src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 07 Apr 2011 09:53:20 -0700

author
johnc
date
Thu, 07 Apr 2011 09:53:20 -0700
changeset 2781
e1162778c1c8
parent 2717
371bbc844bf1
child 2817
49a67202bc67
permissions
-rw-r--r--

7009266: G1: assert(obj->is_oop_or_null(true )) failed: Error
Summary: A referent object that is only weakly reachable at the start of concurrent marking but is re-attached to the strongly reachable object graph during marking may not be marked as live. This can cause the reference object to be processed prematurely and leave dangling pointers to the referent object. Implement a read barrier for the java.lang.ref.Reference::referent field by intrinsifying the Reference.get() method, and intercepting accesses though JNI, reflection, and Unsafe, so that when a non-null referent object is read it is also logged in an SATB buffer.
Reviewed-by: kvn, iveresov, never, tonyp, dholmes

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1RemSet.hpp"
    31 #include "gc_implementation/g1/heapRegionSets.hpp"
    32 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    33 #include "memory/barrierSet.hpp"
    34 #include "memory/memRegion.hpp"
    35 #include "memory/sharedHeap.hpp"
    37 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    38 // It uses the "Garbage First" heap organization and algorithm, which
    39 // may combine concurrent marking with parallel, incremental compaction of
    40 // heap subsets that will yield large amounts of garbage.
    42 class HeapRegion;
    43 class HeapRegionSeq;
    44 class HRRSCleanupTask;
    45 class PermanentGenerationSpec;
    46 class GenerationSpec;
    47 class OopsInHeapRegionClosure;
    48 class G1ScanHeapEvacClosure;
    49 class ObjectClosure;
    50 class SpaceClosure;
    51 class CompactibleSpaceClosure;
    52 class Space;
    53 class G1CollectorPolicy;
    54 class GenRemSet;
    55 class G1RemSet;
    56 class HeapRegionRemSetIterator;
    57 class ConcurrentMark;
    58 class ConcurrentMarkThread;
    59 class ConcurrentG1Refine;
    61 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    62 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    64 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    65 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    67 enum GCAllocPurpose {
    68   GCAllocForTenured,
    69   GCAllocForSurvived,
    70   GCAllocPurposeCount
    71 };
    73 class YoungList : public CHeapObj {
    74 private:
    75   G1CollectedHeap* _g1h;
    77   HeapRegion* _head;
    79   HeapRegion* _survivor_head;
    80   HeapRegion* _survivor_tail;
    82   HeapRegion* _curr;
    84   size_t      _length;
    85   size_t      _survivor_length;
    87   size_t      _last_sampled_rs_lengths;
    88   size_t      _sampled_rs_lengths;
    90   void         empty_list(HeapRegion* list);
    92 public:
    93   YoungList(G1CollectedHeap* g1h);
    95   void         push_region(HeapRegion* hr);
    96   void         add_survivor_region(HeapRegion* hr);
    98   void         empty_list();
    99   bool         is_empty() { return _length == 0; }
   100   size_t       length() { return _length; }
   101   size_t       survivor_length() { return _survivor_length; }
   103   void rs_length_sampling_init();
   104   bool rs_length_sampling_more();
   105   void rs_length_sampling_next();
   107   void reset_sampled_info() {
   108     _last_sampled_rs_lengths =   0;
   109   }
   110   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   112   // for development purposes
   113   void reset_auxilary_lists();
   114   void clear() { _head = NULL; _length = 0; }
   116   void clear_survivors() {
   117     _survivor_head    = NULL;
   118     _survivor_tail    = NULL;
   119     _survivor_length  = 0;
   120   }
   122   HeapRegion* first_region() { return _head; }
   123   HeapRegion* first_survivor_region() { return _survivor_head; }
   124   HeapRegion* last_survivor_region() { return _survivor_tail; }
   126   // debugging
   127   bool          check_list_well_formed();
   128   bool          check_list_empty(bool check_sample = true);
   129   void          print();
   130 };
   132 class MutatorAllocRegion : public G1AllocRegion {
   133 protected:
   134   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   135   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   136 public:
   137   MutatorAllocRegion()
   138     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   139 };
   141 class RefineCardTableEntryClosure;
   142 class G1CollectedHeap : public SharedHeap {
   143   friend class VM_G1CollectForAllocation;
   144   friend class VM_GenCollectForPermanentAllocation;
   145   friend class VM_G1CollectFull;
   146   friend class VM_G1IncCollectionPause;
   147   friend class VMStructs;
   148   friend class MutatorAllocRegion;
   150   // Closures used in implementation.
   151   friend class G1ParCopyHelper;
   152   friend class G1IsAliveClosure;
   153   friend class G1EvacuateFollowersClosure;
   154   friend class G1ParScanThreadState;
   155   friend class G1ParScanClosureSuper;
   156   friend class G1ParEvacuateFollowersClosure;
   157   friend class G1ParTask;
   158   friend class G1FreeGarbageRegionClosure;
   159   friend class RefineCardTableEntryClosure;
   160   friend class G1PrepareCompactClosure;
   161   friend class RegionSorter;
   162   friend class RegionResetter;
   163   friend class CountRCClosure;
   164   friend class EvacPopObjClosure;
   165   friend class G1ParCleanupCTTask;
   167   // Other related classes.
   168   friend class G1MarkSweep;
   170 private:
   171   // The one and only G1CollectedHeap, so static functions can find it.
   172   static G1CollectedHeap* _g1h;
   174   static size_t _humongous_object_threshold_in_words;
   176   // Storage for the G1 heap (excludes the permanent generation).
   177   VirtualSpace _g1_storage;
   178   MemRegion    _g1_reserved;
   180   // The part of _g1_storage that is currently committed.
   181   MemRegion _g1_committed;
   183   // The maximum part of _g1_storage that has ever been committed.
   184   MemRegion _g1_max_committed;
   186   // The master free list. It will satisfy all new region allocations.
   187   MasterFreeRegionList      _free_list;
   189   // The secondary free list which contains regions that have been
   190   // freed up during the cleanup process. This will be appended to the
   191   // master free list when appropriate.
   192   SecondaryFreeRegionList   _secondary_free_list;
   194   // It keeps track of the humongous regions.
   195   MasterHumongousRegionSet  _humongous_set;
   197   // The number of regions we could create by expansion.
   198   size_t _expansion_regions;
   200   // The block offset table for the G1 heap.
   201   G1BlockOffsetSharedArray* _bot_shared;
   203   // Move all of the regions off the free lists, then rebuild those free
   204   // lists, before and after full GC.
   205   void tear_down_region_lists();
   206   void rebuild_region_lists();
   208   // The sequence of all heap regions in the heap.
   209   HeapRegionSeq* _hrs;
   211   // Alloc region used to satisfy mutator allocation requests.
   212   MutatorAllocRegion _mutator_alloc_region;
   214   // It resets the mutator alloc region before new allocations can take place.
   215   void init_mutator_alloc_region();
   217   // It releases the mutator alloc region.
   218   void release_mutator_alloc_region();
   220   void abandon_gc_alloc_regions();
   222   // The to-space memory regions into which objects are being copied during
   223   // a GC.
   224   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   225   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   226   // These are the regions, one per GCAllocPurpose, that are half-full
   227   // at the end of a collection and that we want to reuse during the
   228   // next collection.
   229   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   230   // This specifies whether we will keep the last half-full region at
   231   // the end of a collection so that it can be reused during the next
   232   // collection (this is specified per GCAllocPurpose)
   233   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   235   // A list of the regions that have been set to be alloc regions in the
   236   // current collection.
   237   HeapRegion* _gc_alloc_region_list;
   239   // Determines PLAB size for a particular allocation purpose.
   240   static size_t desired_plab_sz(GCAllocPurpose purpose);
   242   // When called by par thread, requires the FreeList_lock to be held.
   243   void push_gc_alloc_region(HeapRegion* hr);
   245   // This should only be called single-threaded.  Undeclares all GC alloc
   246   // regions.
   247   void forget_alloc_region_list();
   249   // Should be used to set an alloc region, because there's other
   250   // associated bookkeeping.
   251   void set_gc_alloc_region(int purpose, HeapRegion* r);
   253   // Check well-formedness of alloc region list.
   254   bool check_gc_alloc_regions();
   256   // Outside of GC pauses, the number of bytes used in all regions other
   257   // than the current allocation region.
