src/os/linux/vm/os_linux.cpp

Thu, 25 Apr 2013 11:02:32 -0700

author
vlivanov
date
Thu, 25 Apr 2013 11:02:32 -0700
changeset 5027
e12c9b3740db
parent 4891
8be1318fbe77
child 5040
9ce110b1d14a
permissions
-rw-r--r--

8012260: ciReplay: Include PID into the name of replay data file
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/thread.inline.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/memTracker.hpp"
    62 #include "services/runtimeService.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/elfFile.hpp"
    67 #include "utilities/growableArray.hpp"
    68 #include "utilities/vmError.hpp"
    70 // put OS-includes here
    71 # include <sys/types.h>
    72 # include <sys/mman.h>
    73 # include <sys/stat.h>
    74 # include <sys/select.h>
    75 # include <pthread.h>
    76 # include <signal.h>
    77 # include <errno.h>
    78 # include <dlfcn.h>
    79 # include <stdio.h>
    80 # include <unistd.h>
    81 # include <sys/resource.h>
    82 # include <pthread.h>
    83 # include <sys/stat.h>
    84 # include <sys/time.h>
    85 # include <sys/times.h>
    86 # include <sys/utsname.h>
    87 # include <sys/socket.h>
    88 # include <sys/wait.h>
    89 # include <pwd.h>
    90 # include <poll.h>
    91 # include <semaphore.h>
    92 # include <fcntl.h>
    93 # include <string.h>
    94 # include <syscall.h>
    95 # include <sys/sysinfo.h>
    96 # include <gnu/libc-version.h>
    97 # include <sys/ipc.h>
    98 # include <sys/shm.h>
    99 # include <link.h>
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   104 #define MAX_PATH    (2 * K)
   106 // for timer info max values which include all bits
   107 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   109 #define LARGEPAGES_BIT (1 << 6)
   110 ////////////////////////////////////////////////////////////////////////////////
   111 // global variables
   112 julong os::Linux::_physical_memory = 0;
   114 address   os::Linux::_initial_thread_stack_bottom = NULL;
   115 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   117 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   118 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   119 Mutex* os::Linux::_createThread_lock = NULL;
   120 pthread_t os::Linux::_main_thread;
   121 int os::Linux::_page_size = -1;
   122 bool os::Linux::_is_floating_stack = false;
   123 bool os::Linux::_is_NPTL = false;
   124 bool os::Linux::_supports_fast_thread_cpu_time = false;
   125 const char * os::Linux::_glibc_version = NULL;
   126 const char * os::Linux::_libpthread_version = NULL;
   128 static jlong initial_time_count=0;
   130 static int clock_tics_per_sec = 100;
   132 // For diagnostics to print a message once. see run_periodic_checks
   133 static sigset_t check_signal_done;
   134 static bool check_signals = true;;
   136 static pid_t _initial_pid = 0;
   138 /* Signal number used to suspend/resume a thread */
   140 /* do not use any signal number less than SIGSEGV, see 4355769 */
   141 static int SR_signum = SIGUSR2;
   142 sigset_t SR_sigset;
   144 /* Used to protect dlsym() calls */
   145 static pthread_mutex_t dl_mutex;
   147 #ifdef JAVASE_EMBEDDED
   148 class MemNotifyThread: public Thread {
   149   friend class VMStructs;
   150  public:
   151   virtual void run();
   153  private:
   154   static MemNotifyThread* _memnotify_thread;
   155   int _fd;
   157  public:
   159   // Constructor
   160   MemNotifyThread(int fd);
   162   // Tester
   163   bool is_memnotify_thread() const { return true; }
   165   // Printing
   166   char* name() const { return (char*)"Linux MemNotify Thread"; }
   168   // Returns the single instance of the MemNotifyThread
   169   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   171   // Create and start the single instance of MemNotifyThread
   172   static void start();
   173 };
   174 #endif // JAVASE_EMBEDDED
   176 // utility functions
   178 static int SR_initialize();
   180 julong os::available_memory() {
   181   return Linux::available_memory();
   182 }
   184 julong os::Linux::available_memory() {
   185   // values in struct sysinfo are "unsigned long"
   186   struct sysinfo si;
   187   sysinfo(&si);
   189   return (julong)si.freeram * si.mem_unit;
   190 }
   192 julong os::physical_memory() {
   193   return Linux::physical_memory();
   194 }
   196 ////////////////////////////////////////////////////////////////////////////////
   197 // environment support
   199 bool os::getenv(const char* name, char* buf, int len) {
   200   const char* val = ::getenv(name);
   201   if (val != NULL && strlen(val) < (size_t)len) {
   202     strcpy(buf, val);
   203     return true;
   204   }
   205   if (len > 0) buf[0] = 0;  // return a null string
   206   return false;
   207 }
   210 // Return true if user is running as root.
   212 bool os::have_special_privileges() {
   213   static bool init = false;
   214   static bool privileges = false;
   215   if (!init) {
   216     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   217     init = true;
   218   }
   219   return privileges;
   220 }
   223 #ifndef SYS_gettid
   224 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   225 #ifdef __ia64__
   226 #define SYS_gettid 1105
   227 #elif __i386__
   228 #define SYS_gettid 224
   229 #elif __amd64__
   230 #define SYS_gettid 186
   231 #elif __sparc__
   232 #define SYS_gettid 143
   233 #else
   234 #error define gettid for the arch
   235 #endif
   236 #endif
   238 // Cpu architecture string
   239 #if   defined(ZERO)
   240 static char cpu_arch[] = ZERO_LIBARCH;
   241 #elif defined(IA64)
   242 static char cpu_arch[] = "ia64";
   243 #elif defined(IA32)
   244 static char cpu_arch[] = "i386";
   245 #elif defined(AMD64)
   246 static char cpu_arch[] = "amd64";
   247 #elif defined(ARM)
   248 static char cpu_arch[] = "arm";
   249 #elif defined(PPC)
   250 static char cpu_arch[] = "ppc";
   251 #elif defined(SPARC)
   252 #  ifdef _LP64
   253 static char cpu_arch[] = "sparcv9";
   254 #  else
   255 static char cpu_arch[] = "sparc";
   256 #  endif
   257 #else
   258 #error Add appropriate cpu_arch setting
   259 #endif
   262 // pid_t gettid()
   263 //
   264 // Returns the kernel thread id of the currently running thread. Kernel
   265 // thread id is used to access /proc.
   266 //
   267 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   268 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   269 //
   270 pid_t os::Linux::gettid() {
   271   int rslt = syscall(SYS_gettid);
   272   if (rslt == -1) {
   273      // old kernel, no NPTL support
   274      return getpid();
   275   } else {
   276      return (pid_t)rslt;
   277   }
   278 }
   280 // Most versions of linux have a bug where the number of processors are
   281 // determined by looking at the /proc file system.  In a chroot environment,
   282 // the system call returns 1.  This causes the VM to act as if it is
   283 // a single processor and elide locking (see is_MP() call).
   284 static bool unsafe_chroot_detected = false;
   285 static const char *unstable_chroot_error = "/proc file system not found.\n"
   286                      "Java may be unstable running multithreaded in a chroot "
   287                      "environment on Linux when /proc filesystem is not mounted.";
   289 void os::Linux::initialize_system_info() {
   290   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   291   if (processor_count() == 1) {
   292     pid_t pid = os::Linux::gettid();
   293     char fname[32];
   294     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   295     FILE *fp = fopen(fname, "r");
   296     if (fp == NULL) {
   297       unsafe_chroot_detected = true;
   298     } else {
   299       fclose(fp);
   300     }
   301   }
   302   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   303   assert(processor_count() > 0, "linux error");
   304 }
   306 void os::init_system_properties_values() {
   307 //  char arch[12];
   308 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   310   // The next steps are taken in the product version:
   311   //
   312   // Obtain the JAVA_HOME value from the location of libjvm.so.
   313   // This library should be located at:
   314   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   315   //
   316   // If "/jre/lib/" appears at the right place in the path, then we
   317   // assume libjvm.so is installed in a JDK and we use this path.
   318   //
   319   // Otherwise exit with message: "Could not create the Java virtual machine."
   320   //
   321   // The following extra steps are taken in the debugging version:
   322   //
   323   // If "/jre/lib/" does NOT appear at the right place in the path
   324   // instead of exit check for $JAVA_HOME environment variable.
   325   //
   326   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   327   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   328   // it looks like libjvm.so is installed there
   329   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   330   //
   331   // Otherwise exit.
   332   //
   333   // Important note: if the location of libjvm.so changes this
   334   // code needs to be changed accordingly.
   336   // The next few definitions allow the code to be verbatim:
   337 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   338 #define getenv(n) ::getenv(n)
   340 /*
   341  * See ld(1):
   342  *      The linker uses the following search paths to locate required
   343  *      shared libraries:
   344  *        1: ...
   345  *        ...
   346  *        7: The default directories, normally /lib and /usr/lib.
   347  */
   348 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   349 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   350 #else
   351 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   352 #endif
   354 #define EXTENSIONS_DIR  "/lib/ext"
   355 #define ENDORSED_DIR    "/lib/endorsed"
   356 #define REG_DIR         "/usr/java/packages"
   358   {
   359     /* sysclasspath, java_home, dll_dir */
   360     {
   361         char *home_path;
   362         char *dll_path;
   363         char *pslash;
   364         char buf[MAXPATHLEN];
   365         os::jvm_path(buf, sizeof(buf));
   367         // Found the full path to libjvm.so.
   368         // Now cut the path to <java_home>/jre if we can.
   369         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   370         pslash = strrchr(buf, '/');
   371         if (pslash != NULL)
   372             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   373         dll_path = malloc(strlen(buf) + 1);
   374         if (dll_path == NULL)
   375             return;
   376         strcpy(dll_path, buf);
   377         Arguments::set_dll_dir(dll_path);
   379         if (pslash != NULL) {
   380             pslash = strrchr(buf, '/');
   381             if (pslash != NULL) {
   382                 *pslash = '\0';       /* get rid of /<arch> */
   383                 pslash = strrchr(buf, '/');
   384                 if (pslash != NULL)
   385                     *pslash = '\0';   /* get rid of /lib */
   386             }
   387         }
   389         home_path = malloc(strlen(buf) + 1);
   390         if (home_path == NULL)
   391             return;
   392         strcpy(home_path, buf);
   393         Arguments::set_java_home(home_path);
   395         if (!set_boot_path('/', ':'))
   396             return;
   397     }
   399     /*
   400      * Where to look for native libraries
   401      *
   402      * Note: Due to a legacy implementation, most of the library path
   403      * is set in the launcher.  This was to accomodate linking restrictions
   404      * on legacy Linux implementations (which are no longer supported).
   405      * Eventually, all the library path setting will be done here.
   406      *
   407      * However, to prevent the proliferation of improperly built native
   408      * libraries, the new path component /usr/java/packages is added here.
   409      * Eventually, all the library path setting will be done here.
   410      */
   411     {
   412         char *ld_library_path;
   414         /*
   415          * Construct the invariant part of ld_library_path. Note that the
   416          * space for the colon and the trailing null are provided by the
   417          * nulls included by the sizeof operator (so actually we allocate
   418          * a byte more than necessary).
   419          */
   420         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   421             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   422         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   424         /*
   425          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   426          * should always exist (until the legacy problem cited above is
   427          * addressed).
   428          */
   429         char *v = getenv("LD_LIBRARY_PATH");
   430         if (v != NULL) {
   431             char *t = ld_library_path;
   432             /* That's +1 for the colon and +1 for the trailing '\0' */
   433             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   434             sprintf(ld_library_path, "%s:%s", v, t);
   435         }
   436         Arguments::set_library_path(ld_library_path);
   437     }
   439     /*
   440      * Extensions directories.
   441      *
   442      * Note that the space for the colon and the trailing null are provided
   443      * by the nulls included by the sizeof operator (so actually one byte more
   444      * than necessary is allocated).
   445      */
   446     {
   447         char *buf = malloc(strlen(Arguments::get_java_home()) +
   448             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   449         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   450             Arguments::get_java_home());
   451         Arguments::set_ext_dirs(buf);
   452     }
   454     /* Endorsed standards default directory. */
   455     {
   456         char * buf;
   457         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   458         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   459         Arguments::set_endorsed_dirs(buf);
   460     }
   461   }
   463 #undef malloc
   464 #undef getenv
   465 #undef EXTENSIONS_DIR
   466 #undef ENDORSED_DIR
   468   // Done
   469   return;
   470 }
   472 ////////////////////////////////////////////////////////////////////////////////
   473 // breakpoint support
   475 void os::breakpoint() {
   476   BREAKPOINT;
   477 }
   479 extern "C" void breakpoint() {
   480   // use debugger to set breakpoint here
   481 }
   483 ////////////////////////////////////////////////////////////////////////////////
   484 // signal support
   486 debug_only(static bool signal_sets_initialized = false);
   487 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   489 bool os::Linux::is_sig_ignored(int sig) {
   490       struct sigaction oact;
   491       sigaction(sig, (struct sigaction*)NULL, &oact);
   492       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   493                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   494       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   495            return true;
   496       else
   497            return false;
   498 }
   500 void os::Linux::signal_sets_init() {
   501   // Should also have an assertion stating we are still single-threaded.
   502   assert(!signal_sets_initialized, "Already initialized");
   503   // Fill in signals that are necessarily unblocked for all threads in
   504   // the VM. Currently, we unblock the following signals:
   505   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   506   //                         by -Xrs (=ReduceSignalUsage));
   507   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   508   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   509   // the dispositions or masks wrt these signals.
   510   // Programs embedding the VM that want to use the above signals for their
   511   // own purposes must, at this time, use the "-Xrs" option to prevent
   512   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   513   // (See bug 4345157, and other related bugs).
   514   // In reality, though, unblocking these signals is really a nop, since
   515   // these signals are not blocked by default.
   516   sigemptyset(&unblocked_sigs);
   517   sigemptyset(&allowdebug_blocked_sigs);
   518   sigaddset(&unblocked_sigs, SIGILL);
   519   sigaddset(&unblocked_sigs, SIGSEGV);
   520   sigaddset(&unblocked_sigs, SIGBUS);
   521   sigaddset(&unblocked_sigs, SIGFPE);
   522   sigaddset(&unblocked_sigs, SR_signum);
   524   if (!ReduceSignalUsage) {
   525    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   526       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   527       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   528    }
   529    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   530       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   531       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   532    }
   533    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   534       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   535       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   536    }
   537   }
   538   // Fill in signals that are blocked by all but the VM thread.
   539   sigemptyset(&vm_sigs);
   540   if (!ReduceSignalUsage)
   541     sigaddset(&vm_sigs, BREAK_SIGNAL);
   542   debug_only(signal_sets_initialized = true);
   544 }
   546 // These are signals that are unblocked while a thread is running Java.
   547 // (For some reason, they get blocked by default.)
   548 sigset_t* os::Linux::unblocked_signals() {
   549   assert(signal_sets_initialized, "Not initialized");
   550   return &unblocked_sigs;
   551 }
   553 // These are the signals that are blocked while a (non-VM) thread is
   554 // running Java. Only the VM thread handles these signals.
   555 sigset_t* os::Linux::vm_signals() {
   556   assert(signal_sets_initialized, "Not initialized");
   557   return &vm_sigs;
   558 }
   560 // These are signals that are blocked during cond_wait to allow debugger in
   561 sigset_t* os::Linux::allowdebug_blocked_signals() {
   562   assert(signal_sets_initialized, "Not initialized");
   563   return &allowdebug_blocked_sigs;
   564 }
   566 void os::Linux::hotspot_sigmask(Thread* thread) {
   568   //Save caller's signal mask before setting VM signal mask
   569   sigset_t caller_sigmask;
   570   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   572   OSThread* osthread = thread->osthread();
   573   osthread->set_caller_sigmask(caller_sigmask);
   575   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   577   if (!ReduceSignalUsage) {
   578     if (thread->is_VM_thread()) {
   579       // Only the VM thread handles BREAK_SIGNAL ...
   580       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   581     } else {
   582       // ... all other threads block BREAK_SIGNAL
   583       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   584     }
   585   }
   586 }
   588 //////////////////////////////////////////////////////////////////////////////
   589 // detecting pthread library
   591 void os::Linux::libpthread_init() {
   592   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   593   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   594   // generic name for earlier versions.
   595   // Define macros here so we can build HotSpot on old systems.
   596 # ifndef _CS_GNU_LIBC_VERSION
   597 # define _CS_GNU_LIBC_VERSION 2
   598 # endif
   599 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   600 # define _CS_GNU_LIBPTHREAD_VERSION 3
   601 # endif
   603   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   604   if (n > 0) {
   605      char *str = (char *)malloc(n, mtInternal);
   606      confstr(_CS_GNU_LIBC_VERSION, str, n);
   607      os::Linux::set_glibc_version(str);
   608   } else {
   609      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   610      static char _gnu_libc_version[32];
   611      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   612               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   613      os::Linux::set_glibc_version(_gnu_libc_version);
   614   }
   616   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   617   if (n > 0) {
   618      char *str = (char *)malloc(n, mtInternal);
   619      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   620      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   621      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   622      // is the case. LinuxThreads has a hard limit on max number of threads.
   623      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   624      // On the other hand, NPTL does not have such a limit, sysconf()
   625      // will return -1 and errno is not changed. Check if it is really NPTL.
   626      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   627          strstr(str, "NPTL") &&
   628          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   629        free(str);
   630        os::Linux::set_libpthread_version("linuxthreads");
   631      } else {
   632        os::Linux::set_libpthread_version(str);
   633      }
   634   } else {
   635     // glibc before 2.3.2 only has LinuxThreads.
   636     os::Linux::set_libpthread_version("linuxthreads");
   637   }
   639   if (strstr(libpthread_version(), "NPTL")) {
   640      os::Linux::set_is_NPTL();
   641   } else {
   642      os::Linux::set_is_LinuxThreads();
   643   }
   645   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   646   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   647   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   648      os::Linux::set_is_floating_stack();
   649   }
   650 }
   652 /////////////////////////////////////////////////////////////////////////////
   653 // thread stack
   655 // Force Linux kernel to expand current thread stack. If "bottom" is close
   656 // to the stack guard, caller should block all signals.
   657 //
   658 // MAP_GROWSDOWN:
   659 //   A special mmap() flag that is used to implement thread stacks. It tells
   660 //   kernel that the memory region should extend downwards when needed. This
   661 //   allows early versions of LinuxThreads to only mmap the first few pages
   662 //   when creating a new thread. Linux kernel will automatically expand thread
   663 //   stack as needed (on page faults).
   664 //
   665 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   666 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   667 //   region, it's hard to tell if the fault is due to a legitimate stack
   668 //   access or because of reading/writing non-exist memory (e.g. buffer
   669 //   overrun). As a rule, if the fault happens below current stack pointer,
   670 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   671 //   application (see Linux kernel fault.c).
   672 //
   673 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   674 //   stack overflow detection.
   675 //
   676 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   677 //   not use this flag. However, the stack of initial thread is not created
   678 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   679 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   680 //   and then attach the thread to JVM.
   681 //
   682 // To get around the problem and allow stack banging on Linux, we need to
   683 // manually expand thread stack after receiving the SIGSEGV.
   684 //
   685 // There are two ways to expand thread stack to address "bottom", we used
   686 // both of them in JVM before 1.5:
   687 //   1. adjust stack pointer first so that it is below "bottom", and then
   688 //      touch "bottom"
   689 //   2. mmap() the page in question
   690 //
   691 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   692 // if current sp is already near the lower end of page 101, and we need to
   693 // call mmap() to map page 100, it is possible that part of the mmap() frame
   694 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   695 // That will destroy the mmap() frame and cause VM to crash.
