src/cpu/x86/vm/methodHandles_x86.cpp

Mon, 04 Jan 2010 18:38:08 +0100

author
twisti
date
Mon, 04 Jan 2010 18:38:08 +0100
changeset 1570
e66fd840cb6b
parent 1568
aa62b9388fce
child 1712
855c5171834c
permissions
-rw-r--r--

6893081: method handle & invokedynamic code needs additional cleanup (post 6815692, 6858164)
Summary: During the work for 6829187 we have fixed a number of basic bugs which are logically grouped with 6815692 and 6858164 but which must be reviewed and pushed separately.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_methodHandles_x86.cpp.incl"
    28 #define __ _masm->
    30 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    31                                                 address interpreted_entry) {
    32   // Just before the actual machine code entry point, allocate space
    33   // for a MethodHandleEntry::Data record, so that we can manage everything
    34   // from one base pointer.
    35   __ align(wordSize);
    36   address target = __ pc() + sizeof(Data);
    37   while (__ pc() < target) {
    38     __ nop();
    39     __ align(wordSize);
    40   }
    42   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    43   me->set_end_address(__ pc());         // set a temporary end_address
    44   me->set_from_interpreted_entry(interpreted_entry);
    45   me->set_type_checking_entry(NULL);
    47   return (address) me;
    48 }
    50 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    51                                                 address start_addr) {
    52   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    53   assert(me->end_address() == start_addr, "valid ME");
    55   // Fill in the real end_address:
    56   __ align(wordSize);
    57   me->set_end_address(__ pc());
    59   return me;
    60 }
    62 #ifdef ASSERT
    63 static void verify_argslot(MacroAssembler* _masm, Register rax_argslot,
    64                            const char* error_message) {
    65   // Verify that argslot lies within (rsp, rbp].
    66   Label L_ok, L_bad;
    67   __ cmpptr(rax_argslot, rbp);
    68   __ jccb(Assembler::above, L_bad);
    69   __ cmpptr(rsp, rax_argslot);
    70   __ jccb(Assembler::below, L_ok);
    71   __ bind(L_bad);
    72   __ stop(error_message);
    73   __ bind(L_ok);
    74 }
    75 #endif
    78 // Code generation
    79 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
    80   // rbx: methodOop
    81   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
    82   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
    83   // rdx: garbage temp, blown away
    85   Register rbx_method = rbx;
    86   Register rcx_recv   = rcx;
    87   Register rax_mtype  = rax;
    88   Register rdx_temp   = rdx;
    90   // emit WrongMethodType path first, to enable jccb back-branch from main path
    91   Label wrong_method_type;
    92   __ bind(wrong_method_type);
    93   __ push(rax_mtype);       // required mtype
    94   __ push(rcx_recv);        // bad mh (1st stacked argument)
    95   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
    97   // here's where control starts out:
    98   __ align(CodeEntryAlignment);
    99   address entry_point = __ pc();
   101   // fetch the MethodType from the method handle into rax (the 'check' register)
   102   {
   103     Register tem = rbx_method;
   104     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   105       __ movptr(rax_mtype, Address(tem, *pchase));
   106       tem = rax_mtype;          // in case there is another indirection
   107     }
   108   }
   109   Register rbx_temp = rbx_method; // done with incoming methodOop
   111   // given the MethodType, find out where the MH argument is buried
   112   __ movptr(rdx_temp, Address(rax_mtype,
   113                               __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rbx_temp)));
   114   __ movl(rdx_temp, Address(rdx_temp,
   115                             __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rbx_temp)));
   116   __ movptr(rcx_recv, __ argument_address(rdx_temp));
   118   __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
   119   __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   121   return entry_point;
   122 }
   124 // Helper to insert argument slots into the stack.
   125 // arg_slots must be a multiple of stack_move_unit() and <= 0
   126 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   127                                      RegisterOrConstant arg_slots,
   128                                      int arg_mask,
   129                                      Register rax_argslot,
   130                                      Register rbx_temp, Register rdx_temp) {
   131   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   132                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   134 #ifdef ASSERT
   135   verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   136   if (arg_slots.is_register()) {
   137     Label L_ok, L_bad;
   138     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   139     __ jccb(Assembler::greater, L_bad);
   140     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   141     __ jccb(Assembler::zero, L_ok);
   142     __ bind(L_bad);
   143     __ stop("assert arg_slots <= 0 and clear low bits");
   144     __ bind(L_ok);
   145   } else {
   146     assert(arg_slots.as_constant() <= 0, "");
   147     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   148   }
   149 #endif //ASSERT
   151 #ifdef _LP64
   152   if (arg_slots.is_register()) {
   153     // clean high bits of stack motion register (was loaded as an int)
   154     __ movslq(arg_slots.as_register(), arg_slots.as_register());
   155   }
   156 #endif
   158   // Make space on the stack for the inserted argument(s).
   159   // Then pull down everything shallower than rax_argslot.
   160   // The stacked return address gets pulled down with everything else.
   161   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   162   //   rsp -= size;
   163   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   164   //     rdx[-size] = rdx[0]
   165   //   argslot -= size;
   166   __ mov(rdx_temp, rsp);                        // source pointer for copy
   167   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   168   {
   169     Label loop;
   170     __ bind(loop);
   171     // pull one word down each time through the loop
   172     __ movptr(rbx_temp, Address(rdx_temp, 0));
   173     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   174     __ addptr(rdx_temp, wordSize);
   175     __ cmpptr(rdx_temp, rax_argslot);
   176     __ jccb(Assembler::less, loop);
   177   }
   179   // Now move the argslot down, to point to the opened-up space.
