src/cpu/x86/vm/cppInterpreter_x86.cpp

Thu, 07 Apr 2011 09:53:20 -0700

author
johnc
date
Thu, 07 Apr 2011 09:53:20 -0700
changeset 2781
e1162778c1c8
parent 2552
638119ce7cfd
child 2901
3d2ab563047a
permissions
-rw-r--r--

7009266: G1: assert(obj->is_oop_or_null(true )) failed: Error
Summary: A referent object that is only weakly reachable at the start of concurrent marking but is re-attached to the strongly reachable object graph during marking may not be marked as live. This can cause the reference object to be processed prematurely and leave dangling pointers to the referent object. Implement a read barrier for the java.lang.ref.Reference::referent field by intrinsifying the Reference.get() method, and intercepting accesses though JNI, reflection, and Unsafe, so that when a non-null referent object is read it is also logged in an SATB buffer.
Reviewed-by: kvn, iveresov, never, tonyp, dholmes

     1 /*
     2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/cppInterpreter.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    48 #ifdef SHARK
    49 #include "shark/shark_globals.hpp"
    50 #endif
    52 #ifdef CC_INTERP
    54 // Routine exists to make tracebacks look decent in debugger
    55 // while we are recursed in the frame manager/c++ interpreter.
    56 // We could use an address in the frame manager but having
    57 // frames look natural in the debugger is a plus.
    58 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
    59 {
    60   //
    61   ShouldNotReachHere();
    62 }
    65 #define __ _masm->
    66 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
    68 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    69                                       // c++ interpreter entry point this holds that entry point label.
    71 // default registers for state and sender_sp
    72 // state and sender_sp are the same on 32bit because we have no choice.
    73 // state could be rsi on 64bit but it is an arg reg and not callee save
    74 // so r13 is better choice.
    76 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
    77 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
    79 // NEEDED for JVMTI?
    80 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
    82 static address unctrap_frame_manager_entry  = NULL;
    84 static address deopt_frame_manager_return_atos  = NULL;
    85 static address deopt_frame_manager_return_btos  = NULL;
    86 static address deopt_frame_manager_return_itos  = NULL;
    87 static address deopt_frame_manager_return_ltos  = NULL;
    88 static address deopt_frame_manager_return_ftos  = NULL;
    89 static address deopt_frame_manager_return_dtos  = NULL;
    90 static address deopt_frame_manager_return_vtos  = NULL;
    92 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    93   int i = 0;
    94   switch (type) {
    95     case T_BOOLEAN: i = 0; break;
    96     case T_CHAR   : i = 1; break;
    97     case T_BYTE   : i = 2; break;
    98     case T_SHORT  : i = 3; break;
    99     case T_INT    : i = 4; break;
   100     case T_VOID   : i = 5; break;
   101     case T_FLOAT  : i = 8; break;
   102     case T_LONG   : i = 9; break;
   103     case T_DOUBLE : i = 6; break;
   104     case T_OBJECT : // fall through
   105     case T_ARRAY  : i = 7; break;
   106     default       : ShouldNotReachHere();
   107   }
   108   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   109   return i;
   110 }
   112 // Is this pc anywhere within code owned by the interpreter?
   113 // This only works for pc that might possibly be exposed to frame
   114 // walkers. It clearly misses all of the actual c++ interpreter
   115 // implementation
   116 bool CppInterpreter::contains(address pc)            {
   117     return (_code->contains(pc) ||
   118             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
   119 }
   122 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
   123   address entry = __ pc();
   124   switch (type) {
   125     case T_BOOLEAN: __ c2bool(rax);            break;
   126     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
   127     case T_BYTE   : __ sign_extend_byte (rax); break;
   128     case T_SHORT  : __ sign_extend_short(rax); break;
   129     case T_VOID   : // fall thru
   130     case T_LONG   : // fall thru
   131     case T_INT    : /* nothing to do */        break;
   133     case T_DOUBLE :
   134     case T_FLOAT  :
   135       {
   136         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   137         __ pop(t);                            // remove return address first
   138         // Must return a result for interpreter or compiler. In SSE
   139         // mode, results are returned in xmm0 and the FPU stack must
   140         // be empty.
   141         if (type == T_FLOAT && UseSSE >= 1) {
   142 #ifndef _LP64
   143           // Load ST0
   144           __ fld_d(Address(rsp, 0));
   145           // Store as float and empty fpu stack
   146           __ fstp_s(Address(rsp, 0));
   147 #endif // !_LP64
   148           // and reload
   149           __ movflt(xmm0, Address(rsp, 0));
   150         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   151           __ movdbl(xmm0, Address(rsp, 0));
   152         } else {
   153           // restore ST0
   154           __ fld_d(Address(rsp, 0));
   155         }
   156         // and pop the temp
   157         __ addptr(rsp, 2 * wordSize);
   158         __ push(t);                            // restore return address
   159       }
   160       break;
   161     case T_OBJECT :
   162       // retrieve result from frame
   163       __ movptr(rax, STATE(_oop_temp));
   164       // and verify it
   165       __ verify_oop(rax);
   166       break;
   167     default       : ShouldNotReachHere();
   168   }
   169   __ ret(0);                                   // return from result handler
   170   return entry;
   171 }
   173 // tosca based result to c++ interpreter stack based result.
   174 // Result goes to top of native stack.
   176 #undef EXTEND  // SHOULD NOT BE NEEDED
   177 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   178   // A result is in the tosca (abi result) from either a native method call or compiled
   179   // code. Place this result on the java expression stack so C++ interpreter can use it.
   180   address entry = __ pc();
   182   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   183   __ pop(t);                            // remove return address first
   184   switch (type) {
   185     case T_VOID:
   186        break;
   187     case T_BOOLEAN:
   188 #ifdef EXTEND
   189       __ c2bool(rax);
   190 #endif
   191       __ push(rax);
   192       break;
   193     case T_CHAR   :
   194 #ifdef EXTEND
   195       __ andl(rax, 0xFFFF);
   196 #endif
   197       __ push(rax);
   198       break;
   199     case T_BYTE   :
   200 #ifdef EXTEND
   201       __ sign_extend_byte (rax);
   202 #endif
   203       __ push(rax);
   204       break;
   205     case T_SHORT  :
   206 #ifdef EXTEND
   207       __ sign_extend_short(rax);
   208 #endif
   209       __ push(rax);
   210       break;
   211     case T_LONG    :
   212       __ push(rdx);                             // pushes useless junk on 64bit
   213       __ push(rax);
   214       break;
   215     case T_INT    :
   216       __ push(rax);
   217       break;
   218     case T_FLOAT  :
   219       // Result is in ST(0)/xmm0
   220       __ subptr(rsp, wordSize);
   221       if ( UseSSE < 1) {
   222         __ fstp_s(Address(rsp, 0));
   223       } else {
   224         __ movflt(Address(rsp, 0), xmm0);
   225       }
   226       break;
   227     case T_DOUBLE  :
   228       __ subptr(rsp, 2*wordSize);
   229       if ( UseSSE < 2 ) {
   230         __ fstp_d(Address(rsp, 0));
   231       } else {
   232         __ movdbl(Address(rsp, 0), xmm0);
   233       }
   234       break;
   235     case T_OBJECT :
   236       __ verify_oop(rax);                      // verify it
   237       __ push(rax);
   238       break;
   239     default       : ShouldNotReachHere();
   240   }
   241   __ jmp(t);                                   // return from result handler
   242   return entry;
   243 }
   245 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   246   // A result is in the java expression stack of the interpreted method that has just
   247   // returned. Place this result on the java expression stack of the caller.
