src/cpu/sparc/vm/stubGenerator_sparc.cpp

Wed, 08 Apr 2009 10:56:49 -0700

author
jrose
date
Wed, 08 Apr 2009 10:56:49 -0700
changeset 1145
e5b0439ef4ae
parent 1106
d0994e5bebce
child 1162
6b2273dd6fa9
permissions
-rw-r--r--

6655638: dynamic languages need method handles
Summary: initial implementation, with known omissions (x86/64, sparc, compiler optim., c-oops, C++ interp.)
Reviewed-by: kvn, twisti, never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_sparc.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp.
    32 #define __ _masm->
    34 #ifdef PRODUCT
    35 #define BLOCK_COMMENT(str) /* nothing */
    36 #else
    37 #define BLOCK_COMMENT(str) __ block_comment(str)
    38 #endif
    40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    42 // Note:  The register L7 is used as L7_thread_cache, and may not be used
    43 //        any other way within this module.
    46 static const Register& Lstub_temp = L2;
    48 // -------------------------------------------------------------------------------------------------------------------------
    49 // Stub Code definitions
    51 static address handle_unsafe_access() {
    52   JavaThread* thread = JavaThread::current();
    53   address pc  = thread->saved_exception_pc();
    54   address npc = thread->saved_exception_npc();
    55   // pc is the instruction which we must emulate
    56   // doing a no-op is fine:  return garbage from the load
    58   // request an async exception
    59   thread->set_pending_unsafe_access_error();
    61   // return address of next instruction to execute
    62   return npc;
    63 }
    65 class StubGenerator: public StubCodeGenerator {
    66  private:
    68 #ifdef PRODUCT
    69 #define inc_counter_np(a,b,c) (0)
    70 #else
    71   void inc_counter_np_(int& counter, Register t1, Register t2) {
    72     Address counter_addr(t2, (address) &counter);
    73     __ sethi(counter_addr);
    74     __ ld(counter_addr, t1);
    75     __ inc(t1);
    76     __ st(t1, counter_addr);
    77   }
    78 #define inc_counter_np(counter, t1, t2) \
    79   BLOCK_COMMENT("inc_counter " #counter); \
    80   inc_counter_np_(counter, t1, t2);
    81 #endif
    83   //----------------------------------------------------------------------------------------------------
    84   // Call stubs are used to call Java from C
    86   address generate_call_stub(address& return_pc) {
    87     StubCodeMark mark(this, "StubRoutines", "call_stub");
    88     address start = __ pc();
    90     // Incoming arguments:
    91     //
    92     // o0         : call wrapper address
    93     // o1         : result (address)
    94     // o2         : result type
    95     // o3         : method
    96     // o4         : (interpreter) entry point
    97     // o5         : parameters (address)
    98     // [sp + 0x5c]: parameter size (in words)
    99     // [sp + 0x60]: thread
   100     //
   101     // +---------------+ <--- sp + 0
   102     // |               |
   103     // . reg save area .
   104     // |               |
   105     // +---------------+ <--- sp + 0x40
   106     // |               |
   107     // . extra 7 slots .
   108     // |               |
   109     // +---------------+ <--- sp + 0x5c
   110     // |  param. size  |
   111     // +---------------+ <--- sp + 0x60
   112     // |    thread     |
   113     // +---------------+
   114     // |               |
   116     // note: if the link argument position changes, adjust
   117     //       the code in frame::entry_frame_call_wrapper()
   119     const Argument link           = Argument(0, false); // used only for GC
   120     const Argument result         = Argument(1, false);
   121     const Argument result_type    = Argument(2, false);
   122     const Argument method         = Argument(3, false);
   123     const Argument entry_point    = Argument(4, false);
   124     const Argument parameters     = Argument(5, false);
   125     const Argument parameter_size = Argument(6, false);
   126     const Argument thread         = Argument(7, false);
   128     // setup thread register
   129     __ ld_ptr(thread.as_address(), G2_thread);
   130     __ reinit_heapbase();
   132 #ifdef ASSERT
   133     // make sure we have no pending exceptions
   134     { const Register t = G3_scratch;
   135       Label L;
   136       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
   137       __ br_null(t, false, Assembler::pt, L);
   138       __ delayed()->nop();
   139       __ stop("StubRoutines::call_stub: entered with pending exception");
   140       __ bind(L);
   141     }
   142 #endif
   144     // create activation frame & allocate space for parameters
   145     { const Register t = G3_scratch;
   146       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
   147       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
   148       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
   149       __ sll(t, Interpreter::logStackElementSize(), t);                    // compute number of bytes
   150       __ neg(t);                                                // negate so it can be used with save
   151       __ save(SP, t, SP);                                       // setup new frame
   152     }
   154     // +---------------+ <--- sp + 0
   155     // |               |
   156     // . reg save area .
   157     // |               |
   158     // +---------------+ <--- sp + 0x40
   159     // |               |
   160     // . extra 7 slots .
   161     // |               |
   162     // +---------------+ <--- sp + 0x5c
   163     // |  empty slot   |      (only if parameter size is even)
   164     // +---------------+
   165     // |               |
   166     // .  parameters   .
   167     // |               |
   168     // +---------------+ <--- fp + 0
   169     // |               |
   170     // . reg save area .
   171     // |               |
   172     // +---------------+ <--- fp + 0x40
   173     // |               |
   174     // . extra 7 slots .
   175     // |               |
   176     // +---------------+ <--- fp + 0x5c
   177     // |  param. size  |
   178     // +---------------+ <--- fp + 0x60
   179     // |    thread     |
   180     // +---------------+
   181     // |               |
   183     // pass parameters if any
   184     BLOCK_COMMENT("pass parameters if any");
   185     { const Register src = parameters.as_in().as_register();
   186       const Register dst = Lentry_args;
   187       const Register tmp = G3_scratch;
   188       const Register cnt = G4_scratch;
   190       // test if any parameters & setup of Lentry_args
   191       Label exit;
   192       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
   193       __ add( FP, STACK_BIAS, dst );
   194       __ tst(cnt);
   195       __ br(Assembler::zero, false, Assembler::pn, exit);
   196       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
   198       // copy parameters if any
   199       Label loop;
   200       __ BIND(loop);
   201       // Store tag first.
   202       if (TaggedStackInterpreter) {
   203         __ ld_ptr(src, 0, tmp);
   204         __ add(src, BytesPerWord, src);  // get next
   205         __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
   206       }
   207       // Store parameter value
   208       __ ld_ptr(src, 0, tmp);
   209       __ add(src, BytesPerWord, src);
   210       __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
   211       __ deccc(cnt);
   212       __ br(Assembler::greater, false, Assembler::pt, loop);
   213       __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
   215       // done
   216       __ BIND(exit);
   217     }
   219     // setup parameters, method & call Java function
   220 #ifdef ASSERT
   221     // layout_activation_impl checks it's notion of saved SP against
   222     // this register, so if this changes update it as well.
   223     const Register saved_SP = Lscratch;
   224     __ mov(SP, saved_SP);                               // keep track of SP before call
   225 #endif
   227     // setup parameters
   228     const Register t = G3_scratch;
   229     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
   230     __ sll(t, Interpreter::logStackElementSize(), t);            // compute number of bytes
   231     __ sub(FP, t, Gargs);                              // setup parameter pointer
   232 #ifdef _LP64
   233     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
   234 #endif
   235     __ mov(SP, O5_savedSP);
   238     // do the call
   239     //
   240     // the following register must be setup:
   241     //
   242     // G2_thread
   243     // G5_method
   244     // Gargs
   245     BLOCK_COMMENT("call Java function");
   246     __ jmpl(entry_point.as_in().as_register(), G0, O7);
   247     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
   249     BLOCK_COMMENT("call_stub_return_address:");
   250     return_pc = __ pc();
   252     // The callee, if it wasn't interpreted, can return with SP changed so
   253     // we can no longer assert of change of SP.
   255     // store result depending on type
   256     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
   257     //  is treated as T_INT)
   258     { const Register addr = result     .as_in().as_register();
   259       const Register type = result_type.as_in().as_register();
   260       Label is_long, is_float, is_double, is_object, exit;
   261       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
   262       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
   263       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
   264       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
   265       __ delayed()->nop();
   267       // store int result
   268       __ st(O0, addr, G0);
   270       __ BIND(exit);
   271       __ ret();
   272       __ delayed()->restore();
   274       __ BIND(is_object);
   275       __ ba(false, exit);
   276       __ delayed()->st_ptr(O0, addr, G0);
   278       __ BIND(is_float);
   279       __ ba(false, exit);
   280       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
   282       __ BIND(is_double);
   283       __ ba(false, exit);
   284       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
   286       __ BIND(is_long);
   287 #ifdef _LP64
   288       __ ba(false, exit);
   289       __ delayed()->st_long(O0, addr, G0);      // store entire long
   290 #else
   291 #if defined(COMPILER2)
   292   // All return values are where we want them, except for Longs.  C2 returns
   293   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   294   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   295   // build we simply always use G1.
   296   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   297   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   298   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   300       __ ba(false, exit);
   301       __ delayed()->stx(G1, addr, G0);  // store entire long
   302 #else
   303       __ st(O1, addr, BytesPerInt);
   304       __ ba(false, exit);
   305       __ delayed()->st(O0, addr, G0);
   306 #endif /* COMPILER2 */
   307 #endif /* _LP64 */
   308      }
   309      return start;
   310   }
   313   //----------------------------------------------------------------------------------------------------
   314   // Return point for a Java call if there's an exception thrown in Java code.
   315   // The exception is caught and transformed into a pending exception stored in
   316   // JavaThread that can be tested from within the VM.
   317   //
   318   // Oexception: exception oop
   320   address generate_catch_exception() {
   321     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   323     address start = __ pc();
   324     // verify that thread corresponds
   325     __ verify_thread();
   327     const Register& temp_reg = Gtemp;
   328     Address pending_exception_addr    (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   329     Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset   ()));
   330     Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset   ()));
   332     // set pending exception
   333     __ verify_oop(Oexception);
   334     __ st_ptr(Oexception, pending_exception_addr);
   335     __ set((intptr_t)__FILE__, temp_reg);
   336     __ st_ptr(temp_reg, exception_file_offset_addr);
   337     __ set((intptr_t)__LINE__, temp_reg);
   338     __ st(temp_reg, exception_line_offset_addr);
   340     // complete return to VM
   341     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
   343     Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address);
   344     __ jump_to(stub_ret);
   345     __ delayed()->nop();
   347     return start;
   348   }
   351   //----------------------------------------------------------------------------------------------------
   352   // Continuation point for runtime calls returning with a pending exception
   353   // The pending exception check happened in the runtime or native call stub
   354   // The pending exception in Thread is converted into a Java-level exception
   355   //
   356   // Contract with Java-level exception handler: O0 = exception
   357   //                                             O1 = throwing pc
   359   address generate_forward_exception() {
   360     StubCodeMark mark(this, "StubRoutines", "forward_exception");
   361     address start = __ pc();
   363     // Upon entry, O7 has the return address returning into Java
   364     // (interpreted or compiled) code; i.e. the return address
   365     // becomes the throwing pc.