   258   size_t _summary_bytes_used;
   260   // This is used for a quick test on whether a reference points into
   261   // the collection set or not. Basically, we have an array, with one
   262   // byte per region, and that byte denotes whether the corresponding
   263   // region is in the collection set or not. The entry corresponding
   264   // the bottom of the heap, i.e., region 0, is pointed to by
   265   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   266   // biased so that it actually points to address 0 of the address
   267   // space, to make the test as fast as possible (we can simply shift
   268   // the address to address into it, instead of having to subtract the
   269   // bottom of the heap from the address before shifting it; basically
   270   // it works in the same way the card table works).
   271   bool* _in_cset_fast_test;
   273   // The allocated array used for the fast test on whether a reference
   274   // points into the collection set or not. This field is also used to
   275   // free the array.
   276   bool* _in_cset_fast_test_base;
   278   // The length of the _in_cset_fast_test_base array.
   279   size_t _in_cset_fast_test_length;
   281   volatile unsigned _gc_time_stamp;
   283   size_t* _surviving_young_words;
   285   void setup_surviving_young_words();
   286   void update_surviving_young_words(size_t* surv_young_words);
   287   void cleanup_surviving_young_words();
   289   // It decides whether an explicit GC should start a concurrent cycle
   290   // instead of doing a STW GC. Currently, a concurrent cycle is
   291   // explicitly started if:
   292   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   293   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   294   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   296   // Keeps track of how many "full collections" (i.e., Full GCs or
   297   // concurrent cycles) we have completed. The number of them we have
   298   // started is maintained in _total_full_collections in CollectedHeap.
   299   volatile unsigned int _full_collections_completed;
   301   // These are macros so that, if the assert fires, we get the correct
   302   // line number, file, etc.
   304 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   305   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   306           (_extra_message_),                                                  \
   307           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   308           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   309           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   311 #define assert_heap_locked()                                                  \
   312   do {                                                                        \
   313     assert(Heap_lock->owned_by_self(),                                        \
   314            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   315   } while (0)
   317 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   318   do {                                                                        \
   319     assert(Heap_lock->owned_by_self() ||                                      \
   320            (SafepointSynchronize::is_at_safepoint() &&                        \
   321              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   322            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   323                                         "should be at a safepoint"));         \
   324   } while (0)
   326 #define assert_heap_locked_and_not_at_safepoint()                             \
   327   do {                                                                        \
   328     assert(Heap_lock->owned_by_self() &&                                      \
   329                                     !SafepointSynchronize::is_at_safepoint(), \
   330           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   331                                        "should not be at a safepoint"));      \
   332   } while (0)
   334 #define assert_heap_not_locked()                                              \
   335   do {                                                                        \
   336     assert(!Heap_lock->owned_by_self(),                                       \
   337         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   338   } while (0)
   340 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   341   do {                                                                        \
   342     assert(!Heap_lock->owned_by_self() &&                                     \
   343                                     !SafepointSynchronize::is_at_safepoint(), \
   344       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   345                                    "should not be at a safepoint"));          \
   346   } while (0)
   348 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   349   do {                                                                        \
   350     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   351               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   352            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   353   } while (0)
   355 #define assert_not_at_safepoint()                                             \
   356   do {                                                                        \
   357     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   358            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   359   } while (0)
   361 protected:
   363   // Returns "true" iff none of the gc alloc regions have any allocations
   364   // since the last call to "save_marks".
   365   bool all_alloc_regions_no_allocs_since_save_marks();
   366   // Perform finalization stuff on all allocation regions.
   367   void retire_all_alloc_regions();
   369   // The number of regions allocated to hold humongous objects.
   370   int         _num_humongous_regions;
   371   YoungList*  _young_list;
   373   // The current policy object for the collector.
   374   G1CollectorPolicy* _g1_policy;
   376   // This is the second level of trying to allocate a new region. If
   377   // new_region() didn't find a region on the free_list, this call will
   378   // check whether there's anything available on the
   379   // secondary_free_list and/or wait for more regions to appear on
   380   // that list, if _free_regions_coming is set.
   381   HeapRegion* new_region_try_secondary_free_list();
   383   // Try to allocate a single non-humongous HeapRegion sufficient for
   384   // an allocation of the given word_size. If do_expand is true,
   385   // attempt to expand the heap if necessary to satisfy the allocation
   386   // request.
   387   HeapRegion* new_region(size_t word_size, bool do_expand);
   389   // Try to allocate a new region to be used for allocation by
   390   // a GC thread. It will try to expand the heap if no region is
   391   // available.
   392   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   394   // Attempt to satisfy a humongous allocation request of the given
   395   // size by finding a contiguous set of free regions of num_regions
   396   // length and remove them from the master free list. Return the
   397   // index of the first region or -1 if the search was unsuccessful.
   398   int humongous_obj_allocate_find_first(size_t num_regions, size_t word_size);
   400   // Initialize a contiguous set of free regions of length num_regions
   401   // and starting at index first so that they appear as a single
   402   // humongous region.
   403   HeapWord* humongous_obj_allocate_initialize_regions(int first,
   404                                                       size_t num_regions,
   405                                                       size_t word_size);
   407   // Attempt to allocate a humongous object of the given size. Return
   408   // NULL if unsuccessful.
   409   HeapWord* humongous_obj_allocate(size_t word_size);
   411   // The following two methods, allocate_new_tlab() and
   412   // mem_allocate(), are the two main entry points from the runtime
   413   // into the G1's allocation routines. They have the following
   414   // assumptions:
   415   //
   416   // * They should both be called outside safepoints.
   417   //
   418   // * They should both be called without holding the Heap_lock.
   419   //
   420   // * All allocation requests for new TLABs should go to
   421   //   allocate_new_tlab().
   422   //
   423   // * All non-TLAB allocation requests should go to mem_allocate()
   424   //   and mem_allocate() should never be called with is_tlab == true.
   425   //
   426   // * If either call cannot satisfy the allocation request using the
   427   //   current allocating region, they will try to get a new one. If
   428   //   this fails, they will attempt to do an evacuation pause and
   429   //   retry the allocation.
   430   //
   431   // * If all allocation attempts fail, even after trying to schedule
   432   //   an evacuation pause, allocate_new_tlab() will return NULL,
   433   //   whereas mem_allocate() will attempt a heap expansion and/or
   434   //   schedule a Full GC.
   435   //
   436   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   437   //   should never be called with word_size being humongous. All
   438   //   humongous allocation requests should go to mem_allocate() which
   439   //   will satisfy them with a special path.
   441   virtual HeapWord* allocate_new_tlab(size_t word_size);
   443   virtual HeapWord* mem_allocate(size_t word_size,
   444                                  bool   is_noref,
   445                                  bool   is_tlab, /* expected to be false */
   446                                  bool*  gc_overhead_limit_was_exceeded);
   448   // The following three methods take a gc_count_before_ret
   449   // parameter which is used to return the GC count if the method
   450   // returns NULL. Given that we are required to read the GC count
   451   // while holding the Heap_lock, and these paths will take the
   452   // Heap_lock at some point, it's easier to get them to read the GC
   453   // count while holding the Heap_lock before they return NULL instead
   454   // of the caller (namely: mem_allocate()) having to also take the
   455   // Heap_lock just to read the GC count.
   457   // First-level mutator allocation attempt: try to allocate out of
   458   // the mutator alloc region without taking the Heap_lock. This
   459   // should only be used for non-humongous allocations.
   460   inline HeapWord* attempt_allocation(size_t word_size,
   461                                       unsigned int* gc_count_before_ret);
   463   // Second-level mutator allocation attempt: take the Heap_lock and
   464   // retry the allocation attempt, potentially scheduling a GC
   465   // pause. This should only be used for non-humongous allocations.
   466   HeapWord* attempt_allocation_slow(size_t word_size,
   467                                     unsigned int* gc_count_before_ret);
   469   // Takes the Heap_lock and attempts a humongous allocation. It can
   470   // potentially schedule a GC pause.
   471   HeapWord* attempt_allocation_humongous(size_t word_size,
   472                                          unsigned int* gc_count_before_ret);
   474   // Allocation attempt that should be called during safepoints (e.g.,
   475   // at the end of a successful GC). expect_null_mutator_alloc_region
   476   // specifies whether the mutator alloc region is expected to be NULL
   477   // or not.
   478   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   479                                        bool expect_null_mutator_alloc_region);
   481   // It dirties the cards that cover the block so that so that the post
   482   // write barrier never queues anything when updating objects on this
   483   // block. It is assumed (and in fact we assert) that the block
   484   // belongs to a young region.