   180   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   182   if (TaggedStackInterpreter && arg_mask != _INSERT_NO_MASK) {
   183     // The caller has specified a bitmask of tags to put into the opened space.
   184     // This only works when the arg_slots value is an assembly-time constant.
   185     int constant_arg_slots = arg_slots.as_constant() / stack_move_unit();
   186     int tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
   187     for (int slot = 0; slot < constant_arg_slots; slot++) {
   188       BasicType slot_type   = ((arg_mask & (1 << slot)) == 0 ? T_OBJECT : T_INT);
   189       int       slot_offset = Interpreter::stackElementSize() * slot;
   190       Address   tag_addr(rax_argslot, slot_offset + tag_offset);
   191       __ movptr(tag_addr, frame::tag_for_basic_type(slot_type));
   192     }
   193     // Note that the new argument slots are tagged properly but contain
   194     // garbage at this point.  The value portions must be initialized
   195     // by the caller.  (Especially references!)
   196   }
   197 }
   199 // Helper to remove argument slots from the stack.
   200 // arg_slots must be a multiple of stack_move_unit() and >= 0
   201 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   202                                     RegisterOrConstant arg_slots,
   203                                     Register rax_argslot,
   204                                     Register rbx_temp, Register rdx_temp) {
   205   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   206                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   208 #ifdef ASSERT
   209   {
   210     // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   211     Label L_ok, L_bad;
   212     __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
   213     __ cmpptr(rbx_temp, rbp);
   214     __ jccb(Assembler::above, L_bad);
   215     __ cmpptr(rsp, rax_argslot);
   216     __ jccb(Assembler::below, L_ok);
   217     __ bind(L_bad);
   218     __ stop("deleted argument(s) must fall within current frame");
   219     __ bind(L_ok);
   220   }
   221   if (arg_slots.is_register()) {
   222     Label L_ok, L_bad;
   223     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   224     __ jccb(Assembler::less, L_bad);
   225     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   226     __ jccb(Assembler::zero, L_ok);
   227     __ bind(L_bad);
   228     __ stop("assert arg_slots >= 0 and clear low bits");
   229     __ bind(L_ok);
   230   } else {
   231     assert(arg_slots.as_constant() >= 0, "");
   232     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   233   }
   234 #endif //ASSERT
   236 #ifdef _LP64
   237   if (false) {                  // not needed, since register is positive
   238     // clean high bits of stack motion register (was loaded as an int)
   239     if (arg_slots.is_register())
   240       __ movslq(arg_slots.as_register(), arg_slots.as_register());
   241   }
   242 #endif
   244   // Pull up everything shallower than rax_argslot.
   245   // Then remove the excess space on the stack.
   246   // The stacked return address gets pulled up with everything else.
   247   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   248   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   249   //     rdx[size] = rdx[0]
   250   //   argslot += size;
   251   //   rsp += size;
   252   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   253   {
   254     Label loop;
   255     __ bind(loop);
   256     // pull one word up each time through the loop
   257     __ movptr(rbx_temp, Address(rdx_temp, 0));
   258     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   259     __ addptr(rdx_temp, -wordSize);
   260     __ cmpptr(rdx_temp, rsp);
   261     __ jccb(Assembler::greaterEqual, loop);
   262   }
   264   // Now move the argslot up, to point to the just-copied block.
   265   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   266   // And adjust the argslot address to point at the deletion point.
   267   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   268 }
   270 #ifndef PRODUCT
   271 extern "C" void print_method_handle(oop mh);
   272 void trace_method_handle_stub(const char* adaptername,
   273                               oop mh,
   274                               intptr_t* entry_sp,
   275                               intptr_t* saved_sp,
   276                               intptr_t* saved_bp) {
   277   // called as a leaf from native code: do not block the JVM!
   278   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
   279   intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
   280   printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
   281          adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
   282   if (last_sp != saved_sp)
   283     printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
   284   if (Verbose)  print_method_handle(mh);
   285 }
   286 #endif //PRODUCT
   288 // Generate an "entry" field for a method handle.
   289 // This determines how the method handle will respond to calls.
   290 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
   291   // Here is the register state during an interpreted call,
   292   // as set up by generate_method_handle_interpreter_entry():
   293   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
   294   // - rcx: receiver method handle
   295   // - rax: method handle type (only used by the check_mtype entry point)
   296   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   297   // - rdx: garbage temp, can blow away
   299   Register rcx_recv    = rcx;
   300   Register rax_argslot = rax;
   301   Register rbx_temp    = rbx;
   302   Register rdx_temp    = rdx;
   304   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
   305   // and gen_c2i_adapter (from compiled calls):
   306   Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);
   308   guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
   310   // some handy addresses
   311   Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
   313   Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
   314   Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
   316   Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
   317   Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
   319   Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
   320   Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
   321   Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
   322   Address vmarg;                // __ argument_address(vmargslot)
   324   int tag_offset = -1;
   325   if (TaggedStackInterpreter) {
   326     tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
   327     assert(tag_offset = wordSize, "stack grows as expected");
   328   }
   330   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   332   if (have_entry(ek)) {
   333     __ nop();                   // empty stubs make SG sick
   334     return;
   335   }
   337   address interp_entry = __ pc();
   338   if (UseCompressedOops)  __ unimplemented("UseCompressedOops");
   340 #ifndef PRODUCT
   341   if (TraceMethodHandles) {
   342     __ push(rax); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rsi); __ push(rdi);
   343     __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
   344     // arguments:
   345     __ push(rbp);               // interpreter frame pointer
   346     __ push(rsi);               // saved_sp
   347     __ push(rax);               // entry_sp
   348     __ push(rcx);               // mh
   349     __ push(rcx);
   350     __ movptr(Address(rsp, 0), (intptr_t)entry_name(ek));
   351     __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
   352     __ pop(rdi); __ pop(rsi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ pop(rax);
   353   }
   354 #endif //PRODUCT
   356   switch ((int) ek) {
   357   case _raise_exception:
   358     {
   359       // Not a real MH entry, but rather shared code for raising an exception.
