src/share/vm/opto/loopnode.hpp

Tue, 28 Jun 2011 15:24:29 -0700

author
kvn
date
Tue, 28 Jun 2011 15:24:29 -0700
changeset 2985
e3cbc9ddd434
parent 2915
38569792a45a
child 3038
4e761e7e6e12
permissions
-rw-r--r--

7044738: Loop unroll optimization causes incorrect result
Summary: take into account memory dependencies when clonning nodes in clone_up_backedge_goo().
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
    26 #define SHARE_VM_OPTO_LOOPNODE_HPP
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/multnode.hpp"
    30 #include "opto/phaseX.hpp"
    31 #include "opto/subnode.hpp"
    32 #include "opto/type.hpp"
    34 class CmpNode;
    35 class CountedLoopEndNode;
    36 class CountedLoopNode;
    37 class IdealLoopTree;
    38 class LoopNode;
    39 class Node;
    40 class PhaseIdealLoop;
    41 class VectorSet;
    42 class Invariance;
    43 struct small_cache;
    45 //
    46 //                  I D E A L I Z E D   L O O P S
    47 //
    48 // Idealized loops are the set of loops I perform more interesting
    49 // transformations on, beyond simple hoisting.
    51 //------------------------------LoopNode---------------------------------------
    52 // Simple loop header.  Fall in path on left, loop-back path on right.
    53 class LoopNode : public RegionNode {
    54   // Size is bigger to hold the flags.  However, the flags do not change
    55   // the semantics so it does not appear in the hash & cmp functions.
    56   virtual uint size_of() const { return sizeof(*this); }
    57 protected:
    58   short _loop_flags;
    59   // Names for flag bitfields
    60   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
    61          MainHasNoPreLoop=4,
    62          HasExactTripCount=8,
    63          InnerLoop=16,
    64          PartialPeelLoop=32,
    65          PartialPeelFailed=64 };
    66   char _unswitch_count;
    67   enum { _unswitch_max=3 };
    69 public:
    70   // Names for edge indices
    71   enum { Self=0, EntryControl, LoopBackControl };
    73   int is_inner_loop() const { return _loop_flags & InnerLoop; }
    74   void set_inner_loop() { _loop_flags |= InnerLoop; }
    76   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
    77   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
    78   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
    79   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
    81   int unswitch_max() { return _unswitch_max; }
    82   int unswitch_count() { return _unswitch_count; }
    83   void set_unswitch_count(int val) {
    84     assert (val <= unswitch_max(), "too many unswitches");
    85     _unswitch_count = val;
    86   }
    88   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
    89     init_class_id(Class_Loop);
    90     init_req(EntryControl, entry);
    91     init_req(LoopBackControl, backedge);
    92   }
    94   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    95   virtual int Opcode() const;
    96   bool can_be_counted_loop(PhaseTransform* phase) const {
    97     return req() == 3 && in(0) != NULL &&
    98       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
    99       in(2) != NULL && phase->type(in(2)) != Type::TOP;
   100   }
   101   bool is_valid_counted_loop() const;
   102 #ifndef PRODUCT
   103   virtual void dump_spec(outputStream *st) const;
   104 #endif
   105 };
   107 //------------------------------Counted Loops----------------------------------
   108 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
   109 // path (and maybe some other exit paths).  The trip-counter exit is always
   110 // last in the loop.  The trip-counter have to stride by a constant;
   111 // the exit value is also loop invariant.
   113 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
   114 // CountedLoopNode has the incoming loop control and the loop-back-control
   115 // which is always the IfTrue before the matching CountedLoopEndNode.  The
   116 // CountedLoopEndNode has an incoming control (possibly not the
   117 // CountedLoopNode if there is control flow in the loop), the post-increment
   118 // trip-counter value, and the limit.  The trip-counter value is always of
   119 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
   120 // by a Phi connected to the CountedLoopNode.  The stride is constant.
   121 // The Op is any commutable opcode, including Add, Mul, Xor.  The
   122 // CountedLoopEndNode also takes in the loop-invariant limit value.
   124 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
   125 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
   126 // via the old-trip-counter from the Op node.
   128 //------------------------------CountedLoopNode--------------------------------
   129 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
   130 // inputs the incoming loop-start control and the loop-back control, so they
   131 // act like RegionNodes.  They also take in the initial trip counter, the
   132 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
   133 // produce a loop-body control and the trip counter value.  Since
   134 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
   136 class CountedLoopNode : public LoopNode {
   137   // Size is bigger to hold _main_idx.  However, _main_idx does not change
   138   // the semantics so it does not appear in the hash & cmp functions.
   139   virtual uint size_of() const { return sizeof(*this); }
   141   // For Pre- and Post-loops during debugging ONLY, this holds the index of
   142   // the Main CountedLoop.  Used to assert that we understand the graph shape.