   248   //
   249   // The current interpreter activation in rsi/r13 is for the method just returning its
   250   // result. So we know that the result of this method is on the top of the current
   251   // execution stack (which is pre-pushed) and will be return to the top of the caller
   252   // stack. The top of the callers stack is the bottom of the locals of the current
   253   // activation.
   254   // Because of the way activation are managed by the frame manager the value of rsp is
   255   // below both the stack top of the current activation and naturally the stack top
   256   // of the calling activation. This enable this routine to leave the return address
   257   // to the frame manager on the stack and do a vanilla return.
   258   //
   259   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   260   // On Return: rsi/r13 - unchanged
   261   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
   262   //
   263   // Can destroy rdx, rcx.
   264   //
   266   address entry = __ pc();
   267   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   268   switch (type) {
   269     case T_VOID:
   270       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
   271       __ addptr(rax, wordSize);                                         // account for prepush before we return
   272       break;
   273     case T_FLOAT  :
   274     case T_BOOLEAN:
   275     case T_CHAR   :
   276     case T_BYTE   :
   277     case T_SHORT  :
   278     case T_INT    :
   279       // 1 word result
   280       __ movptr(rdx, STATE(_stack));
   281       __ movptr(rax, STATE(_locals));                                   // address for result
   282       __ movl(rdx, Address(rdx, wordSize));                             // get result
   283       __ movptr(Address(rax, 0), rdx);                                  // and store it
   284       break;
   285     case T_LONG    :
   286     case T_DOUBLE  :
   287       // return top two words on current expression stack to caller's expression stack
   288       // The caller's expression stack is adjacent to the current frame manager's intepretState
   289       // except we allocated one extra word for this intepretState so we won't overwrite it
   290       // when we return a two word result.
   292       __ movptr(rax, STATE(_locals));                                   // address for result
   293       __ movptr(rcx, STATE(_stack));
   294       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
   295       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
   296       __ movptr(Address(rax, wordSize), rdx);                           // and store it
   297       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
   298       __ movptr(Address(rax, 0), rdx);                                  // and store it
   299       break;
   300     case T_OBJECT :
   301       __ movptr(rdx, STATE(_stack));
   302       __ movptr(rax, STATE(_locals));                                   // address for result
   303       __ movptr(rdx, Address(rdx, wordSize));                           // get result
   304       __ verify_oop(rdx);                                               // verify it
   305       __ movptr(Address(rax, 0), rdx);                                  // and store it
   306       break;
   307     default       : ShouldNotReachHere();
   308   }
   309   __ ret(0);
   310   return entry;
   311 }
   313 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   314   // A result is in the java expression stack of the interpreted method that has just
   315   // returned. Place this result in the native abi that the caller expects.
   316   //
   317   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   318   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   319   // and so rather than return result onto caller's java expression stack we return the
   320   // result in the expected location based on the native abi.
   321   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   322   // On Return: rsi/r13 - unchanged
   323   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
   325   address entry = __ pc();
   326   switch (type) {
   327     case T_VOID:
   328        break;
   329     case T_BOOLEAN:
   330     case T_CHAR   :
   331     case T_BYTE   :
   332     case T_SHORT  :
   333     case T_INT    :
   334       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   335       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
   336       break;
   337     case T_LONG    :
   338       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   339       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
   340       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
   341       break;
   342     case T_FLOAT  :
   343       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   344       if ( UseSSE >= 1) {
   345         __ movflt(xmm0, Address(rdx, wordSize));
   346       } else {
   347         __ fld_s(Address(rdx, wordSize));                               // pushd float result
   348       }
   349       break;
   350     case T_DOUBLE  :
   351       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   352       if ( UseSSE > 1) {
   353         __ movdbl(xmm0, Address(rdx, wordSize));
   354       } else {
   355         __ fld_d(Address(rdx, wordSize));                               // push double result
   356       }
   357       break;
   358     case T_OBJECT :
   359       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   360       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
   361       __ verify_oop(rax);                                               // verify it
   362       break;
   363     default       : ShouldNotReachHere();
   364   }
   365   __ ret(0);
   366   return entry;
   367 }
   369 address CppInterpreter::return_entry(TosState state, int length) {
   370   // make it look good in the debugger
   371   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
   372 }
   374 address CppInterpreter::deopt_entry(TosState state, int length) {
   375   address ret = NULL;
   376   if (length != 0) {
   377     switch (state) {
   378       case atos: ret = deopt_frame_manager_return_atos; break;
   379       case btos: ret = deopt_frame_manager_return_btos; break;
   380       case ctos:
   381       case stos:
   382       case itos: ret = deopt_frame_manager_return_itos; break;
   383       case ltos: ret = deopt_frame_manager_return_ltos; break;
   384       case ftos: ret = deopt_frame_manager_return_ftos; break;
   385       case dtos: ret = deopt_frame_manager_return_dtos; break;
   386       case vtos: ret = deopt_frame_manager_return_vtos; break;
   387     }
   388   } else {
   389     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   390   }
   391   assert(ret != NULL, "Not initialized");
   392   return ret;
   393 }
   395 // C++ Interpreter
   396 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
   397                                                                  const Register locals,
   398                                                                  const Register sender_sp,
   399                                                                  bool native) {
   401   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
   402   // a static method). "state" contains any previous frame manager state which we must save a link
   403   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
   404   // state object. We must allocate and initialize a new interpretState object and the method
   405   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
   406   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
   407   // be sure to leave space on the caller's stack so that this result will not overwrite values when
   408   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
   409   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
   410   // non-product builds and initialize this last local with the previous interpreterState as
   411   // this makes things look real nice in the debugger.
   413   // State on entry
   414   // Assumes locals == &locals[0]
   415   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
   416   // Assumes rax = return address
   417   // rcx == senders_sp
   418   // rbx == method
   419   // Modifies rcx, rdx, rax
   420   // Returns:
   421   // state == address of new interpreterState
   422   // rsp == bottom of method's expression stack.
   424   const Address const_offset      (rbx, methodOopDesc::const_offset());
   427   // On entry sp is the sender's sp. This includes the space for the arguments
   428   // that the sender pushed. If the sender pushed no args (a static) and the
   429   // caller returns a long then we need two words on the sender's stack which
   430   // are not present (although when we return a restore full size stack the
   431   // space will be present). If we didn't allocate two words here then when
   432   // we "push" the result of the caller's stack we would overwrite the return
   433   // address and the saved rbp. Not good. So simply allocate 2 words now
   434   // just to be safe. This is the "static long no_params() method" issue.
   435   // See Lo.java for a testcase.
