src/cpu/sparc/vm/sparc.ad

Wed, 08 Apr 2009 10:56:49 -0700

author
jrose
date
Wed, 08 Apr 2009 10:56:49 -0700
changeset 1145
e5b0439ef4ae
parent 1116
fbde8ec322d0
child 1162
6b2273dd6fa9
permissions
-rw-r--r--

6655638: dynamic languages need method handles
Summary: initial implementation, with known omissions (x86/64, sparc, compiler optim., c-oops, C++ interp.)
Reviewed-by: kvn, twisti, never

     1 //
     2 // Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
   197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
   198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
   199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
   200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
   201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
   202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
   203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
   204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
   205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
   206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
   207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
   208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
   209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
   210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
   211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
   212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
   213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
   214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
   215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
   216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
   217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
   218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
   219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
   220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
   221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
   222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
   223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
   224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
   225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
   226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
   227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // tertiary op of a LoadP or StoreP encoding
   475 #define REGP_OP true
   477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   479 static Register reg_to_register_object(int register_encoding);
   481 // Used by the DFA in dfa_sparc.cpp.
   482 // Check for being able to use a V9 branch-on-register.  Requires a
   483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   484 // extended.  Doesn't work following an integer ADD, for example, because of
   485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   487 // replace them with zero, which could become sign-extension in a different OS
   488 // release.  There's no obvious reason why an interrupt will ever fill these
   489 // bits with non-zero junk (the registers are reloaded with standard LD
   490 // instructions which either zero-fill or sign-fill).
   491 bool can_branch_register( Node *bol, Node *cmp ) {
   492   if( !BranchOnRegister ) return false;
   493 #ifdef _LP64
   494   if( cmp->Opcode() == Op_CmpP )
   495     return true;  // No problems with pointer compares
   496 #endif
   497   if( cmp->Opcode() == Op_CmpL )
   498     return true;  // No problems with long compares
   500   if( !SparcV9RegsHiBitsZero ) return false;
   501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   502       bol->as_Bool()->_test._test != BoolTest::eq )
   503      return false;
   505   // Check for comparing against a 'safe' value.  Any operation which
   506   // clears out the high word is safe.  Thus, loads and certain shifts
   507   // are safe, as are non-negative constants.  Any operation which
   508   // preserves zero bits in the high word is safe as long as each of its
   509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   510   // inputs are safe.  At present, the only important case to recognize
   511   // seems to be loads.  Constants should fold away, and shifts &
   512   // logicals can use the 'cc' forms.
   513   Node *x = cmp->in(1);
   514   if( x->is_Load() ) return true;
   515   if( x->is_Phi() ) {
   516     for( uint i = 1; i < x->req(); i++ )
   517       if( !x->in(i)->is_Load() )
   518         return false;
   519     return true;
   520   }
   521   return false;
   522 }
   524 // ****************************************************************************
   526 // REQUIRED FUNCTIONALITY
   528 // !!!!! Special hack to get all type of calls to specify the byte offset
   529 //       from the start of the call to the point where the return address
   530 //       will point.
   531 //       The "return address" is the address of the call instruction, plus 8.
   533 int MachCallStaticJavaNode::ret_addr_offset() {
   534   return NativeCall::instruction_size;  // call; delay slot
   535 }
   537 int MachCallDynamicJavaNode::ret_addr_offset() {
   538   int vtable_index = this->_vtable_index;
   539   if (vtable_index < 0) {
   540     // must be invalid_vtable_index, not nonvirtual_vtable_index
   541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   542     return (NativeMovConstReg::instruction_size +
   543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   544   } else {
   545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   548     int klass_load_size;
   549     if (UseCompressedOops) {
   550       assert(Universe::heap() != NULL, "java heap should be initialized");
   551       if (Universe::narrow_oop_base() == NULL)
   552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   553       else
   554         klass_load_size = 3*BytesPerInstWord;
   555     } else {
   556       klass_load_size = 1*BytesPerInstWord;
   557     }
   558     if( Assembler::is_simm13(v_off) ) {
   559       return klass_load_size +
   560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   561              NativeCall::instruction_size);  // call; delay slot
   562     } else {
   563       return klass_load_size +
   564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   565              NativeCall::instruction_size);  // call; delay slot
   566     }
   567   }
   568 }
   570 int MachCallRuntimeNode::ret_addr_offset() {
   571 #ifdef _LP64
   572   return NativeFarCall::instruction_size;  // farcall; delay slot
   573 #else
   574   return NativeCall::instruction_size;  // call; delay slot
   575 #endif
   576 }
   578 // Indicate if the safepoint node needs the polling page as an input.
   579 // Since Sparc does not have absolute addressing, it does.
   580 bool SafePointNode::needs_polling_address_input() {
   581   return true;
   582 }
   584 // emit an interrupt that is caught by the debugger (for debugging compiler)
   585 void emit_break(CodeBuffer &cbuf) {
   586   MacroAssembler _masm(&cbuf);
   587   __ breakpoint_trap();
   588 }
   590 #ifndef PRODUCT
   591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   592   st->print("TA");
   593 }
   594 #endif
   596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   597   emit_break(cbuf);
   598 }
   600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   601   return MachNode::size(ra_);
   602 }
   604 // Traceable jump
   605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   606   MacroAssembler _masm(&cbuf);
   607   Register rdest = reg_to_register_object(jump_target);
   608   __ JMP(rdest, 0);
   609   __ delayed()->nop();
   610 }
   612 // Traceable jump and set exception pc
   613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   614   MacroAssembler _masm(&cbuf);
   615   Register rdest = reg_to_register_object(jump_target);
   616   __ JMP(rdest, 0);
   617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   618 }
   620 void emit_nop(CodeBuffer &cbuf) {
   621   MacroAssembler _masm(&cbuf);
   622   __ nop();
   623 }
   625 void emit_illtrap(CodeBuffer &cbuf) {
   626   MacroAssembler _masm(&cbuf);
   627   __ illtrap(0);
   628 }
   631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   632   assert(n->rule() != loadUB_rule, "");
   634   intptr_t offset = 0;
   635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   636   const Node* addr = n->get_base_and_disp(offset, adr_type);
   637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   640   atype = atype->add_offset(offset);
   641   assert(disp32 == offset, "wrong disp32");
   642   return atype->_offset;
   643 }
   646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   Node* addr = n->in(2);
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   653     Node* a = addr->in(2/*AddPNode::Address*/);
   654     Node* o = addr->in(3/*AddPNode::Offset*/);
   655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   657     assert(atype->isa_oop_ptr(), "still an oop");
   658   }
   659   offset = atype->is_ptr()->_offset;
   660   if (offset != Type::OffsetBot)  offset += disp32;
   661   return offset;
   662 }
   664 // Standard Sparc opcode form2 field breakdown
   665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   667   int op = (f30 << 30) |
   668            (f29 << 29) |
   669            (f25 << 25) |
   670            (f22 << 22) |
   671            (f20 << 20) |
   672            (f19 << 19) |
   673            (f0  <<  0);
   674   *((int*)(cbuf.code_end())) = op;
   675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   676 }
   678 // Standard Sparc opcode form2 field breakdown
   679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   680   f0 >>= 10;           // Drop 10 bits
   681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   682   int op = (f30 << 30) |
   683            (f25 << 25) |
   684            (f22 << 22) |
   685            (f0  <<  0);
   686   *((int*)(cbuf.code_end())) = op;
   687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   688 }
   690 // Standard Sparc opcode form3 field breakdown
   691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   692   int op = (f30 << 30) |
   693            (f25 << 25) |
   694            (f19 << 19) |
   695            (f14 << 14) |
   696            (f5  <<  5) |
   697            (f0  <<  0);
   698   *((int*)(cbuf.code_end())) = op;
   699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   700 }
   702 // Standard Sparc opcode form3 field breakdown
   703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   704   simm13 &= (1<<13)-1; // Mask to 13 bits
   705   int op = (f30 << 30) |
   706            (f25 << 25) |
   707            (f19 << 19) |
   708            (f14 << 14) |
   709            (1   << 13) | // bit to indicate immediate-mode
   710            (simm13<<0);
   711   *((int*)(cbuf.code_end())) = op;
   712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   713 }
   715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   716   simm10 &= (1<<10)-1; // Mask to 10 bits
   717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   718 }
   720 #ifdef ASSERT
   721 // Helper function for VerifyOops in emit_form3_mem_reg
   722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   723   warning("VerifyOops encountered unexpected instruction:");
   724   n->dump(2);
   725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   726 }
   727 #endif
   730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   733 #ifdef ASSERT
   734   // The following code implements the +VerifyOops feature.
   735   // It verifies oop values which are loaded into or stored out of
   736   // the current method activation.  +VerifyOops complements techniques
   737   // like ScavengeALot, because it eagerly inspects oops in transit,
   738   // as they enter or leave the stack, as opposed to ScavengeALot,
   739   // which inspects oops "at rest", in the stack or heap, at safepoints.
   740   // For this reason, +VerifyOops can sometimes detect bugs very close
   741   // to their point of creation.  It can also serve as a cross-check
   742   // on the validity of oop maps, when used toegether with ScavengeALot.
   744   // It would be good to verify oops at other points, especially
   745   // when an oop is used as a base pointer for a load or store.
   746   // This is presently difficult, because it is hard to know when
   747   // a base address is biased or not.  (If we had such information,
   748   // it would be easy and useful to make a two-argument version of
   749   // verify_oop which unbiases the base, and performs verification.)
   751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   752   bool is_verified_oop_base  = false;
   753   bool is_verified_oop_load  = false;
   754   bool is_verified_oop_store = false;
   755   int tmp_enc = -1;
   756   if (VerifyOops && src1_enc != R_SP_enc) {
   757     // classify the op, mainly for an assert check
   758     int st_op = 0, ld_op = 0;
   759     switch (primary) {
   760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   764     case Assembler::std_op3:  st_op = Op_StoreL; break;
   765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   780     default: ShouldNotReachHere();
   781     }
   782     if (tertiary == REGP_OP) {
   783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   785       else                          ShouldNotReachHere();
   786       if (st_op) {
   787         // a store
   788         // inputs are (0:control, 1:memory, 2:address, 3:value)
   789         Node* n2 = n->in(3);
   790         if (n2 != NULL) {
   791           const Type* t = n2->bottom_type();
   792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   793         }
   794       } else {
   795         // a load
   796         const Type* t = n->bottom_type();
   797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   798       }
   799     }
   801     if (ld_op) {
   802       // a Load
   803       // inputs are (0:control, 1:memory, 2:address)
   804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   818           !(n->rule() == loadUB_rule)) {
   819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   820       }
   821     } else if (st_op) {
   822       // a Store
   823       // inputs are (0:control, 1:memory, 2:address, 3:value)
   824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   831       }
   832     }
   834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   835       Node* addr = n->in(2);
   836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   838         if (atype != NULL) {
   839           intptr_t offset = get_offset_from_base(n, atype, disp32);
   840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   841           if (offset != offset_2) {
   842             get_offset_from_base(n, atype, disp32);
   843             get_offset_from_base_2(n, atype, disp32);
   844           }
   845           assert(offset == offset_2, "different offsets");
   846           if (offset == disp32) {
   847             // we now know that src1 is a true oop pointer
   848             is_verified_oop_base = true;
   849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   850               if( primary == Assembler::ldd_op3 ) {
   851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   852               } else {
   853                 tmp_enc = dst_enc;
   854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   855                 assert(src1_enc != dst_enc, "");
   856               }
   857             }
   858           }
   859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   860                        || offset == oopDesc::mark_offset_in_bytes())) {
   861                       // loading the mark should not be allowed either, but
   862                       // we don't check this since it conflicts with InlineObjectHash
   863                       // usage of LoadINode to get the mark. We could keep the
   864                       // check if we create a new LoadMarkNode
   865             // but do not verify the object before its header is initialized
   866             ShouldNotReachHere();
   867           }
   868         }
   869       }
   870     }
   871   }
   872 #endif
   874   uint instr;
   875   instr = (Assembler::ldst_op << 30)
   876         | (dst_enc        << 25)
   877         | (primary        << 19)
   878         | (src1_enc       << 14);
   880   uint index = src2_enc;
   881   int disp = disp32;
   883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   884     disp += STACK_BIAS;
   886   // We should have a compiler bailout here rather than a guarantee.
   887   // Better yet would be some mechanism to handle variable-size matches correctly.
   888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   890   if( disp == 0 ) {
   891     // use reg-reg form
   892     // bit 13 is already zero
   893     instr |= index;
   894   } else {
   895     // use reg-imm form
   896     instr |= 0x00002000;          // set bit 13 to one
   897     instr |= disp & 0x1FFF;
   898   }
   900   uint *code = (uint*)cbuf.code_end();
   901   *code = instr;
   902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   904 #ifdef ASSERT
   905   {
   906     MacroAssembler _masm(&cbuf);
   907     if (is_verified_oop_base) {
   908       __ verify_oop(reg_to_register_object(src1_enc));
   909     }
   910     if (is_verified_oop_store) {
   911       __ verify_oop(reg_to_register_object(dst_enc));
   912     }
   913     if (tmp_enc != -1) {
   914       __ mov(O7, reg_to_register_object(tmp_enc));
   915     }
   916     if (is_verified_oop_load) {
   917       __ verify_oop(reg_to_register_object(dst_enc));
   918     }
   919   }
   920 #endif
   921 }
   923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
   926   uint instr;
   927   instr = (Assembler::ldst_op << 30)
   928         | (dst_enc        << 25)
   929         | (primary        << 19)
   930         | (src1_enc       << 14);
   932   int disp = disp32;
   933   int index    = src2_enc;
   935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   936     disp += STACK_BIAS;
   938   // We should have a compiler bailout here rather than a guarantee.
   939   // Better yet would be some mechanism to handle variable-size matches correctly.
   940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   942   if( disp != 0 ) {
   943     // use reg-reg form
   944     // set src2=R_O7 contains offset
   945     index = R_O7_enc;
   946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
   947   }
   948   instr |= (asi << 5);
   949   instr |= index;
   950   uint *code = (uint*)cbuf.code_end();
   951   *code = instr;
   952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   953 }
   955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   956   // The method which records debug information at every safepoint
   957   // expects the call to be the first instruction in the snippet as
   958   // it creates a PcDesc structure which tracks the offset of a call
   959   // from the start of the codeBlob. This offset is computed as
   960   // code_end() - code_begin() of the code which has been emitted
   961   // so far.
   962   // In this particular case we have skirted around the problem by
   963   // putting the "mov" instruction in the delay slot but the problem
   964   // may bite us again at some other point and a cleaner/generic
   965   // solution using relocations would be needed.
   966   MacroAssembler _masm(&cbuf);
   967   __ set_inst_mark();
   969   // We flush the current window just so that there is a valid stack copy
   970   // the fact that the current window becomes active again instantly is
   971   // not a problem there is nothing live in it.
   973 #ifdef ASSERT
   974   int startpos = __ offset();
   975 #endif /* ASSERT */
   977 #ifdef _LP64
   978   // Calls to the runtime or native may not be reachable from compiled code,
   979   // so we generate the far call sequence on 64 bit sparc.
   980   // This code sequence is relocatable to any address, even on LP64.
   981   if ( force_far_call ) {
   982     __ relocate(rtype);
   983     Address dest(O7, (address)entry_point);
   984     __ jumpl_to(dest, O7);
   985   }
   986   else
   987 #endif
   988   {
   989      __ call((address)entry_point, rtype);
   990   }
   992   if (preserve_g2)   __ delayed()->mov(G2, L7);
   993   else __ delayed()->nop();
   995   if (preserve_g2)   __ mov(L7, G2);
   997 #ifdef ASSERT
   998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   999 #ifdef _LP64
  1000     // Trash argument dump slots.
  1001     __ set(0xb0b8ac0db0b8ac0d, G1);
  1002     __ mov(G1, G5);
  1003     __ stx(G1, SP, STACK_BIAS + 0x80);
  1004     __ stx(G1, SP, STACK_BIAS + 0x88);
  1005     __ stx(G1, SP, STACK_BIAS + 0x90);
  1006     __ stx(G1, SP, STACK_BIAS + 0x98);
  1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1009 #else // _LP64
  1010     // this is also a native call, so smash the first 7 stack locations,
  1011     // and the various registers
  1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1014     // while [SP+0x44..0x58] are the argument dump slots.
  1015     __ set((intptr_t)0xbaadf00d, G1);
  1016     __ mov(G1, G5);
  1017     __ sllx(G1, 32, G1);
  1018     __ or3(G1, G5, G1);
  1019     __ mov(G1, G5);
  1020     __ stx(G1, SP, 0x40);
  1021     __ stx(G1, SP, 0x48);
  1022     __ stx(G1, SP, 0x50);
  1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1024 #endif // _LP64
  1026 #endif /*ASSERT*/
  1029 //=============================================================================
  1030 // REQUIRED FUNCTIONALITY for encoding
  1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1034 void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
  1035   MacroAssembler _masm(&cbuf);
  1036   if (ForceRelocatable) {
  1037     Address addr(reg, (address)val);
  1038     __ sethi(addr, ForceRelocatable);
  1039     __ add(addr, reg);
  1040   } else {
  1041     __ set(val, reg);
  1046 //=============================================================================
  1048 #ifndef PRODUCT
  1049 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1050   Compile* C = ra_->C;
  1052   for (int i = 0; i < OptoPrologueNops; i++) {
  1053     st->print_cr("NOP"); st->print("\t");
  1056   if( VerifyThread ) {
  1057     st->print_cr("Verify_Thread"); st->print("\t");
  1060   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1062   // Calls to C2R adapters often do not accept exceptional returns.
  1063   // We require that their callers must bang for them.  But be careful, because
  1064   // some VM calls (such as call site linkage) can use several kilobytes of
  1065   // stack.  But the stack safety zone should account for that.
  1066   // See bugs 4446381, 4468289, 4497237.
  1067   if (C->need_stack_bang(framesize)) {
  1068     st->print_cr("! stack bang"); st->print("\t");
  1071   if (Assembler::is_simm13(-framesize)) {
  1072     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1073   } else {
  1074     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1075     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1076     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1080 #endif
  1082 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1083   Compile* C = ra_->C;
  1084   MacroAssembler _masm(&cbuf);
  1086   for (int i = 0; i < OptoPrologueNops; i++) {
  1087     __ nop();
  1090   __ verify_thread();
  1092   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1093   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1094   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1096   // Calls to C2R adapters often do not accept exceptional returns.
  1097   // We require that their callers must bang for them.  But be careful, because
  1098   // some VM calls (such as call site linkage) can use several kilobytes of
  1099   // stack.  But the stack safety zone should account for that.
  1100   // See bugs 4446381, 4468289, 4497237.
  1101   if (C->need_stack_bang(framesize)) {
  1102     __ generate_stack_overflow_check(framesize);
  1105   if (Assembler::is_simm13(-framesize)) {
  1106     __ save(SP, -framesize, SP);
  1107   } else {
  1108     __ sethi(-framesize & ~0x3ff, G3);
  1109     __ add(G3, -framesize & 0x3ff, G3);
  1110     __ save(SP, G3, SP);
  1112   C->set_frame_complete( __ offset() );
  1115 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1116   return MachNode::size(ra_);
  1119 int MachPrologNode::reloc() const {
  1120   return 10; // a large enough number
  1123 //=============================================================================
  1124 #ifndef PRODUCT
  1125 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1126   Compile* C = ra_->C;
  1128   if( do_polling() && ra_->C->is_method_compilation() ) {
  1129     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1130 #ifdef _LP64
  1131     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1132 #else
  1133     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1134 #endif
  1137   if( do_polling() )
  1138     st->print("RET\n\t");
  1140   st->print("RESTORE");
  1142 #endif
  1144 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1145   MacroAssembler _masm(&cbuf);
  1146   Compile* C = ra_->C;
  1148   __ verify_thread();
  1150   // If this does safepoint polling, then do it here
  1151   if( do_polling() && ra_->C->is_method_compilation() ) {
  1152     Address polling_page(L0, (address)os::get_polling_page());
  1153     __ sethi(polling_page, false);
  1154     __ relocate(relocInfo::poll_return_type);
  1155     __ ld_ptr( L0, 0, G0 );
  1158   // If this is a return, then stuff the restore in the delay slot
  1159   if( do_polling() ) {
  1160     __ ret();
  1161     __ delayed()->restore();
  1162   } else {
  1163     __ restore();
  1167 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1168   return MachNode::size(ra_);
  1171 int MachEpilogNode::reloc() const {
  1172   return 16; // a large enough number
  1175 const Pipeline * MachEpilogNode::pipeline() const {
  1176   return MachNode::pipeline_class();
  1179 int MachEpilogNode::safepoint_offset() const {
  1180   assert( do_polling(), "no return for this epilog node");
  1181   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1184 //=============================================================================
  1186 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1187 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1188 static enum RC rc_class( OptoReg::Name reg ) {
  1189   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1190   if (OptoReg::is_stack(reg)) return rc_stack;
  1191   VMReg r = OptoReg::as_VMReg(reg);
  1192   if (r->is_Register()) return rc_int;
  1193   assert(r->is_FloatRegister(), "must be");
  1194   return rc_float;
  1197 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1198   if( cbuf ) {
  1199     // Better yet would be some mechanism to handle variable-size matches correctly
  1200     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1201       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1202     } else {
  1203       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1206 #ifndef PRODUCT
  1207   else if( !do_size ) {
  1208     if( size != 0 ) st->print("\n\t");
  1209     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1210     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1212 #endif
  1213   return size+4;
  1216 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1217   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1218 #ifndef PRODUCT
  1219   else if( !do_size ) {
  1220     if( size != 0 ) st->print("\n\t");
  1221     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1223 #endif
  1224   return size+4;
  1227 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1228                                         PhaseRegAlloc *ra_,
  1229                                         bool do_size,
  1230                                         outputStream* st ) const {
  1231   // Get registers to move
  1232   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1233   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1234   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1235   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1237   enum RC src_second_rc = rc_class(src_second);
  1238   enum RC src_first_rc = rc_class(src_first);
  1239   enum RC dst_second_rc = rc_class(dst_second);
  1240   enum RC dst_first_rc = rc_class(dst_first);
  1242   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1244   // Generate spill code!
  1245   int size = 0;
  1247   if( src_first == dst_first && src_second == dst_second )
  1248     return size;            // Self copy, no move
  1250   // --------------------------------------
  1251   // Check for mem-mem move.  Load into unused float registers and fall into
  1252   // the float-store case.
  1253   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1254     int offset = ra_->reg2offset(src_first);
  1255     // Further check for aligned-adjacent pair, so we can use a double load
  1256     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1257       src_second    = OptoReg::Name(R_F31_num);
  1258       src_second_rc = rc_float;
  1259       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1260     } else {
  1261       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1263     src_first    = OptoReg::Name(R_F30_num);
  1264     src_first_rc = rc_float;
  1267   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1268     int offset = ra_->reg2offset(src_second);
  1269     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1270     src_second    = OptoReg::Name(R_F31_num);
  1271     src_second_rc = rc_float;
  1274   // --------------------------------------
  1275   // Check for float->int copy; requires a trip through memory
  1276   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1277     int offset = frame::register_save_words*wordSize;
  1278     if( cbuf ) {
  1279       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1280       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1281       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1282       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1284 #ifndef PRODUCT
  1285     else if( !do_size ) {
  1286       if( size != 0 ) st->print("\n\t");
  1287       st->print(  "SUB    R_SP,16,R_SP\n");
  1288       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1289       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1290       st->print("\tADD    R_SP,16,R_SP\n");
  1292 #endif
  1293     size += 16;
  1296   // --------------------------------------
  1297   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1298   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1299   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1300   // there.  Misaligned sources only come from native-long-returns (handled
  1301   // special below).
  1302 #ifndef _LP64
  1303   if( src_first_rc == rc_int &&     // source is already big-endian
  1304       src_second_rc != rc_bad &&    // 64-bit move
  1305       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1306     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1307     // Do the big-endian flop.
  1308     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1309     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1311 #endif
  1313   // --------------------------------------
  1314   // Check for integer reg-reg copy
  1315   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1316 #ifndef _LP64
  1317     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1318       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1319       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1320       //       operand contains the least significant word of the 64-bit value and vice versa.
  1321       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1322       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1323       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1324       if( cbuf ) {
  1325         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1326         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1327         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1328 #ifndef PRODUCT
  1329       } else if( !do_size ) {
  1330         if( size != 0 ) st->print("\n\t");
  1331         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1332         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1333         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1334 #endif
  1336       return size+12;
  1338     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1339       // returning a long value in I0/I1
  1340       // a SpillCopy must be able to target a return instruction's reg_class
  1341       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1342       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1343       //       operand contains the least significant word of the 64-bit value and vice versa.
  1344       OptoReg::Name tdest = dst_first;
  1346       if (src_first == dst_first) {
  1347         tdest = OptoReg::Name(R_O7_num);
  1348         size += 4;
  1351       if( cbuf ) {
  1352         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1353         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1354         // ShrL_reg_imm6
  1355         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1356         // ShrR_reg_imm6  src, 0, dst
  1357         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1358         if (tdest != dst_first) {
  1359           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1362 #ifndef PRODUCT
  1363       else if( !do_size ) {
  1364         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1365         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1366         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1367         if (tdest != dst_first) {
  1368           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1371 #endif // PRODUCT
  1372       return size+8;
  1374 #endif // !_LP64
  1375     // Else normal reg-reg copy
  1376     assert( src_second != dst_first, "smashed second before evacuating it" );
  1377     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1378     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1379     // This moves an aligned adjacent pair.
  1380     // See if we are done.
  1381     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1382       return size;
  1385   // Check for integer store
  1386   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1387     int offset = ra_->reg2offset(dst_first);
  1388     // Further check for aligned-adjacent pair, so we can use a double store
  1389     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1390       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1391     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1394   // Check for integer load
  1395   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1396     int offset = ra_->reg2offset(src_first);
  1397     // Further check for aligned-adjacent pair, so we can use a double load
  1398     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1399       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1400     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1403   // Check for float reg-reg copy
  1404   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1405     // Further check for aligned-adjacent pair, so we can use a double move
  1406     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1407       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1408     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1411   // Check for float store
  1412   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1413     int offset = ra_->reg2offset(dst_first);
  1414     // Further check for aligned-adjacent pair, so we can use a double store
  1415     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1416       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1417     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1420   // Check for float load
  1421   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1422     int offset = ra_->reg2offset(src_first);
  1423     // Further check for aligned-adjacent pair, so we can use a double load
  1424     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1425       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1426     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1429   // --------------------------------------------------------------------
  1430   // Check for hi bits still needing moving.  Only happens for misaligned
  1431   // arguments to native calls.
  1432   if( src_second == dst_second )
  1433     return size;               // Self copy; no move
  1434   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1436 #ifndef _LP64
  1437   // In the LP64 build, all registers can be moved as aligned/adjacent
  1438   // pairs, so there's never any need to move the high bits separately.
  1439   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1440   // all sorts of silly alignment problems.
  1442   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1443   // 32-bits of a 64-bit register, but are needed in low bits of another
  1444   // register (else it's a hi-bits-to-hi-bits copy which should have
  1445   // happened already as part of a 64-bit move)
  1446   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1447     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1448     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1449     // Shift src_second down to dst_second's low bits.
  1450     if( cbuf ) {
  1451       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1452 #ifndef PRODUCT
  1453     } else if( !do_size ) {
  1454       if( size != 0 ) st->print("\n\t");
  1455       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1456 #endif
  1458     return size+4;
  1461   // Check for high word integer store.  Must down-shift the hi bits
  1462   // into a temp register, then fall into the case of storing int bits.
  1463   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1464     // Shift src_second down to dst_second's low bits.
  1465     if( cbuf ) {
  1466       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1467 #ifndef PRODUCT
  1468     } else if( !do_size ) {
  1469       if( size != 0 ) st->print("\n\t");
  1470       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1471 #endif
  1473     size+=4;
  1474     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1477   // Check for high word integer load
  1478   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1479     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1481   // Check for high word integer store
  1482   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1483     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1485   // Check for high word float store
  1486   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1487     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1489 #endif // !_LP64
  1491   Unimplemented();
  1494 #ifndef PRODUCT
  1495 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1496   implementation( NULL, ra_, false, st );
  1498 #endif
  1500 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1501   implementation( &cbuf, ra_, false, NULL );
  1504 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1505   return implementation( NULL, ra_, true, NULL );
  1508 //=============================================================================
  1509 #ifndef PRODUCT
  1510 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1511   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1513 #endif
  1515 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1516   MacroAssembler _masm(&cbuf);
  1517   for(int i = 0; i < _count; i += 1) {
  1518     __ nop();
  1522 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1523   return 4 * _count;
  1527 //=============================================================================
  1528 #ifndef PRODUCT
  1529 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1530   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1531   int reg = ra_->get_reg_first(this);
  1532   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1534 #endif
  1536 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1537   MacroAssembler _masm(&cbuf);
  1538   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1539   int reg = ra_->get_encode(this);
  1541   if (Assembler::is_simm13(offset)) {
  1542      __ add(SP, offset, reg_to_register_object(reg));
  1543   } else {
  1544      __ set(offset, O7);
  1545      __ add(SP, O7, reg_to_register_object(reg));
  1549 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1550   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1551   assert(ra_ == ra_->C->regalloc(), "sanity");
  1552   return ra_->C->scratch_emit_size(this);
  1555 //=============================================================================
  1557 // emit call stub, compiled java to interpretor
  1558 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1560   // Stub is fixed up when the corresponding call is converted from calling
  1561   // compiled code to calling interpreted code.
  1562   // set (empty), G5
  1563   // jmp -1
  1565   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1567   MacroAssembler _masm(&cbuf);
  1569   address base =
  1570   __ start_a_stub(Compile::MAX_stubs_size);
  1571   if (base == NULL)  return;  // CodeBuffer::expand failed
  1573   // static stub relocation stores the instruction address of the call
  1574   __ relocate(static_stub_Relocation::spec(mark));
  1576   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1578   __ set_inst_mark();
  1579   Address a(G3, (address)-1);
  1580   __ JUMP(a, 0);
  1582   __ delayed()->nop();
  1584   // Update current stubs pointer and restore code_end.
  1585   __ end_a_stub();
  1588 // size of call stub, compiled java to interpretor
  1589 uint size_java_to_interp() {
  1590   // This doesn't need to be accurate but it must be larger or equal to
  1591   // the real size of the stub.
  1592   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1593           NativeJump::instruction_size + // sethi; jmp; nop
  1594           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1596 // relocation entries for call stub, compiled java to interpretor
  1597 uint reloc_java_to_interp() {
  1598   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1602 //=============================================================================
  1603 #ifndef PRODUCT
  1604 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1605   st->print_cr("\nUEP:");
  1606 #ifdef    _LP64
  1607   if (UseCompressedOops) {
  1608     assert(Universe::heap() != NULL, "java heap should be initialized");
  1609     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1610     st->print_cr("\tSLL    R_G5,3,R_G5");
  1611     if (Universe::narrow_oop_base() != NULL)
  1612       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1613   } else {
  1614     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1616   st->print_cr("\tCMP    R_G5,R_G3" );
  1617   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1618 #else  // _LP64
  1619   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1620   st->print_cr("\tCMP    R_G5,R_G3" );
  1621   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1622 #endif // _LP64
  1624 #endif
  1626 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1627   MacroAssembler _masm(&cbuf);
  1628   Label L;
  1629   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1630   Register temp_reg   = G3;
  1631   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1633   // Load klass from receiver
  1634   __ load_klass(O0, temp_reg);
  1635   // Compare against expected klass
  1636   __ cmp(temp_reg, G5_ic_reg);
  1637   // Branch to miss code, checks xcc or icc depending
  1638   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1641 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1642   return MachNode::size(ra_);
  1646 //=============================================================================
  1648 uint size_exception_handler() {
  1649   if (TraceJumps) {
  1650     return (400); // just a guess
  1652   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1655 uint size_deopt_handler() {
  1656   if (TraceJumps) {
  1657     return (400); // just a guess
  1659   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1662 // Emit exception handler code.
  1663 int emit_exception_handler(CodeBuffer& cbuf) {
  1664   Register temp_reg = G3;
  1665   Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
  1666   MacroAssembler _masm(&cbuf);
  1668   address base =
  1669   __ start_a_stub(size_exception_handler());
  1670   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1672   int offset = __ offset();
  1674   __ JUMP(exception_blob, 0); // sethi;jmp
  1675   __ delayed()->nop();
  1677   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1679   __ end_a_stub();
  1681   return offset;
  1684 int emit_deopt_handler(CodeBuffer& cbuf) {
  1685   // Can't use any of the current frame's registers as we may have deopted
  1686   // at a poll and everything (including G3) can be live.