   367     const Register& handler_reg = Gtemp;
   369     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   371 #ifdef ASSERT
   372     // make sure that this code is only executed if there is a pending exception
   373     { Label L;
   374       __ ld_ptr(exception_addr, Gtemp);
   375       __ br_notnull(Gtemp, false, Assembler::pt, L);
   376       __ delayed()->nop();
   377       __ stop("StubRoutines::forward exception: no pending exception (1)");
   378       __ bind(L);
   379     }
   380 #endif
   382     // compute exception handler into handler_reg
   383     __ get_thread();
   384     __ ld_ptr(exception_addr, Oexception);
   385     __ verify_oop(Oexception);
   386     __ save_frame(0);             // compensates for compiler weakness
   387     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
   388     BLOCK_COMMENT("call exception_handler_for_return_address");
   389     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
   390     __ mov(O0, handler_reg);
   391     __ restore();                 // compensates for compiler weakness
   393     __ ld_ptr(exception_addr, Oexception);
   394     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
   396 #ifdef ASSERT
   397     // make sure exception is set
   398     { Label L;
   399       __ br_notnull(Oexception, false, Assembler::pt, L);
   400       __ delayed()->nop();
   401       __ stop("StubRoutines::forward exception: no pending exception (2)");
   402       __ bind(L);
   403     }
   404 #endif
   405     // jump to exception handler
   406     __ jmp(handler_reg, 0);
   407     // clear pending exception
   408     __ delayed()->st_ptr(G0, exception_addr);
   410     return start;
   411   }
   414   //------------------------------------------------------------------------------------------------------------------------
   415   // Continuation point for throwing of implicit exceptions that are not handled in
   416   // the current activation. Fabricates an exception oop and initiates normal
   417   // exception dispatching in this frame. Only callee-saved registers are preserved
   418   // (through the normal register window / RegisterMap handling).
   419   // If the compiler needs all registers to be preserved between the fault
   420   // point and the exception handler then it must assume responsibility for that in
   421   // AbstractCompiler::continuation_for_implicit_null_exception or
   422   // continuation_for_implicit_division_by_zero_exception. All other implicit
   423   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
   424   // either at call sites or otherwise assume that stack unwinding will be initiated,
   425   // so caller saved registers were assumed volatile in the compiler.
   427   // Note that we generate only this stub into a RuntimeStub, because it needs to be
   428   // properly traversed and ignored during GC, so we change the meaning of the "__"
   429   // macro within this method.
   430 #undef __
   431 #define __ masm->
   433   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
   434 #ifdef ASSERT
   435     int insts_size = VerifyThread ? 1 * K : 600;
   436 #else
   437     int insts_size = VerifyThread ? 1 * K : 256;
   438 #endif /* ASSERT */
   439     int locs_size  = 32;
   441     CodeBuffer      code(name, insts_size, locs_size);
   442     MacroAssembler* masm = new MacroAssembler(&code);
   444     __ verify_thread();
   446     // This is an inlined and slightly modified version of call_VM
   447     // which has the ability to fetch the return PC out of thread-local storage
   448     __ assert_not_delayed();
   450     // Note that we always push a frame because on the SPARC
   451     // architecture, for all of our implicit exception kinds at call
   452     // sites, the implicit exception is taken before the callee frame
   453     // is pushed.
   454     __ save_frame(0);
   456     int frame_complete = __ offset();
   458     if (restore_saved_exception_pc) {
   459       Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset()));
   460       __ ld_ptr(saved_exception_pc, I7);
   461       __ sub(I7, frame::pc_return_offset, I7);
   462     }
   464     // Note that we always have a runtime stub frame on the top of stack by this point
   465     Register last_java_sp = SP;
   466     // 64-bit last_java_sp is biased!
   467     __ set_last_Java_frame(last_java_sp, G0);
   468     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
   469     __ save_thread(noreg);
   470     // do the call
   471     BLOCK_COMMENT("call runtime_entry");
   472     __ call(runtime_entry, relocInfo::runtime_call_type);
   473     if (!VerifyThread)
   474       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
   475     else
   476       __ delayed()->nop();             // (thread already passed)
   477     __ restore_thread(noreg);
   478     __ reset_last_Java_frame();
   480     // check for pending exceptions. use Gtemp as scratch register.
   481 #ifdef ASSERT
   482     Label L;
   484     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   485     Register scratch_reg = Gtemp;
   486     __ ld_ptr(exception_addr, scratch_reg);
   487     __ br_notnull(scratch_reg, false, Assembler::pt, L);
   488     __ delayed()->nop();
   489     __ should_not_reach_here();
   490     __ bind(L);
   491 #endif // ASSERT
   492     BLOCK_COMMENT("call forward_exception_entry");
   493     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   494     // we use O7 linkage so that forward_exception_entry has the issuing PC
   495     __ delayed()->restore();
   497     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
   498     return stub->entry_point();
   499   }
   501 #undef __
   502 #define __ _masm->
   505   // Generate a routine that sets all the registers so we
   506   // can tell if the stop routine prints them correctly.
   507   address generate_test_stop() {
   508     StubCodeMark mark(this, "StubRoutines", "test_stop");
   509     address start = __ pc();
   511     int i;
   513     __ save_frame(0);
   515     static jfloat zero = 0.0, one = 1.0;
   517     // put addr in L0, then load through L0 to F0
   518     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
   519     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
   521     // use add to put 2..18 in F2..F18
   522     for ( i = 2;  i <= 18;  ++i ) {
   523       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
   524     }
   526     // Now put double 2 in F16, double 18 in F18
   527     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
   528     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
   530     // use add to put 20..32 in F20..F32
   531     for (i = 20; i < 32; i += 2) {
   532       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
   533     }
   535     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
   536     for ( i = 0; i < 8; ++i ) {
   537       if (i < 6) {
   538         __ set(     i, as_iRegister(i));
   539         __ set(16 + i, as_oRegister(i));
   540         __ set(24 + i, as_gRegister(i));
   541       }
   542       __ set( 8 + i, as_lRegister(i));
   543     }
   545     __ stop("testing stop");
   548     __ ret();
   549     __ delayed()->restore();
   551     return start;
   552   }
   555   address generate_stop_subroutine() {
   556     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
   557     address start = __ pc();
   559     __ stop_subroutine();
   561     return start;
   562   }
   564   address generate_flush_callers_register_windows() {
   565     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
   566     address start = __ pc();
   568     __ flush_windows();
   569     __ retl(false);
   570     __ delayed()->add( FP, STACK_BIAS, O0 );
   571     // The returned value must be a stack pointer whose register save area
   572     // is flushed, and will stay flushed while the caller executes.
   574     return start;
   575   }
   577   // Helper functions for v8 atomic operations.
   578   //
   579   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
   580     if (mark_oop_reg == noreg) {
   581       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
   582       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   583     } else {
   584       assert(scratch_reg != noreg, "just checking");
   585       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
   586       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   587       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
   588       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
   589     }
   590   }
   592   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   594     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
   595     __ set(StubRoutines::Sparc::locked, lock_reg);
   596     // Initialize yield counter
   597     __ mov(G0,yield_reg);
   599     __ BIND(retry);
   600     __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
   601     __ br(Assembler::less, false, Assembler::pt, dontyield);
   602     __ delayed()->nop();
   604     // This code can only be called from inside the VM, this
   605     // stub is only invoked from Atomic::add().  We do not
   606     // want to use call_VM, because _last_java_sp and such
   607     // must already be set.
   608     //
   609     // Save the regs and make space for a C call
   610     __ save(SP, -96, SP);
   611     __ save_all_globals_into_locals();
   612     BLOCK_COMMENT("call os::naked_sleep");
   613     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
   614     __ delayed()->nop();
   615     __ restore_globals_from_locals();
   616     __ restore();
   617     // reset the counter
   618     __ mov(G0,yield_reg);
   620     __ BIND(dontyield);
   622     // try to get lock
   623     __ swap(lock_ptr_reg, 0, lock_reg);
   625     // did we get the lock?
   626     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
   627     __ br(Assembler::notEqual, true, Assembler::pn, retry);
   628     __ delayed()->add(yield_reg,1,yield_reg);
   630     // yes, got lock. do the operation here.
   631   }
   633   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   634     __ st(lock_reg, lock_ptr_reg, 0); // unlock
   635   }
   637   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
   638   //
   639   // Arguments :
   640   //
   641   //      exchange_value: O0
   642   //      dest:           O1
   643   //
   644   // Results:
   645   //
   646   //     O0: the value previously stored in dest
   647   //
   648   address generate_atomic_xchg() {
   649     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   650     address start = __ pc();
   652     if (UseCASForSwap) {
   653       // Use CAS instead of swap, just in case the MP hardware
   654       // prefers to work with just one kind of synch. instruction.
   655       Label retry;
   656       __ BIND(retry);
   657       __ mov(O0, O3);       // scratch copy of exchange value
   658       __ ld(O1, 0, O2);     // observe the previous value
   659       // try to replace O2 with O3
   660       __ cas_under_lock(O1, O2, O3,
   661       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   662       __ cmp(O2, O3);
   663       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   664       __ delayed()->nop();
   666       __ retl(false);
   667       __ delayed()->mov(O2, O0);  // report previous value to caller
   669     } else {
   670       if (VM_Version::v9_instructions_work()) {
   671         __ retl(false);
   672         __ delayed()->swap(O1, 0, O0);
   673       } else {
   674         const Register& lock_reg = O2;
   675         const Register& lock_ptr_reg = O3;
   676         const Register& yield_reg = O4;
   678         Label retry;
   679         Label dontyield;
   681         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   682         // got the lock, do the swap
   683         __ swap(O1, 0, O0);
   685         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   686         __ retl(false);
   687         __ delayed()->nop();
   688       }
   689     }
   691     return start;
   692   }
   695   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
   696   //
   697   // Arguments :
   698   //
   699   //      exchange_value: O0
   700   //      dest:           O1
   701   //      compare_value:  O2
   702   //
   703   // Results:
   704   //
   705   //     O0: the value previously stored in dest
   706   //
   707   // Overwrites (v8): O3,O4,O5
   708   //
   709   address generate_atomic_cmpxchg() {
   710     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   711     address start = __ pc();
   713     // cmpxchg(dest, compare_value, exchange_value)
   714     __ cas_under_lock(O1, O2, O0,
   715       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   716     __ retl(false);
   717     __ delayed()->nop();
   719     return start;
   720   }
   722   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
   723   //
   724   // Arguments :
   725   //
   726   //      exchange_value: O1:O0
   727   //      dest:           O2
   728   //      compare_value:  O4:O3
   729   //
   730   // Results:
   731   //
   732   //     O1:O0: the value previously stored in dest
   733   //
   734   // This only works on V9, on V8 we don't generate any
   735   // code and just return NULL.
