src/share/vm/oops/methodDataOop.hpp

Fri, 28 Mar 2008 11:52:29 -0700

author
kvn
date
Fri, 28 Mar 2008 11:52:29 -0700
changeset 513
e1e86702e43e
parent 480
48a3fa21394b
child 624
0b27f3512f9e
permissions
-rw-r--r--

6680665: bytecode Escape Analyzer produces incorrect escape information for methods without oop arguments
Summary: bcEscapeAnalyzer does not analyze methods with no oop arguments.
Reviewed-by: rasbold

     1 /*
     2  * Copyright 2000-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BytecodeStream;
    27 // The MethodData object collects counts and other profile information
    28 // during zeroth-tier (interpretive) and first-tier execution.
    29 // The profile is used later by compilation heuristics.  Some heuristics
    30 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    31 // optimization often has a down-side, a corner case that it handles
    32 // poorly, but which is thought to be rare.  The profile provides
    33 // evidence of this rarity for a given method or even BCI.  It allows
    34 // the compiler to back out of the optimization at places where it
    35 // has historically been a poor choice.  Other heuristics try to use
    36 // specific information gathered about types observed at a given site.
    37 //
    38 // All data in the profile is approximate.  It is expected to be accurate
    39 // on the whole, but the system expects occasional inaccuraces, due to
    40 // counter overflow, multiprocessor races during data collection, space
    41 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    42 // optimization quality but will not affect correctness.  Also, each MDO
    43 // is marked with its birth-date ("creation_mileage") which can be used
    44 // to assess the quality ("maturity") of its data.
    45 //
    46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    47 // state.  Also, certain recorded per-BCI events are given one-bit counters
    48 // which overflow to a saturated state which applied to all counters at
    49 // that BCI.  In other words, there is a small lattice which approximates
    50 // the ideal of an infinite-precision counter for each event at each BCI,
    51 // and the lattice quickly "bottoms out" in a state where all counters
    52 // are taken to be indefinitely large.
    53 //
    54 // The reader will find many data races in profile gathering code, starting
    55 // with invocation counter incrementation.  None of these races harm correct
    56 // execution of the compiled code.
    58 // DataLayout
    59 //
    60 // Overlay for generic profiling data.
    61 class DataLayout VALUE_OBJ_CLASS_SPEC {
    62 private:
    63   // Every data layout begins with a header.  This header
    64   // contains a tag, which is used to indicate the size/layout
    65   // of the data, 4 bits of flags, which can be used in any way,
    66   // 4 bits of trap history (none/one reason/many reasons),
    67   // and a bci, which is used to tie this piece of data to a
    68   // specific bci in the bytecodes.
    69   union {
    70     intptr_t _bits;
    71     struct {
    72       u1 _tag;
    73       u1 _flags;
    74       u2 _bci;
    75     } _struct;
    76   } _header;
    78   // The data layout has an arbitrary number of cells, each sized
    79   // to accomodate a pointer or an integer.
    80   intptr_t _cells[1];
    82   // Some types of data layouts need a length field.
    83   static bool needs_array_len(u1 tag);
    85 public:
    86   enum {
    87     counter_increment = 1
    88   };
    90   enum {
    91     cell_size = sizeof(intptr_t)
    92   };
    94   // Tag values
    95   enum {
    96     no_tag,
    97     bit_data_tag,
    98     counter_data_tag,
    99     jump_data_tag,
   100     receiver_type_data_tag,
   101     virtual_call_data_tag,
   102     ret_data_tag,
   103     branch_data_tag,
   104     multi_branch_data_tag,
   105     arg_info_data_tag
   106   };
   108   enum {
   109     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   110     // The trap state breaks down further as [recompile:1 | reason:3].
   111     // This further breakdown is defined in deoptimization.cpp.
   112     // See Deoptimization::trap_state_reason for an assert that
   113     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   114     //
   115     // The trap_state is collected only if ProfileTraps is true.
   116     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   117     trap_shift = BitsPerByte - trap_bits,
   118     trap_mask = right_n_bits(trap_bits),
   119     trap_mask_in_place = (trap_mask << trap_shift),
   120     flag_limit = trap_shift,
   121     flag_mask = right_n_bits(flag_limit),
   122     first_flag = 0
   123   };
   125   // Size computation
   126   static int header_size_in_bytes() {
   127     return cell_size;
   128   }
   129   static int header_size_in_cells() {
   130     return 1;
   131   }
   133   static int compute_size_in_bytes(int cell_count) {
   134     return header_size_in_bytes() + cell_count * cell_size;
   135   }
   137   // Initialization
   138   void initialize(u1 tag, u2 bci, int cell_count);
   140   // Accessors
   141   u1 tag() {
   142     return _header._struct._tag;
   143   }
   145   // Return a few bits of trap state.  Range is [0..trap_mask].
   146   // The state tells if traps with zero, one, or many reasons have occurred.
   147   // It also tells whether zero or many recompilations have occurred.
   148   // The associated trap histogram in the MDO itself tells whether
   149   // traps are common or not.  If a BCI shows that a trap X has
   150   // occurred, and the MDO shows N occurrences of X, we make the
   151   // simplifying assumption that all N occurrences can be blamed
   152   // on that BCI.