   436   // We don't need this for native calls because they return result in
   437   // register and the stack is expanded in the caller before we store
   438   // the results on the stack.
   440   if (!native) {
   441 #ifdef PRODUCT
   442     __ subptr(rsp, 2*wordSize);
   443 #else /* PRODUCT */
   444     __ push((int32_t)NULL_WORD);
   445     __ push(state);                         // make it look like a real argument
   446 #endif /* PRODUCT */
   447   }
   449   // Now that we are assure of space for stack result, setup typical linkage
   451   __ push(rax);
   452   __ enter();
   454   __ mov(rax, state);                                  // save current state
   456   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
   457   __ mov(state, rsp);
   459   // rsi/r13 == state/locals rax == prevstate
   461   // initialize the "shadow" frame so that use since C++ interpreter not directly
   462   // recursive. Simpler to recurse but we can't trim expression stack as we call
   463   // new methods.
   464   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
   465   __ movptr(STATE(_self_link), state);                  // point to self
   466   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
   467   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
   468 #ifdef _LP64
   469   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
   470 #else
   471   __ get_thread(rax);                                   // get vm's javathread*
   472   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
   473 #endif // _LP64
   474   __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
   475   __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
   476   if (native) {
   477     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
   478   } else {
   479     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
   480   }
   481   __ xorptr(rdx, rdx);
   482   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
   483   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
   484   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   485   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   486   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
   488   __ movptr(STATE(_method), rbx);                       // state->_method = method()
   489   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
   490   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
   493   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
   494                                                         // entries run from -1..x where &monitor[x] ==
   496   {
   497     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
   498     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
   499     // immediately.
   501     // synchronize method
   502     const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   503     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   504     Label not_synced;
   506     __ movl(rax, access_flags);
   507     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   508     __ jcc(Assembler::zero, not_synced);
   510     // Allocate initial monitor and pre initialize it
   511     // get synchronization object
   513     Label done;
   514     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   515     __ movl(rax, access_flags);
   516     __ testl(rax, JVM_ACC_STATIC);
   517     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
   518     __ jcc(Assembler::zero, done);
   519     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   520     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   521     __ movptr(rax, Address(rax, mirror_offset));
   522     __ bind(done);
   523     // add space for monitor & lock
   524     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   525     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   526     __ bind(not_synced);
   527   }
   529   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
   530   if (native) {
   531     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   532     __ movptr(STATE(_stack_limit), rsp);
   533   } else {
   534     __ subptr(rsp, wordSize);                                             // pre-push stack
   535     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   537     // compute full expression stack limit
   539     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   540     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_words();
   541     __ load_unsigned_short(rdx, size_of_stack);                           // get size of expression stack in words
   542     __ negptr(rdx);                                                       // so we can subtract in next step
   543     // Allocate expression stack
   544     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -extra_stack));
   545     __ movptr(STATE(_stack_limit), rsp);
   546   }
   548 #ifdef _LP64
   549   // Make sure stack is properly aligned and sized for the abi
   550   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   551   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   552 #endif // _LP64
   556 }
   558 // Helpers for commoning out cases in the various type of method entries.
   559 //
   561 // increment invocation count & check for overflow
   562 //
   563 // Note: checking for negative value instead of overflow
   564 //       so we have a 'sticky' overflow test
   565 //
   566 // rbx,: method
   567 // rcx: invocation counter
   568 //
   569 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   571   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   572   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
   574   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   575     __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   576   }
   577   // Update standard invocation counters
   578   __ movl(rax, backedge_counter);               // load backedge counter
   580   __ increment(rcx, InvocationCounter::count_increment);
   581   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   583   __ movl(invocation_counter, rcx);             // save invocation count
   584   __ addl(rcx, rax);                            // add both counters
   586   // profile_method is non-null only for interpreted method so
   587   // profile_method != NULL == !native_call
   588   // BytecodeInterpreter only calls for native so code is elided.
   590   __ cmp32(rcx,
   591            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   592   __ jcc(Assembler::aboveEqual, *overflow);
   594 }
   596 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   598   // C++ interpreter on entry
   599   // rsi/r13 - new interpreter state pointer
   600   // rbp - interpreter frame pointer
   601   // rbx - method
   603   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   604   // rbx, - method
   605   // rcx - rcvr (assuming there is one)
   606   // top of stack return address of interpreter caller
   607   // rsp - sender_sp
   609   // C++ interpreter only
   610   // rsi/r13 - previous interpreter state pointer
   612   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   614   // InterpreterRuntime::frequency_counter_overflow takes one argument
   615   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   616   // The call returns the address of the verified entry point for the method or NULL
   617   // if the compilation did not complete (either went background or bailed out).
   618   __ movptr(rax, (int32_t)false);
   619   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   621   // for c++ interpreter can rsi really be munged?
   622   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
   623   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
   624   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
   626   __ jmp(*do_continue, relocInfo::none);
   628 }
   630 void InterpreterGenerator::generate_stack_overflow_check(void) {
   631   // see if we've got enough room on the stack for locals plus overhead.
   632   // the expression stack grows down incrementally, so the normal guard
   633   // page mechanism will work for that.
   634   //
   635   // Registers live on entry:
   636   //
   637   // Asm interpreter
   638   // rdx: number of additional locals this frame needs (what we must check)
   639   // rbx,: methodOop
   641   // C++ Interpreter
   642   // rsi/r13: previous interpreter frame state object
   643   // rdi: &locals[0]
   644   // rcx: # of locals
   645   // rdx: number of additional locals this frame needs (what we must check)
   646   // rbx: methodOop
   648   // destroyed on exit
   649   // rax,
   651   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   652   // generate_method_entry) so the guard should work for them too.
   653   //
   655   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
   656   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   658   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   659   // be sure to change this if you add/subtract anything to/from the overhead area
   660   const int overhead_size = (int)sizeof(BytecodeInterpreter);
   662   const int page_size = os::vm_page_size();
   664   Label after_frame_check;
   666   // compute rsp as if this were going to be the last frame on
   667   // the stack before the red zone
   669   Label after_frame_check_pop;
   671   // save rsi == caller's bytecode ptr (c++ previous interp. state)
   672   // QQQ problem here?? rsi overload????
   673   __ push(state);
   675   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
   677   NOT_LP64(__ get_thread(thread));
   679   const Address stack_base(thread, Thread::stack_base_offset());
   680   const Address stack_size(thread, Thread::stack_size_offset());
   682   // locals + overhead, in bytes
   683     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   684     // Always give one monitor to allow us to start interp if sync method.
   685     // Any additional monitors need a check when moving the expression stack
   686     const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
   687     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
   688   __ load_unsigned_short(rax, size_of_stack);                           // get size of expression stack in words
   689   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), extra_stack + one_monitor));
   690   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
   692 #ifdef ASSERT
   693   Label stack_base_okay, stack_size_okay;
   694   // verify that thread stack base is non-zero
   695   __ cmpptr(stack_base, (int32_t)0);
   696   __ jcc(Assembler::notEqual, stack_base_okay);
   697   __ stop("stack base is zero");
   698   __ bind(stack_base_okay);
   699   // verify that thread stack size is non-zero
   700   __ cmpptr(stack_size, (int32_t)0);
   701   __ jcc(Assembler::notEqual, stack_size_okay);
   702   __ stop("stack size is zero");
   703   __ bind(stack_size_okay);
   704 #endif
   706   // Add stack base to locals and subtract stack size
   707   __ addptr(rax, stack_base);
   708   __ subptr(rax, stack_size);
   710   // We should have a magic number here for the size of the c++ interpreter frame.