   143   node_idx_t _main_idx;
   145   // Known trip count calculated by compute_exact_trip_count()
   146   uint  _trip_count;
   148   // Expected trip count from profile data
   149   float _profile_trip_cnt;
   151   // Log2 of original loop bodies in unrolled loop
   152   int _unrolled_count_log2;
   154   // Node count prior to last unrolling - used to decide if
   155   // unroll,optimize,unroll,optimize,... is making progress
   156   int _node_count_before_unroll;
   158 public:
   159   CountedLoopNode( Node *entry, Node *backedge )
   160     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
   161       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
   162       _node_count_before_unroll(0) {
   163     init_class_id(Class_CountedLoop);
   164     // Initialize _trip_count to the largest possible value.
   165     // Will be reset (lower) if the loop's trip count is known.
   166   }
   168   virtual int Opcode() const;
   169   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   171   Node *init_control() const { return in(EntryControl); }
   172   Node *back_control() const { return in(LoopBackControl); }
   173   CountedLoopEndNode *loopexit() const;
   174   Node *init_trip() const;
   175   Node *stride() const;
   176   int   stride_con() const;
   177   bool  stride_is_con() const;
   178   Node *limit() const;
   179   Node *incr() const;
   180   Node *phi() const;
   182   // Match increment with optional truncation
   183   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
   185   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
   186   // can run short a few iterations and may start a few iterations in.
   187   // It will be RCE'd and unrolled and aligned.
   189   // A following 'post' loop will run any remaining iterations.  Used
   190   // during Range Check Elimination, the 'post' loop will do any final
   191   // iterations with full checks.  Also used by Loop Unrolling, where
   192   // the 'post' loop will do any epilog iterations needed.  Basically,
   193   // a 'post' loop can not profitably be further unrolled or RCE'd.
   195   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
   196   // it may do under-flow checks for RCE and may do alignment iterations
   197   // so the following main loop 'knows' that it is striding down cache
   198   // lines.
   200   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
   201   // Aligned, may be missing it's pre-loop.
   202   int is_normal_loop() const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
   203   int is_pre_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
   204   int is_main_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
   205   int is_post_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
   206   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
   207   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
   209   int main_idx() const { return _main_idx; }
   212   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
   213   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
   214   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
   215   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
   217   void set_trip_count(uint tc) { _trip_count = tc; }
   218   uint trip_count()            { return _trip_count; }
   220   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
   221   void set_exact_trip_count(uint tc) {
   222     _trip_count = tc;
   223     _loop_flags |= HasExactTripCount;
   224   }
   225   void set_nonexact_trip_count() {
   226     _loop_flags &= ~HasExactTripCount;
   227   }
   229   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
   230   float profile_trip_cnt()             { return _profile_trip_cnt; }
   232   void double_unrolled_count() { _unrolled_count_log2++; }
   233   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
   235   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
   236   int  node_count_before_unroll()           { return _node_count_before_unroll; }
   238 #ifndef PRODUCT
   239   virtual void dump_spec(outputStream *st) const;
   240 #endif
   241 };
   243 //------------------------------CountedLoopEndNode-----------------------------
   244 // CountedLoopEndNodes end simple trip counted loops.  They act much like
   245 // IfNodes.
   246 class CountedLoopEndNode : public IfNode {
   247 public:
   248   enum { TestControl, TestValue };
   250   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
   251     : IfNode( control, test, prob, cnt) {
   252     init_class_id(Class_CountedLoopEnd);
   253   }
   254   virtual int Opcode() const;
   256   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
   257   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   258   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
   259   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
   260   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   261   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   262   int stride_con() const;
   263   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
   264   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
   265   CountedLoopNode *loopnode() const {
   266     Node *ln = phi()->in(0);
   267     assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
   268     return (CountedLoopNode*)ln; }
   270 #ifndef PRODUCT
   271   virtual void dump_spec(outputStream *st) const;
   272 #endif
   273 };
   276 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
   277   Node *bc = back_control();
   278   if( bc == NULL ) return NULL;
   279   Node *le = bc->in(0);
   280   if( le->Opcode() != Op_CountedLoopEnd )
   281     return NULL;
   282   return (CountedLoopEndNode*)le;
   283 }
   284 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
   285 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
   286 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
   287 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
   288 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
   289 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
   290 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
   292 //------------------------------LoopLimitNode-----------------------------
   293 // Counted Loop limit node which represents exact final iterator value:
   294 // trip_count = (limit - init_trip + stride - 1)/stride
   295 // final_value= trip_count * stride + init_trip.
   296 // Use HW instructions to calculate it when it can overflow in integer.
   297 // Note, final_value should fit into integer since counted loop has
   298 // limit check: limit <= max_int-stride.