   360       // Extra local arguments are pushed on stack, as required type at TOS+8,
   361       // failing object (or NULL) at TOS+4, failing bytecode type at TOS.
   362       // Beyond those local arguments are the PC, of course.
   363       Register rdx_code = rdx_temp;
   364       Register rcx_fail = rcx_recv;
   365       Register rax_want = rax_argslot;
   366       Register rdi_pc   = rdi;
   367       __ pop(rdx_code);  // TOS+0
   368       __ pop(rcx_fail);  // TOS+4
   369       __ pop(rax_want);  // TOS+8
   370       __ pop(rdi_pc);    // caller PC
   372       __ mov(rsp, rsi);   // cut the stack back to where the caller started
   374       // Repush the arguments as if coming from the interpreter.
   375       if (TaggedStackInterpreter)  __ push(frame::tag_for_basic_type(T_INT));
   376       __ push(rdx_code);
   377       if (TaggedStackInterpreter)  __ push(frame::tag_for_basic_type(T_OBJECT));
   378       __ push(rcx_fail);
   379       if (TaggedStackInterpreter)  __ push(frame::tag_for_basic_type(T_OBJECT));
   380       __ push(rax_want);
   382       Register rbx_method = rbx_temp;
   383       Label no_method;
   384       // FIXME: fill in _raise_exception_method with a suitable sun.dyn method
   385       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
   386       __ testptr(rbx_method, rbx_method);
   387       __ jccb(Assembler::zero, no_method);
   388       int jobject_oop_offset = 0;
   389       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
   390       __ testptr(rbx_method, rbx_method);
   391       __ jccb(Assembler::zero, no_method);
   392       __ verify_oop(rbx_method);
   393       __ push(rdi_pc);          // and restore caller PC
   394       __ jmp(rbx_method_fie);
   396       // If we get here, the Java runtime did not do its job of creating the exception.
   397       // Do something that is at least causes a valid throw from the interpreter.
   398       __ bind(no_method);
   399       __ pop(rax_want);
   400       if (TaggedStackInterpreter)  __ pop(rcx_fail);
   401       __ pop(rcx_fail);
   402       __ push(rax_want);
   403       __ push(rcx_fail);
   404       __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   405     }
   406     break;
   408   case _invokestatic_mh:
   409   case _invokespecial_mh:
   410     {
   411       Register rbx_method = rbx_temp;
   412       __ movptr(rbx_method, rcx_mh_vmtarget); // target is a methodOop
   413       __ verify_oop(rbx_method);
   414       // same as TemplateTable::invokestatic or invokespecial,
   415       // minus the CP setup and profiling:
   416       if (ek == _invokespecial_mh) {
   417         // Must load & check the first argument before entering the target method.
   418         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   419         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   420         __ null_check(rcx_recv);
   421         __ verify_oop(rcx_recv);
   422       }
   423       __ jmp(rbx_method_fie);
   424     }
   425     break;
   427   case _invokevirtual_mh:
   428     {
   429       // same as TemplateTable::invokevirtual,
   430       // minus the CP setup and profiling:
   432       // pick out the vtable index and receiver offset from the MH,
   433       // and then we can discard it:
   434       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   435       Register rbx_index = rbx_temp;
   436       __ movl(rbx_index, rcx_dmh_vmindex);
   437       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
   438       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   439       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   441       // get receiver klass
   442       Register rax_klass = rax_argslot;
   443       __ load_klass(rax_klass, rcx_recv);
   444       __ verify_oop(rax_klass);
   446       // get target methodOop & entry point
   447       const int base = instanceKlass::vtable_start_offset() * wordSize;
   448       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
   449       Address vtable_entry_addr(rax_klass,
   450                                 rbx_index, Address::times_ptr,
   451                                 base + vtableEntry::method_offset_in_bytes());
   452       Register rbx_method = rbx_temp;
   453       __ movptr(rbx_method, vtable_entry_addr);
   455       __ verify_oop(rbx_method);
   456       __ jmp(rbx_method_fie);
   457     }
   458     break;
   460   case _invokeinterface_mh:
   461     {
   462       // same as TemplateTable::invokeinterface,
   463       // minus the CP setup and profiling:
   465       // pick out the interface and itable index from the MH.