   696 //
   697 // The following code works by adjusting sp first, then accessing the "bottom"
   698 // page to force a page fault. Linux kernel will then automatically expand the
   699 // stack mapping.
   700 //
   701 // _expand_stack_to() assumes its frame size is less than page size, which
   702 // should always be true if the function is not inlined.
   704 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   705 #define NOINLINE
   706 #else
   707 #define NOINLINE __attribute__ ((noinline))
   708 #endif
   710 static void _expand_stack_to(address bottom) NOINLINE;
   712 static void _expand_stack_to(address bottom) {
   713   address sp;
   714   size_t size;
   715   volatile char *p;
   717   // Adjust bottom to point to the largest address within the same page, it
   718   // gives us a one-page buffer if alloca() allocates slightly more memory.
   719   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   720   bottom += os::Linux::page_size() - 1;
   722   // sp might be slightly above current stack pointer; if that's the case, we
   723   // will alloca() a little more space than necessary, which is OK. Don't use
   724   // os::current_stack_pointer(), as its result can be slightly below current
   725   // stack pointer, causing us to not alloca enough to reach "bottom".
   726   sp = (address)&sp;
   728   if (sp > bottom) {
   729     size = sp - bottom;
   730     p = (volatile char *)alloca(size);
   731     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   732     p[0] = '\0';
   733   }
   734 }
   736 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   737   assert(t!=NULL, "just checking");
   738   assert(t->osthread()->expanding_stack(), "expand should be set");
   739   assert(t->stack_base() != NULL, "stack_base was not initialized");
   741   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   742     sigset_t mask_all, old_sigset;
   743     sigfillset(&mask_all);
   744     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   745     _expand_stack_to(addr);
   746     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   747     return true;
   748   }
   749   return false;
   750 }
   752 //////////////////////////////////////////////////////////////////////////////
   753 // create new thread
   755 static address highest_vm_reserved_address();
   757 // check if it's safe to start a new thread
   758 static bool _thread_safety_check(Thread* thread) {
   759   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   760     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   761     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   762     //   allocated (MAP_FIXED) from high address space. Every thread stack
   763     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   764     //   it to other values if they rebuild LinuxThreads).
   765     //
   766     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   767     // the memory region has already been mmap'ed. That means if we have too
   768     // many threads and/or very large heap, eventually thread stack will
   769     // collide with heap.
   770     //
   771     // Here we try to prevent heap/stack collision by comparing current
   772     // stack bottom with the highest address that has been mmap'ed by JVM
   773     // plus a safety margin for memory maps created by native code.
   774     //
   775     // This feature can be disabled by setting ThreadSafetyMargin to 0
   776     //
   777     if (ThreadSafetyMargin > 0) {
   778       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   780       // not safe if our stack extends below the safety margin
   781       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   782     } else {
   783       return true;
   784     }
   785   } else {
   786     // Floating stack LinuxThreads or NPTL:
   787     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   788     //   there's not enough space left, pthread_create() will fail. If we come
   789     //   here, that means enough space has been reserved for stack.
   790     return true;
   791   }
   792 }
   794 // Thread start routine for all newly created threads
   795 static void *java_start(Thread *thread) {
   796   // Try to randomize the cache line index of hot stack frames.
   797   // This helps when threads of the same stack traces evict each other's
   798   // cache lines. The threads can be either from the same JVM instance, or
   799   // from different JVM instances. The benefit is especially true for
   800   // processors with hyperthreading technology.
   801   static int counter = 0;
   802   int pid = os::current_process_id();
   803   alloca(((pid ^ counter++) & 7) * 128);
   805   ThreadLocalStorage::set_thread(thread);
   807   OSThread* osthread = thread->osthread();
   808   Monitor* sync = osthread->startThread_lock();
   810   // non floating stack LinuxThreads needs extra check, see above
   811   if (!_thread_safety_check(thread)) {
   812     // notify parent thread
   813     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   814     osthread->set_state(ZOMBIE);
   815     sync->notify_all();
   816     return NULL;
   817   }
   819   // thread_id is kernel thread id (similar to Solaris LWP id)
   820   osthread->set_thread_id(os::Linux::gettid());
   822   if (UseNUMA) {
   823     int lgrp_id = os::numa_get_group_id();
   824     if (lgrp_id != -1) {
   825       thread->set_lgrp_id(lgrp_id);
   826     }
   827   }
   828   // initialize signal mask for this thread
   829   os::Linux::hotspot_sigmask(thread);
   831   // initialize floating point control register
   832   os::Linux::init_thread_fpu_state();
   834   // handshaking with parent thread
   835   {
   836     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   838     // notify parent thread
   839     osthread->set_state(INITIALIZED);
   840     sync->notify_all();
   842     // wait until os::start_thread()
   843     while (osthread->get_state() == INITIALIZED) {
   844       sync->wait(Mutex::_no_safepoint_check_flag);
   845     }
   846   }
   848   // call one more level start routine
   849   thread->run();
   851   return 0;
   852 }
   854 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   855   assert(thread->osthread() == NULL, "caller responsible");
   857   // Allocate the OSThread object
   858   OSThread* osthread = new OSThread(NULL, NULL);
   859   if (osthread == NULL) {
   860     return false;
   861   }
   863   // set the correct thread state
   864   osthread->set_thread_type(thr_type);
   866   // Initial state is ALLOCATED but not INITIALIZED
   867   osthread->set_state(ALLOCATED);
   869   thread->set_osthread(osthread);
   871   // init thread attributes
   872   pthread_attr_t attr;
   873   pthread_attr_init(&attr);
   874   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   876   // stack size
   877   if (os::Linux::supports_variable_stack_size()) {
   878     // calculate stack size if it's not specified by caller
   879     if (stack_size == 0) {
   880       stack_size = os::Linux::default_stack_size(thr_type);
   882       switch (thr_type) {
   883       case os::java_thread:
   884         // Java threads use ThreadStackSize which default value can be
   885         // changed with the flag -Xss
   886         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   887         stack_size = JavaThread::stack_size_at_create();
   888         break;
   889       case os::compiler_thread:
   890         if (CompilerThreadStackSize > 0) {
   891           stack_size = (size_t)(CompilerThreadStackSize * K);
   892           break;
   893         } // else fall through:
   894           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   895       case os::vm_thread:
   896       case os::pgc_thread:
   897       case os::cgc_thread:
   898       case os::watcher_thread:
   899         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   900         break;
   901       }
   902     }
   904     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   905     pthread_attr_setstacksize(&attr, stack_size);
   906   } else {
   907     // let pthread_create() pick the default value.
   908   }
   910   // glibc guard page
   911   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   913   ThreadState state;
   915   {
   916     // Serialize thread creation if we are running with fixed stack LinuxThreads
   917     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   918     if (lock) {
   919       os::Linux::createThread_lock()->lock_without_safepoint_check();
   920     }
   922     pthread_t tid;
   923     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   925     pthread_attr_destroy(&attr);
   927     if (ret != 0) {
   928       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   929         perror("pthread_create()");
   930       }
   931       // Need to clean up stuff we've allocated so far
   932       thread->set_osthread(NULL);
   933       delete osthread;
   934       if (lock) os::Linux::createThread_lock()->unlock();
   935       return false;
   936     }
   938     // Store pthread info into the OSThread
   939     osthread->set_pthread_id(tid);
   941     // Wait until child thread is either initialized or aborted
   942     {
   943       Monitor* sync_with_child = osthread->startThread_lock();
   944       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   945       while ((state = osthread->get_state()) == ALLOCATED) {
   946         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   947       }
   948     }
   950     if (lock) {
   951       os::Linux::createThread_lock()->unlock();
   952     }
   953   }
   955   // Aborted due to thread limit being reached
   956   if (state == ZOMBIE) {
   957       thread->set_osthread(NULL);
   958       delete osthread;
   959       return false;
   960   }
   962   // The thread is returned suspended (in state INITIALIZED),
   963   // and is started higher up in the call chain
   964   assert(state == INITIALIZED, "race condition");
   965   return true;
   966 }
   968 /////////////////////////////////////////////////////////////////////////////
   969 // attach existing thread
   971 // bootstrap the main thread
   972 bool os::create_main_thread(JavaThread* thread) {
   973   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   974   return create_attached_thread(thread);
   975 }
   977 bool os::create_attached_thread(JavaThread* thread) {
   978 #ifdef ASSERT
   979     thread->verify_not_published();
   980 #endif
   982   // Allocate the OSThread object
   983   OSThread* osthread = new OSThread(NULL, NULL);
   985   if (osthread == NULL) {
   986     return false;
   987   }
   989   // Store pthread info into the OSThread
   990   osthread->set_thread_id(os::Linux::gettid());
   991   osthread->set_pthread_id(::pthread_self());
   993   // initialize floating point control register
   994   os::Linux::init_thread_fpu_state();
   996   // Initial thread state is RUNNABLE
   997   osthread->set_state(RUNNABLE);
   999   thread->set_osthread(osthread);
  1001   if (UseNUMA) {
  1002     int lgrp_id = os::numa_get_group_id();
  1003     if (lgrp_id != -1) {
  1004       thread->set_lgrp_id(lgrp_id);
  1008   if (os::Linux::is_initial_thread()) {
  1009     // If current thread is initial thread, its stack is mapped on demand,
  1010     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1011     // the entire stack region to avoid SEGV in stack banging.
  1012     // It is also useful to get around the heap-stack-gap problem on SuSE
  1013     // kernel (see 4821821 for details). We first expand stack to the top
  1014     // of yellow zone, then enable stack yellow zone (order is significant,
  1015     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1016     // is no gap between the last two virtual memory regions.
  1018     JavaThread *jt = (JavaThread *)thread;
  1019     address addr = jt->stack_yellow_zone_base();
  1020     assert(addr != NULL, "initialization problem?");
  1021     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1023     osthread->set_expanding_stack();
  1024     os::Linux::manually_expand_stack(jt, addr);
  1025     osthread->clear_expanding_stack();
  1028   // initialize signal mask for this thread
  1029   // and save the caller's signal mask
  1030   os::Linux::hotspot_sigmask(thread);
  1032   return true;
  1035 void os::pd_start_thread(Thread* thread) {
  1036   OSThread * osthread = thread->osthread();
  1037   assert(osthread->get_state() != INITIALIZED, "just checking");
  1038   Monitor* sync_with_child = osthread->startThread_lock();
  1039   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1040   sync_with_child->notify();
  1043 // Free Linux resources related to the OSThread
  1044 void os::free_thread(OSThread* osthread) {
  1045   assert(osthread != NULL, "osthread not set");
  1047   if (Thread::current()->osthread() == osthread) {
  1048     // Restore caller's signal mask
  1049     sigset_t sigmask = osthread->caller_sigmask();
  1050     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1053   delete osthread;
  1056 //////////////////////////////////////////////////////////////////////////////
  1057 // thread local storage
  1059 int os::allocate_thread_local_storage() {
  1060   pthread_key_t key;
  1061   int rslt = pthread_key_create(&key, NULL);
  1062   assert(rslt == 0, "cannot allocate thread local storage");
  1063   return (int)key;
  1066 // Note: This is currently not used by VM, as we don't destroy TLS key
  1067 // on VM exit.
  1068 void os::free_thread_local_storage(int index) {
  1069   int rslt = pthread_key_delete((pthread_key_t)index);
  1070   assert(rslt == 0, "invalid index");
  1073 void os::thread_local_storage_at_put(int index, void* value) {
  1074   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1075   assert(rslt == 0, "pthread_setspecific failed");
  1078 extern "C" Thread* get_thread() {
  1079   return ThreadLocalStorage::thread();
  1082 //////////////////////////////////////////////////////////////////////////////
  1083 // initial thread
  1085 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1086 bool os::Linux::is_initial_thread(void) {
  1087   char dummy;
  1088   // If called before init complete, thread stack bottom will be null.
  1089   // Can be called if fatal error occurs before initialization.
  1090   if (initial_thread_stack_bottom() == NULL) return false;
  1091   assert(initial_thread_stack_bottom() != NULL &&
  1092          initial_thread_stack_size()   != 0,
  1093          "os::init did not locate initial thread's stack region");
  1094   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1095       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1096        return true;
  1097   else return false;
  1100 // Find the virtual memory area that contains addr
  1101 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1102   FILE *fp = fopen("/proc/self/maps", "r");
  1103   if (fp) {
  1104     address low, high;
  1105     while (!feof(fp)) {
  1106       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1107         if (low <= addr && addr < high) {
  1108            if (vma_low)  *vma_low  = low;
  1109            if (vma_high) *vma_high = high;
  1110            fclose (fp);
  1111            return true;
  1114       for (;;) {
  1115         int ch = fgetc(fp);
  1116         if (ch == EOF || ch == (int)'\n') break;
  1119     fclose(fp);
  1121   return false;
  1124 // Locate initial thread stack. This special handling of initial thread stack
  1125 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1126 // bogus value for initial thread.
  1127 void os::Linux::capture_initial_stack(size_t max_size) {
  1128   // stack size is the easy part, get it from RLIMIT_STACK
  1129   size_t stack_size;
  1130   struct rlimit rlim;
  1131   getrlimit(RLIMIT_STACK, &rlim);
  1132   stack_size = rlim.rlim_cur;
  1134   // 6308388: a bug in ld.so will relocate its own .data section to the
  1135   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1136   //   so we won't install guard page on ld.so's data section.
  1137   stack_size -= 2 * page_size();
  1139   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1140   //   7.1, in both cases we will get 2G in return value.
  1141   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1142   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1143   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1144   //   in case other parts in glibc still assumes 2M max stack size.
  1145   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1146   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1147   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1148       stack_size = 2 * K * K IA64_ONLY(*2);
  1149   // Try to figure out where the stack base (top) is. This is harder.
  1150   //
  1151   // When an application is started, glibc saves the initial stack pointer in
  1152   // a global variable "__libc_stack_end", which is then used by system
  1153   // libraries. __libc_stack_end should be pretty close to stack top. The
  1154   // variable is available since the very early days. However, because it is
  1155   // a private interface, it could disappear in the future.
  1156   //
  1157   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1158   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1159   // stack top. Note that /proc may not exist if VM is running as a chroot
  1160   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1161   // /proc/<pid>/stat could change in the future (though unlikely).
  1162   //
  1163   // We try __libc_stack_end first. If that doesn't work, look for
  1164   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1165   // as a hint, which should work well in most cases.
  1167   uintptr_t stack_start;
  1169   // try __libc_stack_end first
  1170   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1171   if (p && *p) {
  1172     stack_start = *p;
  1173   } else {
  1174     // see if we can get the start_stack field from /proc/self/stat
  1175     FILE *fp;
  1176     int pid;
  1177     char state;
  1178     int ppid;
  1179     int pgrp;
  1180     int session;
  1181     int nr;
  1182     int tpgrp;
  1183     unsigned long flags;
  1184     unsigned long minflt;
  1185     unsigned long cminflt;
  1186     unsigned long majflt;
  1187     unsigned long cmajflt;
  1188     unsigned long utime;
  1189     unsigned long stime;
  1190     long cutime;
  1191     long cstime;
  1192     long prio;
  1193     long nice;
  1194     long junk;
  1195     long it_real;
  1196     uintptr_t start;
  1197     uintptr_t vsize;
  1198     intptr_t rss;
  1199     uintptr_t rsslim;
  1200     uintptr_t scodes;
  1201     uintptr_t ecode;
  1202     int i;
  1204     // Figure what the primordial thread stack base is. Code is inspired
  1205     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1206     // followed by command name surrounded by parentheses, state, etc.
  1207     char stat[2048];
  1208     int statlen;
  1210     fp = fopen("/proc/self/stat", "r");
  1211     if (fp) {
  1212       statlen = fread(stat, 1, 2047, fp);
  1213       stat[statlen] = '\0';
  1214       fclose(fp);
  1216       // Skip pid and the command string. Note that we could be dealing with
  1217       // weird command names, e.g. user could decide to rename java launcher
  1218       // to "java 1.4.2 :)", then the stat file would look like
  1219       //                1234 (java 1.4.2 :)) R ... ...
  1220       // We don't really need to know the command string, just find the last
  1221       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1222       char * s = strrchr(stat, ')');
  1224       i = 0;
  1225       if (s) {
  1226         // Skip blank chars
  1227         do s++; while (isspace(*s));
  1229 #define _UFM UINTX_FORMAT
  1230 #define _DFM INTX_FORMAT
  1232         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1233         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1234         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1235              &state,          /* 3  %c  */
  1236              &ppid,           /* 4  %d  */
  1237              &pgrp,           /* 5  %d  */
  1238              &session,        /* 6  %d  */
  1239              &nr,             /* 7  %d  */
  1240              &tpgrp,          /* 8  %d  */
  1241              &flags,          /* 9  %lu  */
  1242              &minflt,         /* 10 %lu  */
  1243              &cminflt,        /* 11 %lu  */
  1244              &majflt,         /* 12 %lu  */
  1245              &cmajflt,        /* 13 %lu  */
  1246              &utime,          /* 14 %lu  */
  1247              &stime,          /* 15 %lu  */
  1248              &cutime,         /* 16 %ld  */
  1249              &cstime,         /* 17 %ld  */
  1250              &prio,           /* 18 %ld  */
  1251              &nice,           /* 19 %ld  */
  1252              &junk,           /* 20 %ld  */
  1253              &it_real,        /* 21 %ld  */
  1254              &start,          /* 22 UINTX_FORMAT */
  1255              &vsize,          /* 23 UINTX_FORMAT */
  1256              &rss,            /* 24 INTX_FORMAT  */
  1257              &rsslim,         /* 25 UINTX_FORMAT */
  1258              &scodes,         /* 26 UINTX_FORMAT */
  1259              &ecode,          /* 27 UINTX_FORMAT */
  1260              &stack_start);   /* 28 UINTX_FORMAT */
  1263 #undef _UFM
  1264 #undef _DFM
  1266       if (i != 28 - 2) {
  1267          assert(false, "Bad conversion from /proc/self/stat");
  1268          // product mode - assume we are the initial thread, good luck in the
  1269          // embedded case.
  1270          warning("Can't detect initial thread stack location - bad conversion");
  1271          stack_start = (uintptr_t) &rlim;
  1273     } else {
  1274       // For some reason we can't open /proc/self/stat (for example, running on
  1275       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1276       // most cases, so don't abort:
  1277       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1278       stack_start = (uintptr_t) &rlim;
  1282   // Now we have a pointer (stack_start) very close to the stack top, the
  1283   // next thing to do is to figure out the exact location of stack top. We
  1284   // can find out the virtual memory area that contains stack_start by
  1285   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1286   // and its upper limit is the real stack top. (again, this would fail if
  1287   // running inside chroot, because /proc may not exist.)
  1289   uintptr_t stack_top;
  1290   address low, high;
  1291   if (find_vma((address)stack_start, &low, &high)) {
  1292     // success, "high" is the true stack top. (ignore "low", because initial
  1293     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1294     stack_top = (uintptr_t)high;
  1295   } else {
  1296     // failed, likely because /proc/self/maps does not exist
  1297     warning("Can't detect initial thread stack location - find_vma failed");
  1298     // best effort: stack_start is normally within a few pages below the real
  1299     // stack top, use it as stack top, and reduce stack size so we won't put
  1300     // guard page outside stack.
  1301     stack_top = stack_start;
  1302     stack_size -= 16 * page_size();
  1305   // stack_top could be partially down the page so align it
  1306   stack_top = align_size_up(stack_top, page_size());
  1308   if (max_size && stack_size > max_size) {
  1309      _initial_thread_stack_size = max_size;
  1310   } else {
  1311      _initial_thread_stack_size = stack_size;
  1314   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1315   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1318 ////////////////////////////////////////////////////////////////////////////////
  1319 // time support
  1321 // Time since start-up in seconds to a fine granularity.
