src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Wed, 12 Jun 2013 11:17:39 +0200

author
rbackman
date
Wed, 12 Jun 2013 11:17:39 +0200
changeset 5419
e619a2766bcc
parent 5353
b800986664f4
child 5496
ca0165daa6ec
child 5538
afbe18ae0905
permissions
-rw-r--r--

8016131: nsk/sysdict/vm/stress/chain tests crash the VM in 'entry_frame_is_first()'
Reviewed-by: jrose, kvn, mgronlun

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    51 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //-----------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62 #ifdef ASSERT
    63   {
    64     Label L;
    65     __ lea(rax, Address(rbp,
    66                         frame::interpreter_frame_monitor_block_top_offset *
    67                         wordSize));
    68     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    69                          // grows negative)
    70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    71     __ stop ("interpreter frame not set up");
    72     __ bind(L);
    73   }
    74 #endif // ASSERT
    75   // Restore bcp under the assumption that the current frame is still
    76   // interpreted
    77   __ restore_bcp();
    79   // expression stack must be empty before entering the VM if an
    80   // exception happened
    81   __ empty_expression_stack();
    82   // throw exception
    83   __ call_VM(noreg,
    84              CAST_FROM_FN_PTR(address,
    85                               InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    90         const char* name) {
    91   address entry = __ pc();
    92   // expression stack must be empty before entering the VM if an
    93   // exception happened
    94   __ empty_expression_stack();
    95   // setup parameters
    96   // ??? convention: expect aberrant index in register ebx
    97   __ lea(c_rarg1, ExternalAddress((address)name));
    98   __ call_VM(noreg,
    99              CAST_FROM_FN_PTR(address,
   100                               InterpreterRuntime::
   101                               throw_ArrayIndexOutOfBoundsException),
   102              c_rarg1, rbx);
   103   return entry;
   104 }
   106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   107   address entry = __ pc();
   109   // object is at TOS
   110   __ pop(c_rarg1);
   112   // expression stack must be empty before entering the VM if an
   113   // exception happened
   114   __ empty_expression_stack();
   116   __ call_VM(noreg,
   117              CAST_FROM_FN_PTR(address,
   118                               InterpreterRuntime::
   119                               throw_ClassCastException),
   120              c_rarg1);
   121   return entry;
   122 }
   124 address TemplateInterpreterGenerator::generate_exception_handler_common(
   125         const char* name, const char* message, bool pass_oop) {
   126   assert(!pass_oop || message == NULL, "either oop or message but not both");
   127   address entry = __ pc();
   128   if (pass_oop) {
   129     // object is at TOS
   130     __ pop(c_rarg2);
   131   }
   132   // expression stack must be empty before entering the VM if an
   133   // exception happened
   134   __ empty_expression_stack();
   135   // setup parameters
   136   __ lea(c_rarg1, ExternalAddress((address)name));
   137   if (pass_oop) {
   138     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   139                                      InterpreterRuntime::
   140                                      create_klass_exception),
   141                c_rarg1, c_rarg2);
   142   } else {
   143     // kind of lame ExternalAddress can't take NULL because
   144     // external_word_Relocation will assert.
   145     if (message != NULL) {
   146       __ lea(c_rarg2, ExternalAddress((address)message));
   147     } else {
   148       __ movptr(c_rarg2, NULL_WORD);
   149     }
   150     __ call_VM(rax,
   151                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   152                c_rarg1, c_rarg2);
   153   }
   154   // throw exception
   155   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   156   return entry;
   157 }
   160 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   161   address entry = __ pc();
   162   // NULL last_sp until next java call
   163   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   164   __ dispatch_next(state);
   165   return entry;
   166 }
   169 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   170   address entry = __ pc();
   172   // Restore stack bottom in case i2c adjusted stack
   173   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   174   // and NULL it as marker that esp is now tos until next java call
   175   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   177   __ restore_bcp();
   178   __ restore_locals();
   180   Label L_got_cache, L_giant_index;
   181   if (EnableInvokeDynamic) {
   182     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
   183     __ jcc(Assembler::equal, L_giant_index);
   184   }
   185   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   186   __ bind(L_got_cache);
   187   __ movl(rbx, Address(rbx, rcx,
   188                        Address::times_ptr,
   189                        in_bytes(ConstantPoolCache::base_offset()) +
   190                        3 * wordSize));
   191   __ andl(rbx, 0xFF);
   192   __ lea(rsp, Address(rsp, rbx, Address::times_8));
   193   __ dispatch_next(state, step);
   195   // out of the main line of code...
   196   if (EnableInvokeDynamic) {
   197     __ bind(L_giant_index);
   198     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   199     __ jmp(L_got_cache);
   200   }
   202   return entry;
   203 }
   206 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   207                                                                int step) {
   208   address entry = __ pc();
   209   // NULL last_sp until next java call
   210   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   211   __ restore_bcp();
   212   __ restore_locals();
   213   // handle exceptions
   214   {
   215     Label L;
   216     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   217     __ jcc(Assembler::zero, L);
   218     __ call_VM(noreg,
   219                CAST_FROM_FN_PTR(address,
   220                                 InterpreterRuntime::throw_pending_exception));
   221     __ should_not_reach_here();
   222     __ bind(L);
   223   }
   224   __ dispatch_next(state, step);
   225   return entry;
   226 }
   228 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   229   int i = 0;
   230   switch (type) {
   231     case T_BOOLEAN: i = 0; break;
   232     case T_CHAR   : i = 1; break;
   233     case T_BYTE   : i = 2; break;
   234     case T_SHORT  : i = 3; break;
   235     case T_INT    : i = 4; break;
   236     case T_LONG   : i = 5; break;
   237     case T_VOID   : i = 6; break;
   238     case T_FLOAT  : i = 7; break;
   239     case T_DOUBLE : i = 8; break;
   240     case T_OBJECT : i = 9; break;
   241     case T_ARRAY  : i = 9; break;
   242     default       : ShouldNotReachHere();
   243   }
   244   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   245          "index out of bounds");
   246   return i;
   247 }
   250 address TemplateInterpreterGenerator::generate_result_handler_for(
   251         BasicType type) {
   252   address entry = __ pc();
   253   switch (type) {
   254   case T_BOOLEAN: __ c2bool(rax);            break;
   255   case T_CHAR   : __ movzwl(rax, rax);       break;
   256   case T_BYTE   : __ sign_extend_byte(rax);  break;
   257   case T_SHORT  : __ sign_extend_short(rax); break;
   258   case T_INT    : /* nothing to do */        break;
   259   case T_LONG   : /* nothing to do */        break;
   260   case T_VOID   : /* nothing to do */        break;
   261   case T_FLOAT  : /* nothing to do */        break;
   262   case T_DOUBLE : /* nothing to do */        break;
   263   case T_OBJECT :
   264     // retrieve result from frame
   265     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   266     // and verify it
   267     __ verify_oop(rax);
   268     break;
   269   default       : ShouldNotReachHere();
   270   }
   271   __ ret(0);                                   // return from result handler
   272   return entry;
   273 }
   275 address TemplateInterpreterGenerator::generate_safept_entry_for(
   276         TosState state,
   277         address runtime_entry) {
   278   address entry = __ pc();
   279   __ push(state);
   280   __ call_VM(noreg, runtime_entry);
   281   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   282   return entry;
   283 }
   287 // Helpers for commoning out cases in the various type of method entries.
   288 //
   291 // increment invocation count & check for overflow
   292 //
   293 // Note: checking for negative value instead of overflow
   294 //       so we have a 'sticky' overflow test
   295 //
   296 // rbx: method
   297 // ecx: invocation counter
   298 //
   299 void InterpreterGenerator::generate_counter_incr(
   300         Label* overflow,
   301         Label* profile_method,
   302         Label* profile_method_continue) {
   303   Label done;
   304   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
   305   if (TieredCompilation) {
   306     int increment = InvocationCounter::count_increment;
   307     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   308     Label no_mdo;
   309     if (ProfileInterpreter) {
   310       // Are we profiling?