  1687   Register temp_reg = L0;
  1688   Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
  1689   MacroAssembler _masm(&cbuf);
  1691   address base =
  1692   __ start_a_stub(size_deopt_handler());
  1693   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1695   int offset = __ offset();
  1696   __ save_frame(0);
  1697   __ JUMP(deopt_blob, 0); // sethi;jmp
  1698   __ delayed()->restore();
  1700   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1702   __ end_a_stub();
  1703   return offset;
  1707 // Given a register encoding, produce a Integer Register object
  1708 static Register reg_to_register_object(int register_encoding) {
  1709   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1710   return as_Register(register_encoding);
  1713 // Given a register encoding, produce a single-precision Float Register object
  1714 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1715   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1716   return as_SingleFloatRegister(register_encoding);
  1719 // Given a register encoding, produce a double-precision Float Register object
  1720 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1721   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1722   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1723   return as_DoubleFloatRegister(register_encoding);
  1726 int Matcher::regnum_to_fpu_offset(int regnum) {
  1727   return regnum - 32; // The FP registers are in the second chunk
  1730 #ifdef ASSERT
  1731 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1732 #endif
  1734 // Vector width in bytes
  1735 const uint Matcher::vector_width_in_bytes(void) {
  1736   return 8;
  1739 // Vector ideal reg
  1740 const uint Matcher::vector_ideal_reg(void) {
  1741   return Op_RegD;
  1744 // USII supports fxtof through the whole range of number, USIII doesn't
  1745 const bool Matcher::convL2FSupported(void) {
  1746   return VM_Version::has_fast_fxtof();
  1749 // Is this branch offset short enough that a short branch can be used?
  1750 //
  1751 // NOTE: If the platform does not provide any short branch variants, then
  1752 //       this method should return false for offset 0.
  1753 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1754   return false;
  1757 const bool Matcher::isSimpleConstant64(jlong value) {
  1758   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1759   // Depends on optimizations in MacroAssembler::setx.
  1760   int hi = (int)(value >> 32);
  1761   int lo = (int)(value & ~0);
  1762   return (hi == 0) || (hi == -1) || (lo == 0);
  1765 // No scaling for the parameter the ClearArray node.
  1766 const bool Matcher::init_array_count_is_in_bytes = true;
  1768 // Threshold size for cleararray.
  1769 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1771 // Should the Matcher clone shifts on addressing modes, expecting them to
  1772 // be subsumed into complex addressing expressions or compute them into
  1773 // registers?  True for Intel but false for most RISCs
  1774 const bool Matcher::clone_shift_expressions = false;
  1776 // Is it better to copy float constants, or load them directly from memory?
  1777 // Intel can load a float constant from a direct address, requiring no
  1778 // extra registers.  Most RISCs will have to materialize an address into a
  1779 // register first, so they would do better to copy the constant from stack.
  1780 const bool Matcher::rematerialize_float_constants = false;
  1782 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1783 // needed.  Else we split the double into 2 integer pieces and move it
  1784 // piece-by-piece.  Only happens when passing doubles into C code as the
  1785 // Java calling convention forces doubles to be aligned.
  1786 #ifdef _LP64
  1787 const bool Matcher::misaligned_doubles_ok = true;
  1788 #else
  1789 const bool Matcher::misaligned_doubles_ok = false;
  1790 #endif
  1792 // No-op on SPARC.
  1793 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1796 // Advertise here if the CPU requires explicit rounding operations
  1797 // to implement the UseStrictFP mode.
  1798 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1800 // Do floats take an entire double register or just half?
  1801 const bool Matcher::float_in_double = false;
  1803 // Do ints take an entire long register or just half?
  1804 // Note that we if-def off of _LP64.
  1805 // The relevant question is how the int is callee-saved.  In _LP64
  1806 // the whole long is written but de-opt'ing will have to extract
  1807 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1808 #ifdef _LP64
  1809 const bool Matcher::int_in_long = true;
  1810 #else
  1811 const bool Matcher::int_in_long = false;
  1812 #endif
  1814 // Return whether or not this register is ever used as an argument.  This
  1815 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1816 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1817 // arguments in those registers not be available to the callee.
  1818 bool Matcher::can_be_java_arg( int reg ) {
  1819   // Standard sparc 6 args in registers
  1820   if( reg == R_I0_num ||
  1821       reg == R_I1_num ||
  1822       reg == R_I2_num ||
  1823       reg == R_I3_num ||
  1824       reg == R_I4_num ||
  1825       reg == R_I5_num ) return true;
  1826 #ifdef _LP64
  1827   // 64-bit builds can pass 64-bit pointers and longs in
  1828   // the high I registers
  1829   if( reg == R_I0H_num ||
  1830       reg == R_I1H_num ||
  1831       reg == R_I2H_num ||
  1832       reg == R_I3H_num ||
  1833       reg == R_I4H_num ||
  1834       reg == R_I5H_num ) return true;
  1836   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1837     return true;
  1840 #else
  1841   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1842   // Longs cannot be passed in O regs, because O regs become I regs
  1843   // after a 'save' and I regs get their high bits chopped off on
  1844   // interrupt.
  1845   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1846   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1847 #endif
  1848   // A few float args in registers
  1849   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1851   return false;
  1854 bool Matcher::is_spillable_arg( int reg ) {
  1855   return can_be_java_arg(reg);
  1858 // Register for DIVI projection of divmodI
  1859 RegMask Matcher::divI_proj_mask() {
  1860   ShouldNotReachHere();
  1861   return RegMask();
  1864 // Register for MODI projection of divmodI
  1865 RegMask Matcher::modI_proj_mask() {
  1866   ShouldNotReachHere();
  1867   return RegMask();
  1870 // Register for DIVL projection of divmodL
  1871 RegMask Matcher::divL_proj_mask() {
  1872   ShouldNotReachHere();
  1873   return RegMask();
  1876 // Register for MODL projection of divmodL
  1877 RegMask Matcher::modL_proj_mask() {
  1878   ShouldNotReachHere();
  1879   return RegMask();
  1882 %}
  1885 // The intptr_t operand types, defined by textual substitution.
  1886 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1887 #ifdef _LP64
  1888 #define immX    immL
  1889 #define immX13  immL13
  1890 #define iRegX   iRegL
  1891 #define g1RegX  g1RegL
  1892 #else
  1893 #define immX    immI
  1894 #define immX13  immI13
  1895 #define iRegX   iRegI
  1896 #define g1RegX  g1RegI
  1897 #endif
  1899 //----------ENCODING BLOCK-----------------------------------------------------
  1900 // This block specifies the encoding classes used by the compiler to output
  1901 // byte streams.  Encoding classes are parameterized macros used by
  1902 // Machine Instruction Nodes in order to generate the bit encoding of the
  1903 // instruction.  Operands specify their base encoding interface with the
  1904 // interface keyword.  There are currently supported four interfaces,
  1905 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1906 // operand to generate a function which returns its register number when
  1907 // queried.   CONST_INTER causes an operand to generate a function which
  1908 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1909 // operand to generate four functions which return the Base Register, the
  1910 // Index Register, the Scale Value, and the Offset Value of the operand when
  1911 // queried.  COND_INTER causes an operand to generate six functions which
  1912 // return the encoding code (ie - encoding bits for the instruction)
  1913 // associated with each basic boolean condition for a conditional instruction.
  1914 //
  1915 // Instructions specify two basic values for encoding.  Again, a function
  1916 // is available to check if the constant displacement is an oop. They use the
  1917 // ins_encode keyword to specify their encoding classes (which must be
  1918 // a sequence of enc_class names, and their parameters, specified in
  1919 // the encoding block), and they use the
  1920 // opcode keyword to specify, in order, their primary, secondary, and
  1921 // tertiary opcode.  Only the opcode sections which a particular instruction
  1922 // needs for encoding need to be specified.
  1923 encode %{
  1924   enc_class enc_untested %{
  1925 #ifdef ASSERT
  1926     MacroAssembler _masm(&cbuf);
  1927     __ untested("encoding");
  1928 #endif
  1929   %}
  1931   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1932     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1933                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1934   %}
  1936   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1937     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1938                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1939   %}
  1941   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
  1942     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
  1943                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
  1944   %}
  1946   enc_class form3_mem_prefetch_read( memory mem ) %{
  1947     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1948                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1949   %}
  1951   enc_class form3_mem_prefetch_write( memory mem ) %{
  1952     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1953                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1954   %}
  1956   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1957     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1958     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1959     guarantee($mem$$index == R_G0_enc, "double index?");
  1960     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1961     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1962     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1963     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1964   %}
  1966   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1967     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1968     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1969     guarantee($mem$$index == R_G0_enc, "double index?");
  1970     // Load long with 2 instructions
  1971     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1972     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1973   %}
  1975   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1976   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1977     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1978     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1979   %}
  1981   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1982     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1983     if( $rs2$$reg != $rd$$reg )
  1984       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1985   %}
  1987   // Target lo half of long
  1988   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1989     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1990     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1991       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1992   %}
  1994   // Source lo half of long
  1995   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1996     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1997     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1998       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1999   %}
  2001   // Target hi half of long
  2002   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2003     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2004   %}
  2006   // Source lo half of long, and leave it sign extended.
  2007   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2008     // Sign extend low half
  2009     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2010   %}
  2012   // Source hi half of long, and leave it sign extended.
  2013   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2014     // Shift high half to low half
  2015     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2016   %}
  2018   // Source hi half of long
  2019   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2020     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2021     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2022       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2023   %}
  2025   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2026     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2027   %}
  2029   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2030     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2031     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2032   %}
  2034   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2035     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2036     // clear if nothing else is happening
  2037     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2038     // blt,a,pn done
  2039     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2040     // mov dst,-1 in delay slot
  2041     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2042   %}
  2044   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2045     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2046   %}
  2048   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2049     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2050   %}
  2052   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2053     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2054   %}
  2056   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2057     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2058   %}
  2060   enc_class move_return_pc_to_o1() %{
  2061     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2062   %}
  2064 #ifdef _LP64
  2065   /* %%% merge with enc_to_bool */
  2066   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2067     MacroAssembler _masm(&cbuf);
  2069     Register   src_reg = reg_to_register_object($src$$reg);
  2070     Register   dst_reg = reg_to_register_object($dst$$reg);
  2071     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2072   %}
  2073 #endif
  2075   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2076     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2077     MacroAssembler _masm(&cbuf);
  2079     Register   p_reg = reg_to_register_object($p$$reg);
  2080     Register   q_reg = reg_to_register_object($q$$reg);
  2081     Register   y_reg = reg_to_register_object($y$$reg);
  2082     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2084     __ subcc( p_reg, q_reg,   p_reg );
  2085     __ add  ( p_reg, y_reg, tmp_reg );
  2086     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2087   %}
  2089   enc_class form_d2i_helper(regD src, regF dst) %{
  2090     // fcmp %fcc0,$src,$src
  2091     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2092     // branch %fcc0 not-nan, predict taken
  2093     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2094     // fdtoi $src,$dst
  2095     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2096     // fitos $dst,$dst (if nan)
  2097     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2098     // clear $dst (if nan)
  2099     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2100     // carry on here...
  2101   %}
  2103   enc_class form_d2l_helper(regD src, regD dst) %{
  2104     // fcmp %fcc0,$src,$src  check for NAN
  2105     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2106     // branch %fcc0 not-nan, predict taken
  2107     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2108     // fdtox $src,$dst   convert in delay slot
  2109     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2110     // fxtod $dst,$dst  (if nan)
  2111     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2112     // clear $dst (if nan)
  2113     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2114     // carry on here...
  2115   %}
  2117   enc_class form_f2i_helper(regF src, regF dst) %{
  2118     // fcmps %fcc0,$src,$src
  2119     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2120     // branch %fcc0 not-nan, predict taken
  2121     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2122     // fstoi $src,$dst
  2123     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2124     // fitos $dst,$dst (if nan)
  2125     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2126     // clear $dst (if nan)
  2127     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2128     // carry on here...
  2129   %}
  2131   enc_class form_f2l_helper(regF src, regD dst) %{
  2132     // fcmps %fcc0,$src,$src
  2133     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2134     // branch %fcc0 not-nan, predict taken
  2135     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2136     // fstox $src,$dst
  2137     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2138     // fxtod $dst,$dst (if nan)
  2139     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2140     // clear $dst (if nan)
  2141     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2142     // carry on here...
  2143   %}
  2145   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2146   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2147   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2148   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2150   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2152   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2153   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2155   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2156     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2157   %}
  2159   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2160     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2161   %}
  2163   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2164     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2165   %}
  2167   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2168     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2169   %}
  2171   enc_class form3_convI2F(regF rs2, regF rd) %{
  2172     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2173   %}
  2175   // Encloding class for traceable jumps
  2176   enc_class form_jmpl(g3RegP dest) %{
  2177     emit_jmpl(cbuf, $dest$$reg);
  2178   %}
  2180   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2181     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2182   %}
  2184   enc_class form2_nop() %{
  2185     emit_nop(cbuf);
  2186   %}
  2188   enc_class form2_illtrap() %{
  2189     emit_illtrap(cbuf);
  2190   %}
  2193   // Compare longs and convert into -1, 0, 1.
  2194   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2195     // CMP $src1,$src2
  2196     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2197     // blt,a,pn done
  2198     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2199     // mov dst,-1 in delay slot
  2200     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2201     // bgt,a,pn done
  2202     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2203     // mov dst,1 in delay slot
  2204     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2205     // CLR    $dst
  2206     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2207   %}
  2209   enc_class enc_PartialSubtypeCheck() %{
  2210     MacroAssembler _masm(&cbuf);
  2211     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2212     __ delayed()->nop();
  2213   %}
  2215   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2216     MacroAssembler _masm(&cbuf);
  2217     Label &L = *($labl$$label);
  2218     Assembler::Predict predict_taken =
  2219       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2221     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2222     __ delayed()->nop();
  2223   %}
  2225   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2226     MacroAssembler _masm(&cbuf);
  2227     Label &L = *($labl$$label);
  2228     Assembler::Predict predict_taken =
  2229       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2231     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2232     __ delayed()->nop();
  2233   %}
  2235   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2236     MacroAssembler _masm(&cbuf);
  2237     Label &L = *($labl$$label);
  2238     Assembler::Predict predict_taken =
  2239       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2241     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2242     __ delayed()->nop();
  2243   %}
  2245   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2246     MacroAssembler _masm(&cbuf);
  2247     Label &L = *($labl$$label);
  2248     Assembler::Predict predict_taken =
  2249       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2251     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2252     __ delayed()->nop();
  2253   %}
  2255   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2256     MacroAssembler _masm(&cbuf);
  2258     Register switch_reg       = as_Register($switch_val$$reg);
  2259     Register table_reg        = O7;
  2261     address table_base = __ address_table_constant(_index2label);
  2262     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2264     // Load table address
  2265     Address the_pc(table_reg, table_base, rspec);
  2266     __ load_address(the_pc);
  2268     // Jump to base address + switch value
  2269     __ ld_ptr(table_reg, switch_reg, table_reg);
  2270     __ jmp(table_reg, G0);
  2271     __ delayed()->nop();
  2273   %}
  2275   enc_class enc_ba( Label labl ) %{
  2276     MacroAssembler _masm(&cbuf);
  2277     Label &L = *($labl$$label);
  2278     __ ba(false, L);
  2279     __ delayed()->nop();
  2280   %}
  2282   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2283     MacroAssembler _masm(&cbuf);
  2284     Label &L = *$labl$$label;
  2285     Assembler::Predict predict_taken =
  2286       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2288     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2289     __ delayed()->nop();
  2290   %}
  2292   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2293     int op = (Assembler::arith_op << 30) |
  2294              ($dst$$reg << 25) |
  2295              (Assembler::movcc_op3 << 19) |
  2296              (1 << 18) |                    // cc2 bit for 'icc'
  2297              ($cmp$$cmpcode << 14) |
  2298              (0 << 13) |                    // select register move
  2299              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2300              ($src$$reg << 0);
  2301     *((int*)(cbuf.code_end())) = op;
  2302     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2303   %}
  2305   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2306     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2307     int op = (Assembler::arith_op << 30) |
  2308              ($dst$$reg << 25) |
  2309              (Assembler::movcc_op3 << 19) |
  2310              (1 << 18) |                    // cc2 bit for 'icc'
  2311              ($cmp$$cmpcode << 14) |
  2312              (1 << 13) |                    // select immediate move
  2313              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2314              (simm11 << 0);
  2315     *((int*)(cbuf.code_end())) = op;
  2316     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2317   %}
  2319   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2320     int op = (Assembler::arith_op << 30) |
  2321              ($dst$$reg << 25) |
  2322              (Assembler::movcc_op3 << 19) |
  2323              (0 << 18) |                    // cc2 bit for 'fccX'
  2324              ($cmp$$cmpcode << 14) |
  2325              (0 << 13) |                    // select register move
  2326              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2327              ($src$$reg << 0);
  2328     *((int*)(cbuf.code_end())) = op;
  2329     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2330   %}
  2332   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2333     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2334     int op = (Assembler::arith_op << 30) |
  2335              ($dst$$reg << 25) |
  2336              (Assembler::movcc_op3 << 19) |
  2337              (0 << 18) |                    // cc2 bit for 'fccX'
  2338              ($cmp$$cmpcode << 14) |
  2339              (1 << 13) |                    // select immediate move
  2340              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2341              (simm11 << 0);
  2342     *((int*)(cbuf.code_end())) = op;
  2343     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2344   %}
  2346   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2347     int op = (Assembler::arith_op << 30) |
  2348              ($dst$$reg << 25) |
  2349              (Assembler::fpop2_op3 << 19) |
  2350              (0 << 18) |
  2351              ($cmp$$cmpcode << 14) |
  2352              (1 << 13) |                    // select register move
  2353              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2354              ($primary << 5) |              // select single, double or quad
  2355              ($src$$reg << 0);
  2356     *((int*)(cbuf.code_end())) = op;
  2357     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2358   %}
  2360   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2361     int op = (Assembler::arith_op << 30) |
  2362              ($dst$$reg << 25) |
  2363              (Assembler::fpop2_op3 << 19) |
  2364              (0 << 18) |
  2365              ($cmp$$cmpcode << 14) |
  2366              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2367              ($primary << 5) |              // select single, double or quad
  2368              ($src$$reg << 0);
  2369     *((int*)(cbuf.code_end())) = op;
  2370     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2371   %}
  2373   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2374   // the condition comes from opcode-field instead of an argument.
  2375   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2376     int op = (Assembler::arith_op << 30) |
  2377              ($dst$$reg << 25) |
  2378              (Assembler::movcc_op3 << 19) |
  2379              (1 << 18) |                    // cc2 bit for 'icc'
  2380              ($primary << 14) |
  2381              (0 << 13) |                    // select register move
  2382              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2383              ($src$$reg << 0);
  2384     *((int*)(cbuf.code_end())) = op;
  2385     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2386   %}
  2388   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2389     int op = (Assembler::arith_op << 30) |
  2390              ($dst$$reg << 25) |
  2391              (Assembler::movcc_op3 << 19) |
  2392              (6 << 16) |                    // cc2 bit for 'xcc'
  2393              ($primary << 14) |
  2394              (0 << 13) |                    // select register move
  2395              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2396              ($src$$reg << 0);
  2397     *((int*)(cbuf.code_end())) = op;
  2398     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2399   %}
  2401   // Utility encoding for loading a 64 bit Pointer into a register
  2402   // The 64 bit pointer is stored in the generated code stream
  2403   enc_class SetPtr( immP src, iRegP rd ) %{
  2404     Register dest = reg_to_register_object($rd$$reg);
  2405     // [RGV] This next line should be generated from ADLC
  2406     if ( _opnds[1]->constant_is_oop() ) {
  2407       intptr_t val = $src$$constant;
  2408       MacroAssembler _masm(&cbuf);
  2409       __ set_oop_constant((jobject)val, dest);
  2410     } else {          // non-oop pointers, e.g. card mark base, heap top
  2411       emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
  2413   %}
  2415   enc_class Set13( immI13 src, iRegI rd ) %{
  2416     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2417   %}
  2419   enc_class SetHi22( immI src, iRegI rd ) %{
  2420     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2421   %}
  2423   enc_class Set32( immI src, iRegI rd ) %{
  2424     MacroAssembler _masm(&cbuf);
  2425     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2426   %}
  2428   enc_class SetNull( iRegI rd ) %{
  2429     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2430   %}
  2432   enc_class call_epilog %{
  2433     if( VerifyStackAtCalls ) {
  2434       MacroAssembler _masm(&cbuf);
  2435       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2436       Register temp_reg = G3;
  2437       __ add(SP, framesize, temp_reg);
  2438       __ cmp(temp_reg, FP);
  2439       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2441   %}
  2443   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2444   // to G1 so the register allocator will not have to deal with the misaligned register
  2445   // pair.
  2446   enc_class adjust_long_from_native_call %{
  2447 #ifndef _LP64
  2448     if (returns_long()) {
  2449       //    sllx  O0,32,O0
  2450       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2451       //    srl   O1,0,O1
  2452       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2453       //    or    O0,O1,G1
  2454       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2456 #endif
  2457   %}
  2459   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2460     // CALL directly to the runtime
  2461     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2462     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2463                     /*preserve_g2=*/true, /*force far call*/true);
  2464   %}
  2466   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2467     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2468     // who we intended to call.
  2469     if ( !_method ) {
  2470       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2471     } else if (_optimized_virtual) {
  2472       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2473     } else {
  2474       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2476     if( _method ) {  // Emit stub for static call
  2477       emit_java_to_interp(cbuf);
  2479   %}
  2481   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2482     MacroAssembler _masm(&cbuf);
  2483     __ set_inst_mark();
  2484     int vtable_index = this->_vtable_index;
  2485     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2486     if (vtable_index < 0) {
  2487       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2488       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2489       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2490       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2491       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2492       // !!!!!
  2493       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2494       // emit_call_dynamic_prologue( cbuf );
  2495       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2497       address  virtual_call_oop_addr = __ inst_mark();
  2498       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2499       // who we intended to call.
  2500       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2501       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2502     } else {
  2503       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2504       // Just go thru the vtable
  2505       // get receiver klass (receiver already checked for non-null)
  2506       // If we end up going thru a c2i adapter interpreter expects method in G5
  2507       int off = __ offset();
  2508       __ load_klass(O0, G3_scratch);
  2509       int klass_load_size;
  2510       if (UseCompressedOops) {
  2511         assert(Universe::heap() != NULL, "java heap should be initialized");
  2512         if (Universe::narrow_oop_base() == NULL)
  2513           klass_load_size = 2*BytesPerInstWord;
  2514         else
  2515           klass_load_size = 3*BytesPerInstWord;
  2516       } else {
  2517         klass_load_size = 1*BytesPerInstWord;
  2519       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2520       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2521       if( __ is_simm13(v_off) ) {
  2522         __ ld_ptr(G3, v_off, G5_method);
  2523       } else {
  2524         // Generate 2 instructions
  2525         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2526         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2527         // ld_ptr, set_hi, set
  2528         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2529                "Unexpected instruction size(s)");
  2530         __ ld_ptr(G3, G5_method, G5_method);
  2532       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2533       // However it may very well end up in handle_wrong_method if the
  2534       // method is abstract for the particular class.
  2535       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2536       // jump to target (either compiled code or c2iadapter)
  2537       __ jmpl(G3_scratch, G0, O7);
  2538       __ delayed()->nop();
  2540   %}
  2542   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2543     MacroAssembler _masm(&cbuf);
  2545     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2546     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2547                               // we might be calling a C2I adapter which needs it.
  2549     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2550     // Load nmethod
  2551     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2553     // CALL to compiled java, indirect the contents of G3
  2554     __ set_inst_mark();
  2555     __ callr(temp_reg, G0);
  2556     __ delayed()->nop();
  2557   %}
  2559 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2560     MacroAssembler _masm(&cbuf);
  2561     Register Rdividend = reg_to_register_object($src1$$reg);
  2562     Register Rdivisor = reg_to_register_object($src2$$reg);
  2563     Register Rresult = reg_to_register_object($dst$$reg);
  2565     __ sra(Rdivisor, 0, Rdivisor);
  2566     __ sra(Rdividend, 0, Rdividend);
  2567     __ sdivx(Rdividend, Rdivisor, Rresult);
  2568 %}
  2570 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2571     MacroAssembler _masm(&cbuf);
  2573     Register Rdividend = reg_to_register_object($src1$$reg);
  2574     int divisor = $imm$$constant;
  2575     Register Rresult = reg_to_register_object($dst$$reg);
  2577     __ sra(Rdividend, 0, Rdividend);
  2578     __ sdivx(Rdividend, divisor, Rresult);
  2579 %}
  2581 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2582     MacroAssembler _masm(&cbuf);
  2583     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2584     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2585     Register Rdst  = reg_to_register_object($dst$$reg);
  2587     __ sra( Rsrc1, 0, Rsrc1 );
  2588     __ sra( Rsrc2, 0, Rsrc2 );
  2589     __ mulx( Rsrc1, Rsrc2, Rdst );
  2590     __ srlx( Rdst, 32, Rdst );
  2591 %}
  2593 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2594     MacroAssembler _masm(&cbuf);
  2595     Register Rdividend = reg_to_register_object($src1$$reg);
  2596     Register Rdivisor = reg_to_register_object($src2$$reg);
  2597     Register Rresult = reg_to_register_object($dst$$reg);
  2598     Register Rscratch = reg_to_register_object($scratch$$reg);
  2600     assert(Rdividend != Rscratch, "");
  2601     assert(Rdivisor  != Rscratch, "");
  2603     __ sra(Rdividend, 0, Rdividend);
  2604     __ sra(Rdivisor, 0, Rdivisor);
  2605     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2606     __ mulx(Rscratch, Rdivisor, Rscratch);
  2607     __ sub(Rdividend, Rscratch, Rresult);
  2608 %}
  2610 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2611     MacroAssembler _masm(&cbuf);
  2613     Register Rdividend = reg_to_register_object($src1$$reg);
  2614     int divisor = $imm$$constant;
  2615     Register Rresult = reg_to_register_object($dst$$reg);
  2616     Register Rscratch = reg_to_register_object($scratch$$reg);
  2618     assert(Rdividend != Rscratch, "");
  2620     __ sra(Rdividend, 0, Rdividend);
  2621     __ sdivx(Rdividend, divisor, Rscratch);
  2622     __ mulx(Rscratch, divisor, Rscratch);
  2623     __ sub(Rdividend, Rscratch, Rresult);
  2624 %}
  2626 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2627     MacroAssembler _masm(&cbuf);
  2629     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2630     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2632     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2633 %}
  2635 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2636     MacroAssembler _masm(&cbuf);
  2638     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2639     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2641     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2642 %}
  2644 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2645     MacroAssembler _masm(&cbuf);
  2647     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2648     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2650     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2651 %}
  2653 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2654     MacroAssembler _masm(&cbuf);
  2656     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2657     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2659     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2660 %}
  2662 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2663     MacroAssembler _masm(&cbuf);
  2665     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2666     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2668     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2669 %}
  2671 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2672     MacroAssembler _masm(&cbuf);
  2674     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2675     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2677     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2678 %}
  2680 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2681     MacroAssembler _masm(&cbuf);
  2683     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2684     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2686     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2687 %}
  2689 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2690     MacroAssembler _masm(&cbuf);
  2692     Register Roop  = reg_to_register_object($oop$$reg);
  2693     Register Rbox  = reg_to_register_object($box$$reg);
  2694     Register Rscratch = reg_to_register_object($scratch$$reg);
  2695     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2697     assert(Roop  != Rscratch, "");
  2698     assert(Roop  != Rmark, "");
  2699     assert(Rbox  != Rscratch, "");
  2700     assert(Rbox  != Rmark, "");
  2702     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2703 %}
  2705 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2706     MacroAssembler _masm(&cbuf);
  2708     Register Roop  = reg_to_register_object($oop$$reg);
  2709     Register Rbox  = reg_to_register_object($box$$reg);
  2710     Register Rscratch = reg_to_register_object($scratch$$reg);
  2711     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2713     assert(Roop  != Rscratch, "");
  2714     assert(Roop  != Rmark, "");
  2715     assert(Rbox  != Rscratch, "");
  2716     assert(Rbox  != Rmark, "");
  2718     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2719   %}
  2721   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2722     MacroAssembler _masm(&cbuf);
  2723     Register Rmem = reg_to_register_object($mem$$reg);
  2724     Register Rold = reg_to_register_object($old$$reg);
  2725     Register Rnew = reg_to_register_object($new$$reg);
  2727     // casx_under_lock picks 1 of 3 encodings:
  2728     // For 32-bit pointers you get a 32-bit CAS
  2729     // For 64-bit pointers you get a 64-bit CASX
  2730     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2731     __ cmp( Rold, Rnew );
  2732   %}
  2734   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2735     Register Rmem = reg_to_register_object($mem$$reg);
  2736     Register Rold = reg_to_register_object($old$$reg);
  2737     Register Rnew = reg_to_register_object($new$$reg);
  2739     MacroAssembler _masm(&cbuf);
  2740     __ mov(Rnew, O7);
  2741     __ casx(Rmem, Rold, O7);
  2742     __ cmp( Rold, O7 );
  2743   %}
  2745   // raw int cas, used for compareAndSwap
  2746   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2747     Register Rmem = reg_to_register_object($mem$$reg);
  2748     Register Rold = reg_to_register_object($old$$reg);
  2749     Register Rnew = reg_to_register_object($new$$reg);
  2751     MacroAssembler _masm(&cbuf);
  2752     __ mov(Rnew, O7);
  2753     __ cas(Rmem, Rold, O7);
  2754     __ cmp( Rold, O7 );
  2755   %}
  2757   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2758     Register Rres = reg_to_register_object($res$$reg);
  2760     MacroAssembler _masm(&cbuf);
  2761     __ mov(1, Rres);
  2762     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2763   %}
  2765   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2766     Register Rres = reg_to_register_object($res$$reg);
  2768     MacroAssembler _masm(&cbuf);
  2769     __ mov(1, Rres);
  2770     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2771   %}
  2773   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2774     MacroAssembler _masm(&cbuf);
  2775     Register Rdst = reg_to_register_object($dst$$reg);
  2776     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2777                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2778     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2779                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2781     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2782     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2783   %}
  2785   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2786     MacroAssembler _masm(&cbuf);
  2787     Register dest = reg_to_register_object($dst$$reg);
  2788     Register temp = reg_to_register_object($tmp$$reg);
  2789     __ set64( $src$$constant, dest, temp );
  2790   %}
  2792   enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
  2793     address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
  2794     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  2795 #ifdef _LP64
  2796     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2797     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2798     emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
  2799     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
  2800 #else  // _LP64
  2801     uint *code;
  2802     int tmp_reg = $tmp$$reg;
  2804     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2805     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
  2807     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2808     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
  2809 #endif // _LP64
  2810   %}
  2812   enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
  2813     address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
  2814     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2815 #ifdef _LP64
  2816     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2817     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2818     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2819     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2820 #else // _LP64
  2821     uint *code;
  2822     int tmp_reg = $tmp$$reg;
  2824     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2825     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2827     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2828     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2829 #endif // _LP64
  2830   %}
  2832   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2833     // Load a constant replicated "count" times with width "width"
  2834     int bit_width = $width$$constant * 8;
  2835     jlong elt_val = $src$$constant;
  2836     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2837     jlong val = elt_val;
  2838     for (int i = 0; i < $count$$constant - 1; i++) {
  2839         val <<= bit_width;
  2840         val |= elt_val;
  2842     jdouble dval = *(jdouble*)&val; // coerce to double type
  2843     address double_address = MacroAssembler(&cbuf).double_constant(dval);
  2844     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2845 #ifdef _LP64
  2846     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2847     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2848     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2849     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2850 #else // _LP64
  2851     uint *code;
  2852     int tmp_reg = $tmp$$reg;
  2854     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2855     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2857     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2858     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2859 #endif // _LP64
  2860   %}
  2863   enc_class ShouldNotEncodeThis ( ) %{
  2864     ShouldNotCallThis();
  2865   %}
  2867   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2868   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2869     MacroAssembler _masm(&cbuf);
  2870     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2871     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2872     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2874     Label loop;
  2875     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2877     // Loop and clear, walking backwards through the array.
  2878     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2879     __ bind(loop);
  2880     __ deccc(nof_bytes_tmp, 8);
  2881     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2882     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2883     // %%%% this mini-loop must not cross a cache boundary!