   153   int trap_state() {
   154     return ((_header._struct._flags >> trap_shift) & trap_mask);
   155   }
   157   void set_trap_state(int new_state) {
   158     assert(ProfileTraps, "used only under +ProfileTraps");
   159     uint old_flags = (_header._struct._flags & flag_mask);
   160     _header._struct._flags = (new_state << trap_shift) | old_flags;
   161     assert(trap_state() == new_state, "sanity");
   162   }
   164   u1 flags() {
   165     return _header._struct._flags;
   166   }
   168   u2 bci() {
   169     return _header._struct._bci;
   170   }
   172   void set_header(intptr_t value) {
   173     _header._bits = value;
   174   }
   175   void release_set_header(intptr_t value) {
   176     OrderAccess::release_store_ptr(&_header._bits, value);
   177   }
   178   intptr_t header() {
   179     return _header._bits;
   180   }
   181   void set_cell_at(int index, intptr_t value) {
   182     _cells[index] = value;
   183   }
   184   void release_set_cell_at(int index, intptr_t value) {
   185     OrderAccess::release_store_ptr(&_cells[index], value);
   186   }
   187   intptr_t cell_at(int index) {
   188     return _cells[index];
   189   }
   190   intptr_t* adr_cell_at(int index) {
   191     return &_cells[index];
   192   }
   193   oop* adr_oop_at(int index) {
   194     return (oop*)&(_cells[index]);
   195   }
   197   void set_flag_at(int flag_number) {
   198     assert(flag_number < flag_limit, "oob");
   199     _header._struct._flags |= (0x1 << flag_number);
   200   }
   201   bool flag_at(int flag_number) {
   202     assert(flag_number < flag_limit, "oob");
   203     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   204   }
   206   // Low-level support for code generation.
   207   static ByteSize header_offset() {
   208     return byte_offset_of(DataLayout, _header);
   209   }
   210   static ByteSize tag_offset() {
   211     return byte_offset_of(DataLayout, _header._struct._tag);
   212   }
   213   static ByteSize flags_offset() {
   214     return byte_offset_of(DataLayout, _header._struct._flags);
   215   }
   216   static ByteSize bci_offset() {
   217     return byte_offset_of(DataLayout, _header._struct._bci);
   218   }
   219   static ByteSize cell_offset(int index) {
   220     return byte_offset_of(DataLayout, _cells[index]);
   221   }
   222   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   223   static int flag_number_to_byte_constant(int flag_number) {
   224     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   225     DataLayout temp; temp.set_header(0);
   226     temp.set_flag_at(flag_number);
   227     return temp._header._struct._flags;
   228   }
   229   // Return a value which, when or-ed as a word into _header, sets the flag.
   230   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   231     DataLayout temp; temp.set_header(0);
   232     temp._header._struct._flags = byte_constant;
   233     return temp._header._bits;
   234   }
   235 };
   238 // ProfileData class hierarchy
   239 class ProfileData;
   240 class   BitData;
   241 class     CounterData;
   242 class       ReceiverTypeData;
   243 class         VirtualCallData;
   244 class       RetData;
   245 class   JumpData;
   246 class     BranchData;
   247 class   ArrayData;
   248 class     MultiBranchData;
   249 class     ArgInfoData;
   252 // ProfileData
   253 //
   254 // A ProfileData object is created to refer to a section of profiling
   255 // data in a structured way.
   256 class ProfileData : public ResourceObj {
   257 private:
   258 #ifndef PRODUCT
   259   enum {
   260     tab_width_one = 16,
   261     tab_width_two = 36
   262   };
   263 #endif // !PRODUCT
   265   // This is a pointer to a section of profiling data.
   266   DataLayout* _data;
   268 protected:
   269   DataLayout* data() { return _data; }
   271   enum {
   272     cell_size = DataLayout::cell_size
   273   };
   275 public:
   276   // How many cells are in this?
   277   virtual int cell_count() {
   278     ShouldNotReachHere();
   279     return -1;
   280   }
   282   // Return the size of this data.
   283   int size_in_bytes() {
   284     return DataLayout::compute_size_in_bytes(cell_count());
   285   }
   287 protected:
   288   // Low-level accessors for underlying data
   289   void set_intptr_at(int index, intptr_t value) {
   290     assert(0 <= index && index < cell_count(), "oob");
   291     data()->set_cell_at(index, value);
   292   }
   293   void release_set_intptr_at(int index, intptr_t value) {
   294     assert(0 <= index && index < cell_count(), "oob");
   295     data()->release_set_cell_at(index, value);
   296   }
   297   intptr_t intptr_at(int index) {
   298     assert(0 <= index && index < cell_count(), "oob");
   299     return data()->cell_at(index);
   300   }
   301   void set_uint_at(int index, uint value) {
   302     set_intptr_at(index, (intptr_t) value);
   303   }
   304   void release_set_uint_at(int index, uint value) {
   305     release_set_intptr_at(index, (intptr_t) value);
   306   }
   307   uint uint_at(int index) {
   308     return (uint)intptr_at(index);
   309   }
   310   void set_int_at(int index, int value) {
   311     set_intptr_at(index, (intptr_t) value);
   312   }
   313   void release_set_int_at(int index, int value) {
   314     release_set_intptr_at(index, (intptr_t) value);
   315   }
   316   int int_at(int index) {
   317     return (int)intptr_at(index);
   318   }
   319   int int_at_unchecked(int index) {
   320     return (int)data()->cell_at(index);
   321   }
   322   void set_oop_at(int index, oop value) {
   323     set_intptr_at(index, (intptr_t) value);
   324   }
   325   oop oop_at(int index) {
   326     return (oop)intptr_at(index);
   327   }
   328   oop* adr_oop_at(int index) {
   329     assert(0 <= index && index < cell_count(), "oob");
   330     return data()->adr_oop_at(index);
   331   }
   333   void set_flag_at(int flag_number) {
   334     data()->set_flag_at(flag_number);
   335   }
   336   bool flag_at(int flag_number) {
   337     return data()->flag_at(flag_number);
   338   }
   340   // two convenient imports for use by subclasses:
   341   static ByteSize cell_offset(int index) {
   342     return DataLayout::cell_offset(index);
   343   }
   344   static int flag_number_to_byte_constant(int flag_number) {
   345     return DataLayout::flag_number_to_byte_constant(flag_number);
   346   }
   348   ProfileData(DataLayout* data) {
   349     _data = data;
   350   }
   352 public:
   353   // Constructor for invalid ProfileData.