   736   //
   737   // Overwrites: G1,G2,G3
   738   //
   739   address generate_atomic_cmpxchg_long() {
   740     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   741     address start = __ pc();
   743     if (!VM_Version::supports_cx8())
   744         return NULL;;
   745     __ sllx(O0, 32, O0);
   746     __ srl(O1, 0, O1);
   747     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
   748     __ sllx(O3, 32, O3);
   749     __ srl(O4, 0, O4);
   750     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
   751     __ casx(O2, O3, O0);
   752     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
   753     __ retl(false);
   754     __ delayed()->srlx(O0, 32, O0);
   756     return start;
   757   }
   760   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
   761   //
   762   // Arguments :
   763   //
   764   //      add_value: O0   (e.g., +1 or -1)
   765   //      dest:      O1
   766   //
   767   // Results:
   768   //
   769   //     O0: the new value stored in dest
   770   //
   771   // Overwrites (v9): O3
   772   // Overwrites (v8): O3,O4,O5
   773   //
   774   address generate_atomic_add() {
   775     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   776     address start = __ pc();
   777     __ BIND(_atomic_add_stub);
   779     if (VM_Version::v9_instructions_work()) {
   780       Label(retry);
   781       __ BIND(retry);
   783       __ lduw(O1, 0, O2);
   784       __ add(O0,   O2, O3);
   785       __ cas(O1,   O2, O3);
   786       __ cmp(      O2, O3);
   787       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   788       __ delayed()->nop();
   789       __ retl(false);
   790       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
   791     } else {
   792       const Register& lock_reg = O2;
   793       const Register& lock_ptr_reg = O3;
   794       const Register& value_reg = O4;
   795       const Register& yield_reg = O5;
   797       Label(retry);
   798       Label(dontyield);
   800       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   801       // got lock, do the increment
   802       __ ld(O1, 0, value_reg);
   803       __ add(O0, value_reg, value_reg);
   804       __ st(value_reg, O1, 0);
   806       // %%% only for RMO and PSO
   807       __ membar(Assembler::StoreStore);
   809       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   811       __ retl(false);
   812       __ delayed()->mov(value_reg, O0);
   813     }
   815     return start;
   816   }
   817   Label _atomic_add_stub;  // called from other stubs
   820   //------------------------------------------------------------------------------------------------------------------------
   821   // The following routine generates a subroutine to throw an asynchronous
   822   // UnknownError when an unsafe access gets a fault that could not be
   823   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   824   //
   825   // Arguments :
   826   //
   827   //      trapping PC:    O7
   828   //
   829   // Results:
   830   //     posts an asynchronous exception, skips the trapping instruction
   831   //
   833   address generate_handler_for_unsafe_access() {
   834     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   835     address start = __ pc();
   837     const int preserve_register_words = (64 * 2);
   838     Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS);
   840     Register Lthread = L7_thread_cache;
   841     int i;
   843     __ save_frame(0);
   844     __ mov(G1, L1);
   845     __ mov(G2, L2);
   846     __ mov(G3, L3);
   847     __ mov(G4, L4);
   848     __ mov(G5, L5);
   849     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   850       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
   851     }
   853     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
   854     BLOCK_COMMENT("call handle_unsafe_access");
   855     __ call(entry_point, relocInfo::runtime_call_type);
   856     __ delayed()->nop();
   858     __ mov(L1, G1);
   859     __ mov(L2, G2);
   860     __ mov(L3, G3);
   861     __ mov(L4, G4);
   862     __ mov(L5, G5);
   863     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   864       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
   865     }
   867     __ verify_thread();
   869     __ jmp(O0, 0);
   870     __ delayed()->restore();
   872     return start;
   873   }
   876   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
   877   // Arguments :
   878   //
   879   //      ret  : O0, returned
   880   //      icc/xcc: set as O0 (depending on wordSize)
   881   //      sub  : O1, argument, not changed
   882   //      super: O2, argument, not changed
   883   //      raddr: O7, blown by call
   884   address generate_partial_subtype_check() {
   885     __ align(CodeEntryAlignment);
   886     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
   887     address start = __ pc();
   888     Label miss;
   890 #if defined(COMPILER2) && !defined(_LP64)
   891     // Do not use a 'save' because it blows the 64-bit O registers.
   892     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
   893     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
   894     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
   895     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
   896     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
   897     Register Rret   = O0;
   898     Register Rsub   = O1;
   899     Register Rsuper = O2;
   900 #else
   901     __ save_frame(0);
   902     Register Rret   = I0;
   903     Register Rsub   = I1;
   904     Register Rsuper = I2;
   905 #endif
   907     Register L0_ary_len = L0;
   908     Register L1_ary_ptr = L1;
   909     Register L2_super   = L2;
   910     Register L3_index   = L3;
   912     __ check_klass_subtype_slow_path(Rsub, Rsuper,
   913                                      L0, L1, L2, L3,
   914                                      NULL, &miss);
   916     // Match falls through here.
   917     __ addcc(G0,0,Rret);        // set Z flags, Z result
   919 #if defined(COMPILER2) && !defined(_LP64)
   920     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   921     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   922     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   923     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   924     __ retl();                  // Result in Rret is zero; flags set to Z
   925     __ delayed()->add(SP,4*wordSize,SP);
   926 #else
   927     __ ret();                   // Result in Rret is zero; flags set to Z
   928     __ delayed()->restore();
   929 #endif
   931     __ BIND(miss);
   932     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
   934 #if defined(COMPILER2) && !defined(_LP64)
   935     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   936     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   937     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   938     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   939     __ retl();                  // Result in Rret is != 0; flags set to NZ
   940     __ delayed()->add(SP,4*wordSize,SP);
   941 #else
   942     __ ret();                   // Result in Rret is != 0; flags set to NZ
   943     __ delayed()->restore();
   944 #endif
   946     return start;
   947   }
   950   // Called from MacroAssembler::verify_oop
   951   //
   952   address generate_verify_oop_subroutine() {
   953     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
   955     address start = __ pc();
   957     __ verify_oop_subroutine();
   959     return start;
   960   }
   962   static address disjoint_byte_copy_entry;
   963   static address disjoint_short_copy_entry;
   964   static address disjoint_int_copy_entry;
   965   static address disjoint_long_copy_entry;
   966   static address disjoint_oop_copy_entry;
   968   static address byte_copy_entry;
   969   static address short_copy_entry;
   970   static address int_copy_entry;
   971   static address long_copy_entry;
   972   static address oop_copy_entry;
   974   static address checkcast_copy_entry;
   976   //
   977   // Verify that a register contains clean 32-bits positive value
   978   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
   979   //
   980   //  Input:
   981   //    Rint  -  32-bits value
   982   //    Rtmp  -  scratch
   983   //
   984   void assert_clean_int(Register Rint, Register Rtmp) {
   985 #if defined(ASSERT) && defined(_LP64)
   986     __ signx(Rint, Rtmp);
   987     __ cmp(Rint, Rtmp);
   988     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
   989 #endif
   990   }
   992   //
   993   //  Generate overlap test for array copy stubs
   994   //
   995   //  Input:
   996   //    O0    -  array1
   997   //    O1    -  array2
   998   //    O2    -  element count
   999   //
  1000   //  Kills temps:  O3, O4
  1001   //
  1002   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
  1003     assert(no_overlap_target != NULL, "must be generated");
  1004     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
  1006   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
  1007     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
  1009   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
  1010     const Register from       = O0;
  1011     const Register to         = O1;
  1012     const Register count      = O2;
  1013     const Register to_from    = O3; // to - from
  1014     const Register byte_count = O4; // count << log2_elem_size
  1016       __ subcc(to, from, to_from);
  1017       __ sll_ptr(count, log2_elem_size, byte_count);
  1018       if (NOLp == NULL)
  1019         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1020       else
  1021         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
  1022       __ delayed()->cmp(to_from, byte_count);
  1023       if (NOLp == NULL)
  1024         __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
  1025       else
  1026         __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
  1027       __ delayed()->nop();
  1030   //
  1031   //  Generate pre-write barrier for array.
  1032   //
  1033   //  Input:
  1034   //     addr     - register containing starting address
  1035   //     count    - register containing element count
  1036   //     tmp      - scratch register
  1037   //
  1038   //  The input registers are overwritten.
  1039   //
  1040   void gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1041     BarrierSet* bs = Universe::heap()->barrier_set();
  1042     if (bs->has_write_ref_pre_barrier()) {
  1043       assert(bs->has_write_ref_array_pre_opt(),
  1044              "Else unsupported barrier set.");
  1046       __ save_frame(0);
  1047       // Save the necessary global regs... will be used after.
  1048       if (addr->is_global()) {
  1049         __ mov(addr, L0);
  1051       if (count->is_global()) {
  1052         __ mov(count, L1);
  1054       __ mov(addr->after_save(), O0);
  1055       // Get the count into O1
  1056       __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
  1057       __ delayed()->mov(count->after_save(), O1);
  1058       if (addr->is_global()) {
  1059         __ mov(L0, addr);
  1061       if (count->is_global()) {
  1062         __ mov(L1, count);
  1064       __ restore();
  1067   //
  1068   //  Generate post-write barrier for array.
  1069   //
  1070   //  Input:
  1071   //     addr     - register containing starting address
  1072   //     count    - register containing element count
  1073   //     tmp      - scratch register
  1074   //
  1075   //  The input registers are overwritten.
  1076   //
  1077   void gen_write_ref_array_post_barrier(Register addr, Register count,
  1078                                    Register tmp) {
  1079     BarrierSet* bs = Universe::heap()->barrier_set();
  1081     switch (bs->kind()) {
  1082       case BarrierSet::G1SATBCT:
  1083       case BarrierSet::G1SATBCTLogging:
  1085           // Get some new fresh output registers.
  1086           __ save_frame(0);
  1087           __ mov(addr->after_save(), O0);
  1088           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
  1089           __ delayed()->mov(count->after_save(), O1);
  1090           __ restore();
  1092         break;
  1093       case BarrierSet::CardTableModRef:
  1094       case BarrierSet::CardTableExtension:
  1096           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1097           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1098           assert_different_registers(addr, count, tmp);
  1100           Label L_loop;
  1102           __ sll_ptr(count, LogBytesPerHeapOop, count);
  1103           __ sub(count, BytesPerHeapOop, count);
  1104           __ add(count, addr, count);
  1105           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1106           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
  1107           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
  1108           __ sub(count, addr, count);
  1109           Address rs(tmp, (address)ct->byte_map_base);
  1110           __ load_address(rs);
  1111         __ BIND(L_loop);
  1112           __ stb(G0, rs.base(), addr);
  1113           __ subcc(count, 1, count);
  1114           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1115           __ delayed()->add(addr, 1, addr);
  1118         break;
  1119       case BarrierSet::ModRef:
  1120         break;
  1121       default      :
  1122         ShouldNotReachHere();
  1128   // Copy big chunks forward with shift
  1129   //
  1130   // Inputs:
  1131   //   from      - source arrays
  1132   //   to        - destination array aligned to 8-bytes
  1133   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1134   //   count_dec - elements count's decrement equivalent to 16 bytes
  1135   //   L_copy_bytes - copy exit label
  1136   //
  1137   void copy_16_bytes_forward_with_shift(Register from, Register to,
  1138                      Register count, int count_dec, Label& L_copy_bytes) {
  1139     Label L_loop, L_aligned_copy, L_copy_last_bytes;
  1141     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1142       __ andcc(from, 7, G1); // misaligned bytes
  1143       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1144       __ delayed()->nop();
  1146     const Register left_shift  = G1; // left  shift bit counter
  1147     const Register right_shift = G5; // right shift bit counter
  1149       __ sll(G1, LogBitsPerByte, left_shift);
  1150       __ mov(64, right_shift);
  1151       __ sub(right_shift, left_shift, right_shift);
  1153     //
  1154     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1155     // to form 2 aligned 8-bytes chunks to store.
  1156     //
  1157       __ deccc(count, count_dec); // Pre-decrement 'count'
  1158       __ andn(from, 7, from);     // Align address
  1159       __ ldx(from, 0, O3);
  1160       __ inc(from, 8);
  1161       __ align(16);
  1162     __ BIND(L_loop);
  1163       __ ldx(from, 0, O4);
  1164       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1165       __ ldx(from, 8, G4);
  1166       __ inc(to, 16);
  1167       __ inc(from, 16);
  1168       __ sllx(O3, left_shift,  O3);
  1169       __ srlx(O4, right_shift, G3);
  1170       __ bset(G3, O3);
  1171       __ stx(O3, to, -16);
  1172       __ sllx(O4, left_shift,  O4);
  1173       __ srlx(G4, right_shift, G3);
  1174       __ bset(G3, O4);
  1175       __ stx(O4, to, -8);
  1176       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1177       __ delayed()->mov(G4, O3);
  1179       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1180       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1181       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1183       // copy 8 bytes, part of them already loaded in O3
  1184       __ ldx(from, 0, O4);
  1185       __ inc(to, 8);
  1186       __ inc(from, 8);
  1187       __ sllx(O3, left_shift,  O3);
  1188       __ srlx(O4, right_shift, G3);
  1189       __ bset(O3, G3);
  1190       __ stx(G3, to, -8);
  1192     __ BIND(L_copy_last_bytes);
  1193       __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
  1194       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1195       __ delayed()->sub(from, right_shift, from);       // restore address
  1197     __ BIND(L_aligned_copy);
  1200   // Copy big chunks backward with shift
  1201   //
  1202   // Inputs:
  1203   //   end_from  - source arrays end address
  1204   //   end_to    - destination array end address aligned to 8-bytes
  1205   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1206   //   count_dec - elements count's decrement equivalent to 16 bytes
  1207   //   L_aligned_copy - aligned copy exit label
  1208   //   L_copy_bytes   - copy exit label
  1209   //
  1210   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
  1211                      Register count, int count_dec,
  1212                      Label& L_aligned_copy, Label& L_copy_bytes) {
  1213     Label L_loop, L_copy_last_bytes;
  1215     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1216       __ andcc(end_from, 7, G1); // misaligned bytes
  1217       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1218       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
  1220     const Register left_shift  = G1; // left  shift bit counter
  1221     const Register right_shift = G5; // right shift bit counter
  1223       __ sll(G1, LogBitsPerByte, left_shift);
  1224       __ mov(64, right_shift);
  1225       __ sub(right_shift, left_shift, right_shift);
  1227     //
  1228     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1229     // to form 2 aligned 8-bytes chunks to store.
