src/cpu/x86/vm/interp_masm_x86_32.cpp

Mon, 04 Jan 2010 18:38:08 +0100

author
twisti
date
Mon, 04 Jan 2010 18:38:08 +0100
changeset 1570
e66fd840cb6b
parent 1543
85f13cdfbc1d
child 1641
87684f1a88b5
permissions
-rw-r--r--

6893081: method handle & invokedynamic code needs additional cleanup (post 6815692, 6858164)
Summary: During the work for 6829187 we have fixed a number of basic bugs which are logically grouped with 6815692 and 6858164 but which must be reviewed and pushed separately.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_32.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    30 #ifdef CC_INTERP
    31 void InterpreterMacroAssembler::get_method(Register reg) {
    32   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    33   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    34 }
    35 #endif // CC_INTERP
    38 #ifndef CC_INTERP
    39 void InterpreterMacroAssembler::call_VM_leaf_base(
    40   address entry_point,
    41   int     number_of_arguments
    42 ) {
    43   // interpreter specific
    44   //
    45   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    46   //       since these are callee saved registers and no blocking/
    47   //       GC can happen in leaf calls.
    48   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    49   // already saved them so that it can use rsi/rdi as temporaries
    50   // then a save/restore here will DESTROY the copy the caller
    51   // saved! There used to be a save_bcp() that only happened in
    52   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    53   // when jvm built with ASSERTs.
    54 #ifdef ASSERT
    55   { Label L;
    56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    57     jcc(Assembler::equal, L);
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    59     bind(L);
    60   }
    61 #endif
    62   // super call
    63   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    64   // interpreter specific
    66   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    67   // but since they may not have been saved (and we don't want to
    68   // save them here (see note above) the assert is invalid.
    69 }
    72 void InterpreterMacroAssembler::call_VM_base(
    73   Register oop_result,
    74   Register java_thread,
    75   Register last_java_sp,
    76   address  entry_point,
    77   int      number_of_arguments,
    78   bool     check_exceptions
    79 ) {
    80 #ifdef ASSERT
    81   { Label L;
    82     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    83     jcc(Assembler::equal, L);
    84     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
    85     bind(L);
    86   }
    87 #endif /* ASSERT */
    88   // interpreter specific
    89   //
    90   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    91   //       really make a difference for these runtime calls, since they are
    92   //       slow anyway. Btw., bcp must be saved/restored since it may change
    93   //       due to GC.
    94   assert(java_thread == noreg , "not expecting a precomputed java thread");
    95   save_bcp();
    96   // super call
    97   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
    98   // interpreter specific
    99   restore_bcp();
   100   restore_locals();
   101 }
   104 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   105   if (JvmtiExport::can_pop_frame()) {
   106     Label L;
   107     // Initiate popframe handling only if it is not already being processed.  If the flag
   108     // has the popframe_processing bit set, it means that this code is called *during* popframe
   109     // handling - we don't want to reenter.
   110     Register pop_cond = java_thread;  // Not clear if any other register is available...
   111     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   112     testl(pop_cond, JavaThread::popframe_pending_bit);
   113     jcc(Assembler::zero, L);
   114     testl(pop_cond, JavaThread::popframe_processing_bit);
   115     jcc(Assembler::notZero, L);
   116     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   117     // address of the same-named entrypoint in the generated interpreter code.
   118     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   119     jmp(rax);
   120     bind(L);
   121     get_thread(java_thread);
   122   }
   123 }
   126 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   127   get_thread(rcx);
   128   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   129   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   130   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   131   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   132   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   133                              + in_ByteSize(wordSize));
   134   switch (state) {
   135     case atos: movptr(rax, oop_addr);
   136                movptr(oop_addr, NULL_WORD);
   137                verify_oop(rax, state);                break;
   138     case ltos:
   139                movl(rdx, val_addr1);               // fall through
   140     case btos:                                     // fall through
   141     case ctos:                                     // fall through
   142     case stos:                                     // fall through
   143     case itos: movl(rax, val_addr);                   break;
   144     case ftos: fld_s(val_addr);                       break;
   145     case dtos: fld_d(val_addr);                       break;
   146     case vtos: /* nothing to do */                    break;
   147     default  : ShouldNotReachHere();
   148   }
   149   // Clean up tos value in the thread object
   150   movl(tos_addr,  (int32_t) ilgl);
   151   movptr(val_addr,  NULL_WORD);
   152   NOT_LP64(movptr(val_addr1, NULL_WORD));
   153 }
   156 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   157   if (JvmtiExport::can_force_early_return()) {
   158     Label L;
   159     Register tmp = java_thread;
   160     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   161     testptr(tmp, tmp);
   162     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   164     // Initiate earlyret handling only if it is not already being processed.
   165     // If the flag has the earlyret_processing bit set, it means that this code
   166     // is called *during* earlyret handling - we don't want to reenter.
   167     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   168     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   169     jcc(Assembler::notEqual, L);
   171     // Call Interpreter::remove_activation_early_entry() to get the address of the
   172     // same-named entrypoint in the generated interpreter code.
   173     get_thread(java_thread);
   174     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   175     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   176     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   177     jmp(rax);
   178     bind(L);
   179     get_thread(java_thread);
   180   }
   181 }
   184 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   185   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   186   movl(reg, Address(rsi, bcp_offset));
   187   bswapl(reg);
   188   shrl(reg, 16);
   189 }
   192 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, bool giant_index) {
   193   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   194   if (!giant_index) {
   195     load_unsigned_short(reg, Address(rsi, bcp_offset));
   196   } else {
   197     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
   198     movl(reg, Address(rsi, bcp_offset));
   199     // Check if the secondary index definition is still ~x, otherwise
   200     // we have to change the following assembler code to calculate the
   201     // plain index.
