src/share/vm/opto/divnode.cpp

Mon, 31 Oct 2011 03:06:42 -0700

author
twisti
date
Mon, 31 Oct 2011 03:06:42 -0700
changeset 3249
e3b0dcc327b9
parent 2314
f95d63e2154a
child 3845
121e5708ae96
permissions
-rw-r--r--

7104561: UseRDPCForConstantTableBase doesn't work after shorten branches changes
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/connode.hpp"
    29 #include "opto/divnode.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/mulnode.hpp"
    33 #include "opto/phaseX.hpp"
    34 #include "opto/subnode.hpp"
    36 // Portions of code courtesy of Clifford Click
    38 // Optimization - Graph Style
    40 #include <math.h>
    42 //----------------------magic_int_divide_constants-----------------------------
    43 // Compute magic multiplier and shift constant for converting a 32 bit divide
    44 // by constant into a multiply/shift/add series. Return false if calculations
    45 // fail.
    46 //
    47 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
    48 // minor type name and parameter changes.
    49 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
    50   int32_t p;
    51   uint32_t ad, anc, delta, q1, r1, q2, r2, t;
    52   const uint32_t two31 = 0x80000000L;     // 2**31.
    54   ad = ABS(d);
    55   if (d == 0 || d == 1) return false;
    56   t = two31 + ((uint32_t)d >> 31);
    57   anc = t - 1 - t%ad;     // Absolute value of nc.
    58   p = 31;                 // Init. p.
    59   q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
    60   r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
    61   q2 = two31/ad;          // Init. q2 = 2**p/|d|.
    62   r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
    63   do {
    64     p = p + 1;
    65     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
    66     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
    67     if (r1 >= anc) {      // (Must be an unsigned
    68       q1 = q1 + 1;        // comparison here).
    69       r1 = r1 - anc;
    70     }
    71     q2 = 2*q2;            // Update q2 = 2**p/|d|.
    72     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
    73     if (r2 >= ad) {       // (Must be an unsigned
    74       q2 = q2 + 1;        // comparison here).
    75       r2 = r2 - ad;
    76     }
    77     delta = ad - r2;
    78   } while (q1 < delta || (q1 == delta && r1 == 0));
    80   M = q2 + 1;
    81   if (d < 0) M = -M;      // Magic number and
    82   s = p - 32;             // shift amount to return.
    84   return true;
    85 }
    87 //--------------------------transform_int_divide-------------------------------
    88 // Convert a division by constant divisor into an alternate Ideal graph.
    89 // Return NULL if no transformation occurs.
    90 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
    92   // Check for invalid divisors
    93   assert( divisor != 0 && divisor != min_jint,
    94           "bad divisor for transforming to long multiply" );
    96   bool d_pos = divisor >= 0;
    97   jint d = d_pos ? divisor : -divisor;
    98   const int N = 32;
   100   // Result
   101   Node *q = NULL;
   103   if (d == 1) {
   104     // division by +/- 1
   105     if (!d_pos) {
   106       // Just negate the value
   107       q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
   108     }
   109   } else if ( is_power_of_2(d) ) {
   110     // division by +/- a power of 2
   112     // See if we can simply do a shift without rounding
   113     bool needs_rounding = true;
   114     const Type *dt = phase->type(dividend);
   115     const TypeInt *dti = dt->isa_int();
   116     if (dti && dti->_lo >= 0) {
   117       // we don't need to round a positive dividend
   118       needs_rounding = false;
   119     } else if( dividend->Opcode() == Op_AndI ) {
   120       // An AND mask of sufficient size clears the low bits and
   121       // I can avoid rounding.
   122       const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
   123       if( andconi_t && andconi_t->is_con() ) {
   124         jint andconi = andconi_t->get_con();
   125         if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
   126           if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
   127             dividend = dividend->in(1);
   128           needs_rounding = false;
   129         }
   130       }
   131     }
   133     // Add rounding to the shift to handle the sign bit
   134     int l = log2_intptr(d-1)+1;
   135     if (needs_rounding) {
   136       // Divide-by-power-of-2 can be made into a shift, but you have to do
   137       // more math for the rounding.  You need to add 0 for positive
   138       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
   139       // shift is by 2.  You need to add 3 to negative dividends and 0 to
   140       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
   141       // (-2+3)>>2 becomes 0, etc.
   143       // Compute 0 or -1, based on sign bit
   144       Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
   145       // Mask sign bit to the low sign bits
   146       Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
   147       // Round up before shifting
   148       dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
   149     }
   151     // Shift for division
   152     q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
   154     if (!d_pos) {
   155       q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
   156     }
   157   } else {
   158     // Attempt the jint constant divide -> multiply transform found in
   159     //   "Division by Invariant Integers using Multiplication"
   160     //     by Granlund and Montgomery
   161     // See also "Hacker's Delight", chapter 10 by Warren.
   163     jint magic_const;
   164     jint shift_const;
   165     if (magic_int_divide_constants(d, magic_const, shift_const)) {
   166       Node *magic = phase->longcon(magic_const);
   167       Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
   169       // Compute the high half of the dividend x magic multiplication
   170       Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));
   172       if (magic_const < 0) {
   173         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
   174         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
   176         // The magic multiplier is too large for a 32 bit constant. We've adjusted
   177         // it down by 2^32, but have to add 1 dividend back in after the multiplication.
   178         // This handles the "overflow" case described by Granlund and Montgomery.
