src/share/vm/oops/methodDataOop.hpp

Wed, 17 Mar 2010 11:01:05 +0100

author
fparain
date
Wed, 17 Mar 2010 11:01:05 +0100
changeset 1759
e392695de029
parent 1686
576e77447e3c
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6935224: Adding new DTrace probes to work with Palantir
Summary: Adding probes related to thread scheduling and class initialization
Reviewed-by: kamg, never

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BytecodeStream;
    27 // The MethodData object collects counts and other profile information
    28 // during zeroth-tier (interpretive) and first-tier execution.
    29 // The profile is used later by compilation heuristics.  Some heuristics
    30 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    31 // optimization often has a down-side, a corner case that it handles
    32 // poorly, but which is thought to be rare.  The profile provides
    33 // evidence of this rarity for a given method or even BCI.  It allows
    34 // the compiler to back out of the optimization at places where it
    35 // has historically been a poor choice.  Other heuristics try to use
    36 // specific information gathered about types observed at a given site.
    37 //
    38 // All data in the profile is approximate.  It is expected to be accurate
    39 // on the whole, but the system expects occasional inaccuraces, due to
    40 // counter overflow, multiprocessor races during data collection, space
    41 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    42 // optimization quality but will not affect correctness.  Also, each MDO
    43 // is marked with its birth-date ("creation_mileage") which can be used
    44 // to assess the quality ("maturity") of its data.
    45 //
    46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    47 // state.  Also, certain recorded per-BCI events are given one-bit counters
    48 // which overflow to a saturated state which applied to all counters at
    49 // that BCI.  In other words, there is a small lattice which approximates
    50 // the ideal of an infinite-precision counter for each event at each BCI,
    51 // and the lattice quickly "bottoms out" in a state where all counters
    52 // are taken to be indefinitely large.
    53 //
    54 // The reader will find many data races in profile gathering code, starting
    55 // with invocation counter incrementation.  None of these races harm correct
    56 // execution of the compiled code.
    58 // forward decl
    59 class ProfileData;
    61 // DataLayout
    62 //
    63 // Overlay for generic profiling data.
    64 class DataLayout VALUE_OBJ_CLASS_SPEC {
    65 private:
    66   // Every data layout begins with a header.  This header
    67   // contains a tag, which is used to indicate the size/layout
    68   // of the data, 4 bits of flags, which can be used in any way,
    69   // 4 bits of trap history (none/one reason/many reasons),
    70   // and a bci, which is used to tie this piece of data to a
    71   // specific bci in the bytecodes.
    72   union {
    73     intptr_t _bits;
    74     struct {
    75       u1 _tag;
    76       u1 _flags;
    77       u2 _bci;
    78     } _struct;
    79   } _header;
    81   // The data layout has an arbitrary number of cells, each sized
    82   // to accomodate a pointer or an integer.
    83   intptr_t _cells[1];
    85   // Some types of data layouts need a length field.
    86   static bool needs_array_len(u1 tag);
    88 public:
    89   enum {
    90     counter_increment = 1
    91   };
    93   enum {
    94     cell_size = sizeof(intptr_t)
    95   };
    97   // Tag values
    98   enum {
    99     no_tag,
   100     bit_data_tag,
   101     counter_data_tag,
   102     jump_data_tag,
   103     receiver_type_data_tag,
   104     virtual_call_data_tag,
   105     ret_data_tag,
   106     branch_data_tag,
   107     multi_branch_data_tag,
   108     arg_info_data_tag
   109   };
   111   enum {
   112     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   113     // The trap state breaks down further as [recompile:1 | reason:3].
   114     // This further breakdown is defined in deoptimization.cpp.
   115     // See Deoptimization::trap_state_reason for an assert that
   116     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   117     //
   118     // The trap_state is collected only if ProfileTraps is true.
   119     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   120     trap_shift = BitsPerByte - trap_bits,
   121     trap_mask = right_n_bits(trap_bits),
   122     trap_mask_in_place = (trap_mask << trap_shift),
   123     flag_limit = trap_shift,
   124     flag_mask = right_n_bits(flag_limit),
   125     first_flag = 0
   126   };
   128   // Size computation
   129   static int header_size_in_bytes() {
   130     return cell_size;
   131   }
   132   static int header_size_in_cells() {
   133     return 1;
   134   }
   136   static int compute_size_in_bytes(int cell_count) {
   137     return header_size_in_bytes() + cell_count * cell_size;
   138   }
   140   // Initialization
   141   void initialize(u1 tag, u2 bci, int cell_count);
   143   // Accessors
   144   u1 tag() {
   145     return _header._struct._tag;
   146   }
   148   // Return a few bits of trap state.  Range is [0..trap_mask].
   149   // The state tells if traps with zero, one, or many reasons have occurred.
   150   // It also tells whether zero or many recompilations have occurred.
   151   // The associated trap histogram in the MDO itself tells whether
   152   // traps are common or not.  If a BCI shows that a trap X has
   153   // occurred, and the MDO shows N occurrences of X, we make the
   154   // simplifying assumption that all N occurrences can be blamed
   155   // on that BCI.