   202     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   203     notl(reg);  // convert to plain index
   204   }
   205 }
   208 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
   209                                                            int bcp_offset, bool giant_index) {
   210   assert(cache != index, "must use different registers");
   211   get_cache_index_at_bcp(index, bcp_offset, giant_index);
   212   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   213   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   214   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   215 }
   218 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   219                                                                int bcp_offset, bool giant_index) {
   220   assert(cache != tmp, "must use different register");
   221   get_cache_index_at_bcp(tmp, bcp_offset, giant_index);
   222   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   223                                // convert from field index to ConstantPoolCacheEntry index
   224                                // and from word offset to byte offset
   225   shll(tmp, 2 + LogBytesPerWord);
   226   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   227                                // skip past the header
   228   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   229   addptr(cache, tmp);            // construct pointer to cache entry
   230 }
   233   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   234   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   235   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   236 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   237   assert( Rsub_klass != rax, "rax, holds superklass" );
   238   assert( Rsub_klass != rcx, "used as a temp" );
   239   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
   241   // Profile the not-null value's klass.
   242   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   244   // Do the check.
   245   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   247   // Profile the failure of the check.
   248   profile_typecheck_failed(rcx); // blows rcx
   249 }
   251 void InterpreterMacroAssembler::f2ieee() {
   252   if (IEEEPrecision) {
   253     fstp_s(Address(rsp, 0));
   254     fld_s(Address(rsp, 0));
   255   }
   256 }
   259 void InterpreterMacroAssembler::d2ieee() {
   260   if (IEEEPrecision) {
   261     fstp_d(Address(rsp, 0));
   262     fld_d(Address(rsp, 0));
   263   }
   264 }
   266 // Java Expression Stack
   268 #ifdef ASSERT
   269 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
   270   if (TaggedStackInterpreter) {
   271     Label okay;
   272     cmpptr(Address(rsp, wordSize), (int32_t)t);
   273     jcc(Assembler::equal, okay);
   274     // Also compare if the stack value is zero, then the tag might
   275     // not have been set coming from deopt.
   276     cmpptr(Address(rsp, 0), 0);
   277     jcc(Assembler::equal, okay);
   278     stop("Java Expression stack tag value is bad");
   279     bind(okay);
   280   }
   281 }
   282 #endif // ASSERT
   284 void InterpreterMacroAssembler::pop_ptr(Register r) {
   285   debug_only(verify_stack_tag(frame::TagReference));
   286   pop(r);
   287   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   288 }
   290 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
   291   pop(r);
   292   // Tag may not be reference for jsr, can be returnAddress
   293   if (TaggedStackInterpreter) pop(tag);
   294 }
   296 void InterpreterMacroAssembler::pop_i(Register r) {
   297   debug_only(verify_stack_tag(frame::TagValue));
   298   pop(r);
   299   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   300 }
   302 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   303   debug_only(verify_stack_tag(frame::TagValue));
   304   pop(lo);
   305   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   306   debug_only(verify_stack_tag(frame::TagValue));
   307   pop(hi);
   308   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   309 }
   311 void InterpreterMacroAssembler::pop_f() {
   312   debug_only(verify_stack_tag(frame::TagValue));
   313   fld_s(Address(rsp, 0));
   314   addptr(rsp, 1 * wordSize);
   315   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   316 }
   318 void InterpreterMacroAssembler::pop_d() {
   319   // Write double to stack contiguously and load into ST0
   320   pop_dtos_to_rsp();
   321   fld_d(Address(rsp, 0));
   322   addptr(rsp, 2 * wordSize);
   323 }
   326 // Pop the top of the java expression stack to execution stack (which
   327 // happens to be the same place).
   328 void InterpreterMacroAssembler::pop_dtos_to_rsp() {
   329   if (TaggedStackInterpreter) {
   330     // Pop double value into scratch registers
   331     debug_only(verify_stack_tag(frame::TagValue));
   332     pop(rax);
   333     addptr(rsp, 1* wordSize);
   334     debug_only(verify_stack_tag(frame::TagValue));
   335     pop(rdx);
   336     addptr(rsp, 1* wordSize);
   337     push(rdx);
   338     push(rax);
   339   }
   340 }
   342 void InterpreterMacroAssembler::pop_ftos_to_rsp() {
   343   if (TaggedStackInterpreter) {
   344     debug_only(verify_stack_tag(frame::TagValue));
   345     pop(rax);
   346     addptr(rsp, 1 * wordSize);
   347     push(rax);  // ftos is at rsp
   348   }
   349 }
   351 void InterpreterMacroAssembler::pop(TosState state) {
   352   switch (state) {
   353     case atos: pop_ptr(rax);                                 break;
   354     case btos:                                               // fall through
   355     case ctos:                                               // fall through
   356     case stos:                                               // fall through
   357     case itos: pop_i(rax);                                   break;
   358     case ltos: pop_l(rax, rdx);                              break;
   359     case ftos: pop_f();                                      break;
   360     case dtos: pop_d();                                      break;
   361     case vtos: /* nothing to do */                           break;
   362     default  : ShouldNotReachHere();
   363   }
   364   verify_oop(rax, state);
   365 }
   367 void InterpreterMacroAssembler::push_ptr(Register r) {
   368   if (TaggedStackInterpreter) push(frame::TagReference);
   369   push(r);
   370 }
   372 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   373   if (TaggedStackInterpreter) push(tag);  // tag first
   374   push(r);
   375 }
   377 void InterpreterMacroAssembler::push_i(Register r) {
   378   if (TaggedStackInterpreter) push(frame::TagValue);
   379   push(r);
   380 }
   382 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   383   if (TaggedStackInterpreter) push(frame::TagValue);
   384   push(hi);
   385   if (TaggedStackInterpreter) push(frame::TagValue);
   386   push(lo);
   387 }
   389 void InterpreterMacroAssembler::push_f() {
   390   if (TaggedStackInterpreter) push(frame::TagValue);
   391   // Do not schedule for no AGI! Never write beyond rsp!