  1230     //
  1231       __ andn(end_from, 7, end_from);     // Align address
  1232       __ ldx(end_from, 0, O3);
  1233       __ align(16);
  1234     __ BIND(L_loop);
  1235       __ ldx(end_from, -8, O4);
  1236       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1237       __ ldx(end_from, -16, G4);
  1238       __ dec(end_to, 16);
  1239       __ dec(end_from, 16);
  1240       __ srlx(O3, right_shift, O3);
  1241       __ sllx(O4, left_shift,  G3);
  1242       __ bset(G3, O3);
  1243       __ stx(O3, end_to, 8);
  1244       __ srlx(O4, right_shift, O4);
  1245       __ sllx(G4, left_shift,  G3);
  1246       __ bset(G3, O4);
  1247       __ stx(O4, end_to, 0);
  1248       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1249       __ delayed()->mov(G4, O3);
  1251       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1252       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1253       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1255       // copy 8 bytes, part of them already loaded in O3
  1256       __ ldx(end_from, -8, O4);
  1257       __ dec(end_to, 8);
  1258       __ dec(end_from, 8);
  1259       __ srlx(O3, right_shift, O3);
  1260       __ sllx(O4, left_shift,  G3);
  1261       __ bset(O3, G3);
  1262       __ stx(G3, end_to, 0);
  1264     __ BIND(L_copy_last_bytes);
  1265       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
  1266       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1267       __ delayed()->add(end_from, left_shift, end_from); // restore address
  1270   //
  1271   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  1272   //  "from" and "to" addresses are assumed to be heapword aligned.
  1273   //
  1274   // Arguments for generated stub:
  1275   //      from:  O0
  1276   //      to:    O1
  1277   //      count: O2 treated as signed
  1278   //
  1279   address generate_disjoint_byte_copy(bool aligned, const char * name) {
  1280     __ align(CodeEntryAlignment);
  1281     StubCodeMark mark(this, "StubRoutines", name);
  1282     address start = __ pc();
  1284     Label L_skip_alignment, L_align;
  1285     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1287     const Register from      = O0;   // source array address
  1288     const Register to        = O1;   // destination array address
  1289     const Register count     = O2;   // elements count
  1290     const Register offset    = O5;   // offset from start of arrays
  1291     // O3, O4, G3, G4 are used as temp registers
  1293     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1295     if (!aligned)  disjoint_byte_copy_entry = __ pc();
  1296     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1297     if (!aligned)  BLOCK_COMMENT("Entry:");
  1299     // for short arrays, just do single element copy
  1300     __ cmp(count, 23); // 16 + 7
  1301     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1302     __ delayed()->mov(G0, offset);
  1304     if (aligned) {
  1305       // 'aligned' == true when it is known statically during compilation
  1306       // of this arraycopy call site that both 'from' and 'to' addresses
  1307       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1308       //
  1309       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1310       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
  1311       //
  1312 #ifndef _LP64
  1313       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
  1314       __ andcc(to, 7, G0);
  1315       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
  1316       __ delayed()->ld(from, 0, O3);
  1317       __ inc(from, 4);
  1318       __ inc(to, 4);
  1319       __ dec(count, 4);
  1320       __ st(O3, to, -4);
  1321     __ BIND(L_skip_alignment);
  1322 #endif
  1323     } else {
  1324       // copy bytes to align 'to' on 8 byte boundary
  1325       __ andcc(to, 7, G1); // misaligned bytes
  1326       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1327       __ delayed()->neg(G1);
  1328       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
  1329       __ sub(count, G1, count);
  1330     __ BIND(L_align);
  1331       __ ldub(from, 0, O3);
  1332       __ deccc(G1);
  1333       __ inc(from);
  1334       __ stb(O3, to, 0);
  1335       __ br(Assembler::notZero, false, Assembler::pt, L_align);
  1336       __ delayed()->inc(to);
  1337     __ BIND(L_skip_alignment);
  1339 #ifdef _LP64
  1340     if (!aligned)
  1341 #endif
  1343       // Copy with shift 16 bytes per iteration if arrays do not have
  1344       // the same alignment mod 8, otherwise fall through to the next
  1345       // code for aligned copy.
  1346       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
  1347       // Also jump over aligned copy after the copy with shift completed.
  1349       copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
  1352     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1353       __ and3(count, 7, G4); // Save count
  1354       __ srl(count, 3, count);
  1355      generate_disjoint_long_copy_core(aligned);
  1356       __ mov(G4, count);     // Restore count
  1358     // copy tailing bytes
  1359     __ BIND(L_copy_byte);
  1360       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1361       __ delayed()->nop();
  1362       __ align(16);
  1363     __ BIND(L_copy_byte_loop);
  1364       __ ldub(from, offset, O3);
  1365       __ deccc(count);
  1366       __ stb(O3, to, offset);
  1367       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
  1368       __ delayed()->inc(offset);
  1370     __ BIND(L_exit);
  1371       // O3, O4 are used as temp registers
  1372       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1373       __ retl();
  1374       __ delayed()->mov(G0, O0); // return 0
  1375     return start;
  1378   //
  1379   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  1380   //  "from" and "to" addresses are assumed to be heapword aligned.
  1381   //
  1382   // Arguments for generated stub:
  1383   //      from:  O0
  1384   //      to:    O1
  1385   //      count: O2 treated as signed
  1386   //
  1387   address generate_conjoint_byte_copy(bool aligned, const char * name) {
  1388     // Do reverse copy.
  1390     __ align(CodeEntryAlignment);
  1391     StubCodeMark mark(this, "StubRoutines", name);
  1392     address start = __ pc();
  1393     address nooverlap_target = aligned ?
  1394         StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
  1395         disjoint_byte_copy_entry;
  1397     Label L_skip_alignment, L_align, L_aligned_copy;
  1398     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1400     const Register from      = O0;   // source array address
  1401     const Register to        = O1;   // destination array address
  1402     const Register count     = O2;   // elements count
  1403     const Register end_from  = from; // source array end address
  1404     const Register end_to    = to;   // destination array end address
  1406     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1408     if (!aligned)  byte_copy_entry = __ pc();
  1409     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1410     if (!aligned)  BLOCK_COMMENT("Entry:");
  1412     array_overlap_test(nooverlap_target, 0);
  1414     __ add(to, count, end_to);       // offset after last copied element
  1416     // for short arrays, just do single element copy
  1417     __ cmp(count, 23); // 16 + 7
  1418     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1419     __ delayed()->add(from, count, end_from);
  1422       // Align end of arrays since they could be not aligned even
  1423       // when arrays itself are aligned.
  1425       // copy bytes to align 'end_to' on 8 byte boundary
  1426       __ andcc(end_to, 7, G1); // misaligned bytes
  1427       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1428       __ delayed()->nop();
  1429       __ sub(count, G1, count);
  1430     __ BIND(L_align);
  1431       __ dec(end_from);
  1432       __ dec(end_to);
  1433       __ ldub(end_from, 0, O3);
  1434       __ deccc(G1);
  1435       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
  1436       __ delayed()->stb(O3, end_to, 0);
  1437     __ BIND(L_skip_alignment);
  1439 #ifdef _LP64
  1440     if (aligned) {
  1441       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1442       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1443       // in unaligned case.
  1444       __ dec(count, 16);
  1445     } else
  1446 #endif
  1448       // Copy with shift 16 bytes per iteration if arrays do not have
  1449       // the same alignment mod 8, otherwise jump to the next
  1450       // code for aligned copy (and substracting 16 from 'count' before jump).
  1451       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1452       // Also jump over aligned copy after the copy with shift completed.
  1454       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
  1455                                         L_aligned_copy, L_copy_byte);
  1457     // copy 4 elements (16 bytes) at a time
  1458       __ align(16);
  1459     __ BIND(L_aligned_copy);
  1460       __ dec(end_from, 16);
  1461       __ ldx(end_from, 8, O3);
  1462       __ ldx(end_from, 0, O4);
  1463       __ dec(end_to, 16);
  1464       __ deccc(count, 16);
  1465       __ stx(O3, end_to, 8);
  1466       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1467       __ delayed()->stx(O4, end_to, 0);
  1468       __ inc(count, 16);
  1470     // copy 1 element (2 bytes) at a time
  1471     __ BIND(L_copy_byte);
  1472       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1473       __ delayed()->nop();
  1474       __ align(16);
  1475     __ BIND(L_copy_byte_loop);
  1476       __ dec(end_from);
  1477       __ dec(end_to);
  1478       __ ldub(end_from, 0, O4);
  1479       __ deccc(count);
  1480       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
  1481       __ delayed()->stb(O4, end_to, 0);
  1483     __ BIND(L_exit);
  1484     // O3, O4 are used as temp registers
  1485     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1486     __ retl();
  1487     __ delayed()->mov(G0, O0); // return 0
  1488     return start;
  1491   //
  1492   //  Generate stub for disjoint short copy.  If "aligned" is true, the
  1493   //  "from" and "to" addresses are assumed to be heapword aligned.
  1494   //
  1495   // Arguments for generated stub:
  1496   //      from:  O0
  1497   //      to:    O1
  1498   //      count: O2 treated as signed
  1499   //
  1500   address generate_disjoint_short_copy(bool aligned, const char * name) {
  1501     __ align(CodeEntryAlignment);
  1502     StubCodeMark mark(this, "StubRoutines", name);
  1503     address start = __ pc();
  1505     Label L_skip_alignment, L_skip_alignment2;
  1506     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1508     const Register from      = O0;   // source array address
  1509     const Register to        = O1;   // destination array address
  1510     const Register count     = O2;   // elements count
  1511     const Register offset    = O5;   // offset from start of arrays
  1512     // O3, O4, G3, G4 are used as temp registers
  1514     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1516     if (!aligned)  disjoint_short_copy_entry = __ pc();
  1517     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1518     if (!aligned)  BLOCK_COMMENT("Entry:");
  1520     // for short arrays, just do single element copy
  1521     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1522     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1523     __ delayed()->mov(G0, offset);
  1525     if (aligned) {
  1526       // 'aligned' == true when it is known statically during compilation
  1527       // of this arraycopy call site that both 'from' and 'to' addresses
  1528       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1529       //
  1530       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1531       // and 8 bytes - in 64-bits VM.