   156   int trap_state() {
   157     return ((_header._struct._flags >> trap_shift) & trap_mask);
   158   }
   160   void set_trap_state(int new_state) {
   161     assert(ProfileTraps, "used only under +ProfileTraps");
   162     uint old_flags = (_header._struct._flags & flag_mask);
   163     _header._struct._flags = (new_state << trap_shift) | old_flags;
   164   }
   166   u1 flags() {
   167     return _header._struct._flags;
   168   }
   170   u2 bci() {
   171     return _header._struct._bci;
   172   }
   174   void set_header(intptr_t value) {
   175     _header._bits = value;
   176   }
   177   void release_set_header(intptr_t value) {
   178     OrderAccess::release_store_ptr(&_header._bits, value);
   179   }
   180   intptr_t header() {
   181     return _header._bits;
   182   }
   183   void set_cell_at(int index, intptr_t value) {
   184     _cells[index] = value;
   185   }
   186   void release_set_cell_at(int index, intptr_t value) {
   187     OrderAccess::release_store_ptr(&_cells[index], value);
   188   }
   189   intptr_t cell_at(int index) {
   190     return _cells[index];
   191   }
   192   intptr_t* adr_cell_at(int index) {
   193     return &_cells[index];
   194   }
   195   oop* adr_oop_at(int index) {
   196     return (oop*)&(_cells[index]);
   197   }
   199   void set_flag_at(int flag_number) {
   200     assert(flag_number < flag_limit, "oob");
   201     _header._struct._flags |= (0x1 << flag_number);
   202   }
   203   bool flag_at(int flag_number) {
   204     assert(flag_number < flag_limit, "oob");
   205     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   206   }
   208   // Low-level support for code generation.
   209   static ByteSize header_offset() {
   210     return byte_offset_of(DataLayout, _header);
   211   }
   212   static ByteSize tag_offset() {
   213     return byte_offset_of(DataLayout, _header._struct._tag);
   214   }
   215   static ByteSize flags_offset() {
   216     return byte_offset_of(DataLayout, _header._struct._flags);
   217   }
   218   static ByteSize bci_offset() {
   219     return byte_offset_of(DataLayout, _header._struct._bci);
   220   }
   221   static ByteSize cell_offset(int index) {
   222     return byte_offset_of(DataLayout, _cells[index]);
   223   }
   224   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   225   static int flag_number_to_byte_constant(int flag_number) {
   226     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   227     DataLayout temp; temp.set_header(0);
   228     temp.set_flag_at(flag_number);
   229     return temp._header._struct._flags;
   230   }
   231   // Return a value which, when or-ed as a word into _header, sets the flag.
   232   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   233     DataLayout temp; temp.set_header(0);
   234     temp._header._struct._flags = byte_constant;
   235     return temp._header._bits;
   236   }
   238   // GC support
   239   ProfileData* data_in();
   240   void follow_weak_refs(BoolObjectClosure* cl);
   241 };
   244 // ProfileData class hierarchy
   245 class ProfileData;
   246 class   BitData;
   247 class     CounterData;
   248 class       ReceiverTypeData;
   249 class         VirtualCallData;
   250 class       RetData;
   251 class   JumpData;
   252 class     BranchData;
   253 class   ArrayData;
   254 class     MultiBranchData;
   255 class     ArgInfoData;
   258 // ProfileData
   259 //
   260 // A ProfileData object is created to refer to a section of profiling
   261 // data in a structured way.
   262 class ProfileData : public ResourceObj {
   263 private:
   264 #ifndef PRODUCT
   265   enum {
   266     tab_width_one = 16,
   267     tab_width_two = 36
   268   };
   269 #endif // !PRODUCT
   271   // This is a pointer to a section of profiling data.
   272   DataLayout* _data;
   274 protected:
   275   DataLayout* data() { return _data; }
   277   enum {
   278     cell_size = DataLayout::cell_size
   279   };
   281 public:
   282   // How many cells are in this?
   283   virtual int cell_count() {
   284     ShouldNotReachHere();
   285     return -1;
   286   }
   288   // Return the size of this data.
   289   int size_in_bytes() {
   290     return DataLayout::compute_size_in_bytes(cell_count());
   291   }
   293 protected:
   294   // Low-level accessors for underlying data
   295   void set_intptr_at(int index, intptr_t value) {
   296     assert(0 <= index && index < cell_count(), "oob");
   297     data()->set_cell_at(index, value);
   298   }
   299   void release_set_intptr_at(int index, intptr_t value) {
   300     assert(0 <= index && index < cell_count(), "oob");
   301     data()->release_set_cell_at(index, value);
   302   }
   303   intptr_t intptr_at(int index) {
   304     assert(0 <= index && index < cell_count(), "oob");
   305     return data()->cell_at(index);
   306   }
   307   void set_uint_at(int index, uint value) {
   308     set_intptr_at(index, (intptr_t) value);
   309   }
   310   void release_set_uint_at(int index, uint value) {
   311     release_set_intptr_at(index, (intptr_t) value);
   312   }
   313   uint uint_at(int index) {
   314     return (uint)intptr_at(index);
   315   }
   316   void set_int_at(int index, int value) {
   317     set_intptr_at(index, (intptr_t) value);
   318   }
   319   void release_set_int_at(int index, int value) {
   320     release_set_intptr_at(index, (intptr_t) value);
   321   }
   322   int int_at(int index) {
   323     return (int)intptr_at(index);
   324   }
   325   int int_at_unchecked(int index) {
   326     return (int)data()->cell_at(index);
   327   }
   328   void set_oop_at(int index, oop value) {
   329     set_intptr_at(index, (intptr_t) value);
   330   }
   331   oop oop_at(int index) {
   332     return (oop)intptr_at(index);
   333   }
   334   oop* adr_oop_at(int index) {
   335     assert(0 <= index && index < cell_count(), "oob");
   336     return data()->adr_oop_at(index);
   337   }
   339   void set_flag_at(int flag_number) {
   340     data()->set_flag_at(flag_number);
   341   }
   342   bool flag_at(int flag_number) {
   343     return data()->flag_at(flag_number);
   344   }
   346   // two convenient imports for use by subclasses:
   347   static ByteSize cell_offset(int index) {
   348     return DataLayout::cell_offset(index);
   349   }
   350   static int flag_number_to_byte_constant(int flag_number) {
   351     return DataLayout::flag_number_to_byte_constant(flag_number);
   352   }
   354   ProfileData(DataLayout* data) {
   355     _data = data;
   356   }
   358 public:
   359   // Constructor for invalid ProfileData.