   311       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   312       __ testptr(rax, rax);
   313       __ jccb(Assembler::zero, no_mdo);
   314       // Increment counter in the MDO
   315       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   316                                                 in_bytes(InvocationCounter::counter_offset()));
   317       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   318       __ jmp(done);
   319     }
   320     __ bind(no_mdo);
   321     // Increment counter in MethodCounters
   322     const Address invocation_counter(rax,
   323                   MethodCounters::invocation_counter_offset() +
   324                   InvocationCounter::counter_offset());
   325     __ get_method_counters(rbx, rax, done);
   326     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
   327                                false, Assembler::zero, overflow);
   328     __ bind(done);
   329   } else {
   330     const Address backedge_counter(rax,
   331                   MethodCounters::backedge_counter_offset() +
   332                   InvocationCounter::counter_offset());
   333     const Address invocation_counter(rax,
   334                   MethodCounters::invocation_counter_offset() +
   335                   InvocationCounter::counter_offset());
   337     __ get_method_counters(rbx, rax, done);
   339     if (ProfileInterpreter) {
   340       __ incrementl(Address(rax,
   341               MethodCounters::interpreter_invocation_counter_offset()));
   342     }
   343     // Update standard invocation counters
   344     __ movl(rcx, invocation_counter);
   345     __ incrementl(rcx, InvocationCounter::count_increment);
   346     __ movl(invocation_counter, rcx); // save invocation count
   348     __ movl(rax, backedge_counter);   // load backedge counter
   349     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
   351     __ addl(rcx, rax);                // add both counters
   353     // profile_method is non-null only for interpreted method so
   354     // profile_method != NULL == !native_call
   356     if (ProfileInterpreter && profile_method != NULL) {
   357       // Test to see if we should create a method data oop
   358       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   359       __ jcc(Assembler::less, *profile_method_continue);
   361       // if no method data exists, go to profile_method
   362       __ test_method_data_pointer(rax, *profile_method);
   363     }
   365     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   366     __ jcc(Assembler::aboveEqual, *overflow);
   367     __ bind(done);
   368   }
   369 }
   371 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   373   // Asm interpreter on entry
   374   // r14 - locals
   375   // r13 - bcp
   376   // rbx - method
   377   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   378   // rbp - interpreter frame
   380   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   381   // Everything as it was on entry
   382   // rdx is not restored. Doesn't appear to really be set.
   384   // InterpreterRuntime::frequency_counter_overflow takes two
   385   // arguments, the first (thread) is passed by call_VM, the second
   386   // indicates if the counter overflow occurs at a backwards branch
   387   // (NULL bcp).  We pass zero for it.  The call returns the address
   388   // of the verified entry point for the method or NULL if the
   389   // compilation did not complete (either went background or bailed
   390   // out).
   391   __ movl(c_rarg1, 0);
   392   __ call_VM(noreg,
   393              CAST_FROM_FN_PTR(address,
   394                               InterpreterRuntime::frequency_counter_overflow),
   395              c_rarg1);
   397   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   398   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   399   // and jump to the interpreted entry.
   400   __ jmp(*do_continue, relocInfo::none);
   401 }
   403 // See if we've got enough room on the stack for locals plus overhead.
   404 // The expression stack grows down incrementally, so the normal guard
   405 // page mechanism will work for that.
   406 //
   407 // NOTE: Since the additional locals are also always pushed (wasn't
   408 // obvious in generate_method_entry) so the guard should work for them
   409 // too.
   410 //
   411 // Args:
   412 //      rdx: number of additional locals this frame needs (what we must check)
   413 //      rbx: Method*
   414 //
   415 // Kills:
   416 //      rax
   417 void InterpreterGenerator::generate_stack_overflow_check(void) {
   419   // monitor entry size: see picture of stack set
   420   // (generate_method_entry) and frame_amd64.hpp
   421   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   423   // total overhead size: entry_size + (saved rbp through expr stack
   424   // bottom).  be sure to change this if you add/subtract anything
   425   // to/from the overhead area
   426   const int overhead_size =
   427     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   429   const int page_size = os::vm_page_size();
   431   Label after_frame_check;
   433   // see if the frame is greater than one page in size. If so,
   434   // then we need to verify there is enough stack space remaining
   435   // for the additional locals.
   436   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
   437   __ jcc(Assembler::belowEqual, after_frame_check);
   439   // compute rsp as if this were going to be the last frame on
   440   // the stack before the red zone
   442   const Address stack_base(r15_thread, Thread::stack_base_offset());
   443   const Address stack_size(r15_thread, Thread::stack_size_offset());
   445   // locals + overhead, in bytes
   446   __ mov(rax, rdx);
   447   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
   448   __ addptr(rax, overhead_size);
   450 #ifdef ASSERT
   451   Label stack_base_okay, stack_size_okay;
   452   // verify that thread stack base is non-zero
   453   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   454   __ jcc(Assembler::notEqual, stack_base_okay);
   455   __ stop("stack base is zero");
   456   __ bind(stack_base_okay);
   457   // verify that thread stack size is non-zero
   458   __ cmpptr(stack_size, 0);
   459   __ jcc(Assembler::notEqual, stack_size_okay);
   460   __ stop("stack size is zero");
   461   __ bind(stack_size_okay);
   462 #endif
   464   // Add stack base to locals and subtract stack size
   465   __ addptr(rax, stack_base);
   466   __ subptr(rax, stack_size);
   468   // Use the maximum number of pages we might bang.
   469   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   470                                                                               (StackRedPages+StackYellowPages);
   472   // add in the red and yellow zone sizes
   473   __ addptr(rax, max_pages * page_size);
   475   // check against the current stack bottom
   476   __ cmpptr(rsp, rax);
   477   __ jcc(Assembler::above, after_frame_check);
   479   // Restore sender's sp as SP. This is necessary if the sender's
   480   // frame is an extended compiled frame (see gen_c2i_adapter())
   481   // and safer anyway in case of JSR292 adaptations.
   483   __ pop(rax); // return address must be moved if SP is changed
   484   __ mov(rsp, r13);
   485   __ push(rax);
   487   // Note: the restored frame is not necessarily interpreted.
   488   // Use the shared runtime version of the StackOverflowError.
   489   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   490   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   492   // all done with frame size check
   493   __ bind(after_frame_check);
   494 }
   496 // Allocate monitor and lock method (asm interpreter)
   497 //
   498 // Args:
   499 //      rbx: Method*
   500 //      r14: locals
   501 //
   502 // Kills:
   503 //      rax
   504 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   505 //      rscratch1, rscratch2 (scratch regs)
   506 void InterpreterGenerator::lock_method(void) {
   507   // synchronize method
   508   const Address access_flags(rbx, Method::access_flags_offset());
   509   const Address monitor_block_top(
   510         rbp,
   511         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   512   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   514 #ifdef ASSERT
   515   {
   516     Label L;
   517     __ movl(rax, access_flags);
   518     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   519     __ jcc(Assembler::notZero, L);
   520     __ stop("method doesn't need synchronization");
   521     __ bind(L);
   522   }
   523 #endif // ASSERT
   525   // get synchronization object
   526   {
   527     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   528     Label done;
   529     __ movl(rax, access_flags);
   530     __ testl(rax, JVM_ACC_STATIC);
   531     // get receiver (assume this is frequent case)
   532     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   533     __ jcc(Assembler::zero, done);
   534     __ movptr(rax, Address(rbx, Method::const_offset()));
   535     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   536     __ movptr(rax, Address(rax,
   537                            ConstantPool::pool_holder_offset_in_bytes()));
   538     __ movptr(rax, Address(rax, mirror_offset));
   540 #ifdef ASSERT
   541     {
   542       Label L;
   543       __ testptr(rax, rax);
   544       __ jcc(Assembler::notZero, L);
   545       __ stop("synchronization object is NULL");
   546       __ bind(L);
   547     }
   548 #endif // ASSERT
   550     __ bind(done);
   551   }
   553   // add space for monitor & lock
   554   __ subptr(rsp, entry_size); // add space for a monitor entry
   555   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   556   // store object
   557   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   558   __ movptr(c_rarg1, rsp); // object address
   559   __ lock_object(c_rarg1);
   560 }
   562 // Generate a fixed interpreter frame. This is identical setup for
   563 // interpreted methods and for native methods hence the shared code.