   485   inline void dirty_young_block(HeapWord* start, size_t word_size);
   487   // Allocate blocks during garbage collection. Will ensure an
   488   // allocation region, either by picking one or expanding the
   489   // heap, and then allocate a block of the given size. The block
   490   // may not be a humongous - it must fit into a single heap region.
   491   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   493   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   494                                     HeapRegion*    alloc_region,
   495                                     bool           par,
   496                                     size_t         word_size);
   498   // Ensure that no further allocations can happen in "r", bearing in mind
   499   // that parallel threads might be attempting allocations.
   500   void par_allocate_remaining_space(HeapRegion* r);
   502   // Retires an allocation region when it is full or at the end of a
   503   // GC pause.
   504   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   506   // These two methods are the "callbacks" from the G1AllocRegion class.
   508   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   509   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   510                                    size_t allocated_bytes);
   512   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   513   //   inspection request and should collect the entire heap
   514   // - if clear_all_soft_refs is true, all soft references should be
   515   //   cleared during the GC
   516   // - if explicit_gc is false, word_size describes the allocation that
   517   //   the GC should attempt (at least) to satisfy
   518   // - it returns false if it is unable to do the collection due to the
   519   //   GC locker being active, true otherwise
   520   bool do_collection(bool explicit_gc,
   521                      bool clear_all_soft_refs,
   522                      size_t word_size);
   524   // Callback from VM_G1CollectFull operation.
   525   // Perform a full collection.
   526   void do_full_collection(bool clear_all_soft_refs);
   528   // Resize the heap if necessary after a full collection.  If this is
   529   // after a collect-for allocation, "word_size" is the allocation size,
   530   // and will be considered part of the used portion of the heap.
   531   void resize_if_necessary_after_full_collection(size_t word_size);
   533   // Callback from VM_G1CollectForAllocation operation.
   534   // This function does everything necessary/possible to satisfy a
   535   // failed allocation request (including collection, expansion, etc.)
   536   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   538   // Attempting to expand the heap sufficiently
   539   // to support an allocation of the given "word_size".  If
   540   // successful, perform the allocation and return the address of the
   541   // allocated block, or else "NULL".
   542   HeapWord* expand_and_allocate(size_t word_size);
   544 public:
   545   // Expand the garbage-first heap by at least the given size (in bytes!).
   546   // Returns true if the heap was expanded by the requested amount;
   547   // false otherwise.
   548   // (Rounds up to a HeapRegion boundary.)
   549   bool expand(size_t expand_bytes);
   551   // Do anything common to GC's.
   552   virtual void gc_prologue(bool full);
   553   virtual void gc_epilogue(bool full);
   555   // We register a region with the fast "in collection set" test. We
   556   // simply set to true the array slot corresponding to this region.
   557   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   558     assert(_in_cset_fast_test_base != NULL, "sanity");
   559     assert(r->in_collection_set(), "invariant");
   560     int index = r->hrs_index();
   561     assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
   562     assert(!_in_cset_fast_test_base[index], "invariant");
   563     _in_cset_fast_test_base[index] = true;
   564   }
   566   // This is a fast test on whether a reference points into the
   567   // collection set or not. It does not assume that the reference
   568   // points into the heap; if it doesn't, it will return false.
   569   bool in_cset_fast_test(oop obj) {
   570     assert(_in_cset_fast_test != NULL, "sanity");
   571     if (_g1_committed.contains((HeapWord*) obj)) {
   572       // no need to subtract the bottom of the heap from obj,
   573       // _in_cset_fast_test is biased
   574       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   575       bool ret = _in_cset_fast_test[index];
   576       // let's make sure the result is consistent with what the slower
   577       // test returns
   578       assert( ret || !obj_in_cs(obj), "sanity");
   579       assert(!ret ||  obj_in_cs(obj), "sanity");
   580       return ret;
   581     } else {
   582       return false;
   583     }
   584   }
   586   void clear_cset_fast_test() {
   587     assert(_in_cset_fast_test_base != NULL, "sanity");
   588     memset(_in_cset_fast_test_base, false,
   589         _in_cset_fast_test_length * sizeof(bool));
   590   }
   592   // This is called at the end of either a concurrent cycle or a Full
   593   // GC to update the number of full collections completed. Those two
   594   // can happen in a nested fashion, i.e., we start a concurrent
   595   // cycle, a Full GC happens half-way through it which ends first,
   596   // and then the cycle notices that a Full GC happened and ends
   597   // too. The concurrent parameter is a boolean to help us do a bit
   598   // tighter consistency checking in the method. If concurrent is
   599   // false, the caller is the inner caller in the nesting (i.e., the
   600   // Full GC). If concurrent is true, the caller is the outer caller
   601   // in this nesting (i.e., the concurrent cycle). Further nesting is
   602   // not currently supported. The end of the this call also notifies
   603   // the FullGCCount_lock in case a Java thread is waiting for a full
   604   // GC to happen (e.g., it called System.gc() with
   605   // +ExplicitGCInvokesConcurrent).
   606   void increment_full_collections_completed(bool concurrent);
   608   unsigned int full_collections_completed() {
   609     return _full_collections_completed;
   610   }
   612 protected:
   614   // Shrink the garbage-first heap by at most the given size (in bytes!).
   615   // (Rounds down to a HeapRegion boundary.)
   616   virtual void shrink(size_t expand_bytes);
   617   void shrink_helper(size_t expand_bytes);
   619   #if TASKQUEUE_STATS
   620   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   621   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   622   void reset_taskqueue_stats();
   623   #endif // TASKQUEUE_STATS
   625   // Schedule the VM operation that will do an evacuation pause to
   626   // satisfy an allocation request of word_size. *succeeded will
   627   // return whether the VM operation was successful (it did do an
   628   // evacuation pause) or not (another thread beat us to it or the GC
   629   // locker was active). Given that we should not be holding the
   630   // Heap_lock when we enter this method, we will pass the
   631   // gc_count_before (i.e., total_collections()) as a parameter since
   632   // it has to be read while holding the Heap_lock. Currently, both
   633   // methods that call do_collection_pause() release the Heap_lock
   634   // before the call, so it's easy to read gc_count_before just before.
   635   HeapWord* do_collection_pause(size_t       word_size,
   636                                 unsigned int gc_count_before,
   637                                 bool*        succeeded);
   639   // The guts of the incremental collection pause, executed by the vm
   640   // thread. It returns false if it is unable to do the collection due
   641   // to the GC locker being active, true otherwise
   642   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   644   // Actually do the work of evacuating the collection set.
   645   void evacuate_collection_set();
   647   // The g1 remembered set of the heap.
   648   G1RemSet* _g1_rem_set;
   649   // And it's mod ref barrier set, used to track updates for the above.
   650   ModRefBarrierSet* _mr_bs;
   652   // A set of cards that cover the objects for which the Rsets should be updated
   653   // concurrently after the collection.
   654   DirtyCardQueueSet _dirty_card_queue_set;
   656   // The Heap Region Rem Set Iterator.
   657   HeapRegionRemSetIterator** _rem_set_iterator;
   659   // The closure used to refine a single card.
   660   RefineCardTableEntryClosure* _refine_cte_cl;
   662   // A function to check the consistency of dirty card logs.
   663   void check_ct_logs_at_safepoint();
   665   // A DirtyCardQueueSet that is used to hold cards that contain
   666   // references into the current collection set. This is used to
   667   // update the remembered sets of the regions in the collection
   668   // set in the event of an evacuation failure.
   669   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   671   // After a collection pause, make the regions in the CS into free
   672   // regions.
   673   void free_collection_set(HeapRegion* cs_head);
   675   // Abandon the current collection set without recording policy
   676   // statistics or updating free lists.
   677   void abandon_collection_set(HeapRegion* cs_head);
   679   // Applies "scan_non_heap_roots" to roots outside the heap,
   680   // "scan_rs" to roots inside the heap (having done "set_region" to
   681   // indicate the region in which the root resides), and does "scan_perm"
   682   // (setting the generation to the perm generation.)  If "scan_rs" is
   683   // NULL, then this step is skipped.  The "worker_i"
   684   // param is for use with parallel roots processing, and should be
   685   // the "i" of the calling parallel worker thread's work(i) function.
   686   // In the sequential case this param will be ignored.