   360   ProfileData();
   362   u2 bci() {
   363     return data()->bci();
   364   }
   366   address dp() {
   367     return (address)_data;
   368   }
   370   int trap_state() {
   371     return data()->trap_state();
   372   }
   373   void set_trap_state(int new_state) {
   374     data()->set_trap_state(new_state);
   375   }
   377   // Type checking
   378   virtual bool is_BitData()         { return false; }
   379   virtual bool is_CounterData()     { return false; }
   380   virtual bool is_JumpData()        { return false; }
   381   virtual bool is_ReceiverTypeData(){ return false; }
   382   virtual bool is_VirtualCallData() { return false; }
   383   virtual bool is_RetData()         { return false; }
   384   virtual bool is_BranchData()      { return false; }
   385   virtual bool is_ArrayData()       { return false; }
   386   virtual bool is_MultiBranchData() { return false; }
   387   virtual bool is_ArgInfoData()     { return false; }
   390   BitData* as_BitData() {
   391     assert(is_BitData(), "wrong type");
   392     return is_BitData()         ? (BitData*)        this : NULL;
   393   }
   394   CounterData* as_CounterData() {
   395     assert(is_CounterData(), "wrong type");
   396     return is_CounterData()     ? (CounterData*)    this : NULL;
   397   }
   398   JumpData* as_JumpData() {
   399     assert(is_JumpData(), "wrong type");
   400     return is_JumpData()        ? (JumpData*)       this : NULL;
   401   }
   402   ReceiverTypeData* as_ReceiverTypeData() {
   403     assert(is_ReceiverTypeData(), "wrong type");
   404     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   405   }
   406   VirtualCallData* as_VirtualCallData() {
   407     assert(is_VirtualCallData(), "wrong type");
   408     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   409   }
   410   RetData* as_RetData() {
   411     assert(is_RetData(), "wrong type");
   412     return is_RetData()         ? (RetData*)        this : NULL;
   413   }
   414   BranchData* as_BranchData() {
   415     assert(is_BranchData(), "wrong type");
   416     return is_BranchData()      ? (BranchData*)     this : NULL;
   417   }
   418   ArrayData* as_ArrayData() {
   419     assert(is_ArrayData(), "wrong type");
   420     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   421   }
   422   MultiBranchData* as_MultiBranchData() {
   423     assert(is_MultiBranchData(), "wrong type");
   424     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   425   }
   426   ArgInfoData* as_ArgInfoData() {
   427     assert(is_ArgInfoData(), "wrong type");
   428     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   429   }
   432   // Subclass specific initialization
   433   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
   435   // GC support
   436   virtual void follow_contents() {}
   437   virtual void oop_iterate(OopClosure* blk) {}
   438   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
   439   virtual void adjust_pointers() {}
   440   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
   442 #ifndef SERIALGC
   443   // Parallel old support
   444   virtual void follow_contents(ParCompactionManager* cm) {}
   445   virtual void update_pointers() {}
   446   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
   447 #endif // SERIALGC
   449   // CI translation: ProfileData can represent both MethodDataOop data
   450   // as well as CIMethodData data. This function is provided for translating
   451   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   452   // most ProfileData don't require any translation, so we provide the null
   453   // translation here, and the required translators are in the ci subclasses.
   454   virtual void translate_from(ProfileData* data) {}
   456   virtual void print_data_on(outputStream* st) {
   457     ShouldNotReachHere();
   458   }
   460 #ifndef PRODUCT
   461   void print_shared(outputStream* st, const char* name);
   462   void tab(outputStream* st);
   463 #endif
   464 };
   466 // BitData
   467 //
   468 // A BitData holds a flag or two in its header.
   469 class BitData : public ProfileData {
   470 protected:
   471   enum {
   472     // null_seen:
   473     //  saw a null operand (cast/aastore/instanceof)
   474     null_seen_flag              = DataLayout::first_flag + 0
   475   };
   476   enum { bit_cell_count = 0 };  // no additional data fields needed.
   477 public:
   478   BitData(DataLayout* layout) : ProfileData(layout) {
   479   }
   481   virtual bool is_BitData() { return true; }
   483   static int static_cell_count() {
   484     return bit_cell_count;
   485   }
   487   virtual int cell_count() {
   488     return static_cell_count();
   489   }
   491   // Accessor
   493   // The null_seen flag bit is specially known to the interpreter.
   494   // Consulting it allows the compiler to avoid setting up null_check traps.
   495   bool null_seen()     { return flag_at(null_seen_flag); }
   496   void set_null_seen()    { set_flag_at(null_seen_flag); }
   499   // Code generation support
   500   static int null_seen_byte_constant() {
   501     return flag_number_to_byte_constant(null_seen_flag);
   502   }
   504   static ByteSize bit_data_size() {
   505     return cell_offset(bit_cell_count);
   506   }
   508 #ifndef PRODUCT
   509   void print_data_on(outputStream* st);
   510 #endif
   511 };
   513 // CounterData
   514 //
   515 // A CounterData corresponds to a simple counter.