   466       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   467       Register rdx_intf  = rdx_temp;
   468       Register rbx_index = rbx_temp;
   469       __ movptr(rdx_intf,  rcx_mh_vmtarget);
   470       __ movl(rbx_index,   rcx_dmh_vmindex);
   471       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   472       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   474       // get receiver klass
   475       Register rax_klass = rax_argslot;
   476       __ load_klass(rax_klass, rcx_recv);
   477       __ verify_oop(rax_klass);
   479       Register rdi_temp   = rdi;
   480       Register rbx_method = rbx_index;
   482       // get interface klass
   483       Label no_such_interface;
   484       __ verify_oop(rdx_intf);
   485       __ lookup_interface_method(rax_klass, rdx_intf,
   486                                  // note: next two args must be the same:
   487                                  rbx_index, rbx_method,
   488                                  rdi_temp,
   489                                  no_such_interface);
   491       __ verify_oop(rbx_method);
   492       __ jmp(rbx_method_fie);
   493       __ hlt();
   495       __ bind(no_such_interface);
   496       // Throw an exception.
   497       // For historical reasons, it will be IncompatibleClassChangeError.
   498       __ pushptr(Address(rdx_intf, java_mirror_offset));  // required interface
   499       __ push(rcx_recv);        // bad receiver
   500       __ push((int)Bytecodes::_invokeinterface);  // who is complaining?
   501       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
   502     }
   503     break;
   505   case _bound_ref_mh:
   506   case _bound_int_mh:
   507   case _bound_long_mh:
   508   case _bound_ref_direct_mh:
   509   case _bound_int_direct_mh:
   510   case _bound_long_direct_mh:
   511     {
   512       bool direct_to_method = (ek >= _bound_ref_direct_mh);
   513       BasicType arg_type = T_ILLEGAL;
   514       if (ek == _bound_long_mh || ek == _bound_long_direct_mh) {
   515         arg_type = T_LONG;
   516       } else if (ek == _bound_int_mh || ek == _bound_int_direct_mh) {
   517         arg_type = T_INT;
   518       } else {
   519         assert(ek == _bound_ref_mh || ek == _bound_ref_direct_mh, "must be ref");
   520         arg_type = T_OBJECT;
   521       }
   522       int arg_slots = type2size[arg_type];
   523       int arg_mask  = (arg_type == T_OBJECT ? _INSERT_REF_MASK :
   524                        arg_slots == 1       ? _INSERT_INT_MASK :  _INSERT_LONG_MASK);
   526       // make room for the new argument:
   527       __ movl(rax_argslot, rcx_bmh_vmargslot);
   528       __ lea(rax_argslot, __ argument_address(rax_argslot));
   529       insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
   530                        rax_argslot, rbx_temp, rdx_temp);
   532       // store bound argument into the new stack slot:
   533       __ movptr(rbx_temp, rcx_bmh_argument);
   534       Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
   535       if (arg_type == T_OBJECT) {
   536         __ movptr(Address(rax_argslot, 0), rbx_temp);
   537       } else {
   538         __ load_sized_value(rdx_temp, prim_value_addr,
   539                             type2aelembytes(arg_type), is_signed_subword_type(arg_type));
   540         __ movptr(Address(rax_argslot, 0), rdx_temp);
   541 #ifndef _LP64
   542         if (arg_slots == 2) {
   543           __ movl(rdx_temp, prim_value_addr.plus_disp(wordSize));
   544           __ movl(Address(rax_argslot, Interpreter::stackElementSize()), rdx_temp);
   545         }
   546 #endif //_LP64
   547       }
   549       if (direct_to_method) {
   550         Register rbx_method = rbx_temp;
   551         __ movptr(rbx_method, rcx_mh_vmtarget);
   552         __ verify_oop(rbx_method);
   553         __ jmp(rbx_method_fie);
   554       } else {
   555         __ movptr(rcx_recv, rcx_mh_vmtarget);
   556         __ verify_oop(rcx_recv);
   557         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   558       }
   559     }
   560     break;
   562   case _adapter_retype_only:
   563   case _adapter_retype_raw:
   564     // immediately jump to the next MH layer:
   565     __ movptr(rcx_recv, rcx_mh_vmtarget);
   566     __ verify_oop(rcx_recv);
   567     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   568     // This is OK when all parameter types widen.
   569     // It is also OK when a return type narrows.
   570     break;
   572   case _adapter_check_cast:
   573     {
   574       // temps:
   575       Register rbx_klass = rbx_temp; // interesting AMH data
   577       // check a reference argument before jumping to the next layer of MH:
   578       __ movl(rax_argslot, rcx_amh_vmargslot);
   579       vmarg = __ argument_address(rax_argslot);
   581       // What class are we casting to?
   582       __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
   583       __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
   585       Label done;
   586       __ movptr(rdx_temp, vmarg);
   587       __ testl(rdx_temp, rdx_temp);
   588       __ jccb(Assembler::zero, done);         // no cast if null
   589       __ load_klass(rdx_temp, rdx_temp);
   591       // live at this point:
   592       // - rbx_klass:  klass required by the target method
   593       // - rdx_temp:   argument klass to test
   594       // - rcx_recv:   adapter method handle
   595       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
   597       // If we get here, the type check failed!
   598       // Call the wrong_method_type stub, passing the failing argument type in rax.
   599       Register rax_mtype = rax_argslot;
   600       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
   601       __ movptr(rdx_temp, vmarg);
   603       __ pushptr(rcx_amh_argument); // required class
   604       __ push(rdx_temp);            // bad object
   605       __ push((int)Bytecodes::_checkcast);  // who is complaining?