   354   ProfileData();
   356   u2 bci() {
   357     return data()->bci();
   358   }
   360   address dp() {
   361     return (address)_data;
   362   }
   364   int trap_state() {
   365     return data()->trap_state();
   366   }
   367   void set_trap_state(int new_state) {
   368     data()->set_trap_state(new_state);
   369   }
   371   // Type checking
   372   virtual bool is_BitData()         { return false; }
   373   virtual bool is_CounterData()     { return false; }
   374   virtual bool is_JumpData()        { return false; }
   375   virtual bool is_ReceiverTypeData(){ return false; }
   376   virtual bool is_VirtualCallData() { return false; }
   377   virtual bool is_RetData()         { return false; }
   378   virtual bool is_BranchData()      { return false; }
   379   virtual bool is_ArrayData()       { return false; }
   380   virtual bool is_MultiBranchData() { return false; }
   381   virtual bool is_ArgInfoData()     { return false; }
   384   BitData* as_BitData() {
   385     assert(is_BitData(), "wrong type");
   386     return is_BitData()         ? (BitData*)        this : NULL;
   387   }
   388   CounterData* as_CounterData() {
   389     assert(is_CounterData(), "wrong type");
   390     return is_CounterData()     ? (CounterData*)    this : NULL;
   391   }
   392   JumpData* as_JumpData() {
   393     assert(is_JumpData(), "wrong type");
   394     return is_JumpData()        ? (JumpData*)       this : NULL;
   395   }
   396   ReceiverTypeData* as_ReceiverTypeData() {
   397     assert(is_ReceiverTypeData(), "wrong type");
   398     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   399   }
   400   VirtualCallData* as_VirtualCallData() {
   401     assert(is_VirtualCallData(), "wrong type");
   402     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   403   }
   404   RetData* as_RetData() {
   405     assert(is_RetData(), "wrong type");
   406     return is_RetData()         ? (RetData*)        this : NULL;
   407   }
   408   BranchData* as_BranchData() {
   409     assert(is_BranchData(), "wrong type");
   410     return is_BranchData()      ? (BranchData*)     this : NULL;
   411   }
   412   ArrayData* as_ArrayData() {
   413     assert(is_ArrayData(), "wrong type");
   414     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   415   }
   416   MultiBranchData* as_MultiBranchData() {
   417     assert(is_MultiBranchData(), "wrong type");
   418     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   419   }
   420   ArgInfoData* as_ArgInfoData() {
   421     assert(is_ArgInfoData(), "wrong type");
   422     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   423   }
   426   // Subclass specific initialization
   427   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
   429   // GC support
   430   virtual void follow_contents() {}
   431   virtual void oop_iterate(OopClosure* blk) {}
   432   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
   433   virtual void adjust_pointers() {}
   435 #ifndef SERIALGC
   436   // Parallel old support
   437   virtual void follow_contents(ParCompactionManager* cm) {}
   438   virtual void update_pointers() {}
   439   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
   440 #endif // SERIALGC
   442   // CI translation: ProfileData can represent both MethodDataOop data
   443   // as well as CIMethodData data. This function is provided for translating
   444   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   445   // most ProfileData don't require any translation, so we provide the null
   446   // translation here, and the required translators are in the ci subclasses.
   447   virtual void translate_from(ProfileData* data) {}
   449   virtual void print_data_on(outputStream* st) {
   450     ShouldNotReachHere();
   451   }
   453 #ifndef PRODUCT
   454   void print_shared(outputStream* st, const char* name);
   455   void tab(outputStream* st);
   456 #endif
   457 };
   459 // BitData
   460 //
   461 // A BitData holds a flag or two in its header.
   462 class BitData : public ProfileData {
   463 protected:
   464   enum {
   465     // null_seen:
   466     //  saw a null operand (cast/aastore/instanceof)
   467     null_seen_flag              = DataLayout::first_flag + 0
   468   };
   469   enum { bit_cell_count = 0 };  // no additional data fields needed.
   470 public:
   471   BitData(DataLayout* layout) : ProfileData(layout) {
   472   }
   474   virtual bool is_BitData() { return true; }
   476   static int static_cell_count() {
   477     return bit_cell_count;
   478   }
   480   virtual int cell_count() {
   481     return static_cell_count();
   482   }
   484   // Accessor
   486   // The null_seen flag bit is specially known to the interpreter.