   687   void g1_process_strong_roots(bool collecting_perm_gen,
   688                                SharedHeap::ScanningOption so,
   689                                OopClosure* scan_non_heap_roots,
   690                                OopsInHeapRegionClosure* scan_rs,
   691                                OopsInGenClosure* scan_perm,
   692                                int worker_i);
   694   // Apply "blk" to all the weak roots of the system.  These include
   695   // JNI weak roots, the code cache, system dictionary, symbol table,
   696   // string table, and referents of reachable weak refs.
   697   void g1_process_weak_roots(OopClosure* root_closure,
   698                              OopClosure* non_root_closure);
   700   // Invoke "save_marks" on all heap regions.
   701   void save_marks();
   703   // Frees a non-humongous region by initializing its contents and
   704   // adding it to the free list that's passed as a parameter (this is
   705   // usually a local list which will be appended to the master free
   706   // list later). The used bytes of freed regions are accumulated in
   707   // pre_used. If par is true, the region's RSet will not be freed
   708   // up. The assumption is that this will be done later.
   709   void free_region(HeapRegion* hr,
   710                    size_t* pre_used,
   711                    FreeRegionList* free_list,
   712                    bool par);
   714   // Frees a humongous region by collapsing it into individual regions
   715   // and calling free_region() for each of them. The freed regions
   716   // will be added to the free list that's passed as a parameter (this
   717   // is usually a local list which will be appended to the master free
   718   // list later). The used bytes of freed regions are accumulated in
   719   // pre_used. If par is true, the region's RSet will not be freed
   720   // up. The assumption is that this will be done later.
   721   void free_humongous_region(HeapRegion* hr,
   722                              size_t* pre_used,
   723                              FreeRegionList* free_list,
   724                              HumongousRegionSet* humongous_proxy_set,
   725                              bool par);
   727   // The concurrent marker (and the thread it runs in.)
   728   ConcurrentMark* _cm;
   729   ConcurrentMarkThread* _cmThread;
   730   bool _mark_in_progress;
   732   // The concurrent refiner.
   733   ConcurrentG1Refine* _cg1r;
   735   // The parallel task queues
   736   RefToScanQueueSet *_task_queues;
   738   // True iff a evacuation has failed in the current collection.
   739   bool _evacuation_failed;
   741   // Set the attribute indicating whether evacuation has failed in the
   742   // current collection.
   743   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   745   // Failed evacuations cause some logical from-space objects to have
   746   // forwarding pointers to themselves.  Reset them.
   747   void remove_self_forwarding_pointers();
   749   // When one is non-null, so is the other.  Together, they each pair is
   750   // an object with a preserved mark, and its mark value.
   751   GrowableArray<oop>*     _objs_with_preserved_marks;
   752   GrowableArray<markOop>* _preserved_marks_of_objs;
   754   // Preserve the mark of "obj", if necessary, in preparation for its mark
   755   // word being overwritten with a self-forwarding-pointer.
   756   void preserve_mark_if_necessary(oop obj, markOop m);
   758   // The stack of evac-failure objects left to be scanned.
   759   GrowableArray<oop>*    _evac_failure_scan_stack;
   760   // The closure to apply to evac-failure objects.
   762   OopsInHeapRegionClosure* _evac_failure_closure;
   763   // Set the field above.
   764   void
   765   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   766     _evac_failure_closure = evac_failure_closure;
   767   }
   769   // Push "obj" on the scan stack.
   770   void push_on_evac_failure_scan_stack(oop obj);
   771   // Process scan stack entries until the stack is empty.
   772   void drain_evac_failure_scan_stack();
   773   // True iff an invocation of "drain_scan_stack" is in progress; to
   774   // prevent unnecessary recursion.
   775   bool _drain_in_progress;
   777   // Do any necessary initialization for evacuation-failure handling.
   778   // "cl" is the closure that will be used to process evac-failure
   779   // objects.
   780   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   781   // Do any necessary cleanup for evacuation-failure handling data
   782   // structures.
   783   void finalize_for_evac_failure();
   785   // An attempt to evacuate "obj" has failed; take necessary steps.
   786   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   787   void handle_evacuation_failure_common(oop obj, markOop m);
   790   // Ensure that the relevant gc_alloc regions are set.
   791   void get_gc_alloc_regions();
   792   // We're done with GC alloc regions. We are going to tear down the
   793   // gc alloc list and remove the gc alloc tag from all the regions on
   794   // that list. However, we will also retain the last (i.e., the one
   795   // that is half-full) GC alloc region, per GCAllocPurpose, for
   796   // possible reuse during the next collection, provided
   797   // _retain_gc_alloc_region[] indicates that it should be the
   798   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   799   // array. If the parameter totally is set, we will not retain any
   800   // regions, irrespective of what _retain_gc_alloc_region[]
   801   // indicates.
   802   void release_gc_alloc_regions(bool totally);
   803 #ifndef PRODUCT
   804   // Useful for debugging.
   805   void print_gc_alloc_regions();
   806 #endif // !PRODUCT
   808   // Instance of the concurrent mark is_alive closure for embedding
   809   // into the reference processor as the is_alive_non_header. This
   810   // prevents unnecessary additions to the discovered lists during
   811   // concurrent discovery.
   812   G1CMIsAliveClosure _is_alive_closure;
   814   // ("Weak") Reference processing support
   815   ReferenceProcessor* _ref_processor;
   817   enum G1H_process_strong_roots_tasks {
   818     G1H_PS_mark_stack_oops_do,
   819     G1H_PS_refProcessor_oops_do,
   820     // Leave this one last.
   821     G1H_PS_NumElements
   822   };
   824   SubTasksDone* _process_strong_tasks;
   826   volatile bool _free_regions_coming;
   828 public:
   830   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   832   void set_refine_cte_cl_concurrency(bool concurrent);
   834   RefToScanQueue *task_queue(int i) const;
   836   // A set of cards where updates happened during the GC
   837   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   839   // A DirtyCardQueueSet that is used to hold cards that contain
   840   // references into the current collection set. This is used to
   841   // update the remembered sets of the regions in the collection
   842   // set in the event of an evacuation failure.
   843   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   844         { return _into_cset_dirty_card_queue_set; }
   846   // Create a G1CollectedHeap with the specified policy.
   847   // Must call the initialize method afterwards.
   848   // May not return if something goes wrong.
   849   G1CollectedHeap(G1CollectorPolicy* policy);
   851   // Initialize the G1CollectedHeap to have the initial and
   852   // maximum sizes, permanent generation, and remembered and barrier sets
   853   // specified by the policy object.
   854   jint initialize();
   856   virtual void ref_processing_init();
   858   void set_par_threads(int t) {
   859     SharedHeap::set_par_threads(t);
   860     _process_strong_tasks->set_n_threads(t);
   861   }
   863   virtual CollectedHeap::Name kind() const {
   864     return CollectedHeap::G1CollectedHeap;
   865   }
   867   // The current policy object for the collector.
   868   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   870   // Adaptive size policy.  No such thing for g1.
   871   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   873   // The rem set and barrier set.
   874   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   875   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   877   // The rem set iterator.
   878   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   879     return _rem_set_iterator[i];
   880   }
   882   HeapRegionRemSetIterator* rem_set_iterator() {
   883     return _rem_set_iterator[0];
   884   }
   886   unsigned get_gc_time_stamp() {
   887     return _gc_time_stamp;
   888   }
   890   void reset_gc_time_stamp() {
   891     _gc_time_stamp = 0;
   892     OrderAccess::fence();
   893   }
   895   void increment_gc_time_stamp() {
   896     ++_gc_time_stamp;
   897     OrderAccess::fence();
   898   }
   900   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   901                                   DirtyCardQueue* into_cset_dcq,
   902                                   bool concurrent, int worker_i);
   904   // The shared block offset table array.
   905   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   907   // Reference Processing accessor
   908   ReferenceProcessor* ref_processor() { return _ref_processor; }
   910   virtual size_t capacity() const;
   911   virtual size_t used() const;
   912   // This should be called when we're not holding the heap lock. The
   913   // result might be a bit inaccurate.
   914   size_t used_unlocked() const;
   915   size_t recalculate_used() const;
   916 #ifndef PRODUCT
   917   size_t recalculate_used_regions() const;
   918 #endif // PRODUCT
   920   // These virtual functions do the actual allocation.
   921   // Some heaps may offer a contiguous region for shared non-blocking
   922   // allocation, via inlined code (by exporting the address of the top and
   923   // end fields defining the extent of the contiguous allocation region.)
