src/share/vm/code/dependencies.hpp

Fri, 08 Nov 2013 01:13:11 -0800

author
vlivanov
date
Fri, 08 Nov 2013 01:13:11 -0800
changeset 6096
e2509677809c
parent 4037
da91efe96a93
child 6876
710a3c8b516e
child 7030
3c048df3ef8b
child 7499
9906d432d6db
permissions
-rw-r--r--

8023037: Race between ciEnv::register_method and nmethod::make_not_entrant_or_zombie
Reviewed-by: kvn, iveresov

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
    26 #define SHARE_VM_CODE_DEPENDENCIES_HPP
    28 #include "ci/ciCallSite.hpp"
    29 #include "ci/ciKlass.hpp"
    30 #include "ci/ciMethodHandle.hpp"
    31 #include "classfile/systemDictionary.hpp"
    32 #include "code/compressedStream.hpp"
    33 #include "code/nmethod.hpp"
    34 #include "utilities/growableArray.hpp"
    36 //** Dependencies represent assertions (approximate invariants) within
    37 // the runtime system, e.g. class hierarchy changes.  An example is an
    38 // assertion that a given method is not overridden; another example is
    39 // that a type has only one concrete subtype.  Compiled code which
    40 // relies on such assertions must be discarded if they are overturned
    41 // by changes in the runtime system.  We can think of these assertions
    42 // as approximate invariants, because we expect them to be overturned
    43 // very infrequently.  We are willing to perform expensive recovery
    44 // operations when they are overturned.  The benefit, of course, is
    45 // performing optimistic optimizations (!) on the object code.
    46 //
    47 // Changes in the class hierarchy due to dynamic linking or
    48 // class evolution can violate dependencies.  There is enough
    49 // indexing between classes and nmethods to make dependency
    50 // checking reasonably efficient.
    52 class ciEnv;
    53 class nmethod;
    54 class OopRecorder;
    55 class xmlStream;
    56 class CompileLog;
    57 class DepChange;
    58 class   KlassDepChange;
    59 class   CallSiteDepChange;
    60 class No_Safepoint_Verifier;
    62 class Dependencies: public ResourceObj {
    63  public:
    64   // Note: In the comments on dependency types, most uses of the terms
    65   // subtype and supertype are used in a "non-strict" or "inclusive"
    66   // sense, and are starred to remind the reader of this fact.
    67   // Strict uses of the terms use the word "proper".
    68   //
    69   // Specifically, every class is its own subtype* and supertype*.
    70   // (This trick is easier than continually saying things like "Y is a
    71   // subtype of X or X itself".)
    72   //
    73   // Sometimes we write X > Y to mean X is a proper supertype of Y.
    74   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
    75   // The notation X.m > Y means that Y inherits m from X, while
    76   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
    77   // as *I > A, meaning (abstract) interface I is a super type of A,
    78   // or A.*m > B.m, meaning B.m implements abstract method A.m.
    79   //
    80   // In this module, the terms "subtype" and "supertype" refer to
    81   // Java-level reference type conversions, as detected by
    82   // "instanceof" and performed by "checkcast" operations.  The method
    83   // Klass::is_subtype_of tests these relations.  Note that "subtype"
    84   // is richer than "subclass" (as tested by Klass::is_subclass_of),
    85   // since it takes account of relations involving interface and array
    86   // types.
    87   //
    88   // To avoid needless complexity, dependencies involving array types
    89   // are not accepted.  If you need to make an assertion about an
    90   // array type, make the assertion about its corresponding element
    91   // types.  Any assertion that might change about an array type can
    92   // be converted to an assertion about its element type.
    93   //
    94   // Most dependencies are evaluated over a "context type" CX, which
    95   // stands for the set Subtypes(CX) of every Java type that is a subtype*
    96   // of CX.  When the system loads a new class or interface N, it is
    97   // responsible for re-evaluating changed dependencies whose context
    98   // type now includes N, that is, all super types of N.
    99   //
   100   enum DepType {
   101     end_marker = 0,
   103     // An 'evol' dependency simply notes that the contents of the
   104     // method were used.  If it evolves (is replaced), the nmethod
   105     // must be recompiled.  No other dependencies are implied.