   606       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
   608       __ bind(done);
   609       // get the new MH:
   610       __ movptr(rcx_recv, rcx_mh_vmtarget);
   611       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   612     }
   613     break;
   615   case _adapter_prim_to_prim:
   616   case _adapter_ref_to_prim:
   617     // handled completely by optimized cases
   618     __ stop("init_AdapterMethodHandle should not issue this");
   619     break;
   621   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
   622 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
   623   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
   624   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
   625     {
   626       // perform an in-place conversion to int or an int subword
   627       __ movl(rax_argslot, rcx_amh_vmargslot);
   628       vmarg = __ argument_address(rax_argslot);
   630       switch (ek) {
   631       case _adapter_opt_i2i:
   632         __ movl(rdx_temp, vmarg);
   633         break;
   634       case _adapter_opt_l2i:
   635         {
   636           // just delete the extra slot; on a little-endian machine we keep the first
   637           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   638           remove_arg_slots(_masm, -stack_move_unit(),
   639                            rax_argslot, rbx_temp, rdx_temp);
   640           vmarg = Address(rax_argslot, -Interpreter::stackElementSize());
   641           __ movl(rdx_temp, vmarg);
   642         }
   643         break;
   644       case _adapter_opt_unboxi:
   645         {
   646           // Load the value up from the heap.
   647           __ movptr(rdx_temp, vmarg);
   648           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
   649 #ifdef ASSERT
   650           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
   651             if (is_subword_type(BasicType(bt)))
   652               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
   653           }
   654 #endif
   655           __ null_check(rdx_temp, value_offset);
   656           __ movl(rdx_temp, Address(rdx_temp, value_offset));
   657           // We load this as a word.  Because we are little-endian,
   658           // the low bits will be correct, but the high bits may need cleaning.
   659           // The vminfo will guide us to clean those bits.
   660         }
   661         break;
   662       default:
   663         assert(false, "");
   664       }
   665       goto finish_int_conversion;
   666     }
   668   finish_int_conversion:
   669     {
   670       Register rbx_vminfo = rbx_temp;
   671       __ movl(rbx_vminfo, rcx_amh_conversion);
   672       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   674       // get the new MH:
   675       __ movptr(rcx_recv, rcx_mh_vmtarget);
   676       // (now we are done with the old MH)
   678       // original 32-bit vmdata word must be of this form:
   679       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
   680       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
   681       __ shll(rdx_temp /*, rcx*/);
   682       Label zero_extend, done;
   683       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
   684       __ jccb(Assembler::zero, zero_extend);
   686       // this path is taken for int->byte, int->short
   687       __ sarl(rdx_temp /*, rcx*/);
   688       __ jmpb(done);
   690       __ bind(zero_extend);
   691       // this is taken for int->char
   692       __ shrl(rdx_temp /*, rcx*/);
   694       __ bind(done);
   695       __ movl(vmarg, rdx_temp);
   696       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
   698       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   699     }
   700     break;
   702   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
   703   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
   704     {
   705       // perform an in-place int-to-long or ref-to-long conversion
   706       __ movl(rax_argslot, rcx_amh_vmargslot);
   708       // on a little-endian machine we keep the first slot and add another after
   709       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   710       insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   711                        rax_argslot, rbx_temp, rdx_temp);
   712       Address vmarg1(rax_argslot, -Interpreter::stackElementSize());
   713       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize());
   715       switch (ek) {
   716       case _adapter_opt_i2l:
   717         {
   718           __ movl(rdx_temp, vmarg1);
   719           __ sarl(rdx_temp, 31);  // __ extend_sign()
   720           __ movl(vmarg2, rdx_temp); // store second word
   721         }
   722         break;
   723       case _adapter_opt_unboxl:
   724         {
   725           // Load the value up from the heap.