  1322 // Used by VMSelfDestructTimer and the MemProfiler.
  1323 double os::elapsedTime() {
  1325   return (double)(os::elapsed_counter()) * 0.000001;
  1328 jlong os::elapsed_counter() {
  1329   timeval time;
  1330   int status = gettimeofday(&time, NULL);
  1331   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1334 jlong os::elapsed_frequency() {
  1335   return (1000 * 1000);
  1338 // For now, we say that linux does not support vtime.  I have no idea
  1339 // whether it can actually be made to (DLD, 9/13/05).
  1341 bool os::supports_vtime() { return false; }
  1342 bool os::enable_vtime()   { return false; }
  1343 bool os::vtime_enabled()  { return false; }
  1344 double os::elapsedVTime() {
  1345   // better than nothing, but not much
  1346   return elapsedTime();
  1349 jlong os::javaTimeMillis() {
  1350   timeval time;
  1351   int status = gettimeofday(&time, NULL);
  1352   assert(status != -1, "linux error");
  1353   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1356 #ifndef CLOCK_MONOTONIC
  1357 #define CLOCK_MONOTONIC (1)
  1358 #endif
  1360 void os::Linux::clock_init() {
  1361   // we do dlopen's in this particular order due to bug in linux
  1362   // dynamical loader (see 6348968) leading to crash on exit
  1363   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1364   if (handle == NULL) {
  1365     handle = dlopen("librt.so", RTLD_LAZY);
  1368   if (handle) {
  1369     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1370            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1371     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1372            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1373     if (clock_getres_func && clock_gettime_func) {
  1374       // See if monotonic clock is supported by the kernel. Note that some
  1375       // early implementations simply return kernel jiffies (updated every
  1376       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1377       // for nano time (though the monotonic property is still nice to have).
  1378       // It's fixed in newer kernels, however clock_getres() still returns
  1379       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1380       // resolution for now. Hopefully as people move to new kernels, this
  1381       // won't be a problem.
  1382       struct timespec res;
  1383       struct timespec tp;
  1384       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1385           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1386         // yes, monotonic clock is supported
  1387         _clock_gettime = clock_gettime_func;
  1388       } else {
  1389         // close librt if there is no monotonic clock
  1390         dlclose(handle);
  1396 #ifndef SYS_clock_getres
  1398 #if defined(IA32) || defined(AMD64)
  1399 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1400 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1401 #else
  1402 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1403 #define sys_clock_getres(x,y)  -1
  1404 #endif
  1406 #else
  1407 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1408 #endif
  1410 void os::Linux::fast_thread_clock_init() {
  1411   if (!UseLinuxPosixThreadCPUClocks) {
  1412     return;
  1414   clockid_t clockid;
  1415   struct timespec tp;
  1416   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1417       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1419   // Switch to using fast clocks for thread cpu time if
  1420   // the sys_clock_getres() returns 0 error code.
  1421   // Note, that some kernels may support the current thread
  1422   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1423   // returned by the pthread_getcpuclockid().
  1424   // If the fast Posix clocks are supported then the sys_clock_getres()
  1425   // must return at least tp.tv_sec == 0 which means a resolution
  1426   // better than 1 sec. This is extra check for reliability.
  1428   if(pthread_getcpuclockid_func &&
  1429      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1430      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1432     _supports_fast_thread_cpu_time = true;
  1433     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1437 jlong os::javaTimeNanos() {
  1438   if (Linux::supports_monotonic_clock()) {
  1439     struct timespec tp;
  1440     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1441     assert(status == 0, "gettime error");
  1442     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1443     return result;
  1444   } else {
  1445     timeval time;
  1446     int status = gettimeofday(&time, NULL);
  1447     assert(status != -1, "linux error");
  1448     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1449     return 1000 * usecs;
  1453 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1454   if (Linux::supports_monotonic_clock()) {
  1455     info_ptr->max_value = ALL_64_BITS;
  1457     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1458     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1459     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1460   } else {
  1461     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1462     info_ptr->max_value = ALL_64_BITS;
  1464     // gettimeofday is a real time clock so it skips
  1465     info_ptr->may_skip_backward = true;
  1466     info_ptr->may_skip_forward = true;
  1469   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1472 // Return the real, user, and system times in seconds from an
  1473 // arbitrary fixed point in the past.
  1474 bool os::getTimesSecs(double* process_real_time,
  1475                       double* process_user_time,
  1476                       double* process_system_time) {
  1477   struct tms ticks;
  1478   clock_t real_ticks = times(&ticks);
  1480   if (real_ticks == (clock_t) (-1)) {
  1481     return false;
  1482   } else {
  1483     double ticks_per_second = (double) clock_tics_per_sec;
  1484     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1485     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1486     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1488     return true;
  1493 char * os::local_time_string(char *buf, size_t buflen) {
  1494   struct tm t;
  1495   time_t long_time;
  1496   time(&long_time);
  1497   localtime_r(&long_time, &t);
  1498   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1499                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1500                t.tm_hour, t.tm_min, t.tm_sec);
  1501   return buf;
  1504 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1505   return localtime_r(clock, res);
  1508 ////////////////////////////////////////////////////////////////////////////////
  1509 // runtime exit support
  1511 // Note: os::shutdown() might be called very early during initialization, or
  1512 // called from signal handler. Before adding something to os::shutdown(), make
  1513 // sure it is async-safe and can handle partially initialized VM.
  1514 void os::shutdown() {
  1516   // allow PerfMemory to attempt cleanup of any persistent resources
  1517   perfMemory_exit();
  1519   // needs to remove object in file system
  1520   AttachListener::abort();
  1522   // flush buffered output, finish log files
  1523   ostream_abort();
  1525   // Check for abort hook
  1526   abort_hook_t abort_hook = Arguments::abort_hook();
  1527   if (abort_hook != NULL) {
  1528     abort_hook();
  1533 // Note: os::abort() might be called very early during initialization, or
  1534 // called from signal handler. Before adding something to os::abort(), make
  1535 // sure it is async-safe and can handle partially initialized VM.
  1536 void os::abort(bool dump_core) {
  1537   os::shutdown();
  1538   if (dump_core) {
  1539 #ifndef PRODUCT
  1540     fdStream out(defaultStream::output_fd());
  1541     out.print_raw("Current thread is ");
  1542     char buf[16];
  1543     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1544     out.print_raw_cr(buf);
  1545     out.print_raw_cr("Dumping core ...");
  1546 #endif
  1547     ::abort(); // dump core
  1550   ::exit(1);
  1553 // Die immediately, no exit hook, no abort hook, no cleanup.
  1554 void os::die() {
  1555   // _exit() on LinuxThreads only kills current thread
  1556   ::abort();
  1559 // unused on linux for now.
  1560 void os::set_error_file(const char *logfile) {}
  1563 // This method is a copy of JDK's sysGetLastErrorString
  1564 // from src/solaris/hpi/src/system_md.c
  1566 size_t os::lasterror(char *buf, size_t len) {
  1568   if (errno == 0)  return 0;
  1570   const char *s = ::strerror(errno);
  1571   size_t n = ::strlen(s);
  1572   if (n >= len) {
  1573     n = len - 1;
  1575   ::strncpy(buf, s, n);
  1576   buf[n] = '\0';
  1577   return n;
  1580 intx os::current_thread_id() { return (intx)pthread_self(); }
  1581 int os::current_process_id() {
  1583   // Under the old linux thread library, linux gives each thread
  1584   // its own process id. Because of this each thread will return
  1585   // a different pid if this method were to return the result
  1586   // of getpid(2). Linux provides no api that returns the pid
  1587   // of the launcher thread for the vm. This implementation
  1588   // returns a unique pid, the pid of the launcher thread
  1589   // that starts the vm 'process'.
  1591   // Under the NPTL, getpid() returns the same pid as the
  1592   // launcher thread rather than a unique pid per thread.
  1593   // Use gettid() if you want the old pre NPTL behaviour.
  1595   // if you are looking for the result of a call to getpid() that
  1596   // returns a unique pid for the calling thread, then look at the
  1597   // OSThread::thread_id() method in osThread_linux.hpp file
  1599   return (int)(_initial_pid ? _initial_pid : getpid());
  1602 // DLL functions
  1604 const char* os::dll_file_extension() { return ".so"; }
  1606 // This must be hard coded because it's the system's temporary
  1607 // directory not the java application's temp directory, ala java.io.tmpdir.
  1608 const char* os::get_temp_directory() { return "/tmp"; }
  1610 static bool file_exists(const char* filename) {
  1611   struct stat statbuf;
  1612   if (filename == NULL || strlen(filename) == 0) {
  1613     return false;
  1615   return os::stat(filename, &statbuf) == 0;
  1618 bool os::dll_build_name(char* buffer, size_t buflen,
  1619                         const char* pname, const char* fname) {
  1620   bool retval = false;
  1621   // Copied from libhpi
  1622   const size_t pnamelen = pname ? strlen(pname) : 0;
  1624   // Return error on buffer overflow.
  1625   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1626     return retval;
  1629   if (pnamelen == 0) {
  1630     snprintf(buffer, buflen, "lib%s.so", fname);
  1631     retval = true;
  1632   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1633     int n;
  1634     char** pelements = split_path(pname, &n);
  1635     if (pelements == NULL) {
  1636       return false;
  1638     for (int i = 0 ; i < n ; i++) {
  1639       // Really shouldn't be NULL, but check can't hurt
  1640       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1641         continue; // skip the empty path values
  1643       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1644       if (file_exists(buffer)) {
  1645         retval = true;
  1646         break;
  1649     // release the storage
  1650     for (int i = 0 ; i < n ; i++) {
  1651       if (pelements[i] != NULL) {
  1652         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1655     if (pelements != NULL) {
  1656       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1658   } else {
  1659     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1660     retval = true;
  1662   return retval;
  1665 // check if addr is inside libjvm.so
  1666 bool os::address_is_in_vm(address addr) {
  1667   static address libjvm_base_addr;
  1668   Dl_info dlinfo;
  1670   if (libjvm_base_addr == NULL) {
  1671     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1672     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1673     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1676   if (dladdr((void *)addr, &dlinfo)) {
  1677     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1680   return false;
  1683 bool os::dll_address_to_function_name(address addr, char *buf,
  1684                                       int buflen, int *offset) {
  1685   Dl_info dlinfo;
  1687   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1688     if (buf != NULL) {
  1689       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1690         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1693     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1694     return true;
  1695   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1696     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1697         buf, buflen, offset, dlinfo.dli_fname)) {
  1698        return true;
  1702   if (buf != NULL) buf[0] = '\0';
  1703   if (offset != NULL) *offset = -1;
  1704   return false;
  1707 struct _address_to_library_name {
  1708   address addr;          // input : memory address
  1709   size_t  buflen;        //         size of fname
  1710   char*   fname;         // output: library name
  1711   address base;          //         library base addr
  1712 };
  1714 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1715                                             size_t size, void *data) {
  1716   int i;
  1717   bool found = false;
  1718   address libbase = NULL;
  1719   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1721   // iterate through all loadable segments
  1722   for (i = 0; i < info->dlpi_phnum; i++) {
  1723     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1724     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1725       // base address of a library is the lowest address of its loaded
  1726       // segments.
  1727       if (libbase == NULL || libbase > segbase) {
  1728         libbase = segbase;
  1730       // see if 'addr' is within current segment
  1731       if (segbase <= d->addr &&
  1732           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1733         found = true;
  1738   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1739   // so dll_address_to_library_name() can fall through to use dladdr() which
  1740   // can figure out executable name from argv[0].
  1741   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1742     d->base = libbase;
  1743     if (d->fname) {
  1744       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1746     return 1;
  1748   return 0;
  1751 bool os::dll_address_to_library_name(address addr, char* buf,
  1752                                      int buflen, int* offset) {
  1753   Dl_info dlinfo;
  1754   struct _address_to_library_name data;
  1756   // There is a bug in old glibc dladdr() implementation that it could resolve
  1757   // to wrong library name if the .so file has a base address != NULL. Here
  1758   // we iterate through the program headers of all loaded libraries to find
  1759   // out which library 'addr' really belongs to. This workaround can be
  1760   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1761   data.addr = addr;
  1762   data.fname = buf;
  1763   data.buflen = buflen;
  1764   data.base = NULL;
  1765   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1767   if (rslt) {
  1768      // buf already contains library name
  1769      if (offset) *offset = addr - data.base;
  1770      return true;
  1771   } else if (dladdr((void*)addr, &dlinfo)){
  1772      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1773      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1774      return true;
  1775   } else {
  1776      if (buf) buf[0] = '\0';
  1777      if (offset) *offset = -1;
  1778      return false;
  1782   // Loads .dll/.so and
  1783   // in case of error it checks if .dll/.so was built for the
  1784   // same architecture as Hotspot is running on
  1787 // Remember the stack's state. The Linux dynamic linker will change
  1788 // the stack to 'executable' at most once, so we must safepoint only once.
  1789 bool os::Linux::_stack_is_executable = false;
  1791 // VM operation that loads a library.  This is necessary if stack protection
  1792 // of the Java stacks can be lost during loading the library.  If we
  1793 // do not stop the Java threads, they can stack overflow before the stacks
  1794 // are protected again.
  1795 class VM_LinuxDllLoad: public VM_Operation {
  1796  private:
  1797   const char *_filename;
  1798   char *_ebuf;
  1799   int _ebuflen;
  1800   void *_lib;
  1801  public:
  1802   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1803     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1804   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1805   void doit() {
  1806     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1807     os::Linux::_stack_is_executable = true;
  1809   void* loaded_library() { return _lib; }
  1810 };
  1812 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1814   void * result = NULL;
  1815   bool load_attempted = false;
  1817   // Check whether the library to load might change execution rights
  1818   // of the stack. If they are changed, the protection of the stack
  1819   // guard pages will be lost. We need a safepoint to fix this.
  1820   //
  1821   // See Linux man page execstack(8) for more info.
  1822   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1823     ElfFile ef(filename);
  1824     if (!ef.specifies_noexecstack()) {
  1825       if (!is_init_completed()) {
  1826         os::Linux::_stack_is_executable = true;
  1827         // This is OK - No Java threads have been created yet, and hence no
  1828         // stack guard pages to fix.
  1829         //
  1830         // This should happen only when you are building JDK7 using a very
  1831         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1832         //
  1833         // Dynamic loader will make all stacks executable after
  1834         // this function returns, and will not do that again.
  1835         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1836       } else {
  1837         warning("You have loaded library %s which might have disabled stack guard. "
  1838                 "The VM will try to fix the stack guard now.\n"
  1839                 "It's highly recommended that you fix the library with "
  1840                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1841                 filename);
  1843         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1844         JavaThread *jt = JavaThread::current();
  1845         if (jt->thread_state() != _thread_in_native) {
  1846           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1847           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1848           warning("Unable to fix stack guard. Giving up.");
  1849         } else {
  1850           if (!LoadExecStackDllInVMThread) {
  1851             // This is for the case where the DLL has an static
  1852             // constructor function that executes JNI code. We cannot
  1853             // load such DLLs in the VMThread.
  1854             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1857           ThreadInVMfromNative tiv(jt);
  1858           debug_only(VMNativeEntryWrapper vew;)
  1860           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1861           VMThread::execute(&op);
  1862           if (LoadExecStackDllInVMThread) {
  1863             result = op.loaded_library();
  1865           load_attempted = true;
  1871   if (!load_attempted) {
  1872     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1875   if (result != NULL) {
  1876     // Successful loading
  1877     return result;
  1880   Elf32_Ehdr elf_head;
  1881   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1882   char* diag_msg_buf=ebuf+strlen(ebuf);
  1884   if (diag_msg_max_length==0) {
  1885     // No more space in ebuf for additional diagnostics message
  1886     return NULL;
  1890   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1892   if (file_descriptor < 0) {
  1893     // Can't open library, report dlerror() message
  1894     return NULL;
  1897   bool failed_to_read_elf_head=
  1898     (sizeof(elf_head)!=
  1899         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1901   ::close(file_descriptor);
  1902   if (failed_to_read_elf_head) {
  1903     // file i/o error - report dlerror() msg
  1904     return NULL;
  1907   typedef struct {
  1908     Elf32_Half  code;         // Actual value as defined in elf.h
  1909     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1910     char        elf_class;    // 32 or 64 bit
  1911     char        endianess;    // MSB or LSB
  1912     char*       name;         // String representation
  1913   } arch_t;
  1915   #ifndef EM_486
  1916   #define EM_486          6               /* Intel 80486 */
  1917   #endif
  1919   static const arch_t arch_array[]={
  1920     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1921     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1922     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1923     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1924     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1925     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1926     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1927     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1928     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1929     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1930     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1931     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1932     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1933     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1934     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1935     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1936   };
  1938   #if  (defined IA32)
  1939     static  Elf32_Half running_arch_code=EM_386;
  1940   #elif   (defined AMD64)
  1941     static  Elf32_Half running_arch_code=EM_X86_64;
  1942   #elif  (defined IA64)
  1943     static  Elf32_Half running_arch_code=EM_IA_64;
  1944   #elif  (defined __sparc) && (defined _LP64)
  1945     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1946   #elif  (defined __sparc) && (!defined _LP64)
  1947     static  Elf32_Half running_arch_code=EM_SPARC;
  1948   #elif  (defined __powerpc64__)
  1949     static  Elf32_Half running_arch_code=EM_PPC64;
  1950   #elif  (defined __powerpc__)
  1951     static  Elf32_Half running_arch_code=EM_PPC;
  1952   #elif  (defined ARM)
  1953     static  Elf32_Half running_arch_code=EM_ARM;
  1954   #elif  (defined S390)
  1955     static  Elf32_Half running_arch_code=EM_S390;
  1956   #elif  (defined ALPHA)
  1957     static  Elf32_Half running_arch_code=EM_ALPHA;
  1958   #elif  (defined MIPSEL)
  1959     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1960   #elif  (defined PARISC)
  1961     static  Elf32_Half running_arch_code=EM_PARISC;
  1962   #elif  (defined MIPS)
  1963     static  Elf32_Half running_arch_code=EM_MIPS;
  1964   #elif  (defined M68K)
  1965     static  Elf32_Half running_arch_code=EM_68K;
  1966   #else
  1967     #error Method os::dll_load requires that one of following is defined:\
  1968          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1969   #endif
  1971   // Identify compatability class for VM's architecture and library's architecture
  1972   // Obtain string descriptions for architectures
  1974   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1975   int running_arch_index=-1;
  1977   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1978     if (running_arch_code == arch_array[i].code) {
  1979       running_arch_index    = i;
  1981     if (lib_arch.code == arch_array[i].code) {
  1982       lib_arch.compat_class = arch_array[i].compat_class;
  1983       lib_arch.name         = arch_array[i].name;
  1987   assert(running_arch_index != -1,
  1988     "Didn't find running architecture code (running_arch_code) in arch_array");
  1989   if (running_arch_index == -1) {
  1990     // Even though running architecture detection failed
  1991     // we may still continue with reporting dlerror() message
  1992     return NULL;
  1995   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1996     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1997     return NULL;
  2000 #ifndef S390
  2001   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2002     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2003     return NULL;
  2005 #endif // !S390
  2007   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2008     if ( lib_arch.name!=NULL ) {
  2009       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2010         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2011         lib_arch.name, arch_array[running_arch_index].name);
  2012     } else {
  2013       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2014       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2015         lib_arch.code,
  2016         arch_array[running_arch_index].name);
  2020   return NULL;
  2023 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2024   void * result = ::dlopen(filename, RTLD_LAZY);
  2025   if (result == NULL) {
  2026     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2027     ebuf[ebuflen-1] = '\0';
  2029   return result;
  2032 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2033   void * result = NULL;
  2034   if (LoadExecStackDllInVMThread) {
  2035     result = dlopen_helper(filename, ebuf, ebuflen);
  2038   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2039   // library that requires an executable stack, or which does not have this
  2040   // stack attribute set, dlopen changes the stack attribute to executable. The
  2041   // read protection of the guard pages gets lost.