   299 class LoopLimitNode : public Node {
   300   enum { Init=1, Limit=2, Stride=3 };
   301  public:
   302   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
   303     // Put it on the Macro nodes list to optimize during macro nodes expansion.
   304     init_flags(Flag_is_macro);
   305     C->add_macro_node(this);
   306   }
   307   virtual int Opcode() const;
   308   virtual const Type *bottom_type() const { return TypeInt::INT; }
   309   virtual uint ideal_reg() const { return Op_RegI; }
   310   virtual const Type *Value( PhaseTransform *phase ) const;
   311   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   312   virtual Node *Identity( PhaseTransform *phase );
   313 };
   315 // -----------------------------IdealLoopTree----------------------------------
   316 class IdealLoopTree : public ResourceObj {
   317 public:
   318   IdealLoopTree *_parent;       // Parent in loop tree
   319   IdealLoopTree *_next;         // Next sibling in loop tree
   320   IdealLoopTree *_child;        // First child in loop tree
   322   // The head-tail backedge defines the loop.
   323   // If tail is NULL then this loop has multiple backedges as part of the
   324   // same loop.  During cleanup I'll peel off the multiple backedges; merge
   325   // them at the loop bottom and flow 1 real backedge into the loop.
   326   Node *_head;                  // Head of loop
   327   Node *_tail;                  // Tail of loop
   328   inline Node *tail();          // Handle lazy update of _tail field
   329   PhaseIdealLoop* _phase;
   331   Node_List _body;              // Loop body for inner loops
   333   uint8 _nest;                  // Nesting depth
   334   uint8 _irreducible:1,         // True if irreducible
   335         _has_call:1,            // True if has call safepoint
   336         _has_sfpt:1,            // True if has non-call safepoint
   337         _rce_candidate:1;       // True if candidate for range check elimination
   339   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
   340   bool  _allow_optimizations;   // Allow loop optimizations
   342   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
   343     : _parent(0), _next(0), _child(0),
   344       _head(head), _tail(tail),
   345       _phase(phase),
   346       _required_safept(NULL),
   347       _allow_optimizations(true),
   348       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
   349   { }
   351   // Is 'l' a member of 'this'?
   352   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
   354   // Set loop nesting depth.  Accumulate has_call bits.
   355   int set_nest( uint depth );
   357   // Split out multiple fall-in edges from the loop header.  Move them to a
   358   // private RegionNode before the loop.  This becomes the loop landing pad.
   359   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
   361   // Split out the outermost loop from this shared header.
   362   void split_outer_loop( PhaseIdealLoop *phase );
   364   // Merge all the backedges from the shared header into a private Region.
   365   // Feed that region as the one backedge to this loop.
   366   void merge_many_backedges( PhaseIdealLoop *phase );
   368   // Split shared headers and insert loop landing pads.
   369   // Insert a LoopNode to replace the RegionNode.
   370   // Returns TRUE if loop tree is structurally changed.
   371   bool beautify_loops( PhaseIdealLoop *phase );
   373   // Perform optimization to use the loop predicates for null checks and range checks.
   374   // Applies to any loop level (not just the innermost one)
   375   bool loop_predication( PhaseIdealLoop *phase);
   377   // Perform iteration-splitting on inner loops.  Split iterations to
   378   // avoid range checks or one-shot null checks.  Returns false if the
   379   // current round of loop opts should stop.
   380   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
   382   // Driver for various flavors of iteration splitting.  Returns false
   383   // if the current round of loop opts should stop.
   384   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
   386   // Given dominators, try to find loops with calls that must always be
   387   // executed (call dominates loop tail).  These loops do not need non-call
   388   // safepoints (ncsfpt).
   389   void check_safepts(VectorSet &visited, Node_List &stack);
   391   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
   392   // encountered.
   393   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
   395   // Convert to counted loops where possible
   396   void counted_loop( PhaseIdealLoop *phase );
   398   // Check for Node being a loop-breaking test
   399   Node *is_loop_exit(Node *iff) const;
   401   // Returns true if ctrl is executed on every complete iteration
   402   bool dominates_backedge(Node* ctrl);
   404   // Remove simplistic dead code from loop body
   405   void DCE_loop_body();
   407   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
   408   // Replace with a 1-in-10 exit guess.
   409   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
   411   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
   412   // Useful for unrolling loops with NO array accesses.
   413   bool policy_peel_only( PhaseIdealLoop *phase ) const;
   415   // Return TRUE or FALSE if the loop should be unswitched -- clone
   416   // loop with an invariant test
   417   bool policy_unswitching( PhaseIdealLoop *phase ) const;
   419   // Micro-benchmark spamming.  Remove empty loops.
   420   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
   422   // Convert one iteration loop into normal code.
   423   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
   425   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   426   // make some loop-invariant test (usually a null-check) happen before the
   427   // loop.