   711   // We can't actually tell this ahead of time. The debug version size is around 3k
   712   // product is 1k and fastdebug is 4k
   713   const int slop = 6 * K;
   715   // Use the maximum number of pages we might bang.
   716   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   717                                                                               (StackRedPages+StackYellowPages);
   718   // Only need this if we are stack banging which is temporary while
   719   // we're debugging.
   720   __ addptr(rax, slop + 2*max_pages * page_size);
   722   // check against the current stack bottom
   723   __ cmpptr(rsp, rax);
   724   __ jcc(Assembler::above, after_frame_check_pop);
   726   __ pop(state);  //  get c++ prev state.
   728      // throw exception return address becomes throwing pc
   729   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   731   // all done with frame size check
   732   __ bind(after_frame_check_pop);
   733   __ pop(state);
   735   __ bind(after_frame_check);
   736 }
   738 // Find preallocated  monitor and lock method (C++ interpreter)
   739 // rbx - methodOop
   740 //
   741 void InterpreterGenerator::lock_method(void) {
   742   // assumes state == rsi/r13 == pointer to current interpreterState
   743   // minimally destroys rax, rdx|c_rarg1, rdi
   744   //
   745   // synchronize method
   746   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   747   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   749   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
   751   // find initial monitor i.e. monitors[-1]
   752   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
   753   __ subptr(monitor, entry_size);                                             // point to initial monitor
   755 #ifdef ASSERT
   756   { Label L;
   757     __ movl(rax, access_flags);
   758     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   759     __ jcc(Assembler::notZero, L);
   760     __ stop("method doesn't need synchronization");
   761     __ bind(L);
   762   }
   763 #endif // ASSERT
   764   // get synchronization object
   765   { Label done;
   766     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   767     __ movl(rax, access_flags);
   768     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
   769     __ testl(rax, JVM_ACC_STATIC);
   770     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
   771     __ jcc(Assembler::zero, done);
   772     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   773     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   774     __ movptr(rax, Address(rax, mirror_offset));
   775     __ bind(done);
   776   }
   777 #ifdef ASSERT
   778   { Label L;
   779     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
   780     __ jcc(Assembler::equal, L);
   781     __ stop("wrong synchronization lobject");
   782     __ bind(L);
   783   }
   784 #endif // ASSERT
   785   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
   786   __ lock_object(monitor);
   787 }
   789 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   791 address InterpreterGenerator::generate_accessor_entry(void) {
   793   // rbx: methodOop
   795   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
   797   Label xreturn_path;
   799   // do fastpath for resolved accessor methods
   800   if (UseFastAccessorMethods) {
   802     address entry_point = __ pc();
   804     Label slow_path;
   805     // If we need a safepoint check, generate full interpreter entry.
   806     ExternalAddress state(SafepointSynchronize::address_of_state());
   807     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   808              SafepointSynchronize::_not_synchronized);
   810     __ jcc(Assembler::notEqual, slow_path);
   811     // ASM/C++ Interpreter
   812     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   813     // Note: We can only use this code if the getfield has been resolved
   814     //       and if we don't have a null-pointer exception => check for
   815     //       these conditions first and use slow path if necessary.
   816     // rbx,: method
   817     // rcx: receiver
   818     __ movptr(rax, Address(rsp, wordSize));
   820     // check if local 0 != NULL and read field
   821     __ testptr(rax, rax);
   822     __ jcc(Assembler::zero, slow_path);
   824     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   825     // read first instruction word and extract bytecode @ 1 and index @ 2
   826     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   827     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   828     // Shift codes right to get the index on the right.
   829     // The bytecode fetched looks like <index><0xb4><0x2a>
   830     __ shrl(rdx, 2*BitsPerByte);
   831     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   832     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   834     // rax,: local 0
   835     // rbx,: method
   836     // rcx: receiver - do not destroy since it is needed for slow path!
   837     // rcx: scratch
   838     // rdx: constant pool cache index
   839     // rdi: constant pool cache
   840     // rsi/r13: sender sp
   842     // check if getfield has been resolved and read constant pool cache entry
   843     // check the validity of the cache entry by testing whether _indices field
   844     // contains Bytecode::_getfield in b1 byte.
   845     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   846     __ movl(rcx,
   847             Address(rdi,
   848                     rdx,
   849                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   850     __ shrl(rcx, 2*BitsPerByte);
   851     __ andl(rcx, 0xFF);
   852     __ cmpl(rcx, Bytecodes::_getfield);
   853     __ jcc(Assembler::notEqual, slow_path);
   855     // Note: constant pool entry is not valid before bytecode is resolved
   856     __ movptr(rcx,
   857             Address(rdi,
   858                     rdx,
   859                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   860     __ movl(rdx,
   861             Address(rdi,
   862                     rdx,
   863                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   865     Label notByte, notShort, notChar;
   866     const Address field_address (rax, rcx, Address::times_1);
   868     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   869     // because they are different sizes.
   870     // Use the type from the constant pool cache
   871     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   872     // Make sure we don't need to mask rdx for tosBits after the above shift
   873     ConstantPoolCacheEntry::verify_tosBits();
   874 #ifdef _LP64
   875     Label notObj;
   876     __ cmpl(rdx, atos);
   877     __ jcc(Assembler::notEqual, notObj);
   878     // atos
   879     __ movptr(rax, field_address);
   880     __ jmp(xreturn_path);
   882     __ bind(notObj);
   883 #endif // _LP64
   884     __ cmpl(rdx, btos);
   885     __ jcc(Assembler::notEqual, notByte);
   886     __ load_signed_byte(rax, field_address);
   887     __ jmp(xreturn_path);
   889     __ bind(notByte);
   890     __ cmpl(rdx, stos);
   891     __ jcc(Assembler::notEqual, notShort);
   892     __ load_signed_short(rax, field_address);
   893     __ jmp(xreturn_path);
   895     __ bind(notShort);
   896     __ cmpl(rdx, ctos);
   897     __ jcc(Assembler::notEqual, notChar);
   898     __ load_unsigned_short(rax, field_address);
   899     __ jmp(xreturn_path);
   901     __ bind(notChar);
   902 #ifdef ASSERT
   903     Label okay;
   904 #ifndef _LP64
   905     __ cmpl(rdx, atos);
   906     __ jcc(Assembler::equal, okay);
   907 #endif // _LP64
   908     __ cmpl(rdx, itos);
   909     __ jcc(Assembler::equal, okay);
   910     __ stop("what type is this?");
   911     __ bind(okay);
   912 #endif // ASSERT
   913     // All the rest are a 32 bit wordsize
   914     __ movl(rax, field_address);
   916     __ bind(xreturn_path);
   918     // _ireturn/_areturn
   919     __ pop(rdi);                               // get return address
   920     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
   921     __ jmp(rdi);
   923     // generate a vanilla interpreter entry as the slow path
   924     __ bind(slow_path);
   925     // We will enter c++ interpreter looking like it was
   926     // called by the call_stub this will cause it to return
   927     // a tosca result to the invoker which might have been
   928     // the c++ interpreter itself.