   179         mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));
   181         // Shift over the (adjusted) mulhi
   182         if (shift_const != 0) {
   183           mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
   184         }
   185       } else {
   186         // No add is required, we can merge the shifts together.
   187         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
   188         mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
   189       }
   191       // Get a 0 or -1 from the sign of the dividend.
   192       Node *addend0 = mul_hi;
   193       Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
   195       // If the divisor is negative, swap the order of the input addends;
   196       // this has the effect of negating the quotient.
   197       if (!d_pos) {
   198         Node *temp = addend0; addend0 = addend1; addend1 = temp;
   199       }
   201       // Adjust the final quotient by subtracting -1 (adding 1)
   202       // from the mul_hi.
   203       q = new (phase->C, 3) SubINode(addend0, addend1);
   204     }
   205   }
   207   return q;
   208 }
   210 //---------------------magic_long_divide_constants-----------------------------
   211 // Compute magic multiplier and shift constant for converting a 64 bit divide
   212 // by constant into a multiply/shift/add series. Return false if calculations
   213 // fail.
   214 //
   215 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
   216 // minor type name and parameter changes.  Adjusted to 64 bit word width.
   217 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
   218   int64_t p;
   219   uint64_t ad, anc, delta, q1, r1, q2, r2, t;
   220   const uint64_t two63 = 0x8000000000000000LL;     // 2**63.
   222   ad = ABS(d);
   223   if (d == 0 || d == 1) return false;
   224   t = two63 + ((uint64_t)d >> 63);
   225   anc = t - 1 - t%ad;     // Absolute value of nc.
   226   p = 63;                 // Init. p.
   227   q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
   228   r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
   229   q2 = two63/ad;          // Init. q2 = 2**p/|d|.
   230   r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
   231   do {
   232     p = p + 1;
   233     q1 = 2*q1;            // Update q1 = 2**p/|nc|.
   234     r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
   235     if (r1 >= anc) {      // (Must be an unsigned
   236       q1 = q1 + 1;        // comparison here).
   237       r1 = r1 - anc;
   238     }
   239     q2 = 2*q2;            // Update q2 = 2**p/|d|.
   240     r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
   241     if (r2 >= ad) {       // (Must be an unsigned
   242       q2 = q2 + 1;        // comparison here).
   243       r2 = r2 - ad;
   244     }
   245     delta = ad - r2;
   246   } while (q1 < delta || (q1 == delta && r1 == 0));
   248   M = q2 + 1;
   249   if (d < 0) M = -M;      // Magic number and
   250   s = p - 64;             // shift amount to return.
   252   return true;
   253 }
   255 //---------------------long_by_long_mulhi--------------------------------------
   256 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
   257 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
   258   // If the architecture supports a 64x64 mulhi, there is
   259   // no need to synthesize it in ideal nodes.
   260   if (Matcher::has_match_rule(Op_MulHiL)) {
   261     Node* v = phase->longcon(magic_const);
   262     return new (phase->C, 3) MulHiLNode(dividend, v);
   263   }
   265   // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
   266   // (http://www.hackersdelight.org/HDcode/mulhs.c)
   267   //
   268   // int mulhs(int u, int v) {
   269   //    unsigned u0, v0, w0;
   270   //    int u1, v1, w1, w2, t;
   271   //
   272   //    u0 = u & 0xFFFF;  u1 = u >> 16;
   273   //    v0 = v & 0xFFFF;  v1 = v >> 16;
   274   //    w0 = u0*v0;
   275   //    t  = u1*v0 + (w0 >> 16);
   276   //    w1 = t & 0xFFFF;
   277   //    w2 = t >> 16;
   278   //    w1 = u0*v1 + w1;
   279   //    return u1*v1 + w2 + (w1 >> 16);
   280   // }
   281   //
   282   // Note: The version above is for 32x32 multiplications, while the
   283   // following inline comments are adapted to 64x64.
   285   const int N = 64;
   287   // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
   288   Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
   289   Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
   291   // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
   292   Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
   293   Node* v1 = phase->longcon(magic_const >> (N / 2));
   295   // w0 = u0*v0;
   296   Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));
   298   // t = u1*v0 + (w0 >> 32);
   299   Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
   300   Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
   301   Node* t    = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
   303   // w1 = t & 0xFFFFFFFF;
   304   Node* w1 = new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF));
   306   // w2 = t >> 32;
   307   Node* w2 = new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2));
   309   // 6732154: Construct both w1 and w2 before transforming, so t
   310   // doesn't go dead prematurely.
   311   // 6837011: We need to transform w2 before w1 because the
   312   // transformation of w1 could return t.
   313   w2 = phase->transform(w2);
   314   w1 = phase->transform(w1);
   316   // w1 = u0*v1 + w1;
   317   Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
   318   w1         = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
   320   // return u1*v1 + w2 + (w1 >> 32);
   321   Node* u1v1  = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
   322   Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
   323   Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
   325   return new (phase->C, 3) AddLNode(temp1, temp2);
   326 }
   329 //--------------------------transform_long_divide------------------------------
   330 // Convert a division by constant divisor into an alternate Ideal graph.
   331 // Return NULL if no transformation occurs.