   564 //
   565 // Args:
   566 //      rax: return address
   567 //      rbx: Method*
   568 //      r14: pointer to locals
   569 //      r13: sender sp
   570 //      rdx: cp cache
   571 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   572   // initialize fixed part of activation frame
   573   __ push(rax);        // save return address
   574   __ enter();          // save old & set new rbp
   575   __ push(r13);        // set sender sp
   576   __ push((int)NULL_WORD); // leave last_sp as null
   577   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
   578   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
   579   __ push(rbx);        // save Method*
   580   if (ProfileInterpreter) {
   581     Label method_data_continue;
   582     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   583     __ testptr(rdx, rdx);
   584     __ jcc(Assembler::zero, method_data_continue);
   585     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   586     __ bind(method_data_continue);
   587     __ push(rdx);      // set the mdp (method data pointer)
   588   } else {
   589     __ push(0);
   590   }
   592   __ movptr(rdx, Address(rbx, Method::const_offset()));
   593   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   594   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   595   __ push(rdx); // set constant pool cache
   596   __ push(r14); // set locals pointer
   597   if (native_call) {
   598     __ push(0); // no bcp
   599   } else {
   600     __ push(r13); // set bcp
   601   }
   602   __ push(0); // reserve word for pointer to expression stack bottom
   603   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   604 }
   606 // End of helpers
   608 // Various method entries
   609 //------------------------------------------------------------------------------------------------------------------------
   610 //
   611 //
   613 // Call an accessor method (assuming it is resolved, otherwise drop
   614 // into vanilla (slow path) entry
   615 address InterpreterGenerator::generate_accessor_entry(void) {
   616   // rbx: Method*
   618   // r13: senderSP must preserver for slow path, set SP to it on fast path
   620   address entry_point = __ pc();
   621   Label xreturn_path;
   623   // do fastpath for resolved accessor methods
   624   if (UseFastAccessorMethods) {
   625     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   626     //       thereof; parameter size = 1
   627     // Note: We can only use this code if the getfield has been resolved
   628     //       and if we don't have a null-pointer exception => check for
   629     //       these conditions first and use slow path if necessary.
   630     Label slow_path;
   631     // If we need a safepoint check, generate full interpreter entry.
   632     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   633              SafepointSynchronize::_not_synchronized);
   635     __ jcc(Assembler::notEqual, slow_path);
   636     // rbx: method
   637     __ movptr(rax, Address(rsp, wordSize));
   639     // check if local 0 != NULL and read field
   640     __ testptr(rax, rax);
   641     __ jcc(Assembler::zero, slow_path);
   643     // read first instruction word and extract bytecode @ 1 and index @ 2
   644     __ movptr(rdx, Address(rbx, Method::const_offset()));
   645     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   646     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   647     // Shift codes right to get the index on the right.
   648     // The bytecode fetched looks like <index><0xb4><0x2a>
   649     __ shrl(rdx, 2 * BitsPerByte);
   650     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   651     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   653     // rax: local 0
   654     // rbx: method
   655     // rdx: constant pool cache index
   656     // rdi: constant pool cache
   658     // check if getfield has been resolved and read constant pool cache entry
   659     // check the validity of the cache entry by testing whether _indices field
   660     // contains Bytecode::_getfield in b1 byte.
   661     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   662            "adjust shift below");
   663     __ movl(rcx,
   664             Address(rdi,
   665                     rdx,
   666                     Address::times_8,
   667                     ConstantPoolCache::base_offset() +
   668                     ConstantPoolCacheEntry::indices_offset()));
   669     __ shrl(rcx, 2 * BitsPerByte);
   670     __ andl(rcx, 0xFF);
   671     __ cmpl(rcx, Bytecodes::_getfield);
   672     __ jcc(Assembler::notEqual, slow_path);
   674     // Note: constant pool entry is not valid before bytecode is resolved
   675     __ movptr(rcx,
   676               Address(rdi,
   677                       rdx,
   678                       Address::times_8,
   679                       ConstantPoolCache::base_offset() +
   680                       ConstantPoolCacheEntry::f2_offset()));
   681     // edx: flags
   682     __ movl(rdx,
   683             Address(rdi,
   684                     rdx,
   685                     Address::times_8,
   686                     ConstantPoolCache::base_offset() +
   687                     ConstantPoolCacheEntry::flags_offset()));
   689     Label notObj, notInt, notByte, notShort;
   690     const Address field_address(rax, rcx, Address::times_1);
   692     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   693     // because they are different sizes.
   694     // Use the type from the constant pool cache
   695     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   696     // Make sure we don't need to mask edx after the above shift
   697     ConstantPoolCacheEntry::verify_tos_state_shift();
   699     __ cmpl(rdx, atos);
   700     __ jcc(Assembler::notEqual, notObj);
   701     // atos
   702     __ load_heap_oop(rax, field_address);
   703     __ jmp(xreturn_path);
   705     __ bind(notObj);
   706     __ cmpl(rdx, itos);
   707     __ jcc(Assembler::notEqual, notInt);
   708     // itos
   709     __ movl(rax, field_address);
   710     __ jmp(xreturn_path);
   712     __ bind(notInt);
   713     __ cmpl(rdx, btos);
   714     __ jcc(Assembler::notEqual, notByte);
   715     // btos
   716     __ load_signed_byte(rax, field_address);
   717     __ jmp(xreturn_path);
   719     __ bind(notByte);
   720     __ cmpl(rdx, stos);
   721     __ jcc(Assembler::notEqual, notShort);
   722     // stos
   723     __ load_signed_short(rax, field_address);
   724     __ jmp(xreturn_path);
   726     __ bind(notShort);
   727 #ifdef ASSERT
   728     Label okay;
   729     __ cmpl(rdx, ctos);
   730     __ jcc(Assembler::equal, okay);
   731     __ stop("what type is this?");
   732     __ bind(okay);
   733 #endif
   734     // ctos
   735     __ load_unsigned_short(rax, field_address);
   737     __ bind(xreturn_path);
   739     // _ireturn/_areturn
   740     __ pop(rdi);
   741     __ mov(rsp, r13);
   742     __ jmp(rdi);
   743     __ ret(0);
   745     // generate a vanilla interpreter entry as the slow path
   746     __ bind(slow_path);
   747     (void) generate_normal_entry(false);
   748   } else {
   749     (void) generate_normal_entry(false);
   750   }
   752   return entry_point;
   753 }
   755 // Method entry for java.lang.ref.Reference.get.
   756 address InterpreterGenerator::generate_Reference_get_entry(void) {
   757 #if INCLUDE_ALL_GCS
   758   // Code: _aload_0, _getfield, _areturn
   759   // parameter size = 1
   760   //
   761   // The code that gets generated by this routine is split into 2 parts:
   762   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   763   //    2. The slow path - which is an expansion of the regular method entry.
   764   //
   765   // Notes:-
   766   // * In the G1 code we do not check whether we need to block for
   767   //   a safepoint. If G1 is enabled then we must execute the specialized
   768   //   code for Reference.get (except when the Reference object is null)
   769   //   so that we can log the value in the referent field with an SATB
   770   //   update buffer.
   771   //   If the code for the getfield template is modified so that the
   772   //   G1 pre-barrier code is executed when the current method is
   773   //   Reference.get() then going through the normal method entry
   774   //   will be fine.
   775   // * The G1 code can, however, check the receiver object (the instance
   776   //   of java.lang.Reference) and jump to the slow path if null. If the
   777   //   Reference object is null then we obviously cannot fetch the referent
   778   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   779   //   regular method entry code to generate the NPE.
   780   //
   781   // This code is based on generate_accessor_enty.
   782   //
   783   // rbx: Method*
   785   // r13: senderSP must preserve for slow path, set SP to it on fast path
   787   address entry = __ pc();
   789   const int referent_offset = java_lang_ref_Reference::referent_offset;
   790   guarantee(referent_offset > 0, "referent offset not initialized");
   792   if (UseG1GC) {
   793     Label slow_path;
   794     // rbx: method
   796     // Check if local 0 != NULL
   797     // If the receiver is null then it is OK to jump to the slow path.
   798     __ movptr(rax, Address(rsp, wordSize));
   800     __ testptr(rax, rax);
   801     __ jcc(Assembler::zero, slow_path);
   803     // rax: local 0
   804     // rbx: method (but can be used as scratch now)
   805     // rdx: scratch
   806     // rdi: scratch
   808     // Generate the G1 pre-barrier code to log the value of
   809     // the referent field in an SATB buffer.
   811     // Load the value of the referent field.
   812     const Address field_address(rax, referent_offset);
   813     __ load_heap_oop(rax, field_address);
   815     // Generate the G1 pre-barrier code to log the value of
   816     // the referent field in an SATB buffer.