   924   // But G1CollectedHeap doesn't yet support this.
   926   // Return an estimate of the maximum allocation that could be performed
   927   // without triggering any collection or expansion activity.  In a
   928   // generational collector, for example, this is probably the largest
   929   // allocation that could be supported (without expansion) in the youngest
   930   // generation.  It is "unsafe" because no locks are taken; the result
   931   // should be treated as an approximation, not a guarantee, for use in
   932   // heuristic resizing decisions.
   933   virtual size_t unsafe_max_alloc();
   935   virtual bool is_maximal_no_gc() const {
   936     return _g1_storage.uncommitted_size() == 0;
   937   }
   939   // The total number of regions in the heap.
   940   size_t n_regions();
   942   // The number of regions that are completely free.
   943   size_t max_regions();
   945   // The number of regions that are completely free.
   946   size_t free_regions() {
   947     return _free_list.length();
   948   }
   950   // The number of regions that are not completely free.
   951   size_t used_regions() { return n_regions() - free_regions(); }
   953   // The number of regions available for "regular" expansion.
   954   size_t expansion_regions() { return _expansion_regions; }
   956   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   957   void verify_dirty_young_regions() PRODUCT_RETURN;
   959   // verify_region_sets() performs verification over the region
   960   // lists. It will be compiled in the product code to be used when
   961   // necessary (i.e., during heap verification).
   962   void verify_region_sets();
   964   // verify_region_sets_optional() is planted in the code for
   965   // list verification in non-product builds (and it can be enabled in
   966   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
   967 #if HEAP_REGION_SET_FORCE_VERIFY
   968   void verify_region_sets_optional() {
   969     verify_region_sets();
   970   }
   971 #else // HEAP_REGION_SET_FORCE_VERIFY
   972   void verify_region_sets_optional() { }
   973 #endif // HEAP_REGION_SET_FORCE_VERIFY
   975 #ifdef ASSERT
   976   bool is_on_master_free_list(HeapRegion* hr) {
   977     return hr->containing_set() == &_free_list;
   978   }
   980   bool is_in_humongous_set(HeapRegion* hr) {
   981     return hr->containing_set() == &_humongous_set;
   982   }
   983 #endif // ASSERT
   985   // Wrapper for the region list operations that can be called from
   986   // methods outside this class.
   988   void secondary_free_list_add_as_tail(FreeRegionList* list) {
   989     _secondary_free_list.add_as_tail(list);
   990   }
   992   void append_secondary_free_list() {
   993     _free_list.add_as_head(&_secondary_free_list);
   994   }
   996   void append_secondary_free_list_if_not_empty_with_lock() {
   997     // If the secondary free list looks empty there's no reason to
   998     // take the lock and then try to append it.
   999     if (!_secondary_free_list.is_empty()) {
  1000       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1001       append_secondary_free_list();
  1005   void set_free_regions_coming();
  1006   void reset_free_regions_coming();
  1007   bool free_regions_coming() { return _free_regions_coming; }
  1008   void wait_while_free_regions_coming();
  1010   // Perform a collection of the heap; intended for use in implementing
  1011   // "System.gc".  This probably implies as full a collection as the
  1012   // "CollectedHeap" supports.
  1013   virtual void collect(GCCause::Cause cause);
  1015   // The same as above but assume that the caller holds the Heap_lock.
  1016   void collect_locked(GCCause::Cause cause);
  1018   // This interface assumes that it's being called by the
  1019   // vm thread. It collects the heap assuming that the
  1020   // heap lock is already held and that we are executing in
  1021   // the context of the vm thread.
  1022   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1024   // True iff a evacuation has failed in the most-recent collection.
  1025   bool evacuation_failed() { return _evacuation_failed; }
  1027   // It will free a region if it has allocated objects in it that are
  1028   // all dead. It calls either free_region() or
  1029   // free_humongous_region() depending on the type of the region that
  1030   // is passed to it.
  1031   void free_region_if_empty(HeapRegion* hr,
  1032                             size_t* pre_used,
  1033                             FreeRegionList* free_list,
  1034                             HumongousRegionSet* humongous_proxy_set,
  1035                             HRRSCleanupTask* hrrs_cleanup_task,
  1036                             bool par);
  1038   // It appends the free list to the master free list and updates the
  1039   // master humongous list according to the contents of the proxy
  1040   // list. It also adjusts the total used bytes according to pre_used
  1041   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1042   void update_sets_after_freeing_regions(size_t pre_used,
  1043                                        FreeRegionList* free_list,
  1044                                        HumongousRegionSet* humongous_proxy_set,
  1045                                        bool par);
  1047   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1048   virtual bool is_in(const void* p) const;
  1050   // Return "TRUE" iff the given object address is within the collection
  1051   // set.
  1052   inline bool obj_in_cs(oop obj);
  1054   // Return "TRUE" iff the given object address is in the reserved
  1055   // region of g1 (excluding the permanent generation).
  1056   bool is_in_g1_reserved(const void* p) const {
  1057     return _g1_reserved.contains(p);
  1060   // Returns a MemRegion that corresponds to the space that has been
  1061   // reserved for the heap
  1062   MemRegion g1_reserved() {
  1063     return _g1_reserved;
  1066   // Returns a MemRegion that corresponds to the space that has been
  1067   // committed in the heap
  1068   MemRegion g1_committed() {
  1069     return _g1_committed;
  1072   virtual bool is_in_closed_subset(const void* p) const;
  1074   // Dirty card table entries covering a list of young regions.
  1075   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1077   // This resets the card table to all zeros.  It is used after
  1078   // a collection pause which used the card table to claim cards.
  1079   void cleanUpCardTable();
  1081   // Iteration functions.
  1083   // Iterate over all the ref-containing fields of all objects, calling
  1084   // "cl.do_oop" on each.
  1085   virtual void oop_iterate(OopClosure* cl) {
  1086     oop_iterate(cl, true);
  1088   void oop_iterate(OopClosure* cl, bool do_perm);
  1090   // Same as above, restricted to a memory region.
  1091   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1092     oop_iterate(mr, cl, true);
  1094   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1096   // Iterate over all objects, calling "cl.do_object" on each.
  1097   virtual void object_iterate(ObjectClosure* cl) {
  1098     object_iterate(cl, true);
  1100   virtual void safe_object_iterate(ObjectClosure* cl) {
  1101     object_iterate(cl, true);
  1103   void object_iterate(ObjectClosure* cl, bool do_perm);
  1105   // Iterate over all objects allocated since the last collection, calling
  1106   // "cl.do_object" on each.  The heap must have been initialized properly
  1107   // to support this function, or else this call will fail.
  1108   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1110   // Iterate over all spaces in use in the heap, in ascending address order.
  1111   virtual void space_iterate(SpaceClosure* cl);
  1113   // Iterate over heap regions, in address order, terminating the
  1114   // iteration early if the "doHeapRegion" method returns "true".
  1115   void heap_region_iterate(HeapRegionClosure* blk);
  1117   // Iterate over heap regions starting with r (or the first region if "r"
  1118   // is NULL), in address order, terminating early if the "doHeapRegion"
  1119   // method returns "true".
  1120   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
  1122   // As above but starting from the region at index idx.
  1123   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
  1125   HeapRegion* region_at(size_t idx);
  1127   // Divide the heap region sequence into "chunks" of some size (the number
  1128   // of regions divided by the number of parallel threads times some
  1129   // overpartition factor, currently 4).  Assumes that this will be called
  1130   // in parallel by ParallelGCThreads worker threads with discinct worker
  1131   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1132   // calls will use the same "claim_value", and that that claim value is
  1133   // different from the claim_value of any heap region before the start of
  1134   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1135   // attempting to claim the first region in each chunk, and, if
  1136   // successful, applying the closure to each region in the chunk (and
  1137   // setting the claim value of the second and subsequent regions of the
  1138   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1139   // i.e., that a closure never attempt to abort a traversal.
  1140   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1141                                        int worker,
  1142                                        jint claim_value);
  1144   // It resets all the region claim values to the default.
  1145   void reset_heap_region_claim_values();
  1147 #ifdef ASSERT
  1148   bool check_heap_region_claim_values(jint claim_value);
  1149 #endif // ASSERT
  1151   // Iterate over the regions (if any) in the current collection set.
  1152   void collection_set_iterate(HeapRegionClosure* blk);
  1154   // As above but starting from region r
  1155   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1157   // Returns the first (lowest address) compactible space in the heap.