   428   bool policy_peeling( PhaseIdealLoop *phase ) const;
   430   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
   431   // known trip count in the counted loop node.
   432   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
   434   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   435   // the loop is a CountedLoop and the body is small enough.
   436   bool policy_unroll( PhaseIdealLoop *phase ) const;
   438   // Return TRUE or FALSE if the loop should be range-check-eliminated.
   439   // Gather a list of IF tests that are dominated by iteration splitting;
   440   // also gather the end of the first split and the start of the 2nd split.
   441   bool policy_range_check( PhaseIdealLoop *phase ) const;
   443   // Return TRUE or FALSE if the loop should be cache-line aligned.
   444   // Gather the expression that does the alignment.  Note that only
   445   // one array base can be aligned in a loop (unless the VM guarantees
   446   // mutual alignment).  Note that if we vectorize short memory ops
   447   // into longer memory ops, we may want to increase alignment.
   448   bool policy_align( PhaseIdealLoop *phase ) const;
   450   // Return TRUE if "iff" is a range check.
   451   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
   453   // Compute loop exact trip count if possible
   454   void compute_exact_trip_count( PhaseIdealLoop *phase );
   456   // Compute loop trip count from profile data
   457   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
   459   // Reassociate invariant expressions.
   460   void reassociate_invariants(PhaseIdealLoop *phase);
   461   // Reassociate invariant add and subtract expressions.
   462   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
   463   // Return nonzero index of invariant operand if invariant and variant
   464   // are combined with an Add or Sub. Helper for reassociate_invariants.
   465   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
   467   // Return true if n is invariant
   468   bool is_invariant(Node* n) const;
   470   // Put loop body on igvn work list
   471   void record_for_igvn();
   473   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
   474   bool is_inner()   { return is_loop() && _child == NULL; }
   475   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
   477 #ifndef PRODUCT
   478   void dump_head( ) const;      // Dump loop head only
   479   void dump() const;            // Dump this loop recursively
   480   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
   481 #endif
   483 };
   485 // -----------------------------PhaseIdealLoop---------------------------------
   486 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
   487 // loop tree.  Drives the loop-based transformations on the ideal graph.
   488 class PhaseIdealLoop : public PhaseTransform {
   489   friend class IdealLoopTree;
   490   friend class SuperWord;
   491   // Pre-computed def-use info
   492   PhaseIterGVN &_igvn;
   494   // Head of loop tree
   495   IdealLoopTree *_ltree_root;
   497   // Array of pre-order numbers, plus post-visited bit.
   498   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
   499   // ODD for post-visited.  Other bits are the pre-order number.
   500   uint *_preorders;
   501   uint _max_preorder;
   503   const PhaseIdealLoop* _verify_me;
   504   bool _verify_only;
   506   // Allocate _preorders[] array
   507   void allocate_preorders() {
   508     _max_preorder = C->unique()+8;
   509     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
   510     memset(_preorders, 0, sizeof(uint) * _max_preorder);
   511   }
   513   // Allocate _preorders[] array
   514   void reallocate_preorders() {
   515     if ( _max_preorder < C->unique() ) {
   516       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
   517       _max_preorder = C->unique();
   518     }
   519     memset(_preorders, 0, sizeof(uint) * _max_preorder);
   520   }
   522   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
   523   // adds new nodes.
   524   void check_grow_preorders( ) {
   525     if ( _max_preorder < C->unique() ) {
   526       uint newsize = _max_preorder<<1;  // double size of array
   527       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
   528       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
   529       _max_preorder = newsize;
   530     }
   531   }
   532   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
   533   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
   534   // Pre-order numbers are written to the Nodes array as low-bit-set values.
   535   void set_preorder_visited( Node *n, int pre_order ) {
   536     assert( !is_visited( n ), "already set" );
   537     _preorders[n->_idx] = (pre_order<<1);
   538   };
   539   // Return pre-order number.
   540   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
   542   // Check for being post-visited.
   543   // Should be previsited already (checked with assert(is_visited(n))).
   544   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
   546   // Mark as post visited
   547   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
   549   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
   550   // Returns true if "n" is a data node, false if it's a control node.
   551   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
   553   // clear out dead code after build_loop_late
   554   Node_List _deadlist;
   556   // Support for faster execution of get_late_ctrl()/dom_lca()
   557   // when a node has many uses and dominator depth is deep.
   558   Node_Array _dom_lca_tags;
   559   void   init_dom_lca_tags();
   560   void   clear_dom_lca_tags();
   562   // Helper for debugging bad dominance relationships
   563   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
   565   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
   567   // Inline wrapper for frequent cases:
   568   // 1) only one use
   569   // 2) a use is the same as the current LCA passed as 'n1'
   570   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
   571     assert( n->is_CFG(), "" );
   572     // Fast-path NULL lca
   573     if( lca != NULL && lca != n ) {
   574       assert( lca->is_CFG(), "" );
   575       // find LCA of all uses
   576       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
   577     }
   578     return find_non_split_ctrl(n);
   579   }
   580   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
   582   // Helper function for directing control inputs away from CFG split
   583   // points.