  2042   //
  2043   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2044   // may have been queued at the same time.
  2046   if (!_stack_is_executable) {
  2047     JavaThread *jt = Threads::first();
  2049     while (jt) {
  2050       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2051           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2052         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2053                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2054           warning("Attempt to reguard stack yellow zone failed.");
  2057       jt = jt->next();
  2061   return result;
  2064 /*
  2065  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2066  * chances are you might want to run the generated bits against glibc-2.0
  2067  * libdl.so, so always use locking for any version of glibc.
  2068  */
  2069 void* os::dll_lookup(void* handle, const char* name) {
  2070   pthread_mutex_lock(&dl_mutex);
  2071   void* res = dlsym(handle, name);
  2072   pthread_mutex_unlock(&dl_mutex);
  2073   return res;
  2077 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2078   int fd = ::open(filename, O_RDONLY);
  2079   if (fd == -1) {
  2080      return false;
  2083   char buf[32];
  2084   int bytes;
  2085   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2086     st->print_raw(buf, bytes);
  2089   ::close(fd);
  2091   return true;
  2094 void os::print_dll_info(outputStream *st) {
  2095    st->print_cr("Dynamic libraries:");
  2097    char fname[32];
  2098    pid_t pid = os::Linux::gettid();
  2100    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2102    if (!_print_ascii_file(fname, st)) {
  2103      st->print("Can not get library information for pid = %d\n", pid);
  2107 void os::print_os_info_brief(outputStream* st) {
  2108   os::Linux::print_distro_info(st);
  2110   os::Posix::print_uname_info(st);
  2112   os::Linux::print_libversion_info(st);
  2116 void os::print_os_info(outputStream* st) {
  2117   st->print("OS:");
  2119   os::Linux::print_distro_info(st);
  2121   os::Posix::print_uname_info(st);
  2123   // Print warning if unsafe chroot environment detected
  2124   if (unsafe_chroot_detected) {
  2125     st->print("WARNING!! ");
  2126     st->print_cr(unstable_chroot_error);
  2129   os::Linux::print_libversion_info(st);
  2131   os::Posix::print_rlimit_info(st);
  2133   os::Posix::print_load_average(st);
  2135   os::Linux::print_full_memory_info(st);
  2138 // Try to identify popular distros.
  2139 // Most Linux distributions have /etc/XXX-release file, which contains
  2140 // the OS version string. Some have more than one /etc/XXX-release file
  2141 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2142 // so the order is important.
  2143 void os::Linux::print_distro_info(outputStream* st) {
  2144   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2145       !_print_ascii_file("/etc/sun-release", st) &&
  2146       !_print_ascii_file("/etc/redhat-release", st) &&
  2147       !_print_ascii_file("/etc/SuSE-release", st) &&
  2148       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2149       !_print_ascii_file("/etc/gentoo-release", st) &&
  2150       !_print_ascii_file("/etc/debian_version", st) &&
  2151       !_print_ascii_file("/etc/ltib-release", st) &&
  2152       !_print_ascii_file("/etc/angstrom-version", st)) {
  2153       st->print("Linux");
  2155   st->cr();
  2158 void os::Linux::print_libversion_info(outputStream* st) {
  2159   // libc, pthread
  2160   st->print("libc:");
  2161   st->print(os::Linux::glibc_version()); st->print(" ");
  2162   st->print(os::Linux::libpthread_version()); st->print(" ");
  2163   if (os::Linux::is_LinuxThreads()) {
  2164      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2166   st->cr();
  2169 void os::Linux::print_full_memory_info(outputStream* st) {
  2170    st->print("\n/proc/meminfo:\n");
  2171    _print_ascii_file("/proc/meminfo", st);
  2172    st->cr();
  2175 void os::print_memory_info(outputStream* st) {
  2177   st->print("Memory:");
  2178   st->print(" %dk page", os::vm_page_size()>>10);
  2180   // values in struct sysinfo are "unsigned long"
  2181   struct sysinfo si;
  2182   sysinfo(&si);
  2184   st->print(", physical " UINT64_FORMAT "k",
  2185             os::physical_memory() >> 10);
  2186   st->print("(" UINT64_FORMAT "k free)",
  2187             os::available_memory() >> 10);
  2188   st->print(", swap " UINT64_FORMAT "k",
  2189             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2190   st->print("(" UINT64_FORMAT "k free)",
  2191             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2192   st->cr();
  2195 void os::pd_print_cpu_info(outputStream* st) {
  2196   st->print("\n/proc/cpuinfo:\n");
  2197   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2198     st->print("  <Not Available>");
  2200   st->cr();
  2203 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2204 // but they're the same for all the linux arch that we support
  2205 // and they're the same for solaris but there's no common place to put this.
  2206 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2207                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2208                           "ILL_COPROC", "ILL_BADSTK" };
  2210 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2211                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2212                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2214 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2216 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2218 void os::print_siginfo(outputStream* st, void* siginfo) {
  2219   st->print("siginfo:");
  2221   const int buflen = 100;
  2222   char buf[buflen];
  2223   siginfo_t *si = (siginfo_t*)siginfo;
  2224   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2225   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2226     st->print("si_errno=%s", buf);
  2227   } else {
  2228     st->print("si_errno=%d", si->si_errno);
  2230   const int c = si->si_code;
  2231   assert(c > 0, "unexpected si_code");
  2232   switch (si->si_signo) {
  2233   case SIGILL:
  2234     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2235     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2236     break;
  2237   case SIGFPE:
  2238     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2239     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2240     break;
  2241   case SIGSEGV:
  2242     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2243     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2244     break;
  2245   case SIGBUS:
  2246     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2247     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2248     break;
  2249   default:
  2250     st->print(", si_code=%d", si->si_code);
  2251     // no si_addr
  2254   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2255       UseSharedSpaces) {
  2256     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2257     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2258       st->print("\n\nError accessing class data sharing archive."   \
  2259                 " Mapped file inaccessible during execution, "      \
  2260                 " possible disk/network problem.");
  2263   st->cr();
  2267 static void print_signal_handler(outputStream* st, int sig,
  2268                                  char* buf, size_t buflen);
  2270 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2271   st->print_cr("Signal Handlers:");
  2272   print_signal_handler(st, SIGSEGV, buf, buflen);
  2273   print_signal_handler(st, SIGBUS , buf, buflen);
  2274   print_signal_handler(st, SIGFPE , buf, buflen);
  2275   print_signal_handler(st, SIGPIPE, buf, buflen);
  2276   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2277   print_signal_handler(st, SIGILL , buf, buflen);
  2278   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2279   print_signal_handler(st, SR_signum, buf, buflen);
  2280   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2281   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2282   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2283   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2286 static char saved_jvm_path[MAXPATHLEN] = {0};
  2288 // Find the full path to the current module, libjvm.so
  2289 void os::jvm_path(char *buf, jint buflen) {
  2290   // Error checking.
  2291   if (buflen < MAXPATHLEN) {
  2292     assert(false, "must use a large-enough buffer");
  2293     buf[0] = '\0';
  2294     return;
  2296   // Lazy resolve the path to current module.
  2297   if (saved_jvm_path[0] != 0) {
  2298     strcpy(buf, saved_jvm_path);
  2299     return;
  2302   char dli_fname[MAXPATHLEN];
  2303   bool ret = dll_address_to_library_name(
  2304                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2305                 dli_fname, sizeof(dli_fname), NULL);
  2306   assert(ret != 0, "cannot locate libjvm");
  2307   char *rp = realpath(dli_fname, buf);
  2308   if (rp == NULL)
  2309     return;
  2311   if (Arguments::created_by_gamma_launcher()) {
  2312     // Support for the gamma launcher.  Typical value for buf is
  2313     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2314     // the right place in the string, then assume we are installed in a JDK and
  2315     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2316     // up the path so it looks like libjvm.so is installed there (append a
  2317     // fake suffix hotspot/libjvm.so).
  2318     const char *p = buf + strlen(buf) - 1;
  2319     for (int count = 0; p > buf && count < 5; ++count) {
  2320       for (--p; p > buf && *p != '/'; --p)
  2321         /* empty */ ;
  2324     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2325       // Look for JAVA_HOME in the environment.
  2326       char* java_home_var = ::getenv("JAVA_HOME");
  2327       if (java_home_var != NULL && java_home_var[0] != 0) {
  2328         char* jrelib_p;
  2329         int len;
  2331         // Check the current module name "libjvm.so".
  2332         p = strrchr(buf, '/');
  2333         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2335         rp = realpath(java_home_var, buf);
  2336         if (rp == NULL)
  2337           return;
  2339         // determine if this is a legacy image or modules image
  2340         // modules image doesn't have "jre" subdirectory
  2341         len = strlen(buf);
  2342         jrelib_p = buf + len;
  2343         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2344         if (0 != access(buf, F_OK)) {
  2345           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2348         if (0 == access(buf, F_OK)) {
  2349           // Use current module name "libjvm.so"
  2350           len = strlen(buf);
  2351           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2352         } else {
  2353           // Go back to path of .so
  2354           rp = realpath(dli_fname, buf);
  2355           if (rp == NULL)
  2356             return;
  2362   strcpy(saved_jvm_path, buf);
  2365 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2366   // no prefix required, not even "_"
  2369 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2370   // no suffix required
  2373 ////////////////////////////////////////////////////////////////////////////////
  2374 // sun.misc.Signal support
  2376 static volatile jint sigint_count = 0;
  2378 static void
  2379 UserHandler(int sig, void *siginfo, void *context) {
  2380   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2381   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2382   // don't want to flood the manager thread with sem_post requests.
  2383   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2384       return;
  2386   // Ctrl-C is pressed during error reporting, likely because the error
  2387   // handler fails to abort. Let VM die immediately.
  2388   if (sig == SIGINT && is_error_reported()) {
  2389      os::die();
  2392   os::signal_notify(sig);
  2395 void* os::user_handler() {
  2396   return CAST_FROM_FN_PTR(void*, UserHandler);
  2399 extern "C" {
  2400   typedef void (*sa_handler_t)(int);
  2401   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2404 void* os::signal(int signal_number, void* handler) {
  2405   struct sigaction sigAct, oldSigAct;
  2407   sigfillset(&(sigAct.sa_mask));
  2408   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2409   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2411   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2412     // -1 means registration failed
  2413     return (void *)-1;
  2416   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2419 void os::signal_raise(int signal_number) {
  2420   ::raise(signal_number);
  2423 /*
  2424  * The following code is moved from os.cpp for making this
  2425  * code platform specific, which it is by its very nature.
  2426  */
  2428 // Will be modified when max signal is changed to be dynamic
  2429 int os::sigexitnum_pd() {
  2430   return NSIG;
  2433 // a counter for each possible signal value
  2434 static volatile jint pending_signals[NSIG+1] = { 0 };
  2436 // Linux(POSIX) specific hand shaking semaphore.
  2437 static sem_t sig_sem;
  2439 void os::signal_init_pd() {
  2440   // Initialize signal structures
  2441   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2443   // Initialize signal semaphore
  2444   ::sem_init(&sig_sem, 0, 0);
  2447 void os::signal_notify(int sig) {
  2448   Atomic::inc(&pending_signals[sig]);
  2449   ::sem_post(&sig_sem);
  2452 static int check_pending_signals(bool wait) {
  2453   Atomic::store(0, &sigint_count);
  2454   for (;;) {
  2455     for (int i = 0; i < NSIG + 1; i++) {
  2456       jint n = pending_signals[i];
  2457       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2458         return i;
  2461     if (!wait) {
  2462       return -1;
  2464     JavaThread *thread = JavaThread::current();
  2465     ThreadBlockInVM tbivm(thread);
  2467     bool threadIsSuspended;
  2468     do {
  2469       thread->set_suspend_equivalent();
  2470       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2471       ::sem_wait(&sig_sem);
  2473       // were we externally suspended while we were waiting?
  2474       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2475       if (threadIsSuspended) {
  2476         //
  2477         // The semaphore has been incremented, but while we were waiting
  2478         // another thread suspended us. We don't want to continue running
  2479         // while suspended because that would surprise the thread that
  2480         // suspended us.
  2481         //
  2482         ::sem_post(&sig_sem);
  2484         thread->java_suspend_self();
  2486     } while (threadIsSuspended);
  2490 int os::signal_lookup() {
  2491   return check_pending_signals(false);
  2494 int os::signal_wait() {
  2495   return check_pending_signals(true);
  2498 ////////////////////////////////////////////////////////////////////////////////
  2499 // Virtual Memory
  2501 int os::vm_page_size() {
  2502   // Seems redundant as all get out
  2503   assert(os::Linux::page_size() != -1, "must call os::init");
  2504   return os::Linux::page_size();
  2507 // Solaris allocates memory by pages.
  2508 int os::vm_allocation_granularity() {
  2509   assert(os::Linux::page_size() != -1, "must call os::init");
  2510   return os::Linux::page_size();
  2513 // Rationale behind this function:
  2514 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2515 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2516 //  samples for JITted code. Here we create private executable mapping over the code cache
  2517 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2518 //  info for the reporting script by storing timestamp and location of symbol
  2519 void linux_wrap_code(char* base, size_t size) {
  2520   static volatile jint cnt = 0;
  2522   if (!UseOprofile) {
  2523     return;
  2526   char buf[PATH_MAX+1];
  2527   int num = Atomic::add(1, &cnt);
  2529   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2530            os::get_temp_directory(), os::current_process_id(), num);
  2531   unlink(buf);
  2533   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2535   if (fd != -1) {
  2536     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2537     if (rv != (off_t)-1) {
  2538       if (::write(fd, "", 1) == 1) {
  2539         mmap(base, size,
  2540              PROT_READ|PROT_WRITE|PROT_EXEC,
  2541              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2544     ::close(fd);
  2545     unlink(buf);
  2549 // NOTE: Linux kernel does not really reserve the pages for us.
  2550 //       All it does is to check if there are enough free pages
  2551 //       left at the time of mmap(). This could be a potential
  2552 //       problem.
  2553 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2554   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2555   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2556                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2557   if (res != (uintptr_t) MAP_FAILED) {
  2558     if (UseNUMAInterleaving) {
  2559       numa_make_global(addr, size);
  2561     return true;
  2563   return false;
  2566 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2567 #ifndef MAP_HUGETLB
  2568 #define MAP_HUGETLB 0x40000
  2569 #endif
  2571 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2572 #ifndef MADV_HUGEPAGE
  2573 #define MADV_HUGEPAGE 14
  2574 #endif
  2576 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2577                        bool exec) {
  2578   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2579     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2580     uintptr_t res =
  2581       (uintptr_t) ::mmap(addr, size, prot,
  2582                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2583                          -1, 0);
  2584     if (res != (uintptr_t) MAP_FAILED) {
  2585       if (UseNUMAInterleaving) {
  2586         numa_make_global(addr, size);
  2588       return true;
  2590     // Fall through and try to use small pages
  2593   if (commit_memory(addr, size, exec)) {
  2594     realign_memory(addr, size, alignment_hint);
  2595     return true;
  2597   return false;
  2600 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2601   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2602     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2603     // be supported or the memory may already be backed by huge pages.
  2604     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2608 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2609   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2610   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2611   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2612   // small pages on top of the SHM segment. This method always works for small pages, so we
  2613   // allow that in any case.
  2614   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
  2615     commit_memory(addr, bytes, alignment_hint, false);
  2619 void os::numa_make_global(char *addr, size_t bytes) {
  2620   Linux::numa_interleave_memory(addr, bytes);
  2623 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2624   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2627 bool os::numa_topology_changed()   { return false; }
  2629 size_t os::numa_get_groups_num() {
  2630   int max_node = Linux::numa_max_node();
  2631   return max_node > 0 ? max_node + 1 : 1;
  2634 int os::numa_get_group_id() {
  2635   int cpu_id = Linux::sched_getcpu();
  2636   if (cpu_id != -1) {
  2637     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2638     if (lgrp_id != -1) {
  2639       return lgrp_id;
  2642   return 0;
  2645 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2646   for (size_t i = 0; i < size; i++) {
  2647     ids[i] = i;
  2649   return size;
  2652 bool os::get_page_info(char *start, page_info* info) {
  2653   return false;
  2656 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2657   return end;
  2661 int os::Linux::sched_getcpu_syscall(void) {
  2662   unsigned int cpu;
  2663   int retval = -1;
  2665 #if defined(IA32)
  2666 # ifndef SYS_getcpu
  2667 # define SYS_getcpu 318
  2668 # endif
  2669   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2670 #elif defined(AMD64)
  2671 // Unfortunately we have to bring all these macros here from vsyscall.h
  2672 // to be able to compile on old linuxes.
  2673 # define __NR_vgetcpu 2
  2674 # define VSYSCALL_START (-10UL << 20)
  2675 # define VSYSCALL_SIZE 1024
  2676 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2677   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2678   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2679   retval = vgetcpu(&cpu, NULL, NULL);
  2680 #endif
  2682   return (retval == -1) ? retval : cpu;
  2685 // Something to do with the numa-aware allocator needs these symbols
  2686 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2687 extern "C" JNIEXPORT void numa_error(char *where) { }
  2688 extern "C" JNIEXPORT int fork1() { return fork(); }
  2691 // If we are running with libnuma version > 2, then we should
  2692 // be trying to use symbols with versions 1.1
  2693 // If we are running with earlier version, which did not have symbol versions,
  2694 // we should use the base version.
  2695 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2696   void *f = dlvsym(handle, name, "libnuma_1.1");
  2697   if (f == NULL) {
  2698     f = dlsym(handle, name);
  2700   return f;
  2703 bool os::Linux::libnuma_init() {
  2704   // sched_getcpu() should be in libc.
  2705   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2706                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2708   // If it's not, try a direct syscall.
  2709   if (sched_getcpu() == -1)
  2710     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2712   if (sched_getcpu() != -1) { // Does it work?
  2713     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2714     if (handle != NULL) {
  2715       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2716                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2717       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2718                                        libnuma_dlsym(handle, "numa_max_node")));
  2719       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2720                                         libnuma_dlsym(handle, "numa_available")));
  2721       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2722                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2723       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2724                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2727       if (numa_available() != -1) {
  2728         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2729         // Create a cpu -> node mapping
  2730         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2731         rebuild_cpu_to_node_map();
  2732         return true;
  2736   return false;
  2739 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2740 // The table is later used in get_node_by_cpu().
  2741 void os::Linux::rebuild_cpu_to_node_map() {
  2742   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2743                               // in libnuma (possible values are starting from 16,
  2744                               // and continuing up with every other power of 2, but less
  2745                               // than the maximum number of CPUs supported by kernel), and
  2746                               // is a subject to change (in libnuma version 2 the requirements
  2747                               // are more reasonable) we'll just hardcode the number they use
  2748                               // in the library.
