src/share/vm/opto/callnode.cpp

Mon, 31 Oct 2011 03:06:42 -0700

author
twisti
date
Mon, 31 Oct 2011 03:06:42 -0700
changeset 3249
e3b0dcc327b9
parent 2314
f95d63e2154a
child 3311
1bd45abaa507
permissions
-rw-r--r--

7104561: UseRDPCForConstantTableBase doesn't work after shorten branches changes
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/escape.hpp"
    30 #include "opto/locknode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/matcher.hpp"
    33 #include "opto/parse.hpp"
    34 #include "opto/regalloc.hpp"
    35 #include "opto/regmask.hpp"
    36 #include "opto/rootnode.hpp"
    37 #include "opto/runtime.hpp"
    39 // Portions of code courtesy of Clifford Click
    41 // Optimization - Graph Style
    43 //=============================================================================
    44 uint StartNode::size_of() const { return sizeof(*this); }
    45 uint StartNode::cmp( const Node &n ) const
    46 { return _domain == ((StartNode&)n)._domain; }
    47 const Type *StartNode::bottom_type() const { return _domain; }
    48 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
    49 #ifndef PRODUCT
    50 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
    51 #endif
    53 //------------------------------Ideal------------------------------------------
    54 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
    55   return remove_dead_region(phase, can_reshape) ? this : NULL;
    56 }
    58 //------------------------------calling_convention-----------------------------
    59 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
    60   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
    61 }
    63 //------------------------------Registers--------------------------------------
    64 const RegMask &StartNode::in_RegMask(uint) const {
    65   return RegMask::Empty;
    66 }
    68 //------------------------------match------------------------------------------
    69 // Construct projections for incoming parameters, and their RegMask info
    70 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
    71   switch (proj->_con) {
    72   case TypeFunc::Control:
    73   case TypeFunc::I_O:
    74   case TypeFunc::Memory:
    75     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
    76   case TypeFunc::FramePtr:
    77     return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
    78   case TypeFunc::ReturnAdr:
    79     return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
    80   case TypeFunc::Parms:
    81   default: {
    82       uint parm_num = proj->_con - TypeFunc::Parms;
    83       const Type *t = _domain->field_at(proj->_con);
    84       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
    85         return new (match->C, 1) ConNode(Type::TOP);
    86       uint ideal_reg = Matcher::base2reg[t->base()];
    87       RegMask &rm = match->_calling_convention_mask[parm_num];
    88       return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
    89     }
    90   }
    91   return NULL;
    92 }
    94 //------------------------------StartOSRNode----------------------------------
    95 // The method start node for an on stack replacement adapter
    97 //------------------------------osr_domain-----------------------------
    98 const TypeTuple *StartOSRNode::osr_domain() {
    99   const Type **fields = TypeTuple::fields(2);
   100   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
   102   return TypeTuple::make(TypeFunc::Parms+1, fields);
   103 }
   105 //=============================================================================
   106 const char * const ParmNode::names[TypeFunc::Parms+1] = {
   107   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
   108 };
   110 #ifndef PRODUCT
   111 void ParmNode::dump_spec(outputStream *st) const {
   112   if( _con < TypeFunc::Parms ) {
   113     st->print(names[_con]);
   114   } else {
   115     st->print("Parm%d: ",_con-TypeFunc::Parms);
   116     // Verbose and WizardMode dump bottom_type for all nodes
   117     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
   118   }
   119 }
   120 #endif
   122 uint ParmNode::ideal_reg() const {
   123   switch( _con ) {
   124   case TypeFunc::Control  : // fall through
   125   case TypeFunc::I_O      : // fall through
   126   case TypeFunc::Memory   : return 0;
   127   case TypeFunc::FramePtr : // fall through
   128   case TypeFunc::ReturnAdr: return Op_RegP;
   129   default                 : assert( _con > TypeFunc::Parms, "" );
   130     // fall through
   131   case TypeFunc::Parms    : {
   132     // Type of argument being passed
   133     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
   134     return Matcher::base2reg[t->base()];
   135   }
   136   }
   137   ShouldNotReachHere();
   138   return 0;
   139 }
   141 //=============================================================================
   142 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
   143   init_req(TypeFunc::Control,cntrl);
   144   init_req(TypeFunc::I_O,i_o);
   145   init_req(TypeFunc::Memory,memory);
   146   init_req(TypeFunc::FramePtr,frameptr);
   147   init_req(TypeFunc::ReturnAdr,retadr);
   148 }
   150 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
   151   return remove_dead_region(phase, can_reshape) ? this : NULL;
   152 }
   154 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
   155   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
   156     ? Type::TOP
   157     : Type::BOTTOM;
   158 }
   160 // Do we Match on this edge index or not?  No edges on return nodes
   161 uint ReturnNode::match_edge(uint idx) const {
   162   return 0;
   163 }
   166 #ifndef PRODUCT
   167 void ReturnNode::dump_req() const {
   168   // Dump the required inputs, enclosed in '(' and ')'
   169   uint i;                       // Exit value of loop
   170   for( i=0; i<req(); i++ ) {    // For all required inputs
   171     if( i == TypeFunc::Parms ) tty->print("returns");
   172     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   173     else tty->print("_ ");
   174   }
   175 }
   176 #endif
   178 //=============================================================================
   179 RethrowNode::RethrowNode(
   180   Node* cntrl,
   181   Node* i_o,
   182   Node* memory,
   183   Node* frameptr,
   184   Node* ret_adr,
   185   Node* exception
   186 ) : Node(TypeFunc::Parms + 1) {
   187   init_req(TypeFunc::Control  , cntrl    );
   188   init_req(TypeFunc::I_O      , i_o      );
   189   init_req(TypeFunc::Memory   , memory   );
   190   init_req(TypeFunc::FramePtr , frameptr );
   191   init_req(TypeFunc::ReturnAdr, ret_adr);
   192   init_req(TypeFunc::Parms    , exception);
   193 }
   195 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
   196   return remove_dead_region(phase, can_reshape) ? this : NULL;
   197 }
   199 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
   200   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
   201     ? Type::TOP
   202     : Type::BOTTOM;
   203 }
   205 uint RethrowNode::match_edge(uint idx) const {
   206   return 0;
   207 }
   209 #ifndef PRODUCT
   210 void RethrowNode::dump_req() const {
   211   // Dump the required inputs, enclosed in '(' and ')'
   212   uint i;                       // Exit value of loop
   213   for( i=0; i<req(); i++ ) {    // For all required inputs
   214     if( i == TypeFunc::Parms ) tty->print("exception");
   215     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   216     else tty->print("_ ");
   217   }
   218 }
   219 #endif
   221 //=============================================================================
   222 // Do we Match on this edge index or not?  Match only target address & method
   223 uint TailCallNode::match_edge(uint idx) const {
   224   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   225 }