   817     __ g1_write_barrier_pre(noreg /* obj */,
   818                             rax /* pre_val */,
   819                             r15_thread /* thread */,
   820                             rbx /* tmp */,
   821                             true /* tosca_live */,
   822                             true /* expand_call */);
   824     // _areturn
   825     __ pop(rdi);                // get return address
   826     __ mov(rsp, r13);           // set sp to sender sp
   827     __ jmp(rdi);
   828     __ ret(0);
   830     // generate a vanilla interpreter entry as the slow path
   831     __ bind(slow_path);
   832     (void) generate_normal_entry(false);
   834     return entry;
   835   }
   836 #endif // INCLUDE_ALL_GCS
   838   // If G1 is not enabled then attempt to go through the accessor entry point
   839   // Reference.get is an accessor
   840   return generate_accessor_entry();
   841 }
   843 /**
   844  * Method entry for static native methods:
   845  *   int java.util.zip.CRC32.update(int crc, int b)
   846  */
   847 address InterpreterGenerator::generate_CRC32_update_entry() {
   848   if (UseCRC32Intrinsics) {
   849     address entry = __ pc();
   851     // rbx,: Method*
   852     // rsi: senderSP must preserved for slow path, set SP to it on fast path
   853     // rdx: scratch
   854     // rdi: scratch
   856     Label slow_path;
   857     // If we need a safepoint check, generate full interpreter entry.
   858     ExternalAddress state(SafepointSynchronize::address_of_state());
   859     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   860              SafepointSynchronize::_not_synchronized);
   861     __ jcc(Assembler::notEqual, slow_path);
   863     // We don't generate local frame and don't align stack because
   864     // we call stub code and there is no safepoint on this path.
   866     // Load parameters
   867     const Register crc = rax;  // crc
   868     const Register val = rdx;  // source java byte value
   869     const Register tbl = rdi;  // scratch
   871     // Arguments are reversed on java expression stack
   872     __ movl(val, Address(rsp,   wordSize)); // byte value
   873     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
   875     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
   876     __ notl(crc); // ~crc
   877     __ update_byte_crc32(crc, val, tbl);
   878     __ notl(crc); // ~crc
   879     // result in rax
   881     // _areturn
   882     __ pop(rdi);                // get return address
   883     __ mov(rsp, rsi);           // set sp to sender sp
   884     __ jmp(rdi);
   886     // generate a vanilla native entry as the slow path
   887     __ bind(slow_path);
   889     (void) generate_native_entry(false);
   891     return entry;
   892   }
   893   return generate_native_entry(false);
   894 }
   896 /**
   897  * Method entry for static native methods:
   898  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
   899  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
   900  */
   901 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
   902   if (UseCRC32Intrinsics) {
   903     address entry = __ pc();
   905     // rbx,: Method*
   906     // r13: senderSP must preserved for slow path, set SP to it on fast path
   908     Label slow_path;
   909     // If we need a safepoint check, generate full interpreter entry.
   910     ExternalAddress state(SafepointSynchronize::address_of_state());
   911     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   912              SafepointSynchronize::_not_synchronized);
   913     __ jcc(Assembler::notEqual, slow_path);
   915     // We don't generate local frame and don't align stack because
   916     // we call stub code and there is no safepoint on this path.
   918     // Load parameters
   919     const Register crc = c_rarg0;  // crc
   920     const Register buf = c_rarg1;  // source java byte array address
   921     const Register len = c_rarg2;  // length
   923     // Arguments are reversed on java expression stack
   924     __ movl(len,   Address(rsp,   wordSize)); // Length
   925     // Calculate address of start element
   926     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
   927       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
   928       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   929       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
   930     } else {
   931       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
   932       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
   933       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   934       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
   935     }
   937     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
   938     // result in rax
   940     // _areturn
   941     __ pop(rdi);                // get return address
   942     __ mov(rsp, r13);           // set sp to sender sp
   943     __ jmp(rdi);
   945     // generate a vanilla native entry as the slow path
   946     __ bind(slow_path);
   948     (void) generate_native_entry(false);
   950     return entry;
   951   }
   952   return generate_native_entry(false);
   953 }
   955 // Interpreter stub for calling a native method. (asm interpreter)
   956 // This sets up a somewhat different looking stack for calling the
   957 // native method than the typical interpreter frame setup.
   958 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   959   // determine code generation flags
   960   bool inc_counter  = UseCompiler || CountCompiledCalls;
   962   // rbx: Method*
   963   // r13: sender sp
   965   address entry_point = __ pc();
   967   const Address constMethod       (rbx, Method::const_offset());
   968   const Address access_flags      (rbx, Method::access_flags_offset());
   969   const Address size_of_parameters(rcx, ConstMethod::
   970                                         size_of_parameters_offset());
   973   // get parameter size (always needed)
   974   __ movptr(rcx, constMethod);
   975   __ load_unsigned_short(rcx, size_of_parameters);
   977   // native calls don't need the stack size check since they have no
   978   // expression stack and the arguments are already on the stack and
   979   // we only add a handful of words to the stack
   981   // rbx: Method*
   982   // rcx: size of parameters
   983   // r13: sender sp
   984   __ pop(rax);                                       // get return address
   986   // for natives the size of locals is zero
   988   // compute beginning of parameters (r14)
   989   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
   991   // add 2 zero-initialized slots for native calls
   992   // initialize result_handler slot
   993   __ push((int) NULL_WORD);
   994   // slot for oop temp
   995   // (static native method holder mirror/jni oop result)
   996   __ push((int) NULL_WORD);
   998   // initialize fixed part of activation frame
   999   generate_fixed_frame(true);
  1001   // make sure method is native & not abstract
  1002 #ifdef ASSERT
  1003   __ movl(rax, access_flags);
  1005     Label L;
  1006     __ testl(rax, JVM_ACC_NATIVE);
  1007     __ jcc(Assembler::notZero, L);
  1008     __ stop("tried to execute non-native method as native");
  1009     __ bind(L);
  1012     Label L;
  1013     __ testl(rax, JVM_ACC_ABSTRACT);
  1014     __ jcc(Assembler::zero, L);
  1015     __ stop("tried to execute abstract method in interpreter");
  1016     __ bind(L);
  1018 #endif
  1020   // Since at this point in the method invocation the exception handler
  1021   // would try to exit the monitor of synchronized methods which hasn't
  1022   // been entered yet, we set the thread local variable
  1023   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1024   // check this flag.
  1026   const Address do_not_unlock_if_synchronized(r15_thread,
  1027         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1028   __ movbool(do_not_unlock_if_synchronized, true);
  1030   // increment invocation count & check for overflow
  1031   Label invocation_counter_overflow;
  1032   if (inc_counter) {
  1033     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1036   Label continue_after_compile;
  1037   __ bind(continue_after_compile);
  1039   bang_stack_shadow_pages(true);
  1041   // reset the _do_not_unlock_if_synchronized flag
  1042   __ movbool(do_not_unlock_if_synchronized, false);
  1044   // check for synchronized methods
  1045   // Must happen AFTER invocation_counter check and stack overflow check,
  1046   // so method is not locked if overflows.
  1047   if (synchronized) {
  1048     lock_method();
  1049   } else {
  1050     // no synchronization necessary
  1051 #ifdef ASSERT
  1053       Label L;
  1054       __ movl(rax, access_flags);
  1055       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1056       __ jcc(Assembler::zero, L);
  1057       __ stop("method needs synchronization");
  1058       __ bind(L);
  1060 #endif
  1063   // start execution
  1064 #ifdef ASSERT
  1066     Label L;
  1067     const Address monitor_block_top(rbp,
  1068                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1069     __ movptr(rax, monitor_block_top);
  1070     __ cmpptr(rax, rsp);
  1071     __ jcc(Assembler::equal, L);
  1072     __ stop("broken stack frame setup in interpreter");
  1073     __ bind(L);
  1075 #endif
  1077   // jvmti support
  1078   __ notify_method_entry();
  1080   // work registers
  1081   const Register method = rbx;
  1082   const Register t      = r11;
  1084   // allocate space for parameters
  1085   __ get_method(method);
  1086   __ movptr(t, Address(method, Method::const_offset()));
  1087   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
  1088   __ shll(t, Interpreter::logStackElementSize);
  1090   __ subptr(rsp, t);
  1091   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1092   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
  1094   // get signature handler
  1096     Label L;
  1097     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1098     __ testptr(t, t);
  1099     __ jcc(Assembler::notZero, L);
  1100     __ call_VM(noreg,
  1101                CAST_FROM_FN_PTR(address,
  1102                                 InterpreterRuntime::prepare_native_call),
  1103                method);
  1104     __ get_method(method);
  1105     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1106     __ bind(L);
  1109   // call signature handler
  1110   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
  1111          "adjust this code");
  1112   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
  1113          "adjust this code");
  1114   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
  1115           "adjust this code");
  1117   // The generated handlers do not touch RBX (the method oop).