   584   Node *find_non_split_ctrl( Node *ctrl ) const {
   585     if (ctrl != NULL) {
   586       if (ctrl->is_MultiBranch()) {
   587         ctrl = ctrl->in(0);
   588       }
   589       assert(ctrl->is_CFG(), "CFG");
   590     }
   591     return ctrl;
   592   }
   594 public:
   595   bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
   596   // check if transform created new nodes that need _ctrl recorded
   597   Node *get_late_ctrl( Node *n, Node *early );
   598   Node *get_early_ctrl( Node *n );
   599   void set_early_ctrl( Node *n );
   600   void set_subtree_ctrl( Node *root );
   601   void set_ctrl( Node *n, Node *ctrl ) {
   602     assert( !has_node(n) || has_ctrl(n), "" );
   603     assert( ctrl->in(0), "cannot set dead control node" );
   604     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
   605     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
   606   }
   607   // Set control and update loop membership
   608   void set_ctrl_and_loop(Node* n, Node* ctrl) {
   609     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
   610     IdealLoopTree* new_loop = get_loop(ctrl);
   611     if (old_loop != new_loop) {
   612       if (old_loop->_child == NULL) old_loop->_body.yank(n);
   613       if (new_loop->_child == NULL) new_loop->_body.push(n);
   614     }
   615     set_ctrl(n, ctrl);
   616   }
   617   // Control nodes can be replaced or subsumed.  During this pass they
   618   // get their replacement Node in slot 1.  Instead of updating the block
   619   // location of all Nodes in the subsumed block, we lazily do it.  As we
   620   // pull such a subsumed block out of the array, we write back the final
   621   // correct block.
   622   Node *get_ctrl( Node *i ) {
   623     assert(has_node(i), "");
   624     Node *n = get_ctrl_no_update(i);
   625     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
   626     assert(has_node(i) && has_ctrl(i), "");
   627     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
   628     return n;
   629   }
   630   // true if CFG node d dominates CFG node n
   631   bool is_dominator(Node *d, Node *n);
   632   // return get_ctrl for a data node and self(n) for a CFG node
   633   Node* ctrl_or_self(Node* n) {
   634     if (has_ctrl(n))
   635       return get_ctrl(n);
   636     else {
   637       assert (n->is_CFG(), "must be a CFG node");
   638       return n;
   639     }
   640   }
   642 private:
   643   Node *get_ctrl_no_update( Node *i ) const {
   644     assert( has_ctrl(i), "" );
   645     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
   646     if (!n->in(0)) {
   647       // Skip dead CFG nodes
   648       do {
   649         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
   650       } while (!n->in(0));
   651       n = find_non_split_ctrl(n);
   652     }
   653     return n;
   654   }
   656   // Check for loop being set
   657   // "n" must be a control node. Returns true if "n" is known to be in a loop.
   658   bool has_loop( Node *n ) const {
   659     assert(!has_node(n) || !has_ctrl(n), "");
   660     return has_node(n);
   661   }
   662   // Set loop
   663   void set_loop( Node *n, IdealLoopTree *loop ) {
   664     _nodes.map(n->_idx, (Node*)loop);
   665   }
   666   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
   667   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
   668   // from old_node to new_node to support the lazy update.  Reference
   669   // replaces loop reference, since that is not needed for dead node.
   670 public:
   671   void lazy_update( Node *old_node, Node *new_node ) {
   672     assert( old_node != new_node, "no cycles please" );
   673     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
   674     // Nodes always have DU info now, so re-use the side array slot
   675     // for this node to provide the forwarding pointer.
   676     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
   677   }
   678   void lazy_replace( Node *old_node, Node *new_node ) {
   679     _igvn.replace_node( old_node, new_node );
   680     lazy_update( old_node, new_node );
   681   }
   682   void lazy_replace_proj( Node *old_node, Node *new_node ) {
   683     assert( old_node->req() == 1, "use this for Projs" );
   684     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
   685     old_node->add_req( NULL );
   686     lazy_replace( old_node, new_node );
   687   }
   689 private:
   691   // Place 'n' in some loop nest, where 'n' is a CFG node
   692   void build_loop_tree();
   693   int build_loop_tree_impl( Node *n, int pre_order );
   694   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
   695   // loop tree, not the root.
   696   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
   698   // Place Data nodes in some loop nest
   699   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
   700   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
   701   void build_loop_late_post ( Node* n );
   703   // Array of immediate dominance info for each CFG node indexed by node idx
   704 private:
   705   uint _idom_size;
   706   Node **_idom;                 // Array of immediate dominators
   707   uint *_dom_depth;           // Used for fast LCA test
   708   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
   710   Node* idom_no_update(Node* d) const {
   711     assert(d->_idx < _idom_size, "oob");
   712     Node* n = _idom[d->_idx];
   713     assert(n != NULL,"Bad immediate dominator info.");
   714     while (n->in(0) == NULL) {  // Skip dead CFG nodes
   715       //n = n->in(1);
   716       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
   717       assert(n != NULL,"Bad immediate dominator info.");
   718     }
   719     return n;
   720   }
   721   Node *idom(Node* d) const {
   722     uint didx = d->_idx;
   723     Node *n = idom_no_update(d);
   724     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
   725     return n;
   726   }
   727   uint dom_depth(Node* d) const {
   728     assert(d->_idx < _idom_size, "");
   729     return _dom_depth[d->_idx];
   730   }
   731   void set_idom(Node* d, Node* n, uint dom_depth);
   732   // Locally compute IDOM using dom_lca call
   733   Node *compute_idom( Node *region ) const;
   734   // Recompute dom_depth
   735   void recompute_dom_depth();
   737   // Is safept not required by an outer loop?
   738   bool is_deleteable_safept(Node* sfpt);
   740   // Replace parallel induction variable (parallel to trip counter)
   741   void replace_parallel_iv(IdealLoopTree *loop);
   743   // Perform verification that the graph is valid.
   744   PhaseIdealLoop( PhaseIterGVN &igvn) :
   745     PhaseTransform(Ideal_Loop),
   746     _igvn(igvn),
   747     _dom_lca_tags(arena()), // Thread::resource_area
   748     _verify_me(NULL),
   749     _verify_only(true) {
   750     build_and_optimize(false);
   751   }
   753   // build the loop tree and perform any requested optimizations
   754   void build_and_optimize(bool do_split_if);
   756 public:
   757   // Dominators for the sea of nodes
   758   void Dominators();
   759   Node *dom_lca( Node *n1, Node *n2 ) const {
   760     return find_non_split_ctrl(dom_lca_internal(n1, n2));
   761   }
   762   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
   764   // Compute the Ideal Node to Loop mapping
   765   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs) :
   766     PhaseTransform(Ideal_Loop),
   767     _igvn(igvn),
   768     _dom_lca_tags(arena()), // Thread::resource_area
   769     _verify_me(NULL),
   770     _verify_only(false) {
   771     build_and_optimize(do_split_ifs);
   772   }
   774   // Verify that verify_me made the same decisions as a fresh run.
   775   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
   776     PhaseTransform(Ideal_Loop),
   777     _igvn(igvn),
   778     _dom_lca_tags(arena()), // Thread::resource_area
   779     _verify_me(verify_me),
   780     _verify_only(false) {
   781     build_and_optimize(false);
   782   }
   784   // Build and verify the loop tree without modifying the graph.  This
   785   // is useful to verify that all inputs properly dominate their uses.
   786   static void verify(PhaseIterGVN& igvn) {
   787 #ifdef ASSERT
   788     PhaseIdealLoop v(igvn);
   789 #endif
   790   }
   792   // True if the method has at least 1 irreducible loop
   793   bool _has_irreducible_loops;
   795   // Per-Node transform
   796   virtual Node *transform( Node *a_node ) { return 0; }
   798   bool is_counted_loop( Node *x, IdealLoopTree *loop );
   800   Node* exact_limit( IdealLoopTree *loop );
   802   // Return a post-walked LoopNode
   803   IdealLoopTree *get_loop( Node *n ) const {
   804     // Dead nodes have no loop, so return the top level loop instead
   805     if (!has_node(n))  return _ltree_root;
   806     assert(!has_ctrl(n), "");
   807     return (IdealLoopTree*)_nodes[n->_idx];
   808   }
   810   // Is 'n' a (nested) member of 'loop'?
   811   int is_member( const IdealLoopTree *loop, Node *n ) const {
   812     return loop->is_member(get_loop(n)); }
   814   // This is the basic building block of the loop optimizations.  It clones an
   815   // entire loop body.  It makes an old_new loop body mapping; with this
   816   // mapping you can find the new-loop equivalent to an old-loop node.  All
   817   // new-loop nodes are exactly equal to their old-loop counterparts, all
   818   // edges are the same.  All exits from the old-loop now have a RegionNode
   819   // that merges the equivalent new-loop path.  This is true even for the
   820   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
   821   // now come from (one or more) Phis that merge their new-loop equivalents.
   822   // Parameter side_by_side_idom:
   823   //   When side_by_size_idom is NULL, the dominator tree is constructed for
   824   //      the clone loop to dominate the original.  Used in construction of
   825   //      pre-main-post loop sequence.
   826   //   When nonnull, the clone and original are side-by-side, both are
   827   //      dominated by the passed in side_by_side_idom node.  Used in
   828   //      construction of unswitched loops.
   829   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
   830                    Node* side_by_side_idom = NULL);
   832   // If we got the effect of peeling, either by actually peeling or by
   833   // making a pre-loop which must execute at least once, we can remove
   834   // all loop-invariant dominated tests in the main body.
   835   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
   837   // Generate code to do a loop peel for the given loop (and body).
   838   // old_new is a temp array.
   839   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
   841   // Add pre and post loops around the given loop.  These loops are used
   842   // during RCE, unrolling and aligning loops.
   843   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
   844   // If Node n lives in the back_ctrl block, we clone a private version of n
   845   // in preheader_ctrl block and return that, otherwise return n.
   846   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
   848   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
   849   // unroll to do double iterations.  The next round of major loop transforms
   850   // will repeat till the doubled loop body does all remaining iterations in 1
   851   // pass.
   852   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
   854   // Unroll the loop body one step - make each trip do 2 iterations.
   855   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
   857   // Return true if exp is a constant times an induction var
   858   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
   860   // Return true if exp is a scaled induction var plus (or minus) constant
   861   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
   863   // Return true if proj is for "proj->[region->..]call_uct"
   864   static bool is_uncommon_trap_proj(ProjNode* proj, Deoptimization::DeoptReason reason);
   865   // Return true for    "if(test)-> proj -> ...
   866   //                          |
   867   //                          V
   868   //                      other_proj->[region->..]call_uct"
   869   static bool is_uncommon_trap_if_pattern(ProjNode* proj, Deoptimization::DeoptReason reason);
   870   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
   871   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
   872                                         Deoptimization::DeoptReason reason);
   873   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
   875   // Clone loop predicates to cloned loops (peeled, unswitched)
   876   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
   877                                    Deoptimization::DeoptReason reason,
   878                                    PhaseIdealLoop* loop_phase,
   879                                    PhaseIterGVN* igvn);
   880   static ProjNode*  move_predicate(ProjNode* predicate_proj, Node* new_entry,
   881                                    Deoptimization::DeoptReason reason,
   882                                    PhaseIdealLoop* loop_phase,
   883                                    PhaseIterGVN* igvn);
   884   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
   885                                          bool move_predicates,
   886                                          bool clone_limit_check,
   887                                          PhaseIdealLoop* loop_phase,
   888                                          PhaseIterGVN* igvn);
   889   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
   890   Node*  move_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
   892   void eliminate_loop_predicates(Node* entry);
   893   static Node* skip_loop_predicates(Node* entry);
   895   // Find a good location to insert a predicate
   896   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
   897   // Find a predicate
   898   static Node* find_predicate(Node* entry);
   899   // Construct a range check for a predicate if
   900   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
   901                          int scale, Node* offset,
   902                          Node* init, Node* limit, Node* stride,
   903                          Node* range, bool upper);
   905   // Implementation of the loop predication to promote checks outside the loop
   906   bool loop_predication_impl(IdealLoopTree *loop);
   908   // Helper function to collect predicate for eliminating the useless ones
   909   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
   910   void eliminate_useless_predicates();
   912   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
   913   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
   915   // Create a slow version of the loop by cloning the loop
   916   // and inserting an if to select fast-slow versions.
   917   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
   918                                         Node_List &old_new);
   920   // Clone loop with an invariant test (that does not exit) and
   921   // insert a clone of the test that selects which version to
   922   // execute.
   923   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
   925   // Find candidate "if" for unswitching
   926   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
   928   // Range Check Elimination uses this function!
   929   // Constrain the main loop iterations so the affine function:
   930   //    low_limit <= scale_con * I + offset  <  upper_limit
   931   // always holds true.  That is, either increase the number of iterations in
   932   // the pre-loop or the post-loop until the condition holds true in the main
   933   // loop.  Scale_con, offset and limit are all loop invariant.
   934   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
   935   // Helper function for add_constraint().
   936   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
   938   // Partially peel loop up through last_peel node.
   939   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
   941   // Create a scheduled list of nodes control dependent on ctrl set.
   942   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
   943   // Has a use in the vector set
   944   bool has_use_in_set( Node* n, VectorSet& vset );
   945   // Has use internal to the vector set (ie. not in a phi at the loop head)
   946   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
   947   // clone "n" for uses that are outside of loop
   948   void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
   949   // clone "n" for special uses that are in the not_peeled region
   950   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
   951                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
   952   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
   953   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
   954 #ifdef ASSERT
   955   // Validate the loop partition sets: peel and not_peel
   956   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
   957   // Ensure that uses outside of loop are of the right form
   958   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
   959                                  uint orig_exit_idx, uint clone_exit_idx);
   960   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
   961 #endif
   963   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
   964   int stride_of_possible_iv( Node* iff );
   965   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
   966   // Return the (unique) control output node that's in the loop (if it exists.)
   967   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
   968   // Insert a signed compare loop exit cloned from an unsigned compare.
   969   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
   970   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
   971   // Utility to register node "n" with PhaseIdealLoop
   972   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
   973   // Utility to create an if-projection
   974   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
   975   // Force the iff control output to be the live_proj
   976   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
   977   // Insert a region before an if projection
   978   RegionNode* insert_region_before_proj(ProjNode* proj);
   979   // Insert a new if before an if projection
   980   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
   982   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
   983   // "Nearly" because all Nodes have been cloned from the original in the loop,
   984   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
   985   // through the Phi recursively, and return a Bool.
   986   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
   987   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
   990   // Rework addressing expressions to get the most loop-invariant stuff
   991   // moved out.  We'd like to do all associative operators, but it's especially
   992   // important (common) to do address expressions.
   993   Node *remix_address_expressions( Node *n );
   995   // Attempt to use a conditional move instead of a phi/branch
   996   Node *conditional_move( Node *n );
   998   // Reorganize offset computations to lower register pressure.
   999   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
  1000   // (which are then alive with the post-incremented trip counter
  1001   // forcing an extra register move)
  1002   void reorg_offsets( IdealLoopTree *loop );
  1004   // Check for aggressive application of 'split-if' optimization,
  1005   // using basic block level info.
  1006   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
  1007   Node *split_if_with_blocks_pre ( Node *n );
  1008   void  split_if_with_blocks_post( Node *n );
  1009   Node *has_local_phi_input( Node *n );
  1010   // Mark an IfNode as being dominated by a prior test,
  1011   // without actually altering the CFG (and hence IDOM info).
  1012   void dominated_by( Node *prevdom, Node *iff, bool flip = false );
  1014   // Split Node 'n' through merge point
  1015   Node *split_thru_region( Node *n, Node *region );
  1016   // Split Node 'n' through merge point if there is enough win.
  1017   Node *split_thru_phi( Node *n, Node *region, int policy );
  1018   // Found an If getting its condition-code input from a Phi in the
  1019   // same block.  Split thru the Region.
  1020   void do_split_if( Node *iff );
  1022   // Conversion of fill/copy patterns into intrisic versions
  1023   bool do_intrinsify_fill();
  1024   bool intrinsify_fill(IdealLoopTree* lpt);
  1025   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  1026                        Node*& shift, Node*& offset);
  1028 private:
  1029   // Return a type based on condition control flow
  1030   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
  1031   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
  1032  // Helpers for filtered type
  1033   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
  1035   // Helper functions
  1036   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
  1037   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
  1038   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
  1039   bool split_up( Node *n, Node *blk1, Node *blk2 );
  1040   void sink_use( Node *use, Node *post_loop );
  1041   Node *place_near_use( Node *useblock ) const;
  1043   bool _created_loop_node;
  1044 public:
  1045   void set_created_loop_node() { _created_loop_node = true; }
  1046   bool created_loop_node()     { return _created_loop_node; }
  1047   void register_new_node( Node *n, Node *blk );
  1049 #ifndef PRODUCT
  1050   void dump( ) const;
  1051   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
  1052   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
  1053   void verify() const;          // Major slow  :-)
  1054   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
  1055   IdealLoopTree *get_loop_idx(Node* n) const {
  1056     // Dead nodes have no loop, so return the top level loop instead
  1057     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
  1059   // Print some stats
  1060   static void print_statistics();
  1061   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
  1062   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
  1063 #endif
  1064 };
  1066 inline Node* IdealLoopTree::tail() {
  1067 // Handle lazy update of _tail field
  1068   Node *n = _tail;
  1069   //while( !n->in(0) )  // Skip dead CFG nodes
  1070     //n = n->in(1);
  1071   if (n->in(0) == NULL)
  1072     n = _phase->get_ctrl(n);
  1073   _tail = n;
  1074   return n;
  1078 // Iterate over the loop tree using a preorder, left-to-right traversal.
  1079 //
  1080 // Example that visits all counted loops from within PhaseIdealLoop
  1081 //
  1082 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1083 //   IdealLoopTree* lpt = iter.current();
  1084 //   if (!lpt->is_counted()) continue;
  1085 //   ...
  1086 class LoopTreeIterator : public StackObj {
  1087 private:
  1088   IdealLoopTree* _root;
  1089   IdealLoopTree* _curnt;
  1091 public:
  1092   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
  1094   bool done() { return _curnt == NULL; }       // Finished iterating?
  1096   void next();                                 // Advance to next loop tree
  1098   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
  1099 };
  1101 #endif // SHARE_VM_OPTO_LOOPNODE_HPP

mercurial