   516 class CounterData : public BitData {
   517 protected:
   518   enum {
   519     count_off,
   520     counter_cell_count
   521   };
   522 public:
   523   CounterData(DataLayout* layout) : BitData(layout) {}
   525   virtual bool is_CounterData() { return true; }
   527   static int static_cell_count() {
   528     return counter_cell_count;
   529   }
   531   virtual int cell_count() {
   532     return static_cell_count();
   533   }
   535   // Direct accessor
   536   uint count() {
   537     return uint_at(count_off);
   538   }
   540   // Code generation support
   541   static ByteSize count_offset() {
   542     return cell_offset(count_off);
   543   }
   544   static ByteSize counter_data_size() {
   545     return cell_offset(counter_cell_count);
   546   }
   548   void set_count(uint count) {
   549     set_uint_at(count_off, count);
   550   }
   552 #ifndef PRODUCT
   553   void print_data_on(outputStream* st);
   554 #endif
   555 };
   557 // JumpData
   558 //
   559 // A JumpData is used to access profiling information for a direct
   560 // branch.  It is a counter, used for counting the number of branches,
   561 // plus a data displacement, used for realigning the data pointer to
   562 // the corresponding target bci.
   563 class JumpData : public ProfileData {
   564 protected:
   565   enum {
   566     taken_off_set,
   567     displacement_off_set,
   568     jump_cell_count
   569   };
   571   void set_displacement(int displacement) {
   572     set_int_at(displacement_off_set, displacement);
   573   }
   575 public:
   576   JumpData(DataLayout* layout) : ProfileData(layout) {
   577     assert(layout->tag() == DataLayout::jump_data_tag ||
   578       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   579   }
   581   virtual bool is_JumpData() { return true; }
   583   static int static_cell_count() {
   584     return jump_cell_count;
   585   }
   587   virtual int cell_count() {
   588     return static_cell_count();
   589   }
   591   // Direct accessor
   592   uint taken() {
   593     return uint_at(taken_off_set);
   594   }
   595   // Saturating counter
   596   uint inc_taken() {
   597     uint cnt = taken() + 1;
   598     // Did we wrap? Will compiler screw us??
   599     if (cnt == 0) cnt--;
   600     set_uint_at(taken_off_set, cnt);
   601     return cnt;
   602   }
   604   int displacement() {
   605     return int_at(displacement_off_set);
   606   }
   608   // Code generation support
   609   static ByteSize taken_offset() {
   610     return cell_offset(taken_off_set);
   611   }
   613   static ByteSize displacement_offset() {
   614     return cell_offset(displacement_off_set);
   615   }
   617   // Specific initialization.
   618   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   620 #ifndef PRODUCT
   621   void print_data_on(outputStream* st);
   622 #endif
   623 };
   625 // ReceiverTypeData
   626 //
   627 // A ReceiverTypeData is used to access profiling information about a
   628 // dynamic type check.  It consists of a counter which counts the total times
   629 // that the check is reached, and a series of (klassOop, count) pairs
   630 // which are used to store a type profile for the receiver of the check.
   631 class ReceiverTypeData : public CounterData {
   632 protected:
   633   enum {
   634     receiver0_offset = counter_cell_count,
   635     count0_offset,
   636     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   637   };
   639 public:
   640   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   641     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   642            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   643   }
   645   virtual bool is_ReceiverTypeData() { return true; }
   647   static int static_cell_count() {
   648     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   649   }
   651   virtual int cell_count() {
   652     return static_cell_count();
   653   }
   655   // Direct accessors
   656   static uint row_limit() {
   657     return TypeProfileWidth;
   658   }
   659   static int receiver_cell_index(uint row) {
   660     return receiver0_offset + row * receiver_type_row_cell_count;
   661   }
   662   static int receiver_count_cell_index(uint row) {
   663     return count0_offset + row * receiver_type_row_cell_count;
   664   }
   666   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
   667   // gc; it does not assert the receiver is a klass.  During compaction of the
   668   // perm gen, the klass may already have moved, so the is_klass() predicate
   669   // would fail.  The 'normal' version should be used whenever possible.
   670   klassOop receiver_unchecked(uint row) {
   671     assert(row < row_limit(), "oob");
   672     oop recv = oop_at(receiver_cell_index(row));
   673     return (klassOop)recv;
   674   }
   676   klassOop receiver(uint row) {
   677     klassOop recv = receiver_unchecked(row);
   678     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
   679     return recv;
   680   }
   682   void set_receiver(uint row, oop p) {
   683     assert((uint)row < row_limit(), "oob");
   684     set_oop_at(receiver_cell_index(row), p);
   685   }
   687   uint receiver_count(uint row) {
   688     assert(row < row_limit(), "oob");
   689     return uint_at(receiver_count_cell_index(row));
   690   }
   692   void set_receiver_count(uint row, uint count) {
   693     assert(row < row_limit(), "oob");
   694     set_uint_at(receiver_count_cell_index(row), count);
   695   }
   697   void clear_row(uint row) {
   698     assert(row < row_limit(), "oob");
   699     // Clear total count - indicator of polymorphic call site.
   700     // The site may look like as monomorphic after that but
   701     // it allow to have more accurate profiling information because
   702     // there was execution phase change since klasses were unloaded.