   392   subptr(rsp, 1 * wordSize);
   393   fstp_s(Address(rsp, 0));
   394 }
   396 void InterpreterMacroAssembler::push_d(Register r) {
   397   if (TaggedStackInterpreter) {
   398     // Double values are stored as:
   399     //   tag
   400     //   high
   401     //   tag
   402     //   low
   403     push(frame::TagValue);
   404     subptr(rsp, 3 * wordSize);
   405     fstp_d(Address(rsp, 0));
   406     // move high word up to slot n-1
   407     movl(r, Address(rsp, 1*wordSize));
   408     movl(Address(rsp, 2*wordSize), r);
   409     // move tag
   410     movl(Address(rsp, 1*wordSize), frame::TagValue);
   411   } else {
   412     // Do not schedule for no AGI! Never write beyond rsp!
   413     subptr(rsp, 2 * wordSize);
   414     fstp_d(Address(rsp, 0));
   415   }
   416 }
   419 void InterpreterMacroAssembler::push(TosState state) {
   420   verify_oop(rax, state);
   421   switch (state) {
   422     case atos: push_ptr(rax); break;
   423     case btos:                                               // fall through
   424     case ctos:                                               // fall through
   425     case stos:                                               // fall through
   426     case itos: push_i(rax);                                    break;
   427     case ltos: push_l(rax, rdx);                               break;
   428     case ftos: push_f();                                       break;
   429     case dtos: push_d(rax);                                    break;
   430     case vtos: /* nothing to do */                             break;
   431     default  : ShouldNotReachHere();
   432   }
   433 }
   436 // Tagged stack helpers for swap and dup
   437 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   438                                                  Register tag) {
   439   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   440   if (TaggedStackInterpreter) {
   441     movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
   442   }
   443 }
   445 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   446                                                   Register tag) {
   447   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   448   if (TaggedStackInterpreter) {
   449     movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
   450   }
   451 }
   454 // Tagged local support
   455 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
   456   if (TaggedStackInterpreter) {
   457     if (tag == frame::TagCategory2) {
   458       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)frame::TagValue);
   459       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)frame::TagValue);
   460     } else {
   461       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
   462     }
   463   }
   464 }
   466 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
   467   if (TaggedStackInterpreter) {
   468     if (tag == frame::TagCategory2) {
   469       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   470                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
   471       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   472                     Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
   473     } else {
   474       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   475                                Interpreter::local_tag_offset_in_bytes(0)), (int32_t)tag);
   476     }
   477   }
   478 }
   480 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
   481   if (TaggedStackInterpreter) {
   482     // can only be TagValue or TagReference
   483     movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   484                            Interpreter::local_tag_offset_in_bytes(0)), tag);
   485   }
   486 }
   489 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
   490   if (TaggedStackInterpreter) {
   491     // can only be TagValue or TagReference
   492     movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), tag);
   493   }
   494 }
   496 #ifdef ASSERT
   497 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
   498   if (TaggedStackInterpreter) {
   499      frame::Tag t = tag;
   500     if (tag == frame::TagCategory2) {
   501       Label nbl;
   502       t = frame::TagValue;  // change to what is stored in locals
   503       cmpptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
   504       jcc(Assembler::equal, nbl);
   505       stop("Local tag is bad for long/double");
   506       bind(nbl);
   507     }
   508     Label notBad;
   509     cmpptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
   510     jcc(Assembler::equal, notBad);
   511     // Also compare if the local value is zero, then the tag might
   512     // not have been set coming from deopt.
   513     cmpptr(Address(rdi, Interpreter::local_offset_in_bytes(n)), 0);
   514     jcc(Assembler::equal, notBad);
   515     stop("Local tag is bad");
   516     bind(notBad);
   517   }
   518 }
   520 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
   521   if (TaggedStackInterpreter) {
   522     frame::Tag t = tag;
   523     if (tag == frame::TagCategory2) {
   524       Label nbl;
   525       t = frame::TagValue;  // change to what is stored in locals
   526       cmpptr(Address(rdi, idx, Interpreter::stackElementScale(),
   527                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
   528       jcc(Assembler::equal, nbl);
   529       stop("Local tag is bad for long/double");
   530       bind(nbl);
   531     }
   532     Label notBad;
   533     cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
   534                   Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
   535     jcc(Assembler::equal, notBad);
   536     // Also compare if the local value is zero, then the tag might
   537     // not have been set coming from deopt.
