src/share/vm/opto/parse2.cpp

Mon, 31 Oct 2011 03:06:42 -0700

author
twisti
date
Mon, 31 Oct 2011 03:06:42 -0700
changeset 3249
e3b0dcc327b9
parent 3099
c124e2e7463e
child 3834
8f6ce6f1049b
permissions
-rw-r--r--

7104561: UseRDPCForConstantTableBase doesn't work after shorten branches changes
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "interpreter/linkResolver.hpp"
    31 #include "memory/universe.inline.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/matcher.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/mulnode.hpp"
    38 #include "opto/parse.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    43 extern int explicit_null_checks_inserted,
    44            explicit_null_checks_elided;
    46 //---------------------------------array_load----------------------------------
    47 void Parse::array_load(BasicType elem_type) {
    48   const Type* elem = Type::TOP;
    49   Node* adr = array_addressing(elem_type, 0, &elem);
    50   if (stopped())  return;     // guaranteed null or range check
    51   _sp -= 2;                   // Pop array and index
    52   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    53   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    54   push(ld);
    55 }
    58 //--------------------------------array_store----------------------------------
    59 void Parse::array_store(BasicType elem_type) {
    60   Node* adr = array_addressing(elem_type, 1);
    61   if (stopped())  return;     // guaranteed null or range check
    62   Node* val = pop();
    63   _sp -= 2;                   // Pop array and index
    64   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    65   store_to_memory(control(), adr, val, elem_type, adr_type);
    66 }
    69 //------------------------------array_addressing-------------------------------
    70 // Pull array and index from the stack.  Compute pointer-to-element.
    71 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    72   Node *idx   = peek(0+vals);   // Get from stack without popping
    73   Node *ary   = peek(1+vals);   // in case of exception
    75   // Null check the array base, with correct stack contents
    76   ary = do_null_check(ary, T_ARRAY);
    77   // Compile-time detect of null-exception?
    78   if (stopped())  return top();
    80   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    81   const TypeInt*    sizetype = arytype->size();
    82   const Type*       elemtype = arytype->elem();
    84   if (UseUniqueSubclasses && result2 != NULL) {
    85     const Type* el = elemtype->make_ptr();
    86     if (el && el->isa_instptr()) {
    87       const TypeInstPtr* toop = el->is_instptr();
    88       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    89         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    90         const Type* subklass = Type::get_const_type(toop->klass());
    91         elemtype = subklass->join(el);
    92       }
    93     }
    94   }
    96   // Check for big class initializers with all constant offsets
    97   // feeding into a known-size array.
    98   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    99   // See if the highest idx value is less than the lowest array bound,
   100   // and if the idx value cannot be negative:
   101   bool need_range_check = true;
   102   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
   103     need_range_check = false;
   104     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
   105   }
   107   if (!arytype->klass()->is_loaded()) {
   108     // Only fails for some -Xcomp runs
   109     // The class is unloaded.  We have to run this bytecode in the interpreter.
   110     uncommon_trap(Deoptimization::Reason_unloaded,
   111                   Deoptimization::Action_reinterpret,
   112                   arytype->klass(), "!loaded array");
   113     return top();
   114   }
   116   // Do the range check
   117   if (GenerateRangeChecks && need_range_check) {
   118     Node* tst;
   119     if (sizetype->_hi <= 0) {
   120       // The greatest array bound is negative, so we can conclude that we're
   121       // compiling unreachable code, but the unsigned compare trick used below
   122       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
   123       // the uncommon_trap path will always be taken.
   124       tst = _gvn.intcon(0);
   125     } else {
   126       // Range is constant in array-oop, so we can use the original state of mem
   127       Node* len = load_array_length(ary);
   129       // Test length vs index (standard trick using unsigned compare)
   130       Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   131       BoolTest::mask btest = BoolTest::lt;
   132       tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   133     }
   134     // Branch to failure if out of bounds
   135     { BuildCutout unless(this, tst, PROB_MAX);
   136       if (C->allow_range_check_smearing()) {
   137         // Do not use builtin_throw, since range checks are sometimes
   138         // made more stringent by an optimistic transformation.
   139         // This creates "tentative" range checks at this point,
   140         // which are not guaranteed to throw exceptions.
   141         // See IfNode::Ideal, is_range_check, adjust_check.
   142         uncommon_trap(Deoptimization::Reason_range_check,
   143                       Deoptimization::Action_make_not_entrant,
   144                       NULL, "range_check");
   145       } else {
   146         // If we have already recompiled with the range-check-widening
   147         // heroic optimization turned off, then we must really be throwing
   148         // range check exceptions.
   149         builtin_throw(Deoptimization::Reason_range_check, idx);
   150       }
   151     }
   152   }
   153   // Check for always knowing you are throwing a range-check exception
   154   if (stopped())  return top();
   156   Node* ptr = array_element_address(ary, idx, type, sizetype);
   158   if (result2 != NULL)  *result2 = elemtype;
   160   assert(ptr != top(), "top should go hand-in-hand with stopped");
   162   return ptr;
   163 }
   166 // returns IfNode
   167 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   168   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   169   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   170   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   171   return iff;
   172 }
   174 // return Region node
   175 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   176   Node *region  = new (C, 3) RegionNode(3); // 2 results
   177   record_for_igvn(region);
   178   region->init_req(1, iffalse);
   179   region->init_req(2, iftrue );
   180   _gvn.set_type(region, Type::CONTROL);
   181   region = _gvn.transform(region);
   182   set_control (region);
   183   return region;
   184 }
   187 //------------------------------helper for tableswitch-------------------------
   188 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   189   // True branch, use existing map info
   190   { PreserveJVMState pjvms(this);
   191     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   192     set_control( iftrue );
   193     profile_switch_case(prof_table_index);
   194     merge_new_path(dest_bci_if_true);
   195   }
   197   // False branch
   198   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   199   set_control( iffalse );
   200 }
   202 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   203   // True branch, use existing map info
   204   { PreserveJVMState pjvms(this);
   205     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   206     set_control( iffalse );
   207     profile_switch_case(prof_table_index);
   208     merge_new_path(dest_bci_if_true);
   209   }
   211   // False branch
   212   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   213   set_control( iftrue );
   214 }
   216 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   217   // False branch, use existing map and control()
   218   profile_switch_case(prof_table_index);
   219   merge_new_path(dest_bci);
   220 }
   223 extern "C" {
   224   static int jint_cmp(const void *i, const void *j) {
   225     int a = *(jint *)i;
   226     int b = *(jint *)j;
   227     return a > b ? 1 : a < b ? -1 : 0;
   228   }
   229 }
   232 // Default value for methodData switch indexing. Must be a negative value to avoid
   233 // conflict with any legal switch index.