   703     // If the site is still polymorphic then MDO will be updated
   704     // to reflect it. But it could be the case that the site becomes
   705     // only bimorphic. Then keeping total count not 0 will be wrong.
   706     // Even if we use monomorphic (when it is not) for compilation
   707     // we will only have trap, deoptimization and recompile again
   708     // with updated MDO after executing method in Interpreter.
   709     // An additional receiver will be recorded in the cleaned row
   710     // during next call execution.
   711     //
   712     // Note: our profiling logic works with empty rows in any slot.
   713     // We do sorting a profiling info (ciCallProfile) for compilation.
   714     //
   715     set_count(0);
   716     set_receiver(row, NULL);
   717     set_receiver_count(row, 0);
   718   }
   720   // Code generation support
   721   static ByteSize receiver_offset(uint row) {
   722     return cell_offset(receiver_cell_index(row));
   723   }
   724   static ByteSize receiver_count_offset(uint row) {
   725     return cell_offset(receiver_count_cell_index(row));
   726   }
   727   static ByteSize receiver_type_data_size() {
   728     return cell_offset(static_cell_count());
   729   }
   731   // GC support
   732   virtual void follow_contents();
   733   virtual void oop_iterate(OopClosure* blk);
   734   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
   735   virtual void adjust_pointers();
   736   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
   738 #ifndef SERIALGC
   739   // Parallel old support
   740   virtual void follow_contents(ParCompactionManager* cm);
   741   virtual void update_pointers();
   742   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
   743 #endif // SERIALGC
   745   oop* adr_receiver(uint row) {
   746     return adr_oop_at(receiver_cell_index(row));
   747   }
   749 #ifndef PRODUCT
   750   void print_receiver_data_on(outputStream* st);
   751   void print_data_on(outputStream* st);
   752 #endif
   753 };
   755 // VirtualCallData
   756 //
   757 // A VirtualCallData is used to access profiling information about a
   758 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   759 class VirtualCallData : public ReceiverTypeData {
   760 public:
   761   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   762     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   763   }
   765   virtual bool is_VirtualCallData() { return true; }
   767   static int static_cell_count() {
   768     // At this point we could add more profile state, e.g., for arguments.
   769     // But for now it's the same size as the base record type.
   770     return ReceiverTypeData::static_cell_count();
   771   }
   773   virtual int cell_count() {
   774     return static_cell_count();
   775   }
   777   // Direct accessors
   778   static ByteSize virtual_call_data_size() {
   779     return cell_offset(static_cell_count());
   780   }
   782 #ifndef PRODUCT
   783   void print_data_on(outputStream* st);
   784 #endif
   785 };
   787 // RetData
   788 //
   789 // A RetData is used to access profiling information for a ret bytecode.
   790 // It is composed of a count of the number of times that the ret has
   791 // been executed, followed by a series of triples of the form
   792 // (bci, count, di) which count the number of times that some bci was the
   793 // target of the ret and cache a corresponding data displacement.
   794 class RetData : public CounterData {
   795 protected:
   796   enum {
   797     bci0_offset = counter_cell_count,
   798     count0_offset,
   799     displacement0_offset,
   800     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   801   };
   803   void set_bci(uint row, int bci) {
   804     assert((uint)row < row_limit(), "oob");
   805     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   806   }
   807   void release_set_bci(uint row, int bci) {
   808     assert((uint)row < row_limit(), "oob");
   809     // 'release' when setting the bci acts as a valid flag for other
   810     // threads wrt bci_count and bci_displacement.
   811     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   812   }
   813   void set_bci_count(uint row, uint count) {
   814     assert((uint)row < row_limit(), "oob");
   815     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   816   }
   817   void set_bci_displacement(uint row, int disp) {
   818     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   819   }
   821 public:
   822   RetData(DataLayout* layout) : CounterData(layout) {
   823     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   824   }
   826   virtual bool is_RetData() { return true; }
   828   enum {
   829     no_bci = -1 // value of bci when bci1/2 are not in use.
   830   };
   832   static int static_cell_count() {
   833     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   834   }
   836   virtual int cell_count() {
   837     return static_cell_count();
   838   }
   840   static uint row_limit() {
   841     return BciProfileWidth;
   842   }
   843   static int bci_cell_index(uint row) {
   844     return bci0_offset + row * ret_row_cell_count;
   845   }
   846   static int bci_count_cell_index(uint row) {
   847     return count0_offset + row * ret_row_cell_count;
   848   }
   849   static int bci_displacement_cell_index(uint row) {
   850     return displacement0_offset + row * ret_row_cell_count;
   851   }
   853   // Direct accessors
   854   int bci(uint row) {
   855     return int_at(bci_cell_index(row));
   856   }
   857   uint bci_count(uint row) {
   858     return uint_at(bci_count_cell_index(row));
   859   }
   860   int bci_displacement(uint row) {
   861     return int_at(bci_displacement_cell_index(row));
   862   }
   864   // Interpreter Runtime support
   865   address fixup_ret(int return_bci, methodDataHandle mdo);
   867   // Code generation support
   868   static ByteSize bci_offset(uint row) {
   869     return cell_offset(bci_cell_index(row));
   870   }
   871   static ByteSize bci_count_offset(uint row) {
   872     return cell_offset(bci_count_cell_index(row));
   873   }
   874   static ByteSize bci_displacement_offset(uint row) {
   875     return cell_offset(bci_displacement_cell_index(row));
   876   }
   878   // Specific initialization.
   879   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   881 #ifndef PRODUCT
   882   void print_data_on(outputStream* st);
   883 #endif
   884 };
   886 // BranchData
   887 //
   888 // A BranchData is used to access profiling data for a two-way branch.