   930     __ jmp(fast_accessor_slow_entry_path);
   931     return entry_point;
   933   } else {
   934     return NULL;
   935   }
   937 }
   939 address InterpreterGenerator::generate_Reference_get_entry(void) {
   940 #ifndef SERIALGC
   941   if (UseG1GC) {
   942     // We need to generate have a routine that generates code to:
   943     //   * load the value in the referent field
   944     //   * passes that value to the pre-barrier.
   945     //
   946     // In the case of G1 this will record the value of the
   947     // referent in an SATB buffer if marking is active.
   948     // This will cause concurrent marking to mark the referent
   949     // field as live.
   950     Unimplemented();
   951   }
   952 #endif // SERIALGC
   954   // If G1 is not enabled then attempt to go through the accessor entry point
   955   // Reference.get is an accessor
   956   return generate_accessor_entry();
   957 }
   959 //
   960 // C++ Interpreter stub for calling a native method.
   961 // This sets up a somewhat different looking stack for calling the native method
   962 // than the typical interpreter frame setup but still has the pointer to
   963 // an interpreter state.
   964 //
   966 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   967   // determine code generation flags
   968   bool inc_counter  = UseCompiler || CountCompiledCalls;
   970   // rbx: methodOop
   971   // rcx: receiver (unused)
   972   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
   973   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
   974   //      to save/restore.
   975   address entry_point = __ pc();
   977   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   978   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
   979   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   980   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   982   // rsi/r13 == state/locals rdi == prevstate
   983   const Register locals = rdi;
   985   // get parameter size (always needed)
   986   __ load_unsigned_short(rcx, size_of_parameters);
   988   // rbx: methodOop
   989   // rcx: size of parameters
   990   __ pop(rax);                                       // get return address
   991   // for natives the size of locals is zero
   993   // compute beginning of parameters /locals
   994   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
   996   // initialize fixed part of activation frame
   998   // Assumes rax = return address
  1000   // allocate and initialize new interpreterState and method expression stack
  1001   // IN(locals) ->  locals
  1002   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
  1003   // destroys rax, rcx, rdx
  1004   // OUT (state) -> new interpreterState
  1005   // OUT(rsp) -> bottom of methods expression stack
  1007   // save sender_sp
  1008   __ mov(rcx, sender_sp_on_entry);
  1009   // start with NULL previous state
  1010   __ movptr(state, (int32_t)NULL_WORD);
  1011   generate_compute_interpreter_state(state, locals, rcx, true);
  1013 #ifdef ASSERT
  1014   { Label L;
  1015     __ movptr(rax, STATE(_stack_base));
  1016 #ifdef _LP64
  1017     // duplicate the alignment rsp got after setting stack_base
  1018     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
  1019     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1020 #endif // _LP64
  1021     __ cmpptr(rax, rsp);
  1022     __ jcc(Assembler::equal, L);
  1023     __ stop("broken stack frame setup in interpreter");
  1024     __ bind(L);
  1026 #endif
  1028   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  1030   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
  1031   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
  1032   // Since at this point in the method invocation the exception handler
  1033   // would try to exit the monitor of synchronized methods which hasn't
  1034   // been entered yet, we set the thread local variable
  1035   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1036   // check this flag.
  1038   const Address do_not_unlock_if_synchronized(unlock_thread,
  1039         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1040   __ movbool(do_not_unlock_if_synchronized, true);
  1042   // make sure method is native & not abstract
  1043 #ifdef ASSERT
  1044   __ movl(rax, access_flags);
  1046     Label L;
  1047     __ testl(rax, JVM_ACC_NATIVE);
  1048     __ jcc(Assembler::notZero, L);
  1049     __ stop("tried to execute non-native method as native");
  1050     __ bind(L);
  1052   { Label L;
  1053     __ testl(rax, JVM_ACC_ABSTRACT);
  1054     __ jcc(Assembler::zero, L);
  1055     __ stop("tried to execute abstract method in interpreter");
  1056     __ bind(L);
  1058 #endif
  1061   // increment invocation count & check for overflow
  1062   Label invocation_counter_overflow;
  1063   if (inc_counter) {
  1064     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1067   Label continue_after_compile;
  1069   __ bind(continue_after_compile);
  1071   bang_stack_shadow_pages(true);
  1073   // reset the _do_not_unlock_if_synchronized flag
  1074   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
  1075   __ movbool(do_not_unlock_if_synchronized, false);
  1078   // check for synchronized native methods
  1079   //
  1080   // Note: This must happen *after* invocation counter check, since
  1081   //       when overflow happens, the method should not be locked.
  1082   if (synchronized) {
  1083     // potentially kills rax, rcx, rdx, rdi
  1084     lock_method();
  1085   } else {
  1086     // no synchronization necessary
  1087 #ifdef ASSERT
  1088       { Label L;
  1089         __ movl(rax, access_flags);
  1090         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1091         __ jcc(Assembler::zero, L);
  1092         __ stop("method needs synchronization");
  1093         __ bind(L);
  1095 #endif
  1098   // start execution
  1100   // jvmti support
  1101   __ notify_method_entry();
  1103   // work registers
  1104   const Register method = rbx;
  1105   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
  1106   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
  1108   // allocate space for parameters
  1109   __ movptr(method, STATE(_method));
  1110   __ verify_oop(method);
  1111   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
  1112   __ shll(t, 2);
  1113 #ifdef _LP64
  1114   __ subptr(rsp, t);
  1115   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1116   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
  1117 #else
  1118   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1119   __ subptr(rsp, t);
  1120   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1121 #endif // _LP64
  1123   // get signature handler
  1124     Label pending_exception_present;
  1126   { Label L;
  1127     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
  1128     __ testptr(t, t);
  1129     __ jcc(Assembler::notZero, L);
  1130     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
  1131     __ movptr(method, STATE(_method));
  1132     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1133     __ jcc(Assembler::notEqual, pending_exception_present);
  1134     __ verify_oop(method);
  1135     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
  1136     __ bind(L);
  1138 #ifdef ASSERT
  1140     Label L;
  1141     __ push(t);
  1142     __ get_thread(t);                                   // get vm's javathread*
  1143     __ cmpptr(t, STATE(_thread));
  1144     __ jcc(Assembler::equal, L);
  1145     __ int3();
  1146     __ bind(L);
  1147     __ pop(t);
  1149 #endif //
  1151   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
  1152   // call signature handler
  1153   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1155   // The generated handlers do not touch RBX (the method oop).
  1156   // However, large signatures cannot be cached and are generated
  1157   // each time here.  The slow-path generator will blow RBX
  1158   // sometime, so we must reload it after the call.