   227 //=============================================================================
   228 // Do we Match on this edge index or not?  Match only target address & oop
   229 uint TailJumpNode::match_edge(uint idx) const {
   230   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
   231 }
   233 //=============================================================================
   234 JVMState::JVMState(ciMethod* method, JVMState* caller) {
   235   assert(method != NULL, "must be valid call site");
   236   _method = method;
   237   _reexecute = Reexecute_Undefined;
   238   debug_only(_bci = -99);  // random garbage value
   239   debug_only(_map = (SafePointNode*)-1);
   240   _caller = caller;
   241   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
   242   _locoff = TypeFunc::Parms;
   243   _stkoff = _locoff + _method->max_locals();
   244   _monoff = _stkoff + _method->max_stack();
   245   _scloff = _monoff;
   246   _endoff = _monoff;
   247   _sp = 0;
   248 }
   249 JVMState::JVMState(int stack_size) {
   250   _method = NULL;
   251   _bci = InvocationEntryBci;
   252   _reexecute = Reexecute_Undefined;
   253   debug_only(_map = (SafePointNode*)-1);
   254   _caller = NULL;
   255   _depth  = 1;
   256   _locoff = TypeFunc::Parms;
   257   _stkoff = _locoff;
   258   _monoff = _stkoff + stack_size;
   259   _scloff = _monoff;
   260   _endoff = _monoff;
   261   _sp = 0;
   262 }
   264 //--------------------------------of_depth-------------------------------------
   265 JVMState* JVMState::of_depth(int d) const {
   266   const JVMState* jvmp = this;
   267   assert(0 < d && (uint)d <= depth(), "oob");
   268   for (int skip = depth() - d; skip > 0; skip--) {
   269     jvmp = jvmp->caller();
   270   }
   271   assert(jvmp->depth() == (uint)d, "found the right one");
   272   return (JVMState*)jvmp;
   273 }
   275 //-----------------------------same_calls_as-----------------------------------
   276 bool JVMState::same_calls_as(const JVMState* that) const {
   277   if (this == that)                    return true;
   278   if (this->depth() != that->depth())  return false;
   279   const JVMState* p = this;
   280   const JVMState* q = that;
   281   for (;;) {
   282     if (p->_method != q->_method)    return false;
   283     if (p->_method == NULL)          return true;   // bci is irrelevant
   284     if (p->_bci    != q->_bci)       return false;
   285     if (p->_reexecute != q->_reexecute)  return false;
   286     p = p->caller();
   287     q = q->caller();
   288     if (p == q)                      return true;
   289     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
   290   }
   291 }
   293 //------------------------------debug_start------------------------------------
   294 uint JVMState::debug_start()  const {
   295   debug_only(JVMState* jvmroot = of_depth(1));
   296   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
   297   return of_depth(1)->locoff();
   298 }
   300 //-------------------------------debug_end-------------------------------------
   301 uint JVMState::debug_end() const {
   302   debug_only(JVMState* jvmroot = of_depth(1));
   303   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
   304   return endoff();
   305 }
   307 //------------------------------debug_depth------------------------------------
   308 uint JVMState::debug_depth() const {
   309   uint total = 0;
   310   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
   311     total += jvmp->debug_size();
   312   }
   313   return total;
   314 }
   316 #ifndef PRODUCT
   318 //------------------------------format_helper----------------------------------
   319 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
   320 // any defined value or not.  If it does, print out the register or constant.
   321 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
   322   if (n == NULL) { st->print(" NULL"); return; }
   323   if (n->is_SafePointScalarObject()) {
   324     // Scalar replacement.
   325     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
   326     scobjs->append_if_missing(spobj);
   327     int sco_n = scobjs->find(spobj);
   328     assert(sco_n >= 0, "");
   329     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
   330     return;
   331   }
   332   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
   333     char buf[50];
   334     regalloc->dump_register(n,buf);
   335     st->print(" %s%d]=%s",msg,i,buf);
   336   } else {                      // No register, but might be constant
   337     const Type *t = n->bottom_type();
   338     switch (t->base()) {
   339     case Type::Int:
   340       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
   341       break;
   342     case Type::AnyPtr:
   343       assert( t == TypePtr::NULL_PTR, "" );
   344       st->print(" %s%d]=#NULL",msg,i);
   345       break;
   346     case Type::AryPtr:
   347     case Type::KlassPtr:
   348     case Type::InstPtr:
   349       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
   350       break;
   351     case Type::NarrowOop:
   352       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
   353       break;
   354     case Type::RawPtr:
   355       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
   356       break;
   357     case Type::DoubleCon:
   358       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
   359       break;
   360     case Type::FloatCon:
   361       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
   362       break;
   363     case Type::Long:
   364       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
   365       break;
   366     case Type::Half:
   367     case Type::Top:
   368       st->print(" %s%d]=_",msg,i);
   369       break;
   370     default: ShouldNotReachHere();
   371     }
   372   }
   373 }
   375 //------------------------------format-----------------------------------------
   376 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
   377   st->print("        #");
   378   if( _method ) {
   379     _method->print_short_name(st);
   380     st->print(" @ bci:%d ",_bci);
   381   } else {
   382     st->print_cr(" runtime stub ");
   383     return;
   384   }
   385   if (n->is_MachSafePoint()) {
   386     GrowableArray<SafePointScalarObjectNode*> scobjs;
   387     MachSafePointNode *mcall = n->as_MachSafePoint();
   388     uint i;
   389     // Print locals
   390     for( i = 0; i < (uint)loc_size(); i++ )
   391       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
   392     // Print stack
   393     for (i = 0; i < (uint)stk_size(); i++) {
   394       if ((uint)(_stkoff + i) >= mcall->len())
   395         st->print(" oob ");
   396       else
   397        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
   398     }
   399     for (i = 0; (int)i < nof_monitors(); i++) {
   400       Node *box = mcall->monitor_box(this, i);
   401       Node *obj = mcall->monitor_obj(this, i);
   402       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
   403         while( !box->is_BoxLock() )  box = box->in(1);
   404         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
   405       } else {
   406         OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
   407         st->print(" MON-BOX%d=%s+%d",
   408                    i,
   409                    OptoReg::regname(OptoReg::c_frame_pointer),
   410                    regalloc->reg2offset(box_reg));
   411       }
   412       const char* obj_msg = "MON-OBJ[";
   413       if (EliminateLocks) {
   414         while( !box->is_BoxLock() )  box = box->in(1);
   415         if (box->as_BoxLock()->is_eliminated())
   416           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
   417       }
   418       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
   419     }
   421     for (i = 0; i < (uint)scobjs.length(); i++) {
   422       // Scalar replaced objects.