  1158   virtual CompactibleSpace* first_compactible_space();
  1160   // A CollectedHeap will contain some number of spaces.  This finds the
  1161   // space containing a given address, or else returns NULL.
  1162   virtual Space* space_containing(const void* addr) const;
  1164   // A G1CollectedHeap will contain some number of heap regions.  This
  1165   // finds the region containing a given address, or else returns NULL.
  1166   HeapRegion* heap_region_containing(const void* addr) const;
  1168   // Like the above, but requires "addr" to be in the heap (to avoid a
  1169   // null-check), and unlike the above, may return an continuing humongous
  1170   // region.
  1171   HeapRegion* heap_region_containing_raw(const void* addr) const;
  1173   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1174   // each address in the (reserved) heap is a member of exactly
  1175   // one block.  The defining characteristic of a block is that it is
  1176   // possible to find its size, and thus to progress forward to the next
  1177   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1178   // represent Java objects, or they might be free blocks in a
  1179   // free-list-based heap (or subheap), as long as the two kinds are
  1180   // distinguishable and the size of each is determinable.
  1182   // Returns the address of the start of the "block" that contains the
  1183   // address "addr".  We say "blocks" instead of "object" since some heaps
  1184   // may not pack objects densely; a chunk may either be an object or a
  1185   // non-object.
  1186   virtual HeapWord* block_start(const void* addr) const;
  1188   // Requires "addr" to be the start of a chunk, and returns its size.
  1189   // "addr + size" is required to be the start of a new chunk, or the end
  1190   // of the active area of the heap.
  1191   virtual size_t block_size(const HeapWord* addr) const;
  1193   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1194   // the block is an object.
  1195   virtual bool block_is_obj(const HeapWord* addr) const;
  1197   // Does this heap support heap inspection? (+PrintClassHistogram)
  1198   virtual bool supports_heap_inspection() const { return true; }
  1200   // Section on thread-local allocation buffers (TLABs)
  1201   // See CollectedHeap for semantics.
  1203   virtual bool supports_tlab_allocation() const;
  1204   virtual size_t tlab_capacity(Thread* thr) const;
  1205   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1207   // Can a compiler initialize a new object without store barriers?
  1208   // This permission only extends from the creation of a new object
  1209   // via a TLAB up to the first subsequent safepoint. If such permission
  1210   // is granted for this heap type, the compiler promises to call
  1211   // defer_store_barrier() below on any slow path allocation of
  1212   // a new object for which such initializing store barriers will
  1213   // have been elided. G1, like CMS, allows this, but should be
  1214   // ready to provide a compensating write barrier as necessary
  1215   // if that storage came out of a non-young region. The efficiency
  1216   // of this implementation depends crucially on being able to
  1217   // answer very efficiently in constant time whether a piece of
  1218   // storage in the heap comes from a young region or not.
  1219   // See ReduceInitialCardMarks.
  1220   virtual bool can_elide_tlab_store_barriers() const {
  1221     // 6920090: Temporarily disabled, because of lingering
  1222     // instabilities related to RICM with G1. In the
  1223     // interim, the option ReduceInitialCardMarksForG1
  1224     // below is left solely as a debugging device at least
  1225     // until 6920109 fixes the instabilities.
  1226     return ReduceInitialCardMarksForG1;
  1229   virtual bool card_mark_must_follow_store() const {
  1230     return true;
  1233   bool is_in_young(oop obj) {
  1234     HeapRegion* hr = heap_region_containing(obj);
  1235     return hr != NULL && hr->is_young();
  1238   // We don't need barriers for initializing stores to objects
  1239   // in the young gen: for the SATB pre-barrier, there is no
  1240   // pre-value that needs to be remembered; for the remembered-set
  1241   // update logging post-barrier, we don't maintain remembered set
  1242   // information for young gen objects. Note that non-generational
  1243   // G1 does not have any "young" objects, should not elide
  1244   // the rs logging barrier and so should always answer false below.
  1245   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1246   // bit-rotted so was not tested below.
  1247   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1248     // Re 6920090, 6920109 above.
  1249     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1250     assert(G1Gen || !is_in_young(new_obj),
  1251            "Non-generational G1 should never return true below");
  1252     return is_in_young(new_obj);
  1255   // Can a compiler elide a store barrier when it writes
  1256   // a permanent oop into the heap?  Applies when the compiler
  1257   // is storing x to the heap, where x->is_perm() is true.
  1258   virtual bool can_elide_permanent_oop_store_barriers() const {
  1259     // At least until perm gen collection is also G1-ified, at
  1260     // which point this should return false.
  1261     return true;
  1264   // The boundary between a "large" and "small" array of primitives, in
  1265   // words.
  1266   virtual size_t large_typearray_limit();
  1268   // Returns "true" iff the given word_size is "very large".
  1269   static bool isHumongous(size_t word_size) {
  1270     // Note this has to be strictly greater-than as the TLABs
  1271     // are capped at the humongous thresold and we want to
  1272     // ensure that we don't try to allocate a TLAB as
  1273     // humongous and that we don't allocate a humongous
  1274     // object in a TLAB.
  1275     return word_size > _humongous_object_threshold_in_words;
  1278   // Update mod union table with the set of dirty cards.
  1279   void updateModUnion();
  1281   // Set the mod union bits corresponding to the given memRegion.  Note
  1282   // that this is always a safe operation, since it doesn't clear any
  1283   // bits.
  1284   void markModUnionRange(MemRegion mr);
  1286   // Records the fact that a marking phase is no longer in progress.
  1287   void set_marking_complete() {
  1288     _mark_in_progress = false;
  1290   void set_marking_started() {
  1291     _mark_in_progress = true;
  1293   bool mark_in_progress() {
  1294     return _mark_in_progress;
  1297   // Print the maximum heap capacity.
  1298   virtual size_t max_capacity() const;
  1300   virtual jlong millis_since_last_gc();
  1302   // Perform any cleanup actions necessary before allowing a verification.
  1303   virtual void prepare_for_verify();
  1305   // Perform verification.
  1307   // use_prev_marking == true  -> use "prev" marking information,
  1308   // use_prev_marking == false -> use "next" marking information
  1309   // NOTE: Only the "prev" marking information is guaranteed to be
  1310   // consistent most of the time, so most calls to this should use
  1311   // use_prev_marking == true. Currently, there is only one case where
  1312   // this is called with use_prev_marking == false, which is to verify
  1313   // the "next" marking information at the end of remark.
  1314   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1316   // Override; it uses the "prev" marking information
  1317   virtual void verify(bool allow_dirty, bool silent);
  1318   // Default behavior by calling print(tty);
  1319   virtual void print() const;
  1320   // This calls print_on(st, PrintHeapAtGCExtended).
  1321   virtual void print_on(outputStream* st) const;
  1322   // If extended is true, it will print out information for all
  1323   // regions in the heap by calling print_on_extended(st).
  1324   virtual void print_on(outputStream* st, bool extended) const;
  1325   virtual void print_on_extended(outputStream* st) const;
  1327   virtual void print_gc_threads_on(outputStream* st) const;
  1328   virtual void gc_threads_do(ThreadClosure* tc) const;
  1330   // Override
  1331   void print_tracing_info() const;
  1333   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1334   // number indicating the "arena" within the heap in which "addr" falls.
  1335   // Or else returns 0.
  1336   virtual int addr_to_arena_id(void* addr) const;
  1338   // Convenience function to be used in situations where the heap type can be
  1339   // asserted to be this type.
  1340   static G1CollectedHeap* heap();
  1342   void empty_young_list();
  1344   void set_region_short_lived_locked(HeapRegion* hr);
  1345   // add appropriate methods for any other surv rate groups
  1347   YoungList* young_list() { return _young_list; }
  1349   // debugging
  1350   bool check_young_list_well_formed() {
  1351     return _young_list->check_list_well_formed();
  1354   bool check_young_list_empty(bool check_heap,
  1355                               bool check_sample = true);
  1357   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1358   // many of these need to be public.
  1360   // The functions below are helper functions that a subclass of
  1361   // "CollectedHeap" can use in the implementation of its virtual
  1362   // functions.
  1363   // This performs a concurrent marking of the live objects in a
  1364   // bitmap off to the side.
  1365   void doConcurrentMark();
  1367   // This is called from the marksweep collector which then does
  1368   // a concurrent mark and verifies that the results agree with
  1369   // the stop the world marking.