   332 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
   333   // Check for invalid divisors
   334   assert( divisor != 0L && divisor != min_jlong,
   335           "bad divisor for transforming to long multiply" );
   337   bool d_pos = divisor >= 0;
   338   jlong d = d_pos ? divisor : -divisor;
   339   const int N = 64;
   341   // Result
   342   Node *q = NULL;
   344   if (d == 1) {
   345     // division by +/- 1
   346     if (!d_pos) {
   347       // Just negate the value
   348       q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
   349     }
   350   } else if ( is_power_of_2_long(d) ) {
   352     // division by +/- a power of 2
   354     // See if we can simply do a shift without rounding
   355     bool needs_rounding = true;
   356     const Type *dt = phase->type(dividend);
   357     const TypeLong *dtl = dt->isa_long();
   359     if (dtl && dtl->_lo > 0) {
   360       // we don't need to round a positive dividend
   361       needs_rounding = false;
   362     } else if( dividend->Opcode() == Op_AndL ) {
   363       // An AND mask of sufficient size clears the low bits and
   364       // I can avoid rounding.
   365       const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
   366       if( andconl_t && andconl_t->is_con() ) {
   367         jlong andconl = andconl_t->get_con();
   368         if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
   369           if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
   370             dividend = dividend->in(1);
   371           needs_rounding = false;
   372         }
   373       }
   374     }
   376     // Add rounding to the shift to handle the sign bit
   377     int l = log2_long(d-1)+1;
   378     if (needs_rounding) {
   379       // Divide-by-power-of-2 can be made into a shift, but you have to do
   380       // more math for the rounding.  You need to add 0 for positive
   381       // numbers, and "i-1" for negative numbers.  Example: i=4, so the
   382       // shift is by 2.  You need to add 3 to negative dividends and 0 to
   383       // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
   384       // (-2+3)>>2 becomes 0, etc.
   386       // Compute 0 or -1, based on sign bit
   387       Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
   388       // Mask sign bit to the low sign bits
   389       Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
   390       // Round up before shifting
   391       dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
   392     }
   394     // Shift for division
   395     q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));
   397     if (!d_pos) {
   398       q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
   399     }
   400   } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
   401                                                        // it is faster than code generated below.
   402     // Attempt the jlong constant divide -> multiply transform found in
   403     //   "Division by Invariant Integers using Multiplication"
   404     //     by Granlund and Montgomery
   405     // See also "Hacker's Delight", chapter 10 by Warren.
   407     jlong magic_const;
   408     jint shift_const;
   409     if (magic_long_divide_constants(d, magic_const, shift_const)) {
   410       // Compute the high half of the dividend x magic multiplication
   411       Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
   413       // The high half of the 128-bit multiply is computed.
   414       if (magic_const < 0) {
   415         // The magic multiplier is too large for a 64 bit constant. We've adjusted
   416         // it down by 2^64, but have to add 1 dividend back in after the multiplication.
   417         // This handles the "overflow" case described by Granlund and Montgomery.
   418         mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
   419       }
   421       // Shift over the (adjusted) mulhi
   422       if (shift_const != 0) {
   423         mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
   424       }
   426       // Get a 0 or -1 from the sign of the dividend.
   427       Node *addend0 = mul_hi;
   428       Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));
   430       // If the divisor is negative, swap the order of the input addends;
   431       // this has the effect of negating the quotient.
   432       if (!d_pos) {
   433         Node *temp = addend0; addend0 = addend1; addend1 = temp;
   434       }
   436       // Adjust the final quotient by subtracting -1 (adding 1)
   437       // from the mul_hi.
   438       q = new (phase->C, 3) SubLNode(addend0, addend1);
   439     }
   440   }
   442   return q;
   443 }
   445 //=============================================================================
   446 //------------------------------Identity---------------------------------------
   447 // If the divisor is 1, we are an identity on the dividend.
   448 Node *DivINode::Identity( PhaseTransform *phase ) {
   449   return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
   450 }
   452 //------------------------------Idealize---------------------------------------
   453 // Divides can be changed to multiplies and/or shifts
   454 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   455   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   456   // Don't bother trying to transform a dead node
   457   if( in(0) && in(0)->is_top() )  return NULL;
   459   const Type *t = phase->type( in(2) );
   460   if( t == TypeInt::ONE )       // Identity?
   461     return NULL;                // Skip it
   463   const TypeInt *ti = t->isa_int();
   464   if( !ti ) return NULL;
   465   if( !ti->is_con() ) return NULL;
   466   jint i = ti->get_con();       // Get divisor
   468   if (i == 0) return NULL;      // Dividing by zero constant does not idealize
   470   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
   472   // Dividing by MININT does not optimize as a power-of-2 shift.
   473   if( i == min_jint ) return NULL;
   475   return transform_int_divide( phase, in(1), i );
   476 }
   478 //------------------------------Value------------------------------------------
   479 // A DivINode divides its inputs.  The third input is a Control input, used to
   480 // prevent hoisting the divide above an unsafe test.
   481 const Type *DivINode::Value( PhaseTransform *phase ) const {
   482   // Either input is TOP ==> the result is TOP
   483   const Type *t1 = phase->type( in(1) );
   484   const Type *t2 = phase->type( in(2) );
   485   if( t1 == Type::TOP ) return Type::TOP;
   486   if( t2 == Type::TOP ) return Type::TOP;
   488   // x/x == 1 since we always generate the dynamic divisor check for 0.
   489   if( phase->eqv( in(1), in(2) ) )
   490     return TypeInt::ONE;
   492   // Either input is BOTTOM ==> the result is the local BOTTOM
   493   const Type *bot = bottom_type();
   494   if( (t1 == bot) || (t2 == bot) ||
   495       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   496     return bot;
   498   // Divide the two numbers.  We approximate.