   106     evol_method,
   107     FIRST_TYPE = evol_method,
   109     // A context type CX is a leaf it if has no proper subtype.
   110     leaf_type,
   112     // An abstract class CX has exactly one concrete subtype CC.
   113     abstract_with_unique_concrete_subtype,
   115     // The type CX is purely abstract, with no concrete subtype* at all.
   116     abstract_with_no_concrete_subtype,
   118     // The concrete CX is free of concrete proper subtypes.
   119     concrete_with_no_concrete_subtype,
   121     // Given a method M1 and a context class CX, the set MM(CX, M1) of
   122     // "concrete matching methods" in CX of M1 is the set of every
   123     // concrete M2 for which it is possible to create an invokevirtual
   124     // or invokeinterface call site that can reach either M1 or M2.
   125     // That is, M1 and M2 share a name, signature, and vtable index.
   126     // We wish to notice when the set MM(CX, M1) is just {M1}, or
   127     // perhaps a set of two {M1,M2}, and issue dependencies on this.
   129     // The set MM(CX, M1) can be computed by starting with any matching
   130     // concrete M2 that is inherited into CX, and then walking the
   131     // subtypes* of CX looking for concrete definitions.
   133     // The parameters to this dependency are the method M1 and the
   134     // context class CX.  M1 must be either inherited in CX or defined
   135     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
   136     // than {M1}.
   137     unique_concrete_method,       // one unique concrete method under CX
   139     // An "exclusive" assertion concerns two methods or subtypes, and
   140     // declares that there are at most two (or perhaps later N>2)
   141     // specific items that jointly satisfy the restriction.
   142     // We list all items explicitly rather than just giving their
   143     // count, for robustness in the face of complex schema changes.
   145     // A context class CX (which may be either abstract or concrete)
   146     // has two exclusive concrete subtypes* C1, C2 if every concrete
   147     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
   148     // are equal to CX, then CX itself must be abstract.  But it is
   149     // also possible (for example) that C1 is CX (a concrete class)
   150     // and C2 is a proper subtype of C1.
   151     abstract_with_exclusive_concrete_subtypes_2,
   153     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
   154     exclusive_concrete_methods_2,
   156     // This dependency asserts that no instances of class or it's
   157     // subclasses require finalization registration.
   158     no_finalizable_subclasses,
   160     // This dependency asserts when the CallSite.target value changed.
   161     call_site_target_value,
   163     TYPE_LIMIT
   164   };
   165   enum {
   166     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
   168     // handy categorizations of dependency types:
   169     all_types           = ((1 << TYPE_LIMIT) - 1) & ((-1) << FIRST_TYPE),
   171     non_klass_types     = (1 << call_site_target_value),
   172     klass_types         = all_types & ~non_klass_types,
   174     non_ctxk_types      = (1 << evol_method),
   175     implicit_ctxk_types = (1 << call_site_target_value),
   176     explicit_ctxk_types = all_types & ~(non_ctxk_types | implicit_ctxk_types),
   178     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
   180     // A "context type" is a class or interface that
   181     // provides context for evaluating a dependency.
   182     // When present, it is one of the arguments (dep_context_arg).
   183     //
   184     // If a dependency does not have a context type, there is a
   185     // default context, depending on the type of the dependency.
   186     // This bit signals that a default context has been compressed away.