   726           __ movptr(rdx_temp, vmarg1);
   727           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
   728           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
   729           __ null_check(rdx_temp, value_offset);
   730           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
   731           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
   732           __ movl(vmarg1, rbx_temp);
   733           __ movl(vmarg2, rdx_temp);
   734         }
   735         break;
   736       default:
   737         assert(false, "");
   738       }
   740       __ movptr(rcx_recv, rcx_mh_vmtarget);
   741       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   742     }
   743     break;
   745   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
   746   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
   747     {
   748       // perform an in-place floating primitive conversion
   749       __ movl(rax_argslot, rcx_amh_vmargslot);
   750       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   751       if (ek == _adapter_opt_f2d) {
   752         insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   753                          rax_argslot, rbx_temp, rdx_temp);
   754       }
   755       Address vmarg(rax_argslot, -Interpreter::stackElementSize());
   757 #ifdef _LP64
   758       if (ek == _adapter_opt_f2d) {
   759         __ movflt(xmm0, vmarg);
   760         __ cvtss2sd(xmm0, xmm0);
   761         __ movdbl(vmarg, xmm0);
   762       } else {
   763         __ movdbl(xmm0, vmarg);
   764         __ cvtsd2ss(xmm0, xmm0);
   765         __ movflt(vmarg, xmm0);
   766       }
   767 #else //_LP64
   768       if (ek == _adapter_opt_f2d) {
   769         __ fld_s(vmarg);        // load float to ST0
   770         __ fstp_s(vmarg);       // store single
   771       } else if (!TaggedStackInterpreter) {
   772         __ fld_d(vmarg);        // load double to ST0
   773         __ fstp_s(vmarg);       // store single
   774       } else {
   775         Address vmarg_tag = vmarg.plus_disp(tag_offset);
   776         Address vmarg2    = vmarg.plus_disp(Interpreter::stackElementSize());
   777         // vmarg2_tag does not participate in this code
   778         Register rbx_tag = rbx_temp;
   779         __ movl(rbx_tag, vmarg_tag); // preserve tag
   780         __ movl(rdx_temp, vmarg2); // get second word of double
   781         __ movl(vmarg_tag, rdx_temp); // align with first word
   782         __ fld_d(vmarg);        // load double to ST0
   783         __ movl(vmarg_tag, rbx_tag); // restore tag
   784         __ fstp_s(vmarg);       // store single
   785       }
   786 #endif //_LP64
   788       if (ek == _adapter_opt_d2f) {
   789         remove_arg_slots(_masm, -stack_move_unit(),
   790                          rax_argslot, rbx_temp, rdx_temp);
   791       }
   793       __ movptr(rcx_recv, rcx_mh_vmtarget);
   794       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   795     }
   796     break;
   798   case _adapter_prim_to_ref:
   799     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
   800     break;
   802   case _adapter_swap_args:
   803   case _adapter_rot_args:
   804     // handled completely by optimized cases
   805     __ stop("init_AdapterMethodHandle should not issue this");
   806     break;
   808   case _adapter_opt_swap_1:
   809   case _adapter_opt_swap_2:
   810   case _adapter_opt_rot_1_up:
   811   case _adapter_opt_rot_1_down:
   812   case _adapter_opt_rot_2_up:
   813   case _adapter_opt_rot_2_down:
   814     {
   815       int rotate = 0, swap_slots = 0;
   816       switch ((int)ek) {
   817       case _adapter_opt_swap_1:     swap_slots = 1; break;
   818       case _adapter_opt_swap_2:     swap_slots = 2; break;
   819       case _adapter_opt_rot_1_up:   swap_slots = 1; rotate++; break;
   820       case _adapter_opt_rot_1_down: swap_slots = 1; rotate--; break;
   821       case _adapter_opt_rot_2_up:   swap_slots = 2; rotate++; break;
   822       case _adapter_opt_rot_2_down: swap_slots = 2; rotate--; break;
   823       default: assert(false, "");
   824       }
   826       // the real size of the move must be doubled if TaggedStackInterpreter:
   827       int swap_bytes = (int)( swap_slots * Interpreter::stackElementWords() * wordSize );
   829       // 'argslot' is the position of the first argument to swap
   830       __ movl(rax_argslot, rcx_amh_vmargslot);
   831       __ lea(rax_argslot, __ argument_address(rax_argslot));
   833       // 'vminfo' is the second
   834       Register rbx_destslot = rbx_temp;
   835       __ movl(rbx_destslot, rcx_amh_conversion);
   836       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   837       __ andl(rbx_destslot, CONV_VMINFO_MASK);
   838       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
   839       DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
   841       if (!rotate) {
   842         for (int i = 0; i < swap_bytes; i += wordSize) {
   843           __ movptr(rdx_temp, Address(rax_argslot , i));
   844           __ push(rdx_temp);
   845           __ movptr(rdx_temp, Address(rbx_destslot, i));
   846           __ movptr(Address(rax_argslot, i), rdx_temp);
   847           __ pop(rdx_temp);
   848           __ movptr(Address(rbx_destslot, i), rdx_temp);
   849         }
   850       } else {
   851         // push the first chunk, which is going to get overwritten
   852         for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
   853           __ movptr(rdx_temp, Address(rax_argslot, i));
   854           __ push(rdx_temp);
   855         }
   857         if (rotate > 0) {
   858           // rotate upward
   859           __ subptr(rax_argslot, swap_bytes);
   860 #ifdef ASSERT
   861           {
   862             // Verify that argslot > destslot, by at least swap_bytes.
   863             Label L_ok;
   864             __ cmpptr(rax_argslot, rbx_destslot);
   865             __ jccb(Assembler::aboveEqual, L_ok);
   866             __ stop("source must be above destination (upward rotation)");
   867             __ bind(L_ok);
   868           }
   869 #endif
   870           // work argslot down to destslot, copying contiguous data upwards
   871           // pseudo-code:
   872           //   rax = src_addr - swap_bytes
   873           //   rbx = dest_addr
   874           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
   875           Label loop;
   876           __ bind(loop);
   877           __ movptr(rdx_temp, Address(rax_argslot, 0));
   878           __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
   879           __ addptr(rax_argslot, -wordSize);
   880           __ cmpptr(rax_argslot, rbx_destslot);
   881           __ jccb(Assembler::aboveEqual, loop);
   882         } else {
   883           __ addptr(rax_argslot, swap_bytes);
   884 #ifdef ASSERT
   885           {
   886             // Verify that argslot < destslot, by at least swap_bytes.