  2884   %}
  2887   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  2888     Label Ldone, Lloop;
  2889     MacroAssembler _masm(&cbuf);
  2891     Register   str1_reg = reg_to_register_object($str1$$reg);
  2892     Register   str2_reg = reg_to_register_object($str2$$reg);
  2893     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2894     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  2895     Register result_reg = reg_to_register_object($result$$reg);
  2897     // Get the first character position in both strings
  2898     //         [8] char array, [12] offset, [16] count
  2899     int  value_offset = java_lang_String:: value_offset_in_bytes();
  2900     int offset_offset = java_lang_String::offset_offset_in_bytes();
  2901     int  count_offset = java_lang_String:: count_offset_in_bytes();
  2903     // load str1 (jchar*) base address into tmp1_reg
  2904     __ load_heap_oop(Address(str1_reg, 0,  value_offset), tmp1_reg);
  2905     __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  2906     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  2907     __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2908     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2909     __    load_heap_oop(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2910     __ add(result_reg, tmp1_reg, tmp1_reg);
  2912     // load str2 (jchar*) base address into tmp2_reg
  2913     // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2914     __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  2915     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  2916     __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2917     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2918     __   subcc(str1_reg, str2_reg, O7); // hoisted
  2919     __ add(result_reg, tmp2_reg, tmp2_reg);
  2921     // Compute the minimum of the string lengths(str1_reg) and the
  2922     // difference of the string lengths (stack)
  2924     // discard string base pointers, after loading up the lengths
  2925     // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2926     // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2928     // See if the lengths are different, and calculate min in str1_reg.
  2929     // Stash diff in O7 in case we need it for a tie-breaker.
  2930     Label Lskip;
  2931     // __ subcc(str1_reg, str2_reg, O7); // hoisted
  2932     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2933     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2934     // str2 is shorter, so use its count:
  2935     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2936     __ bind(Lskip);
  2938     // reallocate str1_reg, str2_reg, result_reg
  2939     // Note:  limit_reg holds the string length pre-scaled by 2
  2940     Register limit_reg =   str1_reg;
  2941     Register  chr2_reg =   str2_reg;
  2942     Register  chr1_reg = result_reg;
  2943     // tmp{12} are the base pointers
  2945     // Is the minimum length zero?
  2946     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2947     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2948     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2950     // Load first characters
  2951     __ lduh(tmp1_reg, 0, chr1_reg);
  2952     __ lduh(tmp2_reg, 0, chr2_reg);
  2954     // Compare first characters
  2955     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2956     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2957     assert(chr1_reg == result_reg, "result must be pre-placed");
  2958     __ delayed()->nop();
  2961       // Check after comparing first character to see if strings are equivalent
  2962       Label LSkip2;
  2963       // Check if the strings start at same location
  2964       __ cmp(tmp1_reg, tmp2_reg);
  2965       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2966       __ delayed()->nop();
  2968       // Check if the length difference is zero (in O7)
  2969       __ cmp(G0, O7);
  2970       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2971       __ delayed()->mov(G0, result_reg);  // result is zero
  2973       // Strings might not be equal
  2974       __ bind(LSkip2);
  2977     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2978     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2979     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2981     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
  2982     __ add(tmp1_reg, limit_reg, tmp1_reg);
  2983     __ add(tmp2_reg, limit_reg, tmp2_reg);
  2984     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2986     // Compare the rest of the characters
  2987     __ lduh(tmp1_reg, limit_reg, chr1_reg);
  2988     __ bind(Lloop);
  2989     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2990     __ lduh(tmp2_reg, limit_reg, chr2_reg);
  2991     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2992     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2993     assert(chr1_reg == result_reg, "result must be pre-placed");
  2994     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2995     // annul LDUH if branch is not taken to prevent access past end of string
  2996     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2997     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2999     // If strings are equal up to min length, return the length difference.
  3000     __ mov(O7, result_reg);
  3002     // Otherwise, return the difference between the first mismatched chars.
  3003     __ bind(Ldone);
  3004   %}
  3006 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  3007     Label Lword, Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  3008     MacroAssembler _masm(&cbuf);
  3010     Register   str1_reg = reg_to_register_object($str1$$reg);
  3011     Register   str2_reg = reg_to_register_object($str2$$reg);
  3012     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3013     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  3014     Register result_reg = reg_to_register_object($result$$reg);
  3016     // Get the first character position in both strings
  3017     //         [8] char array, [12] offset, [16] count
  3018     int  value_offset = java_lang_String:: value_offset_in_bytes();
  3019     int offset_offset = java_lang_String::offset_offset_in_bytes();
  3020     int  count_offset = java_lang_String:: count_offset_in_bytes();
  3022     // load str1 (jchar*) base address into tmp1_reg
  3023     __ load_heap_oop(Address(str1_reg, 0,  value_offset), tmp1_reg);
  3024     __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  3025     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  3026     __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  3027     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  3028     __    load_heap_oop(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  3029     __ add(result_reg, tmp1_reg, tmp1_reg);
  3031     // load str2 (jchar*) base address into tmp2_reg
  3032     // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  3033     __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  3034     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  3035     __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  3036     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  3037     __   cmp(str1_reg, str2_reg); // hoisted
  3038     __ add(result_reg, tmp2_reg, tmp2_reg);
  3040     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg);
  3041     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3042     __ delayed()->mov(G0, result_reg);    // not equal
  3044     __ br_zero(Assembler::equal, true, Assembler::pn, str1_reg, Ldone);
  3045     __ delayed()->add(G0, 1, result_reg); //equals
  3047     __ cmp(tmp1_reg, tmp2_reg); //same string ?
  3048     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3049     __ delayed()->add(G0, 1, result_reg);
  3051     //rename registers
  3052     Register limit_reg =   str1_reg;
  3053     Register  chr2_reg =   str2_reg;
  3054     Register  chr1_reg = result_reg;
  3055     // tmp{12} are the base pointers
  3057     //check for alignment and position the pointers to the ends
  3058     __ or3(tmp1_reg, tmp2_reg, chr1_reg);
  3059     __ andcc(chr1_reg, 0x3, chr1_reg); // notZero means at least one not 4-byte aligned
  3060     __ br(Assembler::notZero, false, Assembler::pn, Lchar);
  3061     __ delayed()->nop();
  3063     __ bind(Lword);
  3064     __ and3(limit_reg, 0x2, O7); //remember the remainder (either 0 or 2)
  3065     __ andn(limit_reg, 0x3, limit_reg);
  3066     __ br_zero(Assembler::zero, false, Assembler::pn, limit_reg, Lpost_word);
  3067     __ delayed()->nop();
  3069     __ add(tmp1_reg, limit_reg, tmp1_reg);
  3070     __ add(tmp2_reg, limit_reg, tmp2_reg);
  3071     __ neg(limit_reg);
  3073     __ lduw(tmp1_reg, limit_reg, chr1_reg);
  3074     __ bind(Lword_loop);
  3075     __ lduw(tmp2_reg, limit_reg, chr2_reg);
  3076     __ cmp(chr1_reg, chr2_reg);
  3077     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3078     __ delayed()->mov(G0, result_reg);
  3079     __ inccc(limit_reg, 2*sizeof(jchar));
  3080     // annul LDUW if branch i  s not taken to prevent access past end of string
  3081     __ br(Assembler::notZero, true, Assembler::pt, Lword_loop); //annul on taken
  3082     __ delayed()->lduw(tmp1_reg, limit_reg, chr1_reg); // hoisted
  3084     __ bind(Lpost_word);
  3085     __ br_zero(Assembler::zero, true, Assembler::pt, O7, Ldone);
  3086     __ delayed()->add(G0, 1, result_reg);
  3088     __ lduh(tmp1_reg, 0, chr1_reg);
  3089     __ lduh(tmp2_reg, 0, chr2_reg);
  3090     __ cmp (chr1_reg, chr2_reg);
  3091     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3092     __ delayed()->mov(G0, result_reg);
  3093     __ ba(false,Ldone);
  3094     __ delayed()->add(G0, 1, result_reg);
  3096     __ bind(Lchar);
  3097     __ add(tmp1_reg, limit_reg, tmp1_reg);
  3098     __ add(tmp2_reg, limit_reg, tmp2_reg);
  3099     __ neg(limit_reg); //negate count
  3101     __ lduh(tmp1_reg, limit_reg, chr1_reg);
  3102     __ bind(Lchar_loop);
  3103     __ lduh(tmp2_reg, limit_reg, chr2_reg);
  3104     __ cmp(chr1_reg, chr2_reg);
  3105     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3106     __ delayed()->mov(G0, result_reg); //not equal
  3107     __ inccc(limit_reg, sizeof(jchar));
  3108     // annul LDUH if branch is not taken to prevent access past end of string
  3109     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop); //annul on taken
  3110     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  3112     __ add(G0, 1, result_reg);  //equal
  3114     __ bind(Ldone);
  3115   %}
  3117 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  3118     Label Lvector, Ldone, Lloop;
  3119     MacroAssembler _masm(&cbuf);
  3121     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3122     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3123     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3124     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  3125     Register result_reg = reg_to_register_object($result$$reg);
  3127     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3128     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3130     // return true if the same array
  3131     __ cmp(ary1_reg, ary2_reg);
  3132     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  3133     __ delayed()->add(G0, 1, result_reg); // equal
  3135     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3136     __ delayed()->mov(G0, result_reg);    // not equal
  3138     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3139     __ delayed()->mov(G0, result_reg);    // not equal
  3141     //load the lengths of arrays
  3142     __ ld(Address(ary1_reg, 0, length_offset), tmp1_reg);
  3143     __ ld(Address(ary2_reg, 0, length_offset), tmp2_reg);
  3145     // return false if the two arrays are not equal length
  3146     __ cmp(tmp1_reg, tmp2_reg);
  3147     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3148     __ delayed()->mov(G0, result_reg);     // not equal
  3150     __ br_zero(Assembler::zero, true, Assembler::pn, tmp1_reg, Ldone);
  3151     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3153     // load array addresses
  3154     __ add(ary1_reg, base_offset, ary1_reg);
  3155     __ add(ary2_reg, base_offset, ary2_reg);
  3157     // renaming registers
  3158     Register chr1_reg  =  tmp2_reg;   // for characters in ary1
  3159     Register chr2_reg  =  result_reg; // for characters in ary2
  3160     Register limit_reg =  tmp1_reg;   // length
  3162     // set byte count
  3163     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3164     __ andcc(limit_reg, 0x2, chr1_reg); //trailing character ?
  3165     __ br(Assembler::zero, false, Assembler::pt, Lvector);
  3166     __ delayed()->nop();
  3168     //compare the trailing char
  3169     __ sub(limit_reg, sizeof(jchar), limit_reg);
  3170     __ lduh(ary1_reg, limit_reg, chr1_reg);
  3171     __ lduh(ary2_reg, limit_reg, chr2_reg);
  3172     __ cmp(chr1_reg, chr2_reg);
  3173     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3174     __ delayed()->mov(G0, result_reg);     // not equal
  3176     // only one char ?
  3177     __ br_zero(Assembler::zero, true, Assembler::pn, limit_reg, Ldone);
  3178     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3180     __ bind(Lvector);
  3181     // Shift ary1_reg and ary2_reg to the end of the arrays, negate limit
  3182     __ add(ary1_reg, limit_reg, ary1_reg);
  3183     __ add(ary2_reg, limit_reg, ary2_reg);
  3184     __ neg(limit_reg, limit_reg);
  3186     __ lduw(ary1_reg, limit_reg, chr1_reg);
  3187     __ bind(Lloop);
  3188     __ lduw(ary2_reg, limit_reg, chr2_reg);
  3189     __ cmp(chr1_reg, chr2_reg);
  3190     __ br(Assembler::notEqual, false, Assembler::pt, Ldone);
  3191     __ delayed()->mov(G0, result_reg);     // not equal
  3192     __ inccc(limit_reg, 2*sizeof(jchar));
  3193     // annul LDUW if branch is not taken to prevent access past end of string
  3194     __ br(Assembler::notZero, true, Assembler::pt, Lloop); //annul on taken
  3195     __ delayed()->lduw(ary1_reg, limit_reg, chr1_reg); // hoisted
  3197     __ add(G0, 1, result_reg); // equals
  3199     __ bind(Ldone);
  3200   %}
  3202   enc_class enc_rethrow() %{
  3203     cbuf.set_inst_mark();
  3204     Register temp_reg = G3;
  3205     Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
  3206     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3207     MacroAssembler _masm(&cbuf);
  3208 #ifdef ASSERT
  3209     __ save_frame(0);
  3210     Address last_rethrow_addr(L1, (address)&last_rethrow);
  3211     __ sethi(last_rethrow_addr);
  3212     __ get_pc(L2);
  3213     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3214     __ st_ptr(L2, last_rethrow_addr);
  3215     __ restore();
  3216 #endif
  3217     __ JUMP(rethrow_stub, 0); // sethi;jmp
  3218     __ delayed()->nop();
  3219   %}
  3221   enc_class emit_mem_nop() %{
  3222     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3223     unsigned int *code = (unsigned int*)cbuf.code_end();
  3224     *code = (unsigned int)0xc0839040;
  3225     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3226   %}
  3228   enc_class emit_fadd_nop() %{
  3229     // Generates the instruction FMOVS f31,f31
  3230     unsigned int *code = (unsigned int*)cbuf.code_end();
  3231     *code = (unsigned int)0xbfa0003f;
  3232     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3233   %}
  3235   enc_class emit_br_nop() %{
  3236     // Generates the instruction BPN,PN .
  3237     unsigned int *code = (unsigned int*)cbuf.code_end();
  3238     *code = (unsigned int)0x00400000;
  3239     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3240   %}
  3242   enc_class enc_membar_acquire %{
  3243     MacroAssembler _masm(&cbuf);
  3244     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3245   %}
  3247   enc_class enc_membar_release %{
  3248     MacroAssembler _masm(&cbuf);
  3249     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3250   %}
  3252   enc_class enc_membar_volatile %{
  3253     MacroAssembler _masm(&cbuf);
  3254     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3255   %}
  3257   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3258     MacroAssembler _masm(&cbuf);
  3259     Register src_reg = reg_to_register_object($src$$reg);
  3260     Register dst_reg = reg_to_register_object($dst$$reg);
  3261     __ sllx(src_reg, 56, dst_reg);
  3262     __ srlx(dst_reg,  8, O7);
  3263     __ or3 (dst_reg, O7, dst_reg);
  3264     __ srlx(dst_reg, 16, O7);
  3265     __ or3 (dst_reg, O7, dst_reg);
  3266     __ srlx(dst_reg, 32, O7);
  3267     __ or3 (dst_reg, O7, dst_reg);
  3268   %}
  3270   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3271     MacroAssembler _masm(&cbuf);
  3272     Register src_reg = reg_to_register_object($src$$reg);
  3273     Register dst_reg = reg_to_register_object($dst$$reg);
  3274     __ sll(src_reg, 24, dst_reg);
  3275     __ srl(dst_reg,  8, O7);
  3276     __ or3(dst_reg, O7, dst_reg);
  3277     __ srl(dst_reg, 16, O7);
  3278     __ or3(dst_reg, O7, dst_reg);
  3279   %}
  3281   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3282     MacroAssembler _masm(&cbuf);
  3283     Register src_reg = reg_to_register_object($src$$reg);
  3284     Register dst_reg = reg_to_register_object($dst$$reg);
  3285     __ sllx(src_reg, 48, dst_reg);
  3286     __ srlx(dst_reg, 16, O7);
  3287     __ or3 (dst_reg, O7, dst_reg);
  3288     __ srlx(dst_reg, 32, O7);
  3289     __ or3 (dst_reg, O7, dst_reg);
  3290   %}
  3292   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3293     MacroAssembler _masm(&cbuf);
  3294     Register src_reg = reg_to_register_object($src$$reg);
  3295     Register dst_reg = reg_to_register_object($dst$$reg);
  3296     __ sllx(src_reg, 32, dst_reg);
  3297     __ srlx(dst_reg, 32, O7);
  3298     __ or3 (dst_reg, O7, dst_reg);
  3299   %}
  3301 %}
  3303 //----------FRAME--------------------------------------------------------------
  3304 // Definition of frame structure and management information.
  3305 //
  3306 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3307 //                             |   (to get allocators register number
  3308 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3309 //  r   CALLER     |        |
  3310 //  o     |        +--------+      pad to even-align allocators stack-slot
  3311 //  w     V        |  pad0  |        numbers; owned by CALLER
  3312 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3313 //  h     ^        |   in   |  5
  3314 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3315 //  |     |        |        |  3
  3316 //  |     |        +--------+
  3317 //  V     |        | old out|      Empty on Intel, window on Sparc
  3318 //        |    old |preserve|      Must be even aligned.
  3319 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3320 //        |        |   in   |  3   area for Intel ret address
  3321 //     Owned by    |preserve|      Empty on Sparc.
  3322 //       SELF      +--------+
  3323 //        |        |  pad2  |  2   pad to align old SP
  3324 //        |        +--------+  1
  3325 //        |        | locks  |  0
  3326 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3327 //        |        |  pad1  | 11   pad to align new SP
  3328 //        |        +--------+
  3329 //        |        |        | 10
  3330 //        |        | spills |  9   spills
  3331 //        V        |        |  8   (pad0 slot for callee)
  3332 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3333 //        ^        |  out   |  7
  3334 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3335 //     Owned by    +--------+
  3336 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3337 //        |    new |preserve|      Must be even-aligned.
  3338 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3339 //        |        |        |
  3340 //
  3341 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3342 //         known from SELF's arguments and the Java calling convention.
  3343 //         Region 6-7 is determined per call site.
  3344 // Note 2: If the calling convention leaves holes in the incoming argument
  3345 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3346 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3347 //         incoming area, as the Java calling convention is completely under
  3348 //         the control of the AD file.  Doubles can be sorted and packed to
  3349 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3350 //         varargs C calling conventions.
  3351 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3352 //         even aligned with pad0 as needed.
  3353 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3354 //         region 6-11 is even aligned; it may be padded out more so that
  3355 //         the region from SP to FP meets the minimum stack alignment.
  3357 frame %{
  3358   // What direction does stack grow in (assumed to be same for native & Java)
  3359   stack_direction(TOWARDS_LOW);
  3361   // These two registers define part of the calling convention
  3362   // between compiled code and the interpreter.
  3363   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3364   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3366   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3367   cisc_spilling_operand_name(indOffset);
  3369   // Number of stack slots consumed by a Monitor enter
  3370 #ifdef _LP64
  3371   sync_stack_slots(2);
  3372 #else
  3373   sync_stack_slots(1);
  3374 #endif
  3376   // Compiled code's Frame Pointer
  3377   frame_pointer(R_SP);
  3379   // Stack alignment requirement
  3380   stack_alignment(StackAlignmentInBytes);
  3381   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3382   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3384   // Number of stack slots between incoming argument block and the start of
  3385   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3386   // EPILOG must remove this many slots.
  3387   in_preserve_stack_slots(0);
  3389   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3390   // for calls to C.  Supports the var-args backing area for register parms.
  3391   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3392 #ifdef _LP64
  3393   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3394   varargs_C_out_slots_killed(12);
  3395 #else
  3396   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3397   varargs_C_out_slots_killed( 7);
  3398 #endif
  3400   // The after-PROLOG location of the return address.  Location of
  3401   // return address specifies a type (REG or STACK) and a number
  3402   // representing the register number (i.e. - use a register name) or
  3403   // stack slot.
  3404   return_addr(REG R_I7);          // Ret Addr is in register I7
  3406   // Body of function which returns an OptoRegs array locating
  3407   // arguments either in registers or in stack slots for calling
  3408   // java
  3409   calling_convention %{
  3410     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3412   %}
  3414   // Body of function which returns an OptoRegs array locating
  3415   // arguments either in registers or in stack slots for callin
  3416   // C.
  3417   c_calling_convention %{
  3418     // This is obviously always outgoing
  3419     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3420   %}
  3422   // Location of native (C/C++) and interpreter return values.  This is specified to
  3423   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3424   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3425   // to and from the register pairs is done by the appropriate call and epilog
  3426   // opcodes.  This simplifies the register allocator.
  3427   c_return_value %{
  3428     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3429 #ifdef     _LP64
  3430     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3431     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3432     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3433     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3434 #else  // !_LP64
  3435     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3436     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3437     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3438     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3439 #endif
  3440     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3441                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3442   %}
  3444   // Location of compiled Java return values.  Same as C
  3445   return_value %{
  3446     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3447 #ifdef     _LP64
  3448     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3449     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3450     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3451     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3452 #else  // !_LP64
  3453     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3454     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3455     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3456     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3457 #endif
  3458     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3459                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3460   %}
  3462 %}
  3465 //----------ATTRIBUTES---------------------------------------------------------
  3466 //----------Operand Attributes-------------------------------------------------
  3467 op_attrib op_cost(1);          // Required cost attribute
  3469 //----------Instruction Attributes---------------------------------------------
  3470 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3471 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3472 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3473 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3474                                 // non-matching short branch variant of some
  3475                                                             // long branch?
  3477 //----------OPERANDS-----------------------------------------------------------
  3478 // Operand definitions must precede instruction definitions for correct parsing
  3479 // in the ADLC because operands constitute user defined types which are used in
  3480 // instruction definitions.
  3482 //----------Simple Operands----------------------------------------------------
  3483 // Immediate Operands
  3484 // Integer Immediate: 32-bit
  3485 operand immI() %{
  3486   match(ConI);
  3488   op_cost(0);
  3489   // formats are generated automatically for constants and base registers
  3490   format %{ %}
  3491   interface(CONST_INTER);
  3492 %}
  3494 // Integer Immediate: 13-bit
  3495 operand immI13() %{
  3496   predicate(Assembler::is_simm13(n->get_int()));
  3497   match(ConI);
  3498   op_cost(0);
  3500   format %{ %}
  3501   interface(CONST_INTER);
  3502 %}
  3504 // Unsigned (positive) Integer Immediate: 13-bit
  3505 operand immU13() %{
  3506   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3507   match(ConI);
  3508   op_cost(0);
  3510   format %{ %}
  3511   interface(CONST_INTER);
  3512 %}
  3514 // Integer Immediate: 6-bit
  3515 operand immU6() %{
  3516   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3517   match(ConI);
  3518   op_cost(0);
  3519   format %{ %}
  3520   interface(CONST_INTER);
  3521 %}
  3523 // Integer Immediate: 11-bit
  3524 operand immI11() %{
  3525   predicate(Assembler::is_simm(n->get_int(),11));
  3526   match(ConI);
  3527   op_cost(0);
  3528   format %{ %}
  3529   interface(CONST_INTER);
  3530 %}
  3532 // Integer Immediate: 0-bit
  3533 operand immI0() %{
  3534   predicate(n->get_int() == 0);
  3535   match(ConI);
  3536   op_cost(0);
  3538   format %{ %}
  3539   interface(CONST_INTER);
  3540 %}
  3542 // Integer Immediate: the value 10
  3543 operand immI10() %{
  3544   predicate(n->get_int() == 10);
  3545   match(ConI);
  3546   op_cost(0);
  3548   format %{ %}
  3549   interface(CONST_INTER);
  3550 %}
  3552 // Integer Immediate: the values 0-31
  3553 operand immU5() %{
  3554   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3555   match(ConI);
  3556   op_cost(0);
  3558   format %{ %}
  3559   interface(CONST_INTER);
  3560 %}
  3562 // Integer Immediate: the values 1-31
  3563 operand immI_1_31() %{
  3564   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3565   match(ConI);
  3566   op_cost(0);
  3568   format %{ %}
  3569   interface(CONST_INTER);
  3570 %}
  3572 // Integer Immediate: the values 32-63
  3573 operand immI_32_63() %{
  3574   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3575   match(ConI);
  3576   op_cost(0);
  3578   format %{ %}
  3579   interface(CONST_INTER);
  3580 %}
  3582 // Integer Immediate: the value 255
  3583 operand immI_255() %{
  3584   predicate( n->get_int() == 255 );
  3585   match(ConI);
  3586   op_cost(0);
  3588   format %{ %}
  3589   interface(CONST_INTER);
  3590 %}
  3592 // Long Immediate: the value FF
  3593 operand immL_FF() %{
  3594   predicate( n->get_long() == 0xFFL );
  3595   match(ConL);
  3596   op_cost(0);
  3598   format %{ %}
  3599   interface(CONST_INTER);
  3600 %}
  3602 // Long Immediate: the value FFFF
  3603 operand immL_FFFF() %{
  3604   predicate( n->get_long() == 0xFFFFL );
  3605   match(ConL);
  3606   op_cost(0);
  3608   format %{ %}
  3609   interface(CONST_INTER);
  3610 %}
  3612 // Pointer Immediate: 32 or 64-bit
  3613 operand immP() %{
  3614   match(ConP);
  3616   op_cost(5);
  3617   // formats are generated automatically for constants and base registers
  3618   format %{ %}
  3619   interface(CONST_INTER);
  3620 %}
  3622 operand immP13() %{
  3623   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3624   match(ConP);
  3625   op_cost(0);
  3627   format %{ %}
  3628   interface(CONST_INTER);
  3629 %}
  3631 operand immP0() %{
  3632   predicate(n->get_ptr() == 0);
  3633   match(ConP);
  3634   op_cost(0);
  3636   format %{ %}
  3637   interface(CONST_INTER);
  3638 %}
  3640 operand immP_poll() %{
  3641   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3642   match(ConP);
  3644   // formats are generated automatically for constants and base registers
  3645   format %{ %}
  3646   interface(CONST_INTER);
  3647 %}
  3649 // Pointer Immediate
  3650 operand immN()
  3651 %{
  3652   match(ConN);
  3654   op_cost(10);
  3655   format %{ %}
  3656   interface(CONST_INTER);
  3657 %}
  3659 // NULL Pointer Immediate
  3660 operand immN0()
  3661 %{
  3662   predicate(n->get_narrowcon() == 0);
  3663   match(ConN);
  3665   op_cost(0);
  3666   format %{ %}
  3667   interface(CONST_INTER);
  3668 %}
  3670 operand immL() %{
  3671   match(ConL);
  3672   op_cost(40);
  3673   // formats are generated automatically for constants and base registers
  3674   format %{ %}
  3675   interface(CONST_INTER);
  3676 %}
  3678 operand immL0() %{
  3679   predicate(n->get_long() == 0L);
  3680   match(ConL);
  3681   op_cost(0);
  3682   // formats are generated automatically for constants and base registers
  3683   format %{ %}
  3684   interface(CONST_INTER);
  3685 %}
  3687 // Long Immediate: 13-bit
  3688 operand immL13() %{
  3689   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3690   match(ConL);
  3691   op_cost(0);
  3693   format %{ %}
  3694   interface(CONST_INTER);
  3695 %}
  3697 // Long Immediate: low 32-bit mask
  3698 operand immL_32bits() %{
  3699   predicate(n->get_long() == 0xFFFFFFFFL);
  3700   match(ConL);
  3701   op_cost(0);
  3703   format %{ %}
  3704   interface(CONST_INTER);
  3705 %}
  3707 // Double Immediate
  3708 operand immD() %{
  3709   match(ConD);
  3711   op_cost(40);
  3712   format %{ %}
  3713   interface(CONST_INTER);
  3714 %}
  3716 operand immD0() %{
  3717 #ifdef _LP64
  3718   // on 64-bit architectures this comparision is faster
  3719   predicate(jlong_cast(n->getd()) == 0);
  3720 #else
  3721   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3722 #endif
  3723   match(ConD);
  3725   op_cost(0);
  3726   format %{ %}
  3727   interface(CONST_INTER);
  3728 %}
  3730 // Float Immediate
  3731 operand immF() %{
  3732   match(ConF);
  3734   op_cost(20);
  3735   format %{ %}
  3736   interface(CONST_INTER);
  3737 %}
  3739 // Float Immediate: 0
  3740 operand immF0() %{
  3741   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3742   match(ConF);
  3744   op_cost(0);
  3745   format %{ %}
  3746   interface(CONST_INTER);
  3747 %}
  3749 // Integer Register Operands
  3750 // Integer Register
  3751 operand iRegI() %{
  3752   constraint(ALLOC_IN_RC(int_reg));
  3753   match(RegI);
  3755   match(notemp_iRegI);
  3756   match(g1RegI);
  3757   match(o0RegI);
  3758   match(iRegIsafe);
  3760   format %{ %}
  3761   interface(REG_INTER);
  3762 %}
  3764 operand notemp_iRegI() %{
  3765   constraint(ALLOC_IN_RC(notemp_int_reg));
  3766   match(RegI);
  3768   match(o0RegI);
  3770   format %{ %}
  3771   interface(REG_INTER);
  3772 %}
  3774 operand o0RegI() %{
  3775   constraint(ALLOC_IN_RC(o0_regI));
  3776   match(iRegI);
  3778   format %{ %}
  3779   interface(REG_INTER);
  3780 %}
  3782 // Pointer Register
  3783 operand iRegP() %{
  3784   constraint(ALLOC_IN_RC(ptr_reg));
  3785   match(RegP);
  3787   match(lock_ptr_RegP);
  3788   match(g1RegP);
  3789   match(g2RegP);
  3790   match(g3RegP);
  3791   match(g4RegP);
  3792   match(i0RegP);
  3793   match(o0RegP);
  3794   match(o1RegP);
  3795   match(l7RegP);
  3797   format %{ %}
  3798   interface(REG_INTER);
  3799 %}
  3801 operand sp_ptr_RegP() %{
  3802   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3803   match(RegP);
  3804   match(iRegP);
  3806   format %{ %}
  3807   interface(REG_INTER);
  3808 %}
  3810 operand lock_ptr_RegP() %{
  3811   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3812   match(RegP);
  3813   match(i0RegP);
  3814   match(o0RegP);
  3815   match(o1RegP);
  3816   match(l7RegP);
  3818   format %{ %}
  3819   interface(REG_INTER);
  3820 %}
  3822 operand g1RegP() %{
  3823   constraint(ALLOC_IN_RC(g1_regP));
  3824   match(iRegP);
  3826   format %{ %}
  3827   interface(REG_INTER);
  3828 %}
  3830 operand g2RegP() %{
  3831   constraint(ALLOC_IN_RC(g2_regP));
  3832   match(iRegP);
  3834   format %{ %}
  3835   interface(REG_INTER);
  3836 %}
  3838 operand g3RegP() %{
  3839   constraint(ALLOC_IN_RC(g3_regP));
  3840   match(iRegP);
  3842   format %{ %}
  3843   interface(REG_INTER);
  3844 %}
  3846 operand g1RegI() %{
  3847   constraint(ALLOC_IN_RC(g1_regI));
  3848   match(iRegI);
  3850   format %{ %}
  3851   interface(REG_INTER);
  3852 %}
  3854 operand g3RegI() %{
  3855   constraint(ALLOC_IN_RC(g3_regI));
  3856   match(iRegI);
  3858   format %{ %}
  3859   interface(REG_INTER);
  3860 %}
  3862 operand g4RegI() %{
  3863   constraint(ALLOC_IN_RC(g4_regI));
  3864   match(iRegI);
  3866   format %{ %}
  3867   interface(REG_INTER);
  3868 %}
  3870 operand g4RegP() %{
  3871   constraint(ALLOC_IN_RC(g4_regP));
  3872   match(iRegP);
  3874   format %{ %}
  3875   interface(REG_INTER);
  3876 %}
  3878 operand i0RegP() %{
  3879   constraint(ALLOC_IN_RC(i0_regP));
  3880   match(iRegP);
  3882   format %{ %}
  3883   interface(REG_INTER);
  3884 %}
  3886 operand o0RegP() %{
  3887   constraint(ALLOC_IN_RC(o0_regP));
  3888   match(iRegP);
  3890   format %{ %}
  3891   interface(REG_INTER);
  3892 %}
  3894 operand o1RegP() %{
  3895   constraint(ALLOC_IN_RC(o1_regP));
  3896   match(iRegP);
  3898   format %{ %}
  3899   interface(REG_INTER);
  3900 %}
  3902 operand o2RegP() %{
  3903   constraint(ALLOC_IN_RC(o2_regP));
  3904   match(iRegP);
  3906   format %{ %}
  3907   interface(REG_INTER);
  3908 %}
  3910 operand o7RegP() %{
  3911   constraint(ALLOC_IN_RC(o7_regP));
  3912   match(iRegP);
  3914   format %{ %}
  3915   interface(REG_INTER);
  3916 %}
  3918 operand l7RegP() %{
  3919   constraint(ALLOC_IN_RC(l7_regP));
  3920   match(iRegP);
  3922   format %{ %}
  3923   interface(REG_INTER);
  3924 %}
  3926 operand o7RegI() %{
  3927   constraint(ALLOC_IN_RC(o7_regI));
  3928   match(iRegI);
  3930   format %{ %}
  3931   interface(REG_INTER);
  3932 %}
  3934 operand iRegN() %{
  3935   constraint(ALLOC_IN_RC(int_reg));
  3936   match(RegN);
  3938   format %{ %}
  3939   interface(REG_INTER);
  3940 %}
  3942 // Long Register
  3943 operand iRegL() %{
  3944   constraint(ALLOC_IN_RC(long_reg));
  3945   match(RegL);
  3947   format %{ %}
  3948   interface(REG_INTER);
  3949 %}
  3951 operand o2RegL() %{
  3952   constraint(ALLOC_IN_RC(o2_regL));
  3953   match(iRegL);
  3955   format %{ %}
  3956   interface(REG_INTER);
  3957 %}
  3959 operand o7RegL() %{
  3960   constraint(ALLOC_IN_RC(o7_regL));
  3961   match(iRegL);
  3963   format %{ %}
  3964   interface(REG_INTER);
  3965 %}
  3967 operand g1RegL() %{
  3968   constraint(ALLOC_IN_RC(g1_regL));
  3969   match(iRegL);
  3971   format %{ %}
  3972   interface(REG_INTER);
  3973 %}
  3975 operand g3RegL() %{
  3976   constraint(ALLOC_IN_RC(g3_regL));
  3977   match(iRegL);
  3979   format %{ %}
  3980   interface(REG_INTER);
  3981 %}
  3983 // Int Register safe
  3984 // This is 64bit safe
  3985 operand iRegIsafe() %{
  3986   constraint(ALLOC_IN_RC(long_reg));
  3988   match(iRegI);
  3990   format %{ %}
  3991   interface(REG_INTER);
  3992 %}
  3994 // Condition Code Flag Register
  3995 operand flagsReg() %{
  3996   constraint(ALLOC_IN_RC(int_flags));
  3997   match(RegFlags);
  3999   format %{ "ccr" %} // both ICC and XCC
  4000   interface(REG_INTER);
  4001 %}
  4003 // Condition Code Register, unsigned comparisons.