  1370   void checkConcurrentMark();
  1371   void do_sync_mark();
  1373   bool isMarkedPrev(oop obj) const;
  1374   bool isMarkedNext(oop obj) const;
  1376   // use_prev_marking == true  -> use "prev" marking information,
  1377   // use_prev_marking == false -> use "next" marking information
  1378   bool is_obj_dead_cond(const oop obj,
  1379                         const HeapRegion* hr,
  1380                         const bool use_prev_marking) const {
  1381     if (use_prev_marking) {
  1382       return is_obj_dead(obj, hr);
  1383     } else {
  1384       return is_obj_ill(obj, hr);
  1388   // Determine if an object is dead, given the object and also
  1389   // the region to which the object belongs. An object is dead
  1390   // iff a) it was not allocated since the last mark and b) it
  1391   // is not marked.
  1393   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1394     return
  1395       !hr->obj_allocated_since_prev_marking(obj) &&
  1396       !isMarkedPrev(obj);
  1399   // This is used when copying an object to survivor space.
  1400   // If the object is marked live, then we mark the copy live.
  1401   // If the object is allocated since the start of this mark
  1402   // cycle, then we mark the copy live.
  1403   // If the object has been around since the previous mark
  1404   // phase, and hasn't been marked yet during this phase,
  1405   // then we don't mark it, we just wait for the
  1406   // current marking cycle to get to it.
  1408   // This function returns true when an object has been
  1409   // around since the previous marking and hasn't yet
  1410   // been marked during this marking.
  1412   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1413     return
  1414       !hr->obj_allocated_since_next_marking(obj) &&
  1415       !isMarkedNext(obj);
  1418   // Determine if an object is dead, given only the object itself.
  1419   // This will find the region to which the object belongs and
  1420   // then call the region version of the same function.
  1422   // Added if it is in permanent gen it isn't dead.
  1423   // Added if it is NULL it isn't dead.
  1425   // use_prev_marking == true  -> use "prev" marking information,
  1426   // use_prev_marking == false -> use "next" marking information
  1427   bool is_obj_dead_cond(const oop obj,
  1428                         const bool use_prev_marking) {
  1429     if (use_prev_marking) {
  1430       return is_obj_dead(obj);
  1431     } else {
  1432       return is_obj_ill(obj);
  1436   bool is_obj_dead(const oop obj) {
  1437     const HeapRegion* hr = heap_region_containing(obj);
  1438     if (hr == NULL) {
  1439       if (Universe::heap()->is_in_permanent(obj))
  1440         return false;
  1441       else if (obj == NULL) return false;
  1442       else return true;
  1444     else return is_obj_dead(obj, hr);
  1447   bool is_obj_ill(const oop obj) {
  1448     const HeapRegion* hr = heap_region_containing(obj);
  1449     if (hr == NULL) {
  1450       if (Universe::heap()->is_in_permanent(obj))
  1451         return false;
  1452       else if (obj == NULL) return false;
  1453       else return true;
  1455     else return is_obj_ill(obj, hr);
  1458   // The following is just to alert the verification code
  1459   // that a full collection has occurred and that the
  1460   // remembered sets are no longer up to date.
  1461   bool _full_collection;
  1462   void set_full_collection() { _full_collection = true;}
  1463   void clear_full_collection() {_full_collection = false;}
  1464   bool full_collection() {return _full_collection;}
  1466   ConcurrentMark* concurrent_mark() const { return _cm; }
  1467   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1469   // The dirty cards region list is used to record a subset of regions
  1470   // whose cards need clearing. The list if populated during the
  1471   // remembered set scanning and drained during the card table
  1472   // cleanup. Although the methods are reentrant, population/draining
  1473   // phases must not overlap. For synchronization purposes the last
  1474   // element on the list points to itself.
  1475   HeapRegion* _dirty_cards_region_list;
  1476   void push_dirty_cards_region(HeapRegion* hr);
  1477   HeapRegion* pop_dirty_cards_region();
  1479 public:
  1480   void stop_conc_gc_threads();
  1482   // <NEW PREDICTION>
  1484   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1485   void check_if_region_is_too_expensive(double predicted_time_ms);
  1486   size_t pending_card_num();
  1487   size_t max_pending_card_num();
  1488   size_t cards_scanned();
  1490   // </NEW PREDICTION>
  1492 protected:
  1493   size_t _max_heap_capacity;
  1494 };
  1496 #define use_local_bitmaps         1
  1497 #define verify_local_bitmaps      0
  1498 #define oop_buffer_length       256
  1500 #ifndef PRODUCT
  1501 class GCLabBitMap;
  1502 class GCLabBitMapClosure: public BitMapClosure {
  1503 private:
  1504   ConcurrentMark* _cm;
  1505   GCLabBitMap*    _bitmap;
  1507 public:
  1508   GCLabBitMapClosure(ConcurrentMark* cm,
  1509                      GCLabBitMap* bitmap) {
  1510     _cm     = cm;
  1511     _bitmap = bitmap;
  1514   virtual bool do_bit(size_t offset);
  1515 };
  1516 #endif // !PRODUCT
  1518 class GCLabBitMap: public BitMap {
  1519 private:
  1520   ConcurrentMark* _cm;
  1522   int       _shifter;
  1523   size_t    _bitmap_word_covers_words;
  1525   // beginning of the heap
  1526   HeapWord* _heap_start;
  1528   // this is the actual start of the GCLab
  1529   HeapWord* _real_start_word;
  1531   // this is the actual end of the GCLab
  1532   HeapWord* _real_end_word;
  1534   // this is the first word, possibly located before the actual start
  1535   // of the GCLab, that corresponds to the first bit of the bitmap
  1536   HeapWord* _start_word;
  1538   // size of a GCLab in words
  1539   size_t _gclab_word_size;
  1541   static int shifter() {
  1542     return MinObjAlignment - 1;
  1545   // how many heap words does a single bitmap word corresponds to?
  1546   static size_t bitmap_word_covers_words() {
  1547     return BitsPerWord << shifter();
  1550   size_t gclab_word_size() const {
  1551     return _gclab_word_size;
  1554   // Calculates actual GCLab size in words
  1555   size_t gclab_real_word_size() const {
  1556     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1557            / BitsPerWord;
  1560   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1561     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1562     // We are going to ensure that the beginning of a word in this
  1563     // bitmap also corresponds to the beginning of a word in the
  1564     // global marking bitmap. To handle the case where a GCLab
  1565     // starts from the middle of the bitmap, we need to add enough
  1566     // space (i.e. up to a bitmap word) to ensure that we have
  1567     // enough bits in the bitmap.