   889 // It consists of taken and not_taken counts as well as a data displacement
   890 // for the taken case.
   891 class BranchData : public JumpData {
   892 protected:
   893   enum {
   894     not_taken_off_set = jump_cell_count,
   895     branch_cell_count
   896   };
   898   void set_displacement(int displacement) {
   899     set_int_at(displacement_off_set, displacement);
   900   }
   902 public:
   903   BranchData(DataLayout* layout) : JumpData(layout) {
   904     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   905   }
   907   virtual bool is_BranchData() { return true; }
   909   static int static_cell_count() {
   910     return branch_cell_count;
   911   }
   913   virtual int cell_count() {
   914     return static_cell_count();
   915   }
   917   // Direct accessor
   918   uint not_taken() {
   919     return uint_at(not_taken_off_set);
   920   }
   922   uint inc_not_taken() {
   923     uint cnt = not_taken() + 1;
   924     // Did we wrap? Will compiler screw us??
   925     if (cnt == 0) cnt--;
   926     set_uint_at(not_taken_off_set, cnt);
   927     return cnt;
   928   }
   930   // Code generation support
   931   static ByteSize not_taken_offset() {
   932     return cell_offset(not_taken_off_set);
   933   }
   934   static ByteSize branch_data_size() {
   935     return cell_offset(branch_cell_count);
   936   }
   938   // Specific initialization.
   939   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   941 #ifndef PRODUCT
   942   void print_data_on(outputStream* st);
   943 #endif
   944 };
   946 // ArrayData
   947 //
   948 // A ArrayData is a base class for accessing profiling data which does
   949 // not have a statically known size.  It consists of an array length
   950 // and an array start.
   951 class ArrayData : public ProfileData {
   952 protected:
   953   friend class DataLayout;
   955   enum {
   956     array_len_off_set,
   957     array_start_off_set
   958   };
   960   uint array_uint_at(int index) {
   961     int aindex = index + array_start_off_set;
   962     return uint_at(aindex);
   963   }
   964   int array_int_at(int index) {
   965     int aindex = index + array_start_off_set;
   966     return int_at(aindex);
   967   }
   968   oop array_oop_at(int index) {
   969     int aindex = index + array_start_off_set;
   970     return oop_at(aindex);
   971   }
   972   void array_set_int_at(int index, int value) {
   973     int aindex = index + array_start_off_set;
   974     set_int_at(aindex, value);
   975   }
   977   // Code generation support for subclasses.
   978   static ByteSize array_element_offset(int index) {
   979     return cell_offset(array_start_off_set + index);
   980   }
   982 public:
   983   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   985   virtual bool is_ArrayData() { return true; }
   987   static int static_cell_count() {
   988     return -1;
   989   }
   991   int array_len() {
   992     return int_at_unchecked(array_len_off_set);
   993   }
   995   virtual int cell_count() {
   996     return array_len() + 1;
   997   }
   999   // Code generation support
  1000   static ByteSize array_len_offset() {
  1001     return cell_offset(array_len_off_set);
  1003   static ByteSize array_start_offset() {
  1004     return cell_offset(array_start_off_set);
  1006 };
  1008 // MultiBranchData
  1009 //
  1010 // A MultiBranchData is used to access profiling information for
  1011 // a multi-way branch (*switch bytecodes).  It consists of a series
  1012 // of (count, displacement) pairs, which count the number of times each
  1013 // case was taken and specify the data displacment for each branch target.
  1014 class MultiBranchData : public ArrayData {
  1015 protected:
  1016   enum {
  1017     default_count_off_set,
  1018     default_disaplacement_off_set,
  1019     case_array_start
  1020   };
  1021   enum {
  1022     relative_count_off_set,
  1023     relative_displacement_off_set,
  1024     per_case_cell_count
  1025   };
  1027   void set_default_displacement(int displacement) {
  1028     array_set_int_at(default_disaplacement_off_set, displacement);
  1030   void set_displacement_at(int index, int displacement) {
  1031     array_set_int_at(case_array_start +
  1032                      index * per_case_cell_count +
  1033                      relative_displacement_off_set,
  1034                      displacement);
  1037 public:
  1038   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1039     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1042   virtual bool is_MultiBranchData() { return true; }
  1044   static int compute_cell_count(BytecodeStream* stream);
  1046   int number_of_cases() {
  1047     int alen = array_len() - 2; // get rid of default case here.
  1048     assert(alen % per_case_cell_count == 0, "must be even");
  1049     return (alen / per_case_cell_count);
  1052   uint default_count() {
  1053     return array_uint_at(default_count_off_set);
  1055   int default_displacement() {
  1056     return array_int_at(default_disaplacement_off_set);
  1059   uint count_at(int index) {
  1060     return array_uint_at(case_array_start +
  1061                          index * per_case_cell_count +
  1062                          relative_count_off_set);
  1064   int displacement_at(int index) {
  1065     return array_int_at(case_array_start +
  1066                         index * per_case_cell_count +
  1067                         relative_displacement_off_set);
  1070   // Code generation support
  1071   static ByteSize default_count_offset() {
  1072     return array_element_offset(default_count_off_set);
  1074   static ByteSize default_displacement_offset() {
  1075     return array_element_offset(default_disaplacement_off_set);
  1077   static ByteSize case_count_offset(int index) {
  1078     return case_array_offset() +
  1079            (per_case_size() * index) +
  1080            relative_count_offset();
  1082   static ByteSize case_array_offset() {
  1083     return array_element_offset(case_array_start);
  1085   static ByteSize per_case_size() {
  1086     return in_ByteSize(per_case_cell_count) * cell_size;
  1088   static ByteSize relative_count_offset() {
  1089     return in_ByteSize(relative_count_off_set) * cell_size;
  1091   static ByteSize relative_displacement_offset() {
  1092     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1095   // Specific initialization.