   538     cmpptr(Address(rdi, idx, Interpreter::stackElementScale(),
   539                   Interpreter::local_offset_in_bytes(0)), 0);
   540     jcc(Assembler::equal, notBad);
   541     stop("Local tag is bad");
   542     bind(notBad);
   544   }
   545 }
   546 #endif // ASSERT
   548 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   549   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   550 }
   553 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
   554   push(arg_1);
   555   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   556 }
   559 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
   560   push(arg_2);
   561   push(arg_1);
   562   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   563 }
   566 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
   567   push(arg_3);
   568   push(arg_2);
   569   push(arg_1);
   570   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   571 }
   574 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   575   // set sender sp
   576   lea(rsi, Address(rsp, wordSize));
   577   // record last_sp
   578   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   579 }
   582 // Jump to from_interpreted entry of a call unless single stepping is possible
   583 // in this thread in which case we must call the i2i entry
   584 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   585   prepare_to_jump_from_interpreted();
   587   if (JvmtiExport::can_post_interpreter_events()) {
   588     Label run_compiled_code;
   589     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   590     // compiled code in threads for which the event is enabled.  Check here for
   591     // interp_only_mode if these events CAN be enabled.
   592     get_thread(temp);
   593     // interp_only is an int, on little endian it is sufficient to test the byte only
   594     // Is a cmpl faster (ce
   595     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   596     jcc(Assembler::zero, run_compiled_code);
   597     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   598     bind(run_compiled_code);
   599   }
   601   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   603 }
   606 // The following two routines provide a hook so that an implementation
   607 // can schedule the dispatch in two parts.  Intel does not do this.
   608 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   609   // Nothing Intel-specific to be done here.
   610 }
   612 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   613   dispatch_next(state, step);
   614 }
   616 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   617                                               bool verifyoop) {
   618   verify_FPU(1, state);
   619   if (VerifyActivationFrameSize) {
   620     Label L;
   621     mov(rcx, rbp);
   622     subptr(rcx, rsp);
   623     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   624     cmpptr(rcx, min_frame_size);
   625     jcc(Assembler::greaterEqual, L);
   626     stop("broken stack frame");
   627     bind(L);
   628   }
   629   if (verifyoop) verify_oop(rax, state);
   630   Address index(noreg, rbx, Address::times_ptr);
   631   ExternalAddress tbl((address)table);
   632   ArrayAddress dispatch(tbl, index);
   633   jump(dispatch);
   634 }
   637 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   638   dispatch_base(state, Interpreter::dispatch_table(state));
   639 }
   642 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   643   dispatch_base(state, Interpreter::normal_table(state));
   644 }
   646 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   647   dispatch_base(state, Interpreter::normal_table(state), false);
   648 }
   651 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   652   // load next bytecode (load before advancing rsi to prevent AGI)
   653   load_unsigned_byte(rbx, Address(rsi, step));
   654   // advance rsi
   655   increment(rsi, step);
   656   dispatch_base(state, Interpreter::dispatch_table(state));
   657 }
   660 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   661   // load current bytecode
   662   load_unsigned_byte(rbx, Address(rsi, 0));
   663   dispatch_base(state, table);
   664 }
   666 // remove activation
   667 //
   668 // Unlock the receiver if this is a synchronized method.
   669 // Unlock any Java monitors from syncronized blocks.
   670 // Remove the activation from the stack.
   671 //
   672 // If there are locked Java monitors
   673 //    If throw_monitor_exception
   674 //       throws IllegalMonitorStateException
   675 //    Else if install_monitor_exception
   676 //       installs IllegalMonitorStateException
   677 //    Else
   678 //       no error processing
   679 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   680                                                   bool throw_monitor_exception,
   681                                                   bool install_monitor_exception,
   682                                                   bool notify_jvmdi) {
   683   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   684   // check if synchronized method
   685   Label unlocked, unlock, no_unlock;
   687   get_thread(rcx);
   688   const Address do_not_unlock_if_synchronized(rcx,
   689     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   691   movbool(rbx, do_not_unlock_if_synchronized);
   692   mov(rdi,rbx);
   693   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   695   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   696   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   698   testl(rcx, JVM_ACC_SYNCHRONIZED);
   699   jcc(Assembler::zero, unlocked);
   701   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   702   // is set.
   703   mov(rcx,rdi);
   704   testbool(rcx);
   705   jcc(Assembler::notZero, no_unlock);
   707   // unlock monitor
   708   push(state);                                   // save result
   710   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   711   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   712   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   713   lea   (rdx, monitor);                          // address of first monitor
   715   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   716   testptr(rax, rax);
   717   jcc    (Assembler::notZero, unlock);
   719   pop(state);
   720   if (throw_monitor_exception) {
   721     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   723     // Entry already unlocked, need to throw exception
   724     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   725     should_not_reach_here();
   726   } else {
   727     // Monitor already unlocked during a stack unroll.
   728     // If requested, install an illegal_monitor_state_exception.
   729     // Continue with stack unrolling.