   887             Label L_ok;
   888             __ cmpptr(rax_argslot, rbx_destslot);
   889             __ jccb(Assembler::belowEqual, L_ok);
   890             __ stop("source must be below destination (downward rotation)");
   891             __ bind(L_ok);
   892           }
   893 #endif
   894           // work argslot up to destslot, copying contiguous data downwards
   895           // pseudo-code:
   896           //   rax = src_addr + swap_bytes
   897           //   rbx = dest_addr
   898           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
   899           Label loop;
   900           __ bind(loop);
   901           __ movptr(rdx_temp, Address(rax_argslot, 0));
   902           __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
   903           __ addptr(rax_argslot, wordSize);
   904           __ cmpptr(rax_argslot, rbx_destslot);
   905           __ jccb(Assembler::belowEqual, loop);
   906         }
   908         // pop the original first chunk into the destination slot, now free
   909         for (int i = 0; i < swap_bytes; i += wordSize) {
   910           __ pop(rdx_temp);
   911           __ movptr(Address(rbx_destslot, i), rdx_temp);
   912         }
   913       }
   915       __ movptr(rcx_recv, rcx_mh_vmtarget);
   916       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   917     }
   918     break;
   920   case _adapter_dup_args:
   921     {
   922       // 'argslot' is the position of the first argument to duplicate
   923       __ movl(rax_argslot, rcx_amh_vmargslot);
   924       __ lea(rax_argslot, __ argument_address(rax_argslot));
   926       // 'stack_move' is negative number of words to duplicate
   927       Register rdx_stack_move = rdx_temp;
   928       __ movl(rdx_stack_move, rcx_amh_conversion);
   929       __ sarl(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
   931       int argslot0_num = 0;
   932       Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
   933       assert(argslot0.base() == rsp, "");
   934       int pre_arg_size = argslot0.disp();
   935       assert(pre_arg_size % wordSize == 0, "");
   936       assert(pre_arg_size > 0, "must include PC");
   938       // remember the old rsp+1 (argslot[0])
   939       Register rbx_oldarg = rbx_temp;
   940       __ lea(rbx_oldarg, argslot0);
   942       // move rsp down to make room for dups
   943       __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
   945       // compute the new rsp+1 (argslot[0])
   946       Register rdx_newarg = rdx_temp;
   947       __ lea(rdx_newarg, argslot0);
   949       __ push(rdi);             // need a temp
   950       // (preceding push must be done after arg addresses are taken!)
   952       // pull down the pre_arg_size data (PC)
   953       for (int i = -pre_arg_size; i < 0; i += wordSize) {
   954         __ movptr(rdi, Address(rbx_oldarg, i));
   955         __ movptr(Address(rdx_newarg, i), rdi);
   956       }
   958       // copy from rax_argslot[0...] down to new_rsp[1...]
   959       // pseudo-code:
   960       //   rbx = old_rsp+1
   961       //   rdx = new_rsp+1
   962       //   rax = argslot
   963       //   while (rdx < rbx) *rdx++ = *rax++
   964       Label loop;
   965       __ bind(loop);
   966       __ movptr(rdi, Address(rax_argslot, 0));
   967       __ movptr(Address(rdx_newarg, 0), rdi);
   968       __ addptr(rax_argslot, wordSize);
   969       __ addptr(rdx_newarg, wordSize);
   970       __ cmpptr(rdx_newarg, rbx_oldarg);
   971       __ jccb(Assembler::less, loop);
   973       __ pop(rdi);              // restore temp
   975       __ movptr(rcx_recv, rcx_mh_vmtarget);
   976       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   977     }
   978     break;
   980   case _adapter_drop_args:
   981     {
   982       // 'argslot' is the position of the first argument to nuke
   983       __ movl(rax_argslot, rcx_amh_vmargslot);
   984       __ lea(rax_argslot, __ argument_address(rax_argslot));
   986       __ push(rdi);             // need a temp
   987       // (must do previous push after argslot address is taken)
   989       // 'stack_move' is number of words to drop
   990       Register rdi_stack_move = rdi;
   991       __ movl(rdi_stack_move, rcx_amh_conversion);
   992       __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
   993       remove_arg_slots(_masm, rdi_stack_move,
   994                        rax_argslot, rbx_temp, rdx_temp);
   996       __ pop(rdi);              // restore temp
   998       __ movptr(rcx_recv, rcx_mh_vmtarget);
   999       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1001     break;
  1003   case _adapter_collect_args:
  1004     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1005     break;
  1007   case _adapter_spread_args:
  1008     // handled completely by optimized cases
  1009     __ stop("init_AdapterMethodHandle should not issue this");
  1010     break;
  1012   case _adapter_opt_spread_0:
  1013   case _adapter_opt_spread_1:
  1014   case _adapter_opt_spread_more:
  1016       // spread an array out into a group of arguments
  1017       int length_constant = -1;
  1018       switch (ek) {
  1019       case _adapter_opt_spread_0: length_constant = 0; break;
  1020       case _adapter_opt_spread_1: length_constant = 1; break;
  1023       // find the address of the array argument
  1024       __ movl(rax_argslot, rcx_amh_vmargslot);
  1025       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1027       // grab some temps
  1028       { __ push(rsi); __ push(rdi); }
  1029       // (preceding pushes must be done after argslot address is taken!)
  1030 #define UNPUSH_RSI_RDI \
  1031       { __ pop(rdi); __ pop(rsi); }
  1033       // arx_argslot points both to the array and to the first output arg
  1034       vmarg = Address(rax_argslot, 0);
  1036       // Get the array value.