  1096   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
  1098 #ifndef PRODUCT
  1099   void print_data_on(outputStream* st);
  1100 #endif
  1101 };
  1103 class ArgInfoData : public ArrayData {
  1105 public:
  1106   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1107     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1110   virtual bool is_ArgInfoData() { return true; }
  1113   int number_of_args() {
  1114     return array_len();
  1117   uint arg_modified(int arg) {
  1118     return array_uint_at(arg);
  1121   void set_arg_modified(int arg, uint val) {
  1122     array_set_int_at(arg, val);
  1125 #ifndef PRODUCT
  1126   void print_data_on(outputStream* st);
  1127 #endif
  1128 };
  1130 // methodDataOop
  1131 //
  1132 // A methodDataOop holds information which has been collected about
  1133 // a method.  Its layout looks like this:
  1134 //
  1135 // -----------------------------
  1136 // | header                    |
  1137 // | klass                     |
  1138 // -----------------------------
  1139 // | method                    |
  1140 // | size of the methodDataOop |
  1141 // -----------------------------
  1142 // | Data entries...           |
  1143 // |   (variable size)         |
  1144 // |                           |
  1145 // .                           .
  1146 // .                           .
  1147 // .                           .
  1148 // |                           |
  1149 // -----------------------------
  1150 //
  1151 // The data entry area is a heterogeneous array of DataLayouts. Each
  1152 // DataLayout in the array corresponds to a specific bytecode in the
  1153 // method.  The entries in the array are sorted by the corresponding
  1154 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1155 // which point to the underlying blocks of DataLayout structures.
  1156 //
  1157 // During interpretation, if profiling in enabled, the interpreter
  1158 // maintains a method data pointer (mdp), which points at the entry
  1159 // in the array corresponding to the current bci.  In the course of
  1160 // intepretation, when a bytecode is encountered that has profile data
  1161 // associated with it, the entry pointed to by mdp is updated, then the
  1162 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1163 // is NULL to begin with, the interpreter assumes that the current method
  1164 // is not (yet) being profiled.
  1165 //
  1166 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
  1167 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1168 // from the base of the data entry array.  A "displacement" is the byte offset
  1169 // in certain ProfileData objects that indicate the amount the mdp must be
  1170 // adjusted in the event of a change in control flow.
  1171 //
  1173 class methodDataOopDesc : public oopDesc {
  1174   friend class VMStructs;
  1175 private:
  1176   friend class ProfileData;
  1178   // Back pointer to the methodOop
  1179   methodOop _method;
  1181   // Size of this oop in bytes
  1182   int _size;
  1184   // Cached hint for bci_to_dp and bci_to_data
  1185   int _hint_di;
  1187   // Whole-method sticky bits and flags
  1188 public:
  1189   enum {
  1190     _trap_hist_limit    = 16,   // decoupled from Deoptimization::Reason_LIMIT
  1191     _trap_hist_mask     = max_jubyte,
  1192     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1193   }; // Public flag values
  1194 private:
  1195   uint _nof_decompiles;             // count of all nmethod removals
  1196   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1197   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1198   union {
  1199     intptr_t _align;
  1200     u1 _array[_trap_hist_limit];
  1201   } _trap_hist;
  1203   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1204   intx              _eflags;          // flags on escape information
  1205   intx              _arg_local;       // bit set of non-escaping arguments
  1206   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1207   intx              _arg_returned;    // bit set of returned arguments
  1209   int _creation_mileage;            // method mileage at MDO creation
  1211   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1212   int _data_size;
  1214   // Beginning of the data entries
  1215   intptr_t _data[1];
  1217   // Helper for size computation
  1218   static int compute_data_size(BytecodeStream* stream);
  1219   static int bytecode_cell_count(Bytecodes::Code code);
  1220   enum { no_profile_data = -1, variable_cell_count = -2 };
  1222   // Helper for initialization
  1223   DataLayout* data_layout_at(int data_index) {
  1224     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1225     return (DataLayout*) (((address)_data) + data_index);
  1228   // Initialize an individual data segment.  Returns the size of
  1229   // the segment in bytes.
  1230   int initialize_data(BytecodeStream* stream, int data_index);
  1232   // Helper for data_at
  1233   DataLayout* limit_data_position() {
  1234     return (DataLayout*)((address)data_base() + _data_size);
  1236   bool out_of_bounds(int data_index) {
  1237     return data_index >= data_size();
  1240   // Give each of the data entries a chance to perform specific
  1241   // data initialization.
  1242   void post_initialize(BytecodeStream* stream);
  1244   // hint accessors
  1245   int      hint_di() const  { return _hint_di; }
  1246   void set_hint_di(int di)  {
  1247     assert(!out_of_bounds(di), "hint_di out of bounds");
  1248     _hint_di = di;
  1250   ProfileData* data_before(int bci) {
  1251     // avoid SEGV on this edge case
  1252     if (data_size() == 0)
  1253       return NULL;
  1254     int hint = hint_di();
  1255     if (data_layout_at(hint)->bci() <= bci)
  1256       return data_at(hint);
  1257     return first_data();
  1260   // What is the index of the first data entry?