  4004 operand flagsRegU() %{
  4005   constraint(ALLOC_IN_RC(int_flags));
  4006   match(RegFlags);
  4008   format %{ "icc_U" %}
  4009   interface(REG_INTER);
  4010 %}
  4012 // Condition Code Register, pointer comparisons.
  4013 operand flagsRegP() %{
  4014   constraint(ALLOC_IN_RC(int_flags));
  4015   match(RegFlags);
  4017 #ifdef _LP64
  4018   format %{ "xcc_P" %}
  4019 #else
  4020   format %{ "icc_P" %}
  4021 #endif
  4022   interface(REG_INTER);
  4023 %}
  4025 // Condition Code Register, long comparisons.
  4026 operand flagsRegL() %{
  4027   constraint(ALLOC_IN_RC(int_flags));
  4028   match(RegFlags);
  4030   format %{ "xcc_L" %}
  4031   interface(REG_INTER);
  4032 %}
  4034 // Condition Code Register, floating comparisons, unordered same as "less".
  4035 operand flagsRegF() %{
  4036   constraint(ALLOC_IN_RC(float_flags));
  4037   match(RegFlags);
  4038   match(flagsRegF0);
  4040   format %{ %}
  4041   interface(REG_INTER);
  4042 %}
  4044 operand flagsRegF0() %{
  4045   constraint(ALLOC_IN_RC(float_flag0));
  4046   match(RegFlags);
  4048   format %{ %}
  4049   interface(REG_INTER);
  4050 %}
  4053 // Condition Code Flag Register used by long compare
  4054 operand flagsReg_long_LTGE() %{
  4055   constraint(ALLOC_IN_RC(int_flags));
  4056   match(RegFlags);
  4057   format %{ "icc_LTGE" %}
  4058   interface(REG_INTER);
  4059 %}
  4060 operand flagsReg_long_EQNE() %{
  4061   constraint(ALLOC_IN_RC(int_flags));
  4062   match(RegFlags);
  4063   format %{ "icc_EQNE" %}
  4064   interface(REG_INTER);
  4065 %}
  4066 operand flagsReg_long_LEGT() %{
  4067   constraint(ALLOC_IN_RC(int_flags));
  4068   match(RegFlags);
  4069   format %{ "icc_LEGT" %}
  4070   interface(REG_INTER);
  4071 %}
  4074 operand regD() %{
  4075   constraint(ALLOC_IN_RC(dflt_reg));
  4076   match(RegD);
  4078   match(regD_low);
  4080   format %{ %}
  4081   interface(REG_INTER);
  4082 %}
  4084 operand regF() %{
  4085   constraint(ALLOC_IN_RC(sflt_reg));
  4086   match(RegF);
  4088   format %{ %}
  4089   interface(REG_INTER);
  4090 %}
  4092 operand regD_low() %{
  4093   constraint(ALLOC_IN_RC(dflt_low_reg));
  4094   match(regD);
  4096   format %{ %}
  4097   interface(REG_INTER);
  4098 %}
  4100 // Special Registers
  4102 // Method Register
  4103 operand inline_cache_regP(iRegP reg) %{
  4104   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4105   match(reg);
  4106   format %{ %}
  4107   interface(REG_INTER);
  4108 %}
  4110 operand interpreter_method_oop_regP(iRegP reg) %{
  4111   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4112   match(reg);
  4113   format %{ %}
  4114   interface(REG_INTER);
  4115 %}
  4118 //----------Complex Operands---------------------------------------------------
  4119 // Indirect Memory Reference
  4120 operand indirect(sp_ptr_RegP reg) %{
  4121   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4122   match(reg);
  4124   op_cost(100);
  4125   format %{ "[$reg]" %}
  4126   interface(MEMORY_INTER) %{
  4127     base($reg);
  4128     index(0x0);
  4129     scale(0x0);
  4130     disp(0x0);
  4131   %}
  4132 %}
  4134 // Indirect with Offset
  4135 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4136   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4137   match(AddP reg offset);
  4139   op_cost(100);
  4140   format %{ "[$reg + $offset]" %}
  4141   interface(MEMORY_INTER) %{
  4142     base($reg);
  4143     index(0x0);
  4144     scale(0x0);
  4145     disp($offset);
  4146   %}
  4147 %}
  4149 // Note:  Intel has a swapped version also, like this:
  4150 //operand indOffsetX(iRegI reg, immP offset) %{
  4151 //  constraint(ALLOC_IN_RC(int_reg));
  4152 //  match(AddP offset reg);
  4153 //
  4154 //  op_cost(100);
  4155 //  format %{ "[$reg + $offset]" %}
  4156 //  interface(MEMORY_INTER) %{
  4157 //    base($reg);
  4158 //    index(0x0);
  4159 //    scale(0x0);
  4160 //    disp($offset);
  4161 //  %}
  4162 //%}
  4163 //// However, it doesn't make sense for SPARC, since
  4164 // we have no particularly good way to embed oops in
  4165 // single instructions.
  4167 // Indirect with Register Index
  4168 operand indIndex(iRegP addr, iRegX index) %{
  4169   constraint(ALLOC_IN_RC(ptr_reg));
  4170   match(AddP addr index);
  4172   op_cost(100);
  4173   format %{ "[$addr + $index]" %}
  4174   interface(MEMORY_INTER) %{
  4175     base($addr);
  4176     index($index);
  4177     scale(0x0);
  4178     disp(0x0);
  4179   %}
  4180 %}
  4182 //----------Special Memory Operands--------------------------------------------
  4183 // Stack Slot Operand - This operand is used for loading and storing temporary
  4184 //                      values on the stack where a match requires a value to
  4185 //                      flow through memory.
  4186 operand stackSlotI(sRegI reg) %{
  4187   constraint(ALLOC_IN_RC(stack_slots));
  4188   op_cost(100);
  4189   //match(RegI);
  4190   format %{ "[$reg]" %}
  4191   interface(MEMORY_INTER) %{
  4192     base(0xE);   // R_SP
  4193     index(0x0);
  4194     scale(0x0);
  4195     disp($reg);  // Stack Offset
  4196   %}
  4197 %}
  4199 operand stackSlotP(sRegP reg) %{
  4200   constraint(ALLOC_IN_RC(stack_slots));
  4201   op_cost(100);
  4202   //match(RegP);
  4203   format %{ "[$reg]" %}
  4204   interface(MEMORY_INTER) %{
  4205     base(0xE);   // R_SP
  4206     index(0x0);
  4207     scale(0x0);
  4208     disp($reg);  // Stack Offset
  4209   %}
  4210 %}
  4212 operand stackSlotF(sRegF reg) %{
  4213   constraint(ALLOC_IN_RC(stack_slots));
  4214   op_cost(100);
  4215   //match(RegF);
  4216   format %{ "[$reg]" %}
  4217   interface(MEMORY_INTER) %{
  4218     base(0xE);   // R_SP
  4219     index(0x0);
  4220     scale(0x0);
  4221     disp($reg);  // Stack Offset
  4222   %}
  4223 %}
  4224 operand stackSlotD(sRegD reg) %{
  4225   constraint(ALLOC_IN_RC(stack_slots));
  4226   op_cost(100);
  4227   //match(RegD);
  4228   format %{ "[$reg]" %}
  4229   interface(MEMORY_INTER) %{
  4230     base(0xE);   // R_SP
  4231     index(0x0);
  4232     scale(0x0);
  4233     disp($reg);  // Stack Offset
  4234   %}
  4235 %}
  4236 operand stackSlotL(sRegL reg) %{
  4237   constraint(ALLOC_IN_RC(stack_slots));
  4238   op_cost(100);
  4239   //match(RegL);
  4240   format %{ "[$reg]" %}
  4241   interface(MEMORY_INTER) %{
  4242     base(0xE);   // R_SP
  4243     index(0x0);
  4244     scale(0x0);
  4245     disp($reg);  // Stack Offset
  4246   %}
  4247 %}
  4249 // Operands for expressing Control Flow
  4250 // NOTE:  Label is a predefined operand which should not be redefined in
  4251 //        the AD file.  It is generically handled within the ADLC.
  4253 //----------Conditional Branch Operands----------------------------------------
  4254 // Comparison Op  - This is the operation of the comparison, and is limited to
  4255 //                  the following set of codes:
  4256 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4257 //
  4258 // Other attributes of the comparison, such as unsignedness, are specified
  4259 // by the comparison instruction that sets a condition code flags register.
  4260 // That result is represented by a flags operand whose subtype is appropriate
  4261 // to the unsignedness (etc.) of the comparison.
  4262 //
  4263 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4264 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4265 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4267 operand cmpOp() %{
  4268   match(Bool);
  4270   format %{ "" %}
  4271   interface(COND_INTER) %{
  4272     equal(0x1);
  4273     not_equal(0x9);
  4274     less(0x3);
  4275     greater_equal(0xB);
  4276     less_equal(0x2);
  4277     greater(0xA);
  4278   %}
  4279 %}
  4281 // Comparison Op, unsigned
  4282 operand cmpOpU() %{
  4283   match(Bool);
  4285   format %{ "u" %}
  4286   interface(COND_INTER) %{
  4287     equal(0x1);
  4288     not_equal(0x9);
  4289     less(0x5);
  4290     greater_equal(0xD);
  4291     less_equal(0x4);
  4292     greater(0xC);
  4293   %}
  4294 %}
  4296 // Comparison Op, pointer (same as unsigned)
  4297 operand cmpOpP() %{
  4298   match(Bool);
  4300   format %{ "p" %}
  4301   interface(COND_INTER) %{
  4302     equal(0x1);
  4303     not_equal(0x9);
  4304     less(0x5);
  4305     greater_equal(0xD);
  4306     less_equal(0x4);
  4307     greater(0xC);
  4308   %}
  4309 %}
  4311 // Comparison Op, branch-register encoding
  4312 operand cmpOp_reg() %{
  4313   match(Bool);
  4315   format %{ "" %}
  4316   interface(COND_INTER) %{
  4317     equal        (0x1);
  4318     not_equal    (0x5);
  4319     less         (0x3);
  4320     greater_equal(0x7);
  4321     less_equal   (0x2);
  4322     greater      (0x6);
  4323   %}
  4324 %}
  4326 // Comparison Code, floating, unordered same as less
  4327 operand cmpOpF() %{
  4328   match(Bool);
  4330   format %{ "fl" %}
  4331   interface(COND_INTER) %{
  4332     equal(0x9);
  4333     not_equal(0x1);
  4334     less(0x3);
  4335     greater_equal(0xB);
  4336     less_equal(0xE);
  4337     greater(0x6);
  4338   %}
  4339 %}
  4341 // Used by long compare
  4342 operand cmpOp_commute() %{
  4343   match(Bool);
  4345   format %{ "" %}
  4346   interface(COND_INTER) %{
  4347     equal(0x1);
  4348     not_equal(0x9);
  4349     less(0xA);
  4350     greater_equal(0x2);
  4351     less_equal(0xB);
  4352     greater(0x3);
  4353   %}
  4354 %}
  4356 //----------OPERAND CLASSES----------------------------------------------------
  4357 // Operand Classes are groups of operands that are used to simplify
  4358 // instruction definitions by not requiring the AD writer to specify separate
  4359 // instructions for every form of operand when the instruction accepts
  4360 // multiple operand types with the same basic encoding and format.  The classic
  4361 // case of this is memory operands.
  4362 // Indirect is not included since its use is limited to Compare & Swap
  4363 opclass memory( indirect, indOffset13, indIndex );
  4365 //----------PIPELINE-----------------------------------------------------------
  4366 pipeline %{
  4368 //----------ATTRIBUTES---------------------------------------------------------
  4369 attributes %{
  4370   fixed_size_instructions;           // Fixed size instructions
  4371   branch_has_delay_slot;             // Branch has delay slot following
  4372   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4373   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4374   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4375   instruction_fetch_units = 1;       // of 16 bytes
  4377   // List of nop instructions
  4378   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4379 %}
  4381 //----------RESOURCES----------------------------------------------------------
  4382 // Resources are the functional units available to the machine
  4383 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4385 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4386 // Pipeline Description specifies the stages in the machine's pipeline
  4388 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4390 //----------PIPELINE CLASSES---------------------------------------------------
  4391 // Pipeline Classes describe the stages in which input and output are
  4392 // referenced by the hardware pipeline.
  4394 // Integer ALU reg-reg operation
  4395 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4396     single_instruction;
  4397     dst   : E(write);
  4398     src1  : R(read);
  4399     src2  : R(read);
  4400     IALU  : R;
  4401 %}
  4403 // Integer ALU reg-reg long operation
  4404 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4405     instruction_count(2);
  4406     dst   : E(write);
  4407     src1  : R(read);
  4408     src2  : R(read);
  4409     IALU  : R;
  4410     IALU  : R;
  4411 %}
  4413 // Integer ALU reg-reg long dependent operation
  4414 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4415     instruction_count(1); multiple_bundles;
  4416     dst   : E(write);
  4417     src1  : R(read);
  4418     src2  : R(read);
  4419     cr    : E(write);
  4420     IALU  : R(2);
  4421 %}
  4423 // Integer ALU reg-imm operaion
  4424 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4425     single_instruction;
  4426     dst   : E(write);
  4427     src1  : R(read);
  4428     IALU  : R;
  4429 %}
  4431 // Integer ALU reg-reg operation with condition code
  4432 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4433     single_instruction;
  4434     dst   : E(write);
  4435     cr    : E(write);
  4436     src1  : R(read);
  4437     src2  : R(read);
  4438     IALU  : R;
  4439 %}
  4441 // Integer ALU reg-imm operation with condition code
  4442 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4443     single_instruction;
  4444     dst   : E(write);
  4445     cr    : E(write);
  4446     src1  : R(read);
  4447     IALU  : R;
  4448 %}
  4450 // Integer ALU zero-reg operation
  4451 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4452     single_instruction;
  4453     dst   : E(write);
  4454     src2  : R(read);
  4455     IALU  : R;
  4456 %}
  4458 // Integer ALU zero-reg operation with condition code only
  4459 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4460     single_instruction;
  4461     cr    : E(write);
  4462     src   : R(read);
  4463     IALU  : R;
  4464 %}
  4466 // Integer ALU reg-reg operation with condition code only
  4467 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4468     single_instruction;
  4469     cr    : E(write);
  4470     src1  : R(read);
  4471     src2  : R(read);
  4472     IALU  : R;
  4473 %}
  4475 // Integer ALU reg-imm operation with condition code only
  4476 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4477     single_instruction;
  4478     cr    : E(write);
  4479     src1  : R(read);
  4480     IALU  : R;
  4481 %}
  4483 // Integer ALU reg-reg-zero operation with condition code only
  4484 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4485     single_instruction;
  4486     cr    : E(write);
  4487     src1  : R(read);
  4488     src2  : R(read);
  4489     IALU  : R;
  4490 %}
  4492 // Integer ALU reg-imm-zero operation with condition code only
  4493 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4494     single_instruction;
  4495     cr    : E(write);
  4496     src1  : R(read);
  4497     IALU  : R;
  4498 %}
  4500 // Integer ALU reg-reg operation with condition code, src1 modified
  4501 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4502     single_instruction;
  4503     cr    : E(write);
  4504     src1  : E(write);
  4505     src1  : R(read);
  4506     src2  : R(read);
  4507     IALU  : R;
  4508 %}
  4510 // Integer ALU reg-imm operation with condition code, src1 modified
  4511 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4512     single_instruction;
  4513     cr    : E(write);
  4514     src1  : E(write);
  4515     src1  : R(read);
  4516     IALU  : R;
  4517 %}
  4519 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4520     multiple_bundles;
  4521     dst   : E(write)+4;
  4522     cr    : E(write);
  4523     src1  : R(read);
  4524     src2  : R(read);
  4525     IALU  : R(3);
  4526     BR    : R(2);
  4527 %}
  4529 // Integer ALU operation
  4530 pipe_class ialu_none(iRegI dst) %{
  4531     single_instruction;
  4532     dst   : E(write);
  4533     IALU  : R;
  4534 %}
  4536 // Integer ALU reg operation
  4537 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4538     single_instruction; may_have_no_code;
  4539     dst   : E(write);
  4540     src   : R(read);
  4541     IALU  : R;
  4542 %}
  4544 // Integer ALU reg conditional operation
  4545 // This instruction has a 1 cycle stall, and cannot execute
  4546 // in the same cycle as the instruction setting the condition
  4547 // code. We kludge this by pretending to read the condition code
  4548 // 1 cycle earlier, and by marking the functional units as busy
  4549 // for 2 cycles with the result available 1 cycle later than
  4550 // is really the case.
  4551 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4552     single_instruction;
  4553     op2_out : C(write);
  4554     op1     : R(read);
  4555     cr      : R(read);       // This is really E, with a 1 cycle stall
  4556     BR      : R(2);
  4557     MS      : R(2);
  4558 %}
  4560 #ifdef _LP64
  4561 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4562     instruction_count(1); multiple_bundles;
  4563     dst     : C(write)+1;
  4564     src     : R(read)+1;
  4565     IALU    : R(1);
  4566     BR      : E(2);
  4567     MS      : E(2);
  4568 %}
  4569 #endif
  4571 // Integer ALU reg operation
  4572 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4573     single_instruction; may_have_no_code;
  4574     dst   : E(write);
  4575     src   : R(read);
  4576     IALU  : R;
  4577 %}
  4578 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4579     single_instruction; may_have_no_code;
  4580     dst   : E(write);
  4581     src   : R(read);
  4582     IALU  : R;
  4583 %}
  4585 // Two integer ALU reg operations
  4586 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4587     instruction_count(2);
  4588     dst   : E(write);
  4589     src   : R(read);
  4590     A0    : R;
  4591     A1    : R;
  4592 %}
  4594 // Two integer ALU reg operations
  4595 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4596     instruction_count(2); may_have_no_code;
  4597     dst   : E(write);
  4598     src   : R(read);
  4599     A0    : R;
  4600     A1    : R;
  4601 %}
  4603 // Integer ALU imm operation
  4604 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4605     single_instruction;
  4606     dst   : E(write);
  4607     IALU  : R;
  4608 %}
  4610 // Integer ALU reg-reg with carry operation
  4611 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4612     single_instruction;
  4613     dst   : E(write);
  4614     src1  : R(read);
  4615     src2  : R(read);
  4616     IALU  : R;
  4617 %}
  4619 // Integer ALU cc operation
  4620 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4621     single_instruction;
  4622     dst   : E(write);
  4623     cc    : R(read);
  4624     IALU  : R;
  4625 %}
  4627 // Integer ALU cc / second IALU operation
  4628 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4629     instruction_count(1); multiple_bundles;
  4630     dst   : E(write)+1;
  4631     src   : R(read);
  4632     IALU  : R;
  4633 %}
  4635 // Integer ALU cc / second IALU operation
  4636 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4637     instruction_count(1); multiple_bundles;
  4638     dst   : E(write)+1;
  4639     p     : R(read);
  4640     q     : R(read);
  4641     IALU  : R;
  4642 %}
  4644 // Integer ALU hi-lo-reg operation
  4645 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4646     instruction_count(1); multiple_bundles;
  4647     dst   : E(write)+1;
  4648     IALU  : R(2);
  4649 %}
  4651 // Float ALU hi-lo-reg operation (with temp)
  4652 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4653     instruction_count(1); multiple_bundles;
  4654     dst   : E(write)+1;
  4655     IALU  : R(2);
  4656 %}
  4658 // Long Constant
  4659 pipe_class loadConL( iRegL dst, immL src ) %{
  4660     instruction_count(2); multiple_bundles;
  4661     dst   : E(write)+1;
  4662     IALU  : R(2);
  4663     IALU  : R(2);
  4664 %}
  4666 // Pointer Constant
  4667 pipe_class loadConP( iRegP dst, immP src ) %{
  4668     instruction_count(0); multiple_bundles;
  4669     fixed_latency(6);
  4670 %}
  4672 // Polling Address
  4673 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4674 #ifdef _LP64
  4675     instruction_count(0); multiple_bundles;
  4676     fixed_latency(6);
  4677 #else
  4678     dst   : E(write);
  4679     IALU  : R;
  4680 #endif
  4681 %}
  4683 // Long Constant small
  4684 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4685     instruction_count(2);
  4686     dst   : E(write);
  4687     IALU  : R;
  4688     IALU  : R;
  4689 %}
  4691 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4692 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4693     instruction_count(1); multiple_bundles;
  4694     src   : R(read);
  4695     dst   : M(write)+1;
  4696     IALU  : R;
  4697     MS    : E;
  4698 %}
  4700 // Integer ALU nop operation
  4701 pipe_class ialu_nop() %{
  4702     single_instruction;
  4703     IALU  : R;
  4704 %}
  4706 // Integer ALU nop operation
  4707 pipe_class ialu_nop_A0() %{
  4708     single_instruction;
  4709     A0    : R;
  4710 %}
  4712 // Integer ALU nop operation
  4713 pipe_class ialu_nop_A1() %{
  4714     single_instruction;
  4715     A1    : R;
  4716 %}
  4718 // Integer Multiply reg-reg operation
  4719 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4720     single_instruction;
  4721     dst   : E(write);
  4722     src1  : R(read);
  4723     src2  : R(read);
  4724     MS    : R(5);
  4725 %}
  4727 // Integer Multiply reg-imm operation
  4728 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4729     single_instruction;
  4730     dst   : E(write);
  4731     src1  : R(read);
  4732     MS    : R(5);
  4733 %}
  4735 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4736     single_instruction;
  4737     dst   : E(write)+4;
  4738     src1  : R(read);
  4739     src2  : R(read);
  4740     MS    : R(6);
  4741 %}
  4743 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4744     single_instruction;
  4745     dst   : E(write)+4;
  4746     src1  : R(read);
  4747     MS    : R(6);
  4748 %}
  4750 // Integer Divide reg-reg
  4751 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4752     instruction_count(1); multiple_bundles;
  4753     dst   : E(write);
  4754     temp  : E(write);
  4755     src1  : R(read);
  4756     src2  : R(read);
  4757     temp  : R(read);
  4758     MS    : R(38);
  4759 %}
  4761 // Integer Divide reg-imm
  4762 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4763     instruction_count(1); multiple_bundles;
  4764     dst   : E(write);
  4765     temp  : E(write);
  4766     src1  : R(read);
  4767     temp  : R(read);
  4768     MS    : R(38);
  4769 %}
  4771 // Long Divide
  4772 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4773     dst  : E(write)+71;
  4774     src1 : R(read);
  4775     src2 : R(read)+1;
  4776     MS   : R(70);
  4777 %}
  4779 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4780     dst  : E(write)+71;
  4781     src1 : R(read);
  4782     MS   : R(70);
  4783 %}
  4785 // Floating Point Add Float
  4786 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4787     single_instruction;
  4788     dst   : X(write);
  4789     src1  : E(read);
  4790     src2  : E(read);
  4791     FA    : R;
  4792 %}
  4794 // Floating Point Add Double
  4795 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4796     single_instruction;
  4797     dst   : X(write);
  4798     src1  : E(read);
  4799     src2  : E(read);
  4800     FA    : R;
  4801 %}
  4803 // Floating Point Conditional Move based on integer flags
  4804 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4805     single_instruction;
  4806     dst   : X(write);
  4807     src   : E(read);
  4808     cr    : R(read);
  4809     FA    : R(2);
  4810     BR    : R(2);
  4811 %}
  4813 // Floating Point Conditional Move based on integer flags
  4814 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4815     single_instruction;
  4816     dst   : X(write);
  4817     src   : E(read);
  4818     cr    : R(read);
  4819     FA    : R(2);
  4820     BR    : R(2);
  4821 %}
  4823 // Floating Point Multiply Float
  4824 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4825     single_instruction;
  4826     dst   : X(write);
  4827     src1  : E(read);
  4828     src2  : E(read);
  4829     FM    : R;
  4830 %}
  4832 // Floating Point Multiply Double
  4833 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4834     single_instruction;
  4835     dst   : X(write);
  4836     src1  : E(read);
  4837     src2  : E(read);
  4838     FM    : R;
  4839 %}
  4841 // Floating Point Divide Float
  4842 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4843     single_instruction;
  4844     dst   : X(write);
  4845     src1  : E(read);
  4846     src2  : E(read);
  4847     FM    : R;
  4848     FDIV  : C(14);
  4849 %}
  4851 // Floating Point Divide Double
  4852 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4853     single_instruction;
  4854     dst   : X(write);
  4855     src1  : E(read);
  4856     src2  : E(read);
  4857     FM    : R;
  4858     FDIV  : C(17);
  4859 %}
  4861 // Floating Point Move/Negate/Abs Float
  4862 pipe_class faddF_reg(regF dst, regF src) %{
  4863     single_instruction;
  4864     dst   : W(write);
  4865     src   : E(read);
  4866     FA    : R(1);
  4867 %}
  4869 // Floating Point Move/Negate/Abs Double
  4870 pipe_class faddD_reg(regD dst, regD src) %{
  4871     single_instruction;
  4872     dst   : W(write);
  4873     src   : E(read);
  4874     FA    : R;
  4875 %}
  4877 // Floating Point Convert F->D
  4878 pipe_class fcvtF2D(regD dst, regF src) %{
  4879     single_instruction;
  4880     dst   : X(write);
  4881     src   : E(read);
  4882     FA    : R;
  4883 %}
  4885 // Floating Point Convert I->D
  4886 pipe_class fcvtI2D(regD dst, regF src) %{
  4887     single_instruction;
  4888     dst   : X(write);
  4889     src   : E(read);
  4890     FA    : R;
  4891 %}
  4893 // Floating Point Convert LHi->D
  4894 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4895     single_instruction;
  4896     dst   : X(write);
  4897     src   : E(read);
  4898     FA    : R;
  4899 %}
  4901 // Floating Point Convert L->D
  4902 pipe_class fcvtL2D(regD dst, regF src) %{
  4903     single_instruction;
  4904     dst   : X(write);
  4905     src   : E(read);
  4906     FA    : R;
  4907 %}
  4909 // Floating Point Convert L->F
  4910 pipe_class fcvtL2F(regD dst, regF src) %{
  4911     single_instruction;
  4912     dst   : X(write);
  4913     src   : E(read);
  4914     FA    : R;
  4915 %}
  4917 // Floating Point Convert D->F
  4918 pipe_class fcvtD2F(regD dst, regF src) %{
  4919     single_instruction;
  4920     dst   : X(write);
  4921     src   : E(read);
  4922     FA    : R;
  4923 %}
  4925 // Floating Point Convert I->L
  4926 pipe_class fcvtI2L(regD dst, regF src) %{
  4927     single_instruction;
  4928     dst   : X(write);
  4929     src   : E(read);
  4930     FA    : R;
  4931 %}
  4933 // Floating Point Convert D->F
  4934 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4935     instruction_count(1); multiple_bundles;
  4936     dst   : X(write)+6;
  4937     src   : E(read);
  4938     FA    : R;
  4939 %}
  4941 // Floating Point Convert D->L
  4942 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4943     instruction_count(1); multiple_bundles;
  4944     dst   : X(write)+6;
  4945     src   : E(read);
  4946     FA    : R;
  4947 %}
  4949 // Floating Point Convert F->I
  4950 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4951     instruction_count(1); multiple_bundles;
  4952     dst   : X(write)+6;
  4953     src   : E(read);
  4954     FA    : R;
  4955 %}
  4957 // Floating Point Convert F->L
  4958 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4959     instruction_count(1); multiple_bundles;
  4960     dst   : X(write)+6;
  4961     src   : E(read);
  4962     FA    : R;
  4963 %}
  4965 // Floating Point Convert I->F
  4966 pipe_class fcvtI2F(regF dst, regF src) %{
  4967     single_instruction;
  4968     dst   : X(write);
  4969     src   : E(read);
  4970     FA    : R;
  4971 %}
  4973 // Floating Point Compare
  4974 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4975     single_instruction;
  4976     cr    : X(write);
  4977     src1  : E(read);
  4978     src2  : E(read);
  4979     FA    : R;
  4980 %}
  4982 // Floating Point Compare
  4983 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4984     single_instruction;
  4985     cr    : X(write);
  4986     src1  : E(read);
  4987     src2  : E(read);
  4988     FA    : R;
  4989 %}
  4991 // Floating Add Nop
  4992 pipe_class fadd_nop() %{
  4993     single_instruction;
  4994     FA  : R;
  4995 %}
  4997 // Integer Store to Memory
  4998 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4999     single_instruction;
  5000     mem   : R(read);
  5001     src   : C(read);
  5002     MS    : R;
  5003 %}
  5005 // Integer Store to Memory
  5006 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5007     single_instruction;
  5008     mem   : R(read);
  5009     src   : C(read);
  5010     MS    : R;
  5011 %}
  5013 // Integer Store Zero to Memory
  5014 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5015     single_instruction;
  5016     mem   : R(read);
  5017     MS    : R;
  5018 %}
  5020 // Special Stack Slot Store
  5021 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5022     single_instruction;
  5023     stkSlot : R(read);
  5024     src     : C(read);
  5025     MS      : R;
  5026 %}
  5028 // Special Stack Slot Store
  5029 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5030     instruction_count(2); multiple_bundles;
  5031     stkSlot : R(read);
  5032     src     : C(read);
  5033     MS      : R(2);
  5034 %}
  5036 // Float Store
  5037 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5038     single_instruction;
  5039     mem : R(read);
  5040     src : C(read);
  5041     MS  : R;
  5042 %}
  5044 // Float Store
  5045 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5046     single_instruction;
  5047     mem : R(read);
  5048     MS  : R;
  5049 %}
  5051 // Double Store
  5052 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5053     instruction_count(1);
  5054     mem : R(read);
  5055     src : C(read);
  5056     MS  : R;
  5057 %}
  5059 // Double Store
  5060 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5061     single_instruction;
  5062     mem : R(read);
  5063     MS  : R;
  5064 %}
  5066 // Special Stack Slot Float Store
  5067 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5068     single_instruction;
  5069     stkSlot : R(read);
  5070     src     : C(read);
  5071     MS      : R;
  5072 %}
  5074 // Special Stack Slot Double Store
  5075 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5076     single_instruction;
  5077     stkSlot : R(read);
  5078     src     : C(read);
  5079     MS      : R;
  5080 %}
  5082 // Integer Load (when sign bit propagation not needed)
  5083 pipe_class iload_mem(iRegI dst, memory mem) %{
  5084     single_instruction;
  5085     mem : R(read);
  5086     dst : C(write);
  5087     MS  : R;
  5088 %}
  5090 // Integer Load from stack operand
  5091 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5092     single_instruction;
  5093     mem : R(read);
  5094     dst : C(write);
  5095     MS  : R;
  5096 %}
  5098 // Integer Load (when sign bit propagation or masking is needed)
  5099 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5100     single_instruction;
  5101     mem : R(read);
  5102     dst : M(write);
  5103     MS  : R;
  5104 %}
  5106 // Float Load
  5107 pipe_class floadF_mem(regF dst, memory mem) %{
  5108     single_instruction;
  5109     mem : R(read);
  5110     dst : M(write);
  5111     MS  : R;
  5112 %}
  5114 // Float Load
  5115 pipe_class floadD_mem(regD dst, memory mem) %{
  5116     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5117     mem : R(read);
  5118     dst : M(write);
  5119     MS  : R;
  5120 %}
  5122 // Float Load
  5123 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5124     single_instruction;
  5125     stkSlot : R(read);
  5126     dst : M(write);
  5127     MS  : R;
  5128 %}
  5130 // Float Load
  5131 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5132     single_instruction;
  5133     stkSlot : R(read);
  5134     dst : M(write);
  5135     MS  : R;
  5136 %}
  5138 // Memory Nop
  5139 pipe_class mem_nop() %{
  5140     single_instruction;
  5141     MS  : R;
  5142 %}
  5144 pipe_class sethi(iRegP dst, immI src) %{
  5145     single_instruction;
  5146     dst  : E(write);
  5147     IALU : R;
  5148 %}
  5150 pipe_class loadPollP(iRegP poll) %{
  5151     single_instruction;
  5152     poll : R(read);
  5153     MS   : R;
  5154 %}
  5156 pipe_class br(Universe br, label labl) %{
  5157     single_instruction_with_delay_slot;
  5158     BR  : R;
  5159 %}
  5161 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5162     single_instruction_with_delay_slot;
  5163     cr    : E(read);
  5164     BR    : R;
  5165 %}
  5167 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5168     single_instruction_with_delay_slot;
  5169     op1 : E(read);
  5170     BR  : R;
  5171     MS  : R;
  5172 %}
  5174 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5175     single_instruction_with_delay_slot;
  5176     cr    : E(read);
  5177     BR    : R;
  5178 %}
  5180 pipe_class br_nop() %{
  5181     single_instruction;
  5182     BR  : R;
  5183 %}
  5185 pipe_class simple_call(method meth) %{
  5186     instruction_count(2); multiple_bundles; force_serialization;
  5187     fixed_latency(100);
  5188     BR  : R(1);
  5189     MS  : R(1);
  5190     A0  : R(1);
  5191 %}
  5193 pipe_class compiled_call(method meth) %{
  5194     instruction_count(1); multiple_bundles; force_serialization;
  5195     fixed_latency(100);
  5196     MS  : R(1);
  5197 %}
  5199 pipe_class call(method meth) %{
  5200     instruction_count(0); multiple_bundles; force_serialization;
  5201     fixed_latency(100);
  5202 %}
  5204 pipe_class tail_call(Universe ignore, label labl) %{
  5205     single_instruction; has_delay_slot;
  5206     fixed_latency(100);
  5207     BR  : R(1);
  5208     MS  : R(1);
  5209 %}
  5211 pipe_class ret(Universe ignore) %{
  5212     single_instruction; has_delay_slot;
  5213     BR  : R(1);
  5214     MS  : R(1);
  5215 %}
  5217 pipe_class ret_poll(g3RegP poll) %{
  5218     instruction_count(3); has_delay_slot;
  5219     poll : E(read);
  5220     MS   : R;
  5221 %}
  5223 // The real do-nothing guy
  5224 pipe_class empty( ) %{
  5225     instruction_count(0);
  5226 %}
  5228 pipe_class long_memory_op() %{
  5229     instruction_count(0); multiple_bundles; force_serialization;
  5230     fixed_latency(25);
  5231     MS  : R(1);
  5232 %}
  5234 // Check-cast
  5235 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5236     array : R(read);
  5237     match  : R(read);
  5238     IALU   : R(2);
  5239     BR     : R(2);
  5240     MS     : R;
  5241 %}
  5243 // Convert FPU flags into +1,0,-1
  5244 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5245     src1  : E(read);
  5246     src2  : E(read);
  5247     dst   : E(write);
  5248     FA    : R;
  5249     MS    : R(2);
  5250     BR    : R(2);
  5251 %}
  5253 // Compare for p < q, and conditionally add y
  5254 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5255     p     : E(read);
  5256     q     : E(read);
  5257     y     : E(read);
  5258     IALU  : R(3)
  5259 %}
  5261 // Perform a compare, then move conditionally in a branch delay slot.
  5262 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5263     src2   : E(read);
  5264     srcdst : E(read);
  5265     IALU   : R;
  5266     BR     : R;
  5267 %}
  5269 // Define the class for the Nop node
  5270 define %{
  5271    MachNop = ialu_nop;
  5272 %}
  5274 %}
  5276 //----------INSTRUCTIONS-------------------------------------------------------
  5278 //------------Special Stack Slot instructions - no match rules-----------------
  5279 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5280   // No match rule to avoid chain rule match.
  5281   effect(DEF dst, USE src);
  5282   ins_cost(MEMORY_REF_COST);
  5283   size(4);
  5284   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5285   opcode(Assembler::ldf_op3);
  5286   ins_encode(simple_form3_mem_reg(src, dst));
  5287   ins_pipe(floadF_stk);
  5288 %}
  5290 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5291   // No match rule to avoid chain rule match.
  5292   effect(DEF dst, USE src);
  5293   ins_cost(MEMORY_REF_COST);
  5294   size(4);
  5295   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5296   opcode(Assembler::lddf_op3);
  5297   ins_encode(simple_form3_mem_reg(src, dst));
  5298   ins_pipe(floadD_stk);
  5299 %}
  5301 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5302   // No match rule to avoid chain rule match.
  5303   effect(DEF dst, USE src);
  5304   ins_cost(MEMORY_REF_COST);
  5305   size(4);
  5306   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5307   opcode(Assembler::stf_op3);
  5308   ins_encode(simple_form3_mem_reg(dst, src));
  5309   ins_pipe(fstoreF_stk_reg);
  5310 %}
  5312 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5313   // No match rule to avoid chain rule match.
  5314   effect(DEF dst, USE src);
  5315   ins_cost(MEMORY_REF_COST);
  5316   size(4);
  5317   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5318   opcode(Assembler::stdf_op3);
  5319   ins_encode(simple_form3_mem_reg(dst, src));
  5320   ins_pipe(fstoreD_stk_reg);
  5321 %}
  5323 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5324   effect(DEF dst, USE src);
  5325   ins_cost(MEMORY_REF_COST*2);
  5326   size(8);
  5327   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5328             "STW    R_G0,$dst.lo" %}
  5329   opcode(Assembler::stw_op3);
  5330   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5331   ins_pipe(lstoreI_stk_reg);
  5332 %}
  5334 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5335   // No match rule to avoid chain rule match.
  5336   effect(DEF dst, USE src);
  5337   ins_cost(MEMORY_REF_COST);
  5338   size(4);
  5339   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5340   opcode(Assembler::stx_op3);
  5341   ins_encode(simple_form3_mem_reg( dst, src ) );
  5342   ins_pipe(istore_stk_reg);
  5343 %}
  5345 //---------- Chain stack slots between similar types --------
  5347 // Load integer from stack slot
  5348 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5349   match(Set dst src);
  5350   ins_cost(MEMORY_REF_COST);
  5352   size(4);
  5353   format %{ "LDUW   $src,$dst\t!stk" %}
  5354   opcode(Assembler::lduw_op3);
  5355   ins_encode(simple_form3_mem_reg( src, dst ) );
  5356   ins_pipe(iload_mem);
  5357 %}
  5359 // Store integer to stack slot
  5360 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5361   match(Set dst src);
  5362   ins_cost(MEMORY_REF_COST);
  5364   size(4);
  5365   format %{ "STW    $src,$dst\t!stk" %}
  5366   opcode(Assembler::stw_op3);
  5367   ins_encode(simple_form3_mem_reg( dst, src ) );
  5368   ins_pipe(istore_mem_reg);
  5369 %}
  5371 // Load long from stack slot
  5372 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5373   match(Set dst src);
  5375   ins_cost(MEMORY_REF_COST);
  5376   size(4);
  5377   format %{ "LDX    $src,$dst\t! long" %}
  5378   opcode(Assembler::ldx_op3);
  5379   ins_encode(simple_form3_mem_reg( src, dst ) );
  5380   ins_pipe(iload_mem);
  5381 %}
  5383 // Store long to stack slot
  5384 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5385   match(Set dst src);
  5387   ins_cost(MEMORY_REF_COST);
  5388   size(4);
  5389   format %{ "STX    $src,$dst\t! long" %}
  5390   opcode(Assembler::stx_op3);
  5391   ins_encode(simple_form3_mem_reg( dst, src ) );
  5392   ins_pipe(istore_mem_reg);
  5393 %}
  5395 #ifdef _LP64
  5396 // Load pointer from stack slot, 64-bit encoding
  5397 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5398   match(Set dst src);
  5399   ins_cost(MEMORY_REF_COST);
  5400   size(4);
  5401   format %{ "LDX    $src,$dst\t!ptr" %}
  5402   opcode(Assembler::ldx_op3);
  5403   ins_encode(simple_form3_mem_reg( src, dst ) );
  5404   ins_pipe(iload_mem);
  5405 %}
  5407 // Store pointer to stack slot
  5408 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5409   match(Set dst src);
  5410   ins_cost(MEMORY_REF_COST);
  5411   size(4);
  5412   format %{ "STX    $src,$dst\t!ptr" %}
  5413   opcode(Assembler::stx_op3);
  5414   ins_encode(simple_form3_mem_reg( dst, src ) );
  5415   ins_pipe(istore_mem_reg);
  5416 %}
  5417 #else // _LP64
  5418 // Load pointer from stack slot, 32-bit encoding
  5419 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5420   match(Set dst src);
  5421   ins_cost(MEMORY_REF_COST);
  5422   format %{ "LDUW   $src,$dst\t!ptr" %}
  5423   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5424   ins_encode(simple_form3_mem_reg( src, dst ) );
  5425   ins_pipe(iload_mem);
  5426 %}
  5428 // Store pointer to stack slot
  5429 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5430   match(Set dst src);
  5431   ins_cost(MEMORY_REF_COST);
  5432   format %{ "STW    $src,$dst\t!ptr" %}
  5433   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5434   ins_encode(simple_form3_mem_reg( dst, src ) );
  5435   ins_pipe(istore_mem_reg);
  5436 %}
  5437 #endif // _LP64
  5439 //------------Special Nop instructions for bundling - no match rules-----------
  5440 // Nop using the A0 functional unit
  5441 instruct Nop_A0() %{
  5442   ins_cost(0);
  5444   format %{ "NOP    ! Alu Pipeline" %}
  5445   opcode(Assembler::or_op3, Assembler::arith_op);
  5446   ins_encode( form2_nop() );
  5447   ins_pipe(ialu_nop_A0);
  5448 %}
  5450 // Nop using the A1 functional unit
  5451 instruct Nop_A1( ) %{
  5452   ins_cost(0);
  5454   format %{ "NOP    ! Alu Pipeline" %}
  5455   opcode(Assembler::or_op3, Assembler::arith_op);
  5456   ins_encode( form2_nop() );
  5457   ins_pipe(ialu_nop_A1);
  5458 %}
  5460 // Nop using the memory functional unit
  5461 instruct Nop_MS( ) %{
  5462   ins_cost(0);
  5464   format %{ "NOP    ! Memory Pipeline" %}
  5465   ins_encode( emit_mem_nop );
  5466   ins_pipe(mem_nop);
  5467 %}
  5469 // Nop using the floating add functional unit
  5470 instruct Nop_FA( ) %{
  5471   ins_cost(0);
  5473   format %{ "NOP    ! Floating Add Pipeline" %}
  5474   ins_encode( emit_fadd_nop );
  5475   ins_pipe(fadd_nop);
  5476 %}
  5478 // Nop using the branch functional unit
  5479 instruct Nop_BR( ) %{
  5480   ins_cost(0);
  5482   format %{ "NOP    ! Branch Pipeline" %}
  5483   ins_encode( emit_br_nop );
  5484   ins_pipe(br_nop);
  5485 %}
  5487 //----------Load/Store/Move Instructions---------------------------------------
  5488 //----------Load Instructions--------------------------------------------------
  5489 // Load Byte (8bit signed)
  5490 instruct loadB(iRegI dst, memory mem) %{
  5491   match(Set dst (LoadB mem));
  5492   ins_cost(MEMORY_REF_COST);
  5494   size(4);
  5495   format %{ "LDSB   $mem,$dst\t! byte" %}
  5496   opcode(Assembler::ldsb_op3);
  5497   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5498   ins_pipe(iload_mask_mem);
  5499 %}
  5501 // Load Byte (8bit signed) into a Long Register
  5502 instruct loadB2L(iRegL dst, memory mem) %{
  5503   match(Set dst (ConvI2L (LoadB mem)));
  5504   ins_cost(MEMORY_REF_COST);
  5506   size(4);
  5507   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5508   opcode(Assembler::ldsb_op3);
  5509   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5510   ins_pipe(iload_mask_mem);
  5511 %}
  5513 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5514 instruct loadUB(iRegI dst, memory mem) %{
  5515   match(Set dst (LoadUB mem));
  5516   ins_cost(MEMORY_REF_COST);
  5518   size(4);
  5519   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5520   opcode(Assembler::ldub_op3);
  5521   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5522   ins_pipe(iload_mask_mem);
  5523 %}
  5525 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5526 instruct loadUB2L(iRegL dst, memory mem) %{
  5527   match(Set dst (ConvI2L (LoadUB mem)));
  5528   ins_cost(MEMORY_REF_COST);
  5530   size(4);
  5531   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5532   opcode(Assembler::ldub_op3);
  5533   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5534   ins_pipe(iload_mask_mem);
  5535 %}
  5537 // Load Short (16bit signed)
  5538 instruct loadS(iRegI dst, memory mem) %{
  5539   match(Set dst (LoadS mem));
  5540   ins_cost(MEMORY_REF_COST);
  5542   size(4);
  5543   format %{ "LDSH   $mem,$dst\t! short" %}
  5544   opcode(Assembler::ldsh_op3);
  5545   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5546   ins_pipe(iload_mask_mem);
  5547 %}
  5549 // Load Short (16bit signed) into a Long Register
  5550 instruct loadS2L(iRegL dst, memory mem) %{
  5551   match(Set dst (ConvI2L (LoadS mem)));
  5552   ins_cost(MEMORY_REF_COST);
  5554   size(4);
  5555   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5556   opcode(Assembler::ldsh_op3);
  5557   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5558   ins_pipe(iload_mask_mem);
  5559 %}
  5561 // Load Unsigned Short/Char (16bit UNsigned)
  5562 instruct loadUS(iRegI dst, memory mem) %{
  5563   match(Set dst (LoadUS mem));
  5564   ins_cost(MEMORY_REF_COST);
  5566   size(4);
  5567   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5568   opcode(Assembler::lduh_op3);
  5569   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5570   ins_pipe(iload_mask_mem);
  5571 %}
  5573 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5574 instruct loadUS2L(iRegL dst, memory mem) %{
  5575   match(Set dst (ConvI2L (LoadUS mem)));
  5576   ins_cost(MEMORY_REF_COST);
  5578   size(4);
  5579   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5580   opcode(Assembler::lduh_op3);
  5581   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5582   ins_pipe(iload_mask_mem);
  5583 %}
  5585 // Load Integer
  5586 instruct loadI(iRegI dst, memory mem) %{
  5587   match(Set dst (LoadI mem));
  5588   ins_cost(MEMORY_REF_COST);
  5590   size(4);
  5591   format %{ "LDUW   $mem,$dst\t! int" %}
  5592   opcode(Assembler::lduw_op3);
  5593   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5594   ins_pipe(iload_mem);
  5595 %}
  5597 // Load Integer into a Long Register
  5598 instruct loadI2L(iRegL dst, memory mem) %{
  5599   match(Set dst (ConvI2L (LoadI mem)));
  5600   ins_cost(MEMORY_REF_COST);
  5602   size(4);
  5603   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5604   opcode(Assembler::ldsw_op3);
  5605   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5606   ins_pipe(iload_mem);
  5607 %}
  5609 // Load Unsigned Integer into a Long Register
  5610 instruct loadUI2L(iRegL dst, memory mem) %{
  5611   match(Set dst (LoadUI2L mem));
  5612   ins_cost(MEMORY_REF_COST);
  5614   size(4);
  5615   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5616   opcode(Assembler::lduw_op3);
  5617   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5618   ins_pipe(iload_mem);
  5619 %}
  5621 // Load Long - aligned
  5622 instruct loadL(iRegL dst, memory mem ) %{
  5623   match(Set dst (LoadL mem));
  5624   ins_cost(MEMORY_REF_COST);
  5626   size(4);
  5627   format %{ "LDX    $mem,$dst\t! long" %}
  5628   opcode(Assembler::ldx_op3);
  5629   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5630   ins_pipe(iload_mem);
  5631 %}
  5633 // Load Long - UNaligned
  5634 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5635   match(Set dst (LoadL_unaligned mem));
  5636   effect(KILL tmp);
  5637   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5638   size(16);
  5639   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5640           "\tLDUW   $mem  ,$dst\n"
  5641           "\tSLLX   #32, $dst, $dst\n"
  5642           "\tOR     $dst, R_O7, $dst" %}
  5643   opcode(Assembler::lduw_op3);
  5644   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5645   ins_pipe(iload_mem);
  5646 %}
  5648 // Load Aligned Packed Byte into a Double Register
  5649 instruct loadA8B(regD dst, memory mem) %{
  5650   match(Set dst (Load8B mem));
  5651   ins_cost(MEMORY_REF_COST);
  5652   size(4);
  5653   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5654   opcode(Assembler::lddf_op3);
  5655   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5656   ins_pipe(floadD_mem);
  5657 %}
  5659 // Load Aligned Packed Char into a Double Register
  5660 instruct loadA4C(regD dst, memory mem) %{
  5661   match(Set dst (Load4C mem));
  5662   ins_cost(MEMORY_REF_COST);
  5663   size(4);
  5664   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5665   opcode(Assembler::lddf_op3);
  5666   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5667   ins_pipe(floadD_mem);
  5668 %}
  5670 // Load Aligned Packed Short into a Double Register
  5671 instruct loadA4S(regD dst, memory mem) %{
  5672   match(Set dst (Load4S mem));
  5673   ins_cost(MEMORY_REF_COST);
  5674   size(4);
  5675   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5676   opcode(Assembler::lddf_op3);
  5677   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5678   ins_pipe(floadD_mem);
  5679 %}
  5681 // Load Aligned Packed Int into a Double Register
  5682 instruct loadA2I(regD dst, memory mem) %{
  5683   match(Set dst (Load2I mem));
  5684   ins_cost(MEMORY_REF_COST);
  5685   size(4);
  5686   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5687   opcode(Assembler::lddf_op3);
  5688   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5689   ins_pipe(floadD_mem);
  5690 %}
  5692 // Load Range
  5693 instruct loadRange(iRegI dst, memory mem) %{
  5694   match(Set dst (LoadRange mem));
  5695   ins_cost(MEMORY_REF_COST);
  5697   size(4);
  5698   format %{ "LDUW   $mem,$dst\t! range" %}
  5699   opcode(Assembler::lduw_op3);
  5700   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5701   ins_pipe(iload_mem);
  5702 %}
  5704 // Load Integer into %f register (for fitos/fitod)
  5705 instruct loadI_freg(regF dst, memory mem) %{
  5706   match(Set dst (LoadI mem));
  5707   ins_cost(MEMORY_REF_COST);
  5708   size(4);
  5710   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5711   opcode(Assembler::ldf_op3);
  5712   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5713   ins_pipe(floadF_mem);
  5714 %}
  5716 // Load Pointer
  5717 instruct loadP(iRegP dst, memory mem) %{
  5718   match(Set dst (LoadP mem));
  5719   ins_cost(MEMORY_REF_COST);
  5720   size(4);
  5722 #ifndef _LP64
  5723   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5724   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5725 #else
  5726   format %{ "LDX    $mem,$dst\t! ptr" %}
  5727   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5728 #endif
  5729   ins_encode( form3_mem_reg( mem, dst ) );
  5730   ins_pipe(iload_mem);
  5731 %}
  5733 // Load Compressed Pointer
  5734 instruct loadN(iRegN dst, memory mem) %{
  5735    match(Set dst (LoadN mem));
  5736    ins_cost(MEMORY_REF_COST);
  5737    size(4);
  5739    format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5740    ins_encode %{
  5741      Register index = $mem$$index$$Register;
  5742      if (index != G0) {
  5743        __ lduw($mem$$base$$Register, index, $dst$$Register);
  5744      } else {
  5745        __ lduw($mem$$base$$Register, $mem$$disp, $dst$$Register);
  5747    %}
  5748    ins_pipe(iload_mem);
  5749 %}
  5751 // Load Klass Pointer
  5752 instruct loadKlass(iRegP dst, memory mem) %{
  5753   match(Set dst (LoadKlass mem));
  5754   ins_cost(MEMORY_REF_COST);
  5755   size(4);
  5757 #ifndef _LP64
  5758   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5759   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5760 #else
  5761   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5762   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5763 #endif
  5764   ins_encode( form3_mem_reg( mem, dst ) );
  5765   ins_pipe(iload_mem);
  5766 %}
  5768 // Load narrow Klass Pointer
  5769 instruct loadNKlass(iRegN dst, memory mem) %{
  5770   match(Set dst (LoadNKlass mem));
  5771   ins_cost(MEMORY_REF_COST);
  5772   size(4);
  5774   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5776   ins_encode %{
  5777      Register base = as_Register($mem$$base);
  5778      Register index = as_Register($mem$$index);
  5779      Register dst = $dst$$Register;
  5780      if (index != G0) {
  5781        __ lduw(base, index, dst);
  5782      } else {
  5783        __ lduw(base, $mem$$disp, dst);
  5785   %}
  5786   ins_pipe(iload_mem);
  5787 %}
  5789 // Load Double
  5790 instruct loadD(regD dst, memory mem) %{
  5791   match(Set dst (LoadD mem));
  5792   ins_cost(MEMORY_REF_COST);
  5794   size(4);
  5795   format %{ "LDDF   $mem,$dst" %}
  5796   opcode(Assembler::lddf_op3);
  5797   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5798   ins_pipe(floadD_mem);
  5799 %}
  5801 // Load Double - UNaligned
  5802 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5803   match(Set dst (LoadD_unaligned mem));
  5804   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5805   size(8);
  5806   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5807           "\tLDF    $mem+4,$dst.lo\t!" %}
  5808   opcode(Assembler::ldf_op3);
  5809   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5810   ins_pipe(iload_mem);
  5811 %}
  5813 // Load Float
  5814 instruct loadF(regF dst, memory mem) %{
  5815   match(Set dst (LoadF mem));
  5816   ins_cost(MEMORY_REF_COST);
  5818   size(4);
  5819   format %{ "LDF    $mem,$dst" %}
  5820   opcode(Assembler::ldf_op3);
  5821   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5822   ins_pipe(floadF_mem);
  5823 %}
  5825 // Load Constant
  5826 instruct loadConI( iRegI dst, immI src ) %{
  5827   match(Set dst src);
  5828   ins_cost(DEFAULT_COST * 3/2);
  5829   format %{ "SET    $src,$dst" %}
  5830   ins_encode( Set32(src, dst) );
  5831   ins_pipe(ialu_hi_lo_reg);
  5832 %}
  5834 instruct loadConI13( iRegI dst, immI13 src ) %{
  5835   match(Set dst src);
  5837   size(4);
  5838   format %{ "MOV    $src,$dst" %}
  5839   ins_encode( Set13( src, dst ) );
  5840   ins_pipe(ialu_imm);
  5841 %}
  5843 instruct loadConP(iRegP dst, immP src) %{
  5844   match(Set dst src);
  5845   ins_cost(DEFAULT_COST * 3/2);
  5846   format %{ "SET    $src,$dst\t!ptr" %}
  5847   // This rule does not use "expand" unlike loadConI because then
  5848   // the result type is not known to be an Oop.  An ADLC
  5849   // enhancement will be needed to make that work - not worth it!
  5851   ins_encode( SetPtr( src, dst ) );
  5852   ins_pipe(loadConP);
  5854 %}
  5856 instruct loadConP0(iRegP dst, immP0 src) %{
  5857   match(Set dst src);
  5859   size(4);
  5860   format %{ "CLR    $dst\t!ptr" %}
  5861   ins_encode( SetNull( dst ) );
  5862   ins_pipe(ialu_imm);
  5863 %}
  5865 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  5866   match(Set dst src);
  5867   ins_cost(DEFAULT_COST);
  5868   format %{ "SET    $src,$dst\t!ptr" %}
  5869   ins_encode %{
  5870     Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
  5871     __ sethi(polling_page, false );
  5872   %}
  5873   ins_pipe(loadConP_poll);
  5874 %}
  5876 instruct loadConN0(iRegN dst, immN0 src) %{
  5877   match(Set dst src);
  5879   size(4);
  5880   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  5881   ins_encode( SetNull( dst ) );
  5882   ins_pipe(ialu_imm);
  5883 %}
  5885 instruct loadConN(iRegN dst, immN src) %{
  5886   match(Set dst src);
  5887   ins_cost(DEFAULT_COST * 3/2);
  5888   format %{ "SET    $src,$dst\t! compressed ptr" %}
  5889   ins_encode %{
  5890     Register dst = $dst$$Register;
  5891     __ set_narrow_oop((jobject)$src$$constant, dst);
  5892   %}
  5893   ins_pipe(ialu_hi_lo_reg);
  5894 %}
  5896 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  5897   // %%% maybe this should work like loadConD
  5898   match(Set dst src);
  5899   effect(KILL tmp);
  5900   ins_cost(DEFAULT_COST * 4);
  5901   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  5902   ins_encode( LdImmL(src, dst, tmp) );
  5903   ins_pipe(loadConL);
  5904 %}
  5906 instruct loadConL0( iRegL dst, immL0 src ) %{
  5907   match(Set dst src);
  5908   ins_cost(DEFAULT_COST);
  5909   size(4);
  5910   format %{ "CLR    $dst\t! long" %}
  5911   ins_encode( Set13( src, dst ) );
  5912   ins_pipe(ialu_imm);
  5913 %}
  5915 instruct loadConL13( iRegL dst, immL13 src ) %{
  5916   match(Set dst src);
  5917   ins_cost(DEFAULT_COST * 2);
  5919   size(4);
  5920   format %{ "MOV    $src,$dst\t! long" %}
  5921   ins_encode( Set13( src, dst ) );
  5922   ins_pipe(ialu_imm);
  5923 %}
  5925 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  5926   match(Set dst src);
  5927   effect(KILL tmp);
  5929 #ifdef _LP64
  5930   size(36);
  5931 #else
  5932   size(8);
  5933 #endif
  5935   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  5936             "LDF    [$tmp+lo(&$src)],$dst" %}
  5937   ins_encode( LdImmF(src, dst, tmp) );
  5938   ins_pipe(loadConFD);
  5939 %}
  5941 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  5942   match(Set dst src);
  5943   effect(KILL tmp);
  5945 #ifdef _LP64
  5946   size(36);
  5947 #else
  5948   size(8);
  5949 #endif
  5951   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  5952             "LDDF   [$tmp+lo(&$src)],$dst" %}
  5953   ins_encode( LdImmD(src, dst, tmp) );
  5954   ins_pipe(loadConFD);
  5955 %}
  5957 // Prefetch instructions.
  5958 // Must be safe to execute with invalid address (cannot fault).
  5960 instruct prefetchr( memory mem ) %{
  5961   match( PrefetchRead mem );
  5962   ins_cost(MEMORY_REF_COST);
  5964   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  5965   opcode(Assembler::prefetch_op3);
  5966   ins_encode( form3_mem_prefetch_read( mem ) );
  5967   ins_pipe(iload_mem);
  5968 %}
  5970 instruct prefetchw( memory mem ) %{
  5971   match( PrefetchWrite mem );
  5972   ins_cost(MEMORY_REF_COST);
  5974   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  5975   opcode(Assembler::prefetch_op3);
  5976   ins_encode( form3_mem_prefetch_write( mem ) );
  5977   ins_pipe(iload_mem);
  5978 %}
  5981 //----------Store Instructions-------------------------------------------------
  5982 // Store Byte
  5983 instruct storeB(memory mem, iRegI src) %{
  5984   match(Set mem (StoreB mem src));
  5985   ins_cost(MEMORY_REF_COST);
  5987   size(4);
  5988   format %{ "STB    $src,$mem\t! byte" %}
  5989   opcode(Assembler::stb_op3);
  5990   ins_encode(simple_form3_mem_reg( mem, src ) );
  5991   ins_pipe(istore_mem_reg);
  5992 %}
  5994 instruct storeB0(memory mem, immI0 src) %{
  5995   match(Set mem (StoreB mem src));
  5996   ins_cost(MEMORY_REF_COST);
  5998   size(4);
  5999   format %{ "STB    $src,$mem\t! byte" %}
  6000   opcode(Assembler::stb_op3);
  6001   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6002   ins_pipe(istore_mem_zero);
  6003 %}
  6005 instruct storeCM0(memory mem, immI0 src) %{
  6006   match(Set mem (StoreCM mem src));
  6007   ins_cost(MEMORY_REF_COST);
  6009   size(4);
  6010   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6011   opcode(Assembler::stb_op3);
  6012   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6013   ins_pipe(istore_mem_zero);
  6014 %}
  6016 // Store Char/Short
  6017 instruct storeC(memory mem, iRegI src) %{
  6018   match(Set mem (StoreC mem src));
  6019   ins_cost(MEMORY_REF_COST);
  6021   size(4);
  6022   format %{ "STH    $src,$mem\t! short" %}
  6023   opcode(Assembler::sth_op3);
  6024   ins_encode(simple_form3_mem_reg( mem, src ) );
  6025   ins_pipe(istore_mem_reg);
  6026 %}
  6028 instruct storeC0(memory mem, immI0 src) %{
  6029   match(Set mem (StoreC mem src));
  6030   ins_cost(MEMORY_REF_COST);
  6032   size(4);
  6033   format %{ "STH    $src,$mem\t! short" %}
  6034   opcode(Assembler::sth_op3);
  6035   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6036   ins_pipe(istore_mem_zero);
  6037 %}
  6039 // Store Integer
  6040 instruct storeI(memory mem, iRegI src) %{
  6041   match(Set mem (StoreI mem src));
  6042   ins_cost(MEMORY_REF_COST);
  6044   size(4);
  6045   format %{ "STW    $src,$mem" %}
  6046   opcode(Assembler::stw_op3);
  6047   ins_encode(simple_form3_mem_reg( mem, src ) );
  6048   ins_pipe(istore_mem_reg);
  6049 %}
  6051 // Store Long
  6052 instruct storeL(memory mem, iRegL src) %{
  6053   match(Set mem (StoreL mem src));
  6054   ins_cost(MEMORY_REF_COST);
  6055   size(4);
  6056   format %{ "STX    $src,$mem\t! long" %}
  6057   opcode(Assembler::stx_op3);
  6058   ins_encode(simple_form3_mem_reg( mem, src ) );
  6059   ins_pipe(istore_mem_reg);
  6060 %}
  6062 instruct storeI0(memory mem, immI0 src) %{
  6063   match(Set mem (StoreI mem src));
  6064   ins_cost(MEMORY_REF_COST);
  6066   size(4);
  6067   format %{ "STW    $src,$mem" %}
  6068   opcode(Assembler::stw_op3);
  6069   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6070   ins_pipe(istore_mem_zero);
  6071 %}
  6073 instruct storeL0(memory mem, immL0 src) %{
  6074   match(Set mem (StoreL mem src));
  6075   ins_cost(MEMORY_REF_COST);
  6077   size(4);
  6078   format %{ "STX    $src,$mem" %}
  6079   opcode(Assembler::stx_op3);
  6080   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6081   ins_pipe(istore_mem_zero);
  6082 %}
  6084 // Store Integer from float register (used after fstoi)
  6085 instruct storeI_Freg(memory mem, regF src) %{
  6086   match(Set mem (StoreI mem src));
  6087   ins_cost(MEMORY_REF_COST);
  6089   size(4);
  6090   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6091   opcode(Assembler::stf_op3);
  6092   ins_encode(simple_form3_mem_reg( mem, src ) );
  6093   ins_pipe(fstoreF_mem_reg);
  6094 %}
  6096 // Store Pointer
  6097 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6098   match(Set dst (StoreP dst src));
  6099   ins_cost(MEMORY_REF_COST);
  6100   size(4);
  6102 #ifndef _LP64
  6103   format %{ "STW    $src,$dst\t! ptr" %}
  6104   opcode(Assembler::stw_op3, 0, REGP_OP);
  6105 #else
  6106   format %{ "STX    $src,$dst\t! ptr" %}
  6107   opcode(Assembler::stx_op3, 0, REGP_OP);
  6108 #endif
  6109   ins_encode( form3_mem_reg( dst, src ) );
  6110   ins_pipe(istore_mem_spORreg);
  6111 %}
  6113 instruct storeP0(memory dst, immP0 src) %{
  6114   match(Set dst (StoreP dst src));
  6115   ins_cost(MEMORY_REF_COST);
  6116   size(4);
  6118 #ifndef _LP64
  6119   format %{ "STW    $src,$dst\t! ptr" %}
  6120   opcode(Assembler::stw_op3, 0, REGP_OP);
  6121 #else
  6122   format %{ "STX    $src,$dst\t! ptr" %}
  6123   opcode(Assembler::stx_op3, 0, REGP_OP);
  6124 #endif
  6125   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6126   ins_pipe(istore_mem_zero);
  6127 %}
  6129 // Store Compressed Pointer
  6130 instruct storeN(memory dst, iRegN src) %{
  6131    match(Set dst (StoreN dst src));
  6132    ins_cost(MEMORY_REF_COST);
  6133    size(4);
  6135    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6136    ins_encode %{
  6137      Register base = as_Register($dst$$base);
  6138      Register index = as_Register($dst$$index);
  6139      Register src = $src$$Register;
  6140      if (index != G0) {
  6141        __ stw(src, base, index);
  6142      } else {
  6143        __ stw(src, base, $dst$$disp);
  6145    %}
  6146    ins_pipe(istore_mem_spORreg);
  6147 %}
  6149 instruct storeN0(memory dst, immN0 src) %{
  6150    match(Set dst (StoreN dst src));
  6151    ins_cost(MEMORY_REF_COST);
  6152    size(4);
  6154    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6155    ins_encode %{
  6156      Register base = as_Register($dst$$base);
  6157      Register index = as_Register($dst$$index);
  6158      if (index != G0) {
  6159        __ stw(0, base, index);
  6160      } else {
  6161        __ stw(0, base, $dst$$disp);
  6163    %}
  6164    ins_pipe(istore_mem_zero);
  6165 %}
  6167 // Store Double
  6168 instruct storeD( memory mem, regD src) %{
  6169   match(Set mem (StoreD mem src));
  6170   ins_cost(MEMORY_REF_COST);
  6172   size(4);
  6173   format %{ "STDF   $src,$mem" %}
  6174   opcode(Assembler::stdf_op3);
  6175   ins_encode(simple_form3_mem_reg( mem, src ) );
  6176   ins_pipe(fstoreD_mem_reg);
  6177 %}
  6179 instruct storeD0( memory mem, immD0 src) %{
  6180   match(Set mem (StoreD mem src));
  6181   ins_cost(MEMORY_REF_COST);
  6183   size(4);
  6184   format %{ "STX    $src,$mem" %}
  6185   opcode(Assembler::stx_op3);
  6186   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6187   ins_pipe(fstoreD_mem_zero);
  6188 %}
  6190 // Store Float
  6191 instruct storeF( memory mem, regF src) %{
  6192   match(Set mem (StoreF mem src));
  6193   ins_cost(MEMORY_REF_COST);
  6195   size(4);
  6196   format %{ "STF    $src,$mem" %}
  6197   opcode(Assembler::stf_op3);
  6198   ins_encode(simple_form3_mem_reg( mem, src ) );
  6199   ins_pipe(fstoreF_mem_reg);
  6200 %}
  6202 instruct storeF0( memory mem, immF0 src) %{
  6203   match(Set mem (StoreF mem src));
  6204   ins_cost(MEMORY_REF_COST);
  6206   size(4);
  6207   format %{ "STW    $src,$mem\t! storeF0" %}
  6208   opcode(Assembler::stw_op3);
  6209   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6210   ins_pipe(fstoreF_mem_zero);
  6211 %}
  6213 // Store Aligned Packed Bytes in Double register to memory
  6214 instruct storeA8B(memory mem, regD src) %{
  6215   match(Set mem (Store8B mem src));
  6216   ins_cost(MEMORY_REF_COST);
  6217   size(4);
  6218   format %{ "STDF   $src,$mem\t! packed8B" %}
  6219   opcode(Assembler::stdf_op3);
  6220   ins_encode(simple_form3_mem_reg( mem, src ) );
  6221   ins_pipe(fstoreD_mem_reg);
  6222 %}
  6224 // Convert oop pointer into compressed form
  6225 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6226   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6227   match(Set dst (EncodeP src));
  6228   format %{ "encode_heap_oop $src, $dst" %}
  6229   ins_encode %{
  6230     __ encode_heap_oop($src$$Register, $dst$$Register);
  6231   %}
  6232   ins_pipe(ialu_reg);
  6233 %}
  6235 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6236   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6237   match(Set dst (EncodeP src));
  6238   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6239   ins_encode %{
  6240     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6241   %}
  6242   ins_pipe(ialu_reg);
  6243 %}
  6245 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6246   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6247             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6248   match(Set dst (DecodeN src));
  6249   format %{ "decode_heap_oop $src, $dst" %}
  6250   ins_encode %{
  6251     __ decode_heap_oop($src$$Register, $dst$$Register);
  6252   %}
  6253   ins_pipe(ialu_reg);
  6254 %}
  6256 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6257   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6258             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6259   match(Set dst (DecodeN src));
  6260   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6261   ins_encode %{
  6262     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6263   %}
  6264   ins_pipe(ialu_reg);
  6265 %}
  6268 // Store Zero into Aligned Packed Bytes
  6269 instruct storeA8B0(memory mem, immI0 zero) %{
  6270   match(Set mem (Store8B mem zero));
  6271   ins_cost(MEMORY_REF_COST);
  6272   size(4);
  6273   format %{ "STX    $zero,$mem\t! packed8B" %}
  6274   opcode(Assembler::stx_op3);
  6275   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6276   ins_pipe(fstoreD_mem_zero);
  6277 %}
  6279 // Store Aligned Packed Chars/Shorts in Double register to memory
  6280 instruct storeA4C(memory mem, regD src) %{
  6281   match(Set mem (Store4C mem src));
  6282   ins_cost(MEMORY_REF_COST);
  6283   size(4);
  6284   format %{ "STDF   $src,$mem\t! packed4C" %}
  6285   opcode(Assembler::stdf_op3);
  6286   ins_encode(simple_form3_mem_reg( mem, src ) );
  6287   ins_pipe(fstoreD_mem_reg);
  6288 %}
  6290 // Store Zero into Aligned Packed Chars/Shorts
  6291 instruct storeA4C0(memory mem, immI0 zero) %{
  6292   match(Set mem (Store4C mem (Replicate4C zero)));
  6293   ins_cost(MEMORY_REF_COST);
  6294   size(4);
  6295   format %{ "STX    $zero,$mem\t! packed4C" %}
  6296   opcode(Assembler::stx_op3);
  6297   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6298   ins_pipe(fstoreD_mem_zero);
  6299 %}
  6301 // Store Aligned Packed Ints in Double register to memory
  6302 instruct storeA2I(memory mem, regD src) %{
  6303   match(Set mem (Store2I mem src));
  6304   ins_cost(MEMORY_REF_COST);
  6305   size(4);
  6306   format %{ "STDF   $src,$mem\t! packed2I" %}
  6307   opcode(Assembler::stdf_op3);
  6308   ins_encode(simple_form3_mem_reg( mem, src ) );
  6309   ins_pipe(fstoreD_mem_reg);
  6310 %}
  6312 // Store Zero into Aligned Packed Ints
  6313 instruct storeA2I0(memory mem, immI0 zero) %{
  6314   match(Set mem (Store2I mem zero));
  6315   ins_cost(MEMORY_REF_COST);
  6316   size(4);
  6317   format %{ "STX    $zero,$mem\t! packed2I" %}
  6318   opcode(Assembler::stx_op3);
  6319   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6320   ins_pipe(fstoreD_mem_zero);
  6321 %}
  6324 //----------MemBar Instructions-----------------------------------------------
  6325 // Memory barrier flavors
  6327 instruct membar_acquire() %{
  6328   match(MemBarAcquire);
  6329   ins_cost(4*MEMORY_REF_COST);
  6331   size(0);
  6332   format %{ "MEMBAR-acquire" %}
  6333   ins_encode( enc_membar_acquire );
  6334   ins_pipe(long_memory_op);
  6335 %}
  6337 instruct membar_acquire_lock() %{
  6338   match(MemBarAcquire);
  6339   predicate(Matcher::prior_fast_lock(n));
  6340   ins_cost(0);
  6342   size(0);
  6343   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6344   ins_encode( );
  6345   ins_pipe(empty);
  6346 %}
  6348 instruct membar_release() %{
  6349   match(MemBarRelease);
  6350   ins_cost(4*MEMORY_REF_COST);
  6352   size(0);
  6353   format %{ "MEMBAR-release" %}
  6354   ins_encode( enc_membar_release );
  6355   ins_pipe(long_memory_op);
  6356 %}
  6358 instruct membar_release_lock() %{
  6359   match(MemBarRelease);
  6360   predicate(Matcher::post_fast_unlock(n));
  6361   ins_cost(0);
  6363   size(0);
  6364   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6365   ins_encode( );
  6366   ins_pipe(empty);
  6367 %}
  6369 instruct membar_volatile() %{
  6370   match(MemBarVolatile);
  6371   ins_cost(4*MEMORY_REF_COST);
  6373   size(4);
  6374   format %{ "MEMBAR-volatile" %}
  6375   ins_encode( enc_membar_volatile );
  6376   ins_pipe(long_memory_op);
  6377 %}
  6379 instruct unnecessary_membar_volatile() %{
  6380   match(MemBarVolatile);
  6381   predicate(Matcher::post_store_load_barrier(n));
  6382   ins_cost(0);
  6384   size(0);
  6385   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6386   ins_encode( );
  6387   ins_pipe(empty);
  6388 %}
  6390 //----------Register Move Instructions-----------------------------------------
  6391 instruct roundDouble_nop(regD dst) %{
  6392   match(Set dst (RoundDouble dst));
  6393   ins_cost(0);
  6394   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6395   ins_encode( );
  6396   ins_pipe(empty);
  6397 %}
  6400 instruct roundFloat_nop(regF dst) %{
  6401   match(Set dst (RoundFloat dst));
  6402   ins_cost(0);
  6403   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6404   ins_encode( );
  6405   ins_pipe(empty);
  6406 %}
  6409 // Cast Index to Pointer for unsafe natives
  6410 instruct castX2P(iRegX src, iRegP dst) %{
  6411   match(Set dst (CastX2P src));
  6413   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6414   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6415   ins_pipe(ialu_reg);
  6416 %}
  6418 // Cast Pointer to Index for unsafe natives
  6419 instruct castP2X(iRegP src, iRegX dst) %{
  6420   match(Set dst (CastP2X src));
  6422   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6423   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6424   ins_pipe(ialu_reg);
  6425 %}
  6427 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6428   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6429   match(Set stkSlot src);   // chain rule
  6430   ins_cost(MEMORY_REF_COST);
  6431   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6432   opcode(Assembler::stdf_op3);
  6433   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6434   ins_pipe(fstoreD_stk_reg);
  6435 %}
  6437 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6438   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6439   match(Set dst stkSlot);   // chain rule
  6440   ins_cost(MEMORY_REF_COST);
  6441   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6442   opcode(Assembler::lddf_op3);
  6443   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6444   ins_pipe(floadD_stk);
  6445 %}
  6447 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6448   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6449   match(Set stkSlot src);   // chain rule
  6450   ins_cost(MEMORY_REF_COST);
  6451   format %{ "STF   $src,$stkSlot\t!stk" %}
  6452   opcode(Assembler::stf_op3);
  6453   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6454   ins_pipe(fstoreF_stk_reg);
  6455 %}
  6457 //----------Conditional Move---------------------------------------------------
  6458 // Conditional move
  6459 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6460   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6461   ins_cost(150);
  6462   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6463   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6464   ins_pipe(ialu_reg);
  6465 %}
  6467 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6468   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6469   ins_cost(140);
  6470   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6471   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6472   ins_pipe(ialu_imm);
  6473 %}
  6475 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6476   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6477   ins_cost(150);
  6478   size(4);
  6479   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6480   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6481   ins_pipe(ialu_reg);
  6482 %}
  6484 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6485   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6486   ins_cost(140);
  6487   size(4);
  6488   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6489   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6490   ins_pipe(ialu_imm);
  6491 %}
  6493 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6494   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6495   ins_cost(150);
  6496   size(4);
  6497   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6498   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6499   ins_pipe(ialu_reg);
  6500 %}
  6502 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6503   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6504   ins_cost(140);
  6505   size(4);
  6506   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6507   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6508   ins_pipe(ialu_imm);
  6509 %}
  6511 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6512   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6513   ins_cost(150);
  6514   size(4);
  6515   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6516   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6517   ins_pipe(ialu_reg);
  6518 %}
  6520 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6521   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6522   ins_cost(140);
  6523   size(4);
  6524   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6525   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6526   ins_pipe(ialu_imm);
  6527 %}
  6529 // Conditional move for RegN. Only cmov(reg,reg).
  6530 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6531   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6532   ins_cost(150);
  6533   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6534   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6535   ins_pipe(ialu_reg);
  6536 %}
  6538 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6539 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6540   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6541   ins_cost(150);
  6542   size(4);
  6543   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6544   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6545   ins_pipe(ialu_reg);
  6546 %}
  6548 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6549   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6550   ins_cost(150);
  6551   size(4);
  6552   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6553   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6554   ins_pipe(ialu_reg);
  6555 %}
  6557 // Conditional move
  6558 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6559   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6560   ins_cost(150);
  6561   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6562   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6563   ins_pipe(ialu_reg);
  6564 %}
  6566 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6567   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6568   ins_cost(140);
  6569   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6570   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6571   ins_pipe(ialu_imm);
  6572 %}
  6574 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6575 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6576   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6577   ins_cost(150);
  6579   size(4);
  6580   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6581   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6582   ins_pipe(ialu_reg);
  6583 %}
  6585 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6586   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6587   ins_cost(140);
  6589   size(4);
  6590   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6591   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6592   ins_pipe(ialu_imm);
  6593 %}
  6595 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6596   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6597   ins_cost(150);
  6598   size(4);
  6599   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6600   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6601   ins_pipe(ialu_imm);
  6602 %}
  6604 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6605   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6606   ins_cost(140);
  6607   size(4);
  6608   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6609   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6610   ins_pipe(ialu_imm);
  6611 %}
  6613 // Conditional move
  6614 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6615   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6616   ins_cost(150);
  6617   opcode(0x101);
  6618   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6619   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6620   ins_pipe(int_conditional_float_move);
  6621 %}
  6623 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6624   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6625   ins_cost(150);
  6627   size(4);
  6628   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6629   opcode(0x101);
  6630   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6631   ins_pipe(int_conditional_float_move);
  6632 %}
  6634 // Conditional move,
  6635 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6636   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6637   ins_cost(150);
  6638   size(4);
  6639   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6640   opcode(0x1);
  6641   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6642   ins_pipe(int_conditional_double_move);
  6643 %}
  6645 // Conditional move
  6646 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6647   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6648   ins_cost(150);
  6649   size(4);
  6650   opcode(0x102);
  6651   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6652   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6653   ins_pipe(int_conditional_double_move);
  6654 %}
  6656 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6657   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6658   ins_cost(150);
  6660   size(4);
  6661   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6662   opcode(0x102);
  6663   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6664   ins_pipe(int_conditional_double_move);
  6665 %}
  6667 // Conditional move,
  6668 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6669   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6670   ins_cost(150);
  6671   size(4);
  6672   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6673   opcode(0x2);
  6674   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6675   ins_pipe(int_conditional_double_move);
  6676 %}
  6678 // Conditional move
  6679 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6680   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6681   ins_cost(150);
  6682   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6683   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6684   ins_pipe(ialu_reg);
  6685 %}
  6687 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6688   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6689   ins_cost(140);
  6690   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6691   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6692   ins_pipe(ialu_imm);
  6693 %}
  6695 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6696   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6697   ins_cost(150);
  6699   size(4);
  6700   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6701   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6702   ins_pipe(ialu_reg);
  6703 %}
  6706 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6707   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6708   ins_cost(150);
  6710   size(4);
  6711   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6712   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6713   ins_pipe(ialu_reg);
  6714 %}
  6718 //----------OS and Locking Instructions----------------------------------------
  6720 // This name is KNOWN by the ADLC and cannot be changed.
  6721 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6722 // for this guy.
  6723 instruct tlsLoadP(g2RegP dst) %{
  6724   match(Set dst (ThreadLocal));
  6726   size(0);
  6727   ins_cost(0);
  6728   format %{ "# TLS is in G2" %}
  6729   ins_encode( /*empty encoding*/ );
  6730   ins_pipe(ialu_none);
  6731 %}
  6733 instruct checkCastPP( iRegP dst ) %{
  6734   match(Set dst (CheckCastPP dst));
  6736   size(0);
  6737   format %{ "# checkcastPP of $dst" %}
  6738   ins_encode( /*empty encoding*/ );
  6739   ins_pipe(empty);
  6740 %}
  6743 instruct castPP( iRegP dst ) %{
  6744   match(Set dst (CastPP dst));
  6745   format %{ "# castPP of $dst" %}
  6746   ins_encode( /*empty encoding*/ );
  6747   ins_pipe(empty);
  6748 %}
  6750 instruct castII( iRegI dst ) %{
  6751   match(Set dst (CastII dst));
  6752   format %{ "# castII of $dst" %}
  6753   ins_encode( /*empty encoding*/ );
  6754   ins_cost(0);
  6755   ins_pipe(empty);
  6756 %}
  6758 //----------Arithmetic Instructions--------------------------------------------
  6759 // Addition Instructions
  6760 // Register Addition
  6761 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6762   match(Set dst (AddI src1 src2));
  6764   size(4);
  6765   format %{ "ADD    $src1,$src2,$dst" %}
  6766   ins_encode %{
  6767     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  6768   %}
  6769   ins_pipe(ialu_reg_reg);
  6770 %}
  6772 // Immediate Addition
  6773 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6774   match(Set dst (AddI src1 src2));
  6776   size(4);
  6777   format %{ "ADD    $src1,$src2,$dst" %}
  6778   opcode(Assembler::add_op3, Assembler::arith_op);
  6779   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6780   ins_pipe(ialu_reg_imm);
  6781 %}
  6783 // Pointer Register Addition
  6784 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  6785   match(Set dst (AddP src1 src2));
  6787   size(4);
  6788   format %{ "ADD    $src1,$src2,$dst" %}
  6789   opcode(Assembler::add_op3, Assembler::arith_op);
  6790   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6791   ins_pipe(ialu_reg_reg);
  6792 %}
  6794 // Pointer Immediate Addition
  6795 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  6796   match(Set dst (AddP src1 src2));
  6798   size(4);
  6799   format %{ "ADD    $src1,$src2,$dst" %}
  6800   opcode(Assembler::add_op3, Assembler::arith_op);
  6801   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6802   ins_pipe(ialu_reg_imm);
  6803 %}
  6805 // Long Addition
  6806 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6807   match(Set dst (AddL src1 src2));
  6809   size(4);
  6810   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  6811   opcode(Assembler::add_op3, Assembler::arith_op);
  6812   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6813   ins_pipe(ialu_reg_reg);
  6814 %}
  6816 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6817   match(Set dst (AddL src1 con));
  6819   size(4);
  6820   format %{ "ADD    $src1,$con,$dst" %}
  6821   opcode(Assembler::add_op3, Assembler::arith_op);
  6822   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6823   ins_pipe(ialu_reg_imm);
  6824 %}
  6826 //----------Conditional_store--------------------------------------------------
  6827 // Conditional-store of the updated heap-top.
  6828 // Used during allocation of the shared heap.
  6829 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  6831 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  6832 instruct loadPLocked(iRegP dst, memory mem) %{
  6833   match(Set dst (LoadPLocked mem));
  6834   ins_cost(MEMORY_REF_COST);
  6836 #ifndef _LP64
  6837   size(4);
  6838   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6839   opcode(Assembler::lduw_op3, 0, REGP_OP);
  6840 #else
  6841   format %{ "LDX    $mem,$dst\t! ptr" %}
  6842   opcode(Assembler::ldx_op3, 0, REGP_OP);
  6843 #endif
  6844   ins_encode( form3_mem_reg( mem, dst ) );
  6845   ins_pipe(iload_mem);
  6846 %}
  6848 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  6849 instruct loadLLocked(iRegL dst, memory mem) %{
  6850   match(Set dst (LoadLLocked mem));
  6851   ins_cost(MEMORY_REF_COST);
  6852   size(4);
  6853   format %{ "LDX    $mem,$dst\t! long" %}
  6854   opcode(Assembler::ldx_op3);
  6855   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6856   ins_pipe(iload_mem);
  6857 %}
  6859 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  6860   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  6861   effect( KILL newval );
  6862   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  6863             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  6864   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  6865   ins_pipe( long_memory_op );
  6866 %}
  6868 // Conditional-store of an int value.
  6869 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  6870   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  6871   effect( KILL newval );
  6872   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  6873             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  6874   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  6875   ins_pipe( long_memory_op );
  6876 %}
  6878 // Conditional-store of a long value.
  6879 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  6880   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  6881   effect( KILL newval );
  6882   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  6883             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  6884   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  6885   ins_pipe( long_memory_op );
  6886 %}
  6888 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  6890 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6891   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  6892   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6893   format %{
  6894             "MOV    $newval,O7\n\t"
  6895             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6896             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6897             "MOV    1,$res\n\t"
  6898             "MOVne  xcc,R_G0,$res"
  6899   %}
  6900   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6901               enc_lflags_ne_to_boolean(res) );
  6902   ins_pipe( long_memory_op );
  6903 %}
  6906 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6907   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  6908   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6909   format %{
  6910             "MOV    $newval,O7\n\t"
  6911             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6912             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6913             "MOV    1,$res\n\t"
  6914             "MOVne  icc,R_G0,$res"
  6915   %}
  6916   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6917               enc_iflags_ne_to_boolean(res) );
  6918   ins_pipe( long_memory_op );
  6919 %}
  6921 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6922   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  6923   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6924   format %{
  6925             "MOV    $newval,O7\n\t"
  6926             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6927             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6928             "MOV    1,$res\n\t"
  6929             "MOVne  xcc,R_G0,$res"
  6930   %}
  6931 #ifdef _LP64
  6932   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6933               enc_lflags_ne_to_boolean(res) );
  6934 #else
  6935   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6936               enc_iflags_ne_to_boolean(res) );
  6937 #endif
  6938   ins_pipe( long_memory_op );
  6939 %}
  6941 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6942   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  6943   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6944   format %{
  6945             "MOV    $newval,O7\n\t"
  6946             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6947             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6948             "MOV    1,$res\n\t"
  6949             "MOVne  icc,R_G0,$res"
  6950   %}
  6951   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6952               enc_iflags_ne_to_boolean(res) );
  6953   ins_pipe( long_memory_op );
  6954 %}
  6956 //---------------------
  6957 // Subtraction Instructions
  6958 // Register Subtraction
  6959 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6960   match(Set dst (SubI src1 src2));
  6962   size(4);
  6963   format %{ "SUB    $src1,$src2,$dst" %}
  6964   opcode(Assembler::sub_op3, Assembler::arith_op);
  6965   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6966   ins_pipe(ialu_reg_reg);
  6967 %}
  6969 // Immediate Subtraction
  6970 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6971   match(Set dst (SubI src1 src2));
  6973   size(4);
  6974   format %{ "SUB    $src1,$src2,$dst" %}
  6975   opcode(Assembler::sub_op3, Assembler::arith_op);
  6976   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6977   ins_pipe(ialu_reg_imm);
  6978 %}
  6980 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  6981   match(Set dst (SubI zero src2));
  6983   size(4);
  6984   format %{ "NEG    $src2,$dst" %}
  6985   opcode(Assembler::sub_op3, Assembler::arith_op);
  6986   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6987   ins_pipe(ialu_zero_reg);
  6988 %}
  6990 // Long subtraction
  6991 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6992   match(Set dst (SubL src1 src2));
  6994   size(4);
  6995   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6996   opcode(Assembler::sub_op3, Assembler::arith_op);
  6997   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6998   ins_pipe(ialu_reg_reg);
  6999 %}
  7001 // Immediate Subtraction
  7002 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7003   match(Set dst (SubL src1 con));
  7005   size(4);
  7006   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7007   opcode(Assembler::sub_op3, Assembler::arith_op);
  7008   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7009   ins_pipe(ialu_reg_imm);
  7010 %}
  7012 // Long negation
  7013 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7014   match(Set dst (SubL zero src2));
  7016   size(4);
  7017   format %{ "NEG    $src2,$dst\t! long" %}
  7018   opcode(Assembler::sub_op3, Assembler::arith_op);
  7019   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7020   ins_pipe(ialu_zero_reg);
  7021 %}
  7023 // Multiplication Instructions
  7024 // Integer Multiplication
  7025 // Register Multiplication
  7026 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7027   match(Set dst (MulI src1 src2));
  7029   size(4);
  7030   format %{ "MULX   $src1,$src2,$dst" %}
  7031   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7032   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7033   ins_pipe(imul_reg_reg);
  7034 %}
  7036 // Immediate Multiplication
  7037 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7038   match(Set dst (MulI src1 src2));
  7040   size(4);
  7041   format %{ "MULX   $src1,$src2,$dst" %}
  7042   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7043   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7044   ins_pipe(imul_reg_imm);
  7045 %}
  7047 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7048   match(Set dst (MulL src1 src2));
  7049   ins_cost(DEFAULT_COST * 5);
  7050   size(4);
  7051   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7052   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7053   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7054   ins_pipe(mulL_reg_reg);
  7055 %}
  7057 // Immediate Multiplication
  7058 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7059   match(Set dst (MulL src1 src2));
  7060   ins_cost(DEFAULT_COST * 5);
  7061   size(4);
  7062   format %{ "MULX   $src1,$src2,$dst" %}
  7063   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7064   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7065   ins_pipe(mulL_reg_imm);
  7066 %}
  7068 // Integer Division
  7069 // Register Division
  7070 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7071   match(Set dst (DivI src1 src2));
  7072   ins_cost((2+71)*DEFAULT_COST);
  7074   format %{ "SRA     $src2,0,$src2\n\t"
  7075             "SRA     $src1,0,$src1\n\t"
  7076             "SDIVX   $src1,$src2,$dst" %}
  7077   ins_encode( idiv_reg( src1, src2, dst ) );
  7078   ins_pipe(sdiv_reg_reg);
  7079 %}
  7081 // Immediate Division
  7082 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7083   match(Set dst (DivI src1 src2));
  7084   ins_cost((2+71)*DEFAULT_COST);
  7086   format %{ "SRA     $src1,0,$src1\n\t"
  7087             "SDIVX   $src1,$src2,$dst" %}
  7088   ins_encode( idiv_imm( src1, src2, dst ) );
  7089   ins_pipe(sdiv_reg_imm);
  7090 %}
  7092 //----------Div-By-10-Expansion------------------------------------------------
  7093 // Extract hi bits of a 32x32->64 bit multiply.
  7094 // Expand rule only, not matched
  7095 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7096   effect( DEF dst, USE src1, USE src2 );
  7097   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7098             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7099   ins_encode( enc_mul_hi(dst,src1,src2));
  7100   ins_pipe(sdiv_reg_reg);
  7101 %}
  7103 // Magic constant, reciprocal of 10
  7104 instruct loadConI_x66666667(iRegIsafe dst) %{
  7105   effect( DEF dst );
  7107   size(8);
  7108   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7109   ins_encode( Set32(0x66666667, dst) );
  7110   ins_pipe(ialu_hi_lo_reg);
  7111 %}
  7113 // Register Shift Right Arithmetic Long by 32-63
  7114 instruct sra_31( iRegI dst, iRegI src ) %{
  7115   effect( DEF dst, USE src );
  7116   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7117   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7118   ins_pipe(ialu_reg_reg);
  7119 %}
  7121 // Arithmetic Shift Right by 8-bit immediate
  7122 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7123   effect( DEF dst, USE src );
  7124   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7125   opcode(Assembler::sra_op3, Assembler::arith_op);
  7126   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7127   ins_pipe(ialu_reg_imm);
  7128 %}
  7130 // Integer DIV with 10
  7131 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7132   match(Set dst (DivI src div));
  7133   ins_cost((6+6)*DEFAULT_COST);
  7134   expand %{
  7135     iRegIsafe tmp1;               // Killed temps;
  7136     iRegIsafe tmp2;               // Killed temps;
  7137     iRegI tmp3;                   // Killed temps;
  7138     iRegI tmp4;                   // Killed temps;
  7139     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7140     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7141     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7142     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7143     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7144   %}
  7145 %}
  7147 // Register Long Division
  7148 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7149   match(Set dst (DivL src1 src2));
  7150   ins_cost(DEFAULT_COST*71);
  7151   size(4);
  7152   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7153   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7154   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7155   ins_pipe(divL_reg_reg);
  7156 %}
  7158 // Register Long Division
  7159 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7160   match(Set dst (DivL src1 src2));
  7161   ins_cost(DEFAULT_COST*71);
  7162   size(4);
  7163   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7164   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7165   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7166   ins_pipe(divL_reg_imm);
  7167 %}
  7169 // Integer Remainder
  7170 // Register Remainder
  7171 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7172   match(Set dst (ModI src1 src2));
  7173   effect( KILL ccr, KILL temp);
  7175   format %{ "SREM   $src1,$src2,$dst" %}
  7176   ins_encode( irem_reg(src1, src2, dst, temp) );
  7177   ins_pipe(sdiv_reg_reg);
  7178 %}
  7180 // Immediate Remainder
  7181 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7182   match(Set dst (ModI src1 src2));
  7183   effect( KILL ccr, KILL temp);
  7185   format %{ "SREM   $src1,$src2,$dst" %}
  7186   ins_encode( irem_imm(src1, src2, dst, temp) );
  7187   ins_pipe(sdiv_reg_imm);
  7188 %}
  7190 // Register Long Remainder
  7191 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7192   effect(DEF dst, USE src1, USE src2);
  7193   size(4);
  7194   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7195   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7196   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7197   ins_pipe(divL_reg_reg);
  7198 %}
  7200 // Register Long Division
  7201 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7202   effect(DEF dst, USE src1, USE src2);
  7203   size(4);
  7204   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7205   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7206   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7207   ins_pipe(divL_reg_imm);
  7208 %}
  7210 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7211   effect(DEF dst, USE src1, USE src2);
  7212   size(4);
  7213   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7214   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7215   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7216   ins_pipe(mulL_reg_reg);
  7217 %}
  7219 // Immediate Multiplication
  7220 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7221   effect(DEF dst, USE src1, USE src2);
  7222   size(4);
  7223   format %{ "MULX   $src1,$src2,$dst" %}
  7224   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7225   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7226   ins_pipe(mulL_reg_imm);
  7227 %}
  7229 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7230   effect(DEF dst, USE src1, USE src2);
  7231   size(4);
  7232   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7233   opcode(Assembler::sub_op3, Assembler::arith_op);
  7234   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7235   ins_pipe(ialu_reg_reg);
  7236 %}
  7238 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7239   effect(DEF dst, USE src1, USE src2);
  7240   size(4);
  7241   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7242   opcode(Assembler::sub_op3, Assembler::arith_op);
  7243   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7244   ins_pipe(ialu_reg_reg);
  7245 %}
  7247 // Register Long Remainder
  7248 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7249   match(Set dst (ModL src1 src2));
  7250   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7251   expand %{
  7252     iRegL tmp1;
  7253     iRegL tmp2;
  7254     divL_reg_reg_1(tmp1, src1, src2);
  7255     mulL_reg_reg_1(tmp2, tmp1, src2);
  7256     subL_reg_reg_1(dst,  src1, tmp2);
  7257   %}
  7258 %}
  7260 // Register Long Remainder
  7261 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7262   match(Set dst (ModL src1 src2));
  7263   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7264   expand %{
  7265     iRegL tmp1;
  7266     iRegL tmp2;
  7267     divL_reg_imm13_1(tmp1, src1, src2);
  7268     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7269     subL_reg_reg_2  (dst,  src1, tmp2);
  7270   %}
  7271 %}
  7273 // Integer Shift Instructions
  7274 // Register Shift Left
  7275 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7276   match(Set dst (LShiftI src1 src2));
  7278   size(4);
  7279   format %{ "SLL    $src1,$src2,$dst" %}
  7280   opcode(Assembler::sll_op3, Assembler::arith_op);
  7281   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7282   ins_pipe(ialu_reg_reg);
  7283 %}
  7285 // Register Shift Left Immediate
  7286 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7287   match(Set dst (LShiftI src1 src2));
  7289   size(4);
  7290   format %{ "SLL    $src1,$src2,$dst" %}
  7291   opcode(Assembler::sll_op3, Assembler::arith_op);
  7292   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7293   ins_pipe(ialu_reg_imm);
  7294 %}
  7296 // Register Shift Left
  7297 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7298   match(Set dst (LShiftL src1 src2));
  7300   size(4);
  7301   format %{ "SLLX   $src1,$src2,$dst" %}
  7302   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7303   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7304   ins_pipe(ialu_reg_reg);
  7305 %}
  7307 // Register Shift Left Immediate
  7308 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7309   match(Set dst (LShiftL src1 src2));
  7311   size(4);
  7312   format %{ "SLLX   $src1,$src2,$dst" %}
  7313   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7314   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7315   ins_pipe(ialu_reg_imm);
  7316 %}
  7318 // Register Arithmetic Shift Right
  7319 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7320   match(Set dst (RShiftI src1 src2));
  7321   size(4);
  7322   format %{ "SRA    $src1,$src2,$dst" %}
  7323   opcode(Assembler::sra_op3, Assembler::arith_op);
  7324   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7325   ins_pipe(ialu_reg_reg);
  7326 %}
  7328 // Register Arithmetic Shift Right Immediate
  7329 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7330   match(Set dst (RShiftI src1 src2));
  7332   size(4);
  7333   format %{ "SRA    $src1,$src2,$dst" %}
  7334   opcode(Assembler::sra_op3, Assembler::arith_op);
  7335   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7336   ins_pipe(ialu_reg_imm);
  7337 %}
  7339 // Register Shift Right Arithmatic Long
  7340 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7341   match(Set dst (RShiftL src1 src2));
  7343   size(4);
  7344   format %{ "SRAX   $src1,$src2,$dst" %}
  7345   opcode(Assembler::srax_op3, Assembler::arith_op);
  7346   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7347   ins_pipe(ialu_reg_reg);
  7348 %}
  7350 // Register Shift Left Immediate
  7351 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7352   match(Set dst (RShiftL src1 src2));
  7354   size(4);
  7355   format %{ "SRAX   $src1,$src2,$dst" %}
  7356   opcode(Assembler::srax_op3, Assembler::arith_op);
  7357   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7358   ins_pipe(ialu_reg_imm);
  7359 %}
  7361 // Register Shift Right
  7362 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7363   match(Set dst (URShiftI src1 src2));
  7365   size(4);
  7366   format %{ "SRL    $src1,$src2,$dst" %}
  7367   opcode(Assembler::srl_op3, Assembler::arith_op);
  7368   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7369   ins_pipe(ialu_reg_reg);
  7370 %}
  7372 // Register Shift Right Immediate
  7373 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7374   match(Set dst (URShiftI src1 src2));
  7376   size(4);
  7377   format %{ "SRL    $src1,$src2,$dst" %}
  7378   opcode(Assembler::srl_op3, Assembler::arith_op);
  7379   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7380   ins_pipe(ialu_reg_imm);
  7381 %}
  7383 // Register Shift Right
  7384 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7385   match(Set dst (URShiftL src1 src2));
  7387   size(4);
  7388   format %{ "SRLX   $src1,$src2,$dst" %}
  7389   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7390   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7391   ins_pipe(ialu_reg_reg);
  7392 %}
  7394 // Register Shift Right Immediate
  7395 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7396   match(Set dst (URShiftL src1 src2));
  7398   size(4);
  7399   format %{ "SRLX   $src1,$src2,$dst" %}
  7400   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7401   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7402   ins_pipe(ialu_reg_imm);
  7403 %}
  7405 // Register Shift Right Immediate with a CastP2X
  7406 #ifdef _LP64
  7407 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7408   match(Set dst (URShiftL (CastP2X src1) src2));
  7409   size(4);
  7410   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7411   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7412   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7413   ins_pipe(ialu_reg_imm);
  7414 %}
  7415 #else
  7416 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7417   match(Set dst (URShiftI (CastP2X src1) src2));
  7418   size(4);
  7419   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7420   opcode(Assembler::srl_op3, Assembler::arith_op);
  7421   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7422   ins_pipe(ialu_reg_imm);
  7423 %}
  7424 #endif
  7427 //----------Floating Point Arithmetic Instructions-----------------------------
  7429 //  Add float single precision
  7430 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7431   match(Set dst (AddF src1 src2));
  7433   size(4);
  7434   format %{ "FADDS  $src1,$src2,$dst" %}
  7435   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7436   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7437   ins_pipe(faddF_reg_reg);
  7438 %}
  7440 //  Add float double precision
  7441 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7442   match(Set dst (AddD src1 src2));
  7444   size(4);
  7445   format %{ "FADDD  $src1,$src2,$dst" %}
  7446   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7447   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7448   ins_pipe(faddD_reg_reg);
  7449 %}
  7451 //  Sub float single precision
  7452 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7453   match(Set dst (SubF src1 src2));
  7455   size(4);
  7456   format %{ "FSUBS  $src1,$src2,$dst" %}
  7457   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7458   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7459   ins_pipe(faddF_reg_reg);
  7460 %}
  7462 //  Sub float double precision
  7463 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7464   match(Set dst (SubD src1 src2));
  7466   size(4);
  7467   format %{ "FSUBD  $src1,$src2,$dst" %}
  7468   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7469   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7470   ins_pipe(faddD_reg_reg);
  7471 %}
  7473 //  Mul float single precision
  7474 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7475   match(Set dst (MulF src1 src2));
  7477   size(4);
  7478   format %{ "FMULS  $src1,$src2,$dst" %}
  7479   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7480   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7481   ins_pipe(fmulF_reg_reg);
  7482 %}
  7484 //  Mul float double precision
  7485 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7486   match(Set dst (MulD src1 src2));
  7488   size(4);
  7489   format %{ "FMULD  $src1,$src2,$dst" %}
  7490   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7491   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7492   ins_pipe(fmulD_reg_reg);
  7493 %}
  7495 //  Div float single precision
  7496 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7497   match(Set dst (DivF src1 src2));
  7499   size(4);
  7500   format %{ "FDIVS  $src1,$src2,$dst" %}
  7501   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7502   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7503   ins_pipe(fdivF_reg_reg);
  7504 %}
  7506 //  Div float double precision
  7507 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7508   match(Set dst (DivD src1 src2));
  7510   size(4);
  7511   format %{ "FDIVD  $src1,$src2,$dst" %}
  7512   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7513   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7514   ins_pipe(fdivD_reg_reg);
  7515 %}
  7517 //  Absolute float double precision
  7518 instruct absD_reg(regD dst, regD src) %{
  7519   match(Set dst (AbsD src));
  7521   format %{ "FABSd  $src,$dst" %}
  7522   ins_encode(fabsd(dst, src));
  7523   ins_pipe(faddD_reg);
  7524 %}
  7526 //  Absolute float single precision
  7527 instruct absF_reg(regF dst, regF src) %{
  7528   match(Set dst (AbsF src));
  7530   format %{ "FABSs  $src,$dst" %}
  7531   ins_encode(fabss(dst, src));
  7532   ins_pipe(faddF_reg);
  7533 %}
  7535 instruct negF_reg(regF dst, regF src) %{
  7536   match(Set dst (NegF src));
  7538   size(4);
  7539   format %{ "FNEGs  $src,$dst" %}
  7540   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7541   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7542   ins_pipe(faddF_reg);
  7543 %}
  7545 instruct negD_reg(regD dst, regD src) %{
  7546   match(Set dst (NegD src));
  7548   format %{ "FNEGd  $src,$dst" %}
  7549   ins_encode(fnegd(dst, src));
  7550   ins_pipe(faddD_reg);
  7551 %}
  7553 //  Sqrt float double precision
  7554 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7555   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7557   size(4);
  7558   format %{ "FSQRTS $src,$dst" %}
  7559   ins_encode(fsqrts(dst, src));
  7560   ins_pipe(fdivF_reg_reg);
  7561 %}
  7563 //  Sqrt float double precision
  7564 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7565   match(Set dst (SqrtD src));
  7567   size(4);
  7568   format %{ "FSQRTD $src,$dst" %}
  7569   ins_encode(fsqrtd(dst, src));
  7570   ins_pipe(fdivD_reg_reg);
  7571 %}
  7573 //----------Logical Instructions-----------------------------------------------
  7574 // And Instructions
  7575 // Register And
  7576 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7577   match(Set dst (AndI src1 src2));
  7579   size(4);
  7580   format %{ "AND    $src1,$src2,$dst" %}
  7581   opcode(Assembler::and_op3, Assembler::arith_op);
  7582   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7583   ins_pipe(ialu_reg_reg);
  7584 %}
  7586 // Immediate And
  7587 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7588   match(Set dst (AndI src1 src2));
  7590   size(4);
  7591   format %{ "AND    $src1,$src2,$dst" %}
  7592   opcode(Assembler::and_op3, Assembler::arith_op);
  7593   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7594   ins_pipe(ialu_reg_imm);
  7595 %}
  7597 // Register And Long
  7598 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7599   match(Set dst (AndL src1 src2));
  7601   ins_cost(DEFAULT_COST);
  7602   size(4);
  7603   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7604   opcode(Assembler::and_op3, Assembler::arith_op);
  7605   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7606   ins_pipe(ialu_reg_reg);
  7607 %}
  7609 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7610   match(Set dst (AndL src1 con));
  7612   ins_cost(DEFAULT_COST);
  7613   size(4);
  7614   format %{ "AND    $src1,$con,$dst\t! long" %}
  7615   opcode(Assembler::and_op3, Assembler::arith_op);
  7616   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7617   ins_pipe(ialu_reg_imm);
  7618 %}
  7620 // Or Instructions
  7621 // Register Or
  7622 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7623   match(Set dst (OrI src1 src2));
  7625   size(4);
  7626   format %{ "OR     $src1,$src2,$dst" %}
  7627   opcode(Assembler::or_op3, Assembler::arith_op);
  7628   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7629   ins_pipe(ialu_reg_reg);
  7630 %}
  7632 // Immediate Or
  7633 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7634   match(Set dst (OrI src1 src2));
  7636   size(4);
  7637   format %{ "OR     $src1,$src2,$dst" %}
  7638   opcode(Assembler::or_op3, Assembler::arith_op);
  7639   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7640   ins_pipe(ialu_reg_imm);
  7641 %}
  7643 // Register Or Long
  7644 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7645   match(Set dst (OrL src1 src2));
  7647   ins_cost(DEFAULT_COST);
  7648   size(4);
  7649   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7650   opcode(Assembler::or_op3, Assembler::arith_op);
  7651   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7652   ins_pipe(ialu_reg_reg);
  7653 %}
  7655 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7656   match(Set dst (OrL src1 con));
  7657   ins_cost(DEFAULT_COST*2);
  7659   ins_cost(DEFAULT_COST);
  7660   size(4);
  7661   format %{ "OR     $src1,$con,$dst\t! long" %}
  7662   opcode(Assembler::or_op3, Assembler::arith_op);
  7663   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7664   ins_pipe(ialu_reg_imm);
  7665 %}
  7667 #ifndef _LP64
  7669 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7670 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7671   match(Set dst (OrI src1 (CastP2X src2)));
  7673   size(4);
  7674   format %{ "OR     $src1,$src2,$dst" %}
  7675   opcode(Assembler::or_op3, Assembler::arith_op);
  7676   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7677   ins_pipe(ialu_reg_reg);
  7678 %}
  7680 #else
  7682 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7683   match(Set dst (OrL src1 (CastP2X src2)));
  7685   ins_cost(DEFAULT_COST);
  7686   size(4);
  7687   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7688   opcode(Assembler::or_op3, Assembler::arith_op);
  7689   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7690   ins_pipe(ialu_reg_reg);
  7691 %}
  7693 #endif
  7695 // Xor Instructions
  7696 // Register Xor
  7697 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7698   match(Set dst (XorI src1 src2));
  7700   size(4);
  7701   format %{ "XOR    $src1,$src2,$dst" %}
  7702   opcode(Assembler::xor_op3, Assembler::arith_op);
  7703   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7704   ins_pipe(ialu_reg_reg);
  7705 %}
  7707 // Immediate Xor
  7708 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7709   match(Set dst (XorI src1 src2));
  7711   size(4);
  7712   format %{ "XOR    $src1,$src2,$dst" %}
  7713   opcode(Assembler::xor_op3, Assembler::arith_op);
  7714   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7715   ins_pipe(ialu_reg_imm);
  7716 %}
  7718 // Register Xor Long
  7719 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7720   match(Set dst (XorL src1 src2));
  7722   ins_cost(DEFAULT_COST);
  7723   size(4);
  7724   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7725   opcode(Assembler::xor_op3, Assembler::arith_op);
  7726   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7727   ins_pipe(ialu_reg_reg);
  7728 %}
  7730 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7731   match(Set dst (XorL src1 con));
  7733   ins_cost(DEFAULT_COST);
  7734   size(4);
  7735   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7736   opcode(Assembler::xor_op3, Assembler::arith_op);
  7737   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7738   ins_pipe(ialu_reg_imm);
  7739 %}
  7741 //----------Convert to Boolean-------------------------------------------------
  7742 // Nice hack for 32-bit tests but doesn't work for
  7743 // 64-bit pointers.
  7744 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7745   match(Set dst (Conv2B src));
  7746   effect( KILL ccr );
  7747   ins_cost(DEFAULT_COST*2);
  7748   format %{ "CMP    R_G0,$src\n\t"
  7749             "ADDX   R_G0,0,$dst" %}
  7750   ins_encode( enc_to_bool( src, dst ) );
  7751   ins_pipe(ialu_reg_ialu);
  7752 %}
  7754 #ifndef _LP64
  7755 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7756   match(Set dst (Conv2B src));
  7757   effect( KILL ccr );
  7758   ins_cost(DEFAULT_COST*2);
  7759   format %{ "CMP    R_G0,$src\n\t"
  7760             "ADDX   R_G0,0,$dst" %}
  7761   ins_encode( enc_to_bool( src, dst ) );
  7762   ins_pipe(ialu_reg_ialu);
  7763 %}
  7764 #else
  7765 instruct convP2B( iRegI dst, iRegP src ) %{
  7766   match(Set dst (Conv2B src));
  7767   ins_cost(DEFAULT_COST*2);
  7768   format %{ "MOV    $src,$dst\n\t"
  7769             "MOVRNZ $src,1,$dst" %}
  7770   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  7771   ins_pipe(ialu_clr_and_mover);
  7772 %}
  7773 #endif
  7775 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  7776   match(Set dst (CmpLTMask p q));
  7777   effect( KILL ccr );
  7778   ins_cost(DEFAULT_COST*4);
  7779   format %{ "CMP    $p,$q\n\t"
  7780             "MOV    #0,$dst\n\t"
  7781             "BLT,a  .+8\n\t"
  7782             "MOV    #-1,$dst" %}
  7783   ins_encode( enc_ltmask(p,q,dst) );
  7784   ins_pipe(ialu_reg_reg_ialu);
  7785 %}
  7787 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7788   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  7789   effect(KILL ccr, TEMP tmp);
  7790   ins_cost(DEFAULT_COST*3);
  7792   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7793             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7794             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7795   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7796   ins_pipe( cadd_cmpltmask );
  7797 %}
  7799 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7800   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  7801   effect( KILL ccr, TEMP tmp);
  7802   ins_cost(DEFAULT_COST*3);
  7804   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7805             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7806             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7807   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7808   ins_pipe( cadd_cmpltmask );
  7809 %}
  7811 //----------Arithmetic Conversion Instructions---------------------------------
  7812 // The conversions operations are all Alpha sorted.  Please keep it that way!
  7814 instruct convD2F_reg(regF dst, regD src) %{
  7815   match(Set dst (ConvD2F src));
  7816   size(4);
  7817   format %{ "FDTOS  $src,$dst" %}
  7818   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  7819   ins_encode(form3_opf_rs2D_rdF(src, dst));
  7820   ins_pipe(fcvtD2F);
  7821 %}
  7824 // Convert a double to an int in a float register.
  7825 // If the double is a NAN, stuff a zero in instead.
  7826 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  7827   effect(DEF dst, USE src, KILL fcc0);
  7828   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7829             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7830             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  7831             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7832             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7833       "skip:" %}
  7834   ins_encode(form_d2i_helper(src,dst));
  7835   ins_pipe(fcvtD2I);
  7836 %}
  7838 instruct convD2I_reg(stackSlotI dst, regD src) %{
  7839   match(Set dst (ConvD2I src));
  7840   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7841   expand %{
  7842     regF tmp;
  7843     convD2I_helper(tmp, src);
  7844     regF_to_stkI(dst, tmp);
  7845   %}
  7846 %}
  7848 // Convert a double to a long in a double register.
  7849 // If the double is a NAN, stuff a zero in instead.
  7850 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  7851   effect(DEF dst, USE src, KILL fcc0);
  7852   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7853             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7854             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  7855             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7856             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7857       "skip:" %}
  7858   ins_encode(form_d2l_helper(src,dst));
  7859   ins_pipe(fcvtD2L);
  7860 %}
  7863 // Double to Long conversion
  7864 instruct convD2L_reg(stackSlotL dst, regD src) %{
  7865   match(Set dst (ConvD2L src));
  7866   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7867   expand %{
  7868     regD tmp;
  7869     convD2L_helper(tmp, src);
  7870     regD_to_stkL(dst, tmp);
  7871   %}
  7872 %}
  7875 instruct convF2D_reg(regD dst, regF src) %{
  7876   match(Set dst (ConvF2D src));
  7877   format %{ "FSTOD  $src,$dst" %}
  7878   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  7879   ins_encode(form3_opf_rs2F_rdD(src, dst));
  7880   ins_pipe(fcvtF2D);
  7881 %}
  7884 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  7885   effect(DEF dst, USE src, KILL fcc0);
  7886   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7887             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7888             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  7889             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7890             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7891       "skip:" %}
  7892   ins_encode(form_f2i_helper(src,dst));
  7893   ins_pipe(fcvtF2I);
  7894 %}
  7896 instruct convF2I_reg(stackSlotI dst, regF src) %{
  7897   match(Set dst (ConvF2I src));
  7898   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7899   expand %{
  7900     regF tmp;
  7901     convF2I_helper(tmp, src);
  7902     regF_to_stkI(dst, tmp);
  7903   %}
  7904 %}
  7907 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  7908   effect(DEF dst, USE src, KILL fcc0);
  7909   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7910             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7911             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  7912             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7913             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7914       "skip:" %}
  7915   ins_encode(form_f2l_helper(src,dst));
  7916   ins_pipe(fcvtF2L);
  7917 %}
  7919 // Float to Long conversion
  7920 instruct convF2L_reg(stackSlotL dst, regF src) %{
  7921   match(Set dst (ConvF2L src));
  7922   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7923   expand %{
  7924     regD tmp;
  7925     convF2L_helper(tmp, src);
  7926     regD_to_stkL(dst, tmp);
  7927   %}
  7928 %}
  7931 instruct convI2D_helper(regD dst, regF tmp) %{
  7932   effect(USE tmp, DEF dst);
  7933   format %{ "FITOD  $tmp,$dst" %}
  7934   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7935   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  7936   ins_pipe(fcvtI2D);
  7937 %}
  7939 instruct convI2D_reg(stackSlotI src, regD dst) %{
  7940   match(Set dst (ConvI2D src));
  7941   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7942   expand %{
  7943     regF tmp;
  7944     stkI_to_regF( tmp, src);
  7945     convI2D_helper( dst, tmp);
  7946   %}
  7947 %}
  7949 instruct convI2D_mem( regD_low dst, memory mem ) %{
  7950   match(Set dst (ConvI2D (LoadI mem)));
  7951   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7952   size(8);
  7953   format %{ "LDF    $mem,$dst\n\t"
  7954             "FITOD  $dst,$dst" %}
  7955   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  7956   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7957   ins_pipe(floadF_mem);
  7958 %}
  7961 instruct convI2F_helper(regF dst, regF tmp) %{
  7962   effect(DEF dst, USE tmp);
  7963   format %{ "FITOS  $tmp,$dst" %}
  7964   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  7965   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  7966   ins_pipe(fcvtI2F);
  7967 %}
  7969 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  7970   match(Set dst (ConvI2F src));
  7971   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7972   expand %{
  7973     regF tmp;
  7974     stkI_to_regF(tmp,src);
  7975     convI2F_helper(dst, tmp);
  7976   %}
  7977 %}
  7979 instruct convI2F_mem( regF dst, memory mem ) %{
  7980   match(Set dst (ConvI2F (LoadI mem)));
  7981   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7982   size(8);
  7983   format %{ "LDF    $mem,$dst\n\t"
  7984             "FITOS  $dst,$dst" %}
  7985   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  7986   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7987   ins_pipe(floadF_mem);
  7988 %}
  7991 instruct convI2L_reg(iRegL dst, iRegI src) %{
  7992   match(Set dst (ConvI2L src));
  7993   size(4);
  7994   format %{ "SRA    $src,0,$dst\t! int->long" %}
  7995   opcode(Assembler::sra_op3, Assembler::arith_op);
  7996   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7997   ins_pipe(ialu_reg_reg);
  7998 %}
  8000 // Zero-extend convert int to long
  8001 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8002   match(Set dst (AndL (ConvI2L src) mask) );
  8003   size(4);
  8004   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8005   opcode(Assembler::srl_op3, Assembler::arith_op);
  8006   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8007   ins_pipe(ialu_reg_reg);
  8008 %}
  8010 // Zero-extend long
  8011 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8012   match(Set dst (AndL src mask) );
  8013   size(4);
  8014   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8015   opcode(Assembler::srl_op3, Assembler::arith_op);
  8016   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8017   ins_pipe(ialu_reg_reg);
  8018 %}
  8020 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8021   match(Set dst (MoveF2I src));
  8022   effect(DEF dst, USE src);
  8023   ins_cost(MEMORY_REF_COST);
  8025   size(4);
  8026   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8027   opcode(Assembler::lduw_op3);
  8028   ins_encode(simple_form3_mem_reg( src, dst ) );
  8029   ins_pipe(iload_mem);
  8030 %}
  8032 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8033   match(Set dst (MoveI2F src));
  8034   effect(DEF dst, USE src);
  8035   ins_cost(MEMORY_REF_COST);
  8037   size(4);
  8038   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8039   opcode(Assembler::ldf_op3);
  8040   ins_encode(simple_form3_mem_reg(src, dst));
  8041   ins_pipe(floadF_stk);
  8042 %}
  8044 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8045   match(Set dst (MoveD2L src));
  8046   effect(DEF dst, USE src);
  8047   ins_cost(MEMORY_REF_COST);
  8049   size(4);
  8050   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8051   opcode(Assembler::ldx_op3);
  8052   ins_encode(simple_form3_mem_reg( src, dst ) );
  8053   ins_pipe(iload_mem);
  8054 %}
  8056 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8057   match(Set dst (MoveL2D src));
  8058   effect(DEF dst, USE src);
  8059   ins_cost(MEMORY_REF_COST);
  8061   size(4);
  8062   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8063   opcode(Assembler::lddf_op3);
  8064   ins_encode(simple_form3_mem_reg(src, dst));
  8065   ins_pipe(floadD_stk);
  8066 %}
  8068 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8069   match(Set dst (MoveF2I src));
  8070   effect(DEF dst, USE src);
  8071   ins_cost(MEMORY_REF_COST);
  8073   size(4);
  8074   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8075   opcode(Assembler::stf_op3);
  8076   ins_encode(simple_form3_mem_reg(dst, src));
  8077   ins_pipe(fstoreF_stk_reg);
  8078 %}
  8080 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8081   match(Set dst (MoveI2F src));
  8082   effect(DEF dst, USE src);
  8083   ins_cost(MEMORY_REF_COST);
  8085   size(4);
  8086   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8087   opcode(Assembler::stw_op3);
  8088   ins_encode(simple_form3_mem_reg( dst, src ) );
  8089   ins_pipe(istore_mem_reg);
  8090 %}
  8092 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8093   match(Set dst (MoveD2L src));
  8094   effect(DEF dst, USE src);
  8095   ins_cost(MEMORY_REF_COST);
  8097   size(4);
  8098   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8099   opcode(Assembler::stdf_op3);
  8100   ins_encode(simple_form3_mem_reg(dst, src));
  8101   ins_pipe(fstoreD_stk_reg);
  8102 %}
  8104 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8105   match(Set dst (MoveL2D src));
  8106   effect(DEF dst, USE src);
  8107   ins_cost(MEMORY_REF_COST);
  8109   size(4);
  8110   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8111   opcode(Assembler::stx_op3);
  8112   ins_encode(simple_form3_mem_reg( dst, src ) );
  8113   ins_pipe(istore_mem_reg);
  8114 %}
  8117 //-----------
  8118 // Long to Double conversion using V8 opcodes.
  8119 // Still useful because cheetah traps and becomes
  8120 // amazingly slow for some common numbers.
  8122 // Magic constant, 0x43300000
  8123 instruct loadConI_x43300000(iRegI dst) %{
  8124   effect(DEF dst);
  8125   size(4);
  8126   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8127   ins_encode(SetHi22(0x43300000, dst));
  8128   ins_pipe(ialu_none);
  8129 %}
  8131 // Magic constant, 0x41f00000
  8132 instruct loadConI_x41f00000(iRegI dst) %{
  8133   effect(DEF dst);
  8134   size(4);
  8135   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8136   ins_encode(SetHi22(0x41f00000, dst));
  8137   ins_pipe(ialu_none);
  8138 %}
  8140 // Construct a double from two float halves
  8141 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8142   effect(DEF dst, USE src1, USE src2);
  8143   size(8);
  8144   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8145             "FMOVS  $src2.lo,$dst.lo" %}
  8146   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8147   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8148   ins_pipe(faddD_reg_reg);
  8149 %}
  8151 // Convert integer in high half of a double register (in the lower half of
  8152 // the double register file) to double
  8153 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8154   effect(DEF dst, USE src);
  8155   size(4);
  8156   format %{ "FITOD  $src,$dst" %}
  8157   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8158   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8159   ins_pipe(fcvtLHi2D);
  8160 %}
  8162 // Add float double precision
  8163 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8164   effect(DEF dst, USE src1, USE src2);
  8165   size(4);
  8166   format %{ "FADDD  $src1,$src2,$dst" %}
  8167   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8168   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8169   ins_pipe(faddD_reg_reg);
  8170 %}
  8172 // Sub float double precision
  8173 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8174   effect(DEF dst, USE src1, USE src2);
  8175   size(4);
  8176   format %{ "FSUBD  $src1,$src2,$dst" %}
  8177   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8178   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8179   ins_pipe(faddD_reg_reg);
  8180 %}
  8182 // Mul float double precision
  8183 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8184   effect(DEF dst, USE src1, USE src2);
  8185   size(4);
  8186   format %{ "FMULD  $src1,$src2,$dst" %}
  8187   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8188   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8189   ins_pipe(fmulD_reg_reg);
  8190 %}
  8192 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8193   match(Set dst (ConvL2D src));
  8194   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8196   expand %{
  8197     regD_low   tmpsrc;
  8198     iRegI      ix43300000;
  8199     iRegI      ix41f00000;
  8200     stackSlotL lx43300000;
  8201     stackSlotL lx41f00000;
  8202     regD_low   dx43300000;
  8203     regD       dx41f00000;
  8204     regD       tmp1;
  8205     regD_low   tmp2;
  8206     regD       tmp3;
  8207     regD       tmp4;
  8209     stkL_to_regD(tmpsrc, src);
  8211     loadConI_x43300000(ix43300000);
  8212     loadConI_x41f00000(ix41f00000);
  8213     regI_to_stkLHi(lx43300000, ix43300000);
  8214     regI_to_stkLHi(lx41f00000, ix41f00000);
  8215     stkL_to_regD(dx43300000, lx43300000);
  8216     stkL_to_regD(dx41f00000, lx41f00000);
  8218     convI2D_regDHi_regD(tmp1, tmpsrc);
  8219     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8220     subD_regD_regD(tmp3, tmp2, dx43300000);
  8221     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8222     addD_regD_regD(dst, tmp3, tmp4);
  8223   %}
  8224 %}
  8226 // Long to Double conversion using fast fxtof
  8227 instruct convL2D_helper(regD dst, regD tmp) %{
  8228   effect(DEF dst, USE tmp);
  8229   size(4);
  8230   format %{ "FXTOD  $tmp,$dst" %}
  8231   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8232   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8233   ins_pipe(fcvtL2D);
  8234 %}
  8236 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8237   predicate(VM_Version::has_fast_fxtof());
  8238   match(Set dst (ConvL2D src));
  8239   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8240   expand %{
  8241     regD tmp;
  8242     stkL_to_regD(tmp, src);
  8243     convL2D_helper(dst, tmp);
  8244   %}
  8245 %}
  8247 //-----------
  8248 // Long to Float conversion using V8 opcodes.
  8249 // Still useful because cheetah traps and becomes
  8250 // amazingly slow for some common numbers.
  8252 // Long to Float conversion using fast fxtof
  8253 instruct convL2F_helper(regF dst, regD tmp) %{
  8254   effect(DEF dst, USE tmp);
  8255   size(4);
  8256   format %{ "FXTOS  $tmp,$dst" %}
  8257   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8258   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8259   ins_pipe(fcvtL2F);
  8260 %}
  8262 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8263   match(Set dst (ConvL2F src));
  8264   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8265   expand %{
  8266     regD tmp;
  8267     stkL_to_regD(tmp, src);
  8268     convL2F_helper(dst, tmp);
  8269   %}
  8270 %}
  8271 //-----------
  8273 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8274   match(Set dst (ConvL2I src));
  8275 #ifndef _LP64
  8276   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8277   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8278   ins_pipe(ialu_move_reg_I_to_L);
  8279 #else
  8280   size(4);
  8281   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8282   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8283   ins_pipe(ialu_reg);
  8284 #endif
  8285 %}
  8287 // Register Shift Right Immediate
  8288 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8289   match(Set dst (ConvL2I (RShiftL src cnt)));
  8291   size(4);
  8292   format %{ "SRAX   $src,$cnt,$dst" %}
  8293   opcode(Assembler::srax_op3, Assembler::arith_op);
  8294   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8295   ins_pipe(ialu_reg_imm);
  8296 %}
  8298 // Replicate scalar to packed byte values in Double register
  8299 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8300   effect(DEF dst, USE src);
  8301   format %{ "SLLX  $src,56,$dst\n\t"
  8302             "SRLX  $dst, 8,O7\n\t"
  8303             "OR    $dst,O7,$dst\n\t"
  8304             "SRLX  $dst,16,O7\n\t"
  8305             "OR    $dst,O7,$dst\n\t"
  8306             "SRLX  $dst,32,O7\n\t"
  8307             "OR    $dst,O7,$dst\t! replicate8B" %}
  8308   ins_encode( enc_repl8b(src, dst));
  8309   ins_pipe(ialu_reg);
  8310 %}
  8312 // Replicate scalar to packed byte values in Double register
  8313 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8314   match(Set dst (Replicate8B src));
  8315   expand %{
  8316     iRegL tmp;
  8317     Repl8B_reg_helper(tmp, src);
  8318     regL_to_stkD(dst, tmp);
  8319   %}
  8320 %}
  8322 // Replicate scalar constant to packed byte values in Double register
  8323 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8324   match(Set dst (Replicate8B src));
  8325 #ifdef _LP64
  8326   size(36);
  8327 #else
  8328   size(8);
  8329 #endif
  8330   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8331             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8332   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8333   ins_pipe(loadConFD);
  8334 %}
  8336 // Replicate scalar to packed char values into stack slot
  8337 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8338   effect(DEF dst, USE src);
  8339   format %{ "SLLX  $src,48,$dst\n\t"
  8340             "SRLX  $dst,16,O7\n\t"
  8341             "OR    $dst,O7,$dst\n\t"
  8342             "SRLX  $dst,32,O7\n\t"
  8343             "OR    $dst,O7,$dst\t! replicate4C" %}
  8344   ins_encode( enc_repl4s(src, dst) );
  8345   ins_pipe(ialu_reg);
  8346 %}
  8348 // Replicate scalar to packed char values into stack slot
  8349 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8350   match(Set dst (Replicate4C src));
  8351   expand %{
  8352     iRegL tmp;
  8353     Repl4C_reg_helper(tmp, src);
  8354     regL_to_stkD(dst, tmp);
  8355   %}
  8356 %}
  8358 // Replicate scalar constant to packed char values in Double register
  8359 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8360   match(Set dst (Replicate4C src));
  8361 #ifdef _LP64
  8362   size(36);
  8363 #else
  8364   size(8);
  8365 #endif
  8366   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8367             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8368   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8369   ins_pipe(loadConFD);
  8370 %}
  8372 // Replicate scalar to packed short values into stack slot
  8373 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8374   effect(DEF dst, USE src);
  8375   format %{ "SLLX  $src,48,$dst\n\t"
  8376             "SRLX  $dst,16,O7\n\t"
  8377             "OR    $dst,O7,$dst\n\t"
  8378             "SRLX  $dst,32,O7\n\t"
  8379             "OR    $dst,O7,$dst\t! replicate4S" %}
  8380   ins_encode( enc_repl4s(src, dst) );
  8381   ins_pipe(ialu_reg);
  8382 %}
  8384 // Replicate scalar to packed short values into stack slot
  8385 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8386   match(Set dst (Replicate4S src));
  8387   expand %{
  8388     iRegL tmp;
  8389     Repl4S_reg_helper(tmp, src);
  8390     regL_to_stkD(dst, tmp);
  8391   %}
  8392 %}
  8394 // Replicate scalar constant to packed short values in Double register
  8395 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8396   match(Set dst (Replicate4S src));
  8397 #ifdef _LP64
  8398   size(36);
  8399 #else
  8400   size(8);
  8401 #endif
  8402   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8403             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8404   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8405   ins_pipe(loadConFD);
  8406 %}
  8408 // Replicate scalar to packed int values in Double register
  8409 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8410   effect(DEF dst, USE src);
  8411   format %{ "SLLX  $src,32,$dst\n\t"
  8412             "SRLX  $dst,32,O7\n\t"
  8413             "OR    $dst,O7,$dst\t! replicate2I" %}
  8414   ins_encode( enc_repl2i(src, dst));
  8415   ins_pipe(ialu_reg);
  8416 %}
  8418 // Replicate scalar to packed int values in Double register
  8419 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8420   match(Set dst (Replicate2I src));
  8421   expand %{
  8422     iRegL tmp;
  8423     Repl2I_reg_helper(tmp, src);
  8424     regL_to_stkD(dst, tmp);
  8425   %}
  8426 %}
  8428 // Replicate scalar zero constant to packed int values in Double register
  8429 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8430   match(Set dst (Replicate2I src));
  8431 #ifdef _LP64
  8432   size(36);
  8433 #else
  8434   size(8);
  8435 #endif
  8436   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8437             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8438   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8439   ins_pipe(loadConFD);
  8440 %}
  8442 //----------Control Flow Instructions------------------------------------------
  8443 // Compare Instructions
  8444 // Compare Integers
  8445 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8446   match(Set icc (CmpI op1 op2));
  8447   effect( DEF icc, USE op1, USE op2 );
  8449   size(4);
  8450   format %{ "CMP    $op1,$op2" %}
  8451   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8452   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8453   ins_pipe(ialu_cconly_reg_reg);
  8454 %}
  8456 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8457   match(Set icc (CmpU op1 op2));
  8459   size(4);
  8460   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8461   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8462   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8463   ins_pipe(ialu_cconly_reg_reg);
  8464 %}
  8466 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8467   match(Set icc (CmpI op1 op2));
  8468   effect( DEF icc, USE op1 );
  8470   size(4);
  8471   format %{ "CMP    $op1,$op2" %}
  8472   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8473   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8474   ins_pipe(ialu_cconly_reg_imm);
  8475 %}
  8477 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8478   match(Set icc (CmpI (AndI op1 op2) zero));
  8480   size(4);
  8481   format %{ "BTST   $op2,$op1" %}
  8482   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8483   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8484   ins_pipe(ialu_cconly_reg_reg_zero);
  8485 %}
  8487 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8488   match(Set icc (CmpI (AndI op1 op2) zero));
  8490   size(4);
  8491   format %{ "BTST   $op2,$op1" %}
  8492   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8493   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8494   ins_pipe(ialu_cconly_reg_imm_zero);
  8495 %}
  8497 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8498   match(Set xcc (CmpL op1 op2));
  8499   effect( DEF xcc, USE op1, USE op2 );
  8501   size(4);
  8502   format %{ "CMP    $op1,$op2\t\t! long" %}
  8503   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8504   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8505   ins_pipe(ialu_cconly_reg_reg);
  8506 %}
  8508 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8509   match(Set xcc (CmpL op1 con));
  8510   effect( DEF xcc, USE op1, USE con );
  8512   size(4);
  8513   format %{ "CMP    $op1,$con\t\t! long" %}
  8514   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8515   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8516   ins_pipe(ialu_cconly_reg_reg);
  8517 %}
  8519 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8520   match(Set xcc (CmpL (AndL op1 op2) zero));
  8521   effect( DEF xcc, USE op1, USE op2 );
  8523   size(4);
  8524   format %{ "BTST   $op1,$op2\t\t! long" %}
  8525   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8526   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8527   ins_pipe(ialu_cconly_reg_reg);
  8528 %}
  8530 // useful for checking the alignment of a pointer:
  8531 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8532   match(Set xcc (CmpL (AndL op1 con) zero));
  8533   effect( DEF xcc, USE op1, USE con );
  8535   size(4);
  8536   format %{ "BTST   $op1,$con\t\t! long" %}
  8537   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8538   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8539   ins_pipe(ialu_cconly_reg_reg);
  8540 %}
  8542 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8543   match(Set icc (CmpU op1 op2));
  8545   size(4);
  8546   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8547   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8548   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8549   ins_pipe(ialu_cconly_reg_imm);
  8550 %}
  8552 // Compare Pointers
  8553 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8554   match(Set pcc (CmpP op1 op2));
  8556   size(4);
  8557   format %{ "CMP    $op1,$op2\t! ptr" %}
  8558   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8559   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8560   ins_pipe(ialu_cconly_reg_reg);
  8561 %}
  8563 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8564   match(Set pcc (CmpP op1 op2));
  8566   size(4);
  8567   format %{ "CMP    $op1,$op2\t! ptr" %}
  8568   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8569   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8570   ins_pipe(ialu_cconly_reg_imm);
  8571 %}
  8573 // Compare Narrow oops
  8574 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8575   match(Set icc (CmpN op1 op2));
  8577   size(4);
  8578   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8579   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8580   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8581   ins_pipe(ialu_cconly_reg_reg);
  8582 %}
  8584 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8585   match(Set icc (CmpN op1 op2));
  8587   size(4);
  8588   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8589   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8590   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8591   ins_pipe(ialu_cconly_reg_imm);
  8592 %}
  8594 //----------Max and Min--------------------------------------------------------
  8595 // Min Instructions
  8596 // Conditional move for min
  8597 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8598   effect( USE_DEF op2, USE op1, USE icc );
  8600   size(4);
  8601   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8602   opcode(Assembler::less);
  8603   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8604   ins_pipe(ialu_reg_flags);
  8605 %}
  8607 // Min Register with Register.
  8608 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8609   match(Set op2 (MinI op1 op2));
  8610   ins_cost(DEFAULT_COST*2);
  8611   expand %{
  8612     flagsReg icc;
  8613     compI_iReg(icc,op1,op2);
  8614     cmovI_reg_lt(op2,op1,icc);
  8615   %}
  8616 %}
  8618 // Max Instructions
  8619 // Conditional move for max
  8620 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8621   effect( USE_DEF op2, USE op1, USE icc );
  8622   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8623   opcode(Assembler::greater);
  8624   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8625   ins_pipe(ialu_reg_flags);
  8626 %}
  8628 // Max Register with Register
  8629 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8630   match(Set op2 (MaxI op1 op2));
  8631   ins_cost(DEFAULT_COST*2);
  8632   expand %{
  8633     flagsReg icc;
  8634     compI_iReg(icc,op1,op2);
  8635     cmovI_reg_gt(op2,op1,icc);
  8636   %}
  8637 %}
  8640 //----------Float Compares----------------------------------------------------
  8641 // Compare floating, generate condition code
  8642 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8643   match(Set fcc (CmpF src1 src2));
  8645   size(4);
  8646   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8647   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8648   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8649   ins_pipe(faddF_fcc_reg_reg_zero);
  8650 %}
  8652 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8653   match(Set fcc (CmpD src1 src2));
  8655   size(4);
  8656   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8657   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8658   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8659   ins_pipe(faddD_fcc_reg_reg_zero);
  8660 %}
  8663 // Compare floating, generate -1,0,1
  8664 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8665   match(Set dst (CmpF3 src1 src2));
  8666   effect(KILL fcc0);
  8667   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8668   format %{ "fcmpl  $dst,$src1,$src2" %}
  8669   // Primary = float
  8670   opcode( true );
  8671   ins_encode( floating_cmp( dst, src1, src2 ) );
  8672   ins_pipe( floating_cmp );
  8673 %}
  8675 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8676   match(Set dst (CmpD3 src1 src2));
  8677   effect(KILL fcc0);
  8678   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8679   format %{ "dcmpl  $dst,$src1,$src2" %}
  8680   // Primary = double (not float)
  8681   opcode( false );
  8682   ins_encode( floating_cmp( dst, src1, src2 ) );
  8683   ins_pipe( floating_cmp );
  8684 %}
  8686 //----------Branches---------------------------------------------------------
  8687 // Jump
  8688 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8689 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8690   match(Jump switch_val);
  8692   ins_cost(350);
  8694   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8695              "ADD    O7, lo(table_base), O7\n\t"
  8696              "LD     [O7+$switch_val], O7\n\t"
  8697              "JUMP   O7"
  8698          %}
  8699   ins_encode( jump_enc( switch_val, table) );
  8700   ins_pc_relative(1);
  8701   ins_pipe(ialu_reg_reg);
  8702 %}
  8704 // Direct Branch.  Use V8 version with longer range.
  8705 instruct branch(label labl) %{
  8706   match(Goto);
  8707   effect(USE labl);
  8709   size(8);
  8710   ins_cost(BRANCH_COST);
  8711   format %{ "BA     $labl" %}
  8712   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8713   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8714   ins_encode( enc_ba( labl ) );
  8715   ins_pc_relative(1);
  8716   ins_pipe(br);
  8717 %}
  8719 // Conditional Direct Branch
  8720 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8721   match(If cmp icc);
  8722   effect(USE labl);
  8724   size(8);
  8725   ins_cost(BRANCH_COST);
  8726   format %{ "BP$cmp   $icc,$labl" %}
  8727   // Prim = bits 24-22, Secnd = bits 31-30
  8728   ins_encode( enc_bp( labl, cmp, icc ) );
  8729   ins_pc_relative(1);
  8730   ins_pipe(br_cc);
  8731 %}
  8733 // Branch-on-register tests all 64 bits.  We assume that values
  8734 // in 64-bit registers always remains zero or sign extended
  8735 // unless our code munges the high bits.  Interrupts can chop
  8736 // the high order bits to zero or sign at any time.
  8737 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8738   match(If cmp (CmpI op1 zero));
  8739   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8740   effect(USE labl);
  8742   size(8);
  8743   ins_cost(BRANCH_COST);
  8744   format %{ "BR$cmp   $op1,$labl" %}
  8745   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8746   ins_pc_relative(1);
  8747   ins_pipe(br_reg);
  8748 %}
  8750 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8751   match(If cmp (CmpP op1 null));
  8752   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8753   effect(USE labl);
  8755   size(8);
  8756   ins_cost(BRANCH_COST);
  8757   format %{ "BR$cmp   $op1,$labl" %}
  8758   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8759   ins_pc_relative(1);
  8760   ins_pipe(br_reg);
  8761 %}
  8763 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8764   match(If cmp (CmpL op1 zero));
  8765   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8766   effect(USE labl);
  8768   size(8);
  8769   ins_cost(BRANCH_COST);
  8770   format %{ "BR$cmp   $op1,$labl" %}
  8771   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8772   ins_pc_relative(1);
  8773   ins_pipe(br_reg);
  8774 %}
  8776 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8777   match(If cmp icc);
  8778   effect(USE labl);
  8780   format %{ "BP$cmp  $icc,$labl" %}
  8781   // Prim = bits 24-22, Secnd = bits 31-30
  8782   ins_encode( enc_bp( labl, cmp, icc ) );
  8783   ins_pc_relative(1);
  8784   ins_pipe(br_cc);
  8785 %}
  8787 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  8788   match(If cmp pcc);
  8789   effect(USE labl);
  8791   size(8);
  8792   ins_cost(BRANCH_COST);
  8793   format %{ "BP$cmp  $pcc,$labl" %}
  8794   // Prim = bits 24-22, Secnd = bits 31-30
  8795   ins_encode( enc_bpx( labl, cmp, pcc ) );
  8796   ins_pc_relative(1);
  8797   ins_pipe(br_cc);
  8798 %}
  8800 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  8801   match(If cmp fcc);
  8802   effect(USE labl);
  8804   size(8);
  8805   ins_cost(BRANCH_COST);
  8806   format %{ "FBP$cmp $fcc,$labl" %}
  8807   // Prim = bits 24-22, Secnd = bits 31-30
  8808   ins_encode( enc_fbp( labl, cmp, fcc ) );
  8809   ins_pc_relative(1);
  8810   ins_pipe(br_fcc);
  8811 %}
  8813 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  8814   match(CountedLoopEnd cmp icc);
  8815   effect(USE labl);
  8817   size(8);
  8818   ins_cost(BRANCH_COST);
  8819   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  8820   // Prim = bits 24-22, Secnd = bits 31-30
  8821   ins_encode( enc_bp( labl, cmp, icc ) );
  8822   ins_pc_relative(1);
  8823   ins_pipe(br_cc);
  8824 %}
  8826 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8827   match(CountedLoopEnd cmp icc);
  8828   effect(USE labl);
  8830   size(8);
  8831   ins_cost(BRANCH_COST);
  8832   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  8833   // Prim = bits 24-22, Secnd = bits 31-30
  8834   ins_encode( enc_bp( labl, cmp, icc ) );
  8835   ins_pc_relative(1);
  8836   ins_pipe(br_cc);
  8837 %}
  8839 // ============================================================================
  8840 // Long Compare
  8841 //
  8842 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  8843 // is tricky.  The flavor of compare used depends on whether we are testing
  8844 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  8845 // The GE test is the negated LT test.  The LE test can be had by commuting
  8846 // the operands (yielding a GE test) and then negating; negate again for the
  8847 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  8848 // NE test is negated from that.
  8850 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  8851 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  8852 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  8853 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  8854 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  8855 // foo match ends up with the wrong leaf.  One fix is to not match both
  8856 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  8857 // both forms beat the trinary form of long-compare and both are very useful
  8858 // on Intel which has so few registers.
  8860 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  8861   match(If cmp xcc);
  8862   effect(USE labl);
  8864   size(8);
  8865   ins_cost(BRANCH_COST);
  8866   format %{ "BP$cmp   $xcc,$labl" %}
  8867   // Prim = bits 24-22, Secnd = bits 31-30
  8868   ins_encode( enc_bpl( labl, cmp, xcc ) );
  8869   ins_pc_relative(1);
  8870   ins_pipe(br_cc);
  8871 %}
  8873 // Manifest a CmpL3 result in an integer register.  Very painful.
  8874 // This is the test to avoid.
  8875 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  8876   match(Set dst (CmpL3 src1 src2) );
  8877   effect( KILL ccr );
  8878   ins_cost(6*DEFAULT_COST);
  8879   size(24);
  8880   format %{ "CMP    $src1,$src2\t\t! long\n"
  8881           "\tBLT,a,pn done\n"
  8882           "\tMOV    -1,$dst\t! delay slot\n"
  8883           "\tBGT,a,pn done\n"
  8884           "\tMOV    1,$dst\t! delay slot\n"
  8885           "\tCLR    $dst\n"
  8886     "done:"     %}
  8887   ins_encode( cmpl_flag(src1,src2,dst) );
  8888   ins_pipe(cmpL_reg);
  8889 %}
  8891 // Conditional move
  8892 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  8893   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8894   ins_cost(150);
  8895   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8896   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8897   ins_pipe(ialu_reg);
  8898 %}
  8900 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  8901   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8902   ins_cost(140);
  8903   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8904   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8905   ins_pipe(ialu_imm);
  8906 %}
  8908 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  8909   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8910   ins_cost(150);
  8911   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8912   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8913   ins_pipe(ialu_reg);
  8914 %}
  8916 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  8917   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8918   ins_cost(140);
  8919   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8920   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8921   ins_pipe(ialu_imm);
  8922 %}
  8924 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  8925   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  8926   ins_cost(150);
  8927   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8928   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8929   ins_pipe(ialu_reg);
  8930 %}
  8932 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  8933   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8934   ins_cost(150);
  8935   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8936   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8937   ins_pipe(ialu_reg);
  8938 %}
  8940 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  8941   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8942   ins_cost(140);
  8943   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8944   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8945   ins_pipe(ialu_imm);
  8946 %}
  8948 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  8949   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  8950   ins_cost(150);
  8951   opcode(0x101);
  8952   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  8953   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8954   ins_pipe(int_conditional_float_move);
  8955 %}
  8957 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  8958   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  8959   ins_cost(150);
  8960   opcode(0x102);
  8961   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  8962   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8963   ins_pipe(int_conditional_float_move);
  8964 %}
  8966 // ============================================================================
  8967 // Safepoint Instruction
  8968 instruct safePoint_poll(iRegP poll) %{
  8969   match(SafePoint poll);
  8970   effect(USE poll);
  8972   size(4);
  8973 #ifdef _LP64
  8974   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  8975 #else
  8976   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  8977 #endif
  8978   ins_encode %{
  8979     __ relocate(relocInfo::poll_type);
  8980     __ ld_ptr($poll$$Register, 0, G0);
  8981   %}
  8982   ins_pipe(loadPollP);
  8983 %}
  8985 // ============================================================================
  8986 // Call Instructions
  8987 // Call Java Static Instruction
  8988 instruct CallStaticJavaDirect( method meth ) %{
  8989   match(CallStaticJava);
  8990   effect(USE meth);
  8992   size(8);
  8993   ins_cost(CALL_COST);
  8994   format %{ "CALL,static  ; NOP ==> " %}
  8995   ins_encode( Java_Static_Call( meth ), call_epilog );
  8996   ins_pc_relative(1);
  8997   ins_pipe(simple_call);
  8998 %}
  9000 // Call Java Dynamic Instruction
  9001 instruct CallDynamicJavaDirect( method meth ) %{
  9002   match(CallDynamicJava);
  9003   effect(USE meth);
  9005   ins_cost(CALL_COST);
  9006   format %{ "SET    (empty),R_G5\n\t"
  9007             "CALL,dynamic  ; NOP ==> " %}
  9008   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9009   ins_pc_relative(1);
  9010   ins_pipe(call);
  9011 %}
  9013 // Call Runtime Instruction
  9014 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9015   match(CallRuntime);
  9016   effect(USE meth, KILL l7);
  9017   ins_cost(CALL_COST);
  9018   format %{ "CALL,runtime" %}
  9019   ins_encode( Java_To_Runtime( meth ),
  9020               call_epilog, adjust_long_from_native_call );
  9021   ins_pc_relative(1);
  9022   ins_pipe(simple_call);
  9023 %}
  9025 // Call runtime without safepoint - same as CallRuntime
  9026 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9027   match(CallLeaf);
  9028   effect(USE meth, KILL l7);
  9029   ins_cost(CALL_COST);
  9030   format %{ "CALL,runtime leaf" %}
  9031   ins_encode( Java_To_Runtime( meth ),
  9032               call_epilog,
  9033               adjust_long_from_native_call );
  9034   ins_pc_relative(1);
  9035   ins_pipe(simple_call);
  9036 %}
  9038 // Call runtime without safepoint - same as CallLeaf
  9039 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9040   match(CallLeafNoFP);
  9041   effect(USE meth, KILL l7);
  9042   ins_cost(CALL_COST);
  9043   format %{ "CALL,runtime leaf nofp" %}
  9044   ins_encode( Java_To_Runtime( meth ),
  9045               call_epilog,
  9046               adjust_long_from_native_call );
  9047   ins_pc_relative(1);
  9048   ins_pipe(simple_call);
  9049 %}
  9051 // Tail Call; Jump from runtime stub to Java code.
  9052 // Also known as an 'interprocedural jump'.
  9053 // Target of jump will eventually return to caller.
  9054 // TailJump below removes the return address.
  9055 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9056   match(TailCall jump_target method_oop );
  9058   ins_cost(CALL_COST);
  9059   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9060   ins_encode(form_jmpl(jump_target));
  9061   ins_pipe(tail_call);
  9062 %}
  9065 // Return Instruction
  9066 instruct Ret() %{
  9067   match(Return);
  9069   // The epilogue node did the ret already.
  9070   size(0);
  9071   format %{ "! return" %}
  9072   ins_encode();
  9073   ins_pipe(empty);
  9074 %}
  9077 // Tail Jump; remove the return address; jump to target.
  9078 // TailCall above leaves the return address around.
  9079 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9080 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9081 // "restore" before this instruction (in Epilogue), we need to materialize it
  9082 // in %i0.
  9083 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9084   match( TailJump jump_target ex_oop );
  9085   ins_cost(CALL_COST);
  9086   format %{ "! discard R_O7\n\t"
  9087             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9088   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9089   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9090   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9091   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9092   ins_pipe(tail_call);
  9093 %}
  9095 // Create exception oop: created by stack-crawling runtime code.
  9096 // Created exception is now available to this handler, and is setup
  9097 // just prior to jumping to this handler.  No code emitted.
  9098 instruct CreateException( o0RegP ex_oop )
  9099 %{
  9100   match(Set ex_oop (CreateEx));
  9101   ins_cost(0);
  9103   size(0);
  9104   // use the following format syntax
  9105   format %{ "! exception oop is in R_O0; no code emitted" %}
  9106   ins_encode();
  9107   ins_pipe(empty);
  9108 %}
  9111 // Rethrow exception:
  9112 // The exception oop will come in the first argument position.
  9113 // Then JUMP (not call) to the rethrow stub code.
  9114 instruct RethrowException()
  9115 %{
  9116   match(Rethrow);
  9117   ins_cost(CALL_COST);
  9119   // use the following format syntax
  9120   format %{ "Jmp    rethrow_stub" %}
  9121   ins_encode(enc_rethrow);
  9122   ins_pipe(tail_call);
  9123 %}
  9126 // Die now
  9127 instruct ShouldNotReachHere( )
  9128 %{
  9129   match(Halt);
  9130   ins_cost(CALL_COST);
  9132   size(4);
  9133   // Use the following format syntax
  9134   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9135   ins_encode( form2_illtrap() );
  9136   ins_pipe(tail_call);
  9137 %}
  9139 // ============================================================================
  9140 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9141 // array for an instance of the superklass.  Set a hidden internal cache on a
  9142 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9143 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9144 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9145   match(Set index (PartialSubtypeCheck sub super));
  9146   effect( KILL pcc, KILL o7 );
  9147   ins_cost(DEFAULT_COST*10);
  9148   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9149   ins_encode( enc_PartialSubtypeCheck() );
  9150   ins_pipe(partial_subtype_check_pipe);
  9151 %}
  9153 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9154   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9155   effect( KILL idx, KILL o7 );
  9156   ins_cost(DEFAULT_COST*10);
  9157   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9158   ins_encode( enc_PartialSubtypeCheck() );
  9159   ins_pipe(partial_subtype_check_pipe);
  9160 %}
  9163 // ============================================================================
  9164 // inlined locking and unlocking
  9166 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9167   match(Set pcc (FastLock object box));
  9169   effect(KILL scratch, TEMP scratch2);
  9170   ins_cost(100);
  9172   size(4*112);       // conservative overestimation ...
  9173   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9174   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9175   ins_pipe(long_memory_op);
  9176 %}
  9179 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9180   match(Set pcc (FastUnlock object box));
  9181   effect(KILL scratch, TEMP scratch2);
  9182   ins_cost(100);
  9184   size(4*120);       // conservative overestimation ...
  9185   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9186   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9187   ins_pipe(long_memory_op);
  9188 %}
  9190 // Count and Base registers are fixed because the allocator cannot
  9191 // kill unknown registers.  The encodings are generic.
  9192 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9193   match(Set dummy (ClearArray cnt base));
  9194   effect(TEMP temp, KILL ccr);
  9195   ins_cost(300);
  9196   format %{ "MOV    $cnt,$temp\n"
  9197     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9198     "        BRge   loop\t\t! Clearing loop\n"
  9199     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9200   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9201   ins_pipe(long_memory_op);
  9202 %}
  9204 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
  9205                         o7RegI tmp3, flagsReg ccr) %{
  9206   match(Set result (StrComp str1 str2));
  9207   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
  9208   ins_cost(300);
  9209   format %{ "String Compare $str1,$str2 -> $result" %}
  9210   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
  9211   ins_pipe(long_memory_op);
  9212 %}
  9214 instruct string_equals(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
  9215                        o7RegI tmp3, flagsReg ccr) %{
  9216   match(Set result (StrEquals str1 str2));
  9217   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
  9218   ins_cost(300);
  9219   format %{ "String Equals $str1,$str2 -> $result" %}
  9220   ins_encode( enc_String_Equals(str1, str2, tmp1, tmp2, result) );
  9221   ins_pipe(long_memory_op);
  9222 %}
  9224 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
  9225                         flagsReg ccr) %{
  9226   match(Set result (AryEq ary1 ary2));
  9227   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9228   ins_cost(300);
  9229   format %{ "Array Equals $ary1,$ary2 -> $result" %}
  9230   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result));
  9231   ins_pipe(long_memory_op);
  9232 %}
  9234 //---------- Population Count Instructions -------------------------------------
  9236 instruct popCountI(iRegI dst, iRegI src) %{
  9237   predicate(UsePopCountInstruction);
  9238   match(Set dst (PopCountI src));
  9240   format %{ "POPC   $src, $dst" %}
  9241   ins_encode %{
  9242     __ popc($src$$Register, $dst$$Register);
  9243   %}
  9244   ins_pipe(ialu_reg);
  9245 %}
  9247 // Note: Long.bitCount(long) returns an int.
  9248 instruct popCountL(iRegI dst, iRegL src) %{
  9249   predicate(UsePopCountInstruction);
  9250   match(Set dst (PopCountL src));
  9252   format %{ "POPC   $src, $dst" %}
  9253   ins_encode %{
  9254     __ popc($src$$Register, $dst$$Register);
  9255   %}
  9256   ins_pipe(ialu_reg);
  9257 %}
  9260 // ============================================================================
  9261 //------------Bytes reverse--------------------------------------------------
  9263 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9264   match(Set dst (ReverseBytesI src));
  9265   effect(DEF dst, USE src);
  9267   // Op cost is artificially doubled to make sure that load or store
  9268   // instructions are preferred over this one which requires a spill
  9269   // onto a stack slot.
  9270   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9271   size(8);
  9272   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9273   opcode(Assembler::lduwa_op3);
  9274   ins_encode( form3_mem_reg_little(src, dst) );
  9275   ins_pipe( iload_mem );
  9276 %}
  9278 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9279   match(Set dst (ReverseBytesL src));
  9280   effect(DEF dst, USE src);
  9282   // Op cost is artificially doubled to make sure that load or store
  9283   // instructions are preferred over this one which requires a spill
  9284   // onto a stack slot.
  9285   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9286   size(8);
  9287   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9289   opcode(Assembler::ldxa_op3);
  9290   ins_encode( form3_mem_reg_little(src, dst) );
  9291   ins_pipe( iload_mem );
  9292 %}
  9294 // Load Integer reversed byte order
  9295 instruct loadI_reversed(iRegI dst, memory src) %{
  9296   match(Set dst (ReverseBytesI (LoadI src)));
  9298   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9299   size(8);
  9300   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9302   opcode(Assembler::lduwa_op3);
  9303   ins_encode( form3_mem_reg_little( src, dst) );
  9304   ins_pipe(iload_mem);
  9305 %}
  9307 // Load Long - aligned and reversed
  9308 instruct loadL_reversed(iRegL dst, memory src) %{
  9309   match(Set dst (ReverseBytesL (LoadL src)));
  9311   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9312   size(8);
  9313   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9315   opcode(Assembler::ldxa_op3);
  9316   ins_encode( form3_mem_reg_little( src, dst ) );
  9317   ins_pipe(iload_mem);
  9318 %}
  9320 // Store Integer reversed byte order
  9321 instruct storeI_reversed(memory dst, iRegI src) %{
  9322   match(Set dst (StoreI dst (ReverseBytesI src)));
  9324   ins_cost(MEMORY_REF_COST);
  9325   size(8);
  9326   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9328   opcode(Assembler::stwa_op3);
  9329   ins_encode( form3_mem_reg_little( dst, src) );
  9330   ins_pipe(istore_mem_reg);
  9331 %}
  9333 // Store Long reversed byte order
  9334 instruct storeL_reversed(memory dst, iRegL src) %{
  9335   match(Set dst (StoreL dst (ReverseBytesL src)));
  9337   ins_cost(MEMORY_REF_COST);
  9338   size(8);
  9339   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9341   opcode(Assembler::stxa_op3);
  9342   ins_encode( form3_mem_reg_little( dst, src) );
  9343   ins_pipe(istore_mem_reg);
  9344 %}
  9346 //----------PEEPHOLE RULES-----------------------------------------------------
  9347 // These must follow all instruction definitions as they use the names
  9348 // defined in the instructions definitions.
  9349 //
  9350 // peepmatch ( root_instr_name [preceding_instruction]* );
  9351 //
  9352 // peepconstraint %{
  9353 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9354 //  [, ...] );
  9355 // // instruction numbers are zero-based using left to right order in peepmatch
  9356 //
  9357 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9358 // // provide an instruction_number.operand_name for each operand that appears
  9359 // // in the replacement instruction's match rule
  9360 //
  9361 // ---------VM FLAGS---------------------------------------------------------
  9362 //
  9363 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9364 //
  9365 // Each peephole rule is given an identifying number starting with zero and
  9366 // increasing by one in the order seen by the parser.  An individual peephole
  9367 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9368 // on the command-line.
  9369 //
  9370 // ---------CURRENT LIMITATIONS----------------------------------------------
  9371 //
  9372 // Only match adjacent instructions in same basic block
  9373 // Only equality constraints
  9374 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9375 // Only one replacement instruction
  9376 //
  9377 // ---------EXAMPLE----------------------------------------------------------
  9378 //
  9379 // // pertinent parts of existing instructions in architecture description
  9380 // instruct movI(eRegI dst, eRegI src) %{
  9381 //   match(Set dst (CopyI src));
  9382 // %}
  9383 //
  9384 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9385 //   match(Set dst (AddI dst src));
  9386 //   effect(KILL cr);
  9387 // %}
  9388 //
  9389 // // Change (inc mov) to lea
  9390 // peephole %{
  9391 //   // increment preceeded by register-register move
  9392 //   peepmatch ( incI_eReg movI );
  9393 //   // require that the destination register of the increment
  9394 //   // match the destination register of the move
  9395 //   peepconstraint ( 0.dst == 1.dst );
  9396 //   // construct a replacement instruction that sets
  9397 //   // the destination to ( move's source register + one )
  9398 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9399 // %}
  9400 //
  9402 // // Change load of spilled value to only a spill
  9403 // instruct storeI(memory mem, eRegI src) %{
  9404 //   match(Set mem (StoreI mem src));
  9405 // %}
  9406 //
  9407 // instruct loadI(eRegI dst, memory mem) %{
  9408 //   match(Set dst (LoadI mem));
  9409 // %}
  9410 //
  9411 // peephole %{
  9412 //   peepmatch ( loadI storeI );
  9413 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9414 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9415 // %}
  9417 //----------SMARTSPILL RULES---------------------------------------------------
  9418 // These must follow all instruction definitions as they use the names
  9419 // defined in the instructions definitions.
  9420 //
  9421 // SPARC will probably not have any of these rules due to RISC instruction set.
  9423 //----------PIPELINE-----------------------------------------------------------
  9424 // Rules which define the behavior of the target architectures pipeline.

mercurial