   423       st->print_cr("");
   424       st->print("        # ScObj" INT32_FORMAT " ", i);
   425       SafePointScalarObjectNode* spobj = scobjs.at(i);
   426       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
   427       assert(cik->is_instance_klass() ||
   428              cik->is_array_klass(), "Not supported allocation.");
   429       ciInstanceKlass *iklass = NULL;
   430       if (cik->is_instance_klass()) {
   431         cik->print_name_on(st);
   432         iklass = cik->as_instance_klass();
   433       } else if (cik->is_type_array_klass()) {
   434         cik->as_array_klass()->base_element_type()->print_name_on(st);
   435         st->print("[%d]", spobj->n_fields());
   436       } else if (cik->is_obj_array_klass()) {
   437         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
   438         if (cie->is_instance_klass()) {
   439           cie->print_name_on(st);
   440         } else if (cie->is_type_array_klass()) {
   441           cie->as_array_klass()->base_element_type()->print_name_on(st);
   442         } else {
   443           ShouldNotReachHere();
   444         }
   445         st->print("[%d]", spobj->n_fields());
   446         int ndim = cik->as_array_klass()->dimension() - 1;
   447         while (ndim-- > 0) {
   448           st->print("[]");
   449         }
   450       }
   451       st->print("={");
   452       uint nf = spobj->n_fields();
   453       if (nf > 0) {
   454         uint first_ind = spobj->first_index();
   455         Node* fld_node = mcall->in(first_ind);
   456         ciField* cifield;
   457         if (iklass != NULL) {
   458           st->print(" [");
   459           cifield = iklass->nonstatic_field_at(0);
   460           cifield->print_name_on(st);
   461           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
   462         } else {
   463           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
   464         }
   465         for (uint j = 1; j < nf; j++) {
   466           fld_node = mcall->in(first_ind+j);
   467           if (iklass != NULL) {
   468             st->print(", [");
   469             cifield = iklass->nonstatic_field_at(j);
   470             cifield->print_name_on(st);
   471             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
   472           } else {
   473             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
   474           }
   475         }
   476       }
   477       st->print(" }");
   478     }
   479   }
   480   st->print_cr("");
   481   if (caller() != NULL)  caller()->format(regalloc, n, st);
   482 }
   485 void JVMState::dump_spec(outputStream *st) const {
   486   if (_method != NULL) {
   487     bool printed = false;
   488     if (!Verbose) {
   489       // The JVMS dumps make really, really long lines.
   490       // Take out the most boring parts, which are the package prefixes.
   491       char buf[500];
   492       stringStream namest(buf, sizeof(buf));
   493       _method->print_short_name(&namest);
   494       if (namest.count() < sizeof(buf)) {
   495         const char* name = namest.base();
   496         if (name[0] == ' ')  ++name;
   497         const char* endcn = strchr(name, ':');  // end of class name
   498         if (endcn == NULL)  endcn = strchr(name, '(');
   499         if (endcn == NULL)  endcn = name + strlen(name);
   500         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
   501           --endcn;
   502         st->print(" %s", endcn);
   503         printed = true;
   504       }
   505     }
   506     if (!printed)
   507       _method->print_short_name(st);
   508     st->print(" @ bci:%d",_bci);
   509     if(_reexecute == Reexecute_True)
   510       st->print(" reexecute");
   511   } else {
   512     st->print(" runtime stub");
   513   }
   514   if (caller() != NULL)  caller()->dump_spec(st);
   515 }
   518 void JVMState::dump_on(outputStream* st) const {
   519   if (_map && !((uintptr_t)_map & 1)) {
   520     if (_map->len() > _map->req()) {  // _map->has_exceptions()
   521       Node* ex = _map->in(_map->req());  // _map->next_exception()
   522       // skip the first one; it's already being printed
   523       while (ex != NULL && ex->len() > ex->req()) {
   524         ex = ex->in(ex->req());  // ex->next_exception()
   525         ex->dump(1);
   526       }
   527     }
   528     _map->dump(2);
   529   }
   530   st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
   531              depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
   532   if (_method == NULL) {
   533     st->print_cr("(none)");
   534   } else {
   535     _method->print_name(st);
   536     st->cr();
   537     if (bci() >= 0 && bci() < _method->code_size()) {
   538       st->print("    bc: ");
   539       _method->print_codes_on(bci(), bci()+1, st);
   540     }
   541   }
   542   if (caller() != NULL) {
   543     caller()->dump_on(st);
   544   }
   545 }
   547 // Extra way to dump a jvms from the debugger,
   548 // to avoid a bug with C++ member function calls.
   549 void dump_jvms(JVMState* jvms) {
   550   jvms->dump();
   551 }
   552 #endif
   554 //--------------------------clone_shallow--------------------------------------
   555 JVMState* JVMState::clone_shallow(Compile* C) const {
   556   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
   557   n->set_bci(_bci);
   558   n->_reexecute = _reexecute;
   559   n->set_locoff(_locoff);
   560   n->set_stkoff(_stkoff);
   561   n->set_monoff(_monoff);
   562   n->set_scloff(_scloff);
   563   n->set_endoff(_endoff);
   564   n->set_sp(_sp);
   565   n->set_map(_map);
   566   return n;
   567 }
   569 //---------------------------clone_deep----------------------------------------
   570 JVMState* JVMState::clone_deep(Compile* C) const {
   571   JVMState* n = clone_shallow(C);
   572   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
   573     p->_caller = p->_caller->clone_shallow(C);
   574   }
   575   assert(n->depth() == depth(), "sanity");
   576   assert(n->debug_depth() == debug_depth(), "sanity");
   577   return n;
   578 }
   580 //=============================================================================
   581 uint CallNode::cmp( const Node &n ) const
   582 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
   583 #ifndef PRODUCT
   584 void CallNode::dump_req() const {
   585   // Dump the required inputs, enclosed in '(' and ')'
   586   uint i;                       // Exit value of loop
   587   for( i=0; i<req(); i++ ) {    // For all required inputs
   588     if( i == TypeFunc::Parms ) tty->print("(");
   589     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
   590     else tty->print("_ ");
   591   }
   592   tty->print(")");
   593 }
   595 void CallNode::dump_spec(outputStream *st) const {
   596   st->print(" ");
   597   tf()->dump_on(st);
   598   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
   599   if (jvms() != NULL)  jvms()->dump_spec(st);
   600 }
   601 #endif
   603 const Type *CallNode::bottom_type() const { return tf()->range(); }
   604 const Type *CallNode::Value(PhaseTransform *phase) const {
   605   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
   606   return tf()->range();
   607 }
   609 //------------------------------calling_convention-----------------------------
   610 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   611   // Use the standard compiler calling convention
   612   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
   613 }
   616 //------------------------------match------------------------------------------
   617 // Construct projections for control, I/O, memory-fields, ..., and
   618 // return result(s) along with their RegMask info
   619 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
   620   switch (proj->_con) {
   621   case TypeFunc::Control:
   622   case TypeFunc::I_O:
   623   case TypeFunc::Memory:
   624     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
   626   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
   627     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
   628     // 2nd half of doubles and longs
   629     return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
   631   case TypeFunc::Parms: {       // Normal returns
   632     uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
   633     OptoRegPair regs = is_CallRuntime()
   634       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
   635       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
   636     RegMask rm = RegMask(regs.first());
   637     if( OptoReg::is_valid(regs.second()) )
   638       rm.Insert( regs.second() );
   639     return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
   640   }
   642   case TypeFunc::ReturnAdr:
   643   case TypeFunc::FramePtr:
   644   default:
   645     ShouldNotReachHere();
   646   }
   647   return NULL;
   648 }
   650 // Do we Match on this edge index or not?  Match no edges
   651 uint CallNode::match_edge(uint idx) const {
   652   return 0;
   653 }
   655 //
   656 // Determine whether the call could modify the field of the specified
   657 // instance at the specified offset.