  1261   int first_di() { return 0; }
  1263   // Find or create an extra ProfileData:
  1264   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1266   // return the argument info cell
  1267   ArgInfoData *arg_info();
  1269 public:
  1270   static int header_size() {
  1271     return sizeof(methodDataOopDesc)/wordSize;
  1274   // Compute the size of a methodDataOop before it is created.
  1275   static int compute_allocation_size_in_bytes(methodHandle method);
  1276   static int compute_allocation_size_in_words(methodHandle method);
  1277   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1279   // Determine if a given bytecode can have profile information.
  1280   static bool bytecode_has_profile(Bytecodes::Code code) {
  1281     return bytecode_cell_count(code) != no_profile_data;
  1284   // Perform initialization of a new methodDataOop
  1285   void initialize(methodHandle method);
  1287   // My size
  1288   int object_size_in_bytes() { return _size; }
  1289   int object_size() {
  1290     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
  1293   int      creation_mileage() const  { return _creation_mileage; }
  1294   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1295   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1296   static int mileage_of(methodOop m);
  1298   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1299   enum EscapeFlag {
  1300     estimated    = 1 << 0,
  1301     return_local = 1 << 1,
  1302     return_allocated = 1 << 2,
  1303     allocated_escapes = 1 << 3,
  1304     unknown_modified = 1 << 4
  1305   };
  1307   intx eflags()                                  { return _eflags; }
  1308   intx arg_local()                               { return _arg_local; }
  1309   intx arg_stack()                               { return _arg_stack; }
  1310   intx arg_returned()                            { return _arg_returned; }
  1311   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1312                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1313                                                    return aid->arg_modified(a); }
  1315   void set_eflags(intx v)                        { _eflags = v; }
  1316   void set_arg_local(intx v)                     { _arg_local = v; }
  1317   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1318   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1319   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1320                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1322                                                    aid->set_arg_modified(a, v); }
  1324   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1326   // Location and size of data area
  1327   address data_base() const {
  1328     return (address) _data;
  1330   int data_size() {
  1331     return _data_size;
  1334   // Accessors
  1335   methodOop method() { return _method; }
  1337   // Get the data at an arbitrary (sort of) data index.
  1338   ProfileData* data_at(int data_index);
  1340   // Walk through the data in order.
  1341   ProfileData* first_data() { return data_at(first_di()); }
  1342   ProfileData* next_data(ProfileData* current);
  1343   bool is_valid(ProfileData* current) { return current != NULL; }
  1345   // Convert a dp (data pointer) to a di (data index).
  1346   int dp_to_di(address dp) {
  1347     return dp - ((address)_data);
  1350   address di_to_dp(int di) {
  1351     return (address)data_layout_at(di);
  1354   // bci to di/dp conversion.
  1355   address bci_to_dp(int bci);
  1356   int bci_to_di(int bci) {
  1357     return dp_to_di(bci_to_dp(bci));
  1360   // Get the data at an arbitrary bci, or NULL if there is none.
  1361   ProfileData* bci_to_data(int bci);
  1363   // Same, but try to create an extra_data record if one is needed:
  1364   ProfileData* allocate_bci_to_data(int bci) {
  1365     ProfileData* data = bci_to_data(bci);
  1366     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1369   // Add a handful of extra data records, for trap tracking.
  1370   DataLayout* extra_data_base() { return limit_data_position(); }
  1371   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
  1372   int extra_data_size() { return (address)extra_data_limit()
  1373                                - (address)extra_data_base(); }
  1374   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1376   // Return (uint)-1 for overflow.
  1377   uint trap_count(int reason) const {
  1378     assert((uint)reason < _trap_hist_limit, "oob");
  1379     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1381   // For loops:
  1382   static uint trap_reason_limit() { return _trap_hist_limit; }
  1383   static uint trap_count_limit()  { return _trap_hist_mask; }
  1384   uint inc_trap_count(int reason) {
  1385     // Count another trap, anywhere in this method.
  1386     assert(reason >= 0, "must be single trap");
  1387     if ((uint)reason < _trap_hist_limit) {
  1388       uint cnt1 = 1 + _trap_hist._array[reason];
  1389       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1390         _trap_hist._array[reason] = cnt1;
  1391         return cnt1;
  1392       } else {
  1393         return _trap_hist_mask + (++_nof_overflow_traps);
  1395     } else {
  1396       // Could not represent the count in the histogram.
  1397       return (++_nof_overflow_traps);
  1401   uint overflow_trap_count() const {
  1402     return _nof_overflow_traps;
  1404   uint overflow_recompile_count() const {
  1405     return _nof_overflow_recompiles;
  1407   void inc_overflow_recompile_count() {
  1408     _nof_overflow_recompiles += 1;
  1410   uint decompile_count() const {
  1411     return _nof_decompiles;
  1413   void inc_decompile_count() {
  1414     _nof_decompiles += 1;
  1415     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  1416       method()->set_not_compilable();
  1420   // Support for code generation
  1421   static ByteSize data_offset() {
  1422     return byte_offset_of(methodDataOopDesc, _data[0]);
  1425   // GC support
  1426   oop* adr_method() const { return (oop*)&_method; }
  1427   bool object_is_parsable() const { return _size != 0; }
  1428   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1430 #ifndef PRODUCT
  1431   // printing support for method data
  1432   void print_data_on(outputStream* st);
  1433 #endif
  1435   // verification
  1436   void verify_data_on(outputStream* st);
  1437 };

mercurial