   487   // Consulting it allows the compiler to avoid setting up null_check traps.
   488   bool null_seen()     { return flag_at(null_seen_flag); }
   489   void set_null_seen()    { set_flag_at(null_seen_flag); }
   492   // Code generation support
   493   static int null_seen_byte_constant() {
   494     return flag_number_to_byte_constant(null_seen_flag);
   495   }
   497   static ByteSize bit_data_size() {
   498     return cell_offset(bit_cell_count);
   499   }
   501 #ifndef PRODUCT
   502   void print_data_on(outputStream* st);
   503 #endif
   504 };
   506 // CounterData
   507 //
   508 // A CounterData corresponds to a simple counter.
   509 class CounterData : public BitData {
   510 protected:
   511   enum {
   512     count_off,
   513     counter_cell_count
   514   };
   515 public:
   516   CounterData(DataLayout* layout) : BitData(layout) {}
   518   virtual bool is_CounterData() { return true; }
   520   static int static_cell_count() {
   521     return counter_cell_count;
   522   }
   524   virtual int cell_count() {
   525     return static_cell_count();
   526   }
   528   // Direct accessor
   529   uint count() {
   530     return uint_at(count_off);
   531   }
   533   // Code generation support
   534   static ByteSize count_offset() {
   535     return cell_offset(count_off);
   536   }
   537   static ByteSize counter_data_size() {
   538     return cell_offset(counter_cell_count);
   539   }
   541 #ifndef PRODUCT
   542   void print_data_on(outputStream* st);
   543 #endif
   544 };
   546 // JumpData
   547 //
   548 // A JumpData is used to access profiling information for a direct
   549 // branch.  It is a counter, used for counting the number of branches,
   550 // plus a data displacement, used for realigning the data pointer to
   551 // the corresponding target bci.
   552 class JumpData : public ProfileData {
   553 protected:
   554   enum {
   555     taken_off_set,
   556     displacement_off_set,
   557     jump_cell_count
   558   };
   560   void set_displacement(int displacement) {
   561     set_int_at(displacement_off_set, displacement);
   562   }
   564 public:
   565   JumpData(DataLayout* layout) : ProfileData(layout) {
   566     assert(layout->tag() == DataLayout::jump_data_tag ||
   567       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   568   }
   570   virtual bool is_JumpData() { return true; }
   572   static int static_cell_count() {
   573     return jump_cell_count;
   574   }
   576   virtual int cell_count() {
   577     return static_cell_count();
   578   }
   580   // Direct accessor
   581   uint taken() {
   582     return uint_at(taken_off_set);
   583   }
   584   // Saturating counter
   585   uint inc_taken() {
   586     uint cnt = taken() + 1;
   587     // Did we wrap? Will compiler screw us??
   588     if (cnt == 0) cnt--;
   589     set_uint_at(taken_off_set, cnt);
   590     return cnt;
   591   }
   593   int displacement() {
   594     return int_at(displacement_off_set);
   595   }
   597   // Code generation support
   598   static ByteSize taken_offset() {
   599     return cell_offset(taken_off_set);
   600   }
   602   static ByteSize displacement_offset() {
   603     return cell_offset(displacement_off_set);
   604   }
   606   // Specific initialization.
   607   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   609 #ifndef PRODUCT
   610   void print_data_on(outputStream* st);
   611 #endif
   612 };
   614 // ReceiverTypeData
   615 //
   616 // A ReceiverTypeData is used to access profiling information about a
   617 // dynamic type check.  It consists of a counter which counts the total times
   618 // that the check is reached, and a series of (klassOop, count) pairs
   619 // which are used to store a type profile for the receiver of the check.
   620 class ReceiverTypeData : public CounterData {
   621 protected:
   622   enum {
   623     receiver0_offset = counter_cell_count,
   624     count0_offset,
   625     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   626   };
   628 public:
   629   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   630     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   631            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   632   }
   634   virtual bool is_ReceiverTypeData() { return true; }
   636   static int static_cell_count() {
   637     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   638   }
   640   virtual int cell_count() {
   641     return static_cell_count();
   642   }
   644   // Direct accessors
   645   static uint row_limit() {
   646     return TypeProfileWidth;
   647   }
   648   static int receiver_cell_index(uint row) {
   649     return receiver0_offset + row * receiver_type_row_cell_count;
   650   }
   651   static int receiver_count_cell_index(uint row) {
   652     return count0_offset + row * receiver_type_row_cell_count;
   653   }
   655   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
   656   // gc; it does not assert the receiver is a klass.  During compaction of the
   657   // perm gen, the klass may already have moved, so the is_klass() predicate
   658   // would fail.  The 'normal' version should be used whenever possible.