   658 //
   659 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
   660   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
   662   // If not an OopPtr or not an instance type, assume the worst.
   663   // Note: currently this method is called only for instance types.
   664   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
   665     return true;
   666   }
   667   // The instance_id is set only for scalar-replaceable allocations which
   668   // are not passed as arguments according to Escape Analysis.
   669   return false;
   670 }
   672 // Does this call have a direct reference to n other than debug information?
   673 bool CallNode::has_non_debug_use(Node *n) {
   674   const TypeTuple * d = tf()->domain();
   675   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   676     Node *arg = in(i);
   677     if (arg == n) {
   678       return true;
   679     }
   680   }
   681   return false;
   682 }
   684 // Returns the unique CheckCastPP of a call
   685 // or 'this' if there are several CheckCastPP
   686 // or returns NULL if there is no one.
   687 Node *CallNode::result_cast() {
   688   Node *cast = NULL;
   690   Node *p = proj_out(TypeFunc::Parms);
   691   if (p == NULL)
   692     return NULL;
   694   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
   695     Node *use = p->fast_out(i);
   696     if (use->is_CheckCastPP()) {
   697       if (cast != NULL) {
   698         return this;  // more than 1 CheckCastPP
   699       }
   700       cast = use;
   701     }
   702   }
   703   return cast;
   704 }
   707 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
   708   projs->fallthrough_proj      = NULL;
   709   projs->fallthrough_catchproj = NULL;
   710   projs->fallthrough_ioproj    = NULL;
   711   projs->catchall_ioproj       = NULL;
   712   projs->catchall_catchproj    = NULL;
   713   projs->fallthrough_memproj   = NULL;
   714   projs->catchall_memproj      = NULL;
   715   projs->resproj               = NULL;
   716   projs->exobj                 = NULL;
   718   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   719     ProjNode *pn = fast_out(i)->as_Proj();
   720     if (pn->outcnt() == 0) continue;
   721     switch (pn->_con) {
   722     case TypeFunc::Control:
   723       {
   724         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   725         projs->fallthrough_proj = pn;
   726         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   727         const Node *cn = pn->fast_out(j);
   728         if (cn->is_Catch()) {
   729           ProjNode *cpn = NULL;
   730           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   731             cpn = cn->fast_out(k)->as_Proj();
   732             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   733             if (cpn->_con == CatchProjNode::fall_through_index)
   734               projs->fallthrough_catchproj = cpn;
   735             else {
   736               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   737               projs->catchall_catchproj = cpn;
   738             }
   739           }
   740         }
   741         break;
   742       }
   743     case TypeFunc::I_O:
   744       if (pn->_is_io_use)
   745         projs->catchall_ioproj = pn;
   746       else
   747         projs->fallthrough_ioproj = pn;
   748       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
   749         Node* e = pn->out(j);
   750         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj()) {
   751           assert(projs->exobj == NULL, "only one");
   752           projs->exobj = e;
   753         }
   754       }
   755       break;
   756     case TypeFunc::Memory:
   757       if (pn->_is_io_use)
   758         projs->catchall_memproj = pn;
   759       else
   760         projs->fallthrough_memproj = pn;
   761       break;
   762     case TypeFunc::Parms:
   763       projs->resproj = pn;
   764       break;
   765     default:
   766       assert(false, "unexpected projection from allocation node.");
   767     }
   768   }
   770   // The resproj may not exist because the result couuld be ignored
   771   // and the exception object may not exist if an exception handler
   772   // swallows the exception but all the other must exist and be found.
   773   assert(projs->fallthrough_proj      != NULL, "must be found");
   774   assert(projs->fallthrough_catchproj != NULL, "must be found");
   775   assert(projs->fallthrough_memproj   != NULL, "must be found");
   776   assert(projs->fallthrough_ioproj    != NULL, "must be found");
   777   assert(projs->catchall_catchproj    != NULL, "must be found");
   778   if (separate_io_proj) {
   779     assert(projs->catchall_memproj      != NULL, "must be found");
   780     assert(projs->catchall_ioproj       != NULL, "must be found");
   781   }
   782 }
   785 //=============================================================================
   786 uint CallJavaNode::size_of() const { return sizeof(*this); }
   787 uint CallJavaNode::cmp( const Node &n ) const {
   788   CallJavaNode &call = (CallJavaNode&)n;
   789   return CallNode::cmp(call) && _method == call._method;
   790 }
   791 #ifndef PRODUCT
   792 void CallJavaNode::dump_spec(outputStream *st) const {
   793   if( _method ) _method->print_short_name(st);
   794   CallNode::dump_spec(st);
   795 }
   796 #endif
   798 //=============================================================================
   799 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
   800 uint CallStaticJavaNode::cmp( const Node &n ) const {
   801   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
   802   return CallJavaNode::cmp(call);
   803 }
   805 //----------------------------uncommon_trap_request----------------------------
   806 // If this is an uncommon trap, return the request code, else zero.