   187     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
   188   };
   190   static const char* dep_name(DepType dept);
   191   static int         dep_args(DepType dept);
   193   static bool is_klass_type(           DepType dept) { return dept_in_mask(dept, klass_types        ); }
   195   static bool has_explicit_context_arg(DepType dept) { return dept_in_mask(dept, explicit_ctxk_types); }
   196   static bool has_implicit_context_arg(DepType dept) { return dept_in_mask(dept, implicit_ctxk_types); }
   198   static int           dep_context_arg(DepType dept) { return has_explicit_context_arg(dept) ? 0 : -1; }
   199   static int  dep_implicit_context_arg(DepType dept) { return has_implicit_context_arg(dept) ? 0 : -1; }
   201   static void check_valid_dependency_type(DepType dept);
   203  private:
   204   // State for writing a new set of dependencies:
   205   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
   206   GrowableArray<ciBaseObject*>*  _deps[TYPE_LIMIT];
   208   static const char* _dep_name[TYPE_LIMIT];
   209   static int         _dep_args[TYPE_LIMIT];
   211   static bool dept_in_mask(DepType dept, int mask) {
   212     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
   213   }
   215   bool note_dep_seen(int dept, ciBaseObject* x) {
   216     assert(dept < BitsPerInt, "oob");
   217     int x_id = x->ident();
   218     assert(_dep_seen != NULL, "deps must be writable");
   219     int seen = _dep_seen->at_grow(x_id, 0);
   220     _dep_seen->at_put(x_id, seen | (1<<dept));
   221     // return true if we've already seen dept/x
   222     return (seen & (1<<dept)) != 0;
   223   }
   225   bool maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
   226                         int ctxk_i, ciKlass* ctxk);
   228   void sort_all_deps();
   229   size_t estimate_size_in_bytes();
   231   // Initialize _deps, etc.
   232   void initialize(ciEnv* env);
   234   // State for making a new set of dependencies:
   235   OopRecorder* _oop_recorder;
   237   // Logging support
   238   CompileLog* _log;
   240   address  _content_bytes;  // everything but the oop references, encoded
   241   size_t   _size_in_bytes;
   243  public:
   244   // Make a new empty dependencies set.
   245   Dependencies(ciEnv* env) {
   246     initialize(env);
   247   }
   249  private:
   250   // Check for a valid context type.
   251   // Enforce the restriction against array types.
   252   static void check_ctxk(ciKlass* ctxk) {
   253     assert(ctxk->is_instance_klass(), "java types only");
   254   }
   255   static void check_ctxk_concrete(ciKlass* ctxk) {
   256     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
   257   }
   258   static void check_ctxk_abstract(ciKlass* ctxk) {
   259     check_ctxk(ctxk);
   260     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
   261   }
   263   void assert_common_1(DepType dept, ciBaseObject* x);
   264   void assert_common_2(DepType dept, ciBaseObject* x0, ciBaseObject* x1);
   265   void assert_common_3(DepType dept, ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2);
   267  public:
   268   // Adding assertions to a new dependency set at compile time:
   269   void assert_evol_method(ciMethod* m);
   270   void assert_leaf_type(ciKlass* ctxk);
   271   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
   272   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
   273   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
   274   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
   275   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
   276   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
   277   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
   278   void assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle);
   280   // Define whether a given method or type is concrete.
   281   // These methods define the term "concrete" as used in this module.
   282   // For this module, an "abstract" class is one which is non-concrete.
   283   //
   284   // Future optimizations may allow some classes to remain
   285   // non-concrete until their first instantiation, and allow some
   286   // methods to remain non-concrete until their first invocation.
   287   // In that case, there would be a middle ground between concrete
   288   // and abstract (as defined by the Java language and VM).
   289   static bool is_concrete_klass(Klass* k);    // k is instantiable
   290   static bool is_concrete_method(Method* m);  // m is invocable
   291   static Klass* find_finalizable_subclass(Klass* k);
   293   // These versions of the concreteness queries work through the CI.
   294   // The CI versions are allowed to skew sometimes from the VM
   295   // (oop-based) versions.  The cost of such a difference is a
   296   // (safely) aborted compilation, or a deoptimization, or a missed
   297   // optimization opportunity.
   298   //
   299   // In order to prevent spurious assertions, query results must
   300   // remain stable within any single ciEnv instance.  (I.e., they must
   301   // not go back into the VM to get their value; they must cache the
   302   // bit in the CI, either eagerly or lazily.)
   303   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
   304   static bool is_concrete_method(ciMethod* m);       // m appears invocable
   305   static bool has_finalizable_subclass(ciInstanceKlass* k);
   307   // As a general rule, it is OK to compile under the assumption that
   308   // a given type or method is concrete, even if it at some future
   309   // point becomes abstract.  So dependency checking is one-sided, in
   310   // that it permits supposedly concrete classes or methods to turn up
   311   // as really abstract.  (This shouldn't happen, except during class
   312   // evolution, but that's the logic of the checking.)  However, if a
   313   // supposedly abstract class or method suddenly becomes concrete, a
   314   // dependency on it must fail.