   659   klassOop receiver_unchecked(uint row) {
   660     assert(row < row_limit(), "oob");
   661     oop recv = oop_at(receiver_cell_index(row));
   662     return (klassOop)recv;
   663   }
   665   klassOop receiver(uint row) {
   666     klassOop recv = receiver_unchecked(row);
   667     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
   668     return recv;
   669   }
   671   uint receiver_count(uint row) {
   672     assert(row < row_limit(), "oob");
   673     return uint_at(receiver_count_cell_index(row));
   674   }
   676   // Code generation support
   677   static ByteSize receiver_offset(uint row) {
   678     return cell_offset(receiver_cell_index(row));
   679   }
   680   static ByteSize receiver_count_offset(uint row) {
   681     return cell_offset(receiver_count_cell_index(row));
   682   }
   683   static ByteSize receiver_type_data_size() {
   684     return cell_offset(static_cell_count());
   685   }
   687   // GC support
   688   virtual void follow_contents();
   689   virtual void oop_iterate(OopClosure* blk);
   690   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
   691   virtual void adjust_pointers();
   693 #ifndef SERIALGC
   694   // Parallel old support
   695   virtual void follow_contents(ParCompactionManager* cm);
   696   virtual void update_pointers();
   697   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
   698 #endif // SERIALGC
   700   oop* adr_receiver(uint row) {
   701     return adr_oop_at(receiver_cell_index(row));
   702   }
   704 #ifndef PRODUCT
   705   void print_receiver_data_on(outputStream* st);
   706   void print_data_on(outputStream* st);
   707 #endif
   708 };
   710 // VirtualCallData
   711 //
   712 // A VirtualCallData is used to access profiling information about a
   713 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   714 class VirtualCallData : public ReceiverTypeData {
   715 public:
   716   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   717     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   718   }
   720   virtual bool is_VirtualCallData() { return true; }
   722   static int static_cell_count() {
   723     // At this point we could add more profile state, e.g., for arguments.
   724     // But for now it's the same size as the base record type.
   725     return ReceiverTypeData::static_cell_count();
   726   }
   728   virtual int cell_count() {
   729     return static_cell_count();
   730   }
   732   // Direct accessors
   733   static ByteSize virtual_call_data_size() {
   734     return cell_offset(static_cell_count());
   735   }
   737 #ifndef PRODUCT
   738   void print_data_on(outputStream* st);
   739 #endif
   740 };
   742 // RetData
   743 //
   744 // A RetData is used to access profiling information for a ret bytecode.
   745 // It is composed of a count of the number of times that the ret has
   746 // been executed, followed by a series of triples of the form
   747 // (bci, count, di) which count the number of times that some bci was the
   748 // target of the ret and cache a corresponding data displacement.
   749 class RetData : public CounterData {
   750 protected:
   751   enum {
   752     bci0_offset = counter_cell_count,
   753     count0_offset,
   754     displacement0_offset,
   755     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   756   };
   758   void set_bci(uint row, int bci) {
   759     assert((uint)row < row_limit(), "oob");
   760     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   761   }
   762   void release_set_bci(uint row, int bci) {
   763     assert((uint)row < row_limit(), "oob");
   764     // 'release' when setting the bci acts as a valid flag for other
   765     // threads wrt bci_count and bci_displacement.
   766     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   767   }
   768   void set_bci_count(uint row, uint count) {
   769     assert((uint)row < row_limit(), "oob");
   770     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   771   }
   772   void set_bci_displacement(uint row, int disp) {
   773     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   774   }
   776 public:
   777   RetData(DataLayout* layout) : CounterData(layout) {
   778     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   779   }
   781   virtual bool is_RetData() { return true; }
   783   enum {
   784     no_bci = -1 // value of bci when bci1/2 are not in use.
   785   };
   787   static int static_cell_count() {
   788     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   789   }
   791   virtual int cell_count() {
   792     return static_cell_count();
   793   }
   795   static uint row_limit() {
   796     return BciProfileWidth;
   797   }
   798   static int bci_cell_index(uint row) {
   799     return bci0_offset + row * ret_row_cell_count;
   800   }
   801   static int bci_count_cell_index(uint row) {
   802     return count0_offset + row * ret_row_cell_count;
   803   }
   804   static int bci_displacement_cell_index(uint row) {
   805     return displacement0_offset + row * ret_row_cell_count;
   806   }
   808   // Direct accessors
   809   int bci(uint row) {
   810     return int_at(bci_cell_index(row));
   811   }
   812   uint bci_count(uint row) {
   813     return uint_at(bci_count_cell_index(row));
   814   }
   815   int bci_displacement(uint row) {
   816     return int_at(bci_displacement_cell_index(row));
   817   }
   819   // Interpreter Runtime support
   820   address fixup_ret(int return_bci, methodDataHandle mdo);
   822   // Code generation support
   823   static ByteSize bci_offset(uint row) {
   824     return cell_offset(bci_cell_index(row));
   825   }
   826   static ByteSize bci_count_offset(uint row) {
   827     return cell_offset(bci_count_cell_index(row));
   828   }
   829   static ByteSize bci_displacement_offset(uint row) {
   830     return cell_offset(bci_displacement_cell_index(row));
   831   }
   833   // Specific initialization.
   834   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   836 #ifndef PRODUCT
   837   void print_data_on(outputStream* st);
   838 #endif
   839 };
   841 // BranchData
   842 //
   843 // A BranchData is used to access profiling data for a two-way branch.
   844 // It consists of taken and not_taken counts as well as a data displacement
   845 // for the taken case.