  1532       //
  1533 #ifndef _LP64
  1534       // copy a 2-elements word if necessary to align 'to' to 8 bytes
  1535       __ andcc(to, 7, G0);
  1536       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1537       __ delayed()->ld(from, 0, O3);
  1538       __ inc(from, 4);
  1539       __ inc(to, 4);
  1540       __ dec(count, 2);
  1541       __ st(O3, to, -4);
  1542     __ BIND(L_skip_alignment);
  1543 #endif
  1544     } else {
  1545       // copy 1 element if necessary to align 'to' on an 4 bytes
  1546       __ andcc(to, 3, G0);
  1547       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1548       __ delayed()->lduh(from, 0, O3);
  1549       __ inc(from, 2);
  1550       __ inc(to, 2);
  1551       __ dec(count);
  1552       __ sth(O3, to, -2);
  1553     __ BIND(L_skip_alignment);
  1555       // copy 2 elements to align 'to' on an 8 byte boundary
  1556       __ andcc(to, 7, G0);
  1557       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1558       __ delayed()->lduh(from, 0, O3);
  1559       __ dec(count, 2);
  1560       __ lduh(from, 2, O4);
  1561       __ inc(from, 4);
  1562       __ inc(to, 4);
  1563       __ sth(O3, to, -4);
  1564       __ sth(O4, to, -2);
  1565     __ BIND(L_skip_alignment2);
  1567 #ifdef _LP64
  1568     if (!aligned)
  1569 #endif
  1571       // Copy with shift 16 bytes per iteration if arrays do not have
  1572       // the same alignment mod 8, otherwise fall through to the next
  1573       // code for aligned copy.
  1574       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1575       // Also jump over aligned copy after the copy with shift completed.
  1577       copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
  1580     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1581       __ and3(count, 3, G4); // Save
  1582       __ srl(count, 2, count);
  1583      generate_disjoint_long_copy_core(aligned);
  1584       __ mov(G4, count); // restore
  1586     // copy 1 element at a time
  1587     __ BIND(L_copy_2_bytes);
  1588       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1589       __ delayed()->nop();
  1590       __ align(16);
  1591     __ BIND(L_copy_2_bytes_loop);
  1592       __ lduh(from, offset, O3);
  1593       __ deccc(count);
  1594       __ sth(O3, to, offset);
  1595       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
  1596       __ delayed()->inc(offset, 2);
  1598     __ BIND(L_exit);
  1599       // O3, O4 are used as temp registers
  1600       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1601       __ retl();
  1602       __ delayed()->mov(G0, O0); // return 0
  1603     return start;
  1606   //
  1607   //  Generate stub for conjoint short copy.  If "aligned" is true, the
  1608   //  "from" and "to" addresses are assumed to be heapword aligned.
  1609   //
  1610   // Arguments for generated stub:
  1611   //      from:  O0
  1612   //      to:    O1
  1613   //      count: O2 treated as signed
  1614   //
  1615   address generate_conjoint_short_copy(bool aligned, const char * name) {
  1616     // Do reverse copy.
  1618     __ align(CodeEntryAlignment);
  1619     StubCodeMark mark(this, "StubRoutines", name);
  1620     address start = __ pc();
  1621     address nooverlap_target = aligned ?
  1622         StubRoutines::arrayof_jshort_disjoint_arraycopy() :
  1623         disjoint_short_copy_entry;
  1625     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
  1626     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1628     const Register from      = O0;   // source array address
  1629     const Register to        = O1;   // destination array address
  1630     const Register count     = O2;   // elements count
  1631     const Register end_from  = from; // source array end address
  1632     const Register end_to    = to;   // destination array end address
  1634     const Register byte_count = O3;  // bytes count to copy
  1636     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1638     if (!aligned)  short_copy_entry = __ pc();
  1639     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1640     if (!aligned)  BLOCK_COMMENT("Entry:");
  1642     array_overlap_test(nooverlap_target, 1);
  1644     __ sllx(count, LogBytesPerShort, byte_count);
  1645     __ add(to, byte_count, end_to);  // offset after last copied element
  1647     // for short arrays, just do single element copy
  1648     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1649     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1650     __ delayed()->add(from, byte_count, end_from);
  1653       // Align end of arrays since they could be not aligned even
  1654       // when arrays itself are aligned.
  1656       // copy 1 element if necessary to align 'end_to' on an 4 bytes
  1657       __ andcc(end_to, 3, G0);
  1658       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1659       __ delayed()->lduh(end_from, -2, O3);
  1660       __ dec(end_from, 2);
  1661       __ dec(end_to, 2);
  1662       __ dec(count);
  1663       __ sth(O3, end_to, 0);
  1664     __ BIND(L_skip_alignment);
  1666       // copy 2 elements to align 'end_to' on an 8 byte boundary
  1667       __ andcc(end_to, 7, G0);
  1668       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1669       __ delayed()->lduh(end_from, -2, O3);
  1670       __ dec(count, 2);
  1671       __ lduh(end_from, -4, O4);
  1672       __ dec(end_from, 4);
  1673       __ dec(end_to, 4);
  1674       __ sth(O3, end_to, 2);
  1675       __ sth(O4, end_to, 0);
  1676     __ BIND(L_skip_alignment2);
  1678 #ifdef _LP64
  1679     if (aligned) {
  1680       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1681       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1682       // in unaligned case.
  1683       __ dec(count, 8);
  1684     } else
  1685 #endif
  1687       // Copy with shift 16 bytes per iteration if arrays do not have
  1688       // the same alignment mod 8, otherwise jump to the next
  1689       // code for aligned copy (and substracting 8 from 'count' before jump).
  1690       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1691       // Also jump over aligned copy after the copy with shift completed.
  1693       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
  1694                                         L_aligned_copy, L_copy_2_bytes);
  1696     // copy 4 elements (16 bytes) at a time
  1697       __ align(16);
  1698     __ BIND(L_aligned_copy);
  1699       __ dec(end_from, 16);
  1700       __ ldx(end_from, 8, O3);
  1701       __ ldx(end_from, 0, O4);
  1702       __ dec(end_to, 16);
  1703       __ deccc(count, 8);
  1704       __ stx(O3, end_to, 8);
  1705       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1706       __ delayed()->stx(O4, end_to, 0);
  1707       __ inc(count, 8);
  1709     // copy 1 element (2 bytes) at a time
  1710     __ BIND(L_copy_2_bytes);
  1711       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1712       __ delayed()->nop();
  1713     __ BIND(L_copy_2_bytes_loop);
  1714       __ dec(end_from, 2);
  1715       __ dec(end_to, 2);
  1716       __ lduh(end_from, 0, O4);
  1717       __ deccc(count);
  1718       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
  1719       __ delayed()->sth(O4, end_to, 0);
  1721     __ BIND(L_exit);
  1722     // O3, O4 are used as temp registers
  1723     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1724     __ retl();
  1725     __ delayed()->mov(G0, O0); // return 0
  1726     return start;
  1729   //
  1730   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  1731   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1732   //  to be heapword aligned.
  1733   //
  1734   // Arguments:
  1735   //      from:  O0
  1736   //      to:    O1
  1737   //      count: O2 treated as signed
  1738   //
  1739   void generate_disjoint_int_copy_core(bool aligned) {
  1741     Label L_skip_alignment, L_aligned_copy;
  1742     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1744     const Register from      = O0;   // source array address
  1745     const Register to        = O1;   // destination array address
  1746     const Register count     = O2;   // elements count
  1747     const Register offset    = O5;   // offset from start of arrays
  1748     // O3, O4, G3, G4 are used as temp registers
  1750     // 'aligned' == true when it is known statically during compilation
  1751     // of this arraycopy call site that both 'from' and 'to' addresses
  1752     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1753     //
  1754     // Aligned arrays have 4 bytes alignment in 32-bits VM
  1755     // and 8 bytes - in 64-bits VM.
  1756     //
  1757 #ifdef _LP64
  1758     if (!aligned)
  1759 #endif
  1761       // The next check could be put under 'ifndef' since the code in
  1762       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
  1764       // for short arrays, just do single element copy
  1765       __ cmp(count, 5); // 4 + 1 (20 bytes)
  1766       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1767       __ delayed()->mov(G0, offset);
  1769       // copy 1 element to align 'to' on an 8 byte boundary
  1770       __ andcc(to, 7, G0);
  1771       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1772       __ delayed()->ld(from, 0, O3);
  1773       __ inc(from, 4);
  1774       __ inc(to, 4);
  1775       __ dec(count);
  1776       __ st(O3, to, -4);
  1777     __ BIND(L_skip_alignment);
  1779     // if arrays have same alignment mod 8, do 4 elements copy
  1780       __ andcc(from, 7, G0);
  1781       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1782       __ delayed()->ld(from, 0, O3);
  1784     //
  1785     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1786     // to form 2 aligned 8-bytes chunks to store.
  1787     //
  1788     // copy_16_bytes_forward_with_shift() is not used here since this
  1789     // code is more optimal.
  1791     // copy with shift 4 elements (16 bytes) at a time
  1792       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
  1794       __ align(16);
  1795     __ BIND(L_copy_16_bytes);
  1796       __ ldx(from, 4, O4);
  1797       __ deccc(count, 4); // Can we do next iteration after this one?
  1798       __ ldx(from, 12, G4);
  1799       __ inc(to, 16);
  1800       __ inc(from, 16);
  1801       __ sllx(O3, 32, O3);
  1802       __ srlx(O4, 32, G3);
  1803       __ bset(G3, O3);
  1804       __ stx(O3, to, -16);
  1805       __ sllx(O4, 32, O4);
  1806       __ srlx(G4, 32, G3);
  1807       __ bset(G3, O4);
  1808       __ stx(O4, to, -8);
  1809       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  1810       __ delayed()->mov(G4, O3);
  1812       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  1813       __ delayed()->inc(count, 4); // restore 'count'
  1815     __ BIND(L_aligned_copy);
  1817     // copy 4 elements (16 bytes) at a time
  1818       __ and3(count, 1, G4); // Save
  1819       __ srl(count, 1, count);
  1820      generate_disjoint_long_copy_core(aligned);
  1821       __ mov(G4, count);     // Restore
  1823     // copy 1 element at a time
  1824     __ BIND(L_copy_4_bytes);
  1825       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1826       __ delayed()->nop();
  1827     __ BIND(L_copy_4_bytes_loop);
  1828       __ ld(from, offset, O3);
  1829       __ deccc(count);
  1830       __ st(O3, to, offset);
  1831       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
  1832       __ delayed()->inc(offset, 4);
  1833     __ BIND(L_exit);
  1836   //
  1837   //  Generate stub for disjoint int copy.  If "aligned" is true, the
  1838   //  "from" and "to" addresses are assumed to be heapword aligned.
  1839   //
  1840   // Arguments for generated stub:
  1841   //      from:  O0
  1842   //      to:    O1
  1843   //      count: O2 treated as signed
  1844   //
  1845   address generate_disjoint_int_copy(bool aligned, const char * name) {
  1846     __ align(CodeEntryAlignment);
  1847     StubCodeMark mark(this, "StubRoutines", name);
  1848     address start = __ pc();
  1850     const Register count = O2;
  1851     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1853     if (!aligned)  disjoint_int_copy_entry = __ pc();
  1854     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1855     if (!aligned)  BLOCK_COMMENT("Entry:");
  1857     generate_disjoint_int_copy_core(aligned);
  1859     // O3, O4 are used as temp registers
  1860     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  1861     __ retl();
  1862     __ delayed()->mov(G0, O0); // return 0
  1863     return start;
  1866   //
  1867   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  1868   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1869   //  to be heapword aligned.
  1870   //
  1871   // Arguments:
  1872   //      from:  O0
  1873   //      to:    O1
  1874   //      count: O2 treated as signed
  1875   //
  1876   void generate_conjoint_int_copy_core(bool aligned) {
  1877     // Do reverse copy.