  2749   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2751   size_t cpu_num = os::active_processor_count();
  2752   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2753   size_t cpu_map_valid_size =
  2754     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2756   cpu_to_node()->clear();
  2757   cpu_to_node()->at_grow(cpu_num - 1);
  2758   size_t node_num = numa_get_groups_num();
  2760   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2761   for (size_t i = 0; i < node_num; i++) {
  2762     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2763       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2764         if (cpu_map[j] != 0) {
  2765           for (size_t k = 0; k < BitsPerCLong; k++) {
  2766             if (cpu_map[j] & (1UL << k)) {
  2767               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2774   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2777 int os::Linux::get_node_by_cpu(int cpu_id) {
  2778   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2779     return cpu_to_node()->at(cpu_id);
  2781   return -1;
  2784 GrowableArray<int>* os::Linux::_cpu_to_node;
  2785 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2786 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2787 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2788 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2789 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2790 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2791 unsigned long* os::Linux::_numa_all_nodes;
  2793 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2794   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2795                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2796   return res  != (uintptr_t) MAP_FAILED;
  2799 // Linux uses a growable mapping for the stack, and if the mapping for
  2800 // the stack guard pages is not removed when we detach a thread the
  2801 // stack cannot grow beyond the pages where the stack guard was
  2802 // mapped.  If at some point later in the process the stack expands to
  2803 // that point, the Linux kernel cannot expand the stack any further
  2804 // because the guard pages are in the way, and a segfault occurs.
  2805 //
  2806 // However, it's essential not to split the stack region by unmapping
  2807 // a region (leaving a hole) that's already part of the stack mapping,
  2808 // so if the stack mapping has already grown beyond the guard pages at
  2809 // the time we create them, we have to truncate the stack mapping.
  2810 // So, we need to know the extent of the stack mapping when
  2811 // create_stack_guard_pages() is called.
  2813 // Find the bounds of the stack mapping.  Return true for success.
  2814 //
  2815 // We only need this for stacks that are growable: at the time of
  2816 // writing thread stacks don't use growable mappings (i.e. those
  2817 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2818 // only applies to the main thread.
  2820 static
  2821 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
  2823   char buf[128];
  2824   int fd, sz;
  2826   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
  2827     return false;
  2830   const char kw[] = "[stack]";
  2831   const int kwlen = sizeof(kw)-1;
  2833   // Address part of /proc/self/maps couldn't be more than 128 bytes
  2834   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
  2835      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
  2836         // Extract addresses
  2837         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2838            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
  2839            if (sp >= *bottom && sp <= *top) {
  2840               ::close(fd);
  2841               return true;
  2847  ::close(fd);
  2848   return false;
  2852 // If the (growable) stack mapping already extends beyond the point
  2853 // where we're going to put our guard pages, truncate the mapping at
  2854 // that point by munmap()ping it.  This ensures that when we later
  2855 // munmap() the guard pages we don't leave a hole in the stack
  2856 // mapping. This only affects the main/initial thread, but guard
  2857 // against future OS changes
  2858 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2859   uintptr_t stack_extent, stack_base;
  2860   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2861   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2862       assert(os::Linux::is_initial_thread(),
  2863            "growable stack in non-initial thread");
  2864     if (stack_extent < (uintptr_t)addr)
  2865       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2868   return os::commit_memory(addr, size);
  2871 // If this is a growable mapping, remove the guard pages entirely by
  2872 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2873 // affects the main/initial thread, but guard against future OS changes
  2874 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2875   uintptr_t stack_extent, stack_base;
  2876   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2877   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2878       assert(os::Linux::is_initial_thread(),
  2879            "growable stack in non-initial thread");
  2881     return ::munmap(addr, size) == 0;
  2884   return os::uncommit_memory(addr, size);
  2887 static address _highest_vm_reserved_address = NULL;
  2889 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2890 // at 'requested_addr'. If there are existing memory mappings at the same
  2891 // location, however, they will be overwritten. If 'fixed' is false,
  2892 // 'requested_addr' is only treated as a hint, the return value may or
  2893 // may not start from the requested address. Unlike Linux mmap(), this
  2894 // function returns NULL to indicate failure.
  2895 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2896   char * addr;
  2897   int flags;
  2899   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2900   if (fixed) {
  2901     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2902     flags |= MAP_FIXED;
  2905   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2906   // to PROT_EXEC if executable when we commit the page.
  2907   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2908                        flags, -1, 0);
  2910   if (addr != MAP_FAILED) {
  2911     // anon_mmap() should only get called during VM initialization,
  2912     // don't need lock (actually we can skip locking even it can be called
  2913     // from multiple threads, because _highest_vm_reserved_address is just a
  2914     // hint about the upper limit of non-stack memory regions.)
  2915     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2916       _highest_vm_reserved_address = (address)addr + bytes;
  2920   return addr == MAP_FAILED ? NULL : addr;
  2923 // Don't update _highest_vm_reserved_address, because there might be memory
  2924 // regions above addr + size. If so, releasing a memory region only creates
  2925 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2926 //
  2927 static int anon_munmap(char * addr, size_t size) {
  2928   return ::munmap(addr, size) == 0;
  2931 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  2932                          size_t alignment_hint) {
  2933   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2936 bool os::pd_release_memory(char* addr, size_t size) {
  2937   return anon_munmap(addr, size);
  2940 static address highest_vm_reserved_address() {
  2941   return _highest_vm_reserved_address;
  2944 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2945   // Linux wants the mprotect address argument to be page aligned.
  2946   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2948   // According to SUSv3, mprotect() should only be used with mappings
  2949   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2950   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2951   // protection of malloc'ed or statically allocated memory). Check the
  2952   // caller if you hit this assert.
  2953   assert(addr == bottom, "sanity check");
  2955   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2956   return ::mprotect(bottom, size, prot) == 0;
  2959 // Set protections specified
  2960 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2961                         bool is_committed) {
  2962   unsigned int p = 0;
  2963   switch (prot) {
  2964   case MEM_PROT_NONE: p = PROT_NONE; break;
  2965   case MEM_PROT_READ: p = PROT_READ; break;
  2966   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2967   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2968   default:
  2969     ShouldNotReachHere();
  2971   // is_committed is unused.
  2972   return linux_mprotect(addr, bytes, p);
  2975 bool os::guard_memory(char* addr, size_t size) {
  2976   return linux_mprotect(addr, size, PROT_NONE);
  2979 bool os::unguard_memory(char* addr, size_t size) {
  2980   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2983 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2984   bool result = false;
  2985   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  2986                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  2987                   -1, 0);
  2989   if (p != (void *) -1) {
  2990     // We don't know if this really is a huge page or not.
  2991     FILE *fp = fopen("/proc/self/maps", "r");
  2992     if (fp) {
  2993       while (!feof(fp)) {
  2994         char chars[257];
  2995         long x = 0;
  2996         if (fgets(chars, sizeof(chars), fp)) {
  2997           if (sscanf(chars, "%lx-%*x", &x) == 1
  2998               && x == (long)p) {
  2999             if (strstr (chars, "hugepage")) {
  3000               result = true;
  3001               break;
  3006       fclose(fp);
  3008     munmap (p, page_size);
  3009     if (result)
  3010       return true;
  3013   if (warn) {
  3014     warning("HugeTLBFS is not supported by the operating system.");
  3017   return result;
  3020 /*
  3021 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3023 * From the coredump_filter documentation:
  3025 * - (bit 0) anonymous private memory
  3026 * - (bit 1) anonymous shared memory
  3027 * - (bit 2) file-backed private memory
  3028 * - (bit 3) file-backed shared memory
  3029 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3030 *           effective only if the bit 2 is cleared)
  3031 * - (bit 5) hugetlb private memory
  3032 * - (bit 6) hugetlb shared memory
  3033 */
  3034 static void set_coredump_filter(void) {
  3035   FILE *f;
  3036   long cdm;
  3038   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3039     return;
  3042   if (fscanf(f, "%lx", &cdm) != 1) {
  3043     fclose(f);
  3044     return;
  3047   rewind(f);
  3049   if ((cdm & LARGEPAGES_BIT) == 0) {
  3050     cdm |= LARGEPAGES_BIT;
  3051     fprintf(f, "%#lx", cdm);
  3054   fclose(f);
  3057 // Large page support
  3059 static size_t _large_page_size = 0;
  3061 void os::large_page_init() {
  3062   if (!UseLargePages) {
  3063     UseHugeTLBFS = false;
  3064     UseSHM = false;
  3065     return;
  3068   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  3069     // If UseLargePages is specified on the command line try both methods,
  3070     // if it's default, then try only HugeTLBFS.
  3071     if (FLAG_IS_DEFAULT(UseLargePages)) {
  3072       UseHugeTLBFS = true;
  3073     } else {
  3074       UseHugeTLBFS = UseSHM = true;
  3078   if (LargePageSizeInBytes) {
  3079     _large_page_size = LargePageSizeInBytes;
  3080   } else {
  3081     // large_page_size on Linux is used to round up heap size. x86 uses either
  3082     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3083     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3084     // page as large as 256M.
  3085     //
  3086     // Here we try to figure out page size by parsing /proc/meminfo and looking
  3087     // for a line with the following format:
  3088     //    Hugepagesize:     2048 kB
  3089     //
  3090     // If we can't determine the value (e.g. /proc is not mounted, or the text
  3091     // format has been changed), we'll use the largest page size supported by
  3092     // the processor.
  3094 #ifndef ZERO
  3095     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3096                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3097 #endif // ZERO
  3099     FILE *fp = fopen("/proc/meminfo", "r");
  3100     if (fp) {
  3101       while (!feof(fp)) {
  3102         int x = 0;
  3103         char buf[16];
  3104         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3105           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3106             _large_page_size = x * K;
  3107             break;
  3109         } else {
  3110           // skip to next line
  3111           for (;;) {
  3112             int ch = fgetc(fp);
  3113             if (ch == EOF || ch == (int)'\n') break;
  3117       fclose(fp);
  3121   // print a warning if any large page related flag is specified on command line
  3122   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3124   const size_t default_page_size = (size_t)Linux::page_size();
  3125   if (_large_page_size > default_page_size) {
  3126     _page_sizes[0] = _large_page_size;
  3127     _page_sizes[1] = default_page_size;
  3128     _page_sizes[2] = 0;
  3130   UseHugeTLBFS = UseHugeTLBFS &&
  3131                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  3133   if (UseHugeTLBFS)
  3134     UseSHM = false;
  3136   UseLargePages = UseHugeTLBFS || UseSHM;
  3138   set_coredump_filter();
  3141 #ifndef SHM_HUGETLB
  3142 #define SHM_HUGETLB 04000
  3143 #endif
  3145 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3146   // "exec" is passed in but not used.  Creating the shared image for
  3147   // the code cache doesn't have an SHM_X executable permission to check.
  3148   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3150   key_t key = IPC_PRIVATE;
  3151   char *addr;
  3153   bool warn_on_failure = UseLargePages &&
  3154                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3155                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3156                         );
  3157   char msg[128];
  3159   // Create a large shared memory region to attach to based on size.
  3160   // Currently, size is the total size of the heap
  3161   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3162   if (shmid == -1) {
  3163      // Possible reasons for shmget failure:
  3164      // 1. shmmax is too small for Java heap.
  3165      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3166      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3167      // 2. not enough large page memory.
  3168      //    > check available large pages: cat /proc/meminfo
  3169      //    > increase amount of large pages:
  3170      //          echo new_value > /proc/sys/vm/nr_hugepages
  3171      //      Note 1: different Linux may use different name for this property,
  3172      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3173      //      Note 2: it's possible there's enough physical memory available but
  3174      //            they are so fragmented after a long run that they can't
  3175      //            coalesce into large pages. Try to reserve large pages when
  3176      //            the system is still "fresh".
  3177      if (warn_on_failure) {
  3178        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3179        warning(msg);
  3181      return NULL;
  3184   // attach to the region
  3185   addr = (char*)shmat(shmid, req_addr, 0);
  3186   int err = errno;
  3188   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3189   // will be deleted when it's detached by shmdt() or when the process
  3190   // terminates. If shmat() is not successful this will remove the shared
  3191   // segment immediately.
  3192   shmctl(shmid, IPC_RMID, NULL);
  3194   if ((intptr_t)addr == -1) {
  3195      if (warn_on_failure) {
  3196        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3197        warning(msg);
  3199      return NULL;
  3202   if ((addr != NULL) && UseNUMAInterleaving) {
  3203     numa_make_global(addr, bytes);
  3206   // The memory is committed
  3207   address pc = CALLER_PC;
  3208   MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
  3209   MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
  3211   return addr;
  3214 bool os::release_memory_special(char* base, size_t bytes) {
  3215   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3216   int rslt = shmdt(base);
  3217   if (rslt == 0) {
  3218     MemTracker::record_virtual_memory_uncommit((address)base, bytes);
  3219     MemTracker::record_virtual_memory_release((address)base, bytes);
  3220     return true;
  3221   } else {
  3222    return false;
  3226 size_t os::large_page_size() {
  3227   return _large_page_size;
  3230 // HugeTLBFS allows application to commit large page memory on demand;
  3231 // with SysV SHM the entire memory region must be allocated as shared
  3232 // memory.
  3233 bool os::can_commit_large_page_memory() {
  3234   return UseHugeTLBFS;
  3237 bool os::can_execute_large_page_memory() {
  3238   return UseHugeTLBFS;
  3241 // Reserve memory at an arbitrary address, only if that area is
  3242 // available (and not reserved for something else).
  3244 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3245   const int max_tries = 10;
  3246   char* base[max_tries];
  3247   size_t size[max_tries];
  3248   const size_t gap = 0x000000;
  3250   // Assert only that the size is a multiple of the page size, since
  3251   // that's all that mmap requires, and since that's all we really know
  3252   // about at this low abstraction level.  If we need higher alignment,
  3253   // we can either pass an alignment to this method or verify alignment
  3254   // in one of the methods further up the call chain.  See bug 5044738.
  3255   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3257   // Repeatedly allocate blocks until the block is allocated at the
  3258   // right spot. Give up after max_tries. Note that reserve_memory() will
  3259   // automatically update _highest_vm_reserved_address if the call is
  3260   // successful. The variable tracks the highest memory address every reserved
  3261   // by JVM. It is used to detect heap-stack collision if running with
  3262   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3263   // space than needed, it could confuse the collision detecting code. To
  3264   // solve the problem, save current _highest_vm_reserved_address and
  3265   // calculate the correct value before return.
  3266   address old_highest = _highest_vm_reserved_address;
  3268   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3269   // if kernel honors the hint then we can return immediately.
  3270   char * addr = anon_mmap(requested_addr, bytes, false);
  3271   if (addr == requested_addr) {
  3272      return requested_addr;
  3275   if (addr != NULL) {
  3276      // mmap() is successful but it fails to reserve at the requested address
  3277      anon_munmap(addr, bytes);
  3280   int i;
  3281   for (i = 0; i < max_tries; ++i) {
  3282     base[i] = reserve_memory(bytes);
  3284     if (base[i] != NULL) {
  3285       // Is this the block we wanted?
  3286       if (base[i] == requested_addr) {
  3287         size[i] = bytes;
  3288         break;
  3291       // Does this overlap the block we wanted? Give back the overlapped
  3292       // parts and try again.
  3294       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3295       if (top_overlap >= 0 && top_overlap < bytes) {
  3296         unmap_memory(base[i], top_overlap);
  3297         base[i] += top_overlap;
  3298         size[i] = bytes - top_overlap;
  3299       } else {
  3300         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3301         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3302           unmap_memory(requested_addr, bottom_overlap);
  3303           size[i] = bytes - bottom_overlap;
  3304         } else {
  3305           size[i] = bytes;
  3311   // Give back the unused reserved pieces.
  3313   for (int j = 0; j < i; ++j) {
  3314     if (base[j] != NULL) {
  3315       unmap_memory(base[j], size[j]);
  3319   if (i < max_tries) {
  3320     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3321     return requested_addr;
  3322   } else {
  3323     _highest_vm_reserved_address = old_highest;
  3324     return NULL;
  3328 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3329   return ::read(fd, buf, nBytes);
  3332 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3333 // Solaris uses poll(), linux uses park().
  3334 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3335 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3336 // SIGSEGV, see 4355769.
  3338 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3339   assert(thread == Thread::current(),  "thread consistency check");
  3341   ParkEvent * const slp = thread->_SleepEvent ;
  3342   slp->reset() ;
  3343   OrderAccess::fence() ;
  3345   if (interruptible) {
  3346     jlong prevtime = javaTimeNanos();
  3348     for (;;) {
  3349       if (os::is_interrupted(thread, true)) {
  3350         return OS_INTRPT;
  3353       jlong newtime = javaTimeNanos();
  3355       if (newtime - prevtime < 0) {
  3356         // time moving backwards, should only happen if no monotonic clock
  3357         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3358         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3359       } else {
  3360         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3363       if(millis <= 0) {
  3364         return OS_OK;
  3367       prevtime = newtime;
  3370         assert(thread->is_Java_thread(), "sanity check");
  3371         JavaThread *jt = (JavaThread *) thread;
  3372         ThreadBlockInVM tbivm(jt);
  3373         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3375         jt->set_suspend_equivalent();
  3376         // cleared by handle_special_suspend_equivalent_condition() or
  3377         // java_suspend_self() via check_and_wait_while_suspended()
  3379         slp->park(millis);
  3381         // were we externally suspended while we were waiting?
  3382         jt->check_and_wait_while_suspended();
  3385   } else {
  3386     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3387     jlong prevtime = javaTimeNanos();
  3389     for (;;) {
  3390       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3391       // the 1st iteration ...
  3392       jlong newtime = javaTimeNanos();
  3394       if (newtime - prevtime < 0) {
  3395         // time moving backwards, should only happen if no monotonic clock
  3396         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3397         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3398       } else {
  3399         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3402       if(millis <= 0) break ;
  3404       prevtime = newtime;
  3405       slp->park(millis);
  3407     return OS_OK ;
  3411 int os::naked_sleep() {
  3412   // %% make the sleep time an integer flag. for now use 1 millisec.
  3413   return os::sleep(Thread::current(), 1, false);
  3416 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3417 void os::infinite_sleep() {
  3418   while (true) {    // sleep forever ...
  3419     ::sleep(100);   // ... 100 seconds at a time
  3423 // Used to convert frequent JVM_Yield() to nops
  3424 bool os::dont_yield() {
  3425   return DontYieldALot;
  3428 void os::yield() {
  3429   sched_yield();
  3432 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3434 void os::yield_all(int attempts) {
  3435   // Yields to all threads, including threads with lower priorities
  3436   // Threads on Linux are all with same priority. The Solaris style
  3437   // os::yield_all() with nanosleep(1ms) is not necessary.
  3438   sched_yield();
  3441 // Called from the tight loops to possibly influence time-sharing heuristics
  3442 void os::loop_breaker(int attempts) {
  3443   os::yield_all(attempts);
  3446 ////////////////////////////////////////////////////////////////////////////////
  3447 // thread priority support
  3449 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3450 // only supports dynamic priority, static priority must be zero. For real-time
  3451 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3452 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3453 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3454 // of 5 runs - Sep 2005).
  3455 //
  3456 // The following code actually changes the niceness of kernel-thread/LWP. It
  3457 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3458 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3459 // threads. It has always been the case, but could change in the future. For
  3460 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3461 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3463 int os::java_to_os_priority[CriticalPriority + 1] = {
  3464   19,              // 0 Entry should never be used
  3466    4,              // 1 MinPriority
  3467    3,              // 2
  3468    2,              // 3
  3470    1,              // 4
  3471    0,              // 5 NormPriority
  3472   -1,              // 6
  3474   -2,              // 7
  3475   -3,              // 8
  3476   -4,              // 9 NearMaxPriority
  3478   -5,              // 10 MaxPriority
  3480   -5               // 11 CriticalPriority
  3481 };
  3483 static int prio_init() {
  3484   if (ThreadPriorityPolicy == 1) {
  3485     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3486     // if effective uid is not root. Perhaps, a more elegant way of doing
  3487     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3488     if (geteuid() != 0) {
  3489       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3490         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3492       ThreadPriorityPolicy = 0;
  3495   if (UseCriticalJavaThreadPriority) {
  3496     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3498   return 0;
  3501 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3502   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3504   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3505   return (ret == 0) ? OS_OK : OS_ERR;
  3508 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3509   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3510     *priority_ptr = java_to_os_priority[NormPriority];
  3511     return OS_OK;
  3514   errno = 0;
  3515   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3516   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3519 // Hint to the underlying OS that a task switch would not be good.