   730     if (install_monitor_exception) {
   731       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   732       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   733     }
   734     jmp(unlocked);
   735   }
   737   bind(unlock);
   738   unlock_object(rdx);
   739   pop(state);
   741   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   742   bind(unlocked);
   744   // rax, rdx: Might contain return value
   746   // Check that all monitors are unlocked
   747   {
   748     Label loop, exception, entry, restart;
   749     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   750     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   751     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   753     bind(restart);
   754     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   755     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   756     jmp(entry);
   758     // Entry already locked, need to throw exception
   759     bind(exception);
   761     if (throw_monitor_exception) {
   762       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   764       // Throw exception
   765       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   766       should_not_reach_here();
   767     } else {
   768       // Stack unrolling. Unlock object and install illegal_monitor_exception
   769       // Unlock does not block, so don't have to worry about the frame
   771       push(state);
   772       mov(rdx, rcx);
   773       unlock_object(rdx);
   774       pop(state);
   776       if (install_monitor_exception) {
   777         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   778         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   779       }
   781       jmp(restart);
   782     }
   784     bind(loop);
   785     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   786     jcc(Assembler::notEqual, exception);
   788     addptr(rcx, entry_size);                     // otherwise advance to next entry
   789     bind(entry);
   790     cmpptr(rcx, rbx);                            // check if bottom reached
   791     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   792   }
   794   bind(no_unlock);
   796   // jvmti support
   797   if (notify_jvmdi) {
   798     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   799   } else {
   800     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   801   }
   803   // remove activation
   804   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   805   leave();                                     // remove frame anchor
   806   pop(ret_addr);                               // get return address
   807   mov(rsp, rbx);                               // set sp to sender sp
   808   if (UseSSE) {
   809     // float and double are returned in xmm register in SSE-mode
   810     if (state == ftos && UseSSE >= 1) {
   811       subptr(rsp, wordSize);
   812       fstp_s(Address(rsp, 0));
   813       movflt(xmm0, Address(rsp, 0));
   814       addptr(rsp, wordSize);
   815     } else if (state == dtos && UseSSE >= 2) {
   816       subptr(rsp, 2*wordSize);
   817       fstp_d(Address(rsp, 0));
   818       movdbl(xmm0, Address(rsp, 0));
   819       addptr(rsp, 2*wordSize);
   820     }
   821   }
   822 }
   824 #endif /* !CC_INTERP */
   827 // Lock object
   828 //
   829 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   830 // be initialized with object to lock
   831 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   832   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   834   if (UseHeavyMonitors) {
   835     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   836   } else {
   838     Label done;
   840     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   841     const Register obj_reg  = rcx;  // Will contain the oop
   843     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   844     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   845     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   847     Label slow_case;
   849     // Load object pointer into obj_reg %rcx
   850     movptr(obj_reg, Address(lock_reg, obj_offset));
   852     if (UseBiasedLocking) {
   853       // Note: we use noreg for the temporary register since it's hard
   854       // to come up with a free register on all incoming code paths
   855       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   856     }
   858     // Load immediate 1 into swap_reg %rax,
   859     movptr(swap_reg, (int32_t)1);
   861     // Load (object->mark() | 1) into swap_reg %rax,
   862     orptr(swap_reg, Address(obj_reg, 0));
   864     // Save (object->mark() | 1) into BasicLock's displaced header
   865     movptr(Address(lock_reg, mark_offset), swap_reg);
   867     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   868     if (os::is_MP()) {
   869       lock();
   870     }
   871     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   872     if (PrintBiasedLockingStatistics) {
   873       cond_inc32(Assembler::zero,
   874                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   875     }
   876     jcc(Assembler::zero, done);
   878     // Test if the oopMark is an obvious stack pointer, i.e.,
   879     //  1) (mark & 3) == 0, and
   880     //  2) rsp <= mark < mark + os::pagesize()
   881     //
   882     // These 3 tests can be done by evaluating the following
   883     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   884     // assuming both stack pointer and pagesize have their
   885     // least significant 2 bits clear.
   886     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   887     subptr(swap_reg, rsp);
   888     andptr(swap_reg, 3 - os::vm_page_size());
   890     // Save the test result, for recursive case, the result is zero
   891     movptr(Address(lock_reg, mark_offset), swap_reg);
   893     if (PrintBiasedLockingStatistics) {
   894       cond_inc32(Assembler::zero,
   895                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   896     }
   897     jcc(Assembler::zero, done);
   899     bind(slow_case);
   901     // Call the runtime routine for slow case
   902     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   904     bind(done);
   905   }
   906 }
   909 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   910 //
   911 // Argument: rdx : Points to BasicObjectLock structure for lock
   912 // Throw an IllegalMonitorException if object is not locked by current thread
   913 //
   914 // Uses: rax, rbx, rcx, rdx
   915 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   916   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   918   if (UseHeavyMonitors) {
   919     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   920   } else {
   921     Label done;
   923     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   924     const Register header_reg = rbx;  // Will contain the old oopMark
   925     const Register obj_reg    = rcx;  // Will contain the oop
   927     save_bcp(); // Save in case of exception
   929     // Convert from BasicObjectLock structure to object and BasicLock structure
   930     // Store the BasicLock address into %rax,
   931     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   933     // Load oop into obj_reg(%rcx)
   934     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   936     // Free entry
   937     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   939     if (UseBiasedLocking) {
   940       biased_locking_exit(obj_reg, header_reg, done);
   941     }
   943     // Load the old header from BasicLock structure
   944     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   946     // Test for recursion
   947     testptr(header_reg, header_reg);
   949     // zero for recursive case
   950     jcc(Assembler::zero, done);
   952     // Atomic swap back the old header
   953     if (os::is_MP()) lock();
   954     cmpxchgptr(header_reg, Address(obj_reg, 0));
   956     // zero for recursive case
   957     jcc(Assembler::zero, done);
   959     // Call the runtime routine for slow case.