  1879     Label L_skip_alignment, L_aligned_copy;
  1880     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1882     const Register from      = O0;   // source array address
  1883     const Register to        = O1;   // destination array address
  1884     const Register count     = O2;   // elements count
  1885     const Register end_from  = from; // source array end address
  1886     const Register end_to    = to;   // destination array end address
  1887     // O3, O4, O5, G3 are used as temp registers
  1889     const Register byte_count = O3;  // bytes count to copy
  1891       __ sllx(count, LogBytesPerInt, byte_count);
  1892       __ add(to, byte_count, end_to); // offset after last copied element
  1894       __ cmp(count, 5); // for short arrays, just do single element copy
  1895       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1896       __ delayed()->add(from, byte_count, end_from);
  1898     // copy 1 element to align 'to' on an 8 byte boundary
  1899       __ andcc(end_to, 7, G0);
  1900       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1901       __ delayed()->nop();
  1902       __ dec(count);
  1903       __ dec(end_from, 4);
  1904       __ dec(end_to,   4);
  1905       __ ld(end_from, 0, O4);
  1906       __ st(O4, end_to, 0);
  1907     __ BIND(L_skip_alignment);
  1909     // Check if 'end_from' and 'end_to' has the same alignment.
  1910       __ andcc(end_from, 7, G0);
  1911       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1912       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
  1914     // copy with shift 4 elements (16 bytes) at a time
  1915     //
  1916     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1917     // to form 2 aligned 8-bytes chunks to store.
  1918     //
  1919       __ ldx(end_from, -4, O3);
  1920       __ align(16);
  1921     __ BIND(L_copy_16_bytes);
  1922       __ ldx(end_from, -12, O4);
  1923       __ deccc(count, 4);
  1924       __ ldx(end_from, -20, O5);
  1925       __ dec(end_to, 16);
  1926       __ dec(end_from, 16);
  1927       __ srlx(O3, 32, O3);
  1928       __ sllx(O4, 32, G3);
  1929       __ bset(G3, O3);
  1930       __ stx(O3, end_to, 8);
  1931       __ srlx(O4, 32, O4);
  1932       __ sllx(O5, 32, G3);
  1933       __ bset(O4, G3);
  1934       __ stx(G3, end_to, 0);
  1935       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  1936       __ delayed()->mov(O5, O3);
  1938       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  1939       __ delayed()->inc(count, 4);
  1941     // copy 4 elements (16 bytes) at a time
  1942       __ align(16);
  1943     __ BIND(L_aligned_copy);
  1944       __ dec(end_from, 16);
  1945       __ ldx(end_from, 8, O3);
  1946       __ ldx(end_from, 0, O4);
  1947       __ dec(end_to, 16);
  1948       __ deccc(count, 4);
  1949       __ stx(O3, end_to, 8);
  1950       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1951       __ delayed()->stx(O4, end_to, 0);
  1952       __ inc(count, 4);
  1954     // copy 1 element (4 bytes) at a time
  1955     __ BIND(L_copy_4_bytes);
  1956       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1957       __ delayed()->nop();
  1958     __ BIND(L_copy_4_bytes_loop);
  1959       __ dec(end_from, 4);
  1960       __ dec(end_to, 4);
  1961       __ ld(end_from, 0, O4);
  1962       __ deccc(count);
  1963       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
  1964       __ delayed()->st(O4, end_to, 0);
  1965     __ BIND(L_exit);
  1968   //
  1969   //  Generate stub for conjoint int copy.  If "aligned" is true, the
  1970   //  "from" and "to" addresses are assumed to be heapword aligned.
  1971   //
  1972   // Arguments for generated stub:
  1973   //      from:  O0
  1974   //      to:    O1
  1975   //      count: O2 treated as signed
  1976   //
  1977   address generate_conjoint_int_copy(bool aligned, const char * name) {
  1978     __ align(CodeEntryAlignment);
  1979     StubCodeMark mark(this, "StubRoutines", name);
  1980     address start = __ pc();
  1982     address nooverlap_target = aligned ?
  1983         StubRoutines::arrayof_jint_disjoint_arraycopy() :
  1984         disjoint_int_copy_entry;
  1986     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  1988     if (!aligned)  int_copy_entry = __ pc();
  1989     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1990     if (!aligned)  BLOCK_COMMENT("Entry:");
  1992     array_overlap_test(nooverlap_target, 2);
  1994     generate_conjoint_int_copy_core(aligned);
  1996     // O3, O4 are used as temp registers
  1997     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  1998     __ retl();
  1999     __ delayed()->mov(G0, O0); // return 0
  2000     return start;
  2003   //
  2004   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  2005   //  "aligned" is ignored, because we must make the stronger
  2006   //  assumption that both addresses are always 64-bit aligned.
  2007   //
  2008   // Arguments:
  2009   //      from:  O0
  2010   //      to:    O1
  2011   //      count: O2 treated as signed
  2012   //
  2013   void generate_disjoint_long_copy_core(bool aligned) {
  2014     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2015     const Register from    = O0;  // source array address
  2016     const Register to      = O1;  // destination array address
  2017     const Register count   = O2;  // elements count
  2018     const Register offset0 = O4;  // element offset
  2019     const Register offset8 = O5;  // next element offset
  2021       __ deccc(count, 2);
  2022       __ mov(G0, offset0);   // offset from start of arrays (0)
  2023       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2024       __ delayed()->add(offset0, 8, offset8);
  2025       __ align(16);
  2026     __ BIND(L_copy_16_bytes);
  2027       __ ldx(from, offset0, O3);
  2028       __ ldx(from, offset8, G3);
  2029       __ deccc(count, 2);
  2030       __ stx(O3, to, offset0);
  2031       __ inc(offset0, 16);
  2032       __ stx(G3, to, offset8);
  2033       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2034       __ delayed()->inc(offset8, 16);
  2036     __ BIND(L_copy_8_bytes);
  2037       __ inccc(count, 2);
  2038       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
  2039       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
  2040       __ ldx(from, offset0, O3);
  2041       __ stx(O3, to, offset0);
  2042     __ BIND(L_exit);
  2045   //
  2046   //  Generate stub for disjoint long copy.
  2047   //  "aligned" is ignored, because we must make the stronger
  2048   //  assumption that both addresses are always 64-bit aligned.
  2049   //
  2050   // Arguments for generated stub:
  2051   //      from:  O0
  2052   //      to:    O1
  2053   //      count: O2 treated as signed
  2054   //
  2055   address generate_disjoint_long_copy(bool aligned, const char * name) {
  2056     __ align(CodeEntryAlignment);
  2057     StubCodeMark mark(this, "StubRoutines", name);
  2058     address start = __ pc();
  2060     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2062     if (!aligned)  disjoint_long_copy_entry = __ pc();
  2063     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2064     if (!aligned)  BLOCK_COMMENT("Entry:");
  2066     generate_disjoint_long_copy_core(aligned);
  2068     // O3, O4 are used as temp registers
  2069     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2070     __ retl();
  2071     __ delayed()->mov(G0, O0); // return 0
  2072     return start;
  2075   //
  2076   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  2077   //  "aligned" is ignored, because we must make the stronger
  2078   //  assumption that both addresses are always 64-bit aligned.
  2079   //
  2080   // Arguments:
  2081   //      from:  O0
  2082   //      to:    O1
  2083   //      count: O2 treated as signed
  2084   //
  2085   void generate_conjoint_long_copy_core(bool aligned) {
  2086     // Do reverse copy.
  2087     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2088     const Register from    = O0;  // source array address
  2089     const Register to      = O1;  // destination array address
  2090     const Register count   = O2;  // elements count
  2091     const Register offset8 = O4;  // element offset
  2092     const Register offset0 = O5;  // previous element offset
  2094       __ subcc(count, 1, count);
  2095       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
  2096       __ delayed()->sllx(count, LogBytesPerLong, offset8);
  2097       __ sub(offset8, 8, offset0);
  2098       __ align(16);
  2099     __ BIND(L_copy_16_bytes);
  2100       __ ldx(from, offset8, O2);
  2101       __ ldx(from, offset0, O3);
  2102       __ stx(O2, to, offset8);
  2103       __ deccc(offset8, 16);      // use offset8 as counter
  2104       __ stx(O3, to, offset0);
  2105       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
  2106       __ delayed()->dec(offset0, 16);
  2108     __ BIND(L_copy_8_bytes);
  2109       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
  2110       __ delayed()->nop();
  2111       __ ldx(from, 0, O3);
  2112       __ stx(O3, to, 0);
  2113     __ BIND(L_exit);
  2116   //  Generate stub for conjoint long copy.
  2117   //  "aligned" is ignored, because we must make the stronger
  2118   //  assumption that both addresses are always 64-bit aligned.
  2119   //
  2120   // Arguments for generated stub:
  2121   //      from:  O0
  2122   //      to:    O1
  2123   //      count: O2 treated as signed
  2124   //
  2125   address generate_conjoint_long_copy(bool aligned, const char * name) {
  2126     __ align(CodeEntryAlignment);
  2127     StubCodeMark mark(this, "StubRoutines", name);
  2128     address start = __ pc();
  2130     assert(!aligned, "usage");
  2131     address nooverlap_target = disjoint_long_copy_entry;
  2133     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2135     if (!aligned)  long_copy_entry = __ pc();
  2136     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2137     if (!aligned)  BLOCK_COMMENT("Entry:");
  2139     array_overlap_test(nooverlap_target, 3);
  2141     generate_conjoint_long_copy_core(aligned);
  2143     // O3, O4 are used as temp registers
  2144     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2145     __ retl();
  2146     __ delayed()->mov(G0, O0); // return 0
  2147     return start;
  2150   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  2151   //  "from" and "to" addresses are assumed to be heapword aligned.
  2152   //
  2153   // Arguments for generated stub:
  2154   //      from:  O0
  2155   //      to:    O1
  2156   //      count: O2 treated as signed
  2157   //
  2158   address generate_disjoint_oop_copy(bool aligned, const char * name) {
  2160     const Register from  = O0;  // source array address
  2161     const Register to    = O1;  // destination array address
  2162     const Register count = O2;  // elements count
  2164     __ align(CodeEntryAlignment);
  2165     StubCodeMark mark(this, "StubRoutines", name);
  2166     address start = __ pc();
  2168     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2170     if (!aligned)  disjoint_oop_copy_entry = __ pc();
  2171     // caller can pass a 64-bit byte count here
  2172     if (!aligned)  BLOCK_COMMENT("Entry:");
  2174     // save arguments for barrier generation
  2175     __ mov(to, G1);
  2176     __ mov(count, G5);
  2177     gen_write_ref_array_pre_barrier(G1, G5);
  2178   #ifdef _LP64
  2179     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2180     if (UseCompressedOops) {
  2181       generate_disjoint_int_copy_core(aligned);
  2182     } else {
  2183       generate_disjoint_long_copy_core(aligned);
  2185   #else
  2186     generate_disjoint_int_copy_core(aligned);
  2187   #endif
  2188     // O0 is used as temp register
  2189     gen_write_ref_array_post_barrier(G1, G5, O0);
  2191     // O3, O4 are used as temp registers
  2192     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2193     __ retl();
  2194     __ delayed()->mov(G0, O0); // return 0
  2195     return start;
  2198   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  2199   //  "from" and "to" addresses are assumed to be heapword aligned.
  2200   //
  2201   // Arguments for generated stub:
  2202   //      from:  O0
  2203   //      to:    O1
  2204   //      count: O2 treated as signed
  2205   //
  2206   address generate_conjoint_oop_copy(bool aligned, const char * name) {
  2208     const Register from  = O0;  // source array address
  2209     const Register to    = O1;  // destination array address
  2210     const Register count = O2;  // elements count
  2212     __ align(CodeEntryAlignment);
  2213     StubCodeMark mark(this, "StubRoutines", name);
  2214     address start = __ pc();
  2216     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2218     if (!aligned)  oop_copy_entry = __ pc();
  2219     // caller can pass a 64-bit byte count here
  2220     if (!aligned)  BLOCK_COMMENT("Entry:");
  2222     // save arguments for barrier generation
  2223     __ mov(to, G1);
  2224     __ mov(count, G5);
  2226     gen_write_ref_array_pre_barrier(G1, G5);
  2228     address nooverlap_target = aligned ?