  1118   // However, large signatures cannot be cached and are generated
  1119   // each time here.  The slow-path generator can do a GC on return,
  1120   // so we must reload it after the call.
  1121   __ call(t);
  1122   __ get_method(method);        // slow path can do a GC, reload RBX
  1125   // result handler is in rax
  1126   // set result handler
  1127   __ movptr(Address(rbp,
  1128                     (frame::interpreter_frame_result_handler_offset) * wordSize),
  1129             rax);
  1131   // pass mirror handle if static call
  1133     Label L;
  1134     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1135     __ movl(t, Address(method, Method::access_flags_offset()));
  1136     __ testl(t, JVM_ACC_STATIC);
  1137     __ jcc(Assembler::zero, L);
  1138     // get mirror
  1139     __ movptr(t, Address(method, Method::const_offset()));
  1140     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1141     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1142     __ movptr(t, Address(t, mirror_offset));
  1143     // copy mirror into activation frame
  1144     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
  1145             t);
  1146     // pass handle to mirror
  1147     __ lea(c_rarg1,
  1148            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1149     __ bind(L);
  1152   // get native function entry point
  1154     Label L;
  1155     __ movptr(rax, Address(method, Method::native_function_offset()));
  1156     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1157     __ movptr(rscratch2, unsatisfied.addr());
  1158     __ cmpptr(rax, rscratch2);
  1159     __ jcc(Assembler::notEqual, L);
  1160     __ call_VM(noreg,
  1161                CAST_FROM_FN_PTR(address,
  1162                                 InterpreterRuntime::prepare_native_call),
  1163                method);
  1164     __ get_method(method);
  1165     __ movptr(rax, Address(method, Method::native_function_offset()));
  1166     __ bind(L);
  1169   // pass JNIEnv
  1170   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
  1172   // It is enough that the pc() points into the right code
  1173   // segment. It does not have to be the correct return pc.
  1174   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
  1176   // change thread state
  1177 #ifdef ASSERT
  1179     Label L;
  1180     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
  1181     __ cmpl(t, _thread_in_Java);
  1182     __ jcc(Assembler::equal, L);
  1183     __ stop("Wrong thread state in native stub");
  1184     __ bind(L);
  1186 #endif
  1188   // Change state to native
  1190   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1191           _thread_in_native);
  1193   // Call the native method.
  1194   __ call(rax);
  1195   // result potentially in rax or xmm0
  1197   // Verify or restore cpu control state after JNI call
  1198   __ restore_cpu_control_state_after_jni();
  1200   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  1201   // in order to extract the result of a method call. If the order of these
  1202   // pushes change or anything else is added to the stack then the code in
  1203   // interpreter_frame_result must also change.
  1205   __ push(dtos);
  1206   __ push(ltos);
  1208   // change thread state
  1209   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1210           _thread_in_native_trans);
  1212   if (os::is_MP()) {
  1213     if (UseMembar) {
  1214       // Force this write out before the read below
  1215       __ membar(Assembler::Membar_mask_bits(
  1216            Assembler::LoadLoad | Assembler::LoadStore |
  1217            Assembler::StoreLoad | Assembler::StoreStore));
  1218     } else {
  1219       // Write serialization page so VM thread can do a pseudo remote membar.
  1220       // We use the current thread pointer to calculate a thread specific
  1221       // offset to write to within the page. This minimizes bus traffic
  1222       // due to cache line collision.
  1223       __ serialize_memory(r15_thread, rscratch2);
  1227   // check for safepoint operation in progress and/or pending suspend requests
  1229     Label Continue;
  1230     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1231              SafepointSynchronize::_not_synchronized);
  1233     Label L;
  1234     __ jcc(Assembler::notEqual, L);
  1235     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1236     __ jcc(Assembler::equal, Continue);
  1237     __ bind(L);
  1239     // Don't use call_VM as it will see a possible pending exception
  1240     // and forward it and never return here preventing us from
  1241     // clearing _last_native_pc down below.  Also can't use
  1242     // call_VM_leaf either as it will check to see if r13 & r14 are
  1243     // preserved and correspond to the bcp/locals pointers. So we do a
  1244     // runtime call by hand.
  1245     //
  1246     __ mov(c_rarg0, r15_thread);
  1247     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1248     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1249     __ andptr(rsp, -16); // align stack as required by ABI
  1250     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1251     __ mov(rsp, r12); // restore sp
  1252     __ reinit_heapbase();
  1253     __ bind(Continue);
  1256   // change thread state
  1257   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1259   // reset_last_Java_frame
  1260   __ reset_last_Java_frame(true, true);
  1262   // reset handle block
  1263   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1264   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1266   // If result is an oop unbox and store it in frame where gc will see it
  1267   // and result handler will pick it up
  1270     Label no_oop, store_result;
  1271     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1272     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1273     __ jcc(Assembler::notEqual, no_oop);
  1274     // retrieve result
  1275     __ pop(ltos);
  1276     __ testptr(rax, rax);
  1277     __ jcc(Assembler::zero, store_result);
  1278     __ movptr(rax, Address(rax, 0));
  1279     __ bind(store_result);
  1280     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1281     // keep stack depth as expected by pushing oop which will eventually be discarde
  1282     __ push(ltos);
  1283     __ bind(no_oop);
  1288     Label no_reguard;
  1289     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1290             JavaThread::stack_guard_yellow_disabled);
  1291     __ jcc(Assembler::notEqual, no_reguard);
  1293     __ pusha(); // XXX only save smashed registers
  1294     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1295     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1296     __ andptr(rsp, -16); // align stack as required by ABI
  1297     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1298     __ mov(rsp, r12); // restore sp
  1299     __ popa(); // XXX only restore smashed registers
  1300     __ reinit_heapbase();
  1302     __ bind(no_reguard);
  1306   // The method register is junk from after the thread_in_native transition
  1307   // until here.  Also can't call_VM until the bcp has been
  1308   // restored.  Need bcp for throwing exception below so get it now.
  1309   __ get_method(method);
  1311   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1312   // r13 == code_base()
  1313   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
  1314   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
  1315   // handle exceptions (exception handling will handle unlocking!)
  1317     Label L;
  1318     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1319     __ jcc(Assembler::zero, L);
  1320     // Note: At some point we may want to unify this with the code
  1321     // used in call_VM_base(); i.e., we should use the
  1322     // StubRoutines::forward_exception code. For now this doesn't work
  1323     // here because the rsp is not correctly set at this point.
  1324     __ MacroAssembler::call_VM(noreg,
  1325                                CAST_FROM_FN_PTR(address,
  1326                                InterpreterRuntime::throw_pending_exception));
  1327     __ should_not_reach_here();
  1328     __ bind(L);
  1331   // do unlocking if necessary
  1333     Label L;
  1334     __ movl(t, Address(method, Method::access_flags_offset()));
  1335     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1336     __ jcc(Assembler::zero, L);
  1337     // the code below should be shared with interpreter macro
  1338     // assembler implementation
  1340       Label unlock;
  1341       // BasicObjectLock will be first in list, since this is a
  1342       // synchronized method. However, need to check that the object
  1343       // has not been unlocked by an explicit monitorexit bytecode.
  1344       const Address monitor(rbp,
  1345                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1346                                        wordSize - sizeof(BasicObjectLock)));
  1348       // monitor expect in c_rarg1 for slow unlock path
  1349       __ lea(c_rarg1, monitor); // address of first monitor
  1351       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1352       __ testptr(t, t);
  1353       __ jcc(Assembler::notZero, unlock);
  1355       // Entry already unlocked, need to throw exception
  1356       __ MacroAssembler::call_VM(noreg,
  1357                                  CAST_FROM_FN_PTR(address,
  1358                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1359       __ should_not_reach_here();
  1361       __ bind(unlock);
  1362       __ unlock_object(c_rarg1);
  1364     __ bind(L);
  1367   // jvmti support
  1368   // Note: This must happen _after_ handling/throwing any exceptions since
  1369   //       the exception handler code notifies the runtime of method exits
  1370   //       too. If this happens before, method entry/exit notifications are
  1371   //       not properly paired (was bug - gri 11/22/99).