  3520 // Void return because it's a hint and can fail.
  3521 void os::hint_no_preempt() {}
  3523 ////////////////////////////////////////////////////////////////////////////////
  3524 // suspend/resume support
  3526 //  the low-level signal-based suspend/resume support is a remnant from the
  3527 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3528 //  within hotspot. Now there is a single use-case for this:
  3529 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3530 //      that runs in the watcher thread.
  3531 //  The remaining code is greatly simplified from the more general suspension
  3532 //  code that used to be used.
  3533 //
  3534 //  The protocol is quite simple:
  3535 //  - suspend:
  3536 //      - sends a signal to the target thread
  3537 //      - polls the suspend state of the osthread using a yield loop
  3538 //      - target thread signal handler (SR_handler) sets suspend state
  3539 //        and blocks in sigsuspend until continued
  3540 //  - resume:
  3541 //      - sets target osthread state to continue
  3542 //      - sends signal to end the sigsuspend loop in the SR_handler
  3543 //
  3544 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3545 //
  3547 static void resume_clear_context(OSThread *osthread) {
  3548   osthread->set_ucontext(NULL);
  3549   osthread->set_siginfo(NULL);
  3551   // notify the suspend action is completed, we have now resumed
  3552   osthread->sr.clear_suspended();
  3555 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3556   osthread->set_ucontext(context);
  3557   osthread->set_siginfo(siginfo);
  3560 //
  3561 // Handler function invoked when a thread's execution is suspended or
  3562 // resumed. We have to be careful that only async-safe functions are
  3563 // called here (Note: most pthread functions are not async safe and
  3564 // should be avoided.)
  3565 //
  3566 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3567 // interface point of view, but sigwait() prevents the signal hander
  3568 // from being run. libpthread would get very confused by not having
  3569 // its signal handlers run and prevents sigwait()'s use with the
  3570 // mutex granting granting signal.
  3571 //
  3572 // Currently only ever called on the VMThread
  3573 //
  3574 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3575   // Save and restore errno to avoid confusing native code with EINTR
  3576   // after sigsuspend.
  3577   int old_errno = errno;
  3579   Thread* thread = Thread::current();
  3580   OSThread* osthread = thread->osthread();
  3581   assert(thread->is_VM_thread(), "Must be VMThread");
  3582   // read current suspend action
  3583   int action = osthread->sr.suspend_action();
  3584   if (action == os::Linux::SuspendResume::SR_SUSPEND) {
  3585     suspend_save_context(osthread, siginfo, context);
  3587     // Notify the suspend action is about to be completed. do_suspend()
  3588     // waits until SR_SUSPENDED is set and then returns. We will wait
  3589     // here for a resume signal and that completes the suspend-other
  3590     // action. do_suspend/do_resume is always called as a pair from
  3591     // the same thread - so there are no races
  3593     // notify the caller
  3594     osthread->sr.set_suspended();
  3596     sigset_t suspend_set;  // signals for sigsuspend()
  3598     // get current set of blocked signals and unblock resume signal
  3599     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3600     sigdelset(&suspend_set, SR_signum);
  3602     // wait here until we are resumed
  3603     do {
  3604       sigsuspend(&suspend_set);
  3605       // ignore all returns until we get a resume signal
  3606     } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
  3608     resume_clear_context(osthread);
  3610   } else {
  3611     assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
  3612     // nothing special to do - just leave the handler
  3615   errno = old_errno;
  3619 static int SR_initialize() {
  3620   struct sigaction act;
  3621   char *s;
  3622   /* Get signal number to use for suspend/resume */
  3623   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3624     int sig = ::strtol(s, 0, 10);
  3625     if (sig > 0 || sig < _NSIG) {
  3626         SR_signum = sig;
  3630   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3631         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3633   sigemptyset(&SR_sigset);
  3634   sigaddset(&SR_sigset, SR_signum);
  3636   /* Set up signal handler for suspend/resume */
  3637   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3638   act.sa_handler = (void (*)(int)) SR_handler;
  3640   // SR_signum is blocked by default.
  3641   // 4528190 - We also need to block pthread restart signal (32 on all
  3642   // supported Linux platforms). Note that LinuxThreads need to block
  3643   // this signal for all threads to work properly. So we don't have
  3644   // to use hard-coded signal number when setting up the mask.
  3645   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3647   if (sigaction(SR_signum, &act, 0) == -1) {
  3648     return -1;
  3651   // Save signal flag
  3652   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3653   return 0;
  3657 // returns true on success and false on error - really an error is fatal
  3658 // but this seems the normal response to library errors
  3659 static bool do_suspend(OSThread* osthread) {
  3660   // mark as suspended and send signal
  3661   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
  3662   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3663   assert_status(status == 0, status, "pthread_kill");
  3665   // check status and wait until notified of suspension
  3666   if (status == 0) {
  3667     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3668       os::yield_all(i);
  3670     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
  3671     return true;
  3673   else {
  3674     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
  3675     return false;
  3679 static void do_resume(OSThread* osthread) {
  3680   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3681   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
  3683   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3684   assert_status(status == 0, status, "pthread_kill");
  3685   // check status and wait unit notified of resumption
  3686   if (status == 0) {
  3687     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3688       os::yield_all(i);
  3691   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
  3694 ////////////////////////////////////////////////////////////////////////////////
  3695 // interrupt support
  3697 void os::interrupt(Thread* thread) {
  3698   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3699     "possibility of dangling Thread pointer");
  3701   OSThread* osthread = thread->osthread();
  3703   if (!osthread->interrupted()) {
  3704     osthread->set_interrupted(true);
  3705     // More than one thread can get here with the same value of osthread,
  3706     // resulting in multiple notifications.  We do, however, want the store
  3707     // to interrupted() to be visible to other threads before we execute unpark().
  3708     OrderAccess::fence();
  3709     ParkEvent * const slp = thread->_SleepEvent ;
  3710     if (slp != NULL) slp->unpark() ;
  3713   // For JSR166. Unpark even if interrupt status already was set
  3714   if (thread->is_Java_thread())
  3715     ((JavaThread*)thread)->parker()->unpark();
  3717   ParkEvent * ev = thread->_ParkEvent ;
  3718   if (ev != NULL) ev->unpark() ;
  3722 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3723   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3724     "possibility of dangling Thread pointer");
  3726   OSThread* osthread = thread->osthread();
  3728   bool interrupted = osthread->interrupted();
  3730   if (interrupted && clear_interrupted) {
  3731     osthread->set_interrupted(false);
  3732     // consider thread->_SleepEvent->reset() ... optional optimization
  3735   return interrupted;
  3738 ///////////////////////////////////////////////////////////////////////////////////
  3739 // signal handling (except suspend/resume)
  3741 // This routine may be used by user applications as a "hook" to catch signals.
  3742 // The user-defined signal handler must pass unrecognized signals to this
  3743 // routine, and if it returns true (non-zero), then the signal handler must
  3744 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3745 // routine will never retun false (zero), but instead will execute a VM panic
  3746 // routine kill the process.
  3747 //
  3748 // If this routine returns false, it is OK to call it again.  This allows
  3749 // the user-defined signal handler to perform checks either before or after
  3750 // the VM performs its own checks.  Naturally, the user code would be making
  3751 // a serious error if it tried to handle an exception (such as a null check
  3752 // or breakpoint) that the VM was generating for its own correct operation.
  3753 //
  3754 // This routine may recognize any of the following kinds of signals:
  3755 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3756 // It should be consulted by handlers for any of those signals.
  3757 //
  3758 // The caller of this routine must pass in the three arguments supplied
  3759 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3760 // field of the structure passed to sigaction().  This routine assumes that
  3761 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3762 //
  3763 // Note that the VM will print warnings if it detects conflicting signal
  3764 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3765 //
  3766 extern "C" JNIEXPORT int
  3767 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3768                         void* ucontext, int abort_if_unrecognized);
  3770 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3771   assert(info != NULL && uc != NULL, "it must be old kernel");
  3772   int orig_errno = errno;  // Preserve errno value over signal handler.
  3773   JVM_handle_linux_signal(sig, info, uc, true);
  3774   errno = orig_errno;
  3778 // This boolean allows users to forward their own non-matching signals
  3779 // to JVM_handle_linux_signal, harmlessly.
  3780 bool os::Linux::signal_handlers_are_installed = false;
  3782 // For signal-chaining
  3783 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3784 unsigned int os::Linux::sigs = 0;
  3785 bool os::Linux::libjsig_is_loaded = false;
  3786 typedef struct sigaction *(*get_signal_t)(int);
  3787 get_signal_t os::Linux::get_signal_action = NULL;
  3789 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3790   struct sigaction *actp = NULL;
  3792   if (libjsig_is_loaded) {
  3793     // Retrieve the old signal handler from libjsig
  3794     actp = (*get_signal_action)(sig);
  3796   if (actp == NULL) {
  3797     // Retrieve the preinstalled signal handler from jvm
  3798     actp = get_preinstalled_handler(sig);
  3801   return actp;
  3804 static bool call_chained_handler(struct sigaction *actp, int sig,
  3805                                  siginfo_t *siginfo, void *context) {
  3806   // Call the old signal handler
  3807   if (actp->sa_handler == SIG_DFL) {
  3808     // It's more reasonable to let jvm treat it as an unexpected exception
  3809     // instead of taking the default action.
  3810     return false;
  3811   } else if (actp->sa_handler != SIG_IGN) {
  3812     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3813       // automaticlly block the signal
  3814       sigaddset(&(actp->sa_mask), sig);
  3817     sa_handler_t hand;
  3818     sa_sigaction_t sa;
  3819     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3820     // retrieve the chained handler
  3821     if (siginfo_flag_set) {
  3822       sa = actp->sa_sigaction;
  3823     } else {
  3824       hand = actp->sa_handler;
  3827     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3828       actp->sa_handler = SIG_DFL;
  3831     // try to honor the signal mask
  3832     sigset_t oset;
  3833     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3835     // call into the chained handler
  3836     if (siginfo_flag_set) {
  3837       (*sa)(sig, siginfo, context);
  3838     } else {
  3839       (*hand)(sig);
  3842     // restore the signal mask
  3843     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3845   // Tell jvm's signal handler the signal is taken care of.
  3846   return true;
  3849 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3850   bool chained = false;
  3851   // signal-chaining
  3852   if (UseSignalChaining) {
  3853     struct sigaction *actp = get_chained_signal_action(sig);
  3854     if (actp != NULL) {
  3855       chained = call_chained_handler(actp, sig, siginfo, context);
  3858   return chained;
  3861 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3862   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3863     return &sigact[sig];
  3865   return NULL;
  3868 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3869   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3870   sigact[sig] = oldAct;
  3871   sigs |= (unsigned int)1 << sig;
  3874 // for diagnostic
  3875 int os::Linux::sigflags[MAXSIGNUM];
  3877 int os::Linux::get_our_sigflags(int sig) {
  3878   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3879   return sigflags[sig];
  3882 void os::Linux::set_our_sigflags(int sig, int flags) {
  3883   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3884   sigflags[sig] = flags;
  3887 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3888   // Check for overwrite.
  3889   struct sigaction oldAct;
  3890   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3892   void* oldhand = oldAct.sa_sigaction
  3893                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3894                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3895   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3896       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3897       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3898     if (AllowUserSignalHandlers || !set_installed) {
  3899       // Do not overwrite; user takes responsibility to forward to us.
  3900       return;
  3901     } else if (UseSignalChaining) {
  3902       // save the old handler in jvm
  3903       save_preinstalled_handler(sig, oldAct);
  3904       // libjsig also interposes the sigaction() call below and saves the
  3905       // old sigaction on it own.
  3906     } else {
  3907       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3908                     "%#lx for signal %d.", (long)oldhand, sig));
  3912   struct sigaction sigAct;
  3913   sigfillset(&(sigAct.sa_mask));
  3914   sigAct.sa_handler = SIG_DFL;
  3915   if (!set_installed) {
  3916     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3917   } else {
  3918     sigAct.sa_sigaction = signalHandler;
  3919     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3921   // Save flags, which are set by ours
  3922   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3923   sigflags[sig] = sigAct.sa_flags;
  3925   int ret = sigaction(sig, &sigAct, &oldAct);
  3926   assert(ret == 0, "check");
  3928   void* oldhand2  = oldAct.sa_sigaction
  3929                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3930                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3931   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3934 // install signal handlers for signals that HotSpot needs to
  3935 // handle in order to support Java-level exception handling.
  3937 void os::Linux::install_signal_handlers() {
  3938   if (!signal_handlers_are_installed) {
  3939     signal_handlers_are_installed = true;
  3941     // signal-chaining
  3942     typedef void (*signal_setting_t)();
  3943     signal_setting_t begin_signal_setting = NULL;
  3944     signal_setting_t end_signal_setting = NULL;
  3945     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3946                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3947     if (begin_signal_setting != NULL) {
  3948       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3949                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3950       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3951                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3952       libjsig_is_loaded = true;
  3953       assert(UseSignalChaining, "should enable signal-chaining");
  3955     if (libjsig_is_loaded) {
  3956       // Tell libjsig jvm is setting signal handlers
  3957       (*begin_signal_setting)();
  3960     set_signal_handler(SIGSEGV, true);
  3961     set_signal_handler(SIGPIPE, true);
  3962     set_signal_handler(SIGBUS, true);
  3963     set_signal_handler(SIGILL, true);
  3964     set_signal_handler(SIGFPE, true);
  3965     set_signal_handler(SIGXFSZ, true);
  3967     if (libjsig_is_loaded) {
  3968       // Tell libjsig jvm finishes setting signal handlers
  3969       (*end_signal_setting)();
  3972     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3973     // and if UserSignalHandler is installed all bets are off.
  3974     // Log that signal checking is off only if -verbose:jni is specified.
  3975     if (CheckJNICalls) {
  3976       if (libjsig_is_loaded) {
  3977         if (PrintJNIResolving) {
  3978           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3980         check_signals = false;
  3982       if (AllowUserSignalHandlers) {
  3983         if (PrintJNIResolving) {
  3984           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3986         check_signals = false;
  3992 // This is the fastest way to get thread cpu time on Linux.
  3993 // Returns cpu time (user+sys) for any thread, not only for current.
  3994 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3995 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3996 // For reference, please, see IEEE Std 1003.1-2004:
  3997 //   http://www.unix.org/single_unix_specification
  3999 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4000   struct timespec tp;
  4001   int rc = os::Linux::clock_gettime(clockid, &tp);
  4002   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4004   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4007 /////
  4008 // glibc on Linux platform uses non-documented flag
  4009 // to indicate, that some special sort of signal
  4010 // trampoline is used.
  4011 // We will never set this flag, and we should
  4012 // ignore this flag in our diagnostic
  4013 #ifdef SIGNIFICANT_SIGNAL_MASK
  4014 #undef SIGNIFICANT_SIGNAL_MASK
  4015 #endif
  4016 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4018 static const char* get_signal_handler_name(address handler,
  4019                                            char* buf, int buflen) {
  4020   int offset;
  4021   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4022   if (found) {
  4023     // skip directory names
  4024     const char *p1, *p2;
  4025     p1 = buf;
  4026     size_t len = strlen(os::file_separator());
  4027     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4028     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4029   } else {
  4030     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4032   return buf;
  4035 static void print_signal_handler(outputStream* st, int sig,
  4036                                  char* buf, size_t buflen) {
  4037   struct sigaction sa;
  4039   sigaction(sig, NULL, &sa);
  4041   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4042   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4044   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4046   address handler = (sa.sa_flags & SA_SIGINFO)
  4047     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4048     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4050   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4051     st->print("SIG_DFL");
  4052   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4053     st->print("SIG_IGN");
  4054   } else {
  4055     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4058   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  4060   address rh = VMError::get_resetted_sighandler(sig);
  4061   // May be, handler was resetted by VMError?
  4062   if(rh != NULL) {
  4063     handler = rh;
  4064     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4067   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  4069   // Check: is it our handler?
  4070   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4071      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4072     // It is our signal handler
  4073     // check for flags, reset system-used one!
  4074     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4075       st->print(
  4076                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4077                 os::Linux::get_our_sigflags(sig));
  4080   st->cr();
  4084 #define DO_SIGNAL_CHECK(sig) \
  4085   if (!sigismember(&check_signal_done, sig)) \
  4086     os::Linux::check_signal_handler(sig)
  4088 // This method is a periodic task to check for misbehaving JNI applications
  4089 // under CheckJNI, we can add any periodic checks here
  4091 void os::run_periodic_checks() {
  4093   if (check_signals == false) return;
  4095   // SEGV and BUS if overridden could potentially prevent
  4096   // generation of hs*.log in the event of a crash, debugging
  4097   // such a case can be very challenging, so we absolutely
  4098   // check the following for a good measure:
  4099   DO_SIGNAL_CHECK(SIGSEGV);
  4100   DO_SIGNAL_CHECK(SIGILL);
  4101   DO_SIGNAL_CHECK(SIGFPE);
  4102   DO_SIGNAL_CHECK(SIGBUS);
  4103   DO_SIGNAL_CHECK(SIGPIPE);
  4104   DO_SIGNAL_CHECK(SIGXFSZ);
  4107   // ReduceSignalUsage allows the user to override these handlers
  4108   // see comments at the very top and jvm_solaris.h
  4109   if (!ReduceSignalUsage) {
  4110     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4111     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4112     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4113     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4116   DO_SIGNAL_CHECK(SR_signum);
  4117   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4120 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4122 static os_sigaction_t os_sigaction = NULL;
  4124 void os::Linux::check_signal_handler(int sig) {
  4125   char buf[O_BUFLEN];
  4126   address jvmHandler = NULL;
  4129   struct sigaction act;
  4130   if (os_sigaction == NULL) {
  4131     // only trust the default sigaction, in case it has been interposed
  4132     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4133     if (os_sigaction == NULL) return;
  4136   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4139   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4141   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4142     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4143     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4146   switch(sig) {
  4147   case SIGSEGV:
  4148   case SIGBUS:
  4149   case SIGFPE:
  4150   case SIGPIPE:
  4151   case SIGILL:
  4152   case SIGXFSZ:
  4153     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4154     break;
  4156   case SHUTDOWN1_SIGNAL:
  4157   case SHUTDOWN2_SIGNAL:
  4158   case SHUTDOWN3_SIGNAL:
  4159   case BREAK_SIGNAL:
  4160     jvmHandler = (address)user_handler();
  4161     break;
  4163   case INTERRUPT_SIGNAL:
  4164     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4165     break;
  4167   default:
  4168     if (sig == SR_signum) {
  4169       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4170     } else {
  4171       return;
  4173     break;
  4176   if (thisHandler != jvmHandler) {
  4177     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4178     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4179     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4180     // No need to check this sig any longer
  4181     sigaddset(&check_signal_done, sig);
  4182   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4183     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4184     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4185     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4186     // No need to check this sig any longer
  4187     sigaddset(&check_signal_done, sig);
  4190   // Dump all the signal
  4191   if (sigismember(&check_signal_done, sig)) {
  4192     print_signal_handlers(tty, buf, O_BUFLEN);
  4196 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4198 extern bool signal_name(int signo, char* buf, size_t len);
  4200 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4201   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4202     // signal
  4203     if (!signal_name(exception_code, buf, size)) {
  4204       jio_snprintf(buf, size, "SIG%d", exception_code);
  4206     return buf;
  4207   } else {
  4208     return NULL;
  4212 // this is called _before_ the most of global arguments have been parsed
  4213 void os::init(void) {
  4214   char dummy;   /* used to get a guess on initial stack address */
  4215 //  first_hrtime = gethrtime();
  4217   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4218   // is different than the pid of the java launcher thread.