   807 int CallStaticJavaNode::uncommon_trap_request() const {
   808   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
   809     return extract_uncommon_trap_request(this);
   810   }
   811   return 0;
   812 }
   813 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
   814 #ifndef PRODUCT
   815   if (!(call->req() > TypeFunc::Parms &&
   816         call->in(TypeFunc::Parms) != NULL &&
   817         call->in(TypeFunc::Parms)->is_Con())) {
   818     assert(_in_dump_cnt != 0, "OK if dumping");
   819     tty->print("[bad uncommon trap]");
   820     return 0;
   821   }
   822 #endif
   823   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
   824 }
   826 #ifndef PRODUCT
   827 void CallStaticJavaNode::dump_spec(outputStream *st) const {
   828   st->print("# Static ");
   829   if (_name != NULL) {
   830     st->print("%s", _name);
   831     int trap_req = uncommon_trap_request();
   832     if (trap_req != 0) {
   833       char buf[100];
   834       st->print("(%s)",
   835                  Deoptimization::format_trap_request(buf, sizeof(buf),
   836                                                      trap_req));
   837     }
   838     st->print(" ");
   839   }
   840   CallJavaNode::dump_spec(st);
   841 }
   842 #endif
   844 //=============================================================================
   845 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
   846 uint CallDynamicJavaNode::cmp( const Node &n ) const {
   847   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
   848   return CallJavaNode::cmp(call);
   849 }
   850 #ifndef PRODUCT
   851 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
   852   st->print("# Dynamic ");
   853   CallJavaNode::dump_spec(st);
   854 }
   855 #endif
   857 //=============================================================================
   858 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
   859 uint CallRuntimeNode::cmp( const Node &n ) const {
   860   CallRuntimeNode &call = (CallRuntimeNode&)n;
   861   return CallNode::cmp(call) && !strcmp(_name,call._name);
   862 }
   863 #ifndef PRODUCT
   864 void CallRuntimeNode::dump_spec(outputStream *st) const {
   865   st->print("# ");
   866   st->print(_name);
   867   CallNode::dump_spec(st);
   868 }
   869 #endif
   871 //------------------------------calling_convention-----------------------------
   872 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
   873   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
   874 }
   876 //=============================================================================
   877 //------------------------------calling_convention-----------------------------
   880 //=============================================================================
   881 #ifndef PRODUCT
   882 void CallLeafNode::dump_spec(outputStream *st) const {
   883   st->print("# ");
   884   st->print(_name);
   885   CallNode::dump_spec(st);
   886 }
   887 #endif
   889 //=============================================================================
   891 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
   892   assert(verify_jvms(jvms), "jvms must match");
   893   int loc = jvms->locoff() + idx;
   894   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
   895     // If current local idx is top then local idx - 1 could
   896     // be a long/double that needs to be killed since top could
   897     // represent the 2nd half ofthe long/double.
   898     uint ideal = in(loc -1)->ideal_reg();
   899     if (ideal == Op_RegD || ideal == Op_RegL) {
   900       // set other (low index) half to top
   901       set_req(loc - 1, in(loc));
   902     }
   903   }
   904   set_req(loc, c);
   905 }
   907 uint SafePointNode::size_of() const { return sizeof(*this); }
   908 uint SafePointNode::cmp( const Node &n ) const {
   909   return (&n == this);          // Always fail except on self
   910 }
   912 //-------------------------set_next_exception----------------------------------
   913 void SafePointNode::set_next_exception(SafePointNode* n) {
   914   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
   915   if (len() == req()) {
   916     if (n != NULL)  add_prec(n);
   917   } else {
   918     set_prec(req(), n);
   919   }
   920 }
   923 //----------------------------next_exception-----------------------------------
   924 SafePointNode* SafePointNode::next_exception() const {
   925   if (len() == req()) {
   926     return NULL;
   927   } else {
   928     Node* n = in(req());
   929     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
   930     return (SafePointNode*) n;
   931   }
   932 }
   935 //------------------------------Ideal------------------------------------------
   936 // Skip over any collapsed Regions
   937 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   938   return remove_dead_region(phase, can_reshape) ? this : NULL;
   939 }
   941 //------------------------------Identity---------------------------------------
   942 // Remove obviously duplicate safepoints
   943 Node *SafePointNode::Identity( PhaseTransform *phase ) {
   945   // If you have back to back safepoints, remove one
   946   if( in(TypeFunc::Control)->is_SafePoint() )
   947     return in(TypeFunc::Control);
   949   if( in(0)->is_Proj() ) {
   950     Node *n0 = in(0)->in(0);
   951     // Check if he is a call projection (except Leaf Call)
   952     if( n0->is_Catch() ) {
   953       n0 = n0->in(0)->in(0);
   954       assert( n0->is_Call(), "expect a call here" );
   955     }
   956     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
   957       // Useless Safepoint, so remove it
   958       return in(TypeFunc::Control);
   959     }
   960   }
   962   return this;
   963 }
   965 //------------------------------Value------------------------------------------
   966 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
   967   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
   968   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
   969   return Type::CONTROL;
   970 }
   972 #ifndef PRODUCT
   973 void SafePointNode::dump_spec(outputStream *st) const {
   974   st->print(" SafePoint ");
   975 }
   976 #endif
   978 const RegMask &SafePointNode::in_RegMask(uint idx) const {
   979   if( idx < TypeFunc::Parms ) return RegMask::Empty;
   980   // Values outside the domain represent debug info
   981   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
   982 }
   983 const RegMask &SafePointNode::out_RegMask() const {
   984   return RegMask::Empty;
   985 }
   988 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
   989   assert((int)grow_by > 0, "sanity");
   990   int monoff = jvms->monoff();
   991   int scloff = jvms->scloff();
   992   int endoff = jvms->endoff();
   993   assert(endoff == (int)req(), "no other states or debug info after me");
   994   Node* top = Compile::current()->top();
   995   for (uint i = 0; i < grow_by; i++) {
   996     ins_req(monoff, top);
   997   }
   998   jvms->set_monoff(monoff + grow_by);
   999   jvms->set_scloff(scloff + grow_by);
  1000   jvms->set_endoff(endoff + grow_by);
  1003 void SafePointNode::push_monitor(const FastLockNode *lock) {
  1004   // Add a LockNode, which points to both the original BoxLockNode (the
  1005   // stack space for the monitor) and the Object being locked.