  1568     return bits_in_bitmap + BitsPerWord - 1;
  1570 public:
  1571   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1572     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1573       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1574       _shifter(shifter()),
  1575       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1576       _heap_start(heap_start),
  1577       _gclab_word_size(gclab_word_size),
  1578       _real_start_word(NULL),
  1579       _real_end_word(NULL),
  1580       _start_word(NULL)
  1582     guarantee( size_in_words() >= bitmap_size_in_words(),
  1583                "just making sure");
  1586   inline unsigned heapWordToOffset(HeapWord* addr) {
  1587     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1588     assert(offset < size(), "offset should be within bounds");
  1589     return offset;
  1592   inline HeapWord* offsetToHeapWord(size_t offset) {
  1593     HeapWord* addr =  _start_word + (offset << _shifter);
  1594     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1595     return addr;
  1598   bool fields_well_formed() {
  1599     bool ret1 = (_real_start_word == NULL) &&
  1600                 (_real_end_word == NULL) &&
  1601                 (_start_word == NULL);
  1602     if (ret1)
  1603       return true;
  1605     bool ret2 = _real_start_word >= _start_word &&
  1606       _start_word < _real_end_word &&
  1607       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1608       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1609                                                               > _real_end_word;
  1610     return ret2;
  1613   inline bool mark(HeapWord* addr) {
  1614     guarantee(use_local_bitmaps, "invariant");
  1615     assert(fields_well_formed(), "invariant");
  1617     if (addr >= _real_start_word && addr < _real_end_word) {
  1618       assert(!isMarked(addr), "should not have already been marked");
  1620       // first mark it on the bitmap
  1621       at_put(heapWordToOffset(addr), true);
  1623       return true;
  1624     } else {
  1625       return false;
  1629   inline bool isMarked(HeapWord* addr) {
  1630     guarantee(use_local_bitmaps, "invariant");
  1631     assert(fields_well_formed(), "invariant");
  1633     return at(heapWordToOffset(addr));
  1636   void set_buffer(HeapWord* start) {
  1637     guarantee(use_local_bitmaps, "invariant");
  1638     clear();
  1640     assert(start != NULL, "invariant");
  1641     _real_start_word = start;
  1642     _real_end_word   = start + _gclab_word_size;
  1644     size_t diff =
  1645       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1646     _start_word = start - diff;
  1648     assert(fields_well_formed(), "invariant");
  1651 #ifndef PRODUCT
  1652   void verify() {
  1653     // verify that the marks have been propagated
  1654     GCLabBitMapClosure cl(_cm, this);
  1655     iterate(&cl);
  1657 #endif // PRODUCT
  1659   void retire() {
  1660     guarantee(use_local_bitmaps, "invariant");
  1661     assert(fields_well_formed(), "invariant");
  1663     if (_start_word != NULL) {
  1664       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1666       // this means that the bitmap was set up for the GCLab
  1667       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1669       mark_bitmap->mostly_disjoint_range_union(this,
  1670                                 0, // always start from the start of the bitmap
  1671                                 _start_word,
  1672                                 gclab_real_word_size());
  1673       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1675 #ifndef PRODUCT
  1676       if (use_local_bitmaps && verify_local_bitmaps)
  1677         verify();
  1678 #endif // PRODUCT
  1679     } else {
  1680       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1684   size_t bitmap_size_in_words() const {
  1685     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1688 };
  1690 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1691 private:
  1692   bool        _retired;
  1693   bool        _during_marking;
  1694   GCLabBitMap _bitmap;
  1696 public:
  1697   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1698     ParGCAllocBuffer(gclab_word_size),
  1699     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1700     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1701     _retired(false)
  1702   { }
  1704   inline bool mark(HeapWord* addr) {
  1705     guarantee(use_local_bitmaps, "invariant");
  1706     assert(_during_marking, "invariant");
  1707     return _bitmap.mark(addr);
  1710   inline void set_buf(HeapWord* buf) {
  1711     if (use_local_bitmaps && _during_marking)
  1712       _bitmap.set_buffer(buf);
  1713     ParGCAllocBuffer::set_buf(buf);
  1714     _retired = false;
  1717   inline void retire(bool end_of_gc, bool retain) {
  1718     if (_retired)
  1719       return;
  1720     if (use_local_bitmaps && _during_marking) {
  1721       _bitmap.retire();
  1723     ParGCAllocBuffer::retire(end_of_gc, retain);
  1724     _retired = true;
  1726 };
  1728 class G1ParScanThreadState : public StackObj {
  1729 protected:
  1730   G1CollectedHeap* _g1h;
  1731   RefToScanQueue*  _refs;
  1732   DirtyCardQueue   _dcq;
  1733   CardTableModRefBS* _ct_bs;
  1734   G1RemSet* _g1_rem;
  1736   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1737   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1738   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1739   ageTable            _age_table;
  1741   size_t           _alloc_buffer_waste;
  1742   size_t           _undo_waste;
  1744   OopsInHeapRegionClosure*      _evac_failure_cl;
  1745   G1ParScanHeapEvacClosure*     _evac_cl;
  1746   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1748   int _hash_seed;
  1749   int _queue_num;
  1751   size_t _term_attempts;
  1753   double _start;
  1754   double _start_strong_roots;
  1755   double _strong_roots_time;
  1756   double _start_term;
  1757   double _term_time;
  1759   // Map from young-age-index (0 == not young, 1 is youngest) to
  1760   // surviving words. base is what we get back from the malloc call
  1761   size_t* _surviving_young_words_base;
  1762   // this points into the array, as we use the first few entries for padding
  1763   size_t* _surviving_young_words;
  1765 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1767   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1769   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1771   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1772   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1774   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1775     if (!from->is_survivor()) {
  1776       _g1_rem->par_write_ref(from, p, tid);
  1780   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1781     // If the new value of the field points to the same region or
  1782     // is the to-space, we don't need to include it in the Rset updates.
  1783     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1784       size_t card_index = ctbs()->index_for(p);
  1785       // If the card hasn't been added to the buffer, do it.
  1786       if (ctbs()->mark_card_deferred(card_index)) {
  1787         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1792 public:
  1793   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1795   ~G1ParScanThreadState() {
  1796     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1799   RefToScanQueue*   refs()            { return _refs;             }
  1800   ageTable*         age_table()       { return &_age_table;       }
  1802   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1803     return _alloc_buffers[purpose];
  1806   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1807   size_t undo_waste() const                      { return _undo_waste; }
  1809 #ifdef ASSERT
  1810   bool verify_ref(narrowOop* ref) const;
  1811   bool verify_ref(oop* ref) const;
  1812   bool verify_task(StarTask ref) const;
  1813 #endif // ASSERT
  1815   template <class T> void push_on_queue(T* ref) {
  1816     assert(verify_ref(ref), "sanity");
  1817     refs()->push(ref);
  1820   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1821     if (G1DeferredRSUpdate) {
  1822       deferred_rs_update(from, p, tid);
  1823     } else {
  1824       immediate_rs_update(from, p, tid);
  1828   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1830     HeapWord* obj = NULL;
  1831     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1832     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1833       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1834       assert(gclab_word_size == alloc_buf->word_sz(),
  1835              "dynamic resizing is not supported");
  1836       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1837       alloc_buf->retire(false, false);
  1839       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1840       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1841       // Otherwise.
  1842       alloc_buf->set_buf(buf);
  1844       obj = alloc_buf->allocate(word_sz);
  1845       assert(obj != NULL, "buffer was definitely big enough...");
  1846     } else {
  1847       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1849     return obj;
  1852   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1853     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1854     if (obj != NULL) return obj;
  1855     return allocate_slow(purpose, word_sz);
  1858   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1859     if (alloc_buffer(purpose)->contains(obj)) {
  1860       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1861              "should contain whole object");
  1862       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1863     } else {
  1864       CollectedHeap::fill_with_object(obj, word_sz);
  1865       add_to_undo_waste(word_sz);
  1869   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1870     _evac_failure_cl = evac_failure_cl;
  1872   OopsInHeapRegionClosure* evac_failure_closure() {
  1873     return _evac_failure_cl;
  1876   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1877     _evac_cl = evac_cl;
  1880   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1881     _partial_scan_cl = partial_scan_cl;
  1884   int* hash_seed() { return &_hash_seed; }
  1885   int  queue_num() { return _queue_num; }
  1887   size_t term_attempts() const  { return _term_attempts; }
  1888   void note_term_attempt() { _term_attempts++; }
  1890   void start_strong_roots() {
  1891     _start_strong_roots = os::elapsedTime();
  1893   void end_strong_roots() {
  1894     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1896   double strong_roots_time() const { return _strong_roots_time; }
  1898   void start_term_time() {
  1899     note_term_attempt();
  1900     _start_term = os::elapsedTime();
  1902   void end_term_time() {
  1903     _term_time += (os::elapsedTime() - _start_term);
  1905   double term_time() const { return _term_time; }
  1907   double elapsed_time() const {
  1908     return os::elapsedTime() - _start;
  1911   static void
  1912     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1913   void
  1914     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1916   size_t* surviving_young_words() {
  1917     // We add on to hide entry 0 which accumulates surviving words for
  1918     // age -1 regions (i.e. non-young ones)
  1919     return _surviving_young_words;
  1922   void retire_alloc_buffers() {
  1923     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1924       size_t waste = _alloc_buffers[ap]->words_remaining();
  1925       add_to_alloc_buffer_waste(waste);
  1926       _alloc_buffers[ap]->retire(true, false);
  1930   template <class T> void deal_with_reference(T* ref_to_scan) {
  1931     if (has_partial_array_mask(ref_to_scan)) {
  1932       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1933     } else {
  1934       // Note: we can use "raw" versions of "region_containing" because
  1935       // "obj_to_scan" is definitely in the heap, and is not in a
  1936       // humongous region.
  1937       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1938       _evac_cl->set_region(r);
  1939       _evac_cl->do_oop_nv(ref_to_scan);
  1943   void deal_with_reference(StarTask ref) {
  1944     assert(verify_task(ref), "sanity");
  1945     if (ref.is_narrow()) {
  1946       deal_with_reference((narrowOop*)ref);
  1947     } else {
  1948       deal_with_reference((oop*)ref);
  1952 public:
  1953   void trim_queue();
  1954 };
  1956 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial