   979   transition(itos, vtos);
   980   __ pop_i(rbx);
   981   __ pop_ptr(rdx);
   982   // eax: value
   983   // ebx: index
   984   // rdx: array
   985   index_check(rdx, rbx); // prefer index in ebx
   986   __ movb(Address(rdx, rbx,
   987                   Address::times_1,
   988                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
   989           rax);
   990 }
   992 void TemplateTable::castore() {
   993   transition(itos, vtos);
   994   __ pop_i(rbx);
   995   __ pop_ptr(rdx);
   996   // eax: value
   997   // ebx: index
   998   // rdx: array
   999   index_check(rdx, rbx);  // prefer index in ebx
  1000   __ movw(Address(rdx, rbx,
  1001                   Address::times_2,
  1002                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1003           rax);
  1006 void TemplateTable::sastore() {
  1007   castore();
  1010 void TemplateTable::istore(int n) {
  1011   transition(itos, vtos);
  1012   __ movl(iaddress(n), rax);
  1013   __ tag_local(frame::TagValue, n);
  1016 void TemplateTable::lstore(int n) {
  1017   transition(ltos, vtos);
  1018   __ movq(laddress(n), rax);
  1019   __ tag_local(frame::TagCategory2, n);
  1022 void TemplateTable::fstore(int n) {
  1023   transition(ftos, vtos);
  1024   __ movflt(faddress(n), xmm0);
  1025   __ tag_local(frame::TagValue, n);
  1028 void TemplateTable::dstore(int n) {
  1029   transition(dtos, vtos);
  1030   __ movdbl(daddress(n), xmm0);
  1031   __ tag_local(frame::TagCategory2, n);
  1034 void TemplateTable::astore(int n) {
  1035   transition(vtos, vtos);
  1036   __ pop_ptr(rax, rdx);
  1037   __ movptr(aaddress(n), rax);
  1038   __ tag_local(rdx, n);
  1041 void TemplateTable::pop() {
  1042   transition(vtos, vtos);
  1043   __ addptr(rsp, Interpreter::stackElementSize());
  1046 void TemplateTable::pop2() {
  1047   transition(vtos, vtos);
  1048   __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1051 void TemplateTable::dup() {
  1052   transition(vtos, vtos);
  1053   __ load_ptr_and_tag(0, rax, rdx);
  1054   __ push_ptr(rax, rdx);
  1055   // stack: ..., a, a
  1058 void TemplateTable::dup_x1() {
  1059   transition(vtos, vtos);
  1060   // stack: ..., a, b
  1061   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1062   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1063   __ store_ptr_and_tag(1, rax, rdx); // store b
  1064   __ store_ptr_and_tag(0, rcx, rbx); // store a
  1065   __ push_ptr(rax, rdx);             // push b
  1066   // stack: ..., b, a, b
  1069 void TemplateTable::dup_x2() {
  1070   transition(vtos, vtos);
  1071   // stack: ..., a, b, c
  1072   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1073   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1074   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1075   __ push_ptr(rax, rdx);             // push c
  1076   // stack: ..., c, b, c, c
  1077   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1078   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1079   // stack: ..., c, a, c, c
  1080   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1081   // stack: ..., c, a, b, c
  1084 void TemplateTable::dup2() {
  1085   transition(vtos, vtos);
  1086   // stack: ..., a, b
  1087   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1088   __ push_ptr(rax, rdx);             // push a
  1089   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1090   __ push_ptr(rax, rdx);             // push b
  1091   // stack: ..., a, b, a, b
  1094 void TemplateTable::dup2_x1() {
  1095   transition(vtos, vtos);
  1096   // stack: ..., a, b, c
  1097   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1098   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1099   __ push_ptr(rax, rdx);             // push b
  1100   __ push_ptr(rcx, rbx);             // push c
  1101   // stack: ..., a, b, c, b, c
  1102   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1103   // stack: ..., a, c, c, b, c
  1104   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1105   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1106   // stack: ..., a, c, a, b, c
  1107   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1108   // stack: ..., b, c, a, b, c
  1111 void TemplateTable::dup2_x2() {
  1112   transition(vtos, vtos);
  1113   // stack: ..., a, b, c, d
  1114   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1115   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1116   __ push_ptr(rax, rdx);             // push c
  1117   __ push_ptr(rcx, rbx);             // push d
  1118   // stack: ..., a, b, c, d, c, d
  1119   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1120   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1121   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1122   // stack: ..., a, d, c, b, c, d
  1123   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1124   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1125   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1126   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1127   // stack: ..., c, d, a, b, c, d
  1130 void TemplateTable::swap() {
  1131   transition(vtos, vtos);
  1132   // stack: ..., a, b
  1133   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1134   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1135   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1136   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1137   // stack: ..., b, a
  1140 void TemplateTable::iop2(Operation op) {
  1141   transition(itos, itos);
  1142   switch (op) {
  1143   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1144   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1145   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1146   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1147   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1148   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1149   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1150   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1151   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1152   default   : ShouldNotReachHere();
  1156 void TemplateTable::lop2(Operation op) {
  1157   transition(ltos, ltos);
  1158   switch (op) {
  1159   case add  :                    __ pop_l(rdx); __ addptr (rax, rdx); break;
  1160   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr (rax, rdx); break;
  1161   case _and :                    __ pop_l(rdx); __ andptr (rax, rdx); break;
  1162   case _or  :                    __ pop_l(rdx); __ orptr  (rax, rdx); break;
  1163   case _xor :                    __ pop_l(rdx); __ xorptr (rax, rdx); break;
  1164   default : ShouldNotReachHere();
  1168 void TemplateTable::idiv() {
  1169   transition(itos, itos);
  1170   __ movl(rcx, rax);
  1171   __ pop_i(rax);
  1172   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1173   //       they are not equal, one could do a normal division (no correction
  1174   //       needed), which may speed up this implementation for the common case.
  1175   //       (see also JVM spec., p.243 & p.271)
  1176   __ corrected_idivl(rcx);
  1179 void TemplateTable::irem() {
  1180   transition(itos, itos);
  1181   __ movl(rcx, rax);
  1182   __ pop_i(rax);
  1183   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1184   //       they are not equal, one could do a normal division (no correction
  1185   //       needed), which may speed up this implementation for the common case.
  1186   //       (see also JVM spec., p.243 & p.271)
  1187   __ corrected_idivl(rcx);
  1188   __ movl(rax, rdx);
  1191 void TemplateTable::lmul() {
  1192   transition(ltos, ltos);
  1193   __ pop_l(rdx);
  1194   __ imulq(rax, rdx);
  1197 void TemplateTable::ldiv() {
  1198   transition(ltos, ltos);
  1199   __ mov(rcx, rax);
  1200   __ pop_l(rax);
  1201   // generate explicit div0 check
  1202   __ testq(rcx, rcx);
  1203   __ jump_cc(Assembler::zero,
  1204              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1205   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1206   //       they are not equal, one could do a normal division (no correction
  1207   //       needed), which may speed up this implementation for the common case.
  1208   //       (see also JVM spec., p.243 & p.271)
  1209   __ corrected_idivq(rcx); // kills rbx
  1212 void TemplateTable::lrem() {
  1213   transition(ltos, ltos);
  1214   __ mov(rcx, rax);
  1215   __ pop_l(rax);
  1216   __ testq(rcx, rcx);
  1217   __ jump_cc(Assembler::zero,
  1218              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1219   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1220   //       they are not equal, one could do a normal division (no correction
  1221   //       needed), which may speed up this implementation for the common case.
  1222   //       (see also JVM spec., p.243 & p.271)
  1223   __ corrected_idivq(rcx); // kills rbx
  1224   __ mov(rax, rdx);
  1227 void TemplateTable::lshl() {
  1228   transition(itos, ltos);
  1229   __ movl(rcx, rax);                             // get shift count
  1230   __ pop_l(rax);                                 // get shift value
  1231   __ shlq(rax);
  1234 void TemplateTable::lshr() {
  1235   transition(itos, ltos);
  1236   __ movl(rcx, rax);                             // get shift count
  1237   __ pop_l(rax);                                 // get shift value
  1238   __ sarq(rax);
  1241 void TemplateTable::lushr() {
  1242   transition(itos, ltos);
  1243   __ movl(rcx, rax);                             // get shift count
  1244   __ pop_l(rax);                                 // get shift value
  1245   __ shrq(rax);
  1248 void TemplateTable::fop2(Operation op) {
  1249   transition(ftos, ftos);
  1250   switch (op) {
  1251   case add:
  1252     __ addss(xmm0, at_rsp());
  1253     __ addptr(rsp, Interpreter::stackElementSize());
  1254     break;
  1255   case sub:
  1256     __ movflt(xmm1, xmm0);
  1257     __ pop_f(xmm0);
  1258     __ subss(xmm0, xmm1);
  1259     break;
  1260   case mul:
  1261     __ mulss(xmm0, at_rsp());
  1262     __ addptr(rsp, Interpreter::stackElementSize());
  1263     break;
  1264   case div:
  1265     __ movflt(xmm1, xmm0);
  1266     __ pop_f(xmm0);
  1267     __ divss(xmm0, xmm1);
  1268     break;
  1269   case rem:
  1270     __ movflt(xmm1, xmm0);
  1271     __ pop_f(xmm0);
  1272     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1273     break;
  1274   default:
  1275     ShouldNotReachHere();
  1276     break;
  1280 void TemplateTable::dop2(Operation op) {
  1281   transition(dtos, dtos);
  1282   switch (op) {
  1283   case add:
  1284     __ addsd(xmm0, at_rsp());
  1285     __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1286     break;
  1287   case sub:
  1288     __ movdbl(xmm1, xmm0);
  1289     __ pop_d(xmm0);
  1290     __ subsd(xmm0, xmm1);
  1291     break;
  1292   case mul:
  1293     __ mulsd(xmm0, at_rsp());
  1294     __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1295     break;
  1296   case div:
  1297     __ movdbl(xmm1, xmm0);
  1298     __ pop_d(xmm0);
  1299     __ divsd(xmm0, xmm1);
  1300     break;
  1301   case rem:
  1302     __ movdbl(xmm1, xmm0);
  1303     __ pop_d(xmm0);
  1304     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1305     break;
  1306   default:
  1307     ShouldNotReachHere();
  1308     break;
  1312 void TemplateTable::ineg() {
  1313   transition(itos, itos);
  1314   __ negl(rax);
  1317 void TemplateTable::lneg() {
  1318   transition(ltos, ltos);
  1319   __ negq(rax);
  1322 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1323 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1324   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1325   // of 128-bits operands for SSE instructions.
  1326   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1327   // Store the value to a 128-bits operand.
  1328   operand[0] = lo;
  1329   operand[1] = hi;
  1330   return operand;
  1333 // Buffer for 128-bits masks used by SSE instructions.
  1334 static jlong float_signflip_pool[2*2];
  1335 static jlong double_signflip_pool[2*2];
  1337 void TemplateTable::fneg() {
  1338   transition(ftos, ftos);
  1339   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1340   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1343 void TemplateTable::dneg() {
  1344   transition(dtos, dtos);
  1345   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1346   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1349 void TemplateTable::iinc() {
  1350   transition(vtos, vtos);
  1351   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1352   locals_index(rbx);
  1353   __ addl(iaddress(rbx), rdx);
  1356 void TemplateTable::wide_iinc() {
  1357   transition(vtos, vtos);
  1358   __ movl(rdx, at_bcp(4)); // get constant
  1359   locals_index_wide(rbx);
  1360   __ bswapl(rdx); // swap bytes & sign-extend constant
  1361   __ sarl(rdx, 16);
  1362   __ addl(iaddress(rbx), rdx);
  1363   // Note: should probably use only one movl to get both
  1364   //       the index and the constant -> fix this
  1367 void TemplateTable::convert() {
  1368   // Checking
  1369 #ifdef ASSERT
  1371     TosState tos_in  = ilgl;
  1372     TosState tos_out = ilgl;
  1373     switch (bytecode()) {
  1374     case Bytecodes::_i2l: // fall through
  1375     case Bytecodes::_i2f: // fall through
  1376     case Bytecodes::_i2d: // fall through
  1377     case Bytecodes::_i2b: // fall through
  1378     case Bytecodes::_i2c: // fall through
  1379     case Bytecodes::_i2s: tos_in = itos; break;
  1380     case Bytecodes::_l2i: // fall through
  1381     case Bytecodes::_l2f: // fall through
  1382     case Bytecodes::_l2d: tos_in = ltos; break;
  1383     case Bytecodes::_f2i: // fall through
  1384     case Bytecodes::_f2l: // fall through
  1385     case Bytecodes::_f2d: tos_in = ftos; break;
  1386     case Bytecodes::_d2i: // fall through
  1387     case Bytecodes::_d2l: // fall through
  1388     case Bytecodes::_d2f: tos_in = dtos; break;
  1389     default             : ShouldNotReachHere();
  1391     switch (bytecode()) {
  1392     case Bytecodes::_l2i: // fall through
  1393     case Bytecodes::_f2i: // fall through
  1394     case Bytecodes::_d2i: // fall through
  1395     case Bytecodes::_i2b: // fall through
  1396     case Bytecodes::_i2c: // fall through
  1397     case Bytecodes::_i2s: tos_out = itos; break;
  1398     case Bytecodes::_i2l: // fall through
  1399     case Bytecodes::_f2l: // fall through
  1400     case Bytecodes::_d2l: tos_out = ltos; break;
  1401     case Bytecodes::_i2f: // fall through
  1402     case Bytecodes::_l2f: // fall through
  1403     case Bytecodes::_d2f: tos_out = ftos; break;
  1404     case Bytecodes::_i2d: // fall through
  1405     case Bytecodes::_l2d: // fall through
  1406     case Bytecodes::_f2d: tos_out = dtos; break;
  1407     default             : ShouldNotReachHere();
  1409     transition(tos_in, tos_out);
  1411 #endif // ASSERT
  1413   static const int64_t is_nan = 0x8000000000000000L;
  1415   // Conversion
  1416   switch (bytecode()) {
  1417   case Bytecodes::_i2l:
  1418     __ movslq(rax, rax);
  1419     break;
  1420   case Bytecodes::_i2f:
  1421     __ cvtsi2ssl(xmm0, rax);
  1422     break;
  1423   case Bytecodes::_i2d:
  1424     __ cvtsi2sdl(xmm0, rax);
  1425     break;
  1426   case Bytecodes::_i2b:
  1427     __ movsbl(rax, rax);
  1428     break;
  1429   case Bytecodes::_i2c:
  1430     __ movzwl(rax, rax);
  1431     break;
  1432   case Bytecodes::_i2s:
  1433     __ movswl(rax, rax);
  1434     break;
  1435   case Bytecodes::_l2i:
  1436     __ movl(rax, rax);
  1437     break;
  1438   case Bytecodes::_l2f:
  1439     __ cvtsi2ssq(xmm0, rax);
  1440     break;
  1441   case Bytecodes::_l2d:
  1442     __ cvtsi2sdq(xmm0, rax);
  1443     break;
  1444   case Bytecodes::_f2i:
  1446     Label L;
  1447     __ cvttss2sil(rax, xmm0);
  1448     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1449     __ jcc(Assembler::notEqual, L);
  1450     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1451     __ bind(L);
  1453     break;
  1454   case Bytecodes::_f2l:
  1456     Label L;
  1457     __ cvttss2siq(rax, xmm0);
  1458     // NaN or overflow/underflow?
  1459     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1460     __ jcc(Assembler::notEqual, L);
  1461     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1462     __ bind(L);
  1464     break;
  1465   case Bytecodes::_f2d:
  1466     __ cvtss2sd(xmm0, xmm0);
  1467     break;
  1468   case Bytecodes::_d2i:
  1470     Label L;
  1471     __ cvttsd2sil(rax, xmm0);
  1472     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1473     __ jcc(Assembler::notEqual, L);
  1474     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1475     __ bind(L);
  1477     break;
  1478   case Bytecodes::_d2l:
  1480     Label L;
  1481     __ cvttsd2siq(rax, xmm0);
  1482     // NaN or overflow/underflow?
  1483     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1484     __ jcc(Assembler::notEqual, L);
  1485     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1486     __ bind(L);
  1488     break;
  1489   case Bytecodes::_d2f:
  1490     __ cvtsd2ss(xmm0, xmm0);
  1491     break;
  1492   default:
  1493     ShouldNotReachHere();
  1497 void TemplateTable::lcmp() {
  1498   transition(ltos, itos);
  1499   Label done;
  1500   __ pop_l(rdx);
  1501   __ cmpq(rdx, rax);
  1502   __ movl(rax, -1);
  1503   __ jccb(Assembler::less, done);
  1504   __ setb(Assembler::notEqual, rax);
  1505   __ movzbl(rax, rax);
  1506   __ bind(done);
  1509 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1510   Label done;
  1511   if (is_float) {
  1512     // XXX get rid of pop here, use ... reg, mem32
  1513     __ pop_f(xmm1);
  1514     __ ucomiss(xmm1, xmm0);
  1515   } else {
  1516     // XXX get rid of pop here, use ... reg, mem64
  1517     __ pop_d(xmm1);
  1518     __ ucomisd(xmm1, xmm0);
  1520   if (unordered_result < 0) {
  1521     __ movl(rax, -1);
  1522     __ jccb(Assembler::parity, done);
  1523     __ jccb(Assembler::below, done);
  1524     __ setb(Assembler::notEqual, rdx);
  1525     __ movzbl(rax, rdx);
  1526   } else {
  1527     __ movl(rax, 1);
  1528     __ jccb(Assembler::parity, done);
  1529     __ jccb(Assembler::above, done);
  1530     __ movl(rax, 0);
  1531     __ jccb(Assembler::equal, done);
  1532     __ decrementl(rax);
  1534   __ bind(done);
  1537 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1538   __ get_method(rcx); // rcx holds method
  1539   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1540                                      // holds bumped taken count
  1542   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1543                              InvocationCounter::counter_offset();
  1544   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1545                               InvocationCounter::counter_offset();
  1546   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1548   // Load up edx with the branch displacement
  1549   __ movl(rdx, at_bcp(1));
  1550   __ bswapl(rdx);
  1552   if (!is_wide) {
  1553     __ sarl(rdx, 16);
  1555   __ movl2ptr(rdx, rdx);
  1557   // Handle all the JSR stuff here, then exit.
  1558   // It's much shorter and cleaner than intermingling with the non-JSR
  1559   // normal-branch stuff occurring below.
  1560   if (is_jsr) {
  1561     // Pre-load the next target bytecode into rbx
  1562     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1564     // compute return address as bci in rax
  1565     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1566                         in_bytes(constMethodOopDesc::codes_offset())));
  1567     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1568     // Adjust the bcp in r13 by the displacement in rdx
  1569     __ addptr(r13, rdx);
  1570     // jsr returns atos that is not an oop
  1571     __ push_i(rax);
  1572     __ dispatch_only(vtos);
  1573     return;
  1576   // Normal (non-jsr) branch handling
  1578   // Adjust the bcp in r13 by the displacement in rdx
  1579   __ addptr(r13, rdx);
  1581   assert(UseLoopCounter || !UseOnStackReplacement,
  1582          "on-stack-replacement requires loop counters");
  1583   Label backedge_counter_overflow;
  1584   Label profile_method;
  1585   Label dispatch;
  1586   if (UseLoopCounter) {
  1587     // increment backedge counter for backward branches
  1588     // rax: MDO
  1589     // ebx: MDO bumped taken-count
  1590     // rcx: method
  1591     // rdx: target offset
  1592     // r13: target bcp
  1593     // r14: locals pointer
  1594     __ testl(rdx, rdx);             // check if forward or backward branch
  1595     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1597     // increment counter
  1598     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1599     __ incrementl(rax, InvocationCounter::count_increment); // increment
  1600                                                             // counter
  1601     __ movl(Address(rcx, be_offset), rax);        // store counter
  1603     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1604     __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1605     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1607     if (ProfileInterpreter) {
  1608       // Test to see if we should create a method data oop
  1609       __ cmp32(rax,
  1610                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1611       __ jcc(Assembler::less, dispatch);
  1613       // if no method data exists, go to profile method
  1614       __ test_method_data_pointer(rax, profile_method);
  1616       if (UseOnStackReplacement) {
  1617         // check for overflow against ebx which is the MDO taken count
  1618         __ cmp32(rbx,
  1619                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1620         __ jcc(Assembler::below, dispatch);
  1622         // When ProfileInterpreter is on, the backedge_count comes
  1623         // from the methodDataOop, which value does not get reset on
  1624         // the call to frequency_counter_overflow().  To avoid
  1625         // excessive calls to the overflow routine while the method is
  1626         // being compiled, add a second test to make sure the overflow
  1627         // function is called only once every overflow_frequency.
  1628         const int overflow_frequency = 1024;
  1629         __ andl(rbx, overflow_frequency - 1);
  1630         __ jcc(Assembler::zero, backedge_counter_overflow);
  1633     } else {
  1634       if (UseOnStackReplacement) {
  1635         // check for overflow against eax, which is the sum of the
  1636         // counters
  1637         __ cmp32(rax,
  1638                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1639         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1643     __ bind(dispatch);
  1646   // Pre-load the next target bytecode into rbx
  1647   __ load_unsigned_byte(rbx, Address(r13, 0));
  1649   // continue with the bytecode @ target
  1650   // eax: return bci for jsr's, unused otherwise
  1651   // ebx: target bytecode
  1652   // r13: target bcp
  1653   __ dispatch_only(vtos);
  1655   if (UseLoopCounter) {
  1656     if (ProfileInterpreter) {
  1657       // Out-of-line code to allocate method data oop.
  1658       __ bind(profile_method);
  1659       __ call_VM(noreg,
  1660                  CAST_FROM_FN_PTR(address,
  1661                                   InterpreterRuntime::profile_method), r13);
  1662       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1663       __ movptr(rcx, Address(rbp, method_offset));
  1664       __ movptr(rcx, Address(rcx,
  1665                              in_bytes(methodOopDesc::method_data_offset())));
  1666       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1667                 rcx);
  1668       __ test_method_data_pointer(rcx, dispatch);
  1669       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1670       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1671       __ addptr(rcx, rax);
  1672       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1673                 rcx);
  1674       __ jmp(dispatch);
  1677     if (UseOnStackReplacement) {
  1678       // invocation counter overflow
  1679       __ bind(backedge_counter_overflow);
  1680       __ negptr(rdx);
  1681       __ addptr(rdx, r13); // branch bcp
  1682       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1683       __ call_VM(noreg,
  1684                  CAST_FROM_FN_PTR(address,
  1685                                   InterpreterRuntime::frequency_counter_overflow),
  1686                  rdx);
  1687       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1689       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1690       // ebx: target bytecode
  1691       // rdx: scratch
  1692       // r14: locals pointer
  1693       // r13: bcp
  1694       __ testptr(rax, rax);                        // test result
  1695       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1696       // nmethod may have been invalidated (VM may block upon call_VM return)
  1697       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1698       __ cmpl(rcx, InvalidOSREntryBci);
  1699       __ jcc(Assembler::equal, dispatch);
  1701       // We have the address of an on stack replacement routine in eax
  1702       // We need to prepare to execute the OSR method. First we must
  1703       // migrate the locals and monitors off of the stack.
  1705       __ mov(r13, rax);                             // save the nmethod
  1707       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1709       // eax is OSR buffer, move it to expected parameter location
  1710       __ mov(j_rarg0, rax);
  1712       // We use j_rarg definitions here so that registers don't conflict as parameter
  1713       // registers change across platforms as we are in the midst of a calling
  1714       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1716       const Register retaddr = j_rarg2;
  1717       const Register sender_sp = j_rarg1;
  1719       // pop the interpreter frame
  1720       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1721       __ leave();                                // remove frame anchor
  1722       __ pop(retaddr);                           // get return address
  1723       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1724       // Ensure compiled code always sees stack at proper alignment
  1725       __ andptr(rsp, -(StackAlignmentInBytes));
  1727       // unlike x86 we need no specialized return from compiled code
  1728       // to the interpreter or the call stub.
  1730       // push the return address
  1731       __ push(retaddr);
  1733       // and begin the OSR nmethod
  1734       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1740 void TemplateTable::if_0cmp(Condition cc) {
  1741   transition(itos, vtos);
  1742   // assume branch is more often taken than not (loops use backward branches)
  1743   Label not_taken;
  1744   __ testl(rax, rax);
  1745   __ jcc(j_not(cc), not_taken);
  1746   branch(false, false);
  1747   __ bind(not_taken);
  1748   __ profile_not_taken_branch(rax);
  1751 void TemplateTable::if_icmp(Condition cc) {
  1752   transition(itos, vtos);
  1753   // assume branch is more often taken than not (loops use backward branches)
  1754   Label not_taken;
  1755   __ pop_i(rdx);
  1756   __ cmpl(rdx, rax);
  1757   __ jcc(j_not(cc), not_taken);
  1758   branch(false, false);
  1759   __ bind(not_taken);
  1760   __ profile_not_taken_branch(rax);
  1763 void TemplateTable::if_nullcmp(Condition cc) {
  1764   transition(atos, vtos);
  1765   // assume branch is more often taken than not (loops use backward branches)
  1766   Label not_taken;
  1767   __ testptr(rax, rax);
  1768   __ jcc(j_not(cc), not_taken);
  1769   branch(false, false);
  1770   __ bind(not_taken);
  1771   __ profile_not_taken_branch(rax);
  1774 void TemplateTable::if_acmp(Condition cc) {
  1775   transition(atos, vtos);
  1776   // assume branch is more often taken than not (loops use backward branches)
  1777   Label not_taken;
  1778   __ pop_ptr(rdx);
  1779   __ cmpptr(rdx, rax);
  1780   __ jcc(j_not(cc), not_taken);
  1781   branch(false, false);
  1782   __ bind(not_taken);
  1783   __ profile_not_taken_branch(rax);
  1786 void TemplateTable::ret() {
  1787   transition(vtos, vtos);
  1788   locals_index(rbx);
  1789   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1790   __ profile_ret(rbx, rcx);
  1791   __ get_method(rax);
  1792   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1793   __ lea(r13, Address(r13, rbx, Address::times_1,
  1794                       constMethodOopDesc::codes_offset()));
  1795   __ dispatch_next(vtos);
  1798 void TemplateTable::wide_ret() {
  1799   transition(vtos, vtos);
  1800   locals_index_wide(rbx);
  1801   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1802   __ profile_ret(rbx, rcx);
  1803   __ get_method(rax);
  1804   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1805   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1806   __ dispatch_next(vtos);
  1809 void TemplateTable::tableswitch() {
  1810   Label default_case, continue_execution;
  1811   transition(itos, vtos);
  1812   // align r13
  1813   __ lea(rbx, at_bcp(BytesPerInt));
  1814   __ andptr(rbx, -BytesPerInt);
  1815   // load lo & hi
  1816   __ movl(rcx, Address(rbx, BytesPerInt));
  1817   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1818   __ bswapl(rcx);
  1819   __ bswapl(rdx);
  1820   // check against lo & hi
  1821   __ cmpl(rax, rcx);
  1822   __ jcc(Assembler::less, default_case);
  1823   __ cmpl(rax, rdx);
  1824   __ jcc(Assembler::greater, default_case);
  1825   // lookup dispatch offset
  1826   __ subl(rax, rcx);
  1827   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1828   __ profile_switch_case(rax, rbx, rcx);
  1829   // continue execution
  1830   __ bind(continue_execution);
  1831   __ bswapl(rdx);
  1832   __ movl2ptr(rdx, rdx);
  1833   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1834   __ addptr(r13, rdx);
  1835   __ dispatch_only(vtos);
  1836   // handle default
  1837   __ bind(default_case);
  1838   __ profile_switch_default(rax);
  1839   __ movl(rdx, Address(rbx, 0));
  1840   __ jmp(continue_execution);
  1843 void TemplateTable::lookupswitch() {
  1844   transition(itos, itos);
  1845   __ stop("lookupswitch bytecode should have been rewritten");
  1848 void TemplateTable::fast_linearswitch() {
  1849   transition(itos, vtos);
  1850   Label loop_entry, loop, found, continue_execution;
  1851   // bswap rax so we can avoid bswapping the table entries
  1852   __ bswapl(rax);
  1853   // align r13
  1854   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1855                                     // this instruction (change offsets
  1856                                     // below)
  1857   __ andptr(rbx, -BytesPerInt);
  1858   // set counter
  1859   __ movl(rcx, Address(rbx, BytesPerInt));
  1860   __ bswapl(rcx);
  1861   __ jmpb(loop_entry);
  1862   // table search
  1863   __ bind(loop);
  1864   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1865   __ jcc(Assembler::equal, found);
  1866   __ bind(loop_entry);
  1867   __ decrementl(rcx);
  1868   __ jcc(Assembler::greaterEqual, loop);
  1869   // default case
  1870   __ profile_switch_default(rax);
  1871   __ movl(rdx, Address(rbx, 0));
  1872   __ jmp(continue_execution);
  1873   // entry found -> get offset
  1874   __ bind(found);
  1875   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1876   __ profile_switch_case(rcx, rax, rbx);
  1877   // continue execution
  1878   __ bind(continue_execution);
  1879   __ bswapl(rdx);
  1880   __ movl2ptr(rdx, rdx);
  1881   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1882   __ addptr(r13, rdx);
  1883   __ dispatch_only(vtos);
  1886 void TemplateTable::fast_binaryswitch() {
  1887   transition(itos, vtos);
  1888   // Implementation using the following core algorithm:
  1889   //
  1890   // int binary_search(int key, LookupswitchPair* array, int n) {
  1891   //   // Binary search according to "Methodik des Programmierens" by
  1892   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1893   //   int i = 0;
  1894   //   int j = n;
  1895   //   while (i+1 < j) {
  1896   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1897   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1898   //     // where a stands for the array and assuming that the (inexisting)
  1899   //     // element a[n] is infinitely big.
  1900   //     int h = (i + j) >> 1;
  1901   //     // i < h < j
  1902   //     if (key < array[h].fast_match()) {
  1903   //       j = h;
  1904   //     } else {
  1905   //       i = h;
  1906   //     }
  1907   //   }
  1908   //   // R: a[i] <= key < a[i+1] or Q
  1909   //   // (i.e., if key is within array, i is the correct index)
  1910   //   return i;
  1911   // }
  1913   // Register allocation
  1914   const Register key   = rax; // already set (tosca)
  1915   const Register array = rbx;
  1916   const Register i     = rcx;
  1917   const Register j     = rdx;
  1918   const Register h     = rdi;
  1919   const Register temp  = rsi;
  1921   // Find array start
  1922   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1923                                           // get rid of this
  1924                                           // instruction (change
  1925                                           // offsets below)
  1926   __ andptr(array, -BytesPerInt);
  1928   // Initialize i & j
  1929   __ xorl(i, i);                            // i = 0;
  1930   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1932   // Convert j into native byteordering
  1933   __ bswapl(j);
  1935   // And start
  1936   Label entry;
  1937   __ jmp(entry);
  1939   // binary search loop
  1941     Label loop;
  1942     __ bind(loop);
  1943     // int h = (i + j) >> 1;
  1944     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1945     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1946     // if (key < array[h].fast_match()) {
  1947     //   j = h;
  1948     // } else {
  1949     //   i = h;
  1950     // }
  1951     // Convert array[h].match to native byte-ordering before compare
  1952     __ movl(temp, Address(array, h, Address::times_8));
  1953     __ bswapl(temp);
  1954     __ cmpl(key, temp);
  1955     // j = h if (key <  array[h].fast_match())
  1956     __ cmovl(Assembler::less, j, h);
  1957     // i = h if (key >= array[h].fast_match())
  1958     __ cmovl(Assembler::greaterEqual, i, h);
  1959     // while (i+1 < j)
  1960     __ bind(entry);
  1961     __ leal(h, Address(i, 1)); // i+1
  1962     __ cmpl(h, j);             // i+1 < j
  1963     __ jcc(Assembler::less, loop);
  1966   // end of binary search, result index is i (must check again!)
  1967   Label default_case;
  1968   // Convert array[i].match to native byte-ordering before compare
  1969   __ movl(temp, Address(array, i, Address::times_8));
  1970   __ bswapl(temp);
  1971   __ cmpl(key, temp);
  1972   __ jcc(Assembler::notEqual, default_case);
  1974   // entry found -> j = offset
  1975   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  1976   __ profile_switch_case(i, key, array);
  1977   __ bswapl(j);
  1978   __ movl2ptr(j, j);
  1979   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1980   __ addptr(r13, j);
  1981   __ dispatch_only(vtos);
  1983   // default case -> j = default offset
  1984   __ bind(default_case);
  1985   __ profile_switch_default(i);
  1986   __ movl(j, Address(array, -2 * BytesPerInt));
  1987   __ bswapl(j);
  1988   __ movl2ptr(j, j);
  1989   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1990   __ addptr(r13, j);
  1991   __ dispatch_only(vtos);
  1995 void TemplateTable::_return(TosState state) {
  1996   transition(state, state);
  1997   assert(_desc->calls_vm(),
  1998          "inconsistent calls_vm information"); // call in remove_activation
  2000   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2001     assert(state == vtos, "only valid state");
  2002     __ movptr(c_rarg1, aaddress(0));
  2003     __ load_klass(rdi, c_rarg1);
  2004     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2005     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2006     Label skip_register_finalizer;
  2007     __ jcc(Assembler::zero, skip_register_finalizer);
  2009     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2011     __ bind(skip_register_finalizer);
  2014   __ remove_activation(state, r13);
  2015   __ jmp(r13);
  2018 // ----------------------------------------------------------------------------
  2019 // Volatile variables demand their effects be made known to all CPU's
  2020 // in order.  Store buffers on most chips allow reads & writes to
  2021 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2022 // without some kind of memory barrier (i.e., it's not sufficient that
  2023 // the interpreter does not reorder volatile references, the hardware
  2024 // also must not reorder them).
  2025 //
  2026 // According to the new Java Memory Model (JMM):
  2027 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2028 //     writes act as aquire & release, so:
  2029 // (2) A read cannot let unrelated NON-volatile memory refs that
  2030 //     happen after the read float up to before the read.  It's OK for
  2031 //     non-volatile memory refs that happen before the volatile read to
  2032 //     float down below it.
  2033 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2034 //     memory refs that happen BEFORE the write float down to after the
  2035 //     write.  It's OK for non-volatile memory refs that happen after the
  2036 //     volatile write to float up before it.
  2037 //
  2038 // We only put in barriers around volatile refs (they are expensive),
  2039 // not _between_ memory refs (that would require us to track the
  2040 // flavor of the previous memory refs).  Requirements (2) and (3)
  2041 // require some barriers before volatile stores and after volatile
  2042 // loads.  These nearly cover requirement (1) but miss the
  2043 // volatile-store-volatile-load case.  This final case is placed after
  2044 // volatile-stores although it could just as well go before
  2045 // volatile-loads.
  2046 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2047                                      order_constraint) {
  2048   // Helper function to insert a is-volatile test and memory barrier
  2049   if (os::is_MP()) { // Not needed on single CPU
  2050     __ membar(order_constraint);
  2054 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
  2055   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  2056   bool is_invokedynamic = (bytecode() == Bytecodes::_invokedynamic);
  2058   const Register temp = rbx;
  2059   assert_different_registers(Rcache, index, temp);
  2061   const int shift_count = (1 + byte_no) * BitsPerByte;
  2062   Label resolved;
  2063   __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
  2064   if (is_invokedynamic) {
  2065     // we are resolved if the f1 field contains a non-null CallSite object
  2066     __ cmpptr(Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()), (int32_t) NULL_WORD);
  2067     __ jcc(Assembler::notEqual, resolved);
  2068   } else {
  2069     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2070     __ shrl(temp, shift_count);
  2071     // have we resolved this bytecode?
  2072     __ andl(temp, 0xFF);
  2073     __ cmpl(temp, (int) bytecode());
  2074     __ jcc(Assembler::equal, resolved);
  2077   // resolve first time through
  2078   address entry;
  2079   switch (bytecode()) {
  2080   case Bytecodes::_getstatic:
  2081   case Bytecodes::_putstatic:
  2082   case Bytecodes::_getfield:
  2083   case Bytecodes::_putfield:
  2084     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2085     break;
  2086   case Bytecodes::_invokevirtual:
  2087   case Bytecodes::_invokespecial:
  2088   case Bytecodes::_invokestatic:
  2089   case Bytecodes::_invokeinterface:
  2090     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2091     break;
  2092   case Bytecodes::_invokedynamic:
  2093     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2094     break;
  2095   default:
  2096     ShouldNotReachHere();
  2097     break;
  2099   __ movl(temp, (int) bytecode());
  2100   __ call_VM(noreg, entry, temp);
  2102   // Update registers with resolved info
  2103   __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
  2104   __ bind(resolved);
  2107 // The Rcache and index registers must be set before call
  2108 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2109                                               Register cache,
  2110                                               Register index,
  2111                                               Register off,
  2112                                               Register flags,
  2113                                               bool is_static = false) {
  2114   assert_different_registers(cache, index, flags, off);
  2116   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2117   // Field offset
  2118   __ movptr(off, Address(cache, index, Address::times_8,
  2119                          in_bytes(cp_base_offset +
  2120                                   ConstantPoolCacheEntry::f2_offset())));
  2121   // Flags
  2122   __ movl(flags, Address(cache, index, Address::times_8,
  2123                          in_bytes(cp_base_offset +
  2124                                   ConstantPoolCacheEntry::flags_offset())));
  2126   // klass overwrite register
  2127   if (is_static) {
  2128     __ movptr(obj, Address(cache, index, Address::times_8,
  2129                            in_bytes(cp_base_offset +
  2130                                     ConstantPoolCacheEntry::f1_offset())));
  2134 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2135                                                Register method,
  2136                                                Register itable_index,
  2137                                                Register flags,
  2138                                                bool is_invokevirtual,
  2139                                                bool is_invokevfinal /*unused*/) {
  2140   // setup registers
  2141   const Register cache = rcx;
  2142   const Register index = rdx;
  2143   assert_different_registers(method, flags);
  2144   assert_different_registers(method, cache, index);
  2145   assert_different_registers(itable_index, flags);
  2146   assert_different_registers(itable_index, cache, index);
  2147   // determine constant pool cache field offsets
  2148   const int method_offset = in_bytes(
  2149     constantPoolCacheOopDesc::base_offset() +
  2150       (is_invokevirtual
  2151        ? ConstantPoolCacheEntry::f2_offset()
  2152        : ConstantPoolCacheEntry::f1_offset()));
  2153   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2154                                     ConstantPoolCacheEntry::flags_offset());
  2155   // access constant pool cache fields
  2156   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2157                                     ConstantPoolCacheEntry::f2_offset());
  2159   resolve_cache_and_index(byte_no, cache, index);
  2161   assert(wordSize == 8, "adjust code below");
  2162   __ movptr(method, Address(cache, index, Address::times_8, method_offset));
  2163   if (itable_index != noreg) {
  2164     __ movptr(itable_index,
  2165             Address(cache, index, Address::times_8, index_offset));
  2167   __ movl(flags , Address(cache, index, Address::times_8, flags_offset));
  2171 // The registers cache and index expected to be set before call.
  2172 // Correct values of the cache and index registers are preserved.
  2173 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2174                                             bool is_static, bool has_tos) {
  2175   // do the JVMTI work here to avoid disturbing the register state below
  2176   // We use c_rarg registers here because we want to use the register used in
  2177   // the call to the VM
  2178   if (JvmtiExport::can_post_field_access()) {
  2179     // Check to see if a field access watch has been set before we
  2180     // take the time to call into the VM.
  2181     Label L1;
  2182     assert_different_registers(cache, index, rax);
  2183     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2184     __ testl(rax, rax);
  2185     __ jcc(Assembler::zero, L1);
  2187     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2189     // cache entry pointer
  2190     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2191     __ shll(c_rarg3, LogBytesPerWord);
  2192     __ addptr(c_rarg2, c_rarg3);
  2193     if (is_static) {
  2194       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2195     } else {
  2196       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2197       __ verify_oop(c_rarg1);
  2199     // c_rarg1: object pointer or NULL
  2200     // c_rarg2: cache entry pointer
  2201     // c_rarg3: jvalue object on the stack
  2202     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2203                                        InterpreterRuntime::post_field_access),
  2204                c_rarg1, c_rarg2, c_rarg3);
  2205     __ get_cache_and_index_at_bcp(cache, index, 1);
  2206     __ bind(L1);
  2210 void TemplateTable::pop_and_check_object(Register r) {
  2211   __ pop_ptr(r);
  2212   __ null_check(r);  // for field access must check obj.
  2213   __ verify_oop(r);
  2216 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2217   transition(vtos, vtos);
  2219   const Register cache = rcx;
  2220   const Register index = rdx;
  2221   const Register obj   = c_rarg3;
  2222   const Register off   = rbx;
  2223   const Register flags = rax;
  2224   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2226   resolve_cache_and_index(byte_no, cache, index);
  2227   jvmti_post_field_access(cache, index, is_static, false);
  2228   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2230   if (!is_static) {
  2231     // obj is on the stack
  2232     pop_and_check_object(obj);
  2235   const Address field(obj, off, Address::times_1);
  2237   Label Done, notByte, notInt, notShort, notChar,
  2238               notLong, notFloat, notObj, notDouble;
  2240   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2241   assert(btos == 0, "change code, btos != 0");
  2243   __ andl(flags, 0x0F);
  2244   __ jcc(Assembler::notZero, notByte);
  2245   // btos
  2246   __ load_signed_byte(rax, field);
  2247   __ push(btos);
  2248   // Rewrite bytecode to be faster
  2249   if (!is_static) {
  2250     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2252   __ jmp(Done);
  2254   __ bind(notByte);
  2255   __ cmpl(flags, atos);
  2256   __ jcc(Assembler::notEqual, notObj);
  2257   // atos
  2258   __ load_heap_oop(rax, field);
  2259   __ push(atos);
  2260   if (!is_static) {
  2261     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2263   __ jmp(Done);
  2265   __ bind(notObj);
  2266   __ cmpl(flags, itos);
  2267   __ jcc(Assembler::notEqual, notInt);
  2268   // itos
  2269   __ movl(rax, field);
  2270   __ push(itos);
  2271   // Rewrite bytecode to be faster
  2272   if (!is_static) {
  2273     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2275   __ jmp(Done);
  2277   __ bind(notInt);
  2278   __ cmpl(flags, ctos);
  2279   __ jcc(Assembler::notEqual, notChar);
  2280   // ctos
  2281   __ load_unsigned_short(rax, field);
  2282   __ push(ctos);
  2283   // Rewrite bytecode to be faster
  2284   if (!is_static) {
  2285     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2287   __ jmp(Done);
  2289   __ bind(notChar);
  2290   __ cmpl(flags, stos);
  2291   __ jcc(Assembler::notEqual, notShort);
  2292   // stos
  2293   __ load_signed_short(rax, field);
  2294   __ push(stos);
  2295   // Rewrite bytecode to be faster
  2296   if (!is_static) {
  2297     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2299   __ jmp(Done);
  2301   __ bind(notShort);
  2302   __ cmpl(flags, ltos);
  2303   __ jcc(Assembler::notEqual, notLong);
  2304   // ltos
  2305   __ movq(rax, field);
  2306   __ push(ltos);
  2307   // Rewrite bytecode to be faster
  2308   if (!is_static) {
  2309     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2311   __ jmp(Done);
  2313   __ bind(notLong);
  2314   __ cmpl(flags, ftos);
  2315   __ jcc(Assembler::notEqual, notFloat);
  2316   // ftos
  2317   __ movflt(xmm0, field);
  2318   __ push(ftos);
  2319   // Rewrite bytecode to be faster
  2320   if (!is_static) {
  2321     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2323   __ jmp(Done);
  2325   __ bind(notFloat);
  2326 #ifdef ASSERT
  2327   __ cmpl(flags, dtos);
  2328   __ jcc(Assembler::notEqual, notDouble);
  2329 #endif
  2330   // dtos
  2331   __ movdbl(xmm0, field);
  2332   __ push(dtos);
  2333   // Rewrite bytecode to be faster
  2334   if (!is_static) {
  2335     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2337 #ifdef ASSERT
  2338   __ jmp(Done);
  2340   __ bind(notDouble);
  2341   __ stop("Bad state");
  2342 #endif
  2344   __ bind(Done);
  2345   // [jk] not needed currently
  2346   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2347   //                                              Assembler::LoadStore));
  2351 void TemplateTable::getfield(int byte_no) {
  2352   getfield_or_static(byte_no, false);
  2355 void TemplateTable::getstatic(int byte_no) {
  2356   getfield_or_static(byte_no, true);
  2359 // The registers cache and index expected to be set before call.
  2360 // The function may destroy various registers, just not the cache and index registers.
  2361 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2362   transition(vtos, vtos);
  2364   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2366   if (JvmtiExport::can_post_field_modification()) {
  2367     // Check to see if a field modification watch has been set before
  2368     // we take the time to call into the VM.
  2369     Label L1;
  2370     assert_different_registers(cache, index, rax);
  2371     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2372     __ testl(rax, rax);
  2373     __ jcc(Assembler::zero, L1);
  2375     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2377     if (is_static) {
  2378       // Life is simple.  Null out the object pointer.
  2379       __ xorl(c_rarg1, c_rarg1);
  2380     } else {
  2381       // Life is harder. The stack holds the value on top, followed by
  2382       // the object.  We don't know the size of the value, though; it
  2383       // could be one or two words depending on its type. As a result,
  2384       // we must find the type to determine where the object is.
  2385       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2386                            Address::times_8,
  2387                            in_bytes(cp_base_offset +
  2388                                      ConstantPoolCacheEntry::flags_offset())));
  2389       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2390       // Make sure we don't need to mask rcx for tosBits after the
  2391       // above shift
  2392       ConstantPoolCacheEntry::verify_tosBits();
  2393       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2394       __ cmpl(c_rarg3, ltos);
  2395       __ cmovptr(Assembler::equal,
  2396                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2397       __ cmpl(c_rarg3, dtos);
  2398       __ cmovptr(Assembler::equal,
  2399                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2401     // cache entry pointer
  2402     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2403     __ shll(rscratch1, LogBytesPerWord);
  2404     __ addptr(c_rarg2, rscratch1);
  2405     // object (tos)
  2406     __ mov(c_rarg3, rsp);
  2407     // c_rarg1: object pointer set up above (NULL if static)
  2408     // c_rarg2: cache entry pointer
  2409     // c_rarg3: jvalue object on the stack
  2410     __ call_VM(noreg,
  2411                CAST_FROM_FN_PTR(address,
  2412                                 InterpreterRuntime::post_field_modification),
  2413                c_rarg1, c_rarg2, c_rarg3);
  2414     __ get_cache_and_index_at_bcp(cache, index, 1);
  2415     __ bind(L1);
  2419 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2420   transition(vtos, vtos);
  2422   const Register cache = rcx;
  2423   const Register index = rdx;
  2424   const Register obj   = rcx;
  2425   const Register off   = rbx;
  2426   const Register flags = rax;
  2427   const Register bc    = c_rarg3;
  2429   resolve_cache_and_index(byte_no, cache, index);
  2430   jvmti_post_field_mod(cache, index, is_static);
  2431   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2433   // [jk] not needed currently
  2434   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2435   //                                              Assembler::StoreStore));
  2437   Label notVolatile, Done;
  2438   __ movl(rdx, flags);
  2439   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2440   __ andl(rdx, 0x1);
  2442   // field address
  2443   const Address field(obj, off, Address::times_1);
  2445   Label notByte, notInt, notShort, notChar,
  2446         notLong, notFloat, notObj, notDouble;
  2448   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2450   assert(btos == 0, "change code, btos != 0");
  2451   __ andl(flags, 0x0f);
  2452   __ jcc(Assembler::notZero, notByte);
  2453   // btos
  2454   __ pop(btos);
  2455   if (!is_static) pop_and_check_object(obj);
  2456   __ movb(field, rax);
  2457   if (!is_static) {
  2458     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2460   __ jmp(Done);
  2462   __ bind(notByte);
  2463   __ cmpl(flags, atos);
  2464   __ jcc(Assembler::notEqual, notObj);
  2465   // atos
  2466   __ pop(atos);
  2467   if (!is_static) pop_and_check_object(obj);
  2469   // Store into the field
  2470   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2472   if (!is_static) {
  2473     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2475   __ jmp(Done);
  2477   __ bind(notObj);
  2478   __ cmpl(flags, itos);
  2479   __ jcc(Assembler::notEqual, notInt);
  2480   // itos
  2481   __ pop(itos);
  2482   if (!is_static) pop_and_check_object(obj);
  2483   __ movl(field, rax);
  2484   if (!is_static) {
  2485     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2487   __ jmp(Done);
  2489   __ bind(notInt);
  2490   __ cmpl(flags, ctos);
  2491   __ jcc(Assembler::notEqual, notChar);
  2492   // ctos
  2493   __ pop(ctos);
  2494   if (!is_static) pop_and_check_object(obj);
  2495   __ movw(field, rax);
  2496   if (!is_static) {
  2497     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2499   __ jmp(Done);
  2501   __ bind(notChar);
  2502   __ cmpl(flags, stos);
  2503   __ jcc(Assembler::notEqual, notShort);
  2504   // stos
  2505   __ pop(stos);
  2506   if (!is_static) pop_and_check_object(obj);
  2507   __ movw(field, rax);
  2508   if (!is_static) {
  2509     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2511   __ jmp(Done);
  2513   __ bind(notShort);
  2514   __ cmpl(flags, ltos);
  2515   __ jcc(Assembler::notEqual, notLong);
  2516   // ltos
  2517   __ pop(ltos);
  2518   if (!is_static) pop_and_check_object(obj);
  2519   __ movq(field, rax);
  2520   if (!is_static) {
  2521     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2523   __ jmp(Done);
  2525   __ bind(notLong);
  2526   __ cmpl(flags, ftos);
  2527   __ jcc(Assembler::notEqual, notFloat);
  2528   // ftos
  2529   __ pop(ftos);
  2530   if (!is_static) pop_and_check_object(obj);
  2531   __ movflt(field, xmm0);
  2532   if (!is_static) {
  2533     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2535   __ jmp(Done);
  2537   __ bind(notFloat);
  2538 #ifdef ASSERT
  2539   __ cmpl(flags, dtos);
  2540   __ jcc(Assembler::notEqual, notDouble);
  2541 #endif
  2542   // dtos
  2543   __ pop(dtos);
  2544   if (!is_static) pop_and_check_object(obj);
  2545   __ movdbl(field, xmm0);
  2546   if (!is_static) {
  2547     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2550 #ifdef ASSERT
  2551   __ jmp(Done);
  2553   __ bind(notDouble);
  2554   __ stop("Bad state");
  2555 #endif
  2557   __ bind(Done);
  2558   // Check for volatile store
  2559   __ testl(rdx, rdx);
  2560   __ jcc(Assembler::zero, notVolatile);
  2561   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2562                                                Assembler::StoreStore));
  2564   __ bind(notVolatile);
  2567 void TemplateTable::putfield(int byte_no) {
  2568   putfield_or_static(byte_no, false);
  2571 void TemplateTable::putstatic(int byte_no) {
  2572   putfield_or_static(byte_no, true);
  2575 void TemplateTable::jvmti_post_fast_field_mod() {
  2576   if (JvmtiExport::can_post_field_modification()) {
  2577     // Check to see if a field modification watch has been set before
  2578     // we take the time to call into the VM.
  2579     Label L2;
  2580     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2581     __ testl(c_rarg3, c_rarg3);
  2582     __ jcc(Assembler::zero, L2);
  2583     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2584     __ verify_oop(rbx);
  2585     __ push_ptr(rbx);                 // put the object pointer back on tos
  2586     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2587     __ mov(c_rarg3, rsp);
  2588     const Address field(c_rarg3, 0);
  2590     switch (bytecode()) {          // load values into the jvalue object
  2591     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2592     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2593     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2594     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2595     case Bytecodes::_fast_sputfield: // fall through
  2596     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2597     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2598     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2599     default:
  2600       ShouldNotReachHere();
  2603     // Save rax because call_VM() will clobber it, then use it for
  2604     // JVMTI purposes
  2605     __ push(rax);
  2606     // access constant pool cache entry
  2607     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2608     __ verify_oop(rbx);
  2609     // rbx: object pointer copied above
  2610     // c_rarg2: cache entry pointer
  2611     // c_rarg3: jvalue object on the stack
  2612     __ call_VM(noreg,
  2613                CAST_FROM_FN_PTR(address,
  2614                                 InterpreterRuntime::post_field_modification),
  2615                rbx, c_rarg2, c_rarg3);
  2616     __ pop(rax);     // restore lower value
  2617     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2618     __ bind(L2);
  2622 void TemplateTable::fast_storefield(TosState state) {
  2623   transition(state, vtos);
  2625   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2627   jvmti_post_fast_field_mod();
  2629   // access constant pool cache
  2630   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2632   // test for volatile with rdx
  2633   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2634                        in_bytes(base +
  2635                                 ConstantPoolCacheEntry::flags_offset())));
  2637   // replace index with field offset from cache entry
  2638   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2639                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2641   // [jk] not needed currently
  2642   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2643   //                                              Assembler::StoreStore));
  2645   Label notVolatile;
  2646   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2647   __ andl(rdx, 0x1);
  2649   // Get object from stack
  2650   pop_and_check_object(rcx);
  2652   // field address
  2653   const Address field(rcx, rbx, Address::times_1);
  2655   // access field
  2656   switch (bytecode()) {
  2657   case Bytecodes::_fast_aputfield:
  2658     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2659     break;
  2660   case Bytecodes::_fast_lputfield:
  2661     __ movq(field, rax);
  2662     break;
  2663   case Bytecodes::_fast_iputfield:
  2664     __ movl(field, rax);
  2665     break;
  2666   case Bytecodes::_fast_bputfield:
  2667     __ movb(field, rax);
  2668     break;
  2669   case Bytecodes::_fast_sputfield:
  2670     // fall through
  2671   case Bytecodes::_fast_cputfield:
  2672     __ movw(field, rax);
  2673     break;
  2674   case Bytecodes::_fast_fputfield:
  2675     __ movflt(field, xmm0);
  2676     break;
  2677   case Bytecodes::_fast_dputfield:
  2678     __ movdbl(field, xmm0);
  2679     break;
  2680   default:
  2681     ShouldNotReachHere();
  2684   // Check for volatile store
  2685   __ testl(rdx, rdx);
  2686   __ jcc(Assembler::zero, notVolatile);
  2687   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2688                                                Assembler::StoreStore));
  2689   __ bind(notVolatile);
  2693 void TemplateTable::fast_accessfield(TosState state) {
  2694   transition(atos, state);
  2696   // Do the JVMTI work here to avoid disturbing the register state below
  2697   if (JvmtiExport::can_post_field_access()) {
  2698     // Check to see if a field access watch has been set before we
  2699     // take the time to call into the VM.
  2700     Label L1;
  2701     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2702     __ testl(rcx, rcx);
  2703     __ jcc(Assembler::zero, L1);
  2704     // access constant pool cache entry
  2705     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2706     __ verify_oop(rax);
  2707     __ mov(r12, rax);  // save object pointer before call_VM() clobbers it
  2708     __ mov(c_rarg1, rax);
  2709     // c_rarg1: object pointer copied above
  2710     // c_rarg2: cache entry pointer
  2711     __ call_VM(noreg,
  2712                CAST_FROM_FN_PTR(address,
  2713                                 InterpreterRuntime::post_field_access),
  2714                c_rarg1, c_rarg2);
  2715     __ mov(rax, r12); // restore object pointer
  2716     __ reinit_heapbase();
  2717     __ bind(L1);
  2720   // access constant pool cache
  2721   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2722   // replace index with field offset from cache entry
  2723   // [jk] not needed currently
  2724   // if (os::is_MP()) {
  2725   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2726   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2727   //                                 ConstantPoolCacheEntry::flags_offset())));
  2728   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2729   //   __ andl(rdx, 0x1);
  2730   // }
  2731   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2732                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2733                                   ConstantPoolCacheEntry::f2_offset())));
  2735   // rax: object
  2736   __ verify_oop(rax);
  2737   __ null_check(rax);
  2738   Address field(rax, rbx, Address::times_1);
  2740   // access field
  2741   switch (bytecode()) {
  2742   case Bytecodes::_fast_agetfield:
  2743     __ load_heap_oop(rax, field);
  2744     __ verify_oop(rax);
  2745     break;
  2746   case Bytecodes::_fast_lgetfield:
  2747     __ movq(rax, field);
  2748     break;
  2749   case Bytecodes::_fast_igetfield:
  2750     __ movl(rax, field);
  2751     break;
  2752   case Bytecodes::_fast_bgetfield:
  2753     __ movsbl(rax, field);
  2754     break;
  2755   case Bytecodes::_fast_sgetfield:
  2756     __ load_signed_short(rax, field);
  2757     break;
  2758   case Bytecodes::_fast_cgetfield:
  2759     __ load_unsigned_short(rax, field);
  2760     break;
  2761   case Bytecodes::_fast_fgetfield:
  2762     __ movflt(xmm0, field);
  2763     break;
  2764   case Bytecodes::_fast_dgetfield:
  2765     __ movdbl(xmm0, field);
  2766     break;
  2767   default:
  2768     ShouldNotReachHere();
  2770   // [jk] not needed currently
  2771   // if (os::is_MP()) {
  2772   //   Label notVolatile;
  2773   //   __ testl(rdx, rdx);
  2774   //   __ jcc(Assembler::zero, notVolatile);
  2775   //   __ membar(Assembler::LoadLoad);
  2776   //   __ bind(notVolatile);
  2777   //};
  2780 void TemplateTable::fast_xaccess(TosState state) {
  2781   transition(vtos, state);
  2783   // get receiver
  2784   __ movptr(rax, aaddress(0));
  2785   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2786   // access constant pool cache
  2787   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2788   __ movptr(rbx,
  2789             Address(rcx, rdx, Address::times_8,
  2790                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2791                              ConstantPoolCacheEntry::f2_offset())));
  2792   // make sure exception is reported in correct bcp range (getfield is
  2793   // next instruction)
  2794   __ increment(r13);
  2795   __ null_check(rax);
  2796   switch (state) {
  2797   case itos:
  2798     __ movl(rax, Address(rax, rbx, Address::times_1));
  2799     break;
  2800   case atos:
  2801     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2802     __ verify_oop(rax);
  2803     break;
  2804   case ftos:
  2805     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2806     break;
  2807   default:
  2808     ShouldNotReachHere();
  2811   // [jk] not needed currently
  2812   // if (os::is_MP()) {
  2813   //   Label notVolatile;
  2814   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2815   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2816   //                                 ConstantPoolCacheEntry::flags_offset())));
  2817   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2818   //   __ testl(rdx, 0x1);
  2819   //   __ jcc(Assembler::zero, notVolatile);
  2820   //   __ membar(Assembler::LoadLoad);
  2821   //   __ bind(notVolatile);
  2822   // }
  2824   __ decrement(r13);
  2829 //-----------------------------------------------------------------------------
  2830 // Calls
  2832 void TemplateTable::count_calls(Register method, Register temp) {
  2833   // implemented elsewhere
  2834   ShouldNotReachHere();
  2837 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2838   // determine flags
  2839   Bytecodes::Code code = bytecode();
  2840   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2841   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2842   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2843   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2844   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2845   const bool receiver_null_check = is_invokespecial;
  2846   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2847   // setup registers & access constant pool cache
  2848   const Register recv   = rcx;
  2849   const Register flags  = rdx;
  2850   assert_different_registers(method, index, recv, flags);
  2852   // save 'interpreter return address'
  2853   __ save_bcp();
  2855   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2857   // load receiver if needed (note: no return address pushed yet)
  2858   if (load_receiver) {
  2859     __ movl(recv, flags);
  2860     __ andl(recv, 0xFF);
  2861     if (TaggedStackInterpreter) __ shll(recv, 1);  // index*2
  2862     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
  2863     if (is_invokedynamic) {
  2864       __ lea(recv, recv_addr);
  2865     } else {
  2866       __ movptr(recv, recv_addr);
  2867       __ verify_oop(recv);
  2871   // do null check if needed
  2872   if (receiver_null_check) {
  2873     __ null_check(recv);
  2876   if (save_flags) {
  2877     __ movl(r13, flags);
  2880   // compute return type
  2881   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2882   // Make sure we don't need to mask flags for tosBits after the above shift
  2883   ConstantPoolCacheEntry::verify_tosBits();
  2884   // load return address
  2886     address table_addr;
  2887     if (is_invokeinterface || is_invokedynamic)
  2888       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2889     else
  2890       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2891     ExternalAddress table(table_addr);
  2892     __ lea(rscratch1, table);
  2893     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2896   // push return address
  2897   __ push(flags);
  2899   // Restore flag field from the constant pool cache, and restore esi
  2900   // for later null checks.  r13 is the bytecode pointer
  2901   if (save_flags) {
  2902     __ movl(flags, r13);
  2903     __ restore_bcp();
  2908 void TemplateTable::invokevirtual_helper(Register index,
  2909                                          Register recv,
  2910                                          Register flags) {
  2911   // Uses temporary registers rax, rdx  assert_different_registers(index, recv, rax, rdx);
  2913   // Test for an invoke of a final method
  2914   Label notFinal;
  2915   __ movl(rax, flags);
  2916   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2917   __ jcc(Assembler::zero, notFinal);
  2919   const Register method = index;  // method must be rbx
  2920   assert(method == rbx,
  2921          "methodOop must be rbx for interpreter calling convention");
  2923   // do the call - the index is actually the method to call
  2924   __ verify_oop(method);
  2926   // It's final, need a null check here!