   960     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   961     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   963     bind(done);
   965     restore_bcp();
   966   }
   967 }
   970 #ifndef CC_INTERP
   972 // Test ImethodDataPtr.  If it is null, continue at the specified label
   973 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   974   assert(ProfileInterpreter, "must be profiling interpreter");
   975   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   976   testptr(mdp, mdp);
   977   jcc(Assembler::zero, zero_continue);
   978 }
   981 // Set the method data pointer for the current bcp.
   982 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   983   assert(ProfileInterpreter, "must be profiling interpreter");
   984   Label zero_continue;
   985   push(rax);
   986   push(rbx);
   988   get_method(rbx);
   989   // Test MDO to avoid the call if it is NULL.
   990   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   991   testptr(rax, rax);
   992   jcc(Assembler::zero, zero_continue);
   994   // rbx,: method
   995   // rsi: bcp
   996   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
   997   // rax,: mdi
   999   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1000   testptr(rbx, rbx);
  1001   jcc(Assembler::zero, zero_continue);
  1002   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
  1003   addptr(rbx, rax);
  1004   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
  1006   bind(zero_continue);
  1007   pop(rbx);
  1008   pop(rax);
  1011 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1012   assert(ProfileInterpreter, "must be profiling interpreter");
  1013 #ifdef ASSERT
  1014   Label verify_continue;
  1015   push(rax);
  1016   push(rbx);
  1017   push(rcx);
  1018   push(rdx);
  1019   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
  1020   get_method(rbx);
  1022   // If the mdp is valid, it will point to a DataLayout header which is
  1023   // consistent with the bcp.  The converse is highly probable also.
  1024   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
  1025   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
  1026   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
  1027   cmpptr(rdx, rsi);
  1028   jcc(Assembler::equal, verify_continue);
  1029   // rbx,: method
  1030   // rsi: bcp
  1031   // rcx: mdp
  1032   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
  1033   bind(verify_continue);
  1034   pop(rdx);
  1035   pop(rcx);
  1036   pop(rbx);
  1037   pop(rax);
  1038 #endif // ASSERT
  1042 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
  1043   // %%% this seems to be used to store counter data which is surely 32bits
  1044   // however 64bit side stores 64 bits which seems wrong
  1045   assert(ProfileInterpreter, "must be profiling interpreter");
  1046   Address data(mdp_in, constant);
  1047   movptr(data, value);
  1051 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1052                                                       int constant,
  1053                                                       bool decrement) {
  1054   // Counter address
  1055   Address data(mdp_in, constant);
  1057   increment_mdp_data_at(data, decrement);
  1061 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
  1062                                                       bool decrement) {
  1064   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1065   assert(ProfileInterpreter, "must be profiling interpreter");
  1067   // %%% 64bit treats this as 64 bit which seems unlikely
  1068   if (decrement) {
  1069     // Decrement the register.  Set condition codes.
  1070     addl(data, -DataLayout::counter_increment);
  1071     // If the decrement causes the counter to overflow, stay negative
  1072     Label L;
  1073     jcc(Assembler::negative, L);
  1074     addl(data, DataLayout::counter_increment);
  1075     bind(L);
  1076   } else {
  1077     assert(DataLayout::counter_increment == 1,
  1078            "flow-free idiom only works with 1");
  1079     // Increment the register.  Set carry flag.
  1080     addl(data, DataLayout::counter_increment);
  1081     // If the increment causes the counter to overflow, pull back by 1.
  1082     sbbl(data, 0);
  1087 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1088                                                       Register reg,
  1089                                                       int constant,
  1090                                                       bool decrement) {
  1091   Address data(mdp_in, reg, Address::times_1, constant);
  1093   increment_mdp_data_at(data, decrement);
  1097 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
  1098   assert(ProfileInterpreter, "must be profiling interpreter");
  1099   int header_offset = in_bytes(DataLayout::header_offset());
  1100   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  1101   // Set the flag
  1102   orl(Address(mdp_in, header_offset), header_bits);
  1107 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
  1108                                                  int offset,
  1109                                                  Register value,
  1110                                                  Register test_value_out,
  1111                                                  Label& not_equal_continue) {
  1112   assert(ProfileInterpreter, "must be profiling interpreter");
  1113   if (test_value_out == noreg) {
  1114     cmpptr(value, Address(mdp_in, offset));
  1115   } else {
  1116     // Put the test value into a register, so caller can use it:
  1117     movptr(test_value_out, Address(mdp_in, offset));
  1118     cmpptr(test_value_out, value);
  1120   jcc(Assembler::notEqual, not_equal_continue);
  1124 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
  1125   assert(ProfileInterpreter, "must be profiling interpreter");
  1126   Address disp_address(mdp_in, offset_of_disp);
  1127   addptr(mdp_in,disp_address);
  1128   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1132 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
  1133   assert(ProfileInterpreter, "must be profiling interpreter");
  1134   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1135   addptr(mdp_in, disp_address);
  1136   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1140 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
  1141   assert(ProfileInterpreter, "must be profiling interpreter");
  1142   addptr(mdp_in, constant);
  1143   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1147 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1148   assert(ProfileInterpreter, "must be profiling interpreter");
  1149   push(return_bci);             // save/restore across call_VM
  1150   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1151   pop(return_bci);
  1155 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
  1156   if (ProfileInterpreter) {
  1157     Label profile_continue;
  1159     // If no method data exists, go to profile_continue.
  1160     // Otherwise, assign to mdp
  1161     test_method_data_pointer(mdp, profile_continue);
  1163     // We are taking a branch.  Increment the taken count.
  1164     // We inline increment_mdp_data_at to return bumped_count in a register
  1165     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1166     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1168     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
  1169     movl(bumped_count,data);
  1170     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1171     addl(bumped_count, DataLayout::counter_increment);
  1172     sbbl(bumped_count, 0);
  1173     movl(data,bumped_count);    // Store back out
  1175     // The method data pointer needs to be updated to reflect the new target.
  1176     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1177     bind (profile_continue);
  1182 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1183   if (ProfileInterpreter) {
  1184     Label profile_continue;
  1186     // If no method data exists, go to profile_continue.
  1187     test_method_data_pointer(mdp, profile_continue);
  1189     // We are taking a branch.  Increment the not taken count.
  1190     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1192     // The method data pointer needs to be updated to correspond to the next bytecode
  1193     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1194     bind (profile_continue);
  1199 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1200   if (ProfileInterpreter) {
  1201     Label profile_continue;
  1203     // If no method data exists, go to profile_continue.
  1204     test_method_data_pointer(mdp, profile_continue);
  1206     // We are making a call.  Increment the count.
  1207     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1209     // The method data pointer needs to be updated to reflect the new target.
  1210     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1211     bind (profile_continue);
  1216 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1217   if (ProfileInterpreter) {
  1218     Label profile_continue;
  1220     // If no method data exists, go to profile_continue.
  1221     test_method_data_pointer(mdp, profile_continue);
  1223     // We are making a call.  Increment the count.
  1224     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1226     // The method data pointer needs to be updated to reflect the new target.
  1227     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1228     bind (profile_continue);
  1233 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
  1234                                                      Register reg2,
  1235                                                      bool receiver_can_be_null) {
  1236   if (ProfileInterpreter) {
  1237     Label profile_continue;
  1239     // If no method data exists, go to profile_continue.
  1240     test_method_data_pointer(mdp, profile_continue);
  1242     // We are making a call.  Increment the count.
  1243     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1245     Label skip_receiver_profile;
  1246     if (receiver_can_be_null) {
  1247       testptr(receiver, receiver);
  1248       jcc(Assembler::zero, skip_receiver_profile);
  1251     // Record the receiver type.
  1252     record_klass_in_profile(receiver, mdp, reg2);
  1253     bind(skip_receiver_profile);
  1255     // The method data pointer needs to be updated to reflect the new target.
  1256     update_mdp_by_constant(mdp,
  1257                            in_bytes(VirtualCallData::
  1258                                     virtual_call_data_size()));
  1259     bind(profile_continue);
  1264 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1265                                         Register receiver, Register mdp,
  1266                                         Register reg2,
  1267                                         int start_row, Label& done) {
  1268   if (TypeProfileWidth == 0)
  1269     return;
  1271   int last_row = VirtualCallData::row_limit() - 1;
  1272   assert(start_row <= last_row, "must be work left to do");
  1273   // Test this row for both the receiver and for null.
  1274   // Take any of three different outcomes:
  1275   //   1. found receiver => increment count and goto done
  1276   //   2. found null => keep looking for case 1, maybe allocate this cell
  1277   //   3. found something else => keep looking for cases 1 and 2
  1278   // Case 3 is handled by a recursive call.
  1279   for (int row = start_row; row <= last_row; row++) {
  1280     Label next_test;
  1281     bool test_for_null_also = (row == start_row);
  1283     // See if the receiver is receiver[n].
  1284     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1285     test_mdp_data_at(mdp, recvr_offset, receiver,
  1286                      (test_for_null_also ? reg2 : noreg),
  1287                      next_test);
  1288     // (Reg2 now contains the receiver from the CallData.)
  1290     // The receiver is receiver[n].  Increment count[n].
  1291     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1292     increment_mdp_data_at(mdp, count_offset);
  1293     jmp(done);
  1294     bind(next_test);
  1296     if (row == start_row) {
  1297       // Failed the equality check on receiver[n]...  Test for null.
  1298       testptr(reg2, reg2);
  1299       if (start_row == last_row) {
  1300         // The only thing left to do is handle the null case.
  1301         jcc(Assembler::notZero, done);
  1302         break;
  1304       // Since null is rare, make it be the branch-taken case.
  1305       Label found_null;
  1306       jcc(Assembler::zero, found_null);
  1308       // Put all the "Case 3" tests here.
  1309       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
  1311       // Found a null.  Keep searching for a matching receiver,
  1312       // but remember that this is an empty (unused) slot.
  1313       bind(found_null);
  1317   // In the fall-through case, we found no matching receiver, but we
  1318   // observed the receiver[start_row] is NULL.
  1320   // Fill in the receiver field and increment the count.
  1321   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1322   set_mdp_data_at(mdp, recvr_offset, receiver);
  1323   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1324   movptr(reg2, (int32_t)DataLayout::counter_increment);
  1325   set_mdp_data_at(mdp, count_offset, reg2);
  1326   jmp(done);
  1329 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1330                                                         Register mdp,
  1331                                                         Register reg2) {
  1332   assert(ProfileInterpreter, "must be profiling");
  1333   Label done;
  1335   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
  1337   bind (done);
  1340 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1341   if (ProfileInterpreter) {
  1342     Label profile_continue;
  1343     uint row;
  1345     // If no method data exists, go to profile_continue.
  1346     test_method_data_pointer(mdp, profile_continue);
  1348     // Update the total ret count.
  1349     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1351     for (row = 0; row < RetData::row_limit(); row++) {
  1352       Label next_test;
  1354       // See if return_bci is equal to bci[n]:
  1355       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1356                        noreg, next_test);
  1358       // return_bci is equal to bci[n].  Increment the count.
  1359       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1361       // The method data pointer needs to be updated to reflect the new target.
  1362       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1363       jmp(profile_continue);
  1364       bind(next_test);
  1367     update_mdp_for_ret(return_bci);
  1369     bind (profile_continue);
  1374 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1375   if (ProfileInterpreter) {
  1376     Label profile_continue;
  1378     // If no method data exists, go to profile_continue.
  1379     test_method_data_pointer(mdp, profile_continue);
  1381     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1383     // The method data pointer needs to be updated.
  1384     int mdp_delta = in_bytes(BitData::bit_data_size());
  1385     if (TypeProfileCasts) {
  1386       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1388     update_mdp_by_constant(mdp, mdp_delta);
  1390     bind (profile_continue);
  1395 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1396   if (ProfileInterpreter && TypeProfileCasts) {
  1397     Label profile_continue;
  1399     // If no method data exists, go to profile_continue.
  1400     test_method_data_pointer(mdp, profile_continue);
  1402     int count_offset = in_bytes(CounterData::count_offset());
  1403     // Back up the address, since we have already bumped the mdp.
  1404     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1406     // *Decrement* the counter.  We expect to see zero or small negatives.
  1407     increment_mdp_data_at(mdp, count_offset, true);
  1409     bind (profile_continue);
  1414 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1416   if (ProfileInterpreter) {
  1417     Label profile_continue;
  1419     // If no method data exists, go to profile_continue.
  1420     test_method_data_pointer(mdp, profile_continue);
  1422     // The method data pointer needs to be updated.
  1423     int mdp_delta = in_bytes(BitData::bit_data_size());
  1424     if (TypeProfileCasts) {
  1425       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1427       // Record the object type.
  1428       record_klass_in_profile(klass, mdp, reg2);
  1429       assert(reg2 == rdi, "we know how to fix this blown reg");
  1430       restore_locals();         // Restore EDI
  1432     update_mdp_by_constant(mdp, mdp_delta);
  1434     bind(profile_continue);
  1439 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1440   if (ProfileInterpreter) {
  1441     Label profile_continue;
  1443     // If no method data exists, go to profile_continue.
  1444     test_method_data_pointer(mdp, profile_continue);
  1446     // Update the default case count
  1447     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1449     // The method data pointer needs to be updated.
  1450     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1452     bind (profile_continue);
  1457 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1458   if (ProfileInterpreter) {
  1459     Label profile_continue;
  1461     // If no method data exists, go to profile_continue.
  1462     test_method_data_pointer(mdp, profile_continue);
  1464     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1465     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
  1466     // index is positive and so should have correct value if this code were
  1467     // used on 64bits
  1468     imulptr(index, reg2);
  1469     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1471     // Update the case count
  1472     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1474     // The method data pointer needs to be updated.
  1475     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1477     bind (profile_continue);
  1481 #endif // !CC_INTERP
  1485 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1486   if (state == atos) MacroAssembler::verify_oop(reg);
  1490 #ifndef CC_INTERP
  1491 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1492   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1495 #endif /* CC_INTERP */
  1498 void InterpreterMacroAssembler::notify_method_entry() {
  1499   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1500   // track stack depth.  If it is possible to enter interp_only_mode we add
  1501   // the code to check if the event should be sent.
  1502   if (JvmtiExport::can_post_interpreter_events()) {
  1503     Label L;
  1504     get_thread(rcx);
  1505     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1506     testl(rcx,rcx);
  1507     jcc(Assembler::zero, L);
  1508     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1509     bind(L);
  1513     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1514     get_thread(rcx);
  1515     get_method(rbx);
  1516     call_VM_leaf(
  1517       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1520   // RedefineClasses() tracing support for obsolete method entry
  1521   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1522     get_thread(rcx);
  1523     get_method(rbx);
  1524     call_VM_leaf(
  1525       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1526       rcx, rbx);
  1531 void InterpreterMacroAssembler::notify_method_exit(
  1532     TosState state, NotifyMethodExitMode mode) {
  1533   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1534   // track stack depth.  If it is possible to enter interp_only_mode we add
  1535   // the code to check if the event should be sent.
  1536   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1537     Label L;
  1538     // Note: frame::interpreter_frame_result has a dependency on how the
  1539     // method result is saved across the call to post_method_exit. If this
  1540     // is changed then the interpreter_frame_result implementation will
  1541     // need to be updated too.
  1543     // For c++ interpreter the result is always stored at a known location in the frame
  1544     // template interpreter will leave it on the top of the stack.
  1545     NOT_CC_INTERP(push(state);)
  1546     get_thread(rcx);
  1547     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1548     testl(rcx,rcx);
  1549     jcc(Assembler::zero, L);
  1550     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1551     bind(L);
  1552     NOT_CC_INTERP(pop(state);)
  1556     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1557     NOT_CC_INTERP(push(state));
  1558     get_thread(rbx);
  1559     get_method(rcx);
  1560     call_VM_leaf(
  1561       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1562       rbx, rcx);
  1563     NOT_CC_INTERP(pop(state));

mercurial