   499   // If divisor is a constant and not zero
   500   const TypeInt *i1 = t1->is_int();
   501   const TypeInt *i2 = t2->is_int();
   502   int widen = MAX2(i1->_widen, i2->_widen);
   504   if( i2->is_con() && i2->get_con() != 0 ) {
   505     int32 d = i2->get_con(); // Divisor
   506     jint lo, hi;
   507     if( d >= 0 ) {
   508       lo = i1->_lo/d;
   509       hi = i1->_hi/d;
   510     } else {
   511       if( d == -1 && i1->_lo == min_jint ) {
   512         // 'min_jint/-1' throws arithmetic exception during compilation
   513         lo = min_jint;
   514         // do not support holes, 'hi' must go to either min_jint or max_jint:
   515         // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
   516         hi = i1->_hi == min_jint ? min_jint : max_jint;
   517       } else {
   518         lo = i1->_hi/d;
   519         hi = i1->_lo/d;
   520       }
   521     }
   522     return TypeInt::make(lo, hi, widen);
   523   }
   525   // If the dividend is a constant
   526   if( i1->is_con() ) {
   527     int32 d = i1->get_con();
   528     if( d < 0 ) {
   529       if( d == min_jint ) {
   530         //  (-min_jint) == min_jint == (min_jint / -1)
   531         return TypeInt::make(min_jint, max_jint/2 + 1, widen);
   532       } else {
   533         return TypeInt::make(d, -d, widen);
   534       }
   535     }
   536     return TypeInt::make(-d, d, widen);
   537   }
   539   // Otherwise we give up all hope
   540   return TypeInt::INT;
   541 }
   544 //=============================================================================
   545 //------------------------------Identity---------------------------------------
   546 // If the divisor is 1, we are an identity on the dividend.
   547 Node *DivLNode::Identity( PhaseTransform *phase ) {
   548   return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
   549 }
   551 //------------------------------Idealize---------------------------------------
   552 // Dividing by a power of 2 is a shift.
   553 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
   554   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   555   // Don't bother trying to transform a dead node
   556   if( in(0) && in(0)->is_top() )  return NULL;
   558   const Type *t = phase->type( in(2) );
   559   if( t == TypeLong::ONE )      // Identity?
   560     return NULL;                // Skip it
   562   const TypeLong *tl = t->isa_long();
   563   if( !tl ) return NULL;
   564   if( !tl->is_con() ) return NULL;
   565   jlong l = tl->get_con();      // Get divisor
   567   if (l == 0) return NULL;      // Dividing by zero constant does not idealize
   569   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
   571   // Dividing by MINLONG does not optimize as a power-of-2 shift.
   572   if( l == min_jlong ) return NULL;
   574   return transform_long_divide( phase, in(1), l );
   575 }
   577 //------------------------------Value------------------------------------------
   578 // A DivLNode divides its inputs.  The third input is a Control input, used to
   579 // prevent hoisting the divide above an unsafe test.
   580 const Type *DivLNode::Value( PhaseTransform *phase ) const {
   581   // Either input is TOP ==> the result is TOP
   582   const Type *t1 = phase->type( in(1) );
   583   const Type *t2 = phase->type( in(2) );
   584   if( t1 == Type::TOP ) return Type::TOP;
   585   if( t2 == Type::TOP ) return Type::TOP;
   587   // x/x == 1 since we always generate the dynamic divisor check for 0.
   588   if( phase->eqv( in(1), in(2) ) )
   589     return TypeLong::ONE;
   591   // Either input is BOTTOM ==> the result is the local BOTTOM
   592   const Type *bot = bottom_type();
   593   if( (t1 == bot) || (t2 == bot) ||
   594       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   595     return bot;
   597   // Divide the two numbers.  We approximate.
   598   // If divisor is a constant and not zero
   599   const TypeLong *i1 = t1->is_long();
   600   const TypeLong *i2 = t2->is_long();
   601   int widen = MAX2(i1->_widen, i2->_widen);
   603   if( i2->is_con() && i2->get_con() != 0 ) {
   604     jlong d = i2->get_con();    // Divisor
   605     jlong lo, hi;
   606     if( d >= 0 ) {
   607       lo = i1->_lo/d;
   608       hi = i1->_hi/d;
   609     } else {
   610       if( d == CONST64(-1) && i1->_lo == min_jlong ) {
   611         // 'min_jlong/-1' throws arithmetic exception during compilation
   612         lo = min_jlong;
   613         // do not support holes, 'hi' must go to either min_jlong or max_jlong:
   614         // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
   615         hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
   616       } else {
   617         lo = i1->_hi/d;
   618         hi = i1->_lo/d;
   619       }
   620     }
   621     return TypeLong::make(lo, hi, widen);
   622   }
   624   // If the dividend is a constant
   625   if( i1->is_con() ) {
   626     jlong d = i1->get_con();
   627     if( d < 0 ) {
   628       if( d == min_jlong ) {
   629         //  (-min_jlong) == min_jlong == (min_jlong / -1)
   630         return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
   631       } else {
   632         return TypeLong::make(d, -d, widen);
   633       }
   634     }
   635     return TypeLong::make(-d, d, widen);
   636   }
   638   // Otherwise we give up all hope
   639   return TypeLong::LONG;
   640 }
   643 //=============================================================================
   644 //------------------------------Value------------------------------------------
   645 // An DivFNode divides its inputs.  The third input is a Control input, used to
   646 // prevent hoisting the divide above an unsafe test.