  2927   __ null_check(recv);
  2929   // profile this call
  2930   __ profile_final_call(rax);
  2932   __ jump_from_interpreted(method, rax);
  2934   __ bind(notFinal);
  2936   // get receiver klass
  2937   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2938   __ load_klass(rax, recv);
  2940   __ verify_oop(rax);
  2942   // profile this call
  2943   __ profile_virtual_call(rax, r14, rdx);
  2945   // get target methodOop & entry point
  2946   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2947   assert(vtableEntry::size() * wordSize == 8,
  2948          "adjust the scaling in the code below");
  2949   __ movptr(method, Address(rax, index,
  2950                                  Address::times_8,
  2951                                  base + vtableEntry::method_offset_in_bytes()));
  2952   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2953   __ jump_from_interpreted(method, rdx);
  2957 void TemplateTable::invokevirtual(int byte_no) {
  2958   transition(vtos, vtos);
  2959   prepare_invoke(rbx, noreg, byte_no);
  2961   // rbx: index
  2962   // rcx: receiver
  2963   // rdx: flags
  2965   invokevirtual_helper(rbx, rcx, rdx);
  2969 void TemplateTable::invokespecial(int byte_no) {
  2970   transition(vtos, vtos);
  2971   prepare_invoke(rbx, noreg, byte_no);
  2972   // do the call
  2973   __ verify_oop(rbx);
  2974   __ profile_call(rax);
  2975   __ jump_from_interpreted(rbx, rax);
  2979 void TemplateTable::invokestatic(int byte_no) {
  2980   transition(vtos, vtos);
  2981   prepare_invoke(rbx, noreg, byte_no);
  2982   // do the call
  2983   __ verify_oop(rbx);
  2984   __ profile_call(rax);
  2985   __ jump_from_interpreted(rbx, rax);
  2988 void TemplateTable::fast_invokevfinal(int byte_no) {
  2989   transition(vtos, vtos);
  2990   __ stop("fast_invokevfinal not used on amd64");
  2993 void TemplateTable::invokeinterface(int byte_no) {
  2994   transition(vtos, vtos);
  2995   prepare_invoke(rax, rbx, byte_no);
  2997   // rax: Interface
  2998   // rbx: index
  2999   // rcx: receiver
  3000   // rdx: flags
  3002   // Special case of invokeinterface called for virtual method of
  3003   // java.lang.Object.  See cpCacheOop.cpp for details.
  3004   // This code isn't produced by javac, but could be produced by
  3005   // another compliant java compiler.
  3006   Label notMethod;
  3007   __ movl(r14, rdx);
  3008   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  3009   __ jcc(Assembler::zero, notMethod);
  3011   invokevirtual_helper(rbx, rcx, rdx);
  3012   __ bind(notMethod);
  3014   // Get receiver klass into rdx - also a null check
  3015   __ restore_locals(); // restore r14
  3016   __ load_klass(rdx, rcx);
  3017   __ verify_oop(rdx);
  3019   // profile this call
  3020   __ profile_virtual_call(rdx, r13, r14);
  3022   Label no_such_interface, no_such_method;
  3024   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3025                              rdx, rax, rbx,
  3026                              // outputs: method, scan temp. reg
  3027                              rbx, r13,
  3028                              no_such_interface);
  3030   // rbx,: methodOop to call
  3031   // rcx: receiver
  3032   // Check for abstract method error
  3033   // Note: This should be done more efficiently via a throw_abstract_method_error
  3034   //       interpreter entry point and a conditional jump to it in case of a null
  3035   //       method.
  3036   __ testptr(rbx, rbx);
  3037   __ jcc(Assembler::zero, no_such_method);
  3039   // do the call
  3040   // rcx: receiver
  3041   // rbx,: methodOop
  3042   __ jump_from_interpreted(rbx, rdx);
  3043   __ should_not_reach_here();
  3045   // exception handling code follows...
  3046   // note: must restore interpreter registers to canonical
  3047   //       state for exception handling to work correctly!
  3049   __ bind(no_such_method);
  3050   // throw exception
  3051   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3052   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3053   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3054   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3055   // the call_VM checks for exception, so we should never return here.
  3056   __ should_not_reach_here();
  3058   __ bind(no_such_interface);
  3059   // throw exception
  3060   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3061   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3062   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3063   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3064                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3065   // the call_VM checks for exception, so we should never return here.
  3066   __ should_not_reach_here();
  3067   return;
  3070 void TemplateTable::invokedynamic(int byte_no) {
  3071   transition(vtos, vtos);
  3073   if (!EnableInvokeDynamic) {
  3074     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3075     // The verifier will stop it.  However, if we get past the verifier,
  3076     // this will stop the thread in a reasonable way, without crashing the JVM.
  3077     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3078                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3079     // the call_VM checks for exception, so we should never return here.
  3080     __ should_not_reach_here();
  3081     return;
  3084   prepare_invoke(rax, rbx, byte_no);
  3086   // rax: CallSite object (f1)
  3087   // rbx: unused (f2)
  3088   // rcx: receiver address
  3089   // rdx: flags (unused)
  3091   if (ProfileInterpreter) {
  3092     Label L;
  3093     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3094     // profile this call
  3095     __ profile_call(r13);
  3098   __ movptr(rcx, Address(rax, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
  3099   __ null_check(rcx);
  3100   __ prepare_to_jump_from_interpreted();
  3101   __ jump_to_method_handle_entry(rcx, rdx);
  3105 //-----------------------------------------------------------------------------
  3106 // Allocation
  3108 void TemplateTable::_new() {
  3109   transition(vtos, atos);
  3110   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3111   Label slow_case;
  3112   Label done;
  3113   Label initialize_header;
  3114   Label initialize_object; // including clearing the fields
  3115   Label allocate_shared;
  3117   __ get_cpool_and_tags(rsi, rax);
  3118   // get instanceKlass
  3119   __ movptr(rsi, Address(rsi, rdx,
  3120                          Address::times_8, sizeof(constantPoolOopDesc)));
  3122   // make sure the class we're about to instantiate has been
  3123   // resolved. Note: slow_case does a pop of stack, which is why we
  3124   // loaded class/pushed above
  3125   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3126   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3127           JVM_CONSTANT_Class);
  3128   __ jcc(Assembler::notEqual, slow_case);
  3130   // make sure klass is initialized & doesn't have finalizer
  3131   // make sure klass is fully initialized
  3132   __ cmpl(Address(rsi,
  3133                   instanceKlass::init_state_offset_in_bytes() +
  3134                   sizeof(oopDesc)),
  3135           instanceKlass::fully_initialized);
  3136   __ jcc(Assembler::notEqual, slow_case);
  3138   // get instance_size in instanceKlass (scaled to a count of bytes)
  3139   __ movl(rdx,
  3140           Address(rsi,
  3141                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3142   // test to see if it has a finalizer or is malformed in some way
  3143   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3144   __ jcc(Assembler::notZero, slow_case);
  3146   // Allocate the instance
  3147   // 1) Try to allocate in the TLAB
  3148   // 2) if fail and the object is large allocate in the shared Eden
  3149   // 3) if the above fails (or is not applicable), go to a slow case
  3150   // (creates a new TLAB, etc.)
  3152   const bool allow_shared_alloc =
  3153     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3155   if (UseTLAB) {
  3156     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3157     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3158     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3159     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3160     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3161     if (ZeroTLAB) {
  3162       // the fields have been already cleared
  3163       __ jmp(initialize_header);
  3164     } else {
  3165       // initialize both the header and fields
  3166       __ jmp(initialize_object);
  3170   // Allocation in the shared Eden, if allowed.
  3171   //
  3172   // rdx: instance size in bytes
  3173   if (allow_shared_alloc) {
  3174     __ bind(allocate_shared);
  3176     ExternalAddress top((address)Universe::heap()->top_addr());
  3177     ExternalAddress end((address)Universe::heap()->end_addr());
  3179     const Register RtopAddr = rscratch1;
  3180     const Register RendAddr = rscratch2;
  3182     __ lea(RtopAddr, top);
  3183     __ lea(RendAddr, end);
  3184     __ movptr(rax, Address(RtopAddr, 0));
  3186     // For retries rax gets set by cmpxchgq
  3187     Label retry;
  3188     __ bind(retry);
  3189     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3190     __ cmpptr(rbx, Address(RendAddr, 0));
  3191     __ jcc(Assembler::above, slow_case);
  3193     // Compare rax with the top addr, and if still equal, store the new
  3194     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3195     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3196     //
  3197     // rax: object begin
  3198     // rbx: object end
  3199     // rdx: instance size in bytes
  3200     if (os::is_MP()) {
  3201       __ lock();
  3203     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3205     // if someone beat us on the allocation, try again, otherwise continue
  3206     __ jcc(Assembler::notEqual, retry);
  3209   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3210     // The object is initialized before the header.  If the object size is
  3211     // zero, go directly to the header initialization.
  3212     __ bind(initialize_object);
  3213     __ decrementl(rdx, sizeof(oopDesc));
  3214     __ jcc(Assembler::zero, initialize_header);
  3216     // Initialize object fields
  3217     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3218     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3220       Label loop;
  3221       __ bind(loop);
  3222       __ movq(Address(rax, rdx, Address::times_8,
  3223                       sizeof(oopDesc) - oopSize),
  3224               rcx);
  3225       __ decrementl(rdx);
  3226       __ jcc(Assembler::notZero, loop);
  3229     // initialize object header only.