  1372   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1374   // restore potential result in edx:eax, call result handler to
  1375   // restore potential result in ST0 & handle result
  1377   __ pop(ltos);
  1378   __ pop(dtos);
  1380   __ movptr(t, Address(rbp,
  1381                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1382   __ call(t);
  1384   // remove activation
  1385   __ movptr(t, Address(rbp,
  1386                        frame::interpreter_frame_sender_sp_offset *
  1387                        wordSize)); // get sender sp
  1388   __ leave();                                // remove frame anchor
  1389   __ pop(rdi);                               // get return address
  1390   __ mov(rsp, t);                            // set sp to sender sp
  1391   __ jmp(rdi);
  1393   if (inc_counter) {
  1394     // Handle overflow of counter and compile method
  1395     __ bind(invocation_counter_overflow);
  1396     generate_counter_overflow(&continue_after_compile);
  1399   return entry_point;
  1402 //
  1403 // Generic interpreted method entry to (asm) interpreter
  1404 //
  1405 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1406   // determine code generation flags
  1407   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1409   // ebx: Method*
  1410   // r13: sender sp
  1411   address entry_point = __ pc();
  1413   const Address constMethod(rbx, Method::const_offset());
  1414   const Address access_flags(rbx, Method::access_flags_offset());
  1415   const Address size_of_parameters(rdx,
  1416                                    ConstMethod::size_of_parameters_offset());
  1417   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
  1420   // get parameter size (always needed)
  1421   __ movptr(rdx, constMethod);
  1422   __ load_unsigned_short(rcx, size_of_parameters);
  1424   // rbx: Method*
  1425   // rcx: size of parameters
  1426   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1428   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1429   __ subl(rdx, rcx); // rdx = no. of additional locals
  1431   // YYY
  1432 //   __ incrementl(rdx);
  1433 //   __ andl(rdx, -2);
  1435   // see if we've got enough room on the stack for locals plus overhead.
  1436   generate_stack_overflow_check();
  1438   // get return address
  1439   __ pop(rax);
  1441   // compute beginning of parameters (r14)
  1442   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1444   // rdx - # of additional locals
  1445   // allocate space for locals
  1446   // explicitly initialize locals
  1448     Label exit, loop;
  1449     __ testl(rdx, rdx);
  1450     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1451     __ bind(loop);
  1452     __ push((int) NULL_WORD); // initialize local variables
  1453     __ decrementl(rdx); // until everything initialized
  1454     __ jcc(Assembler::greater, loop);
  1455     __ bind(exit);
  1458   // initialize fixed part of activation frame
  1459   generate_fixed_frame(false);
  1461   // make sure method is not native & not abstract
  1462 #ifdef ASSERT
  1463   __ movl(rax, access_flags);
  1465     Label L;
  1466     __ testl(rax, JVM_ACC_NATIVE);
  1467     __ jcc(Assembler::zero, L);
  1468     __ stop("tried to execute native method as non-native");
  1469     __ bind(L);
  1472     Label L;
  1473     __ testl(rax, JVM_ACC_ABSTRACT);
  1474     __ jcc(Assembler::zero, L);
  1475     __ stop("tried to execute abstract method in interpreter");
  1476     __ bind(L);
  1478 #endif
  1480   // Since at this point in the method invocation the exception
  1481   // handler would try to exit the monitor of synchronized methods
  1482   // which hasn't been entered yet, we set the thread local variable
  1483   // _do_not_unlock_if_synchronized to true. The remove_activation
  1484   // will check this flag.
  1486   const Address do_not_unlock_if_synchronized(r15_thread,
  1487         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1488   __ movbool(do_not_unlock_if_synchronized, true);
  1490   // increment invocation count & check for overflow
  1491   Label invocation_counter_overflow;
  1492   Label profile_method;
  1493   Label profile_method_continue;
  1494   if (inc_counter) {
  1495     generate_counter_incr(&invocation_counter_overflow,
  1496                           &profile_method,
  1497                           &profile_method_continue);
  1498     if (ProfileInterpreter) {
  1499       __ bind(profile_method_continue);
  1503   Label continue_after_compile;
  1504   __ bind(continue_after_compile);
  1506   // check for synchronized interpreted methods
  1507   bang_stack_shadow_pages(false);
  1509   // reset the _do_not_unlock_if_synchronized flag
  1510   __ movbool(do_not_unlock_if_synchronized, false);
  1512   // check for synchronized methods
  1513   // Must happen AFTER invocation_counter check and stack overflow check,
  1514   // so method is not locked if overflows.
  1515   if (synchronized) {
  1516     // Allocate monitor and lock method
  1517     lock_method();
  1518   } else {
  1519     // no synchronization necessary
  1520 #ifdef ASSERT
  1522       Label L;
  1523       __ movl(rax, access_flags);
  1524       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1525       __ jcc(Assembler::zero, L);
  1526       __ stop("method needs synchronization");
  1527       __ bind(L);
  1529 #endif
  1532   // start execution
  1533 #ifdef ASSERT
  1535     Label L;
  1536      const Address monitor_block_top (rbp,
  1537                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1538     __ movptr(rax, monitor_block_top);
  1539     __ cmpptr(rax, rsp);
  1540     __ jcc(Assembler::equal, L);
  1541     __ stop("broken stack frame setup in interpreter");
  1542     __ bind(L);
  1544 #endif
  1546   // jvmti support
  1547   __ notify_method_entry();
  1549   __ dispatch_next(vtos);
  1551   // invocation counter overflow
  1552   if (inc_counter) {
  1553     if (ProfileInterpreter) {
  1554       // We have decided to profile this method in the interpreter
  1555       __ bind(profile_method);
  1556       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1557       __ set_method_data_pointer_for_bcp();
  1558       __ get_method(rbx);
  1559       __ jmp(profile_method_continue);
  1561     // Handle overflow of counter and compile method
  1562     __ bind(invocation_counter_overflow);
  1563     generate_counter_overflow(&continue_after_compile);
  1566   return entry_point;
  1569 // Entry points
  1570 //
  1571 // Here we generate the various kind of entries into the interpreter.
  1572 // The two main entry type are generic bytecode methods and native
  1573 // call method.  These both come in synchronized and non-synchronized
  1574 // versions but the frame layout they create is very similar. The
  1575 // other method entry types are really just special purpose entries
  1576 // that are really entry and interpretation all in one. These are for
  1577 // trivial methods like accessor, empty, or special math methods.
  1578 //
  1579 // When control flow reaches any of the entry types for the interpreter
  1580 // the following holds ->
  1581 //
  1582 // Arguments:
  1583 //
  1584 // rbx: Method*
  1585 //
  1586 // Stack layout immediately at entry
  1587 //
  1588 // [ return address     ] <--- rsp
  1589 // [ parameter n        ]
  1590 //   ...
  1591 // [ parameter 1        ]
  1592 // [ expression stack   ] (caller's java expression stack)
  1594 // Assuming that we don't go to one of the trivial specialized entries
  1595 // the stack will look like below when we are ready to execute the
  1596 // first bytecode (or call the native routine). The register usage
  1597 // will be as the template based interpreter expects (see
  1598 // interpreter_amd64.hpp).
  1599 //
  1600 // local variables follow incoming parameters immediately; i.e.
  1601 // the return address is moved to the end of the locals).
  1602 //
  1603 // [ monitor entry      ] <--- rsp
  1604 //   ...
  1605 // [ monitor entry      ]
  1606 // [ expr. stack bottom ]
  1607 // [ saved r13          ]
  1608 // [ current r14        ]
  1609 // [ Method*            ]
  1610 // [ saved ebp          ] <--- rbp
  1611 // [ return address     ]
  1612 // [ local variable m   ]
  1613 //   ...
  1614 // [ local variable 1   ]
  1615 // [ parameter n        ]
  1616 //   ...