   234 #define NullTableIndex -1
   236 class SwitchRange : public StackObj {
   237   // a range of integers coupled with a bci destination
   238   jint _lo;                     // inclusive lower limit
   239   jint _hi;                     // inclusive upper limit
   240   int _dest;
   241   int _table_index;             // index into method data table
   243 public:
   244   jint lo() const              { return _lo;   }
   245   jint hi() const              { return _hi;   }
   246   int  dest() const            { return _dest; }
   247   int  table_index() const     { return _table_index; }
   248   bool is_singleton() const    { return _lo == _hi; }
   250   void setRange(jint lo, jint hi, int dest, int table_index) {
   251     assert(lo <= hi, "must be a non-empty range");
   252     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   253   }
   254   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   255     assert(lo <= hi, "must be a non-empty range");
   256     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   257       _hi = hi;
   258       return true;
   259     }
   260     return false;
   261   }
   263   void set (jint value, int dest, int table_index) {
   264     setRange(value, value, dest, table_index);
   265   }
   266   bool adjoin(jint value, int dest, int table_index) {
   267     return adjoinRange(value, value, dest, table_index);
   268   }
   270   void print(ciEnv* env) {
   271     if (is_singleton())
   272       tty->print(" {%d}=>%d", lo(), dest());
   273     else if (lo() == min_jint)
   274       tty->print(" {..%d}=>%d", hi(), dest());
   275     else if (hi() == max_jint)
   276       tty->print(" {%d..}=>%d", lo(), dest());
   277     else
   278       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   279   }
   280 };
   283 //-------------------------------do_tableswitch--------------------------------
   284 void Parse::do_tableswitch() {
   285   Node* lookup = pop();
   287   // Get information about tableswitch
   288   int default_dest = iter().get_dest_table(0);
   289   int lo_index     = iter().get_int_table(1);
   290   int hi_index     = iter().get_int_table(2);
   291   int len          = hi_index - lo_index + 1;
   293   if (len < 1) {
   294     // If this is a backward branch, add safepoint
   295     maybe_add_safepoint(default_dest);
   296     merge(default_dest);
   297     return;
   298   }
   300   // generate decision tree, using trichotomy when possible
   301   int rnum = len+2;
   302   bool makes_backward_branch = false;
   303   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   304   int rp = -1;
   305   if (lo_index != min_jint) {
   306     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   307   }
   308   for (int j = 0; j < len; j++) {
   309     jint match_int = lo_index+j;
   310     int  dest      = iter().get_dest_table(j+3);
   311     makes_backward_branch |= (dest <= bci());
   312     int  table_index = method_data_update() ? j : NullTableIndex;
   313     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   314       ranges[++rp].set(match_int, dest, table_index);
   315     }
   316   }
   317   jint highest = lo_index+(len-1);
   318   assert(ranges[rp].hi() == highest, "");
   319   if (highest != max_jint
   320       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   321     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   322   }
   323   assert(rp < len+2, "not too many ranges");
   325   // Safepoint in case if backward branch observed
   326   if( makes_backward_branch && UseLoopSafepoints )
   327     add_safepoint();
   329   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   330 }
   333 //------------------------------do_lookupswitch--------------------------------
   334 void Parse::do_lookupswitch() {
   335   Node *lookup = pop();         // lookup value
   336   // Get information about lookupswitch
   337   int default_dest = iter().get_dest_table(0);
   338   int len          = iter().get_int_table(1);
   340   if (len < 1) {    // If this is a backward branch, add safepoint
   341     maybe_add_safepoint(default_dest);
   342     merge(default_dest);
   343     return;
   344   }
   346   // generate decision tree, using trichotomy when possible
   347   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   348   {
   349     for( int j = 0; j < len; j++ ) {
   350       table[j+j+0] = iter().get_int_table(2+j+j);
   351       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   352     }
   353     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   354   }
   356   int rnum = len*2+1;
   357   bool makes_backward_branch = false;
   358   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   359   int rp = -1;
   360   for( int j = 0; j < len; j++ ) {
   361     jint match_int   = table[j+j+0];
   362     int  dest        = table[j+j+1];
   363     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   364     int  table_index = method_data_update() ? j : NullTableIndex;
   365     makes_backward_branch |= (dest <= bci());
   366     if( match_int != next_lo ) {
   367       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   368     }
   369     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   370       ranges[++rp].set(match_int, dest, table_index);
   371     }
   372   }
   373   jint highest = table[2*(len-1)];
   374   assert(ranges[rp].hi() == highest, "");
   375   if( highest != max_jint
   376       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   377     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   378   }
   379   assert(rp < rnum, "not too many ranges");
   381   // Safepoint in case backward branch observed
   382   if( makes_backward_branch && UseLoopSafepoints )
   383     add_safepoint();
   385   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   386 }
   388 //----------------------------create_jump_tables-------------------------------
   389 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   390   // Are jumptables enabled
   391   if (!UseJumpTables)  return false;
   393   // Are jumptables supported
   394   if (!Matcher::has_match_rule(Op_Jump))  return false;
   396   // Don't make jump table if profiling
   397   if (method_data_update())  return false;
   399   // Decide if a guard is needed to lop off big ranges at either (or
   400   // both) end(s) of the input set. We'll call this the default target
   401   // even though we can't be sure that it is the true "default".
   403   bool needs_guard = false;
   404   int default_dest;
   405   int64 total_outlier_size = 0;
   406   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   407   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   409   if (lo->dest() == hi->dest()) {
   410     total_outlier_size = hi_size + lo_size;
   411     default_dest = lo->dest();
   412   } else if (lo_size > hi_size) {
   413     total_outlier_size = lo_size;
   414     default_dest = lo->dest();
   415   } else {
   416     total_outlier_size = hi_size;
   417     default_dest = hi->dest();
   418   }
   420   // If a guard test will eliminate very sparse end ranges, then
   421   // it is worth the cost of an extra jump.
   422   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   423     needs_guard = true;
   424     if (default_dest == lo->dest()) lo++;
   425     if (default_dest == hi->dest()) hi--;
   426   }
   428   // Find the total number of cases and ranges
   429   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   430   int num_range = hi - lo + 1;
   432   // Don't create table if: too large, too small, or too sparse.
   433   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   434     return false;
   435   if (num_cases > (MaxJumpTableSparseness * num_range))
   436     return false;
   438   // Normalize table lookups to zero
   439   int lowval = lo->lo();
   440   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   442   // Generate a guard to protect against input keyvals that aren't
   443   // in the switch domain.
   444   if (needs_guard) {
   445     Node*   size = _gvn.intcon(num_cases);
   446     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   447     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   448     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   449     jump_if_true_fork(iff, default_dest, NullTableIndex);
   450   }
   452   // Create an ideal node JumpTable that has projections
   453   // of all possible ranges for a switch statement
   454   // The key_val input must be converted to a pointer offset and scaled.
   455   // Compare Parse::array_addressing above.
   456 #ifdef _LP64
   457   // Clean the 32-bit int into a real 64-bit offset.
   458   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   459   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   460   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   461 #endif
   462   // Shift the value by wordsize so we have an index into the table, rather
   463   // than a switch value
   464   Node *shiftWord = _gvn.MakeConX(wordSize);
   465   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   467   // Create the JumpNode
   468   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   470   // These are the switch destinations hanging off the jumpnode
   471   int i = 0;
   472   for (SwitchRange* r = lo; r <= hi; r++) {
   473     for (int j = r->lo(); j <= r->hi(); j++, i++) {
   474       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   475       {
   476         PreserveJVMState pjvms(this);
   477         set_control(input);
   478         jump_if_always_fork(r->dest(), r->table_index());
   479       }
   480     }
   481   }
   482   assert(i == num_cases, "miscount of cases");
   483   stop_and_kill_map();  // no more uses for this JVMS
   484   return true;
   485 }
   487 //----------------------------jump_switch_ranges-------------------------------
   488 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   489   Block* switch_block = block();
   491   if (switch_depth == 0) {
   492     // Do special processing for the top-level call.
   493     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   494     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   496     // Decrement pred-numbers for the unique set of nodes.
   497 #ifdef ASSERT
   498     // Ensure that the block's successors are a (duplicate-free) set.
   499     int successors_counted = 0;  // block occurrences in [hi..lo]
   500     int unique_successors = switch_block->num_successors();
   501     for (int i = 0; i < unique_successors; i++) {
   502       Block* target = switch_block->successor_at(i);
   504       // Check that the set of successors is the same in both places.
   505       int successors_found = 0;
   506       for (SwitchRange* p = lo; p <= hi; p++) {
   507         if (p->dest() == target->start())  successors_found++;
   508       }
   509       assert(successors_found > 0, "successor must be known");
   510       successors_counted += successors_found;
   511     }
   512     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   513 #endif
   515     // Maybe prune the inputs, based on the type of key_val.
   516     jint min_val = min_jint;
   517     jint max_val = max_jint;
   518     const TypeInt* ti = key_val->bottom_type()->isa_int();
   519     if (ti != NULL) {
   520       min_val = ti->_lo;
   521       max_val = ti->_hi;
   522       assert(min_val <= max_val, "invalid int type");
   523     }
   524     while (lo->hi() < min_val)  lo++;
   525     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   526     while (hi->lo() > max_val)  hi--;
   527     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   528   }
   530 #ifndef PRODUCT
   531   if (switch_depth == 0) {
   532     _max_switch_depth = 0;
   533     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   534   }
   535 #endif
   537   assert(lo <= hi, "must be a non-empty set of ranges");
   538   if (lo == hi) {
   539     jump_if_always_fork(lo->dest(), lo->table_index());
   540   } else {
   541     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   542     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   544     if (create_jump_tables(key_val, lo, hi)) return;
   546     int nr = hi - lo + 1;
   548     SwitchRange* mid = lo + nr/2;
   549     // if there is an easy choice, pivot at a singleton:
   550     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   552     assert(lo < mid && mid <= hi, "good pivot choice");
   553     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   554     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   556     Node *test_val = _gvn.intcon(mid->lo());
   558     if (mid->is_singleton()) {
   559       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   560       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   562       // Special Case:  If there are exactly three ranges, and the high
   563       // and low range each go to the same place, omit the "gt" test,
   564       // since it will not discriminate anything.
   565       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   566       if (eq_test_only) {
   567         assert(mid == hi-1, "");
   568       }
   570       // if there is a higher range, test for it and process it:
   571       if (mid < hi && !eq_test_only) {
   572         // two comparisons of same values--should enable 1 test for 2 branches
   573         // Use BoolTest::le instead of BoolTest::gt
   574         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   575         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   576         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   577         { PreserveJVMState pjvms(this);
   578           set_control(iffalse);
   579           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   580         }
   581         set_control(iftrue);
   582       }
   584     } else {
   585       // mid is a range, not a singleton, so treat mid..hi as a unit
   586       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   588       // if there is a higher range, test for it and process it:
   589       if (mid == hi) {
   590         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   591       } else {
   592         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   593         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   594         { PreserveJVMState pjvms(this);
   595           set_control(iftrue);
   596           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   597         }
   598         set_control(iffalse);
   599       }
   600     }
   602     // in any case, process the lower range
   603     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   604   }
   606   // Decrease pred_count for each successor after all is done.