  3230     __ bind(initialize_header);
  3231     if (UseBiasedLocking) {
  3232       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3233       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3234     } else {
  3235       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3236                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3238     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3239     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3240     __ store_klass(rax, rsi);      // store klass last
  3241     __ jmp(done);
  3245     SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3246     // Trigger dtrace event for fastpath
  3247     __ push(atos); // save the return value
  3248     __ call_VM_leaf(
  3249          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3250     __ pop(atos); // restore the return value
  3253   // slow case
  3254   __ bind(slow_case);
  3255   __ get_constant_pool(c_rarg1);
  3256   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3257   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3258   __ verify_oop(rax);
  3260   // continue
  3261   __ bind(done);
  3264 void TemplateTable::newarray() {
  3265   transition(itos, atos);
  3266   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3267   __ movl(c_rarg2, rax);
  3268   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3269           c_rarg1, c_rarg2);
  3272 void TemplateTable::anewarray() {
  3273   transition(itos, atos);
  3274   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3275   __ get_constant_pool(c_rarg1);
  3276   __ movl(c_rarg3, rax);
  3277   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3278           c_rarg1, c_rarg2, c_rarg3);
  3281 void TemplateTable::arraylength() {
  3282   transition(atos, itos);
  3283   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3284   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3287 void TemplateTable::checkcast() {
  3288   transition(atos, atos);
  3289   Label done, is_null, ok_is_subtype, quicked, resolved;
  3290   __ testptr(rax, rax); // object is in rax
  3291   __ jcc(Assembler::zero, is_null);
  3293   // Get cpool & tags index
  3294   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3295   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3296   // See if bytecode has already been quicked
  3297   __ cmpb(Address(rdx, rbx,
  3298                   Address::times_1,
  3299                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3300           JVM_CONSTANT_Class);
  3301   __ jcc(Assembler::equal, quicked);
  3302   __ push(atos); // save receiver for result, and for GC
  3303   __ mov(r12, rcx); // save rcx XXX
  3304   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3305   __ movq(rcx, r12); // restore rcx XXX
  3306   __ reinit_heapbase();
  3307   __ pop_ptr(rdx); // restore receiver
  3308   __ jmpb(resolved);
  3310   // Get superklass in rax and subklass in rbx
  3311   __ bind(quicked);
  3312   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3313   __ movptr(rax, Address(rcx, rbx,
  3314                        Address::times_8, sizeof(constantPoolOopDesc)));
  3316   __ bind(resolved);
  3317   __ load_klass(rbx, rdx);
  3319   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3320   // Superklass in rax.  Subklass in rbx.
  3321   __ gen_subtype_check(rbx, ok_is_subtype);
  3323   // Come here on failure
  3324   __ push_ptr(rdx);
  3325   // object is at TOS
  3326   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3328   // Come here on success
  3329   __ bind(ok_is_subtype);
  3330   __ mov(rax, rdx); // Restore object in rdx
  3332   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3333   if (ProfileInterpreter) {
  3334     __ jmp(done);
  3335     __ bind(is_null);
  3336     __ profile_null_seen(rcx);
  3337   } else {
  3338     __ bind(is_null);   // same as 'done'
  3340   __ bind(done);
  3343 void TemplateTable::instanceof() {
  3344   transition(atos, itos);
  3345   Label done, is_null, ok_is_subtype, quicked, resolved;
  3346   __ testptr(rax, rax);
  3347   __ jcc(Assembler::zero, is_null);
  3349   // Get cpool & tags index
  3350   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3351   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3352   // See if bytecode has already been quicked
  3353   __ cmpb(Address(rdx, rbx,
  3354                   Address::times_1,
  3355                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3356           JVM_CONSTANT_Class);
  3357   __ jcc(Assembler::equal, quicked);
  3359   __ push(atos); // save receiver for result, and for GC
  3360   __ mov(r12, rcx); // save rcx
  3361   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3362   __ movq(rcx, r12); // restore rcx
  3363   __ reinit_heapbase();
  3364   __ pop_ptr(rdx); // restore receiver
  3365   __ load_klass(rdx, rdx);
  3366   __ jmpb(resolved);
  3368   // Get superklass in rax and subklass in rdx
  3369   __ bind(quicked);
  3370   __ load_klass(rdx, rax);
  3371   __ movptr(rax, Address(rcx, rbx,
  3372                          Address::times_8, sizeof(constantPoolOopDesc)));
  3374   __ bind(resolved);
  3376   // Generate subtype check.  Blows rcx, rdi
  3377   // Superklass in rax.  Subklass in rdx.
  3378   __ gen_subtype_check(rdx, ok_is_subtype);
  3380   // Come here on failure
  3381   __ xorl(rax, rax);
  3382   __ jmpb(done);
  3383   // Come here on success
  3384   __ bind(ok_is_subtype);
  3385   __ movl(rax, 1);
  3387   // Collect counts on whether this test sees NULLs a lot or not.
  3388   if (ProfileInterpreter) {
  3389     __ jmp(done);
  3390     __ bind(is_null);
  3391     __ profile_null_seen(rcx);
  3392   } else {
  3393     __ bind(is_null);   // same as 'done'
  3395   __ bind(done);
  3396   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3397   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3400 //-----------------------------------------------------------------------------
  3401 // Breakpoints
  3402 void TemplateTable::_breakpoint() {
  3403   // Note: We get here even if we are single stepping..
  3404   // jbug inists on setting breakpoints at every bytecode
  3405   // even if we are in single step mode.
  3407   transition(vtos, vtos);
  3409   // get the unpatched byte code
  3410   __ get_method(c_rarg1);
  3411   __ call_VM(noreg,
  3412              CAST_FROM_FN_PTR(address,
  3413                               InterpreterRuntime::get_original_bytecode_at),
  3414              c_rarg1, r13);
  3415   __ mov(rbx, rax);
  3417   // post the breakpoint event
  3418   __ get_method(c_rarg1);
  3419   __ call_VM(noreg,
  3420              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3421              c_rarg1, r13);
  3423   // complete the execution of original bytecode
  3424   __ dispatch_only_normal(vtos);
  3427 //-----------------------------------------------------------------------------
  3428 // Exceptions
  3430 void TemplateTable::athrow() {
  3431   transition(atos, vtos);
  3432   __ null_check(rax);
  3433   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3436 //-----------------------------------------------------------------------------
  3437 // Synchronization
  3438 //
  3439 // Note: monitorenter & exit are symmetric routines; which is reflected
  3440 //       in the assembly code structure as well
  3441 //
  3442 // Stack layout:
  3443 //
  3444 // [expressions  ] <--- rsp               = expression stack top
  3445 // ..
  3446 // [expressions  ]
  3447 // [monitor entry] <--- monitor block top = expression stack bot
  3448 // ..
  3449 // [monitor entry]
  3450 // [frame data   ] <--- monitor block bot
  3451 // ...
  3452 // [saved rbp    ] <--- rbp
  3453 void TemplateTable::monitorenter() {
  3454   transition(atos, vtos);
  3456   // check for NULL object
  3457   __ null_check(rax);
  3459   const Address monitor_block_top(
  3460         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3461   const Address monitor_block_bot(
  3462         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3463   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3465   Label allocated;
  3467   // initialize entry pointer
  3468   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3470   // find a free slot in the monitor block (result in c_rarg1)
  3472     Label entry, loop, exit;
  3473     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3474                                      // starting with top-most entry
  3475     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3476                                      // of monitor block
  3477     __ jmpb(entry);
  3479     __ bind(loop);
  3480     // check if current entry is used
  3481     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3482     // if not used then remember entry in c_rarg1
  3483     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3484     // check if current entry is for same object
  3485     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3486     // if same object then stop searching
  3487     __ jccb(Assembler::equal, exit);
  3488     // otherwise advance to next entry
  3489     __ addptr(c_rarg3, entry_size);
  3490     __ bind(entry);
  3491     // check if bottom reached
  3492     __ cmpptr(c_rarg3, c_rarg2);
  3493     // if not at bottom then check this entry
  3494     __ jcc(Assembler::notEqual, loop);
  3495     __ bind(exit);
  3498   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3499   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3501   // allocate one if there's no free slot
  3503     Label entry, loop;
  3504     // 1. compute new pointers             // rsp: old expression stack top
  3505     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3506     __ subptr(rsp, entry_size);            // move expression stack top
  3507     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3508     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3509     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3510     __ jmp(entry);
  3511     // 2. move expression stack contents
  3512     __ bind(loop);
  3513     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3514                                                       // word from old location
  3515     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3516     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3517     __ bind(entry);
  3518     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3519     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3520                                             // copy next word
  3523   // call run-time routine
  3524   // c_rarg1: points to monitor entry
  3525   __ bind(allocated);
  3527   // Increment bcp to point to the next bytecode, so exception
  3528   // handling for async. exceptions work correctly.
  3529   // The object has already been poped from the stack, so the
  3530   // expression stack looks correct.
  3531   __ increment(r13);
  3533   // store object
  3534   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3535   __ lock_object(c_rarg1);
  3537   // check to make sure this monitor doesn't cause stack overflow after locking
  3538   __ save_bcp();  // in case of exception
  3539   __ generate_stack_overflow_check(0);
  3541   // The bcp has already been incremented. Just need to dispatch to
  3542   // next instruction.
  3543   __ dispatch_next(vtos);
  3547 void TemplateTable::monitorexit() {
  3548   transition(atos, vtos);
  3550   // check for NULL object
  3551   __ null_check(rax);
  3553   const Address monitor_block_top(
  3554         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3555   const Address monitor_block_bot(
  3556         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3557   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3559   Label found;
  3561   // find matching slot
  3563     Label entry, loop;
  3564     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3565                                      // starting with top-most entry
  3566     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3567                                      // of monitor block
  3568     __ jmpb(entry);
  3570     __ bind(loop);
  3571     // check if current entry is for same object
  3572     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3573     // if same object then stop searching
  3574     __ jcc(Assembler::equal, found);
  3575     // otherwise advance to next entry
  3576     __ addptr(c_rarg1, entry_size);
  3577     __ bind(entry);
  3578     // check if bottom reached
  3579     __ cmpptr(c_rarg1, c_rarg2);
  3580     // if not at bottom then check this entry
  3581     __ jcc(Assembler::notEqual, loop);
  3584   // error handling. Unlocking was not block-structured
  3585   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3586                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3587   __ should_not_reach_here();
  3589   // call run-time routine
  3590   // rsi: points to monitor entry
  3591   __ bind(found);
  3592   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3593   __ unlock_object(c_rarg1);
  3594   __ pop_ptr(rax); // discard object
  3598 // Wide instructions
  3599 void TemplateTable::wide() {
  3600   transition(vtos, vtos);
  3601   __ load_unsigned_byte(rbx, at_bcp(1));
  3602   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3603   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3604   // Note: the r13 increment step is part of the individual wide
  3605   // bytecode implementations
  3609 // Multi arrays
  3610 void TemplateTable::multianewarray() {
  3611   transition(vtos, atos);
  3612   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3613   // last dim is on top of stack; we want address of first one:
  3614   // first_addr = last_addr + (ndims - 1) * wordSize
  3615   if (TaggedStackInterpreter) __ shll(rax, 1);  // index*2
  3616   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3617   call_VM(rax,
  3618           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3619           c_rarg1);
  3620   __ load_unsigned_byte(rbx, at_bcp(3));
  3621   if (TaggedStackInterpreter) __ shll(rbx, 1);  // index*2
  3622   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3624 #endif // !CC_INTERP

mercurial