  2229         StubRoutines::arrayof_oop_disjoint_arraycopy() :
  2230         disjoint_oop_copy_entry;
  2232     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
  2234   #ifdef _LP64
  2235     if (UseCompressedOops) {
  2236       generate_conjoint_int_copy_core(aligned);
  2237     } else {
  2238       generate_conjoint_long_copy_core(aligned);
  2240   #else
  2241     generate_conjoint_int_copy_core(aligned);
  2242   #endif
  2244     // O0 is used as temp register
  2245     gen_write_ref_array_post_barrier(G1, G5, O0);
  2247     // O3, O4 are used as temp registers
  2248     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2249     __ retl();
  2250     __ delayed()->mov(G0, O0); // return 0
  2251     return start;
  2255   // Helper for generating a dynamic type check.
  2256   // Smashes only the given temp registers.
  2257   void generate_type_check(Register sub_klass,
  2258                            Register super_check_offset,
  2259                            Register super_klass,
  2260                            Register temp,
  2261                            Label& L_success) {
  2262     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
  2264     BLOCK_COMMENT("type_check:");
  2266     Label L_miss, L_pop_to_miss;
  2268     assert_clean_int(super_check_offset, temp);
  2270     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
  2271                                      &L_success, &L_miss, NULL,
  2272                                      super_check_offset);
  2274     BLOCK_COMMENT("type_check_slow_path:");
  2275     __ save_frame(0);
  2276     __ check_klass_subtype_slow_path(sub_klass->after_save(),
  2277                                      super_klass->after_save(),
  2278                                      L0, L1, L2, L4,
  2279                                      NULL, &L_pop_to_miss);
  2280     __ ba(false, L_success);
  2281     __ delayed()->restore();
  2283     __ bind(L_pop_to_miss);
  2284     __ restore();
  2286     // Fall through on failure!
  2287     __ BIND(L_miss);
  2291   //  Generate stub for checked oop copy.
  2292   //
  2293   // Arguments for generated stub:
  2294   //      from:  O0
  2295   //      to:    O1
  2296   //      count: O2 treated as signed
  2297   //      ckoff: O3 (super_check_offset)
  2298   //      ckval: O4 (super_klass)
  2299   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  2300   //
  2301   address generate_checkcast_copy(const char* name) {
  2303     const Register O0_from   = O0;      // source array address
  2304     const Register O1_to     = O1;      // destination array address
  2305     const Register O2_count  = O2;      // elements count
  2306     const Register O3_ckoff  = O3;      // super_check_offset
  2307     const Register O4_ckval  = O4;      // super_klass
  2309     const Register O5_offset = O5;      // loop var, with stride wordSize
  2310     const Register G1_remain = G1;      // loop var, with stride -1
  2311     const Register G3_oop    = G3;      // actual oop copied
  2312     const Register G4_klass  = G4;      // oop._klass
  2313     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
  2315     __ align(CodeEntryAlignment);
  2316     StubCodeMark mark(this, "StubRoutines", name);
  2317     address start = __ pc();
  2319     gen_write_ref_array_pre_barrier(O1, O2);
  2321 #ifdef ASSERT
  2322     // We sometimes save a frame (see generate_type_check below).
  2323     // If this will cause trouble, let's fail now instead of later.
  2324     __ save_frame(0);
  2325     __ restore();
  2326 #endif
  2328 #ifdef ASSERT
  2329     // caller guarantees that the arrays really are different
  2330     // otherwise, we would have to make conjoint checks
  2331     { Label L;
  2332       __ mov(O3, G1);           // spill: overlap test smashes O3
  2333       __ mov(O4, G4);           // spill: overlap test smashes O4
  2334       array_overlap_test(L, LogBytesPerHeapOop);
  2335       __ stop("checkcast_copy within a single array");
  2336       __ bind(L);
  2337       __ mov(G1, O3);
  2338       __ mov(G4, O4);
  2340 #endif //ASSERT
  2342     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
  2344     checkcast_copy_entry = __ pc();
  2345     // caller can pass a 64-bit byte count here (from generic stub)
  2346     BLOCK_COMMENT("Entry:");
  2348     Label load_element, store_element, do_card_marks, fail, done;
  2349     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
  2350     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
  2351     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
  2353     // Empty array:  Nothing to do.
  2354     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2355     __ retl();
  2356     __ delayed()->set(0, O0);           // return 0 on (trivial) success
  2358     // ======== begin loop ========
  2359     // (Loop is rotated; its entry is load_element.)
  2360     // Loop variables:
  2361     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
  2362     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
  2363     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
  2364     __ align(16);
  2366     __ BIND(store_element);
  2367     __ deccc(G1_remain);                // decrement the count
  2368     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
  2369     __ inc(O5_offset, heapOopSize);     // step to next offset
  2370     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
  2371     __ delayed()->set(0, O0);           // return -1 on success
  2373     // ======== loop entry is here ========
  2374     __ BIND(load_element);
  2375     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
  2376     __ br_null(G3_oop, true, Assembler::pt, store_element);
  2377     __ delayed()->nop();
  2379     __ load_klass(G3_oop, G4_klass); // query the object klass
  2381     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
  2382                         // branch to this on success:
  2383                         store_element);
  2384     // ======== end loop ========
  2386     // It was a real error; we must depend on the caller to finish the job.
  2387     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
  2388     // Emit GC store barriers for the oops we have copied (O2 minus G1),
  2389     // and report their number to the caller.
  2390     __ BIND(fail);
  2391     __ subcc(O2_count, G1_remain, O2_count);
  2392     __ brx(Assembler::zero, false, Assembler::pt, done);
  2393     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
  2395     __ BIND(do_card_marks);
  2396     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
  2398     __ BIND(done);
  2399     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2400     __ retl();
  2401     __ delayed()->nop();             // return value in 00
  2403     return start;
  2407   //  Generate 'unsafe' array copy stub
  2408   //  Though just as safe as the other stubs, it takes an unscaled
  2409   //  size_t argument instead of an element count.
  2410   //
  2411   // Arguments for generated stub:
  2412   //      from:  O0
  2413   //      to:    O1
  2414   //      count: O2 byte count, treated as ssize_t, can be zero
  2415   //
  2416   // Examines the alignment of the operands and dispatches
  2417   // to a long, int, short, or byte copy loop.
  2418   //
  2419   address generate_unsafe_copy(const char* name) {
  2421     const Register O0_from   = O0;      // source array address
  2422     const Register O1_to     = O1;      // destination array address
  2423     const Register O2_count  = O2;      // elements count
  2425     const Register G1_bits   = G1;      // test copy of low bits
  2427     __ align(CodeEntryAlignment);
  2428     StubCodeMark mark(this, "StubRoutines", name);
  2429     address start = __ pc();
  2431     // bump this on entry, not on exit:
  2432     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
  2434     __ or3(O0_from, O1_to, G1_bits);
  2435     __ or3(O2_count,       G1_bits, G1_bits);
  2437     __ btst(BytesPerLong-1, G1_bits);
  2438     __ br(Assembler::zero, true, Assembler::pt,
  2439           long_copy_entry, relocInfo::runtime_call_type);
  2440     // scale the count on the way out:
  2441     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
  2443     __ btst(BytesPerInt-1, G1_bits);
  2444     __ br(Assembler::zero, true, Assembler::pt,
  2445           int_copy_entry, relocInfo::runtime_call_type);
  2446     // scale the count on the way out:
  2447     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
  2449     __ btst(BytesPerShort-1, G1_bits);
  2450     __ br(Assembler::zero, true, Assembler::pt,
  2451           short_copy_entry, relocInfo::runtime_call_type);
  2452     // scale the count on the way out:
  2453     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
  2455     __ br(Assembler::always, false, Assembler::pt,
  2456           byte_copy_entry, relocInfo::runtime_call_type);
  2457     __ delayed()->nop();
  2459     return start;
  2463   // Perform range checks on the proposed arraycopy.
  2464   // Kills the two temps, but nothing else.
  2465   // Also, clean the sign bits of src_pos and dst_pos.
  2466   void arraycopy_range_checks(Register src,     // source array oop (O0)
  2467                               Register src_pos, // source position (O1)
  2468                               Register dst,     // destination array oo (O2)
  2469                               Register dst_pos, // destination position (O3)
  2470                               Register length,  // length of copy (O4)
  2471                               Register temp1, Register temp2,
  2472                               Label& L_failed) {
  2473     BLOCK_COMMENT("arraycopy_range_checks:");
  2475     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  2477     const Register array_length = temp1;  // scratch
  2478     const Register end_pos      = temp2;  // scratch
  2480     // Note:  This next instruction may be in the delay slot of a branch:
  2481     __ add(length, src_pos, end_pos);  // src_pos + length
  2482     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
  2483     __ cmp(end_pos, array_length);
  2484     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2486     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  2487     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
  2488     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
  2489     __ cmp(end_pos, array_length);
  2490     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2492     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2493     // Move with sign extension can be used since they are positive.
  2494     __ delayed()->signx(src_pos, src_pos);
  2495     __ signx(dst_pos, dst_pos);
  2497     BLOCK_COMMENT("arraycopy_range_checks done");
  2501   //
  2502   //  Generate generic array copy stubs
  2503   //
  2504   //  Input:
  2505   //    O0    -  src oop
  2506   //    O1    -  src_pos
  2507   //    O2    -  dst oop
  2508   //    O3    -  dst_pos
  2509   //    O4    -  element count
  2510   //
  2511   //  Output:
  2512   //    O0 ==  0  -  success
  2513   //    O0 == -1  -  need to call System.arraycopy
  2514   //
  2515   address generate_generic_copy(const char *name) {
  2517     Label L_failed, L_objArray;
  2519     // Input registers
  2520     const Register src      = O0;  // source array oop
  2521     const Register src_pos  = O1;  // source position
  2522     const Register dst      = O2;  // destination array oop
  2523     const Register dst_pos  = O3;  // destination position
  2524     const Register length   = O4;  // elements count
  2526     // registers used as temp
  2527     const Register G3_src_klass = G3; // source array klass
  2528     const Register G4_dst_klass = G4; // destination array klass
  2529     const Register G5_lh        = G5; // layout handler
  2530     const Register O5_temp      = O5;
  2532     __ align(CodeEntryAlignment);
  2533     StubCodeMark mark(this, "StubRoutines", name);
  2534     address start = __ pc();
  2536     // bump this on entry, not on exit:
  2537     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
  2539     // In principle, the int arguments could be dirty.
  2540     //assert_clean_int(src_pos, G1);
  2541     //assert_clean_int(dst_pos, G1);
  2542     //assert_clean_int(length, G1);
  2544     //-----------------------------------------------------------------------
  2545     // Assembler stubs will be used for this call to arraycopy
  2546     // if the following conditions are met:
  2547     //
  2548     // (1) src and dst must not be null.
  2549     // (2) src_pos must not be negative.
  2550     // (3) dst_pos must not be negative.
  2551     // (4) length  must not be negative.
  2552     // (5) src klass and dst klass should be the same and not NULL.
  2553     // (6) src and dst should be arrays.
  2554     // (7) src_pos + length must not exceed length of src.
  2555     // (8) dst_pos + length must not exceed length of dst.
  2556     BLOCK_COMMENT("arraycopy initial argument checks");
  2558     //  if (src == NULL) return -1;
  2559     __ br_null(src, false, Assembler::pn, L_failed);
  2561     //  if (src_pos < 0) return -1;
  2562     __ delayed()->tst(src_pos);
  2563     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2564     __ delayed()->nop();
  2566     //  if (dst == NULL) return -1;
  2567     __ br_null(dst, false, Assembler::pn, L_failed);
  2569     //  if (dst_pos < 0) return -1;
  2570     __ delayed()->tst(dst_pos);
  2571     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2573     //  if (length < 0) return -1;
  2574     __ delayed()->tst(length);
  2575     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2577     BLOCK_COMMENT("arraycopy argument klass checks");
  2578     //  get src->klass()
  2579     if (UseCompressedOops) {
  2580       __ delayed()->nop(); // ??? not good
  2581       __ load_klass(src, G3_src_klass);
  2582     } else {
  2583       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
  2586 #ifdef ASSERT
  2587     //  assert(src->klass() != NULL);
  2588     BLOCK_COMMENT("assert klasses not null");
  2589     { Label L_a, L_b;
  2590       __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
  2591       __ delayed()->nop();
  2592       __ bind(L_a);
  2593       __ stop("broken null klass");
  2594       __ bind(L_b);
  2595       __ load_klass(dst, G4_dst_klass);
  2596       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
  2597       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
  2598       BLOCK_COMMENT("assert done");
  2600 #endif
  2602     // Load layout helper
  2603     //
  2604     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2605     // 32        30    24            16              8     2                 0
  2606     //
  2607     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2608     //
  2610     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2611                     Klass::layout_helper_offset_in_bytes();
  2613     // Load 32-bits signed value. Use br() instruction with it to check icc.
  2614     __ lduw(G3_src_klass, lh_offset, G5_lh);
  2616     if (UseCompressedOops) {
  2617       __ load_klass(dst, G4_dst_klass);
  2619     // Handle objArrays completely differently...
  2620     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2621     __ set(objArray_lh, O5_temp);
  2622     __ cmp(G5_lh,       O5_temp);
  2623     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
  2624     if (UseCompressedOops) {
  2625       __ delayed()->nop();
  2626     } else {
  2627       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
  2630     //  if (src->klass() != dst->klass()) return -1;
  2631     __ cmp(G3_src_klass, G4_dst_klass);
  2632     __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
  2633     __ delayed()->nop();
  2635     //  if (!src->is_Array()) return -1;
  2636     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
  2637     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
  2639     // At this point, it is known to be a typeArray (array_tag 0x3).
  2640 #ifdef ASSERT
  2641     __ delayed()->nop();
  2642     { Label L;
  2643       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
  2644       __ set(lh_prim_tag_in_place, O5_temp);
  2645       __ cmp(G5_lh,                O5_temp);
  2646       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
  2647       __ delayed()->nop();
  2648       __ stop("must be a primitive array");
  2649       __ bind(L);
  2651 #else
  2652     __ delayed();                               // match next insn to prev branch
  2653 #endif
  2655     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2656                            O5_temp, G4_dst_klass, L_failed);
  2658     // typeArrayKlass
  2659     //
  2660     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2661     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2662     //
  2664     const Register G4_offset = G4_dst_klass;    // array offset
  2665     const Register G3_elsize = G3_src_klass;    // log2 element size
  2667     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
  2668     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
  2669     __ add(src, G4_offset, src);       // src array offset
  2670     __ add(dst, G4_offset, dst);       // dst array offset
  2671     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
  2673     // next registers should be set before the jump to corresponding stub
  2674     const Register from     = O0;  // source array address
  2675     const Register to       = O1;  // destination array address
  2676     const Register count    = O2;  // elements count
  2678     // 'from', 'to', 'count' registers should be set in this order
  2679     // since they are the same as 'src', 'src_pos', 'dst'.
  2681     BLOCK_COMMENT("scale indexes to element size");
  2682     __ sll_ptr(src_pos, G3_elsize, src_pos);
  2683     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
  2684     __ add(src, src_pos, from);       // src_addr
  2685     __ add(dst, dst_pos, to);         // dst_addr
  2687     BLOCK_COMMENT("choose copy loop based on element size");
  2688     __ cmp(G3_elsize, 0);
  2689     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
  2690     __ delayed()->signx(length, count); // length
  2692     __ cmp(G3_elsize, LogBytesPerShort);
  2693     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
  2694     __ delayed()->signx(length, count); // length
  2696     __ cmp(G3_elsize, LogBytesPerInt);
  2697     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
  2698     __ delayed()->signx(length, count); // length
  2699 #ifdef ASSERT
  2700     { Label L;
  2701       __ cmp(G3_elsize, LogBytesPerLong);
  2702       __ br(Assembler::equal, false, Assembler::pt, L);
  2703       __ delayed()->nop();
  2704       __ stop("must be long copy, but elsize is wrong");
  2705       __ bind(L);
  2707 #endif
  2708     __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
  2709     __ delayed()->signx(length, count); // length
  2711     // objArrayKlass
  2712   __ BIND(L_objArray);
  2713     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
  2715     Label L_plain_copy, L_checkcast_copy;
  2716     //  test array classes for subtyping
  2717     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
  2718     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
  2719     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
  2721     // Identically typed arrays can be copied without element-wise checks.
  2722     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2723                            O5_temp, G5_lh, L_failed);
  2725     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  2726     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  2727     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  2728     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  2729     __ add(src, src_pos, from);       // src_addr
  2730     __ add(dst, dst_pos, to);         // dst_addr
  2731   __ BIND(L_plain_copy);
  2732     __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
  2733     __ delayed()->signx(length, count); // length
  2735   __ BIND(L_checkcast_copy);
  2736     // live at this point:  G3_src_klass, G4_dst_klass
  2738       // Before looking at dst.length, make sure dst is also an objArray.
  2739       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
  2740       __ cmp(G5_lh,                    O5_temp);
  2741       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
  2743       // It is safe to examine both src.length and dst.length.
  2744       __ delayed();                             // match next insn to prev branch
  2745       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2746                              O5_temp, G5_lh, L_failed);
  2748       // Marshal the base address arguments now, freeing registers.
  2749       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  2750       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  2751       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  2752       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  2753       __ add(src, src_pos, from);               // src_addr
  2754       __ add(dst, dst_pos, to);                 // dst_addr
  2755       __ signx(length, count);                  // length (reloaded)
  2757       Register sco_temp = O3;                   // this register is free now
  2758       assert_different_registers(from, to, count, sco_temp,
  2759                                  G4_dst_klass, G3_src_klass);
  2761       // Generate the type check.
  2762       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2763                         Klass::super_check_offset_offset_in_bytes());
  2764       __ lduw(G4_dst_klass, sco_offset, sco_temp);
  2765       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
  2766                           O5_temp, L_plain_copy);
  2768       // Fetch destination element klass from the objArrayKlass header.
  2769       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2770                        objArrayKlass::element_klass_offset_in_bytes());
  2772       // the checkcast_copy loop needs two extra arguments:
  2773       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
  2774       // lduw(O4, sco_offset, O3);              // sco of elem klass
  2776       __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
  2777       __ delayed()->lduw(O4, sco_offset, O3);
  2780   __ BIND(L_failed);
  2781     __ retl();
  2782     __ delayed()->sub(G0, 1, O0); // return -1
  2783     return start;
  2786   void generate_arraycopy_stubs() {
  2788     // Note:  the disjoint stubs must be generated first, some of
  2789     //        the conjoint stubs use them.
  2790     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2791     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2792     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
  2793     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
  2794     StubRoutines::_oop_disjoint_arraycopy    = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
  2795     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
  2796     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
  2797     StubRoutines::_arrayof_jint_disjoint_arraycopy   = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
  2798     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
  2799     StubRoutines::_arrayof_oop_disjoint_arraycopy    =  generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
  2801     StubRoutines::_jbyte_arraycopy  = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2802     StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2803     StubRoutines::_jint_arraycopy   = generate_conjoint_int_copy(false, "jint_arraycopy");
  2804     StubRoutines::_jlong_arraycopy  = generate_conjoint_long_copy(false, "jlong_arraycopy");
  2805     StubRoutines::_oop_arraycopy    = generate_conjoint_oop_copy(false, "oop_arraycopy");
  2806     StubRoutines::_arrayof_jbyte_arraycopy    = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
  2807     StubRoutines::_arrayof_jshort_arraycopy   = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
  2808 #ifdef _LP64
  2809     // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
  2810     StubRoutines::_arrayof_jint_arraycopy     = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
  2811   #else
  2812     StubRoutines::_arrayof_jint_arraycopy     = StubRoutines::_jint_arraycopy;
  2813 #endif
  2814     StubRoutines::_arrayof_jlong_arraycopy    = StubRoutines::_jlong_arraycopy;
  2815     StubRoutines::_arrayof_oop_arraycopy      = StubRoutines::_oop_arraycopy;
  2817     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2818     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2819     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2822   void generate_initial() {
  2823     // Generates all stubs and initializes the entry points
  2825     //------------------------------------------------------------------------------------------------------------------------
  2826     // entry points that exist in all platforms
  2827     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2828     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2829     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
  2831     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
  2832     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
  2834     //------------------------------------------------------------------------------------------------------------------------
  2835     // entry points that are platform specific
  2836     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
  2838     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
  2839     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
  2841 #if !defined(COMPILER2) && !defined(_LP64)
  2842     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2843     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2844     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2845     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
  2846     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
  2847     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2848     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
  2849 #endif  // COMPILER2 !=> _LP64
  2853   void generate_all() {
  2854     // Generates all stubs and initializes the entry points
  2856     // Generate partial_subtype_check first here since its code depends on
  2857     // UseZeroBaseCompressedOops which is defined after heap initialization.
  2858     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
  2859     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2860     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2861     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2862     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2863     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2864     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2865     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2867     StubRoutines::_handler_for_unsafe_access_entry =
  2868       generate_handler_for_unsafe_access();
  2870     // support for verify_oop (must happen after universe_init)
  2871     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
  2873     // arraycopy stubs used by compilers
  2874     generate_arraycopy_stubs();
  2878  public:
  2879   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2880     // replace the standard masm with a special one:
  2881     _masm = new MacroAssembler(code);
  2883     _stub_count = !all ? 0x100 : 0x200;
  2884     if (all) {
  2885       generate_all();
  2886     } else {
  2887       generate_initial();
  2890     // make sure this stub is available for all local calls
  2891     if (_atomic_add_stub.is_unbound()) {
  2892       // generate a second time, if necessary
  2893       (void) generate_atomic_add();
  2898  private:
  2899   int _stub_count;
  2900   void stub_prolog(StubCodeDesc* cdesc) {
  2901     # ifdef ASSERT
  2902       // put extra information in the stub code, to make it more readable
  2903 #ifdef _LP64
  2904 // Write the high part of the address
  2905 // [RGV] Check if there is a dependency on the size of this prolog
  2906       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
  2907 #endif
  2908       __ emit_data((intptr_t)cdesc,    relocInfo::none);
  2909       __ emit_data(++_stub_count, relocInfo::none);
  2910     # endif
  2911     align(true);
  2914   void align(bool at_header = false) {
  2915     // %%%%% move this constant somewhere else
  2916     // UltraSPARC cache line size is 8 instructions:
  2917     const unsigned int icache_line_size = 32;
  2918     const unsigned int icache_half_line_size = 16;
  2920     if (at_header) {
  2921       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
  2922         __ emit_data(0, relocInfo::none);
  2924     } else {
  2925       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
  2926         __ nop();
  2931 }; // end class declaration
  2934 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  2935 address StubGenerator::disjoint_short_copy_entry = NULL;
  2936 address StubGenerator::disjoint_int_copy_entry   = NULL;
  2937 address StubGenerator::disjoint_long_copy_entry  = NULL;
  2938 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  2940 address StubGenerator::byte_copy_entry  = NULL;
  2941 address StubGenerator::short_copy_entry = NULL;
  2942 address StubGenerator::int_copy_entry   = NULL;
  2943 address StubGenerator::long_copy_entry  = NULL;
  2944 address StubGenerator::oop_copy_entry   = NULL;
  2946 address StubGenerator::checkcast_copy_entry = NULL;
  2948 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2949   StubGenerator g(code, all);

mercurial