  1617 // [ parameter 1        ] <--- r14
  1619 address AbstractInterpreterGenerator::generate_method_entry(
  1620                                         AbstractInterpreter::MethodKind kind) {
  1621   // determine code generation flags
  1622   bool synchronized = false;
  1623   address entry_point = NULL;
  1624   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
  1626   switch (kind) {
  1627   case Interpreter::zerolocals             :                                                      break;
  1628   case Interpreter::zerolocals_synchronized: synchronized = true;                                 break;
  1629   case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false); break;
  1630   case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);  break;
  1631   case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();       break;
  1632   case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();    break;
  1633   case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();    break;
  1635   case Interpreter::java_lang_math_sin     : // fall thru
  1636   case Interpreter::java_lang_math_cos     : // fall thru
  1637   case Interpreter::java_lang_math_tan     : // fall thru
  1638   case Interpreter::java_lang_math_abs     : // fall thru
  1639   case Interpreter::java_lang_math_log     : // fall thru
  1640   case Interpreter::java_lang_math_log10   : // fall thru
  1641   case Interpreter::java_lang_math_sqrt    : // fall thru
  1642   case Interpreter::java_lang_math_pow     : // fall thru
  1643   case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
  1644   case Interpreter::java_lang_ref_reference_get
  1645                                            : entry_point = ig_this->generate_Reference_get_entry(); break;
  1646   case Interpreter::java_util_zip_CRC32_update
  1647                                            : entry_point = ig_this->generate_CRC32_update_entry();  break;
  1648   case Interpreter::java_util_zip_CRC32_updateBytes
  1649                                            : // fall thru
  1650   case Interpreter::java_util_zip_CRC32_updateByteBuffer
  1651                                            : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
  1652   default:
  1653     fatal(err_msg("unexpected method kind: %d", kind));
  1654     break;
  1657   if (entry_point) {
  1658     return entry_point;
  1661   return ig_this->generate_normal_entry(synchronized);
  1664 // These should never be compiled since the interpreter will prefer
  1665 // the compiled version to the intrinsic version.
  1666 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1667   switch (method_kind(m)) {
  1668     case Interpreter::java_lang_math_sin     : // fall thru
  1669     case Interpreter::java_lang_math_cos     : // fall thru
  1670     case Interpreter::java_lang_math_tan     : // fall thru
  1671     case Interpreter::java_lang_math_abs     : // fall thru
  1672     case Interpreter::java_lang_math_log     : // fall thru
  1673     case Interpreter::java_lang_math_log10   : // fall thru
  1674     case Interpreter::java_lang_math_sqrt    : // fall thru
  1675     case Interpreter::java_lang_math_pow     : // fall thru
  1676     case Interpreter::java_lang_math_exp     :
  1677       return false;
  1678     default:
  1679       return true;
  1683 // How much stack a method activation needs in words.
  1684 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1685   const int entry_size = frame::interpreter_frame_monitor_size();
  1687   // total overhead size: entry_size + (saved rbp thru expr stack
  1688   // bottom).  be sure to change this if you add/subtract anything
  1689   // to/from the overhead area
  1690   const int overhead_size =
  1691     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1693   const int stub_code = frame::entry_frame_after_call_words;
  1694   const int method_stack = (method->max_locals() + method->max_stack()) *
  1695                            Interpreter::stackElementWords;
  1696   return (overhead_size + method_stack + stub_code);
  1699 int AbstractInterpreter::layout_activation(Method* method,
  1700                                            int tempcount,
  1701                                            int popframe_extra_args,
  1702                                            int moncount,
  1703                                            int caller_actual_parameters,
  1704                                            int callee_param_count,
  1705                                            int callee_locals,
  1706                                            frame* caller,
  1707                                            frame* interpreter_frame,
  1708                                            bool is_top_frame,
  1709                                            bool is_bottom_frame) {
  1710   // Note: This calculation must exactly parallel the frame setup
  1711   // in AbstractInterpreterGenerator::generate_method_entry.
  1712   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1713   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1714   // right size, as determined by a previous call to this method.
  1715   // It is also guaranteed to be walkable even though it is in a skeletal state
  1717   // fixed size of an interpreter frame:
  1718   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1719   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1720                      Interpreter::stackElementWords;
  1722   int overhead = frame::sender_sp_offset -
  1723                  frame::interpreter_frame_initial_sp_offset;
  1724   // Our locals were accounted for by the caller (or last_frame_adjust
  1725   // on the transistion) Since the callee parameters already account
  1726   // for the callee's params we only need to account for the extra
  1727   // locals.
  1728   int size = overhead +
  1729          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
  1730          moncount * frame::interpreter_frame_monitor_size() +
  1731          tempcount* Interpreter::stackElementWords + popframe_extra_args;
  1732   if (interpreter_frame != NULL) {
  1733 #ifdef ASSERT
  1734     if (!EnableInvokeDynamic)
  1735       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1736       // Probably, since deoptimization doesn't work yet.
  1737       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1738     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1739 #endif
  1741     interpreter_frame->interpreter_frame_set_method(method);
  1742     // NOTE the difference in using sender_sp and
  1743     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
  1744     // the original sp of the caller (the unextended_sp) and
  1745     // sender_sp is fp+16 XXX
  1746     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1748 #ifdef ASSERT
  1749     if (caller->is_interpreted_frame()) {
  1750       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1752 #endif
  1754     interpreter_frame->interpreter_frame_set_locals(locals);
  1755     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1756     BasicObjectLock* monbot = montop - moncount;
  1757     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1759     // Set last_sp
  1760     intptr_t*  esp = (intptr_t*) monbot -
  1761                      tempcount*Interpreter::stackElementWords -
  1762                      popframe_extra_args;
  1763     interpreter_frame->interpreter_frame_set_last_sp(esp);
  1765     // All frames but the initial (oldest) interpreter frame we fill in have
  1766     // a value for sender_sp that allows walking the stack but isn't
  1767     // truly correct. Correct the value here.
  1768     if (extra_locals != 0 &&
  1769         interpreter_frame->sender_sp() ==
  1770         interpreter_frame->interpreter_frame_sender_sp()) {
  1771       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
  1772                                                          extra_locals);
  1774     *interpreter_frame->interpreter_frame_cache_addr() =
  1775       method->constants()->cache();
  1777   return size;
  1780 //-----------------------------------------------------------------------------
  1781 // Exceptions
  1783 void TemplateInterpreterGenerator::generate_throw_exception() {
  1784   // Entry point in previous activation (i.e., if the caller was
  1785   // interpreted)
  1786   Interpreter::_rethrow_exception_entry = __ pc();
  1787   // Restore sp to interpreter_frame_last_sp even though we are going
  1788   // to empty the expression stack for the exception processing.
  1789   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1790   // rax: exception
  1791   // rdx: return address/pc that threw exception
  1792   __ restore_bcp();    // r13 points to call/send
  1793   __ restore_locals();
  1794   __ reinit_heapbase();  // restore r12 as heapbase.
  1795   // Entry point for exceptions thrown within interpreter code
  1796   Interpreter::_throw_exception_entry = __ pc();
  1797   // expression stack is undefined here
  1798   // rax: exception
  1799   // r13: exception bcp
  1800   __ verify_oop(rax);
  1801   __ mov(c_rarg1, rax);
  1803   // expression stack must be empty before entering the VM in case of
  1804   // an exception
  1805   __ empty_expression_stack();
  1806   // find exception handler address and preserve exception oop
  1807   __ call_VM(rdx,
  1808              CAST_FROM_FN_PTR(address,
  1809                           InterpreterRuntime::exception_handler_for_exception),
  1810              c_rarg1);
  1811   // rax: exception handler entry point
  1812   // rdx: preserved exception oop
  1813   // r13: bcp for exception handler
  1814   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1815   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1817   // If the exception is not handled in the current frame the frame is
  1818   // removed and the exception is rethrown (i.e. exception
  1819   // continuation is _rethrow_exception).
  1820   //
  1821   // Note: At this point the bci is still the bxi for the instruction
  1822   // which caused the exception and the expression stack is
  1823   // empty. Thus, for any VM calls at this point, GC will find a legal
  1824   // oop map (with empty expression stack).
  1826   // In current activation
  1827   // tos: exception
  1828   // esi: exception bcp
  1830   //
  1831   // JVMTI PopFrame support
  1832   //
  1834   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1835   __ empty_expression_stack();
  1836   // Set the popframe_processing bit in pending_popframe_condition
  1837   // indicating that we are currently handling popframe, so that
  1838   // call_VMs that may happen later do not trigger new popframe
  1839   // handling cycles.
  1840   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1841   __ orl(rdx, JavaThread::popframe_processing_bit);
  1842   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1845     // Check to see whether we are returning to a deoptimized frame.