   647 const Type *DivFNode::Value( PhaseTransform *phase ) const {
   648   // Either input is TOP ==> the result is TOP
   649   const Type *t1 = phase->type( in(1) );
   650   const Type *t2 = phase->type( in(2) );
   651   if( t1 == Type::TOP ) return Type::TOP;
   652   if( t2 == Type::TOP ) return Type::TOP;
   654   // Either input is BOTTOM ==> the result is the local BOTTOM
   655   const Type *bot = bottom_type();
   656   if( (t1 == bot) || (t2 == bot) ||
   657       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   658     return bot;
   660   // x/x == 1, we ignore 0/0.
   661   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   662   // Does not work for variables because of NaN's
   663   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
   664     if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
   665       return TypeF::ONE;
   667   if( t2 == TypeF::ONE )
   668     return t1;
   670   // If divisor is a constant and not zero, divide them numbers
   671   if( t1->base() == Type::FloatCon &&
   672       t2->base() == Type::FloatCon &&
   673       t2->getf() != 0.0 ) // could be negative zero
   674     return TypeF::make( t1->getf()/t2->getf() );
   676   // If the dividend is a constant zero
   677   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   678   // Test TypeF::ZERO is not sufficient as it could be negative zero
   680   if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
   681     return TypeF::ZERO;
   683   // Otherwise we give up all hope
   684   return Type::FLOAT;
   685 }
   687 //------------------------------isA_Copy---------------------------------------
   688 // Dividing by self is 1.
   689 // If the divisor is 1, we are an identity on the dividend.
   690 Node *DivFNode::Identity( PhaseTransform *phase ) {
   691   return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
   692 }
   695 //------------------------------Idealize---------------------------------------
   696 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   697   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   698   // Don't bother trying to transform a dead node
   699   if( in(0) && in(0)->is_top() )  return NULL;
   701   const Type *t2 = phase->type( in(2) );
   702   if( t2 == TypeF::ONE )         // Identity?
   703     return NULL;                // Skip it
   705   const TypeF *tf = t2->isa_float_constant();
   706   if( !tf ) return NULL;
   707   if( tf->base() != Type::FloatCon ) return NULL;
   709   // Check for out of range values
   710   if( tf->is_nan() || !tf->is_finite() ) return NULL;
   712   // Get the value
   713   float f = tf->getf();
   714   int exp;
   716   // Only for special case of dividing by a power of 2
   717   if( frexp((double)f, &exp) != 0.5 ) return NULL;
   719   // Limit the range of acceptable exponents
   720   if( exp < -126 || exp > 126 ) return NULL;
   722   // Compute the reciprocal
   723   float reciprocal = ((float)1.0) / f;
   725   assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
   727   // return multiplication by the reciprocal
   728   return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
   729 }
   731 //=============================================================================
   732 //------------------------------Value------------------------------------------
   733 // An DivDNode divides its inputs.  The third input is a Control input, used to
   734 // prevent hoisting the divide above an unsafe test.
   735 const Type *DivDNode::Value( PhaseTransform *phase ) const {
   736   // Either input is TOP ==> the result is TOP
   737   const Type *t1 = phase->type( in(1) );
   738   const Type *t2 = phase->type( in(2) );
   739   if( t1 == Type::TOP ) return Type::TOP;
   740   if( t2 == Type::TOP ) return Type::TOP;
   742   // Either input is BOTTOM ==> the result is the local BOTTOM
   743   const Type *bot = bottom_type();
   744   if( (t1 == bot) || (t2 == bot) ||
   745       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   746     return bot;
   748   // x/x == 1, we ignore 0/0.
   749   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   750   // Does not work for variables because of NaN's
   751   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
   752     if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
   753       return TypeD::ONE;
   755   if( t2 == TypeD::ONE )
   756     return t1;
   758 #if defined(IA32)
   759   if (!phase->C->method()->is_strict())
   760     // Can't trust native compilers to properly fold strict double
   761     // division with round-to-zero on this platform.
   762 #endif
   763     {
   764       // If divisor is a constant and not zero, divide them numbers
   765       if( t1->base() == Type::DoubleCon &&
   766           t2->base() == Type::DoubleCon &&
   767           t2->getd() != 0.0 ) // could be negative zero
   768         return TypeD::make( t1->getd()/t2->getd() );
   769     }
   771   // If the dividend is a constant zero
   772   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
   773   // Test TypeF::ZERO is not sufficient as it could be negative zero
   774   if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
   775     return TypeD::ZERO;
   777   // Otherwise we give up all hope
   778   return Type::DOUBLE;
   779 }
   782 //------------------------------isA_Copy---------------------------------------
   783 // Dividing by self is 1.
   784 // If the divisor is 1, we are an identity on the dividend.
   785 Node *DivDNode::Identity( PhaseTransform *phase ) {
   786   return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
   787 }
   789 //------------------------------Idealize---------------------------------------
   790 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   791   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
   792   // Don't bother trying to transform a dead node
   793   if( in(0) && in(0)->is_top() )  return NULL;
   795   const Type *t2 = phase->type( in(2) );
   796   if( t2 == TypeD::ONE )         // Identity?
   797     return NULL;                // Skip it
   799   const TypeD *td = t2->isa_double_constant();
   800   if( !td ) return NULL;
   801   if( td->base() != Type::DoubleCon ) return NULL;
   803   // Check for out of range values
   804   if( td->is_nan() || !td->is_finite() ) return NULL;
   806   // Get the value
   807   double d = td->getd();
   808   int exp;
   810   // Only for special case of dividing by a power of 2
   811   if( frexp(d, &exp) != 0.5 ) return NULL;
   813   // Limit the range of acceptable exponents
   814   if( exp < -1021 || exp > 1022 ) return NULL;
   816   // Compute the reciprocal
   817   double reciprocal = 1.0 / d;
   819   assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
   821   // return multiplication by the reciprocal
   822   return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
   823 }
   825 //=============================================================================
   826 //------------------------------Idealize---------------------------------------
   827 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   828   // Check for dead control input
   829   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
   830   // Don't bother trying to transform a dead node
   831   if( in(0) && in(0)->is_top() )  return NULL;
   833   // Get the modulus
   834   const Type *t = phase->type( in(2) );
   835   if( t == Type::TOP ) return NULL;
   836   const TypeInt *ti = t->is_int();
   838   // Check for useless control input
   839   // Check for excluding mod-zero case
   840   if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
   841     set_req(0, NULL);        // Yank control input
   842     return this;
   843   }
   845   // See if we are MOD'ing by 2^k or 2^k-1.
   846   if( !ti->is_con() ) return NULL;
   847   jint con = ti->get_con();
   849   Node *hook = new (phase->C, 1) Node(1);
   851   // First, special check for modulo 2^k-1
   852   if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
   853     uint k = exact_log2(con+1);  // Extract k
   855     // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
   856     static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
   857     int trip_count = 1;
   858     if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
   860     // If the unroll factor is not too large, and if conditional moves are
   861     // ok, then use this case
   862     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
   863       Node *x = in(1);            // Value being mod'd
   864       Node *divisor = in(2);      // Also is mask
   866       hook->init_req(0, x);       // Add a use to x to prevent him from dying
   867       // Generate code to reduce X rapidly to nearly 2^k-1.
   868       for( int i = 0; i < trip_count; i++ ) {
   869         Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
   870         Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
   871         x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
   872         hook->set_req(0, x);
   873       }
   875       // Generate sign-fixup code.  Was original value positive?
   876       // int hack_res = (i >= 0) ? divisor : 1;
   877       Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
   878       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
   879       Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
   880       // if( x >= hack_res ) x -= divisor;
   881       Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
   882       Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
   883       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
   884       // Convention is to not transform the return value of an Ideal
   885       // since Ideal is expected to return a modified 'this' or a new node.
   886       Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
   887       // cmov2 is now the mod
   889       // Now remove the bogus extra edges used to keep things alive
   890       if (can_reshape) {
   891         phase->is_IterGVN()->remove_dead_node(hook);
   892       } else {
   893         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
   894       }
   895       return cmov2;
   896     }
   897   }
   899   // Fell thru, the unroll case is not appropriate. Transform the modulo
   900   // into a long multiply/int multiply/subtract case
   902   // Cannot handle mod 0, and min_jint isn't handled by the transform
   903   if( con == 0 || con == min_jint ) return NULL;
   905   // Get the absolute value of the constant; at this point, we can use this
   906   jint pos_con = (con >= 0) ? con : -con;
   908   // integer Mod 1 is always 0
   909   if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
   911   int log2_con = -1;
   913   // If this is a power of two, they maybe we can mask it
   914   if( is_power_of_2(pos_con) ) {
   915     log2_con = log2_intptr((intptr_t)pos_con);
   917     const Type *dt = phase->type(in(1));
   918     const TypeInt *dti = dt->isa_int();
   920     // See if this can be masked, if the dividend is non-negative
   921     if( dti && dti->_lo >= 0 )
   922       return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
   923   }
   925   // Save in(1) so that it cannot be changed or deleted
   926   hook->init_req(0, in(1));
   928   // Divide using the transform from DivI to MulL
   929   Node *result = transform_int_divide( phase, in(1), pos_con );
   930   if (result != NULL) {
   931     Node *divide = phase->transform(result);
   933     // Re-multiply, using a shift if this is a power of two
   934     Node *mult = NULL;
   936     if( log2_con >= 0 )
   937       mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
   938     else
   939       mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
   941     // Finally, subtract the multiplied divided value from the original
   942     result = new (phase->C, 3) SubINode( in(1), mult );
   943   }
   945   // Now remove the bogus extra edges used to keep things alive
   946   if (can_reshape) {
   947     phase->is_IterGVN()->remove_dead_node(hook);
   948   } else {
   949     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
   950   }
   952   // return the value
   953   return result;
   954 }
   956 //------------------------------Value------------------------------------------
   957 const Type *ModINode::Value( PhaseTransform *phase ) const {
   958   // Either input is TOP ==> the result is TOP
   959   const Type *t1 = phase->type( in(1) );
   960   const Type *t2 = phase->type( in(2) );
   961   if( t1 == Type::TOP ) return Type::TOP;
   962   if( t2 == Type::TOP ) return Type::TOP;
   964   // We always generate the dynamic check for 0.
   965   // 0 MOD X is 0
   966   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
   967   // X MOD X is 0
   968   if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
   970   // Either input is BOTTOM ==> the result is the local BOTTOM
   971   const Type *bot = bottom_type();
   972   if( (t1 == bot) || (t2 == bot) ||
   973       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   974     return bot;
   976   const TypeInt *i1 = t1->is_int();
   977   const TypeInt *i2 = t2->is_int();
   978   if( !i1->is_con() || !i2->is_con() ) {
   979     if( i1->_lo >= 0 && i2->_lo >= 0 )
   980       return TypeInt::POS;
   981     // If both numbers are not constants, we know little.
   982     return TypeInt::INT;
   983   }
   984   // Mod by zero?  Throw exception at runtime!
   985   if( !i2->get_con() ) return TypeInt::POS;
   987   // We must be modulo'ing 2 float constants.