   846 class BranchData : public JumpData {
   847 protected:
   848   enum {
   849     not_taken_off_set = jump_cell_count,
   850     branch_cell_count
   851   };
   853   void set_displacement(int displacement) {
   854     set_int_at(displacement_off_set, displacement);
   855   }
   857 public:
   858   BranchData(DataLayout* layout) : JumpData(layout) {
   859     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   860   }
   862   virtual bool is_BranchData() { return true; }
   864   static int static_cell_count() {
   865     return branch_cell_count;
   866   }
   868   virtual int cell_count() {
   869     return static_cell_count();
   870   }
   872   // Direct accessor
   873   uint not_taken() {
   874     return uint_at(not_taken_off_set);
   875   }
   877   uint inc_not_taken() {
   878     uint cnt = not_taken() + 1;
   879     // Did we wrap? Will compiler screw us??
   880     if (cnt == 0) cnt--;
   881     set_uint_at(not_taken_off_set, cnt);
   882     return cnt;
   883   }
   885   // Code generation support
   886   static ByteSize not_taken_offset() {
   887     return cell_offset(not_taken_off_set);
   888   }
   889   static ByteSize branch_data_size() {
   890     return cell_offset(branch_cell_count);
   891   }
   893   // Specific initialization.
   894   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   896 #ifndef PRODUCT
   897   void print_data_on(outputStream* st);
   898 #endif
   899 };
   901 // ArrayData
   902 //
   903 // A ArrayData is a base class for accessing profiling data which does
   904 // not have a statically known size.  It consists of an array length
   905 // and an array start.
   906 class ArrayData : public ProfileData {
   907 protected:
   908   friend class DataLayout;
   910   enum {
   911     array_len_off_set,
   912     array_start_off_set
   913   };
   915   uint array_uint_at(int index) {
   916     int aindex = index + array_start_off_set;
   917     return uint_at(aindex);
   918   }
   919   int array_int_at(int index) {
   920     int aindex = index + array_start_off_set;
   921     return int_at(aindex);
   922   }
   923   oop array_oop_at(int index) {
   924     int aindex = index + array_start_off_set;
   925     return oop_at(aindex);
   926   }
   927   void array_set_int_at(int index, int value) {
   928     int aindex = index + array_start_off_set;
   929     set_int_at(aindex, value);
   930   }
   932   // Code generation support for subclasses.
   933   static ByteSize array_element_offset(int index) {
   934     return cell_offset(array_start_off_set + index);
   935   }
   937 public:
   938   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   940   virtual bool is_ArrayData() { return true; }
   942   static int static_cell_count() {
   943     return -1;
   944   }
   946   int array_len() {
   947     return int_at_unchecked(array_len_off_set);
   948   }
   950   virtual int cell_count() {
   951     return array_len() + 1;
   952   }
   954   // Code generation support
   955   static ByteSize array_len_offset() {
   956     return cell_offset(array_len_off_set);
   957   }
   958   static ByteSize array_start_offset() {
   959     return cell_offset(array_start_off_set);
   960   }
   961 };
   963 // MultiBranchData
   964 //
   965 // A MultiBranchData is used to access profiling information for
   966 // a multi-way branch (*switch bytecodes).  It consists of a series
   967 // of (count, displacement) pairs, which count the number of times each
   968 // case was taken and specify the data displacment for each branch target.
   969 class MultiBranchData : public ArrayData {
   970 protected:
   971   enum {
   972     default_count_off_set,
   973     default_disaplacement_off_set,
   974     case_array_start
   975   };
   976   enum {
   977     relative_count_off_set,
   978     relative_displacement_off_set,
   979     per_case_cell_count
   980   };
   982   void set_default_displacement(int displacement) {
   983     array_set_int_at(default_disaplacement_off_set, displacement);
   984   }
   985   void set_displacement_at(int index, int displacement) {
   986     array_set_int_at(case_array_start +
   987                      index * per_case_cell_count +
   988                      relative_displacement_off_set,
   989                      displacement);
   990   }
   992 public:
   993   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
   994     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
   995   }
   997   virtual bool is_MultiBranchData() { return true; }
   999   static int compute_cell_count(BytecodeStream* stream);
  1001   int number_of_cases() {
  1002     int alen = array_len() - 2; // get rid of default case here.
  1003     assert(alen % per_case_cell_count == 0, "must be even");
  1004     return (alen / per_case_cell_count);
  1007   uint default_count() {
  1008     return array_uint_at(default_count_off_set);
  1010   int default_displacement() {
  1011     return array_int_at(default_disaplacement_off_set);
  1014   uint count_at(int index) {
  1015     return array_uint_at(case_array_start +
  1016                          index * per_case_cell_count +
  1017                          relative_count_off_set);
  1019   int displacement_at(int index) {
  1020     return array_int_at(case_array_start +
  1021                         index * per_case_cell_count +
  1022                         relative_displacement_off_set);
  1025   // Code generation support
  1026   static ByteSize default_count_offset() {
  1027     return array_element_offset(default_count_off_set);
  1029   static ByteSize default_displacement_offset() {
  1030     return array_element_offset(default_disaplacement_off_set);
  1032   static ByteSize case_count_offset(int index) {
  1033     return case_array_offset() +
  1034            (per_case_size() * index) +
  1035            relative_count_offset();
  1037   static ByteSize case_array_offset() {
  1038     return array_element_offset(case_array_start);
  1040   static ByteSize per_case_size() {
  1041     return in_ByteSize(per_case_cell_count) * cell_size;
  1043   static ByteSize relative_count_offset() {
  1044     return in_ByteSize(relative_count_off_set) * cell_size;
  1046   static ByteSize relative_displacement_offset() {
  1047     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1050   // Specific initialization.
  1051   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
  1053 #ifndef PRODUCT
  1054   void print_data_on(outputStream* st);
  1055 #endif
  1056 };
  1058 class ArgInfoData : public ArrayData {
  1060 public:
  1061   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1062     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1065   virtual bool is_ArgInfoData() { return true; }
  1068   int number_of_args() {
  1069     return array_len();
  1072   uint arg_modified(int arg) {
  1073     return array_uint_at(arg);
  1076   void set_arg_modified(int arg, uint val) {
  1077     array_set_int_at(arg, val);
  1080 #ifndef PRODUCT
  1081   void print_data_on(outputStream* st);
  1082 #endif
  1083 };
  1085 // methodDataOop
  1086 //
  1087 // A methodDataOop holds information which has been collected about
  1088 // a method.  Its layout looks like this:
  1089 //
  1090 // -----------------------------
  1091 // | header                    |
  1092 // | klass                     |
  1093 // -----------------------------
  1094 // | method                    |
  1095 // | size of the methodDataOop |
  1096 // -----------------------------
  1097 // | Data entries...           |
  1098 // |   (variable size)         |
  1099 // |                           |
  1100 // .                           .
  1101 // .                           .
  1102 // .                           .
  1103 // |                           |
  1104 // -----------------------------
  1105 //
  1106 // The data entry area is a heterogeneous array of DataLayouts. Each
  1107 // DataLayout in the array corresponds to a specific bytecode in the
  1108 // method.  The entries in the array are sorted by the corresponding
  1109 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1110 // which point to the underlying blocks of DataLayout structures.
  1111 //
  1112 // During interpretation, if profiling in enabled, the interpreter
  1113 // maintains a method data pointer (mdp), which points at the entry
  1114 // in the array corresponding to the current bci.  In the course of
  1115 // intepretation, when a bytecode is encountered that has profile data
  1116 // associated with it, the entry pointed to by mdp is updated, then the
  1117 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1118 // is NULL to begin with, the interpreter assumes that the current method
  1119 // is not (yet) being profiled.
  1120 //
  1121 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
  1122 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1123 // from the base of the data entry array.  A "displacement" is the byte offset
  1124 // in certain ProfileData objects that indicate the amount the mdp must be
  1125 // adjusted in the event of a change in control flow.
  1126 //
  1128 class methodDataOopDesc : public oopDesc {
  1129   friend class VMStructs;
  1130 private:
  1131   friend class ProfileData;
  1133   // Back pointer to the methodOop
  1134   methodOop _method;
  1136   // Size of this oop in bytes
  1137   int _size;
  1139   // Cached hint for bci_to_dp and bci_to_data
  1140   int _hint_di;
  1142   // Whole-method sticky bits and flags
  1143 public:
  1144   enum {
  1145     _trap_hist_limit    = 16,   // decoupled from Deoptimization::Reason_LIMIT
  1146     _trap_hist_mask     = max_jubyte,
  1147     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1148   }; // Public flag values
  1149 private:
  1150   uint _nof_decompiles;             // count of all nmethod removals
  1151   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1152   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1153   union {
  1154     intptr_t _align;
  1155     u1 _array[_trap_hist_limit];
  1156   } _trap_hist;
  1158   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1159   intx              _eflags;          // flags on escape information
  1160   intx              _arg_local;       // bit set of non-escaping arguments
  1161   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1162   intx              _arg_returned;    // bit set of returned arguments
  1164   int _creation_mileage;            // method mileage at MDO creation
  1166   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1167   int _data_size;
  1169   // Beginning of the data entries
  1170   intptr_t _data[1];
  1172   // Helper for size computation
  1173   static int compute_data_size(BytecodeStream* stream);
  1174   static int bytecode_cell_count(Bytecodes::Code code);
  1175   enum { no_profile_data = -1, variable_cell_count = -2 };
  1177   // Helper for initialization
  1178   DataLayout* data_layout_at(int data_index) {
  1179     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1180     return (DataLayout*) (((address)_data) + data_index);
  1183   // Initialize an individual data segment.  Returns the size of
  1184   // the segment in bytes.
  1185   int initialize_data(BytecodeStream* stream, int data_index);
  1187   // Helper for data_at
  1188   DataLayout* limit_data_position() {
  1189     return (DataLayout*)((address)data_base() + _data_size);
  1191   bool out_of_bounds(int data_index) {
  1192     return data_index >= data_size();
  1195   // Give each of the data entries a chance to perform specific
  1196   // data initialization.
  1197   void post_initialize(BytecodeStream* stream);
  1199   // hint accessors
  1200   int      hint_di() const  { return _hint_di; }
  1201   void set_hint_di(int di)  {
  1202     assert(!out_of_bounds(di), "hint_di out of bounds");
  1203     _hint_di = di;
  1205   ProfileData* data_before(int bci) {
  1206     // avoid SEGV on this edge case
  1207     if (data_size() == 0)
  1208       return NULL;
  1209     int hint = hint_di();
  1210     if (data_layout_at(hint)->bci() <= bci)
  1211       return data_at(hint);
  1212     return first_data();
  1215   // What is the index of the first data entry?
  1216   int first_di() { return 0; }
  1218   // Find or create an extra ProfileData:
  1219   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1221   // return the argument info cell
  1222   ArgInfoData *arg_info();
  1224 public:
  1225   static int header_size() {
  1226     return sizeof(methodDataOopDesc)/wordSize;
  1229   // Compute the size of a methodDataOop before it is created.
  1230   static int compute_allocation_size_in_bytes(methodHandle method);
  1231   static int compute_allocation_size_in_words(methodHandle method);
  1232   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1234   // Determine if a given bytecode can have profile information.
  1235   static bool bytecode_has_profile(Bytecodes::Code code) {
  1236     return bytecode_cell_count(code) != no_profile_data;
  1239   // Perform initialization of a new methodDataOop
  1240   void initialize(methodHandle method);
  1242   // My size
  1243   int object_size_in_bytes() { return _size; }
  1244   int object_size() {
  1245     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
  1248   int      creation_mileage() const  { return _creation_mileage; }
  1249   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1250   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1251   static int mileage_of(methodOop m);
  1253   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1254   enum EscapeFlag {
  1255     estimated    = 1 << 0,
  1256     return_local = 1 << 1,
  1257     return_allocated = 1 << 2,
  1258     allocated_escapes = 1 << 3,
  1259     unknown_modified = 1 << 4
  1260   };
  1262   intx eflags()                                  { return _eflags; }
  1263   intx arg_local()                               { return _arg_local; }
  1264   intx arg_stack()                               { return _arg_stack; }
  1265   intx arg_returned()                            { return _arg_returned; }
  1266   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1267                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1268                                                    return aid->arg_modified(a); }
  1270   void set_eflags(intx v)                        { _eflags = v; }
  1271   void set_arg_local(intx v)                     { _arg_local = v; }
  1272   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1273   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1274   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1275                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1277                                                    aid->set_arg_modified(a, v); }
  1279   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1281   // Location and size of data area
  1282   address data_base() const {
  1283     return (address) _data;
  1285   int data_size() {
  1286     return _data_size;
  1289   // Accessors
  1290   methodOop method() { return _method; }
  1292   // Get the data at an arbitrary (sort of) data index.
  1293   ProfileData* data_at(int data_index);
  1295   // Walk through the data in order.
  1296   ProfileData* first_data() { return data_at(first_di()); }
  1297   ProfileData* next_data(ProfileData* current);
  1298   bool is_valid(ProfileData* current) { return current != NULL; }
  1300   // Convert a dp (data pointer) to a di (data index).
  1301   int dp_to_di(address dp) {
  1302     return dp - ((address)_data);
  1305   address di_to_dp(int di) {
  1306     return (address)data_layout_at(di);
  1309   // bci to di/dp conversion.
  1310   address bci_to_dp(int bci);
  1311   int bci_to_di(int bci) {
  1312     return dp_to_di(bci_to_dp(bci));
  1315   // Get the data at an arbitrary bci, or NULL if there is none.
  1316   ProfileData* bci_to_data(int bci);
  1318   // Same, but try to create an extra_data record if one is needed:
  1319   ProfileData* allocate_bci_to_data(int bci) {
  1320     ProfileData* data = bci_to_data(bci);
  1321     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1324   // Add a handful of extra data records, for trap tracking.
  1325   DataLayout* extra_data_base() { return limit_data_position(); }
  1326   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
  1327   int extra_data_size() { return (address)extra_data_limit()
  1328                                - (address)extra_data_base(); }
  1329   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1331   // Return (uint)-1 for overflow.
  1332   uint trap_count(int reason) const {
  1333     assert((uint)reason < _trap_hist_limit, "oob");
  1334     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1336   // For loops:
  1337   static uint trap_reason_limit() { return _trap_hist_limit; }
  1338   static uint trap_count_limit()  { return _trap_hist_mask; }
  1339   uint inc_trap_count(int reason) {
  1340     // Count another trap, anywhere in this method.
  1341     assert(reason >= 0, "must be single trap");
  1342     if ((uint)reason < _trap_hist_limit) {
  1343       uint cnt1 = 1 + _trap_hist._array[reason];
  1344       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1345         _trap_hist._array[reason] = cnt1;
  1346         return cnt1;
  1347       } else {
  1348         return _trap_hist_mask + (++_nof_overflow_traps);
  1350     } else {
  1351       // Could not represent the count in the histogram.
  1352       return (++_nof_overflow_traps);
  1356   uint overflow_trap_count() const {
  1357     return _nof_overflow_traps;
  1359   uint overflow_recompile_count() const {
  1360     return _nof_overflow_recompiles;
  1362   void inc_overflow_recompile_count() {
  1363     _nof_overflow_recompiles += 1;
  1365   uint decompile_count() const {
  1366     return _nof_decompiles;
  1368   void inc_decompile_count() {
  1369     _nof_decompiles += 1;
  1372   // Support for code generation
  1373   static ByteSize data_offset() {
  1374     return byte_offset_of(methodDataOopDesc, _data[0]);
  1377   // GC support
  1378   oop* adr_method() const { return (oop*)&_method; }
  1379   bool object_is_parsable() const { return _size != 0; }
  1380   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1382 #ifndef PRODUCT
  1383   // printing support for method data
  1384   void print_data_on(outputStream* st);
  1385 #endif
  1387   // verification
  1388   void verify_data_on(outputStream* st);
  1389 };

mercurial