  1006   const int MonitorEdges = 2;
  1007   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
  1008   assert(req() == jvms()->endoff(), "correct sizing");
  1009   int nextmon = jvms()->scloff();
  1010   if (GenerateSynchronizationCode) {
  1011     add_req(lock->box_node());
  1012     add_req(lock->obj_node());
  1013   } else {
  1014     Node* top = Compile::current()->top();
  1015     add_req(top);
  1016     add_req(top);
  1018   jvms()->set_scloff(nextmon+MonitorEdges);
  1019   jvms()->set_endoff(req());
  1022 void SafePointNode::pop_monitor() {
  1023   // Delete last monitor from debug info
  1024   debug_only(int num_before_pop = jvms()->nof_monitors());
  1025   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
  1026   int scloff = jvms()->scloff();
  1027   int endoff = jvms()->endoff();
  1028   int new_scloff = scloff - MonitorEdges;
  1029   int new_endoff = endoff - MonitorEdges;
  1030   jvms()->set_scloff(new_scloff);
  1031   jvms()->set_endoff(new_endoff);
  1032   while (scloff > new_scloff)  del_req(--scloff);
  1033   assert(jvms()->nof_monitors() == num_before_pop-1, "");
  1036 Node *SafePointNode::peek_monitor_box() const {
  1037   int mon = jvms()->nof_monitors() - 1;
  1038   assert(mon >= 0, "most have a monitor");
  1039   return monitor_box(jvms(), mon);
  1042 Node *SafePointNode::peek_monitor_obj() const {
  1043   int mon = jvms()->nof_monitors() - 1;
  1044   assert(mon >= 0, "most have a monitor");
  1045   return monitor_obj(jvms(), mon);
  1048 // Do we Match on this edge index or not?  Match no edges
  1049 uint SafePointNode::match_edge(uint idx) const {
  1050   if( !needs_polling_address_input() )
  1051     return 0;
  1053   return (TypeFunc::Parms == idx);
  1056 //==============  SafePointScalarObjectNode  ==============
  1058 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
  1059 #ifdef ASSERT
  1060                                                      AllocateNode* alloc,
  1061 #endif
  1062                                                      uint first_index,
  1063                                                      uint n_fields) :
  1064   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
  1065 #ifdef ASSERT
  1066   _alloc(alloc),
  1067 #endif
  1068   _first_index(first_index),
  1069   _n_fields(n_fields)
  1071   init_class_id(Class_SafePointScalarObject);
  1074 bool SafePointScalarObjectNode::pinned() const { return true; }
  1075 bool SafePointScalarObjectNode::depends_only_on_test() const { return false; }
  1077 uint SafePointScalarObjectNode::ideal_reg() const {
  1078   return 0; // No matching to machine instruction
  1081 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
  1082   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
  1085 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
  1086   return RegMask::Empty;
  1089 uint SafePointScalarObjectNode::match_edge(uint idx) const {
  1090   return 0;
  1093 SafePointScalarObjectNode*
  1094 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
  1095   void* cached = (*sosn_map)[(void*)this];
  1096   if (cached != NULL) {
  1097     return (SafePointScalarObjectNode*)cached;
  1099   Compile* C = Compile::current();
  1100   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
  1101   res->_first_index += jvms_adj;
  1102   sosn_map->Insert((void*)this, (void*)res);
  1103   return res;
  1107 #ifndef PRODUCT
  1108 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
  1109   st->print(" # fields@[%d..%d]", first_index(),
  1110              first_index() + n_fields() - 1);
  1113 #endif
  1115 //=============================================================================
  1116 uint AllocateNode::size_of() const { return sizeof(*this); }
  1118 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
  1119                            Node *ctrl, Node *mem, Node *abio,
  1120                            Node *size, Node *klass_node, Node *initial_test)
  1121   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
  1123   init_class_id(Class_Allocate);
  1124   init_flags(Flag_is_macro);
  1125   _is_scalar_replaceable = false;
  1126   Node *topnode = C->top();
  1128   init_req( TypeFunc::Control  , ctrl );
  1129   init_req( TypeFunc::I_O      , abio );
  1130   init_req( TypeFunc::Memory   , mem );
  1131   init_req( TypeFunc::ReturnAdr, topnode );
  1132   init_req( TypeFunc::FramePtr , topnode );
  1133   init_req( AllocSize          , size);
  1134   init_req( KlassNode          , klass_node);
  1135   init_req( InitialTest        , initial_test);
  1136   init_req( ALength            , topnode);
  1137   C->add_macro_node(this);
  1140 //=============================================================================
  1141 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
  1143 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1144   if (remove_dead_region(phase, can_reshape))  return this;
  1146   const Type* type = phase->type(Ideal_length());
  1147   if (type->isa_int() && type->is_int()->_hi < 0) {
  1148     if (can_reshape) {
  1149       PhaseIterGVN *igvn = phase->is_IterGVN();
  1150       // Unreachable fall through path (negative array length),
  1151       // the allocation can only throw so disconnect it.
  1152       Node* proj = proj_out(TypeFunc::Control);
  1153       Node* catchproj = NULL;
  1154       if (proj != NULL) {
  1155         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
  1156           Node *cn = proj->fast_out(i);
  1157           if (cn->is_Catch()) {
  1158             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
  1159             break;
  1163       if (catchproj != NULL && catchproj->outcnt() > 0 &&
  1164           (catchproj->outcnt() > 1 ||
  1165            catchproj->unique_out()->Opcode() != Op_Halt)) {
  1166         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
  1167         Node* nproj = catchproj->clone();
  1168         igvn->register_new_node_with_optimizer(nproj);
  1170         Node *frame = new (phase->C, 1) ParmNode( phase->C->start(), TypeFunc::FramePtr );
  1171         frame = phase->transform(frame);
  1172         // Halt & Catch Fire
  1173         Node *halt = new (phase->C, TypeFunc::Parms) HaltNode( nproj, frame );
  1174         phase->C->root()->add_req(halt);
  1175         phase->transform(halt);
  1177         igvn->replace_node(catchproj, phase->C->top());
  1178         return this;
  1180     } else {
  1181       // Can't correct it during regular GVN so register for IGVN
  1182       phase->C->record_for_igvn(this);
  1185   return NULL;
  1188 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
  1189 // CastII, if appropriate.  If we are not allowed to create new nodes, and
  1190 // a CastII is appropriate, return NULL.
  1191 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
  1192   Node *length = in(AllocateNode::ALength);
  1193   assert(length != NULL, "length is not null");
  1195   const TypeInt* length_type = phase->find_int_type(length);
  1196   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
  1198   if (ary_type != NULL && length_type != NULL) {
  1199     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
  1200     if (narrow_length_type != length_type) {
  1201       // Assert one of:
  1202       //   - the narrow_length is 0
  1203       //   - the narrow_length is not wider than length
  1204       assert(narrow_length_type == TypeInt::ZERO ||
  1205              (narrow_length_type->_hi <= length_type->_hi &&
  1206               narrow_length_type->_lo >= length_type->_lo),
  1207              "narrow type must be narrower than length type");
  1209       // Return NULL if new nodes are not allowed
  1210       if (!allow_new_nodes) return NULL;
  1211       // Create a cast which is control dependent on the initialization to
  1212       // propagate the fact that the array length must be positive.
  1213       length = new (phase->C, 2) CastIINode(length, narrow_length_type);
  1214       length->set_req(0, initialization()->proj_out(0));
  1218   return length;
  1221 //=============================================================================
  1222 uint LockNode::size_of() const { return sizeof(*this); }
  1224 // Redundant lock elimination
  1225 //
  1226 // There are various patterns of locking where we release and
  1227 // immediately reacquire a lock in a piece of code where no operations
  1228 // occur in between that would be observable.  In those cases we can
  1229 // skip releasing and reacquiring the lock without violating any
  1230 // fairness requirements.  Doing this around a loop could cause a lock
  1231 // to be held for a very long time so we concentrate on non-looping
  1232 // control flow.  We also require that the operations are fully
  1233 // redundant meaning that we don't introduce new lock operations on
  1234 // some paths so to be able to eliminate it on others ala PRE.  This
  1235 // would probably require some more extensive graph manipulation to
  1236 // guarantee that the memory edges were all handled correctly.