  1159   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
  1160   __ call(t);
  1161   __ movptr(method, STATE(_method));
  1162   __ verify_oop(method);
  1164   // result handler is in rax
  1165   // set result handler
  1166   __ movptr(STATE(_result_handler), rax);
  1169   // get native function entry point
  1170   { Label L;
  1171     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1172     __ testptr(rax, rax);
  1173     __ jcc(Assembler::notZero, L);
  1174     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1175     __ movptr(method, STATE(_method));
  1176     __ verify_oop(method);
  1177     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1178     __ bind(L);
  1181   // pass mirror handle if static call
  1182   { Label L;
  1183     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1184     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1185     __ testl(t, JVM_ACC_STATIC);
  1186     __ jcc(Assembler::zero, L);
  1187     // get mirror
  1188     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
  1189     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
  1190     __ movptr(t, Address(t, mirror_offset));
  1191     // copy mirror into activation object
  1192     __ movptr(STATE(_oop_temp), t);
  1193     // pass handle to mirror
  1194 #ifdef _LP64
  1195     __ lea(c_rarg1, STATE(_oop_temp));
  1196 #else
  1197     __ lea(t, STATE(_oop_temp));
  1198     __ movptr(Address(rsp, wordSize), t);
  1199 #endif // _LP64
  1200     __ bind(L);
  1202 #ifdef ASSERT
  1204     Label L;
  1205     __ push(t);
  1206     __ get_thread(t);                                   // get vm's javathread*
  1207     __ cmpptr(t, STATE(_thread));
  1208     __ jcc(Assembler::equal, L);
  1209     __ int3();
  1210     __ bind(L);
  1211     __ pop(t);
  1213 #endif //
  1215   // pass JNIEnv
  1216 #ifdef _LP64
  1217   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
  1218 #else
  1219   __ movptr(thread, STATE(_thread));          // get thread
  1220   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1222   __ movptr(Address(rsp, 0), t);
  1223 #endif // _LP64
  1225 #ifdef ASSERT
  1227     Label L;
  1228     __ push(t);
  1229     __ get_thread(t);                                   // get vm's javathread*
  1230     __ cmpptr(t, STATE(_thread));
  1231     __ jcc(Assembler::equal, L);
  1232     __ int3();
  1233     __ bind(L);
  1234     __ pop(t);
  1236 #endif //
  1238 #ifdef ASSERT
  1239   { Label L;
  1240     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1241     __ cmpl(t, _thread_in_Java);
  1242     __ jcc(Assembler::equal, L);
  1243     __ stop("Wrong thread state in native stub");
  1244     __ bind(L);
  1246 #endif
  1248   // Change state to native (we save the return address in the thread, since it might not
  1249   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1250   // points into the right code segment. It does not have to be the correct return pc.
  1252   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1254   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1256   __ call(rax);
  1258   // result potentially in rdx:rax or ST0
  1259   __ movptr(method, STATE(_method));
  1260   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
  1262   // The potential result is in ST(0) & rdx:rax
  1263   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
  1264   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
  1265   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
  1266   // be destroyed.
  1267   // It is safe to do these pushes because state is _thread_in_native and return address will be found
  1268   // via _last_native_pc and not via _last_jave_sp
  1270     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
  1271     { Label Lpush, Lskip;
  1272       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1273       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1274       __ cmpptr(STATE(_result_handler), float_handler.addr());
  1275       __ jcc(Assembler::equal, Lpush);
  1276       __ cmpptr(STATE(_result_handler), double_handler.addr());
  1277       __ jcc(Assembler::notEqual, Lskip);
  1278       __ bind(Lpush);
  1279       __ subptr(rsp, 2*wordSize);
  1280       if ( UseSSE < 2 ) {
  1281         __ fstp_d(Address(rsp, 0));
  1282       } else {
  1283         __ movdbl(Address(rsp, 0), xmm0);
  1285       __ bind(Lskip);
  1288   // save rax:rdx for potential use by result handler.
  1289   __ push(rax);
  1290 #ifndef _LP64
  1291   __ push(rdx);
  1292 #endif // _LP64
  1294   // Either restore the MXCSR register after returning from the JNI Call
  1295   // or verify that it wasn't changed.
  1296   if (VM_Version::supports_sse()) {
  1297     if (RestoreMXCSROnJNICalls) {
  1298       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1300     else if (CheckJNICalls ) {
  1301       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  1305 #ifndef _LP64
  1306   // Either restore the x87 floating pointer control word after returning
  1307   // from the JNI call or verify that it wasn't changed.
  1308   if (CheckJNICalls) {
  1309     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  1311 #endif // _LP64
  1314   // change thread state
  1315   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1316   if(os::is_MP()) {
  1317     // Write serialization page so VM thread can do a pseudo remote membar.
  1318     // We use the current thread pointer to calculate a thread specific
  1319     // offset to write to within the page. This minimizes bus traffic
  1320     // due to cache line collision.
  1321     __ serialize_memory(thread, rcx);
  1324   // check for safepoint operation in progress and/or pending suspend requests
  1325   { Label Continue;
  1327     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1328              SafepointSynchronize::_not_synchronized);
  1330     // threads running native code and they are expected to self-suspend
  1331     // when leaving the _thread_in_native state. We need to check for
  1332     // pending suspend requests here.
  1333     Label L;
  1334     __ jcc(Assembler::notEqual, L);
  1335     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1336     __ jcc(Assembler::equal, Continue);
  1337     __ bind(L);
  1339     // Don't use call_VM as it will see a possible pending exception and forward it
  1340     // and never return here preventing us from clearing _last_native_pc down below.
  1341     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1342     // preserved and correspond to the bcp/locals pointers.
  1343     //
  1345     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1346                           thread);
  1347     __ increment(rsp, wordSize);
  1349     __ movptr(method, STATE(_method));
  1350     __ verify_oop(method);
  1351     __ movptr(thread, STATE(_thread));                       // get thread
  1353     __ bind(Continue);
  1356   // change thread state
  1357   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1359   __ reset_last_Java_frame(thread, true, true);
  1361   // reset handle block
  1362   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1363   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1365   // If result was an oop then unbox and save it in the frame
  1366   { Label L;
  1367     Label no_oop, store_result;
  1368       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
  1369     __ cmpptr(STATE(_result_handler), oop_handler.addr());
  1370     __ jcc(Assembler::notEqual, no_oop);
  1371 #ifndef _LP64
  1372     __ pop(rdx);
  1373 #endif // _LP64
  1374     __ pop(rax);
  1375     __ testptr(rax, rax);
  1376     __ jcc(Assembler::zero, store_result);
  1377     // unbox
  1378     __ movptr(rax, Address(rax, 0));
  1379     __ bind(store_result);
  1380     __ movptr(STATE(_oop_temp), rax);
  1381     // keep stack depth as expected by pushing oop which will eventually be discarded
  1382     __ push(rax);
  1383 #ifndef _LP64
  1384     __ push(rdx);
  1385 #endif // _LP64
  1386     __ bind(no_oop);
  1390      Label no_reguard;
  1391      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1392      __ jcc(Assembler::notEqual, no_reguard);
  1394      __ pusha();
  1395      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1396      __ popa();
  1398      __ bind(no_reguard);
  1402   // QQQ Seems like for native methods we simply return and the caller will see the pending
  1403   // exception and do the right thing. Certainly the interpreter will, don't know about
  1404   // compiled methods.
  1405   // Seems that the answer to above is no this is wrong. The old code would see the exception
  1406   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
  1407   // This seems wrong need to investigate the spec.
  1409   // handle exceptions (exception handling will handle unlocking!)
  1410   { Label L;
  1411     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1412     __ jcc(Assembler::zero, L);
  1413     __ bind(pending_exception_present);
  1415     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
  1416     // return and let caller deal with exception. This skips the unlocking here which
  1417     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
  1418     // Note: must preverve method in rbx
  1419     //
  1421     // remove activation
  1423     __ movptr(t, STATE(_sender_sp));
  1424     __ leave();                                  // remove frame anchor
  1425     __ pop(rdi);                                 // get return address
  1426     __ movptr(state, STATE(_prev_link));         // get previous state for return
  1427     __ mov(rsp, t);                              // set sp to sender sp
  1428     __ push(rdi);                                // push throwing pc
  1429     // The skips unlocking!! This seems to be what asm interpreter does but seems
  1430     // very wrong. Not clear if this violates the spec.
  1431     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1432     __ bind(L);
  1435   // do unlocking if necessary
  1436   { Label L;
  1437     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1438     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1439     __ jcc(Assembler::zero, L);
  1440     // the code below should be shared with interpreter macro assembler implementation
  1441     { Label unlock;
  1442     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
  1443       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1444       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1445       __ movptr(monitor, STATE(_monitor_base));
  1446       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
  1448       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
  1449       __ testptr(t, t);
  1450       __ jcc(Assembler::notZero, unlock);
  1452       // Entry already unlocked, need to throw exception
  1453       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1454       __ should_not_reach_here();
  1456       __ bind(unlock);
  1457       __ unlock_object(monitor);
  1458       // unlock can blow rbx so restore it for path that needs it below
  1459       __ movptr(method, STATE(_method));
  1461     __ bind(L);
  1464   // jvmti support
  1465   // Note: This must happen _after_ handling/throwing any exceptions since
  1466   //       the exception handler code notifies the runtime of method exits
  1467   //       too. If this happens before, method entry/exit notifications are
  1468   //       not properly paired (was bug - gri 11/22/99).
  1469   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1471   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1472 #ifndef _LP64
  1473   __ pop(rdx);
  1474 #endif // _LP64
  1475   __ pop(rax);
  1476   __ movptr(t, STATE(_result_handler));       // get result handler
  1477   __ call(t);                                 // call result handler to convert to tosca form
  1479   // remove activation
  1481   __ movptr(t, STATE(_sender_sp));
  1483   __ leave();                                  // remove frame anchor
  1484   __ pop(rdi);                                 // get return address
  1485   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
  1486   __ mov(rsp, t);                              // set sp to sender sp
  1487   __ jmp(rdi);
  1489   // invocation counter overflow
  1490   if (inc_counter) {
  1491     // Handle overflow of counter and compile method
  1492     __ bind(invocation_counter_overflow);
  1493     generate_counter_overflow(&continue_after_compile);
  1496   return entry_point;
  1499 // Generate entries that will put a result type index into rcx
  1500 void CppInterpreterGenerator::generate_deopt_handling() {
  1502   Label return_from_deopt_common;
  1504   // Generate entries that will put a result type index into rcx
  1505   // deopt needs to jump to here to enter the interpreter (return a result)
  1506   deopt_frame_manager_return_atos  = __ pc();
  1508   // rax is live here
  1509   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
  1510   __ jmp(return_from_deopt_common);
  1513   // deopt needs to jump to here to enter the interpreter (return a result)
  1514   deopt_frame_manager_return_btos  = __ pc();
  1516   // rax is live here
  1517   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
  1518   __ jmp(return_from_deopt_common);
  1520   // deopt needs to jump to here to enter the interpreter (return a result)
  1521   deopt_frame_manager_return_itos  = __ pc();
  1523   // rax is live here
  1524   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
  1525   __ jmp(return_from_deopt_common);
  1527   // deopt needs to jump to here to enter the interpreter (return a result)
  1529   deopt_frame_manager_return_ltos  = __ pc();
  1530   // rax,rdx are live here
  1531   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
  1532   __ jmp(return_from_deopt_common);
  1534   // deopt needs to jump to here to enter the interpreter (return a result)
  1536   deopt_frame_manager_return_ftos  = __ pc();
  1537   // st(0) is live here
  1538   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1539   __ jmp(return_from_deopt_common);
  1541   // deopt needs to jump to here to enter the interpreter (return a result)
  1542   deopt_frame_manager_return_dtos  = __ pc();
  1544   // st(0) is live here
  1545   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1546   __ jmp(return_from_deopt_common);
  1548   // deopt needs to jump to here to enter the interpreter (return a result)
  1549   deopt_frame_manager_return_vtos  = __ pc();
  1551   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
  1553   // Deopt return common
  1554   // an index is present in rcx that lets us move any possible result being
  1555   // return to the interpreter's stack
  1556   //
  1557   // Because we have a full sized interpreter frame on the youngest
  1558   // activation the stack is pushed too deep to share the tosca to
  1559   // stack converters directly. We shrink the stack to the desired
  1560   // amount and then push result and then re-extend the stack.
  1561   // We could have the code in size_activation layout a short
  1562   // frame for the top activation but that would look different
  1563   // than say sparc (which needs a full size activation because
  1564   // the windows are in the way. Really it could be short? QQQ
  1565   //
  1566   __ bind(return_from_deopt_common);
  1568   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1570   // setup rsp so we can push the "result" as needed.
  1571   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
  1572   __ addptr(rsp, wordSize);                                        // undo prepush
  1574   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1575   // Address index(noreg, rcx, Address::times_ptr);
  1576   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1577   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1578   __ call(rcx);                                                   // call result converter
  1580   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
  1581   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  1582   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  1583                                                                    // result if any on stack already )
  1584   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1587 // Generate the code to handle a more_monitors message from the c++ interpreter
  1588 void CppInterpreterGenerator::generate_more_monitors() {
  1591   Label entry, loop;
  1592   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1593   // 1. compute new pointers                     // rsp: old expression stack top
  1594   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
  1595   __ subptr(rsp, entry_size);                    // move expression stack top limit
  1596   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
  1597   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
  1598   __ subptr(rdx, entry_size);                    // move expression stack bottom
  1599   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
  1600   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
  1601   __ jmp(entry);
  1602   // 2. move expression stack contents
  1603   __ bind(loop);
  1604   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
  1605   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
  1606   __ addptr(rcx, wordSize);                      // advance to next word
  1607   __ bind(entry);
  1608   __ cmpptr(rcx, rdx);                           // check if bottom reached
  1609   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
  1610   // now zero the slot so we can find it.
  1611   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  1612   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
  1616 // Initial entry to C++ interpreter from the call_stub.