   988   // Check for min_jint % '-1', result is defined to be '0'.
   989   if( i1->get_con() == min_jint && i2->get_con() == -1 )
   990     return TypeInt::ZERO;
   992   return TypeInt::make( i1->get_con() % i2->get_con() );
   993 }
   996 //=============================================================================
   997 //------------------------------Idealize---------------------------------------
   998 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   999   // Check for dead control input
  1000   if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
  1001   // Don't bother trying to transform a dead node
  1002   if( in(0) && in(0)->is_top() )  return NULL;
  1004   // Get the modulus
  1005   const Type *t = phase->type( in(2) );
  1006   if( t == Type::TOP ) return NULL;
  1007   const TypeLong *tl = t->is_long();
  1009   // Check for useless control input
  1010   // Check for excluding mod-zero case
  1011   if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
  1012     set_req(0, NULL);        // Yank control input
  1013     return this;
  1016   // See if we are MOD'ing by 2^k or 2^k-1.
  1017   if( !tl->is_con() ) return NULL;
  1018   jlong con = tl->get_con();
  1020   Node *hook = new (phase->C, 1) Node(1);
  1022   // Expand mod
  1023   if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
  1024     uint k = exact_log2_long(con+1);  // Extract k
  1026     // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
  1027     // Used to help a popular random number generator which does a long-mod
  1028     // of 2^31-1 and shows up in SpecJBB and SciMark.
  1029     static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
  1030     int trip_count = 1;
  1031     if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
  1033     // If the unroll factor is not too large, and if conditional moves are
  1034     // ok, then use this case
  1035     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
  1036       Node *x = in(1);            // Value being mod'd
  1037       Node *divisor = in(2);      // Also is mask
  1039       hook->init_req(0, x);       // Add a use to x to prevent him from dying
  1040       // Generate code to reduce X rapidly to nearly 2^k-1.
  1041       for( int i = 0; i < trip_count; i++ ) {
  1042         Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
  1043         Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
  1044         x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
  1045         hook->set_req(0, x);    // Add a use to x to prevent him from dying
  1048       // Generate sign-fixup code.  Was original value positive?
  1049       // long hack_res = (i >= 0) ? divisor : CONST64(1);
  1050       Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
  1051       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
  1052       Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
  1053       // if( x >= hack_res ) x -= divisor;
  1054       Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
  1055       Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
  1056       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
  1057       // Convention is to not transform the return value of an Ideal
  1058       // since Ideal is expected to return a modified 'this' or a new node.
  1059       Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
  1060       // cmov2 is now the mod
  1062       // Now remove the bogus extra edges used to keep things alive
  1063       if (can_reshape) {
  1064         phase->is_IterGVN()->remove_dead_node(hook);
  1065       } else {
  1066         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
  1068       return cmov2;
  1072   // Fell thru, the unroll case is not appropriate. Transform the modulo
  1073   // into a long multiply/int multiply/subtract case
  1075   // Cannot handle mod 0, and min_jlong isn't handled by the transform
  1076   if( con == 0 || con == min_jlong ) return NULL;
  1078   // Get the absolute value of the constant; at this point, we can use this
  1079   jlong pos_con = (con >= 0) ? con : -con;
  1081   // integer Mod 1 is always 0
  1082   if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);
  1084   int log2_con = -1;
  1086   // If this is a power of two, then maybe we can mask it
  1087   if( is_power_of_2_long(pos_con) ) {
  1088     log2_con = exact_log2_long(pos_con);
  1090     const Type *dt = phase->type(in(1));
  1091     const TypeLong *dtl = dt->isa_long();
  1093     // See if this can be masked, if the dividend is non-negative
  1094     if( dtl && dtl->_lo >= 0 )
  1095       return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
  1098   // Save in(1) so that it cannot be changed or deleted
  1099   hook->init_req(0, in(1));
  1101   // Divide using the transform from DivL to MulL
  1102   Node *result = transform_long_divide( phase, in(1), pos_con );
  1103   if (result != NULL) {
  1104     Node *divide = phase->transform(result);
  1106     // Re-multiply, using a shift if this is a power of two
  1107     Node *mult = NULL;
  1109     if( log2_con >= 0 )
  1110       mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
  1111     else
  1112       mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );
  1114     // Finally, subtract the multiplied divided value from the original
  1115     result = new (phase->C, 3) SubLNode( in(1), mult );
  1118   // Now remove the bogus extra edges used to keep things alive
  1119   if (can_reshape) {
  1120     phase->is_IterGVN()->remove_dead_node(hook);
  1121   } else {
  1122     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  1125   // return the value
  1126   return result;
  1129 //------------------------------Value------------------------------------------
  1130 const Type *ModLNode::Value( PhaseTransform *phase ) const {
  1131   // Either input is TOP ==> the result is TOP
  1132   const Type *t1 = phase->type( in(1) );
  1133   const Type *t2 = phase->type( in(2) );
  1134   if( t1 == Type::TOP ) return Type::TOP;
  1135   if( t2 == Type::TOP ) return Type::TOP;
  1137   // We always generate the dynamic check for 0.
  1138   // 0 MOD X is 0
  1139   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  1140   // X MOD X is 0
  1141   if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
  1143   // Either input is BOTTOM ==> the result is the local BOTTOM
  1144   const Type *bot = bottom_type();
  1145   if( (t1 == bot) || (t2 == bot) ||
  1146       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1147     return bot;
  1149   const TypeLong *i1 = t1->is_long();
  1150   const TypeLong *i2 = t2->is_long();
  1151   if( !i1->is_con() || !i2->is_con() ) {
  1152     if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
  1153       return TypeLong::POS;
  1154     // If both numbers are not constants, we know little.