  1237 //
  1238 // Assuming p is a simple predicate which can't trap in any way and s
  1239 // is a synchronized method consider this code:
  1240 //
  1241 //   s();
  1242 //   if (p)
  1243 //     s();
  1244 //   else
  1245 //     s();
  1246 //   s();
  1247 //
  1248 // 1. The unlocks of the first call to s can be eliminated if the
  1249 // locks inside the then and else branches are eliminated.
  1250 //
  1251 // 2. The unlocks of the then and else branches can be eliminated if
  1252 // the lock of the final call to s is eliminated.
  1253 //
  1254 // Either of these cases subsumes the simple case of sequential control flow
  1255 //
  1256 // Addtionally we can eliminate versions without the else case:
  1257 //
  1258 //   s();
  1259 //   if (p)
  1260 //     s();
  1261 //   s();
  1262 //
  1263 // 3. In this case we eliminate the unlock of the first s, the lock
  1264 // and unlock in the then case and the lock in the final s.
  1265 //
  1266 // Note also that in all these cases the then/else pieces don't have
  1267 // to be trivial as long as they begin and end with synchronization
  1268 // operations.
  1269 //
  1270 //   s();
  1271 //   if (p)
  1272 //     s();
  1273 //     f();
  1274 //     s();
  1275 //   s();
  1276 //
  1277 // The code will work properly for this case, leaving in the unlock
  1278 // before the call to f and the relock after it.
  1279 //
  1280 // A potentially interesting case which isn't handled here is when the
  1281 // locking is partially redundant.
  1282 //
  1283 //   s();
  1284 //   if (p)
  1285 //     s();
  1286 //
  1287 // This could be eliminated putting unlocking on the else case and
  1288 // eliminating the first unlock and the lock in the then side.
  1289 // Alternatively the unlock could be moved out of the then side so it
  1290 // was after the merge and the first unlock and second lock
  1291 // eliminated.  This might require less manipulation of the memory
  1292 // state to get correct.
  1293 //
  1294 // Additionally we might allow work between a unlock and lock before
  1295 // giving up eliminating the locks.  The current code disallows any
  1296 // conditional control flow between these operations.  A formulation
  1297 // similar to partial redundancy elimination computing the
  1298 // availability of unlocking and the anticipatability of locking at a
  1299 // program point would allow detection of fully redundant locking with
  1300 // some amount of work in between.  I'm not sure how often I really
  1301 // think that would occur though.  Most of the cases I've seen
  1302 // indicate it's likely non-trivial work would occur in between.
  1303 // There may be other more complicated constructs where we could
  1304 // eliminate locking but I haven't seen any others appear as hot or
  1305 // interesting.
  1306 //
  1307 // Locking and unlocking have a canonical form in ideal that looks
  1308 // roughly like this:
  1309 //
  1310 //              <obj>
  1311 //                | \\------+
  1312 //                |  \       \
  1313 //                | BoxLock   \
  1314 //                |  |   |     \
  1315 //                |  |    \     \
  1316 //                |  |   FastLock
  1317 //                |  |   /
  1318 //                |  |  /
  1319 //                |  |  |
  1320 //
  1321 //               Lock
  1322 //                |
  1323 //            Proj #0
  1324 //                |
  1325 //            MembarAcquire
  1326 //                |
  1327 //            Proj #0
  1328 //
  1329 //            MembarRelease
  1330 //                |
  1331 //            Proj #0
  1332 //                |
  1333 //              Unlock
  1334 //                |
  1335 //            Proj #0
  1336 //
  1337 //
  1338 // This code proceeds by processing Lock nodes during PhaseIterGVN
  1339 // and searching back through its control for the proper code
  1340 // patterns.  Once it finds a set of lock and unlock operations to
  1341 // eliminate they are marked as eliminatable which causes the
  1342 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
  1343 //
  1344 //=============================================================================
  1346 //
  1347 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
  1348 //   - copy regions.  (These may not have been optimized away yet.)
  1349 //   - eliminated locking nodes
  1350 //
  1351 static Node *next_control(Node *ctrl) {
  1352   if (ctrl == NULL)
  1353     return NULL;
  1354   while (1) {
  1355     if (ctrl->is_Region()) {
  1356       RegionNode *r = ctrl->as_Region();
  1357       Node *n = r->is_copy();
  1358       if (n == NULL)
  1359         break;  // hit a region, return it
  1360       else
  1361         ctrl = n;
  1362     } else if (ctrl->is_Proj()) {
  1363       Node *in0 = ctrl->in(0);
  1364       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
  1365         ctrl = in0->in(0);
  1366       } else {
  1367         break;
  1369     } else {
  1370       break; // found an interesting control
  1373   return ctrl;
  1375 //
  1376 // Given a control, see if it's the control projection of an Unlock which
  1377 // operating on the same object as lock.
  1378 //
  1379 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
  1380                                             GrowableArray<AbstractLockNode*> &lock_ops) {
  1381   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
  1382   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
  1383     Node *n = ctrl_proj->in(0);
  1384     if (n != NULL && n->is_Unlock()) {
  1385       UnlockNode *unlock = n->as_Unlock();
  1386       if ((lock->obj_node() == unlock->obj_node()) &&
  1387           (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
  1388         lock_ops.append(unlock);
  1389         return true;
  1393   return false;
  1396 //
  1397 // Find the lock matching an unlock.  Returns null if a safepoint
  1398 // or complicated control is encountered first.
  1399 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
  1400   LockNode *lock_result = NULL;
  1401   // find the matching lock, or an intervening safepoint
  1402   Node *ctrl = next_control(unlock->in(0));
  1403   while (1) {
  1404     assert(ctrl != NULL, "invalid control graph");
  1405     assert(!ctrl->is_Start(), "missing lock for unlock");
  1406     if (ctrl->is_top()) break;  // dead control path
  1407     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
  1408     if (ctrl->is_SafePoint()) {
  1409         break;  // found a safepoint (may be the lock we are searching for)
  1410     } else if (ctrl->is_Region()) {
  1411       // Check for a simple diamond pattern.  Punt on anything more complicated
  1412       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
  1413         Node *in1 = next_control(ctrl->in(1));
  1414         Node *in2 = next_control(ctrl->in(2));
  1415         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
  1416              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
  1417           ctrl = next_control(in1->in(0)->in(0));
  1418         } else {
  1419           break;
  1421       } else {
  1422         break;
  1424     } else {
  1425       ctrl = next_control(ctrl->in(0));  // keep searching
  1428   if (ctrl->is_Lock()) {
  1429     LockNode *lock = ctrl->as_Lock();
  1430     if ((lock->obj_node() == unlock->obj_node()) &&
  1431             (lock->box_node() == unlock->box_node())) {
  1432       lock_result = lock;
  1435   return lock_result;
  1438 // This code corresponds to case 3 above.