  4219   // So, on Linux, the launcher thread pid is passed to the VM
  4220   // via the sun.java.launcher.pid property.
  4221   // Use this property instead of getpid() if it was correctly passed.
  4222   // See bug 6351349.
  4223   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4225   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4227   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4229   init_random(1234567);
  4231   ThreadCritical::initialize();
  4233   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4234   if (Linux::page_size() == -1) {
  4235     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4236                   strerror(errno)));
  4238   init_page_sizes((size_t) Linux::page_size());
  4240   Linux::initialize_system_info();
  4242   // main_thread points to the aboriginal thread
  4243   Linux::_main_thread = pthread_self();
  4245   Linux::clock_init();
  4246   initial_time_count = os::elapsed_counter();
  4247   pthread_mutex_init(&dl_mutex, NULL);
  4250 // To install functions for atexit system call
  4251 extern "C" {
  4252   static void perfMemory_exit_helper() {
  4253     perfMemory_exit();
  4257 // this is called _after_ the global arguments have been parsed
  4258 jint os::init_2(void)
  4260   Linux::fast_thread_clock_init();
  4262   // Allocate a single page and mark it as readable for safepoint polling
  4263   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4264   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4266   os::set_polling_page( polling_page );
  4268 #ifndef PRODUCT
  4269   if(Verbose && PrintMiscellaneous)
  4270     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4271 #endif
  4273   if (!UseMembar) {
  4274     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4275     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4276     os::set_memory_serialize_page( mem_serialize_page );
  4278 #ifndef PRODUCT
  4279     if(Verbose && PrintMiscellaneous)
  4280       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4281 #endif
  4284   os::large_page_init();
  4286   // initialize suspend/resume support - must do this before signal_sets_init()
  4287   if (SR_initialize() != 0) {
  4288     perror("SR_initialize failed");
  4289     return JNI_ERR;
  4292   Linux::signal_sets_init();
  4293   Linux::install_signal_handlers();
  4295   // Check minimum allowable stack size for thread creation and to initialize
  4296   // the java system classes, including StackOverflowError - depends on page
  4297   // size.  Add a page for compiler2 recursion in main thread.
  4298   // Add in 2*BytesPerWord times page size to account for VM stack during
  4299   // class initialization depending on 32 or 64 bit VM.
  4300   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4301             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4302                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
  4304   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4305   if (threadStackSizeInBytes != 0 &&
  4306       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4307         tty->print_cr("\nThe stack size specified is too small, "
  4308                       "Specify at least %dk",
  4309                       os::Linux::min_stack_allowed/ K);
  4310         return JNI_ERR;
  4313   // Make the stack size a multiple of the page size so that
  4314   // the yellow/red zones can be guarded.
  4315   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4316         vm_page_size()));
  4318   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4320   Linux::libpthread_init();
  4321   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4322      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4323           Linux::glibc_version(), Linux::libpthread_version(),
  4324           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4327   if (UseNUMA) {
  4328     if (!Linux::libnuma_init()) {
  4329       UseNUMA = false;
  4330     } else {
  4331       if ((Linux::numa_max_node() < 1)) {
  4332         // There's only one node(they start from 0), disable NUMA.
  4333         UseNUMA = false;
  4336     // With SHM large pages we cannot uncommit a page, so there's not way
  4337     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4338     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4339     // disable adaptive resizing.
  4340     if (UseNUMA && UseLargePages && UseSHM) {
  4341       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4342         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4343           UseLargePages = false;
  4344         } else {
  4345           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4346           UseAdaptiveSizePolicy = false;
  4347           UseAdaptiveNUMAChunkSizing = false;
  4349       } else {
  4350         UseNUMA = false;
  4353     if (!UseNUMA && ForceNUMA) {
  4354       UseNUMA = true;
  4358   if (MaxFDLimit) {
  4359     // set the number of file descriptors to max. print out error
  4360     // if getrlimit/setrlimit fails but continue regardless.
  4361     struct rlimit nbr_files;
  4362     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4363     if (status != 0) {
  4364       if (PrintMiscellaneous && (Verbose || WizardMode))
  4365         perror("os::init_2 getrlimit failed");
  4366     } else {
  4367       nbr_files.rlim_cur = nbr_files.rlim_max;
  4368       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4369       if (status != 0) {
  4370         if (PrintMiscellaneous && (Verbose || WizardMode))
  4371           perror("os::init_2 setrlimit failed");
  4376   // Initialize lock used to serialize thread creation (see os::create_thread)
  4377   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4379   // at-exit methods are called in the reverse order of their registration.
  4380   // atexit functions are called on return from main or as a result of a
  4381   // call to exit(3C). There can be only 32 of these functions registered
  4382   // and atexit() does not set errno.
  4384   if (PerfAllowAtExitRegistration) {
  4385     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4386     // atexit functions can be delayed until process exit time, which
  4387     // can be problematic for embedded VM situations. Embedded VMs should
  4388     // call DestroyJavaVM() to assure that VM resources are released.
  4390     // note: perfMemory_exit_helper atexit function may be removed in
  4391     // the future if the appropriate cleanup code can be added to the
  4392     // VM_Exit VMOperation's doit method.
  4393     if (atexit(perfMemory_exit_helper) != 0) {
  4394       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4398   // initialize thread priority policy
  4399   prio_init();
  4401   return JNI_OK;
  4404 // this is called at the end of vm_initialization
  4405 void os::init_3(void)
  4407 #ifdef JAVASE_EMBEDDED
  4408   // Start the MemNotifyThread
  4409   if (LowMemoryProtection) {
  4410     MemNotifyThread::start();
  4412   return;
  4413 #endif
  4416 // Mark the polling page as unreadable
  4417 void os::make_polling_page_unreadable(void) {
  4418   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4419     fatal("Could not disable polling page");
  4420 };
  4422 // Mark the polling page as readable
  4423 void os::make_polling_page_readable(void) {
  4424   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4425     fatal("Could not enable polling page");
  4427 };
  4429 int os::active_processor_count() {
  4430   // Linux doesn't yet have a (official) notion of processor sets,
  4431   // so just return the number of online processors.
  4432   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4433   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4434   return online_cpus;
  4437 void os::set_native_thread_name(const char *name) {
  4438   // Not yet implemented.
  4439   return;
  4442 bool os::distribute_processes(uint length, uint* distribution) {
  4443   // Not yet implemented.
  4444   return false;
  4447 bool os::bind_to_processor(uint processor_id) {
  4448   // Not yet implemented.
  4449   return false;
  4452 ///
  4454 // Suspends the target using the signal mechanism and then grabs the PC before
  4455 // resuming the target. Used by the flat-profiler only
  4456 ExtendedPC os::get_thread_pc(Thread* thread) {
  4457   // Make sure that it is called by the watcher for the VMThread
  4458   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4459   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4461   ExtendedPC epc;
  4463   OSThread* osthread = thread->osthread();
  4464   if (do_suspend(osthread)) {
  4465     if (osthread->ucontext() != NULL) {
  4466       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4467     } else {
  4468       // NULL context is unexpected, double-check this is the VMThread
  4469       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4471     do_resume(osthread);
  4473   // failure means pthread_kill failed for some reason - arguably this is
  4474   // a fatal problem, but such problems are ignored elsewhere
  4476   return epc;
  4479 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4481    if (is_NPTL()) {
  4482       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4483    } else {
  4484       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4485       // word back to default 64bit precision if condvar is signaled. Java
  4486       // wants 53bit precision.  Save and restore current value.
  4487       int fpu = get_fpu_control_word();
  4488       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4489       set_fpu_control_word(fpu);
  4490       return status;
  4494 ////////////////////////////////////////////////////////////////////////////////
  4495 // debug support
  4497 bool os::find(address addr, outputStream* st) {
  4498   Dl_info dlinfo;
  4499   memset(&dlinfo, 0, sizeof(dlinfo));
  4500   if (dladdr(addr, &dlinfo)) {
  4501     st->print(PTR_FORMAT ": ", addr);
  4502     if (dlinfo.dli_sname != NULL) {
  4503       st->print("%s+%#x", dlinfo.dli_sname,
  4504                  addr - (intptr_t)dlinfo.dli_saddr);
  4505     } else if (dlinfo.dli_fname) {
  4506       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4507     } else {
  4508       st->print("<absolute address>");
  4510     if (dlinfo.dli_fname) {
  4511       st->print(" in %s", dlinfo.dli_fname);
  4513     if (dlinfo.dli_fbase) {
  4514       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4516     st->cr();
  4518     if (Verbose) {
  4519       // decode some bytes around the PC
  4520       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  4521       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  4522       address       lowest = (address) dlinfo.dli_sname;
  4523       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4524       if (begin < lowest)  begin = lowest;
  4525       Dl_info dlinfo2;
  4526       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4527           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4528         end = (address) dlinfo2.dli_saddr;
  4529       Disassembler::decode(begin, end, st);
  4531     return true;
  4533   return false;
  4536 ////////////////////////////////////////////////////////////////////////////////
  4537 // misc
  4539 // This does not do anything on Linux. This is basically a hook for being
  4540 // able to use structured exception handling (thread-local exception filters)
  4541 // on, e.g., Win32.
  4542 void
  4543 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4544                          JavaCallArguments* args, Thread* thread) {
  4545   f(value, method, args, thread);
  4548 void os::print_statistics() {
  4551 int os::message_box(const char* title, const char* message) {
  4552   int i;
  4553   fdStream err(defaultStream::error_fd());
  4554   for (i = 0; i < 78; i++) err.print_raw("=");
  4555   err.cr();
  4556   err.print_raw_cr(title);
  4557   for (i = 0; i < 78; i++) err.print_raw("-");
  4558   err.cr();
  4559   err.print_raw_cr(message);
  4560   for (i = 0; i < 78; i++) err.print_raw("=");
  4561   err.cr();
  4563   char buf[16];
  4564   // Prevent process from exiting upon "read error" without consuming all CPU
  4565   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4567   return buf[0] == 'y' || buf[0] == 'Y';
  4570 int os::stat(const char *path, struct stat *sbuf) {
  4571   char pathbuf[MAX_PATH];
  4572   if (strlen(path) > MAX_PATH - 1) {
  4573     errno = ENAMETOOLONG;
  4574     return -1;
  4576   os::native_path(strcpy(pathbuf, path));
  4577   return ::stat(pathbuf, sbuf);
  4580 bool os::check_heap(bool force) {
  4581   return true;
  4584 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4585   return ::vsnprintf(buf, count, format, args);
  4588 // Is a (classpath) directory empty?
  4589 bool os::dir_is_empty(const char* path) {
  4590   DIR *dir = NULL;
  4591   struct dirent *ptr;
  4593   dir = opendir(path);
  4594   if (dir == NULL) return true;
  4596   /* Scan the directory */
  4597   bool result = true;
  4598   char buf[sizeof(struct dirent) + MAX_PATH];
  4599   while (result && (ptr = ::readdir(dir)) != NULL) {
  4600     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4601       result = false;
  4604   closedir(dir);
  4605   return result;
  4608 // This code originates from JDK's sysOpen and open64_w
  4609 // from src/solaris/hpi/src/system_md.c
  4611 #ifndef O_DELETE
  4612 #define O_DELETE 0x10000
  4613 #endif
  4615 // Open a file. Unlink the file immediately after open returns
  4616 // if the specified oflag has the O_DELETE flag set.
  4617 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4619 int os::open(const char *path, int oflag, int mode) {
  4621   if (strlen(path) > MAX_PATH - 1) {
  4622     errno = ENAMETOOLONG;
  4623     return -1;
  4625   int fd;
  4626   int o_delete = (oflag & O_DELETE);
  4627   oflag = oflag & ~O_DELETE;
  4629   fd = ::open64(path, oflag, mode);
  4630   if (fd == -1) return -1;
  4632   //If the open succeeded, the file might still be a directory
  4634     struct stat64 buf64;
  4635     int ret = ::fstat64(fd, &buf64);
  4636     int st_mode = buf64.st_mode;
  4638     if (ret != -1) {
  4639       if ((st_mode & S_IFMT) == S_IFDIR) {
  4640         errno = EISDIR;
  4641         ::close(fd);
  4642         return -1;
  4644     } else {
  4645       ::close(fd);
  4646       return -1;
  4650     /*
  4651      * All file descriptors that are opened in the JVM and not
  4652      * specifically destined for a subprocess should have the
  4653      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4654      * party native code might fork and exec without closing all
  4655      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4656      * UNIXProcess.c), and this in turn might:
  4658      * - cause end-of-file to fail to be detected on some file
  4659      *   descriptors, resulting in mysterious hangs, or
  4661      * - might cause an fopen in the subprocess to fail on a system
  4662      *   suffering from bug 1085341.
  4664      * (Yes, the default setting of the close-on-exec flag is a Unix
  4665      * design flaw)
  4667      * See:
  4668      * 1085341: 32-bit stdio routines should support file descriptors >255
  4669      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4670      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4671      */
  4672 #ifdef FD_CLOEXEC
  4674         int flags = ::fcntl(fd, F_GETFD);
  4675         if (flags != -1)
  4676             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4678 #endif
  4680   if (o_delete != 0) {
  4681     ::unlink(path);
  4683   return fd;
  4687 // create binary file, rewriting existing file if required
  4688 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4689   int oflags = O_WRONLY | O_CREAT;
  4690   if (!rewrite_existing) {
  4691     oflags |= O_EXCL;
  4693   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4696 // return current position of file pointer
  4697 jlong os::current_file_offset(int fd) {
  4698   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4701 // move file pointer to the specified offset
  4702 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4703   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4706 // This code originates from JDK's sysAvailable
  4707 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4709 int os::available(int fd, jlong *bytes) {
  4710   jlong cur, end;
  4711   int mode;
  4712   struct stat64 buf64;
  4714   if (::fstat64(fd, &buf64) >= 0) {
  4715     mode = buf64.st_mode;
  4716     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4717       /*
  4718       * XXX: is the following call interruptible? If so, this might
  4719       * need to go through the INTERRUPT_IO() wrapper as for other
  4720       * blocking, interruptible calls in this file.
  4721       */
  4722       int n;
  4723       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4724         *bytes = n;
  4725         return 1;
  4729   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  4730     return 0;
  4731   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  4732     return 0;
  4733   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  4734     return 0;
  4736   *bytes = end - cur;
  4737   return 1;
  4740 int os::socket_available(int fd, jint *pbytes) {
  4741   // Linux doc says EINTR not returned, unlike Solaris
  4742   int ret = ::ioctl(fd, FIONREAD, pbytes);
  4744   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4745   // is expected to return 0 on failure and 1 on success to the jdk.
  4746   return (ret < 0) ? 0 : 1;
  4749 // Map a block of memory.
  4750 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4751                      char *addr, size_t bytes, bool read_only,
  4752                      bool allow_exec) {
  4753   int prot;
  4754   int flags = MAP_PRIVATE;
  4756   if (read_only) {
  4757     prot = PROT_READ;
  4758   } else {
  4759     prot = PROT_READ | PROT_WRITE;
  4762   if (allow_exec) {
  4763     prot |= PROT_EXEC;
  4766   if (addr != NULL) {
  4767     flags |= MAP_FIXED;
  4770   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4771                                      fd, file_offset);
  4772   if (mapped_address == MAP_FAILED) {
  4773     return NULL;
  4775   return mapped_address;
  4779 // Remap a block of memory.
  4780 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4781                        char *addr, size_t bytes, bool read_only,
  4782                        bool allow_exec) {
  4783   // same as map_memory() on this OS
  4784   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4785                         allow_exec);
  4789 // Unmap a block of memory.
  4790 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4791   return munmap(addr, bytes) == 0;
  4794 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4796 static clockid_t thread_cpu_clockid(Thread* thread) {
  4797   pthread_t tid = thread->osthread()->pthread_id();
  4798   clockid_t clockid;
  4800   // Get thread clockid
  4801   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4802   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4803   return clockid;
  4806 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4807 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4808 // of a thread.
  4809 //
  4810 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4811 // the fast estimate available on the platform.
  4813 jlong os::current_thread_cpu_time() {
  4814   if (os::Linux::supports_fast_thread_cpu_time()) {
  4815     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4816   } else {
  4817     // return user + sys since the cost is the same
  4818     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4822 jlong os::thread_cpu_time(Thread* thread) {
  4823   // consistent with what current_thread_cpu_time() returns
  4824   if (os::Linux::supports_fast_thread_cpu_time()) {
  4825     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4826   } else {
  4827     return slow_thread_cpu_time(thread, true /* user + sys */);
  4831 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4832   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4833     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4834   } else {
  4835     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4839 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4840   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4841     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4842   } else {
  4843     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4847 //
  4848 //  -1 on error.
  4849 //
  4851 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4852   static bool proc_task_unchecked = true;
  4853   static const char *proc_stat_path = "/proc/%d/stat";
  4854   pid_t  tid = thread->osthread()->thread_id();
  4855   char *s;
  4856   char stat[2048];
  4857   int statlen;
  4858   char proc_name[64];
  4859   int count;
  4860   long sys_time, user_time;
  4861   char cdummy;
  4862   int idummy;
  4863   long ldummy;
  4864   FILE *fp;
  4866   // The /proc/<tid>/stat aggregates per-process usage on
  4867   // new Linux kernels 2.6+ where NPTL is supported.
  4868   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4869   // See bug 6328462.
  4870   // There possibly can be cases where there is no directory
  4871   // /proc/self/task, so we check its availability.
  4872   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4873     // This is executed only once
  4874     proc_task_unchecked = false;
  4875     fp = fopen("/proc/self/task", "r");
  4876     if (fp != NULL) {
  4877       proc_stat_path = "/proc/self/task/%d/stat";
  4878       fclose(fp);
  4882   sprintf(proc_name, proc_stat_path, tid);
  4883   fp = fopen(proc_name, "r");
  4884   if ( fp == NULL ) return -1;
  4885   statlen = fread(stat, 1, 2047, fp);
  4886   stat[statlen] = '\0';
  4887   fclose(fp);
  4889   // Skip pid and the command string. Note that we could be dealing with
  4890   // weird command names, e.g. user could decide to rename java launcher
  4891   // to "java 1.4.2 :)", then the stat file would look like
  4892   //                1234 (java 1.4.2 :)) R ... ...
  4893   // We don't really need to know the command string, just find the last
  4894   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4895   s = strrchr(stat, ')');
  4896   if (s == NULL ) return -1;
  4898   // Skip blank chars
  4899   do s++; while (isspace(*s));
  4901   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4902                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4903                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4904                  &user_time, &sys_time);
  4905   if ( count != 13 ) return -1;
  4906   if (user_sys_cpu_time) {
  4907     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4908   } else {
  4909     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4913 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4914   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4915   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4916   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4917   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4920 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4921   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4922   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4923   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4924   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4927 bool os::is_thread_cpu_time_supported() {
  4928   return true;
  4931 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4932 // Linux doesn't yet have a (official) notion of processor sets,
  4933 // so just return the system wide load average.
  4934 int os::loadavg(double loadavg[], int nelem) {
  4935   return ::getloadavg(loadavg, nelem);
  4938 void os::pause() {
  4939   char filename[MAX_PATH];
  4940   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4941     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4942   } else {
  4943     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4946   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4947   if (fd != -1) {
  4948     struct stat buf;
  4949     ::close(fd);
  4950     while (::stat(filename, &buf) == 0) {
  4951       (void)::poll(NULL, 0, 100);
  4953   } else {
  4954     jio_fprintf(stderr,
  4955       "Could not open pause file '%s', continuing immediately.\n", filename);
  4960 // Refer to the comments in os_solaris.cpp park-unpark.
  4961 //
  4962 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4963 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4964 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4965 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4966 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4967 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4968 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4969 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4970 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4971 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4972 // of libpthread avoids the problem, but isn't practical.
  4973 //
  4974 // Possible remedies:
  4975 //
  4976 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4977 //      This is palliative and probabilistic, however.  If the thread is preempted
  4978 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4979 //      than the minimum period may have passed, and the abstime may be stale (in the
  4980 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4981 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4982 //
  4983 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4984 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4985 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4986 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4987 //      thread.
  4988 //
  4989 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4990 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4991 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4992 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4993 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4994 //      timers in a graceful fashion.
  4995 //
  4996 // 4.   When the abstime value is in the past it appears that control returns
  4997 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4998 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4999 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5000 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5001 //      It may be possible to avoid reinitialization by checking the return
  5002 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5003 //      condvar we must establish the invariant that cond_signal() is only called
  5004 //      within critical sections protected by the adjunct mutex.  This prevents
  5005 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5006 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5007 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5008 //
  5009 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5010 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5011 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5012 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5013 //
  5014 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5015 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5016 // and only enabling the work-around for vulnerable environments.
  5018 // utility to compute the abstime argument to timedwait:
  5019 // millis is the relative timeout time
  5020 // abstime will be the absolute timeout time
  5021 // TODO: replace compute_abstime() with unpackTime()
  5023 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5024   if (millis < 0)  millis = 0;
  5025   struct timeval now;
  5026   int status = gettimeofday(&now, NULL);
  5027   assert(status == 0, "gettimeofday");
  5028   jlong seconds = millis / 1000;
  5029   millis %= 1000;
  5030   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5031     seconds = 50000000;
  5033   abstime->tv_sec = now.tv_sec  + seconds;
  5034   long       usec = now.tv_usec + millis * 1000;
  5035   if (usec >= 1000000) {
  5036     abstime->tv_sec += 1;
  5037     usec -= 1000000;
  5039   abstime->tv_nsec = usec * 1000;
  5040   return abstime;
  5044 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5045 // Conceptually TryPark() should be equivalent to park(0).
  5047 int os::PlatformEvent::TryPark() {
  5048   for (;;) {
  5049     const int v = _Event ;
  5050     guarantee ((v == 0) || (v == 1), "invariant") ;
  5051     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5055 void os::PlatformEvent::park() {       // AKA "down()"
  5056   // Invariant: Only the thread associated with the Event/PlatformEvent
  5057   // may call park().
  5058   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5059   int v ;
  5060   for (;;) {
  5061       v = _Event ;
  5062       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5064   guarantee (v >= 0, "invariant") ;
  5065   if (v == 0) {
  5066      // Do this the hard way by blocking ...
  5067      int status = pthread_mutex_lock(_mutex);
  5068      assert_status(status == 0, status, "mutex_lock");
  5069      guarantee (_nParked == 0, "invariant") ;
  5070      ++ _nParked ;
  5071      while (_Event < 0) {
  5072         status = pthread_cond_wait(_cond, _mutex);
  5073         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5074         // Treat this the same as if the wait was interrupted
  5075         if (status == ETIME) { status = EINTR; }
  5076         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5078      -- _nParked ;
  5080     _Event = 0 ;
  5081      status = pthread_mutex_unlock(_mutex);
  5082      assert_status(status == 0, status, "mutex_unlock");
  5083     // Paranoia to ensure our locked and lock-free paths interact
  5084     // correctly with each other.
  5085     OrderAccess::fence();
  5087   guarantee (_Event >= 0, "invariant") ;
  5090 int os::PlatformEvent::park(jlong millis) {
  5091   guarantee (_nParked == 0, "invariant") ;
  5093   int v ;
  5094   for (;;) {
  5095       v = _Event ;
  5096       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5098   guarantee (v >= 0, "invariant") ;
  5099   if (v != 0) return OS_OK ;
  5101   // We do this the hard way, by blocking the thread.
  5102   // Consider enforcing a minimum timeout value.
  5103   struct timespec abst;
  5104   compute_abstime(&abst, millis);
  5106   int ret = OS_TIMEOUT;
  5107   int status = pthread_mutex_lock(_mutex);
  5108   assert_status(status == 0, status, "mutex_lock");
  5109   guarantee (_nParked == 0, "invariant") ;
  5110   ++_nParked ;
  5112   // Object.wait(timo) will return because of
  5113   // (a) notification
  5114   // (b) timeout
  5115   // (c) thread.interrupt
  5116   //
  5117   // Thread.interrupt and object.notify{All} both call Event::set.
  5118   // That is, we treat thread.interrupt as a special case of notification.
  5119   // The underlying Solaris implementation, cond_timedwait, admits
  5120   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5121   // JVM from making those visible to Java code.  As such, we must
  5122   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5123   //
  5124   // TODO: properly differentiate simultaneous notify+interrupt.
  5125   // In that case, we should propagate the notify to another waiter.
  5127   while (_Event < 0) {
  5128     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5129     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5130       pthread_cond_destroy (_cond);
  5131       pthread_cond_init (_cond, NULL) ;
  5133     assert_status(status == 0 || status == EINTR ||
  5134                   status == ETIME || status == ETIMEDOUT,
  5135                   status, "cond_timedwait");
  5136     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5137     if (status == ETIME || status == ETIMEDOUT) break ;
  5138     // We consume and ignore EINTR and spurious wakeups.
  5140   --_nParked ;
  5141   if (_Event >= 0) {
  5142      ret = OS_OK;
  5144   _Event = 0 ;
  5145   status = pthread_mutex_unlock(_mutex);
  5146   assert_status(status == 0, status, "mutex_unlock");
  5147   assert (_nParked == 0, "invariant") ;
  5148   // Paranoia to ensure our locked and lock-free paths interact
  5149   // correctly with each other.
  5150   OrderAccess::fence();
  5151   return ret;
  5154 void os::PlatformEvent::unpark() {
  5155   // Transitions for _Event:
  5156   //    0 :=> 1
  5157   //    1 :=> 1
  5158   //   -1 :=> either 0 or 1; must signal target thread
  5159   //          That is, we can safely transition _Event from -1 to either
  5160   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5161   //          unpark() calls.
  5162   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5163   //
  5164   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5165   // that it will take two back-to-back park() calls for the owning
  5166   // thread to block. This has the benefit of forcing a spurious return
  5167   // from the first park() call after an unpark() call which will help
  5168   // shake out uses of park() and unpark() without condition variables.
  5170   if (Atomic::xchg(1, &_Event) >= 0) return;
  5172   // Wait for the thread associated with the event to vacate
  5173   int status = pthread_mutex_lock(_mutex);
  5174   assert_status(status == 0, status, "mutex_lock");
  5175   int AnyWaiters = _nParked;
  5176   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5177   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5178     AnyWaiters = 0;
  5179     pthread_cond_signal(_cond);
  5181   status = pthread_mutex_unlock(_mutex);
  5182   assert_status(status == 0, status, "mutex_unlock");
  5183   if (AnyWaiters != 0) {
  5184     status = pthread_cond_signal(_cond);
  5185     assert_status(status == 0, status, "cond_signal");
  5188   // Note that we signal() _after dropping the lock for "immortal" Events.
  5189   // This is safe and avoids a common class of  futile wakeups.  In rare
  5190   // circumstances this can cause a thread to return prematurely from
  5191   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5192   // simply re-test the condition and re-park itself.
  5196 // JSR166
  5197 // -------------------------------------------------------
  5199 /*
  5200  * The solaris and linux implementations of park/unpark are fairly
  5201  * conservative for now, but can be improved. They currently use a
  5202  * mutex/condvar pair, plus a a count.
  5203  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5204  * sets count to 1 and signals condvar.  Only one thread ever waits
  5205  * on the condvar. Contention seen when trying to park implies that someone
  5206  * is unparking you, so don't wait. And spurious returns are fine, so there
  5207  * is no need to track notifications.
  5208  */
  5210 #define MAX_SECS 100000000
  5211 /*
  5212  * This code is common to linux and solaris and will be moved to a
  5213  * common place in dolphin.
  5215  * The passed in time value is either a relative time in nanoseconds
  5216  * or an absolute time in milliseconds. Either way it has to be unpacked
  5217  * into suitable seconds and nanoseconds components and stored in the
  5218  * given timespec structure.
  5219  * Given time is a 64-bit value and the time_t used in the timespec is only
  5220  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5221  * overflow if times way in the future are given. Further on Solaris versions
  5222  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5223  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5224  * As it will be 28 years before "now + 100000000" will overflow we can
  5225  * ignore overflow and just impose a hard-limit on seconds using the value
  5226  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5227  * years from "now".
  5228  */
  5230 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5231   assert (time > 0, "convertTime");
  5233   struct timeval now;
  5234   int status = gettimeofday(&now, NULL);
  5235   assert(status == 0, "gettimeofday");
  5237   time_t max_secs = now.tv_sec + MAX_SECS;
  5239   if (isAbsolute) {
  5240     jlong secs = time / 1000;
  5241     if (secs > max_secs) {
  5242       absTime->tv_sec = max_secs;
  5244     else {
  5245       absTime->tv_sec = secs;
  5247     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5249   else {
  5250     jlong secs = time / NANOSECS_PER_SEC;
  5251     if (secs >= MAX_SECS) {
  5252       absTime->tv_sec = max_secs;
  5253       absTime->tv_nsec = 0;
  5255     else {
  5256       absTime->tv_sec = now.tv_sec + secs;
  5257       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5258       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5259         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5260         ++absTime->tv_sec; // note: this must be <= max_secs
  5264   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5265   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5266   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5267   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5270 void Parker::park(bool isAbsolute, jlong time) {
  5271   // Ideally we'd do something useful while spinning, such
  5272   // as calling unpackTime().
  5274   // Optional fast-path check:
  5275   // Return immediately if a permit is available.
  5276   // We depend on Atomic::xchg() having full barrier semantics
  5277   // since we are doing a lock-free update to _counter.
  5278   if (Atomic::xchg(0, &_counter) > 0) return;
  5280   Thread* thread = Thread::current();
  5281   assert(thread->is_Java_thread(), "Must be JavaThread");
  5282   JavaThread *jt = (JavaThread *)thread;
  5284   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5285   // Check interrupt before trying to wait
  5286   if (Thread::is_interrupted(thread, false)) {
  5287     return;
  5290   // Next, demultiplex/decode time arguments
  5291   timespec absTime;
  5292   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5293     return;
  5295   if (time > 0) {
  5296     unpackTime(&absTime, isAbsolute, time);
  5300   // Enter safepoint region
  5301   // Beware of deadlocks such as 6317397.
  5302   // The per-thread Parker:: mutex is a classic leaf-lock.
  5303   // In particular a thread must never block on the Threads_lock while
  5304   // holding the Parker:: mutex.  If safepoints are pending both the
  5305   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5306   ThreadBlockInVM tbivm(jt);
  5308   // Don't wait if cannot get lock since interference arises from
  5309   // unblocking.  Also. check interrupt before trying wait
  5310   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5311     return;
  5314   int status ;
  5315   if (_counter > 0)  { // no wait needed
  5316     _counter = 0;
  5317     status = pthread_mutex_unlock(_mutex);
  5318     assert (status == 0, "invariant") ;
  5319     // Paranoia to ensure our locked and lock-free paths interact
  5320     // correctly with each other and Java-level accesses.
  5321     OrderAccess::fence();
  5322     return;
  5325 #ifdef ASSERT
  5326   // Don't catch signals while blocked; let the running threads have the signals.
  5327   // (This allows a debugger to break into the running thread.)
  5328   sigset_t oldsigs;
  5329   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5330   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5331 #endif
  5333   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5334   jt->set_suspend_equivalent();
  5335   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5337   if (time == 0) {
  5338     status = pthread_cond_wait (_cond, _mutex) ;
  5339   } else {
  5340     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5341     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5342       pthread_cond_destroy (_cond) ;
  5343       pthread_cond_init    (_cond, NULL);
  5346   assert_status(status == 0 || status == EINTR ||
  5347                 status == ETIME || status == ETIMEDOUT,
  5348                 status, "cond_timedwait");
  5350 #ifdef ASSERT
  5351   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5352 #endif
  5354   _counter = 0 ;
  5355   status = pthread_mutex_unlock(_mutex) ;
  5356   assert_status(status == 0, status, "invariant") ;
  5357   // Paranoia to ensure our locked and lock-free paths interact
  5358   // correctly with each other and Java-level accesses.
  5359   OrderAccess::fence();
  5361   // If externally suspended while waiting, re-suspend
  5362   if (jt->handle_special_suspend_equivalent_condition()) {
  5363     jt->java_suspend_self();
  5367 void Parker::unpark() {
  5368   int s, status ;
  5369   status = pthread_mutex_lock(_mutex);
  5370   assert (status == 0, "invariant") ;
  5371   s = _counter;
  5372   _counter = 1;
  5373   if (s < 1) {
  5374      if (WorkAroundNPTLTimedWaitHang) {
  5375         status = pthread_cond_signal (_cond) ;
  5376         assert (status == 0, "invariant") ;
  5377         status = pthread_mutex_unlock(_mutex);
  5378         assert (status == 0, "invariant") ;
  5379      } else {
  5380         status = pthread_mutex_unlock(_mutex);
  5381         assert (status == 0, "invariant") ;
  5382         status = pthread_cond_signal (_cond) ;
  5383         assert (status == 0, "invariant") ;
  5385   } else {
  5386     pthread_mutex_unlock(_mutex);
  5387     assert (status == 0, "invariant") ;
  5392 extern char** environ;
  5394 #ifndef __NR_fork
  5395 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5396 #endif
  5398 #ifndef __NR_execve
  5399 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5400 #endif
  5402 // Run the specified command in a separate process. Return its exit value,
  5403 // or -1 on failure (e.g. can't fork a new process).
  5404 // Unlike system(), this function can be called from signal handler. It
  5405 // doesn't block SIGINT et al.
  5406 int os::fork_and_exec(char* cmd) {
  5407   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5409   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5410   // pthread_atfork handlers and reset pthread library. All we need is a
  5411   // separate process to execve. Make a direct syscall to fork process.
  5412   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5413   // the best...
  5414   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5415               IA64_ONLY(fork();)
  5417   if (pid < 0) {
  5418     // fork failed
  5419     return -1;
  5421   } else if (pid == 0) {
  5422     // child process
  5424     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5425     // first to kill every thread on the thread list. Because this list is
  5426     // not reset by fork() (see notes above), execve() will instead kill
  5427     // every thread in the parent process. We know this is the only thread
  5428     // in the new process, so make a system call directly.
  5429     // IA64 should use normal execve() from glibc to match the glibc fork()
  5430     // above.
  5431     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5432     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5434     // execve failed
  5435     _exit(-1);
  5437   } else  {
  5438     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5439     // care about the actual exit code, for now.
  5441     int status;
  5443     // Wait for the child process to exit.  This returns immediately if
  5444     // the child has already exited. */
  5445     while (waitpid(pid, &status, 0) < 0) {
  5446         switch (errno) {
  5447         case ECHILD: return 0;
  5448         case EINTR: break;
  5449         default: return -1;
  5453     if (WIFEXITED(status)) {
  5454        // The child exited normally; get its exit code.
  5455        return WEXITSTATUS(status);
  5456     } else if (WIFSIGNALED(status)) {
  5457        // The child exited because of a signal
  5458        // The best value to return is 0x80 + signal number,
  5459        // because that is what all Unix shells do, and because
  5460        // it allows callers to distinguish between process exit and
  5461        // process death by signal.
  5462        return 0x80 + WTERMSIG(status);
  5463     } else {
  5464        // Unknown exit code; pass it through
  5465        return status;
  5470 // is_headless_jre()
  5471 //
  5472 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  5473 // in order to report if we are running in a headless jre
  5474 //
  5475 // Since JDK8 xawt/libmawt.so was moved into the same directory
  5476 // as libawt.so, and renamed libawt_xawt.so
  5477 //
  5478 bool os::is_headless_jre() {
  5479     struct stat statbuf;
  5480     char buf[MAXPATHLEN];
  5481     char libmawtpath[MAXPATHLEN];
  5482     const char *xawtstr  = "/xawt/libmawt.so";
  5483     const char *new_xawtstr = "/libawt_xawt.so";
  5484     char *p;
  5486     // Get path to libjvm.so
  5487     os::jvm_path(buf, sizeof(buf));
  5489     // Get rid of libjvm.so
  5490     p = strrchr(buf, '/');
  5491     if (p == NULL) return false;
  5492     else *p = '\0';
  5494     // Get rid of client or server
  5495     p = strrchr(buf, '/');
  5496     if (p == NULL) return false;
  5497     else *p = '\0';
  5499     // check xawt/libmawt.so
  5500     strcpy(libmawtpath, buf);
  5501     strcat(libmawtpath, xawtstr);
  5502     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5504     // check libawt_xawt.so
  5505     strcpy(libmawtpath, buf);
  5506     strcat(libmawtpath, new_xawtstr);
  5507     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5509     return true;
  5512 // Get the default path to the core file
  5513 // Returns the length of the string
  5514 int os::get_core_path(char* buffer, size_t bufferSize) {
  5515   const char* p = get_current_directory(buffer, bufferSize);
  5517   if (p == NULL) {
  5518     assert(p != NULL, "failed to get current directory");
  5519     return 0;
  5522   return strlen(buffer);
  5525 #ifdef JAVASE_EMBEDDED
  5526 //
  5527 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  5528 //
  5529 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  5531 // ctor
  5532 //
  5533 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  5534   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  5535   _fd = fd;
  5537   if (os::create_thread(this, os::os_thread)) {
  5538     _memnotify_thread = this;
  5539     os::set_priority(this, NearMaxPriority);
  5540     os::start_thread(this);
  5544 // Where all the work gets done
  5545 //
  5546 void MemNotifyThread::run() {
  5547   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  5549   // Set up the select arguments
  5550   fd_set rfds;
  5551   if (_fd != -1) {
  5552     FD_ZERO(&rfds);
  5553     FD_SET(_fd, &rfds);
  5556   // Now wait for the mem_notify device to wake up
  5557   while (1) {
  5558     // Wait for the mem_notify device to signal us..
  5559     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  5560     if (rc == -1) {
  5561       perror("select!\n");
  5562       break;
  5563     } else if (rc) {
  5564       //ssize_t free_before = os::available_memory();
  5565       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  5567       // The kernel is telling us there is not much memory left...
  5568       // try to do something about that
  5570       // If we are not already in a GC, try one.
  5571       if (!Universe::heap()->is_gc_active()) {
  5572         Universe::heap()->collect(GCCause::_allocation_failure);
  5574         //ssize_t free_after = os::available_memory();
  5575         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  5576         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  5578       // We might want to do something like the following if we find the GC's are not helping...
  5579       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  5584 //
  5585 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  5586 //
  5587 void MemNotifyThread::start() {
  5588   int    fd;
  5589   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  5590   if (fd < 0) {
  5591       return;
  5594   if (memnotify_thread() == NULL) {
  5595     new MemNotifyThread(fd);
  5598 #endif // JAVASE_EMBEDDED

mercurial