  1846     // (The PopFrame call ensures that the caller of the popped frame is
  1847     // either interpreted or compiled and deoptimizes it if compiled.)
  1848     // In this case, we can't call dispatch_next() after the frame is
  1849     // popped, but instead must save the incoming arguments and restore
  1850     // them after deoptimization has occurred.
  1851     //
  1852     // Note that we don't compare the return PC against the
  1853     // deoptimization blob's unpack entry because of the presence of
  1854     // adapter frames in C2.
  1855     Label caller_not_deoptimized;
  1856     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1857     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1858                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1859     __ testl(rax, rax);
  1860     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1862     // Compute size of arguments for saving when returning to
  1863     // deoptimized caller
  1864     __ get_method(rax);
  1865     __ movptr(rax, Address(rax, Method::const_offset()));
  1866     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
  1867                                                 size_of_parameters_offset())));
  1868     __ shll(rax, Interpreter::logStackElementSize);
  1869     __ restore_locals(); // XXX do we need this?
  1870     __ subptr(r14, rax);
  1871     __ addptr(r14, wordSize);
  1872     // Save these arguments
  1873     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1874                                            Deoptimization::
  1875                                            popframe_preserve_args),
  1876                           r15_thread, rax, r14);
  1878     __ remove_activation(vtos, rdx,
  1879                          /* throw_monitor_exception */ false,
  1880                          /* install_monitor_exception */ false,
  1881                          /* notify_jvmdi */ false);
  1883     // Inform deoptimization that it is responsible for restoring
  1884     // these arguments
  1885     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1886             JavaThread::popframe_force_deopt_reexecution_bit);
  1888     // Continue in deoptimization handler
  1889     __ jmp(rdx);
  1891     __ bind(caller_not_deoptimized);
  1894   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1895                        /* throw_monitor_exception */ false,
  1896                        /* install_monitor_exception */ false,
  1897                        /* notify_jvmdi */ false);
  1899   // Finish with popframe handling
  1900   // A previous I2C followed by a deoptimization might have moved the
  1901   // outgoing arguments further up the stack. PopFrame expects the
  1902   // mutations to those outgoing arguments to be preserved and other
  1903   // constraints basically require this frame to look exactly as
  1904   // though it had previously invoked an interpreted activation with
  1905   // no space between the top of the expression stack (current
  1906   // last_sp) and the top of stack. Rather than force deopt to
  1907   // maintain this kind of invariant all the time we call a small
  1908   // fixup routine to move the mutated arguments onto the top of our
  1909   // expression stack if necessary.
  1910   __ mov(c_rarg1, rsp);
  1911   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1912   // PC must point into interpreter here
  1913   __ set_last_Java_frame(noreg, rbp, __ pc());
  1914   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1915   __ reset_last_Java_frame(true, true);
  1916   // Restore the last_sp and null it out
  1917   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1918   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1920   __ restore_bcp();  // XXX do we need this?
  1921   __ restore_locals(); // XXX do we need this?
  1922   // The method data pointer was incremented already during
  1923   // call profiling. We have to restore the mdp for the current bcp.
  1924   if (ProfileInterpreter) {
  1925     __ set_method_data_pointer_for_bcp();
  1928   // Clear the popframe condition flag
  1929   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1930           JavaThread::popframe_inactive);
  1932   __ dispatch_next(vtos);
  1933   // end of PopFrame support
  1935   Interpreter::_remove_activation_entry = __ pc();
  1937   // preserve exception over this code sequence
  1938   __ pop_ptr(rax);
  1939   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1940   // remove the activation (without doing throws on illegalMonitorExceptions)
  1941   __ remove_activation(vtos, rdx, false, true, false);
  1942   // restore exception
  1943   __ get_vm_result(rax, r15_thread);
  1945   // In between activations - previous activation type unknown yet
  1946   // compute continuation point - the continuation point expects the
  1947   // following registers set up:
  1948   //
  1949   // rax: exception
  1950   // rdx: return address/pc that threw exception
  1951   // rsp: expression stack of caller
  1952   // rbp: ebp of caller
  1953   __ push(rax);                                  // save exception
  1954   __ push(rdx);                                  // save return address
  1955   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1956                           SharedRuntime::exception_handler_for_return_address),
  1957                         r15_thread, rdx);
  1958   __ mov(rbx, rax);                              // save exception handler
  1959   __ pop(rdx);                                   // restore return address
  1960   __ pop(rax);                                   // restore exception
  1961   // Note that an "issuing PC" is actually the next PC after the call
  1962   __ jmp(rbx);                                   // jump to exception
  1963                                                  // handler of caller
  1967 //
  1968 // JVMTI ForceEarlyReturn support
  1969 //
  1970 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1971   address entry = __ pc();
  1973   __ restore_bcp();
  1974   __ restore_locals();
  1975   __ empty_expression_stack();
  1976   __ load_earlyret_value(state);
  1978   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  1979   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  1981   // Clear the earlyret state
  1982   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1984   __ remove_activation(state, rsi,
  1985                        false, /* throw_monitor_exception */
  1986                        false, /* install_monitor_exception */
  1987                        true); /* notify_jvmdi */
  1988   __ jmp(rsi);
  1990   return entry;
  1991 } // end of ForceEarlyReturn support
  1994 //-----------------------------------------------------------------------------
  1995 // Helper for vtos entry point generation
  1997 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1998                                                          address& bep,
  1999                                                          address& cep,
  2000                                                          address& sep,
  2001                                                          address& aep,
  2002                                                          address& iep,
  2003                                                          address& lep,
  2004                                                          address& fep,
  2005                                                          address& dep,
  2006                                                          address& vep) {
  2007   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  2008   Label L;
  2009   aep = __ pc();  __ push_ptr();  __ jmp(L);
  2010   fep = __ pc();  __ push_f();    __ jmp(L);
  2011   dep = __ pc();  __ push_d();    __ jmp(L);
  2012   lep = __ pc();  __ push_l();    __ jmp(L);
  2013   bep = cep = sep =
  2014   iep = __ pc();  __ push_i();
  2015   vep = __ pc();
  2016   __ bind(L);
  2017   generate_and_dispatch(t);
  2021 //-----------------------------------------------------------------------------
  2022 // Generation of individual instructions
  2024 // helpers for generate_and_dispatch
  2027 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2028   : TemplateInterpreterGenerator(code) {
  2029    generate_all(); // down here so it can be "virtual"
  2032 //-----------------------------------------------------------------------------
  2034 // Non-product code
  2035 #ifndef PRODUCT
  2036 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  2037   address entry = __ pc();
  2039   __ push(state);
  2040   __ push(c_rarg0);
  2041   __ push(c_rarg1);
  2042   __ push(c_rarg2);
  2043   __ push(c_rarg3);
  2044   __ mov(c_rarg2, rax);  // Pass itos
  2045 #ifdef _WIN64
  2046   __ movflt(xmm3, xmm0); // Pass ftos
  2047 #endif
  2048   __ call_VM(noreg,
  2049              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  2050              c_rarg1, c_rarg2, c_rarg3);
  2051   __ pop(c_rarg3);
  2052   __ pop(c_rarg2);
  2053   __ pop(c_rarg1);
  2054   __ pop(c_rarg0);
  2055   __ pop(state);
  2056   __ ret(0);                                   // return from result handler
  2058   return entry;
  2061 void TemplateInterpreterGenerator::count_bytecode() {
  2062   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  2065 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2066   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  2069 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2070   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  2071   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  2072   __ orl(rbx,
  2073          ((int) t->bytecode()) <<
  2074          BytecodePairHistogram::log2_number_of_codes);
  2075   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  2076   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  2077   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  2081 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2082   // Call a little run-time stub to avoid blow-up for each bytecode.
  2083   // The run-time runtime saves the right registers, depending on
  2084   // the tosca in-state for the given template.
  2086   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  2087          "entry must have been generated");
  2088   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  2089   __ andptr(rsp, -16); // align stack as required by ABI
  2090   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  2091   __ mov(rsp, r12); // restore sp
  2092   __ reinit_heapbase();
  2096 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2097   Label L;
  2098   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  2099            StopInterpreterAt);
  2100   __ jcc(Assembler::notEqual, L);
  2101   __ int3();
  2102   __ bind(L);
  2104 #endif // !PRODUCT
  2105 #endif // ! CC_INTERP

mercurial