  1440 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
  1441                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
  1442   Node* if_node = node->in(0);
  1443   bool  if_true = node->is_IfTrue();
  1445   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
  1446     Node *lock_ctrl = next_control(if_node->in(0));
  1447     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
  1448       Node* lock1_node = NULL;
  1449       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
  1450       if (if_true) {
  1451         if (proj->is_IfFalse() && proj->outcnt() == 1) {
  1452           lock1_node = proj->unique_out();
  1454       } else {
  1455         if (proj->is_IfTrue() && proj->outcnt() == 1) {
  1456           lock1_node = proj->unique_out();
  1459       if (lock1_node != NULL && lock1_node->is_Lock()) {
  1460         LockNode *lock1 = lock1_node->as_Lock();
  1461         if ((lock->obj_node() == lock1->obj_node()) &&
  1462             (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
  1463           lock_ops.append(lock1);
  1464           return true;
  1470   lock_ops.trunc_to(0);
  1471   return false;
  1474 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
  1475                                GrowableArray<AbstractLockNode*> &lock_ops) {
  1476   // check each control merging at this point for a matching unlock.
  1477   // in(0) should be self edge so skip it.
  1478   for (int i = 1; i < (int)region->req(); i++) {
  1479     Node *in_node = next_control(region->in(i));
  1480     if (in_node != NULL) {
  1481       if (find_matching_unlock(in_node, lock, lock_ops)) {
  1482         // found a match so keep on checking.
  1483         continue;
  1484       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
  1485         continue;
  1488       // If we fall through to here then it was some kind of node we
  1489       // don't understand or there wasn't a matching unlock, so give
  1490       // up trying to merge locks.
  1491       lock_ops.trunc_to(0);
  1492       return false;
  1495   return true;
  1499 #ifndef PRODUCT
  1500 //
  1501 // Create a counter which counts the number of times this lock is acquired
  1502 //
  1503 void AbstractLockNode::create_lock_counter(JVMState* state) {
  1504   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
  1506 #endif
  1508 void AbstractLockNode::set_eliminated() {
  1509   _eliminate = true;
  1510 #ifndef PRODUCT
  1511   if (_counter) {
  1512     // Update the counter to indicate that this lock was eliminated.
  1513     // The counter update code will stay around even though the
  1514     // optimizer will eliminate the lock operation itself.
  1515     _counter->set_tag(NamedCounter::EliminatedLockCounter);
  1517 #endif
  1520 //=============================================================================
  1521 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1523   // perform any generic optimizations first (returns 'this' or NULL)
  1524   Node *result = SafePointNode::Ideal(phase, can_reshape);
  1526   // Now see if we can optimize away this lock.  We don't actually
  1527   // remove the locking here, we simply set the _eliminate flag which
  1528   // prevents macro expansion from expanding the lock.  Since we don't
  1529   // modify the graph, the value returned from this function is the
  1530   // one computed above.
  1531   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
  1532     //
  1533     // If we are locking an unescaped object, the lock/unlock is unnecessary
  1534     //
  1535     ConnectionGraph *cgr = phase->C->congraph();
  1536     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
  1537     if (cgr != NULL)
  1538       es = cgr->escape_state(obj_node());
  1539     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
  1540       // Mark it eliminated to update any counters
  1541       this->set_eliminated();
  1542       return result;
  1545     //
  1546     // Try lock coarsening
  1547     //
  1548     PhaseIterGVN* iter = phase->is_IterGVN();
  1549     if (iter != NULL) {
  1551       GrowableArray<AbstractLockNode*>   lock_ops;
  1553       Node *ctrl = next_control(in(0));
  1555       // now search back for a matching Unlock
  1556       if (find_matching_unlock(ctrl, this, lock_ops)) {
  1557         // found an unlock directly preceding this lock.  This is the
  1558         // case of single unlock directly control dependent on a
  1559         // single lock which is the trivial version of case 1 or 2.
  1560       } else if (ctrl->is_Region() ) {
  1561         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
  1562         // found lock preceded by multiple unlocks along all paths
  1563         // joining at this point which is case 3 in description above.
  1565       } else {
  1566         // see if this lock comes from either half of an if and the
  1567         // predecessors merges unlocks and the other half of the if
  1568         // performs a lock.
  1569         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
  1570           // found unlock splitting to an if with locks on both branches.
  1574       if (lock_ops.length() > 0) {
  1575         // add ourselves to the list of locks to be eliminated.
  1576         lock_ops.append(this);
  1578   #ifndef PRODUCT
  1579         if (PrintEliminateLocks) {
  1580           int locks = 0;
  1581           int unlocks = 0;
  1582           for (int i = 0; i < lock_ops.length(); i++) {
  1583             AbstractLockNode* lock = lock_ops.at(i);
  1584             if (lock->Opcode() == Op_Lock)
  1585               locks++;
  1586             else
  1587               unlocks++;
  1588             if (Verbose) {
  1589               lock->dump(1);
  1592           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
  1594   #endif
  1596         // for each of the identified locks, mark them
  1597         // as eliminatable
  1598         for (int i = 0; i < lock_ops.length(); i++) {
  1599           AbstractLockNode* lock = lock_ops.at(i);
  1601           // Mark it eliminated to update any counters
  1602           lock->set_eliminated();
  1603           lock->set_coarsened();
  1605       } else if (result != NULL && ctrl->is_Region() &&
  1606                  iter->_worklist.member(ctrl)) {
  1607         // We weren't able to find any opportunities but the region this
  1608         // lock is control dependent on hasn't been processed yet so put
  1609         // this lock back on the worklist so we can check again once any
  1610         // region simplification has occurred.
  1611         iter->_worklist.push(this);
  1616   return result;
  1619 //=============================================================================
  1620 uint UnlockNode::size_of() const { return sizeof(*this); }
  1622 //=============================================================================
  1623 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1625   // perform any generic optimizations first (returns 'this' or NULL)
  1626   Node * result = SafePointNode::Ideal(phase, can_reshape);
  1628   // Now see if we can optimize away this unlock.  We don't actually
  1629   // remove the unlocking here, we simply set the _eliminate flag which
  1630   // prevents macro expansion from expanding the unlock.  Since we don't
  1631   // modify the graph, the value returned from this function is the
  1632   // one computed above.
  1633   // Escape state is defined after Parse phase.
  1634   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
  1635     //
  1636     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
  1637     //
  1638     ConnectionGraph *cgr = phase->C->congraph();
  1639     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
  1640     if (cgr != NULL)
  1641       es = cgr->escape_state(obj_node());
  1642     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
  1643       // Mark it eliminated to update any counters
  1644       this->set_eliminated();
  1647   return result;

mercurial