   607   if (switch_depth == 0) {
   608     int unique_successors = switch_block->num_successors();
   609     for (int i = 0; i < unique_successors; i++) {
   610       Block* target = switch_block->successor_at(i);
   611       // Throw away the pre-allocated path for each unique successor.
   612       target->next_path_num();
   613     }
   614   }
   616 #ifndef PRODUCT
   617   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   618   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   619     SwitchRange* r;
   620     int nsing = 0;
   621     for( r = lo; r <= hi; r++ ) {
   622       if( r->is_singleton() )  nsing++;
   623     }
   624     tty->print(">>> ");
   625     _method->print_short_name();
   626     tty->print_cr(" switch decision tree");
   627     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   628                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   629     if (_max_switch_depth > _est_switch_depth) {
   630       tty->print_cr("******** BAD SWITCH DEPTH ********");
   631     }
   632     tty->print("   ");
   633     for( r = lo; r <= hi; r++ ) {
   634       r->print(env());
   635     }
   636     tty->print_cr("");
   637   }
   638 #endif
   639 }
   641 void Parse::modf() {
   642   Node *f2 = pop();
   643   Node *f1 = pop();
   644   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   645                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   646                               "frem", NULL, //no memory effects
   647                               f1, f2);
   648   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   650   push(res);
   651 }
   653 void Parse::modd() {
   654   Node *d2 = pop_pair();
   655   Node *d1 = pop_pair();
   656   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   657                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   658                               "drem", NULL, //no memory effects
   659                               d1, top(), d2, top());
   660   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   662 #ifdef ASSERT
   663   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   664   assert(res_top == top(), "second value must be top");
   665 #endif
   667   push_pair(res_d);
   668 }
   670 void Parse::l2f() {
   671   Node* f2 = pop();
   672   Node* f1 = pop();
   673   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   674                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   675                               "l2f", NULL, //no memory effects
   676                               f1, f2);
   677   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   679   push(res);
   680 }
   682 void Parse::do_irem() {
   683   // Must keep both values on the expression-stack during null-check
   684   do_null_check(peek(), T_INT);
   685   // Compile-time detect of null-exception?
   686   if (stopped())  return;
   688   Node* b = pop();
   689   Node* a = pop();
   691   const Type *t = _gvn.type(b);
   692   if (t != Type::TOP) {
   693     const TypeInt *ti = t->is_int();
   694     if (ti->is_con()) {
   695       int divisor = ti->get_con();
   696       // check for positive power of 2
   697       if (divisor > 0 &&
   698           (divisor & ~(divisor-1)) == divisor) {
   699         // yes !
   700         Node *mask = _gvn.intcon((divisor - 1));
   701         // Sigh, must handle negative dividends
   702         Node *zero = _gvn.intcon(0);
   703         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   704         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   705         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   706         Node *reg = jump_if_join(ift, iff);
   707         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   708         // Negative path; negate/and/negate
   709         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   710         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   711         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   712         phi->init_req(1, negn);
   713         // Fast positive case
   714         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   715         phi->init_req(2, andx);
   716         // Push the merge
   717         push( _gvn.transform(phi) );
   718         return;
   719       }
   720     }
   721   }
   722   // Default case
   723   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   724 }
   726 // Handle jsr and jsr_w bytecode
   727 void Parse::do_jsr() {
   728   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   730   // Store information about current state, tagged with new _jsr_bci
   731   int return_bci = iter().next_bci();
   732   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   734   // Update method data
   735   profile_taken_branch(jsr_bci);
   737   // The way we do things now, there is only one successor block
   738   // for the jsr, because the target code is cloned by ciTypeFlow.
   739   Block* target = successor_for_bci(jsr_bci);
   741   // What got pushed?
   742   const Type* ret_addr = target->peek();
   743   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   745   // Effect on jsr on stack
   746   push(_gvn.makecon(ret_addr));
   748   // Flow to the jsr.
   749   merge(jsr_bci);
   750 }
   752 // Handle ret bytecode
   753 void Parse::do_ret() {
   754   // Find to whom we return.
   755   assert(block()->num_successors() == 1, "a ret can only go one place now");
   756   Block* target = block()->successor_at(0);
   757   assert(!target->is_ready(), "our arrival must be expected");
   758   profile_ret(target->flow()->start());
   759   int pnum = target->next_path_num();
   760   merge_common(target, pnum);
   761 }
   763 //--------------------------dynamic_branch_prediction--------------------------
   764 // Try to gather dynamic branch prediction behavior.  Return a probability
   765 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   766 // if we need to use static prediction for some reason.
   767 float Parse::dynamic_branch_prediction(float &cnt) {
   768   ResourceMark rm;
   770   cnt  = COUNT_UNKNOWN;
   772   // Use MethodData information if it is available
   773   // FIXME: free the ProfileData structure
   774   ciMethodData* methodData = method()->method_data();
   775   if (!methodData->is_mature())  return PROB_UNKNOWN;
   776   ciProfileData* data = methodData->bci_to_data(bci());
   777   if (!data->is_JumpData())  return PROB_UNKNOWN;
   779   // get taken and not taken values
   780   int     taken = data->as_JumpData()->taken();
   781   int not_taken = 0;
   782   if (data->is_BranchData()) {
   783     not_taken = data->as_BranchData()->not_taken();
   784   }
   786   // scale the counts to be commensurate with invocation counts:
   787   taken = method()->scale_count(taken);
   788   not_taken = method()->scale_count(not_taken);
   790   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
   791   // We also check that individual counters are positive first, overwise the sum can become positive.
   792   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
   793     if (C->log() != NULL) {
   794       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   795     }
   796     return PROB_UNKNOWN;
   797   }
   799   // Compute frequency that we arrive here
   800   float sum = taken + not_taken;
   801   // Adjust, if this block is a cloned private block but the
   802   // Jump counts are shared.  Taken the private counts for
   803   // just this path instead of the shared counts.
   804   if( block()->count() > 0 )
   805     sum = block()->count();
   806   cnt = sum / FreqCountInvocations;
   808   // Pin probability to sane limits
   809   float prob;
   810   if( !taken )
   811     prob = (0+PROB_MIN) / 2;
   812   else if( !not_taken )
   813     prob = (1+PROB_MAX) / 2;
   814   else {                         // Compute probability of true path
   815     prob = (float)taken / (float)(taken + not_taken);
   816     if (prob > PROB_MAX)  prob = PROB_MAX;
   817     if (prob < PROB_MIN)   prob = PROB_MIN;
   818   }
   820   assert((cnt > 0.0f) && (prob > 0.0f),
   821          "Bad frequency assignment in if");
   823   if (C->log() != NULL) {
   824     const char* prob_str = NULL;
   825     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   826     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   827     char prob_str_buf[30];
   828     if (prob_str == NULL) {
   829       sprintf(prob_str_buf, "%g", prob);
   830       prob_str = prob_str_buf;
   831     }
   832     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   833                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   834   }
   835   return prob;
   836 }
   838 //-----------------------------branch_prediction-------------------------------
   839 float Parse::branch_prediction(float& cnt,
   840                                BoolTest::mask btest,
   841                                int target_bci) {
   842   float prob = dynamic_branch_prediction(cnt);
   843   // If prob is unknown, switch to static prediction
   844   if (prob != PROB_UNKNOWN)  return prob;
   846   prob = PROB_FAIR;                   // Set default value
   847   if (btest == BoolTest::eq)          // Exactly equal test?
   848     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   849   else if (btest == BoolTest::ne)
   850     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   852   // If this is a conditional test guarding a backwards branch,
   853   // assume its a loop-back edge.  Make it a likely taken branch.
   854   if (target_bci < bci()) {
   855     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   856       // Since it's an OSR, we probably have profile data, but since
   857       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   858       // Let's make a special check here for completely zero counts.
   859       ciMethodData* methodData = method()->method_data();
   860       if (!methodData->is_empty()) {
   861         ciProfileData* data = methodData->bci_to_data(bci());
   862         // Only stop for truly zero counts, which mean an unknown part
   863         // of the OSR-ed method, and we want to deopt to gather more stats.
   864         // If you have ANY counts, then this loop is simply 'cold' relative
   865         // to the OSR loop.
   866         if (data->as_BranchData()->taken() +
   867             data->as_BranchData()->not_taken() == 0 ) {
   868           // This is the only way to return PROB_UNKNOWN:
   869           return PROB_UNKNOWN;
   870         }
   871       }
   872     }
   873     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   874   }
   876   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   877   return prob;
   878 }
   880 // The magic constants are chosen so as to match the output of
   881 // branch_prediction() when the profile reports a zero taken count.
   882 // It is important to distinguish zero counts unambiguously, because
   883 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   884 // very small but nonzero probabilities, which if confused with zero
   885 // counts would keep the program recompiling indefinitely.
   886 bool Parse::seems_never_taken(float prob) {
   887   return prob < PROB_MIN;
   888 }
   890 // True if the comparison seems to be the kind that will not change its
   891 // statistics from true to false.  See comments in adjust_map_after_if.
   892 // This question is only asked along paths which are already
   893 // classifed as untaken (by seems_never_taken), so really,
   894 // if a path is never taken, its controlling comparison is
   895 // already acting in a stable fashion.  If the comparison
   896 // seems stable, we will put an expensive uncommon trap
   897 // on the untaken path.  To be conservative, and to allow
   898 // partially executed counted loops to be compiled fully,
   899 // we will plant uncommon traps only after pointer comparisons.
   900 bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
   901   for (int depth = 4; depth > 0; depth--) {
   902     // The following switch can find CmpP here over half the time for
   903     // dynamic language code rich with type tests.
   904     // Code using counted loops or array manipulations (typical
   905     // of benchmarks) will have many (>80%) CmpI instructions.
   906     switch (cmp->Opcode()) {
   907     case Op_CmpP:
   908       // A never-taken null check looks like CmpP/BoolTest::eq.
   909       // These certainly should be closed off as uncommon traps.
   910       if (btest == BoolTest::eq)
   911         return true;
   912       // A never-failed type check looks like CmpP/BoolTest::ne.
   913       // Let's put traps on those, too, so that we don't have to compile
   914       // unused paths with indeterminate dynamic type information.
   915       if (ProfileDynamicTypes)
   916         return true;
   917       return false;
   919     case Op_CmpI:
   920       // A small minority (< 10%) of CmpP are masked as CmpI,
   921       // as if by boolean conversion ((p == q? 1: 0) != 0).
   922       // Detect that here, even if it hasn't optimized away yet.
   923       // Specifically, this covers the 'instanceof' operator.
   924       if (btest == BoolTest::ne || btest == BoolTest::eq) {
   925         if (_gvn.type(cmp->in(2))->singleton() &&
   926             cmp->in(1)->is_Phi()) {
   927           PhiNode* phi = cmp->in(1)->as_Phi();
   928           int true_path = phi->is_diamond_phi();
   929           if (true_path > 0 &&
   930               _gvn.type(phi->in(1))->singleton() &&
   931               _gvn.type(phi->in(2))->singleton()) {
   932             // phi->region->if_proj->ifnode->bool->cmp
   933             BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
   934             btest = bol->_test._test;
   935             cmp = bol->in(1);
   936             continue;
   937           }
   938         }
   939       }
   940       return false;
   941     }
   942   }
   943   return false;
   944 }
   946 //-------------------------------repush_if_args--------------------------------
   947 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
   948 inline int Parse::repush_if_args() {
   949 #ifndef PRODUCT
   950   if (PrintOpto && WizardMode) {
   951     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   952                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   953     method()->print_name(); tty->cr();
   954   }
   955 #endif
   956   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   957   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   958   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   959   assert(argument(0) != NULL, "must exist");
   960   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   961   _sp += bc_depth;
   962   return bc_depth;
   963 }
   965 //----------------------------------do_ifnull----------------------------------
   966 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
   967   int target_bci = iter().get_dest();
   969   Block* branch_block = successor_for_bci(target_bci);
   970   Block* next_block   = successor_for_bci(iter().next_bci());
   972   float cnt;
   973   float prob = branch_prediction(cnt, btest, target_bci);
   974   if (prob == PROB_UNKNOWN) {
   975     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   976 #ifndef PRODUCT
   977     if (PrintOpto && Verbose)
   978       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
   979 #endif
   980     repush_if_args(); // to gather stats on loop
   981     // We need to mark this branch as taken so that if we recompile we will
   982     // see that it is possible. In the tiered system the interpreter doesn't
   983     // do profiling and by the time we get to the lower tier from the interpreter
   984     // the path may be cold again. Make sure it doesn't look untaken
   985     profile_taken_branch(target_bci, !ProfileInterpreter);
   986     uncommon_trap(Deoptimization::Reason_unreached,
   987                   Deoptimization::Action_reinterpret,
   988                   NULL, "cold");
   989     if (EliminateAutoBox) {
   990       // Mark the successor blocks as parsed
   991       branch_block->next_path_num();
   992       next_block->next_path_num();
   993     }
   994     return;
   995   }
   997   explicit_null_checks_inserted++;
   999   // Generate real control flow
  1000   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
  1002   // Sanity check the probability value
  1003   assert(prob > 0.0f,"Bad probability in Parser");
  1004  // Need xform to put node in hash table
  1005   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
  1006   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1007   // True branch
  1008   { PreserveJVMState pjvms(this);
  1009     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
  1010     set_control(iftrue);
  1012     if (stopped()) {            // Path is dead?
  1013       explicit_null_checks_elided++;
  1014       if (EliminateAutoBox) {
  1015         // Mark the successor block as parsed
  1016         branch_block->next_path_num();
  1018     } else {                    // Path is live.
  1019       // Update method data
  1020       profile_taken_branch(target_bci);
  1021       adjust_map_after_if(btest, c, prob, branch_block, next_block);
  1022       if (!stopped()) {
  1023         merge(target_bci);
  1028   // False branch
  1029   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
  1030   set_control(iffalse);
  1032   if (stopped()) {              // Path is dead?
  1033     explicit_null_checks_elided++;
  1034     if (EliminateAutoBox) {
  1035       // Mark the successor block as parsed
  1036       next_block->next_path_num();
  1038   } else  {                     // Path is live.
  1039     // Update method data
  1040     profile_not_taken_branch();
  1041     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
  1042                         next_block, branch_block);
  1046 //------------------------------------do_if------------------------------------
  1047 void Parse::do_if(BoolTest::mask btest, Node* c) {
  1048   int target_bci = iter().get_dest();
  1050   Block* branch_block = successor_for_bci(target_bci);
  1051   Block* next_block   = successor_for_bci(iter().next_bci());
  1053   float cnt;
  1054   float prob = branch_prediction(cnt, btest, target_bci);
  1055   float untaken_prob = 1.0 - prob;
  1057   if (prob == PROB_UNKNOWN) {
  1058 #ifndef PRODUCT
  1059     if (PrintOpto && Verbose)
  1060       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
  1061 #endif
  1062     repush_if_args(); // to gather stats on loop
  1063     // We need to mark this branch as taken so that if we recompile we will
  1064     // see that it is possible. In the tiered system the interpreter doesn't
  1065     // do profiling and by the time we get to the lower tier from the interpreter
  1066     // the path may be cold again. Make sure it doesn't look untaken
  1067     profile_taken_branch(target_bci, !ProfileInterpreter);
  1068     uncommon_trap(Deoptimization::Reason_unreached,
  1069                   Deoptimization::Action_reinterpret,
  1070                   NULL, "cold");
  1071     if (EliminateAutoBox) {
  1072       // Mark the successor blocks as parsed
  1073       branch_block->next_path_num();
  1074       next_block->next_path_num();
  1076     return;
  1079   // Sanity check the probability value
  1080   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1082   bool taken_if_true = true;
  1083   // Convert BoolTest to canonical form:
  1084   if (!BoolTest(btest).is_canonical()) {
  1085     btest         = BoolTest(btest).negate();
  1086     taken_if_true = false;
  1087     // prob is NOT updated here; it remains the probability of the taken
  1088     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1090   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1092   Node* tst0 = new (C, 2) BoolNode(c, btest);
  1093   Node* tst = _gvn.transform(tst0);
  1094   BoolTest::mask taken_btest   = BoolTest::illegal;
  1095   BoolTest::mask untaken_btest = BoolTest::illegal;
  1097   if (tst->is_Bool()) {
  1098     // Refresh c from the transformed bool node, since it may be
  1099     // simpler than the original c.  Also re-canonicalize btest.
  1100     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1101     // That can arise from statements like: if (x instanceof C) ...
  1102     if (tst != tst0) {
  1103       // Canonicalize one more time since transform can change it.
  1104       btest = tst->as_Bool()->_test._test;
  1105       if (!BoolTest(btest).is_canonical()) {
  1106         // Reverse edges one more time...
  1107         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1108         btest = tst->as_Bool()->_test._test;
  1109         assert(BoolTest(btest).is_canonical(), "sanity");
  1110         taken_if_true = !taken_if_true;
  1112       c = tst->in(1);
  1114     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1115     taken_btest   = taken_if_true ?     btest : neg_btest;
  1116     untaken_btest = taken_if_true ? neg_btest :     btest;
  1119   // Generate real control flow
  1120   float true_prob = (taken_if_true ? prob : untaken_prob);
  1121   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1122   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1123   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1124   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1125   if (!taken_if_true) {  // Finish conversion to canonical form
  1126     Node* tmp      = taken_branch;
  1127     taken_branch   = untaken_branch;
  1128     untaken_branch = tmp;
  1131   // Branch is taken:
  1132   { PreserveJVMState pjvms(this);
  1133     taken_branch = _gvn.transform(taken_branch);
  1134     set_control(taken_branch);
  1136     if (stopped()) {
  1137       if (EliminateAutoBox) {
  1138         // Mark the successor block as parsed
  1139         branch_block->next_path_num();
  1141     } else {
  1142       // Update method data
  1143       profile_taken_branch(target_bci);
  1144       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1145       if (!stopped()) {
  1146         merge(target_bci);
  1151   untaken_branch = _gvn.transform(untaken_branch);
  1152   set_control(untaken_branch);
  1154   // Branch not taken.
  1155   if (stopped()) {
  1156     if (EliminateAutoBox) {
  1157       // Mark the successor block as parsed
  1158       next_block->next_path_num();
  1160   } else {
  1161     // Update method data
  1162     profile_not_taken_branch();
  1163     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1164                         next_block, branch_block);
  1168 //----------------------------adjust_map_after_if------------------------------
  1169 // Adjust the JVM state to reflect the result of taking this path.
  1170 // Basically, it means inspecting the CmpNode controlling this
  1171 // branch, seeing how it constrains a tested value, and then
  1172 // deciding if it's worth our while to encode this constraint
  1173 // as graph nodes in the current abstract interpretation map.
  1174 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1175                                 Block* path, Block* other_path) {
  1176   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1177     return;                             // nothing to do
  1179   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1181   if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
  1182     // If this might possibly turn into an implicit null check,
  1183     // and the null has never yet been seen, we need to generate
  1184     // an uncommon trap, so as to recompile instead of suffering
  1185     // with very slow branches.  (We'll get the slow branches if
  1186     // the program ever changes phase and starts seeing nulls here.)
  1187     //
  1188     // We do not inspect for a null constant, since a node may
  1189     // optimize to 'null' later on.
  1190     //
  1191     // Null checks, and other tests which expect inequality,
  1192     // show btest == BoolTest::eq along the non-taken branch.
  1193     // On the other hand, type tests, must-be-null tests,
  1194     // and other tests which expect pointer equality,
  1195     // show btest == BoolTest::ne along the non-taken branch.
  1196     // We prune both types of branches if they look unused.
  1197     repush_if_args();
  1198     // We need to mark this branch as taken so that if we recompile we will
  1199     // see that it is possible. In the tiered system the interpreter doesn't
  1200     // do profiling and by the time we get to the lower tier from the interpreter
  1201     // the path may be cold again. Make sure it doesn't look untaken
  1202     if (is_fallthrough) {
  1203       profile_not_taken_branch(!ProfileInterpreter);
  1204     } else {
  1205       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1207     uncommon_trap(Deoptimization::Reason_unreached,
  1208                   Deoptimization::Action_reinterpret,
  1209                   NULL,
  1210                   (is_fallthrough ? "taken always" : "taken never"));
  1211     return;
  1214   Node* val = c->in(1);
  1215   Node* con = c->in(2);
  1216   const Type* tcon = _gvn.type(con);
  1217   const Type* tval = _gvn.type(val);
  1218   bool have_con = tcon->singleton();
  1219   if (tval->singleton()) {
  1220     if (!have_con) {
  1221       // Swap, so constant is in con.
  1222       con  = val;
  1223       tcon = tval;
  1224       val  = c->in(2);
  1225       tval = _gvn.type(val);
  1226       btest = BoolTest(btest).commute();
  1227       have_con = true;
  1228     } else {
  1229       // Do we have two constants?  Then leave well enough alone.
  1230       have_con = false;
  1233   if (!have_con)                        // remaining adjustments need a con
  1234     return;
  1237   int val_in_map = map()->find_edge(val);
  1238   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1240     JVMState* jvms = this->jvms();
  1241     if (!(jvms->is_loc(val_in_map) ||
  1242           jvms->is_stk(val_in_map)))
  1243       return;                           // again, it would be useless
  1246   // Check for a comparison to a constant, and "know" that the compared
  1247   // value is constrained on this path.
  1248   assert(tcon->singleton(), "");
  1249   ConstraintCastNode* ccast = NULL;
  1250   Node* cast = NULL;
  1252   switch (btest) {
  1253   case BoolTest::eq:                    // Constant test?
  1255       const Type* tboth = tcon->join(tval);
  1256       if (tboth == tval)  break;        // Nothing to gain.
  1257       if (tcon->isa_int()) {
  1258         ccast = new (C, 2) CastIINode(val, tboth);
  1259       } else if (tcon == TypePtr::NULL_PTR) {
  1260         // Cast to null, but keep the pointer identity temporarily live.
  1261         ccast = new (C, 2) CastPPNode(val, tboth);
  1262       } else {
  1263         const TypeF* tf = tcon->isa_float_constant();
  1264         const TypeD* td = tcon->isa_double_constant();
  1265         // Exclude tests vs float/double 0 as these could be
  1266         // either +0 or -0.  Just because you are equal to +0
  1267         // doesn't mean you ARE +0!
  1268         if ((!tf || tf->_f != 0.0) &&
  1269             (!td || td->_d != 0.0))
  1270           cast = con;                   // Replace non-constant val by con.
  1273     break;
  1275   case BoolTest::ne:
  1276     if (tcon == TypePtr::NULL_PTR) {
  1277       cast = cast_not_null(val, false);
  1279     break;
  1281   default:
  1282     // (At this point we could record int range types with CastII.)
  1283     break;
  1286   if (ccast != NULL) {
  1287     const Type* tcc = ccast->as_Type()->type();
  1288     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1289     // Delay transform() call to allow recovery of pre-cast value
  1290     // at the control merge.
  1291     ccast->set_req(0, control());
  1292     _gvn.set_type_bottom(ccast);
  1293     record_for_igvn(ccast);
  1294     cast = ccast;
  1297   if (cast != NULL) {                   // Here's the payoff.
  1298     replace_in_map(val, cast);
  1303 //------------------------------do_one_bytecode--------------------------------
  1304 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1305 void Parse::do_one_bytecode() {
  1306   Node *a, *b, *c, *d;          // Handy temps
  1307   BoolTest::mask btest;
  1308   int i;
  1310   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1312   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1313                           "out of nodes parsing method")) {
  1314     return;
  1317 #ifdef ASSERT
  1318   // for setting breakpoints
  1319   if (TraceOptoParse) {
  1320     tty->print(" @");
  1321     dump_bci(bci());
  1323 #endif
  1325   switch (bc()) {
  1326   case Bytecodes::_nop:
  1327     // do nothing
  1328     break;
  1329   case Bytecodes::_lconst_0:
  1330     push_pair(longcon(0));
  1331     break;
  1333   case Bytecodes::_lconst_1:
  1334     push_pair(longcon(1));
  1335     break;
  1337   case Bytecodes::_fconst_0:
  1338     push(zerocon(T_FLOAT));
  1339     break;
  1341   case Bytecodes::_fconst_1:
  1342     push(makecon(TypeF::ONE));
  1343     break;
  1345   case Bytecodes::_fconst_2:
  1346     push(makecon(TypeF::make(2.0f)));
  1347     break;
  1349   case Bytecodes::_dconst_0:
  1350     push_pair(zerocon(T_DOUBLE));
  1351     break;
  1353   case Bytecodes::_dconst_1:
  1354     push_pair(makecon(TypeD::ONE));
  1355     break;
  1357   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1358   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1359   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1360   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1361   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1362   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1363   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1364   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
  1365   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
  1366   case Bytecodes::_aconst_null: push(null());  break;
  1367   case Bytecodes::_ldc:
  1368   case Bytecodes::_ldc_w:
  1369   case Bytecodes::_ldc2_w:
  1370     // If the constant is unresolved, run this BC once in the interpreter.
  1372       ciConstant constant = iter().get_constant();
  1373       if (constant.basic_type() == T_OBJECT &&
  1374           !constant.as_object()->is_loaded()) {
  1375         int index = iter().get_constant_pool_index();
  1376         constantTag tag = iter().get_constant_pool_tag(index);
  1377         uncommon_trap(Deoptimization::make_trap_request
  1378                       (Deoptimization::Reason_unloaded,
  1379                        Deoptimization::Action_reinterpret,
  1380                        index),
  1381                       NULL, tag.internal_name());
  1382         break;
  1384       assert(constant.basic_type() != T_OBJECT || !constant.as_object()->is_klass(),
  1385              "must be java_mirror of klass");
  1386       bool pushed = push_constant(constant, true);
  1387       guarantee(pushed, "must be possible to push this constant");
  1390     break;
  1392   case Bytecodes::_aload_0:
  1393     push( local(0) );
  1394     break;
  1395   case Bytecodes::_aload_1:
  1396     push( local(1) );
  1397     break;
  1398   case Bytecodes::_aload_2:
  1399     push( local(2) );
  1400     break;
  1401   case Bytecodes::_aload_3:
  1402     push( local(3) );
  1403     break;
  1404   case Bytecodes::_aload:
  1405     push( local(iter().get_index()) );
  1406     break;
  1408   case Bytecodes::_fload_0:
  1409   case Bytecodes::_iload_0:
  1410     push( local(0) );
  1411     break;
  1412   case Bytecodes::_fload_1:
  1413   case Bytecodes::_iload_1:
  1414     push( local(1) );
  1415     break;
  1416   case Bytecodes::_fload_2:
  1417   case Bytecodes::_iload_2:
  1418     push( local(2) );
  1419     break;
  1420   case Bytecodes::_fload_3:
  1421   case Bytecodes::_iload_3:
  1422     push( local(3) );
  1423     break;
  1424   case Bytecodes::_fload:
  1425   case Bytecodes::_iload:
  1426     push( local(iter().get_index()) );
  1427     break;
  1428   case Bytecodes::_lload_0:
  1429     push_pair_local( 0 );
  1430     break;
  1431   case Bytecodes::_lload_1:
  1432     push_pair_local( 1 );
  1433     break;
  1434   case Bytecodes::_lload_2:
  1435     push_pair_local( 2 );
  1436     break;
  1437   case Bytecodes::_lload_3:
  1438     push_pair_local( 3 );
  1439     break;
  1440   case Bytecodes::_lload:
  1441     push_pair_local( iter().get_index() );
  1442     break;
  1444   case Bytecodes::_dload_0:
  1445     push_pair_local(0);
  1446     break;
  1447   case Bytecodes::_dload_1:
  1448     push_pair_local(1);
  1449     break;
  1450   case Bytecodes::_dload_2:
  1451     push_pair_local(2);
  1452     break;
  1453   case Bytecodes::_dload_3:
  1454     push_pair_local(3);
  1455     break;
  1456   case Bytecodes::_dload:
  1457     push_pair_local(iter().get_index());
  1458     break;
  1459   case Bytecodes::_fstore_0:
  1460   case Bytecodes::_istore_0:
  1461   case Bytecodes::_astore_0:
  1462     set_local( 0, pop() );
  1463     break;
  1464   case Bytecodes::_fstore_1:
  1465   case Bytecodes::_istore_1:
  1466   case Bytecodes::_astore_1:
  1467     set_local( 1, pop() );
  1468     break;
  1469   case Bytecodes::_fstore_2:
  1470   case Bytecodes::_istore_2:
  1471   case Bytecodes::_astore_2:
  1472     set_local( 2, pop() );
  1473     break;
  1474   case Bytecodes::_fstore_3:
  1475   case Bytecodes::_istore_3:
  1476   case Bytecodes::_astore_3:
  1477     set_local( 3, pop() );
  1478     break;
  1479   case Bytecodes::_fstore:
  1480   case Bytecodes::_istore:
  1481   case Bytecodes::_astore:
  1482     set_local( iter().get_index(), pop() );
  1483     break;
  1484   // long stores
  1485   case Bytecodes::_lstore_0:
  1486     set_pair_local( 0, pop_pair() );
  1487     break;
  1488   case Bytecodes::_lstore_1:
  1489     set_pair_local( 1, pop_pair() );
  1490     break;
  1491   case Bytecodes::_lstore_2:
  1492     set_pair_local( 2, pop_pair() );
  1493     break;
  1494   case Bytecodes::_lstore_3:
  1495     set_pair_local( 3, pop_pair() );
  1496     break;
  1497   case Bytecodes::_lstore:
  1498     set_pair_local( iter().get_index(), pop_pair() );
  1499     break;
  1501   // double stores
  1502   case Bytecodes::_dstore_0:
  1503     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1504     break;
  1505   case Bytecodes::_dstore_1:
  1506     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1507     break;
  1508   case Bytecodes::_dstore_2:
  1509     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1510     break;
  1511   case Bytecodes::_dstore_3:
  1512     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1513     break;
  1514   case Bytecodes::_dstore:
  1515     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1516     break;
  1518   case Bytecodes::_pop:  _sp -= 1;   break;
  1519   case Bytecodes::_pop2: _sp -= 2;   break;
  1520   case Bytecodes::_swap:
  1521     a = pop();
  1522     b = pop();
  1523     push(a);
  1524     push(b);
  1525     break;
  1526   case Bytecodes::_dup:
  1527     a = pop();
  1528     push(a);
  1529     push(a);
  1530     break;
  1531   case Bytecodes::_dup_x1:
  1532     a = pop();
  1533     b = pop();
  1534     push( a );
  1535     push( b );
  1536     push( a );
  1537     break;
  1538   case Bytecodes::_dup_x2:
  1539     a = pop();
  1540     b = pop();
  1541     c = pop();
  1542     push( a );
  1543     push( c );
  1544     push( b );
  1545     push( a );
  1546     break;
  1547   case Bytecodes::_dup2:
  1548     a = pop();
  1549     b = pop();
  1550     push( b );
  1551     push( a );
  1552     push( b );
  1553     push( a );
  1554     break;
  1556   case Bytecodes::_dup2_x1:
  1557     // before: .. c, b, a
  1558     // after:  .. b, a, c, b, a
  1559     // not tested
  1560     a = pop();
  1561     b = pop();
  1562     c = pop();
  1563     push( b );
  1564     push( a );
  1565     push( c );
  1566     push( b );
  1567     push( a );
  1568     break;
  1569   case Bytecodes::_dup2_x2:
  1570     // before: .. d, c, b, a
  1571     // after:  .. b, a, d, c, b, a
  1572     // not tested
  1573     a = pop();
  1574     b = pop();
  1575     c = pop();
  1576     d = pop();
  1577     push( b );
  1578     push( a );
  1579     push( d );
  1580     push( c );
  1581     push( b );
  1582     push( a );
  1583     break;
  1585   case Bytecodes::_arraylength: {
  1586     // Must do null-check with value on expression stack
  1587     Node *ary = do_null_check(peek(), T_ARRAY);
  1588     // Compile-time detect of null-exception?
  1589     if (stopped())  return;
  1590     a = pop();
  1591     push(load_array_length(a));
  1592     break;
  1595   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1596   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1597   case Bytecodes::_iaload: array_load(T_INT);    break;
  1598   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1599   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1600   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1601   case Bytecodes::_laload: {
  1602     a = array_addressing(T_LONG, 0);
  1603     if (stopped())  return;     // guaranteed null or range check
  1604     _sp -= 2;                   // Pop array and index
  1605     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1606     break;
  1608   case Bytecodes::_daload: {
  1609     a = array_addressing(T_DOUBLE, 0);
  1610     if (stopped())  return;     // guaranteed null or range check
  1611     _sp -= 2;                   // Pop array and index
  1612     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1613     break;
  1615   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1616   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1617   case Bytecodes::_iastore: array_store(T_INT);   break;
  1618   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1619   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1620   case Bytecodes::_aastore: {
  1621     d = array_addressing(T_OBJECT, 1);
  1622     if (stopped())  return;     // guaranteed null or range check
  1623     array_store_check();
  1624     c = pop();                  // Oop to store
  1625     b = pop();                  // index (already used)
  1626     a = pop();                  // the array itself
  1627     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
  1628     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1629     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1630     break;
  1632   case Bytecodes::_lastore: {
  1633     a = array_addressing(T_LONG, 2);
  1634     if (stopped())  return;     // guaranteed null or range check
  1635     c = pop_pair();
  1636     _sp -= 2;                   // Pop array and index
  1637     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1638     break;
  1640   case Bytecodes::_dastore: {
  1641     a = array_addressing(T_DOUBLE, 2);
  1642     if (stopped())  return;     // guaranteed null or range check
  1643     c = pop_pair();
  1644     _sp -= 2;                   // Pop array and index
  1645     c = dstore_rounding(c);
  1646     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1647     break;
  1649   case Bytecodes::_getfield:
  1650     do_getfield();
  1651     break;
  1653   case Bytecodes::_getstatic:
  1654     do_getstatic();
  1655     break;
  1657   case Bytecodes::_putfield:
  1658     do_putfield();
  1659     break;
  1661   case Bytecodes::_putstatic:
  1662     do_putstatic();
  1663     break;
  1665   case Bytecodes::_irem:
  1666     do_irem();
  1667     break;
  1668   case Bytecodes::_idiv:
  1669     // Must keep both values on the expression-stack during null-check
  1670     do_null_check(peek(), T_INT);
  1671     // Compile-time detect of null-exception?
  1672     if (stopped())  return;
  1673     b = pop();
  1674     a = pop();
  1675     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1676     break;
  1677   case Bytecodes::_imul:
  1678     b = pop(); a = pop();
  1679     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1680     break;
  1681   case Bytecodes::_iadd:
  1682     b = pop(); a = pop();
  1683     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1684     break;
  1685   case Bytecodes::_ineg:
  1686     a = pop();
  1687     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1688     break;
  1689   case Bytecodes::_isub:
  1690     b = pop(); a = pop();
  1691     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1692     break;
  1693   case Bytecodes::_iand:
  1694     b = pop(); a = pop();
  1695     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1696     break;
  1697   case Bytecodes::_ior:
  1698     b = pop(); a = pop();
  1699     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1700     break;
  1701   case Bytecodes::_ixor:
  1702     b = pop(); a = pop();
  1703     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1704     break;
  1705   case Bytecodes::_ishl:
  1706     b = pop(); a = pop();
  1707     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1708     break;
  1709   case Bytecodes::_ishr:
  1710     b = pop(); a = pop();
  1711     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1712     break;
  1713   case Bytecodes::_iushr:
  1714     b = pop(); a = pop();
  1715     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1716     break;
  1718   case Bytecodes::_fneg:
  1719     a = pop();
  1720     b = _gvn.transform(new (C, 2) NegFNode (a));
  1721     push(b);
  1722     break;
  1724   case Bytecodes::_fsub:
  1725     b = pop();
  1726     a = pop();
  1727     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1728     d = precision_rounding(c);
  1729     push( d );
  1730     break;
  1732   case Bytecodes::_fadd:
  1733     b = pop();
  1734     a = pop();
  1735     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1736     d = precision_rounding(c);
  1737     push( d );
  1738     break;
  1740   case Bytecodes::_fmul:
  1741     b = pop();
  1742     a = pop();
  1743     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1744     d = precision_rounding(c);
  1745     push( d );
  1746     break;
  1748   case Bytecodes::_fdiv:
  1749     b = pop();
  1750     a = pop();
  1751     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1752     d = precision_rounding(c);
  1753     push( d );
  1754     break;
  1756   case Bytecodes::_frem:
  1757     if (Matcher::has_match_rule(Op_ModF)) {
  1758       // Generate a ModF node.
  1759       b = pop();
  1760       a = pop();
  1761       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1762       d = precision_rounding(c);
  1763       push( d );
  1765     else {
  1766       // Generate a call.
  1767       modf();
  1769     break;
  1771   case Bytecodes::_fcmpl:
  1772     b = pop();
  1773     a = pop();
  1774     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1775     push(c);
  1776     break;
  1777   case Bytecodes::_fcmpg:
  1778     b = pop();
  1779     a = pop();
  1781     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1782     // which negates the result sign except for unordered.  Flip the unordered
  1783     // as well by using CmpF3 which implements unordered-lesser instead of
  1784     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1785     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1786     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1787     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1788     push(c);
  1789     break;
  1791   case Bytecodes::_f2i:
  1792     a = pop();
  1793     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1794     break;
  1796   case Bytecodes::_d2i:
  1797     a = pop_pair();
  1798     b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1799     push( b );
  1800     break;
  1802   case Bytecodes::_f2d:
  1803     a = pop();
  1804     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1805     push_pair( b );
  1806     break;
  1808   case Bytecodes::_d2f:
  1809     a = pop_pair();
  1810     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1811     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1812     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1813     push( b );
  1814     break;
  1816   case Bytecodes::_l2f:
  1817     if (Matcher::convL2FSupported()) {
  1818       a = pop_pair();
  1819       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1820       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1821       // Rather than storing the result into an FP register then pushing
  1822       // out to memory to round, the machine instruction that implements
  1823       // ConvL2D is responsible for rounding.
  1824       // c = precision_rounding(b);
  1825       c = _gvn.transform(b);
  1826       push(c);
  1827     } else {
  1828       l2f();
  1830     break;
  1832   case Bytecodes::_l2d:
  1833     a = pop_pair();
  1834     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1835     // For i486.ad, rounding is always necessary (see _l2f above).
  1836     // c = dprecision_rounding(b);
  1837     c = _gvn.transform(b);
  1838     push_pair(c);
  1839     break;
  1841   case Bytecodes::_f2l:
  1842     a = pop();
  1843     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1844     push_pair(b);
  1845     break;
  1847   case Bytecodes::_d2l:
  1848     a = pop_pair();
  1849     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1850     push_pair(b);
  1851     break;
  1853   case Bytecodes::_dsub:
  1854     b = pop_pair();
  1855     a = pop_pair();
  1856     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1857     d = dprecision_rounding(c);
  1858     push_pair( d );
  1859     break;
  1861   case Bytecodes::_dadd:
  1862     b = pop_pair();
  1863     a = pop_pair();
  1864     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1865     d = dprecision_rounding(c);
  1866     push_pair( d );
  1867     break;
  1869   case Bytecodes::_dmul:
  1870     b = pop_pair();
  1871     a = pop_pair();
  1872     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1873     d = dprecision_rounding(c);
  1874     push_pair( d );
  1875     break;
  1877   case Bytecodes::_ddiv:
  1878     b = pop_pair();
  1879     a = pop_pair();
  1880     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1881     d = dprecision_rounding(c);
  1882     push_pair( d );
  1883     break;
  1885   case Bytecodes::_dneg:
  1886     a = pop_pair();
  1887     b = _gvn.transform(new (C, 2) NegDNode (a));
  1888     push_pair(b);
  1889     break;
  1891   case Bytecodes::_drem:
  1892     if (Matcher::has_match_rule(Op_ModD)) {
  1893       // Generate a ModD node.
  1894       b = pop_pair();
  1895       a = pop_pair();
  1896       // a % b
  1898       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1899       d = dprecision_rounding(c);
  1900       push_pair( d );
  1902     else {
  1903       // Generate a call.
  1904       modd();
  1906     break;
  1908   case Bytecodes::_dcmpl:
  1909     b = pop_pair();
  1910     a = pop_pair();
  1911     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1912     push(c);
  1913     break;
  1915   case Bytecodes::_dcmpg:
  1916     b = pop_pair();
  1917     a = pop_pair();
  1918     // Same as dcmpl but need to flip the unordered case.
  1919     // Commute the inputs, which negates the result sign except for unordered.
  1920     // Flip the unordered as well by using CmpD3 which implements
  1921     // unordered-lesser instead of unordered-greater semantics.
  1922     // Finally, negate the result bits.  Result is same as using a
  1923     // CmpD3Greater except we did it with CmpD3 alone.
  1924     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1925     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1926     push(c);
  1927     break;
  1930     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1931   case Bytecodes::_land:
  1932     b = pop_pair();
  1933     a = pop_pair();
  1934     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1935     push_pair(c);
  1936     break;
  1937   case Bytecodes::_lor:
  1938     b = pop_pair();
  1939     a = pop_pair();
  1940     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1941     push_pair(c);
  1942     break;
  1943   case Bytecodes::_lxor:
  1944     b = pop_pair();
  1945     a = pop_pair();
  1946     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1947     push_pair(c);
  1948     break;
  1950   case Bytecodes::_lshl:
  1951     b = pop();                  // the shift count
  1952     a = pop_pair();             // value to be shifted
  1953     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1954     push_pair(c);
  1955     break;
  1956   case Bytecodes::_lshr:
  1957     b = pop();                  // the shift count
  1958     a = pop_pair();             // value to be shifted
  1959     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1960     push_pair(c);
  1961     break;
  1962   case Bytecodes::_lushr:
  1963     b = pop();                  // the shift count
  1964     a = pop_pair();             // value to be shifted
  1965     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1966     push_pair(c);
  1967     break;
  1968   case Bytecodes::_lmul:
  1969     b = pop_pair();
  1970     a = pop_pair();
  1971     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  1972     push_pair(c);
  1973     break;
  1975   case Bytecodes::_lrem:
  1976     // Must keep both values on the expression-stack during null-check
  1977     assert(peek(0) == top(), "long word order");
  1978     do_null_check(peek(1), T_LONG);
  1979     // Compile-time detect of null-exception?
  1980     if (stopped())  return;
  1981     b = pop_pair();
  1982     a = pop_pair();
  1983     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  1984     push_pair(c);
  1985     break;
  1987   case Bytecodes::_ldiv:
  1988     // Must keep both values on the expression-stack during null-check
  1989     assert(peek(0) == top(), "long word order");
  1990     do_null_check(peek(1), T_LONG);
  1991     // Compile-time detect of null-exception?
  1992     if (stopped())  return;
  1993     b = pop_pair();
  1994     a = pop_pair();
  1995     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  1996     push_pair(c);
  1997     break;
  1999   case Bytecodes::_ladd:
  2000     b = pop_pair();
  2001     a = pop_pair();
  2002     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  2003     push_pair(c);
  2004     break;
  2005   case Bytecodes::_lsub:
  2006     b = pop_pair();
  2007     a = pop_pair();
  2008     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  2009     push_pair(c);
  2010     break;
  2011   case Bytecodes::_lcmp:
  2012     // Safepoints are now inserted _before_ branches.  The long-compare
  2013     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  2014     // slew of control flow.  These are usually followed by a CmpI vs zero and
  2015     // a branch; this pattern then optimizes to the obvious long-compare and
  2016     // branch.  However, if the branch is backwards there's a Safepoint
  2017     // inserted.  The inserted Safepoint captures the JVM state at the
  2018     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  2019     // long-compare is used to control a loop the debug info will force
  2020     // computation of the 3-way value, even though the generated code uses a
  2021     // long-compare and branch.  We try to rectify the situation by inserting
  2022     // a SafePoint here and have it dominate and kill the safepoint added at a
  2023     // following backwards branch.  At this point the JVM state merely holds 2
  2024     // longs but not the 3-way value.
  2025     if( UseLoopSafepoints ) {
  2026       switch( iter().next_bc() ) {
  2027       case Bytecodes::_ifgt:
  2028       case Bytecodes::_iflt:
  2029       case Bytecodes::_ifge:
  2030       case Bytecodes::_ifle:
  2031       case Bytecodes::_ifne:
  2032       case Bytecodes::_ifeq:
  2033         // If this is a backwards branch in the bytecodes, add Safepoint
  2034         maybe_add_safepoint(iter().next_get_dest());
  2037     b = pop_pair();
  2038     a = pop_pair();
  2039     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  2040     push(c);
  2041     break;
  2043   case Bytecodes::_lneg:
  2044     a = pop_pair();
  2045     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  2046     push_pair(b);
  2047     break;
  2048   case Bytecodes::_l2i:
  2049     a = pop_pair();
  2050     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  2051     break;
  2052   case Bytecodes::_i2l:
  2053     a = pop();
  2054     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  2055     push_pair(b);
  2056     break;
  2057   case Bytecodes::_i2b:
  2058     // Sign extend
  2059     a = pop();
  2060     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  2061     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  2062     push( a );
  2063     break;
  2064   case Bytecodes::_i2s:
  2065     a = pop();
  2066     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  2067     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  2068     push( a );
  2069     break;
  2070   case Bytecodes::_i2c:
  2071     a = pop();
  2072     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2073     break;
  2075   case Bytecodes::_i2f:
  2076     a = pop();
  2077     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  2078     c = precision_rounding(b);
  2079     push (b);
  2080     break;
  2082   case Bytecodes::_i2d:
  2083     a = pop();
  2084     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  2085     push_pair(b);
  2086     break;
  2088   case Bytecodes::_iinc:        // Increment local
  2089     i = iter().get_index();     // Get local index
  2090     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2091     break;
  2093   // Exit points of synchronized methods must have an unlock node
  2094   case Bytecodes::_return:
  2095     return_current(NULL);
  2096     break;
  2098   case Bytecodes::_ireturn:
  2099   case Bytecodes::_areturn:
  2100   case Bytecodes::_freturn:
  2101     return_current(pop());
  2102     break;
  2103   case Bytecodes::_lreturn:
  2104     return_current(pop_pair());
  2105     break;
  2106   case Bytecodes::_dreturn:
  2107     return_current(pop_pair());
  2108     break;
  2110   case Bytecodes::_athrow:
  2111     // null exception oop throws NULL pointer exception
  2112     do_null_check(peek(), T_OBJECT);
  2113     if (stopped())  return;
  2114     // Hook the thrown exception directly to subsequent handlers.
  2115     if (BailoutToInterpreterForThrows) {
  2116       // Keep method interpreted from now on.
  2117       uncommon_trap(Deoptimization::Reason_unhandled,
  2118                     Deoptimization::Action_make_not_compilable);
  2119       return;
  2121     if (env()->jvmti_can_post_on_exceptions()) {
  2122       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
  2123       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
  2125     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
  2126     add_exception_state(make_exception_state(peek()));
  2127     break;
  2129   case Bytecodes::_goto:   // fall through
  2130   case Bytecodes::_goto_w: {
  2131     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2133     // If this is a backwards branch in the bytecodes, add Safepoint
  2134     maybe_add_safepoint(target_bci);
  2136     // Update method data
  2137     profile_taken_branch(target_bci);
  2139     // Merge the current control into the target basic block
  2140     merge(target_bci);
  2142     // See if we can get some profile data and hand it off to the next block
  2143     Block *target_block = block()->successor_for_bci(target_bci);
  2144     if (target_block->pred_count() != 1)  break;
  2145     ciMethodData* methodData = method()->method_data();
  2146     if (!methodData->is_mature())  break;
  2147     ciProfileData* data = methodData->bci_to_data(bci());
  2148     assert( data->is_JumpData(), "" );
  2149     int taken = ((ciJumpData*)data)->taken();
  2150     taken = method()->scale_count(taken);
  2151     target_block->set_count(taken);
  2152     break;
  2155   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
  2156   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
  2157   handle_if_null:
  2158     // If this is a backwards branch in the bytecodes, add Safepoint
  2159     maybe_add_safepoint(iter().get_dest());
  2160     a = null();
  2161     b = pop();
  2162     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2163     do_ifnull(btest, c);
  2164     break;
  2166   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2167   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2168   handle_if_acmp:
  2169     // If this is a backwards branch in the bytecodes, add Safepoint
  2170     maybe_add_safepoint(iter().get_dest());
  2171     a = pop();
  2172     b = pop();
  2173     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2174     do_if(btest, c);
  2175     break;
  2177   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2178   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2179   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2180   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2181   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2182   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2183   handle_ifxx:
  2184     // If this is a backwards branch in the bytecodes, add Safepoint
  2185     maybe_add_safepoint(iter().get_dest());
  2186     a = _gvn.intcon(0);
  2187     b = pop();
  2188     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  2189     do_if(btest, c);
  2190     break;
  2192   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2193   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2194   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2195   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2196   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2197   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2198   handle_if_icmp:
  2199     // If this is a backwards branch in the bytecodes, add Safepoint
  2200     maybe_add_safepoint(iter().get_dest());
  2201     a = pop();
  2202     b = pop();
  2203     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  2204     do_if(btest, c);
  2205     break;
  2207   case Bytecodes::_tableswitch:
  2208     do_tableswitch();
  2209     break;
  2211   case Bytecodes::_lookupswitch:
  2212     do_lookupswitch();
  2213     break;
  2215   case Bytecodes::_invokestatic:
  2216   case Bytecodes::_invokedynamic:
  2217   case Bytecodes::_invokespecial:
  2218   case Bytecodes::_invokevirtual:
  2219   case Bytecodes::_invokeinterface:
  2220     do_call();
  2221     break;
  2222   case Bytecodes::_checkcast:
  2223     do_checkcast();
  2224     break;
  2225   case Bytecodes::_instanceof:
  2226     do_instanceof();
  2227     break;
  2228   case Bytecodes::_anewarray:
  2229     do_anewarray();
  2230     break;
  2231   case Bytecodes::_newarray:
  2232     do_newarray((BasicType)iter().get_index());
  2233     break;
  2234   case Bytecodes::_multianewarray:
  2235     do_multianewarray();
  2236     break;
  2237   case Bytecodes::_new:
  2238     do_new();
  2239     break;
  2241   case Bytecodes::_jsr:
  2242   case Bytecodes::_jsr_w:
  2243     do_jsr();
  2244     break;
  2246   case Bytecodes::_ret:
  2247     do_ret();
  2248     break;
  2251   case Bytecodes::_monitorenter:
  2252     do_monitor_enter();
  2253     break;
  2255   case Bytecodes::_monitorexit:
  2256     do_monitor_exit();
  2257     break;
  2259   case Bytecodes::_breakpoint:
  2260     // Breakpoint set concurrently to compile
  2261     // %%% use an uncommon trap?
  2262     C->record_failure("breakpoint in method");
  2263     return;
  2265   default:
  2266 #ifndef PRODUCT
  2267     map()->dump(99);
  2268 #endif
  2269     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2270     ShouldNotReachHere();
  2273 #ifndef PRODUCT
  2274   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2275   if(printer) {
  2276     char buffer[256];
  2277     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2278     bool old = printer->traverse_outs();
  2279     printer->set_traverse_outs(true);
  2280     printer->print_method(C, buffer, 4);
  2281     printer->set_traverse_outs(old);
  2283 #endif

mercurial