  1155     return TypeLong::LONG;
  1157   // Mod by zero?  Throw exception at runtime!
  1158   if( !i2->get_con() ) return TypeLong::POS;
  1160   // We must be modulo'ing 2 float constants.
  1161   // Check for min_jint % '-1', result is defined to be '0'.
  1162   if( i1->get_con() == min_jlong && i2->get_con() == -1 )
  1163     return TypeLong::ZERO;
  1165   return TypeLong::make( i1->get_con() % i2->get_con() );
  1169 //=============================================================================
  1170 //------------------------------Value------------------------------------------
  1171 const Type *ModFNode::Value( PhaseTransform *phase ) const {
  1172   // Either input is TOP ==> the result is TOP
  1173   const Type *t1 = phase->type( in(1) );
  1174   const Type *t2 = phase->type( in(2) );
  1175   if( t1 == Type::TOP ) return Type::TOP;
  1176   if( t2 == Type::TOP ) return Type::TOP;
  1178   // Either input is BOTTOM ==> the result is the local BOTTOM
  1179   const Type *bot = bottom_type();
  1180   if( (t1 == bot) || (t2 == bot) ||
  1181       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1182     return bot;
  1184   // If either number is not a constant, we know nothing.
  1185   if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
  1186     return Type::FLOAT;         // note: x%x can be either NaN or 0
  1189   float f1 = t1->getf();
  1190   float f2 = t2->getf();
  1191   jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  1192   jint  x2 = jint_cast(f2);
  1194   // If either is a NaN, return an input NaN
  1195   if (g_isnan(f1))    return t1;
  1196   if (g_isnan(f2))    return t2;
  1198   // If an operand is infinity or the divisor is +/- zero, punt.
  1199   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
  1200     return Type::FLOAT;
  1202   // We must be modulo'ing 2 float constants.
  1203   // Make sure that the sign of the fmod is equal to the sign of the dividend
  1204   jint xr = jint_cast(fmod(f1, f2));
  1205   if ((x1 ^ xr) < 0) {
  1206     xr ^= min_jint;
  1209   return TypeF::make(jfloat_cast(xr));
  1213 //=============================================================================
  1214 //------------------------------Value------------------------------------------
  1215 const Type *ModDNode::Value( PhaseTransform *phase ) const {
  1216   // Either input is TOP ==> the result is TOP
  1217   const Type *t1 = phase->type( in(1) );
  1218   const Type *t2 = phase->type( in(2) );
  1219   if( t1 == Type::TOP ) return Type::TOP;
  1220   if( t2 == Type::TOP ) return Type::TOP;
  1222   // Either input is BOTTOM ==> the result is the local BOTTOM
  1223   const Type *bot = bottom_type();
  1224   if( (t1 == bot) || (t2 == bot) ||
  1225       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
  1226     return bot;
  1228   // If either number is not a constant, we know nothing.
  1229   if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
  1230     return Type::DOUBLE;        // note: x%x can be either NaN or 0
  1233   double f1 = t1->getd();
  1234   double f2 = t2->getd();
  1235   jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  1236   jlong  x2 = jlong_cast(f2);
  1238   // If either is a NaN, return an input NaN
  1239   if (g_isnan(f1))    return t1;
  1240   if (g_isnan(f2))    return t2;
  1242   // If an operand is infinity or the divisor is +/- zero, punt.
  1243   if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
  1244     return Type::DOUBLE;
  1246   // We must be modulo'ing 2 double constants.
  1247   // Make sure that the sign of the fmod is equal to the sign of the dividend
  1248   jlong xr = jlong_cast(fmod(f1, f2));
  1249   if ((x1 ^ xr) < 0) {
  1250     xr ^= min_jlong;
  1253   return TypeD::make(jdouble_cast(xr));
  1256 //=============================================================================
  1258 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  1259   init_req(0, c);
  1260   init_req(1, dividend);
  1261   init_req(2, divisor);
  1264 //------------------------------make------------------------------------------
  1265 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  1266   Node* n = div_or_mod;
  1267   assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
  1268          "only div or mod input pattern accepted");
  1270   DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
  1271   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  1272   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  1273   return divmod;
  1276 //------------------------------make------------------------------------------
  1277 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  1278   Node* n = div_or_mod;
  1279   assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
  1280          "only div or mod input pattern accepted");
  1282   DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
  1283   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  1284   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  1285   return divmod;
  1288 //------------------------------match------------------------------------------
  1289 // return result(s) along with their RegMask info
  1290 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  1291   uint ideal_reg = proj->ideal_reg();
  1292   RegMask rm;
  1293   if (proj->_con == div_proj_num) {
  1294     rm = match->divI_proj_mask();
  1295   } else {
  1296     assert(proj->_con == mod_proj_num, "must be div or mod projection");
  1297     rm = match->modI_proj_mask();
  1299   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
  1303 //------------------------------match------------------------------------------
  1304 // return result(s) along with their RegMask info
  1305 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  1306   uint ideal_reg = proj->ideal_reg();
  1307   RegMask rm;
  1308   if (proj->_con == div_proj_num) {
  1309     rm = match->divL_proj_mask();
  1310   } else {
  1311     assert(proj->_con == mod_proj_num, "must be div or mod projection");
  1312     rm = match->modL_proj_mask();
  1314   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);

mercurial