   316   // Checking old assertions at run-time (in the VM only):
   317   static Klass* check_evol_method(Method* m);
   318   static Klass* check_leaf_type(Klass* ctxk);
   319   static Klass* check_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck,
   320                                                               KlassDepChange* changes = NULL);
   321   static Klass* check_abstract_with_no_concrete_subtype(Klass* ctxk,
   322                                                           KlassDepChange* changes = NULL);
   323   static Klass* check_concrete_with_no_concrete_subtype(Klass* ctxk,
   324                                                           KlassDepChange* changes = NULL);
   325   static Klass* check_unique_concrete_method(Klass* ctxk, Method* uniqm,
   326                                                KlassDepChange* changes = NULL);
   327   static Klass* check_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2,
   328                                                                   KlassDepChange* changes = NULL);
   329   static Klass* check_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2,
   330                                                    KlassDepChange* changes = NULL);
   331   static Klass* check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes = NULL);
   332   static Klass* check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes = NULL);
   333   // A returned Klass* is NULL if the dependency assertion is still
   334   // valid.  A non-NULL Klass* is a 'witness' to the assertion
   335   // failure, a point in the class hierarchy where the assertion has
   336   // been proven false.  For example, if check_leaf_type returns
   337   // non-NULL, the value is a subtype of the supposed leaf type.  This
   338   // witness value may be useful for logging the dependency failure.
   339   // Note that, when a dependency fails, there may be several possible
   340   // witnesses to the failure.  The value returned from the check_foo
   341   // method is chosen arbitrarily.
   343   // The 'changes' value, if non-null, requests a limited spot-check
   344   // near the indicated recent changes in the class hierarchy.
   345   // It is used by DepStream::spot_check_dependency_at.
   347   // Detecting possible new assertions:
   348   static Klass*    find_unique_concrete_subtype(Klass* ctxk);
   349   static Method*   find_unique_concrete_method(Klass* ctxk, Method* m);
   350   static int       find_exclusive_concrete_subtypes(Klass* ctxk, int klen, Klass* k[]);
   351   static int       find_exclusive_concrete_methods(Klass* ctxk, int mlen, Method* m[]);
   353   // Create the encoding which will be stored in an nmethod.
   354   void encode_content_bytes();
   356   address content_bytes() {
   357     assert(_content_bytes != NULL, "encode it first");
   358     return _content_bytes;
   359   }
   360   size_t size_in_bytes() {
   361     assert(_content_bytes != NULL, "encode it first");
   362     return _size_in_bytes;
   363   }
   365   OopRecorder* oop_recorder() { return _oop_recorder; }
   366   CompileLog*  log()          { return _log; }
   368   void copy_to(nmethod* nm);
   370   void log_all_dependencies();
   371   void log_dependency(DepType dept, int nargs, ciBaseObject* args[]) {
   372     write_dependency_to(log(), dept, nargs, args);
   373   }
   374   void log_dependency(DepType dept,
   375                       ciBaseObject* x0,
   376                       ciBaseObject* x1 = NULL,
   377                       ciBaseObject* x2 = NULL) {
   378     if (log() == NULL)  return;
   379     ciBaseObject* args[max_arg_count];
   380     args[0] = x0;
   381     args[1] = x1;
   382     args[2] = x2;
   383     assert(2 < max_arg_count, "");
   384     log_dependency(dept, dep_args(dept), args);
   385   }
   387   class DepArgument : public ResourceObj {
   388    private:
   389     bool  _is_oop;
   390     bool  _valid;
   391     void* _value;
   392    public:
   393     DepArgument() : _is_oop(false), _value(NULL), _valid(false) {}
   394     DepArgument(oop v): _is_oop(true), _value(v), _valid(true) {}
   395     DepArgument(Metadata* v): _is_oop(false), _value(v), _valid(true) {}
   397     bool is_null() const               { return _value == NULL; }
   398     bool is_oop() const                { return _is_oop; }
   399     bool is_metadata() const           { return !_is_oop; }
   400     bool is_klass() const              { return is_metadata() && metadata_value()->is_klass(); }
   401     bool is_method() const              { return is_metadata() && metadata_value()->is_method(); }
   403     oop oop_value() const              { assert(_is_oop && _valid, "must be"); return (oop) _value; }
   404     Metadata* metadata_value() const { assert(!_is_oop && _valid, "must be"); return (Metadata*) _value; }
   405   };
   407   static void write_dependency_to(CompileLog* log,
   408                                   DepType dept,
   409                                   int nargs, ciBaseObject* args[],
   410                                   Klass* witness = NULL);
   411   static void write_dependency_to(CompileLog* log,
   412                                   DepType dept,
   413                                   int nargs, DepArgument args[],
   414                                   Klass* witness = NULL);
   415   static void write_dependency_to(xmlStream* xtty,
   416                                   DepType dept,
   417                                   int nargs, DepArgument args[],
   418                                   Klass* witness = NULL);
   419   static void print_dependency(DepType dept,
   420                                int nargs, DepArgument args[],
   421                                Klass* witness = NULL);
   423  private:
   424   // helper for encoding common context types as zero:
   425   static ciKlass* ctxk_encoded_as_null(DepType dept, ciBaseObject* x);
   427   static Klass* ctxk_encoded_as_null(DepType dept, Metadata* x);
   429  public:
   430   // Use this to iterate over an nmethod's dependency set.
   431   // Works on new and old dependency sets.
   432   // Usage:
   433   //
   434   // ;
   435   // Dependencies::DepType dept;
   436   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
   437   //   ...
   438   // }
   439   //
   440   // The caller must be in the VM, since oops are not wrapped in handles.
   441   class DepStream {
   442   private:
   443     nmethod*              _code;   // null if in a compiler thread
   444     Dependencies*         _deps;   // null if not in a compiler thread
   445     CompressedReadStream  _bytes;
   446 #ifdef ASSERT
   447     size_t                _byte_limit;
   448 #endif
   450     // iteration variables:
   451     DepType               _type;
   452     int                   _xi[max_arg_count+1];
   454     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
   456     inline Metadata* recorded_metadata_at(int i);
   457     inline oop recorded_oop_at(int i);
   459     Klass* check_klass_dependency(KlassDepChange* changes);
   460     Klass* check_call_site_dependency(CallSiteDepChange* changes);
   462     void trace_and_log_witness(Klass* witness);
   464   public:
   465     DepStream(Dependencies* deps)
   466       : _deps(deps),
   467         _code(NULL),
   468         _bytes(deps->content_bytes())
   469     {
   470       initial_asserts(deps->size_in_bytes());
   471     }
   472     DepStream(nmethod* code)
   473       : _deps(NULL),
   474         _code(code),
   475         _bytes(code->dependencies_begin())
   476     {
   477       initial_asserts(code->dependencies_size());
   478     }
   480     bool next();
   482     DepType type()               { return _type; }
   483     int argument_count()         { return dep_args(type()); }
   484     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
   485                                    return _xi[i]; }
   486     Metadata* argument(int i);     // => recorded_oop_at(argument_index(i))
   487     oop argument_oop(int i);         // => recorded_oop_at(argument_index(i))
   488     Klass* context_type();
   490     bool is_klass_type()         { return Dependencies::is_klass_type(type()); }
   492     Method* method_argument(int i) {
   493       Metadata* x = argument(i);
   494       assert(x->is_method(), "type");
   495       return (Method*) x;
   496     }
   497     Klass* type_argument(int i) {
   498       Metadata* x = argument(i);
   499       assert(x->is_klass(), "type");
   500       return (Klass*) x;
   501     }
   503     // The point of the whole exercise:  Is this dep still OK?
   504     Klass* check_dependency() {
   505       Klass* result = check_klass_dependency(NULL);
   506       if (result != NULL)  return result;
   507       return check_call_site_dependency(NULL);
   508     }
   510     // A lighter version:  Checks only around recent changes in a class
   511     // hierarchy.  (See Universe::flush_dependents_on.)
   512     Klass* spot_check_dependency_at(DepChange& changes);
   514     // Log the current dependency to xtty or compilation log.
   515     void log_dependency(Klass* witness = NULL);
   517     // Print the current dependency to tty.
   518     void print_dependency(Klass* witness = NULL, bool verbose = false);
   519   };
   520   friend class Dependencies::DepStream;
   522   static void print_statistics() PRODUCT_RETURN;
   523 };
   526 // Every particular DepChange is a sub-class of this class.
   527 class DepChange : public StackObj {
   528  public:
   529   // What kind of DepChange is this?
   530   virtual bool is_klass_change()     const { return false; }
   531   virtual bool is_call_site_change() const { return false; }
   533   // Subclass casting with assertions.
   534   KlassDepChange*    as_klass_change() {
   535     assert(is_klass_change(), "bad cast");
   536     return (KlassDepChange*) this;
   537   }
   538   CallSiteDepChange* as_call_site_change() {
   539     assert(is_call_site_change(), "bad cast");
   540     return (CallSiteDepChange*) this;
   541   }
   543   void print();
   545  public:
   546   enum ChangeType {
   547     NO_CHANGE = 0,              // an uninvolved klass
   548     Change_new_type,            // a newly loaded type
   549     Change_new_sub,             // a super with a new subtype
   550     Change_new_impl,            // an interface with a new implementation
   551     CHANGE_LIMIT,
   552     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
   553   };
   555   // Usage:
   556   // for (DepChange::ContextStream str(changes); str.next(); ) {
   557   //   Klass* k = str.klass();
   558   //   switch (str.change_type()) {
   559   //     ...
   560   //   }
   561   // }
   562   class ContextStream : public StackObj {
   563    private:
   564     DepChange&  _changes;
   565     friend class DepChange;
   567     // iteration variables:
   568     ChangeType  _change_type;
   569     Klass*      _klass;
   570     Array<Klass*>* _ti_base;    // i.e., transitive_interfaces
   571     int         _ti_index;
   572     int         _ti_limit;
   574     // start at the beginning:
   575     void start();
   577    public:
   578     ContextStream(DepChange& changes)
   579       : _changes(changes)
   580     { start(); }
   582     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
   583       : _changes(changes)
   584       // the nsv argument makes it safe to hold oops like _klass
   585     { start(); }
   587     bool next();
   589     ChangeType change_type()     { return _change_type; }
   590     Klass*     klass()           { return _klass; }
   591   };
   592   friend class DepChange::ContextStream;
   593 };
   596 // A class hierarchy change coming through the VM (under the Compile_lock).
   597 // The change is structured as a single new type with any number of supers
   598 // and implemented interface types.  Other than the new type, any of the
   599 // super types can be context types for a relevant dependency, which the
   600 // new type could invalidate.
   601 class KlassDepChange : public DepChange {
   602  private:
   603   // each change set is rooted in exactly one new type (at present):
   604   KlassHandle _new_type;
   606   void initialize();
   608  public:
   609   // notes the new type, marks it and all its super-types
   610   KlassDepChange(KlassHandle new_type)
   611     : _new_type(new_type)
   612   {
   613     initialize();
   614   }
   616   // cleans up the marks
   617   ~KlassDepChange();
   619   // What kind of DepChange is this?
   620   virtual bool is_klass_change() const { return true; }
   622   Klass* new_type() { return _new_type(); }
   624   // involves_context(k) is true if k is new_type or any of the super types
   625   bool involves_context(Klass* k);
   626 };
   629 // A CallSite has changed its target.
   630 class CallSiteDepChange : public DepChange {
   631  private:
   632   Handle _call_site;
   633   Handle _method_handle;
   635  public:
   636   CallSiteDepChange(Handle call_site, Handle method_handle)
   637     : _call_site(call_site),
   638       _method_handle(method_handle)
   639   {
   640     assert(_call_site()    ->is_a(SystemDictionary::CallSite_klass()),     "must be");
   641     assert(_method_handle()->is_a(SystemDictionary::MethodHandle_klass()), "must be");
   642   }
   644   // What kind of DepChange is this?
   645   virtual bool is_call_site_change() const { return true; }
   647   oop call_site()     const { return _call_site();     }
   648   oop method_handle() const { return _method_handle(); }
   649 };
   651 #endif // SHARE_VM_CODE_DEPENDENCIES_HPP

mercurial