  1037       Register  rsi_array       = rsi;
  1038       Register  rdx_array_klass = rdx_temp;
  1039       BasicType elem_type       = T_OBJECT;
  1040       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  1041       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  1042       __ movptr(rsi_array, vmarg);
  1043       Label skip_array_check;
  1044       if (length_constant == 0) {
  1045         __ testptr(rsi_array, rsi_array);
  1046         __ jcc(Assembler::zero, skip_array_check);
  1048       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
  1049       __ load_klass(rdx_array_klass, rsi_array);
  1051       // Check the array type.
  1052       Register rbx_klass = rbx_temp;
  1053       __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
  1054       __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
  1056       Label ok_array_klass, bad_array_klass, bad_array_length;
  1057       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
  1058       // If we get here, the type check failed!
  1059       __ jmp(bad_array_klass);
  1060       __ bind(ok_array_klass);
  1062       // Check length.
  1063       if (length_constant >= 0) {
  1064         __ cmpl(Address(rsi_array, length_offset), length_constant);
  1065       } else {
  1066         Register rbx_vminfo = rbx_temp;
  1067         __ movl(rbx_vminfo, rcx_amh_conversion);
  1068         assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  1069         __ andl(rbx_vminfo, CONV_VMINFO_MASK);
  1070         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
  1072       __ jcc(Assembler::notEqual, bad_array_length);
  1074       Register rdx_argslot_limit = rdx_temp;
  1076       // Array length checks out.  Now insert any required stack slots.
  1077       if (length_constant == -1) {
  1078         // Form a pointer to the end of the affected region.
  1079         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize()));
  1080         // 'stack_move' is negative number of words to insert
  1081         Register rdi_stack_move = rdi;
  1082         __ movl(rdi_stack_move, rcx_amh_conversion);
  1083         __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
  1084         Register rsi_temp = rsi_array;  // spill this
  1085         insert_arg_slots(_masm, rdi_stack_move, -1,
  1086                          rax_argslot, rbx_temp, rsi_temp);
  1087         // reload the array (since rsi was killed)
  1088         __ movptr(rsi_array, vmarg);
  1089       } else if (length_constant > 1) {
  1090         int arg_mask = 0;
  1091         int new_slots = (length_constant - 1);
  1092         for (int i = 0; i < new_slots; i++) {
  1093           arg_mask <<= 1;
  1094           arg_mask |= _INSERT_REF_MASK;
  1096         insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
  1097                          rax_argslot, rbx_temp, rdx_temp);
  1098       } else if (length_constant == 1) {
  1099         // no stack resizing required
  1100       } else if (length_constant == 0) {
  1101         remove_arg_slots(_masm, -stack_move_unit(),
  1102                          rax_argslot, rbx_temp, rdx_temp);
  1105       // Copy from the array to the new slots.
  1106       // Note: Stack change code preserves integrity of rax_argslot pointer.
  1107       // So even after slot insertions, rax_argslot still points to first argument.
  1108       if (length_constant == -1) {
  1109         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  1110         Register rsi_source = rsi_array;
  1111         __ lea(rsi_source, Address(rsi_array, elem0_offset));
  1112         Label loop;
  1113         __ bind(loop);
  1114         __ movptr(rbx_temp, Address(rsi_source, 0));
  1115         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1116         __ addptr(rsi_source, type2aelembytes(elem_type));
  1117         if (TaggedStackInterpreter) {
  1118           __ movptr(Address(rax_argslot, tag_offset),
  1119                     frame::tag_for_basic_type(elem_type));
  1121         __ addptr(rax_argslot, Interpreter::stackElementSize());
  1122         __ cmpptr(rax_argslot, rdx_argslot_limit);
  1123         __ jccb(Assembler::less, loop);
  1124       } else if (length_constant == 0) {
  1125         __ bind(skip_array_check);
  1126         // nothing to copy
  1127       } else {
  1128         int elem_offset = elem0_offset;
  1129         int slot_offset = 0;
  1130         for (int index = 0; index < length_constant; index++) {
  1131           __ movptr(rbx_temp, Address(rsi_array, elem_offset));
  1132           __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
  1133           elem_offset += type2aelembytes(elem_type);
  1134           if (TaggedStackInterpreter) {
  1135             __ movptr(Address(rax_argslot, slot_offset + tag_offset),
  1136                       frame::tag_for_basic_type(elem_type));
  1138           slot_offset += Interpreter::stackElementSize();
  1142       // Arguments are spread.  Move to next method handle.
  1143       UNPUSH_RSI_RDI;
  1144       __ movptr(rcx_recv, rcx_mh_vmtarget);
  1145       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1147       __ bind(bad_array_klass);
  1148       UNPUSH_RSI_RDI;
  1149       __ pushptr(Address(rdx_array_klass, java_mirror_offset)); // required type
  1150       __ pushptr(vmarg);                // bad array
  1151       __ push((int)Bytecodes::_aaload); // who is complaining?
  1152       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1154       __ bind(bad_array_length);
  1155       UNPUSH_RSI_RDI;
  1156       __ push(rcx_recv);        // AMH requiring a certain length
  1157       __ pushptr(vmarg);        // bad array
  1158       __ push((int)Bytecodes::_arraylength); // who is complaining?
  1159       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1161 #undef UNPUSH_RSI_RDI
  1163     break;
  1165   case _adapter_flyby:
  1166   case _adapter_ricochet:
  1167     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1168     break;
  1170   default:  ShouldNotReachHere();
  1172   __ hlt();
  1174   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  1175   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1177   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial