src/cpu/sparc/vm/interpreter_sparc.cpp

Wed, 08 Apr 2009 10:56:49 -0700

author
jrose
date
Wed, 08 Apr 2009 10:56:49 -0700
changeset 1145
e5b0439ef4ae
parent 435
a61af66fc99e
child 1609
ddb7834449d0
permissions
-rw-r--r--

6655638: dynamic languages need method handles
Summary: initial implementation, with known omissions (x86/64, sparc, compiler optim., c-oops, C++ interp.)
Reviewed-by: kvn, twisti, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interpreter_sparc.cpp.incl"
    30 // Generation of Interpreter
    31 //
    32 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    35 #define __ _masm->
    38 //----------------------------------------------------------------------------------------------------
    43 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    44   int i = 0;
    45   switch (type) {
    46     case T_BOOLEAN: i = 0; break;
    47     case T_CHAR   : i = 1; break;
    48     case T_BYTE   : i = 2; break;
    49     case T_SHORT  : i = 3; break;
    50     case T_INT    : i = 4; break;
    51     case T_LONG   : i = 5; break;
    52     case T_VOID   : i = 6; break;
    53     case T_FLOAT  : i = 7; break;
    54     case T_DOUBLE : i = 8; break;
    55     case T_OBJECT : i = 9; break;
    56     case T_ARRAY  : i = 9; break;
    57     default       : ShouldNotReachHere();
    58   }
    59   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
    60   return i;
    61 }
    64 #ifndef _LP64
    65 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
    66   address entry = __ pc();
    67   Argument argv(0, true);
    69   // We are in the jni transition frame. Save the last_java_frame corresponding to the
    70   // outer interpreter frame
    71   //
    72   __ set_last_Java_frame(FP, noreg);
    73   // make sure the interpreter frame we've pushed has a valid return pc
    74   __ mov(O7, I7);
    75   __ mov(Lmethod, G3_scratch);
    76   __ mov(Llocals, G4_scratch);
    77   __ save_frame(0);
    78   __ mov(G2_thread, L7_thread_cache);
    79   __ add(argv.address_in_frame(), O3);
    80   __ mov(G2_thread, O0);
    81   __ mov(G3_scratch, O1);
    82   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
    83   __ delayed()->mov(G4_scratch, O2);
    84   __ mov(L7_thread_cache, G2_thread);
    85   __ reset_last_Java_frame();
    87   // load the register arguments (the C code packed them as varargs)
    88   for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) {
    89       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
    90   }
    91   __ ret();
    92   __ delayed()->
    93      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
    94   return entry;
    95 }
    98 #else
    99 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
   100 // O0, O1, O2 etc..
   101 // Doubles are passed in D0, D2, D4
   102 // We store the signature of the first 16 arguments in the first argument
   103 // slot because it will be overwritten prior to calling the native
   104 // function, with the pointer to the JNIEnv.
   105 // If LP64 there can be up to 16 floating point arguments in registers
   106 // or 6 integer registers.
   107 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
   109   enum {
   110     non_float  = 0,
   111     float_sig  = 1,
   112     double_sig = 2,
   113     sig_mask   = 3
   114   };
   116   address entry = __ pc();
   117   Argument argv(0, true);
   119   // We are in the jni transition frame. Save the last_java_frame corresponding to the
   120   // outer interpreter frame
   121   //
   122   __ set_last_Java_frame(FP, noreg);
   123   // make sure the interpreter frame we've pushed has a valid return pc
   124   __ mov(O7, I7);
   125   __ mov(Lmethod, G3_scratch);
   126   __ mov(Llocals, G4_scratch);
   127   __ save_frame(0);
   128   __ mov(G2_thread, L7_thread_cache);
   129   __ add(argv.address_in_frame(), O3);
   130   __ mov(G2_thread, O0);
   131   __ mov(G3_scratch, O1);
   132   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
   133   __ delayed()->mov(G4_scratch, O2);
   134   __ mov(L7_thread_cache, G2_thread);
   135   __ reset_last_Java_frame();
   138   // load the register arguments (the C code packed them as varargs)
   139   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
   140   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
   141   __ mov( G3_scratch, G4_scratch);
   142   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
   143   Label done;
   144   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
   145     Label NonFloatArg;
   146     Label LoadFloatArg;
   147     Label LoadDoubleArg;
   148     Label NextArg;
   149     Address a = ldarg.address_in_frame();
   150     __ andcc(G4_scratch, sig_mask, G3_scratch);
   151     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
   152     __ delayed()->nop();
   154     __ cmp(G3_scratch, float_sig );
   155     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
   156     __ delayed()->nop();
   158     __ cmp(G3_scratch, double_sig );
   159     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
   160     __ delayed()->nop();
   162     __ bind(NonFloatArg);
   163     // There are only 6 integer register arguments!
   164     if ( ldarg.is_register() )
   165       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
   166     else {
   167     // Optimization, see if there are any more args and get out prior to checking
   168     // all 16 float registers.  My guess is that this is rare.
   169     // If is_register is false, then we are done the first six integer args.
   170       __ tst(G4_scratch);
   171       __ brx(Assembler::zero, false, Assembler::pt, done);
   172       __ delayed()->nop();
   174     }
   175     __ ba(false, NextArg);
   176     __ delayed()->srl( G4_scratch, 2, G4_scratch );
   178     __ bind(LoadFloatArg);
   179     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
   180     __ ba(false, NextArg);
   181     __ delayed()->srl( G4_scratch, 2, G4_scratch );
   183     __ bind(LoadDoubleArg);
   184     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
   185     __ ba(false, NextArg);
   186     __ delayed()->srl( G4_scratch, 2, G4_scratch );
   188     __ bind(NextArg);
   190   }
   192   __ bind(done);
   193   __ ret();
   194   __ delayed()->
   195      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
   196   return entry;
   197 }
   198 #endif
   200 void InterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
   202   // Generate code to initiate compilation on the counter overflow.
   204   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
   205   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
   206   // and the second is only used when the first is true.  We pass zero for both.
   207   // The call returns the address of the verified entry point for the method or NULL
   208   // if the compilation did not complete (either went background or bailed out).
   209   __ set((int)false, O2);
   210   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
   211   // returns verified_entry_point or NULL
   212   // we ignore it in any case
   213   __ ba(false, Lcontinue);
   214   __ delayed()->nop();
   216 }
   219 // End of helpers
   221 // Various method entries
   223 // Abstract method entry
   224 // Attempt to execute abstract method. Throw exception
   225 //
   226 address InterpreterGenerator::generate_abstract_entry(void) {
   227   address entry = __ pc();
   228   // abstract method entry
   229   // throw exception
   230   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
   231   // the call_VM checks for exception, so we should never return here.
   232   __ should_not_reach_here();
   233   return entry;
   235 }
   239 // Method handle invoker
   240 // Dispatch a method of the form java.dyn.MethodHandles::invoke(...)
   241 address InterpreterGenerator::generate_method_handle_entry(void) {
   242   if (!EnableMethodHandles) {
   243     return generate_abstract_entry();
   244   }
   245   return generate_abstract_entry(); //6815692//
   246 }
   251 //----------------------------------------------------------------------------------------------------
   252 // Entry points & stack frame layout
   253 //
   254 // Here we generate the various kind of entries into the interpreter.
   255 // The two main entry type are generic bytecode methods and native call method.
   256 // These both come in synchronized and non-synchronized versions but the
   257 // frame layout they create is very similar. The other method entry
   258 // types are really just special purpose entries that are really entry
   259 // and interpretation all in one. These are for trivial methods like
   260 // accessor, empty, or special math methods.
   261 //
   262 // When control flow reaches any of the entry types for the interpreter
   263 // the following holds ->
   264 //
   265 // C2 Calling Conventions:
   266 //
   267 // The entry code below assumes that the following registers are set
   268 // when coming in:
   269 //    G5_method: holds the methodOop of the method to call
   270 //    Lesp:    points to the TOS of the callers expression stack
   271 //             after having pushed all the parameters
   272 //
   273 // The entry code does the following to setup an interpreter frame
   274 //   pop parameters from the callers stack by adjusting Lesp
   275 //   set O0 to Lesp
   276 //   compute X = (max_locals - num_parameters)
   277 //   bump SP up by X to accomadate the extra locals
   278 //   compute X = max_expression_stack
   279 //               + vm_local_words
   280 //               + 16 words of register save area
   281 //   save frame doing a save sp, -X, sp growing towards lower addresses
   282 //   set Lbcp, Lmethod, LcpoolCache
   283 //   set Llocals to i0
   284 //   set Lmonitors to FP - rounded_vm_local_words
   285 //   set Lesp to Lmonitors - 4
   286 //
   287 //  The frame has now been setup to do the rest of the entry code
   289 // Try this optimization:  Most method entries could live in a
   290 // "one size fits all" stack frame without all the dynamic size
   291 // calculations.  It might be profitable to do all this calculation
   292 // statically and approximately for "small enough" methods.
   294 //-----------------------------------------------------------------------------------------------
   296 // C1 Calling conventions
   297 //
   298 // Upon method entry, the following registers are setup:
   299 //
   300 // g2 G2_thread: current thread
   301 // g5 G5_method: method to activate
   302 // g4 Gargs  : pointer to last argument
   303 //
   304 //
   305 // Stack:
   306 //
   307 // +---------------+ <--- sp
   308 // |               |
   309 // : reg save area :
   310 // |               |
   311 // +---------------+ <--- sp + 0x40
   312 // |               |
   313 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
   314 // |               |
   315 // +---------------+ <--- sp + 0x5c
   316 // |               |
   317 // :     free      :
   318 // |               |
   319 // +---------------+ <--- Gargs
   320 // |               |
   321 // :   arguments   :
   322 // |               |
   323 // +---------------+
   324 // |               |
   325 //
   326 //
   327 //
   328 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
   329 //
   330 // +---------------+ <--- sp
   331 // |               |
   332 // : reg save area :
   333 // |               |
   334 // +---------------+ <--- sp + 0x40
   335 // |               |
   336 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
   337 // |               |
   338 // +---------------+ <--- sp + 0x5c
   339 // |               |
   340 // :               :
   341 // |               | <--- Lesp
   342 // +---------------+ <--- Lmonitors (fp - 0x18)
   343 // |   VM locals   |
   344 // +---------------+ <--- fp
   345 // |               |
   346 // : reg save area :
   347 // |               |
   348 // +---------------+ <--- fp + 0x40
   349 // |               |
   350 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
   351 // |               |
   352 // +---------------+ <--- fp + 0x5c
   353 // |               |
   354 // :     free      :
   355 // |               |
   356 // +---------------+
   357 // |               |
   358 // : nonarg locals :
   359 // |               |
   360 // +---------------+
   361 // |               |
   362 // :   arguments   :
   363 // |               | <--- Llocals
   364 // +---------------+ <--- Gargs
   365 // |               |
   367 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
   368   // determine code generation flags
   369   bool synchronized = false;
   370   address entry_point = NULL;
   372   switch (kind) {
   373     case Interpreter::zerolocals             :                                                                             break;
   374     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
   375     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
   376     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
   377     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
   378     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
   379     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
   380     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
   381     case Interpreter::java_lang_math_sin     :                                                                             break;
   382     case Interpreter::java_lang_math_cos     :                                                                             break;
   383     case Interpreter::java_lang_math_tan     :                                                                             break;
   384     case Interpreter::java_lang_math_sqrt    :                                                                             break;
   385     case Interpreter::java_lang_math_abs     :                                                                             break;
   386     case Interpreter::java_lang_math_log     :                                                                             break;
   387     case Interpreter::java_lang_math_log10   :                                                                             break;
   388     default                                  : ShouldNotReachHere();                                                       break;
   389   }
   391   if (entry_point) return entry_point;
   393   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
   394 }
   397 // This method tells the deoptimizer how big an interpreted frame must be:
   398 int AbstractInterpreter::size_activation(methodOop method,
   399                                          int tempcount,
   400                                          int popframe_extra_args,
   401                                          int moncount,
   402                                          int callee_param_count,
   403                                          int callee_locals,
   404                                          bool is_top_frame) {
   405   return layout_activation(method,
   406                            tempcount,
   407                            popframe_extra_args,
   408                            moncount,
   409                            callee_param_count,
   410                            callee_locals,
   411                            (frame*)NULL,
   412                            (frame*)NULL,
   413                            is_top_frame);
   414 }
   416 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
   418   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
   419   // the days we had adapter frames. When we deoptimize a situation where a
   420   // compiled caller calls a compiled caller will have registers it expects
   421   // to survive the call to the callee. If we deoptimize the callee the only
   422   // way we can restore these registers is to have the oldest interpreter
   423   // frame that we create restore these values. That is what this routine
   424   // will accomplish.
   426   // At the moment we have modified c2 to not have any callee save registers
   427   // so this problem does not exist and this routine is just a place holder.
   429   assert(f->is_interpreted_frame(), "must be interpreted");
   430 }
   433 //----------------------------------------------------------------------------------------------------
   434 // Exceptions

mercurial