  1617 // This entry point is called the frame manager since it handles the generation
  1618 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1619 // and via requests from the interpreter. The requests from the call_stub happen
  1620 // directly thru the entry point. Requests from the interpreter happen via returning
  1621 // from the interpreter and examining the message the interpreter has returned to
  1622 // the frame manager. The frame manager can take the following requests:
  1624 // NO_REQUEST - error, should never happen.
  1625 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1626 //                 allocate a new monitor.
  1627 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1628 //               happens during entry during the entry via the call stub.
  1629 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1630 //
  1631 // Arguments:
  1632 //
  1633 // rbx: methodOop
  1634 // rcx: receiver - unused (retrieved from stack as needed)
  1635 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
  1636 //
  1637 //
  1638 // Stack layout at entry
  1639 //
  1640 // [ return address     ] <--- rsp
  1641 // [ parameter n        ]
  1642 //   ...
  1643 // [ parameter 1        ]
  1644 // [ expression stack   ]
  1645 //
  1646 //
  1647 // We are free to blow any registers we like because the call_stub which brought us here
  1648 // initially has preserved the callee save registers already.
  1649 //
  1650 //
  1652 static address interpreter_frame_manager = NULL;
  1654 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1656   // rbx: methodOop
  1657   // rsi/r13: sender sp
  1659   // Because we redispatch "recursive" interpreter entries thru this same entry point
  1660   // the "input" register usage is a little strange and not what you expect coming
  1661   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
  1662   // state are NULL but on "recursive" dispatches they are what you'd expect.
  1663   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
  1666   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1667   // the code is pretty much ready. Would need to change the test below and for good measure
  1668   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1669   // routines. Not clear this is worth it yet.
  1671   if (interpreter_frame_manager) return interpreter_frame_manager;
  1673   address entry_point = __ pc();
  1675   // Fast accessor methods share this entry point.
  1676   // This works because frame manager is in the same codelet
  1677   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
  1679   Label dispatch_entry_2;
  1680   __ movptr(rcx, sender_sp_on_entry);
  1681   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
  1683   __ jmp(dispatch_entry_2);
  1685   const Register locals  = rdi;
  1687   Label re_dispatch;
  1689   __ bind(re_dispatch);
  1691   // save sender sp (doesn't include return address
  1692   __ lea(rcx, Address(rsp, wordSize));
  1694   __ bind(dispatch_entry_2);
  1696   // save sender sp
  1697   __ push(rcx);
  1699   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1700   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1701   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1703   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1704   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  1705   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1707   // get parameter size (always needed)
  1708   __ load_unsigned_short(rcx, size_of_parameters);
  1710   // rbx: methodOop
  1711   // rcx: size of parameters
  1712   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
  1714   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
  1716   // see if we've got enough room on the stack for locals plus overhead.
  1717   generate_stack_overflow_check();                                 // C++
  1719   // c++ interpreter does not use stack banging or any implicit exceptions
  1720   // leave for now to verify that check is proper.
  1721   bang_stack_shadow_pages(false);
  1725   // compute beginning of parameters (rdi)
  1726   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
  1728   // save sender's sp
  1729   // __ movl(rcx, rsp);
  1731   // get sender's sp
  1732   __ pop(rcx);
  1734   // get return address
  1735   __ pop(rax);
  1737   // rdx - # of additional locals
  1738   // allocate space for locals
  1739   // explicitly initialize locals
  1741     Label exit, loop;
  1742     __ testl(rdx, rdx);                               // (32bit ok)
  1743     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1744     __ bind(loop);
  1745     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1746     __ decrement(rdx);                                // until everything initialized
  1747     __ jcc(Assembler::greater, loop);
  1748     __ bind(exit);
  1752   // Assumes rax = return address
  1754   // allocate and initialize new interpreterState and method expression stack
  1755   // IN(locals) ->  locals
  1756   // IN(state) -> any current interpreter activation
  1757   // destroys rax, rcx, rdx, rdi
  1758   // OUT (state) -> new interpreterState
  1759   // OUT(rsp) -> bottom of methods expression stack
  1761   generate_compute_interpreter_state(state, locals, rcx, false);
  1763   // Call interpreter
  1765   Label call_interpreter;
  1766   __ bind(call_interpreter);
  1768   // c++ interpreter does not use stack banging or any implicit exceptions
  1769   // leave for now to verify that check is proper.
  1770   bang_stack_shadow_pages(false);
  1773   // Call interpreter enter here if message is
  1774   // set and we know stack size is valid
  1776   Label call_interpreter_2;
  1778   __ bind(call_interpreter_2);
  1781     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
  1783 #ifdef _LP64
  1784     __ mov(c_rarg0, state);
  1785 #else
  1786     __ push(state);                                                 // push arg to interpreter
  1787     __ movptr(thread, STATE(_thread));
  1788 #endif // _LP64
  1790     // We can setup the frame anchor with everything we want at this point
  1791     // as we are thread_in_Java and no safepoints can occur until we go to
  1792     // vm mode. We do have to clear flags on return from vm but that is it
  1793     //
  1794     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
  1795     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
  1797     // Call the interpreter
  1799     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
  1800     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
  1802     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
  1803     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
  1804     //
  1805     // state is preserved since it is callee saved
  1806     //
  1808     // reset_last_Java_frame
  1810     NOT_LP64(__ movl(thread, STATE(_thread));)
  1811     __ reset_last_Java_frame(thread, true, true);
  1814   // examine msg from interpreter to determine next action
  1816   __ movl(rdx, STATE(_msg));                                       // Get new message
  1818   Label call_method;
  1819   Label return_from_interpreted_method;
  1820   Label throw_exception;
  1821   Label bad_msg;
  1822   Label do_OSR;
  1824   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
  1825   __ jcc(Assembler::equal, call_method);
  1826   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
  1827   __ jcc(Assembler::equal, return_from_interpreted_method);
  1828   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
  1829   __ jcc(Assembler::equal, do_OSR);
  1830   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
  1831   __ jcc(Assembler::equal, throw_exception);
  1832   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
  1833   __ jcc(Assembler::notEqual, bad_msg);
  1835   // Allocate more monitor space, shuffle expression stack....
  1837   generate_more_monitors();
  1839   __ jmp(call_interpreter);
  1841   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1842   unctrap_frame_manager_entry  = __ pc();
  1843   //
  1844   // Load the registers we need.
  1845   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1846   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1847   __ jmp(call_interpreter_2);
  1851   //=============================================================================
  1852   // Returning from a compiled method into a deopted method. The bytecode at the
  1853   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1854   // for the template based interpreter). Any stack space that was used by the
  1855   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1856   // so all that we have to do is place any pending result on the expression stack
  1857   // and resume execution on the next bytecode.
  1860   generate_deopt_handling();
  1861   __ jmp(call_interpreter);
  1864   // Current frame has caught an exception we need to dispatch to the
  1865   // handler. We can get here because a native interpreter frame caught
  1866   // an exception in which case there is no handler and we must rethrow
  1867   // If it is a vanilla interpreted frame the we simply drop into the
  1868   // interpreter and let it do the lookup.
  1870   Interpreter::_rethrow_exception_entry = __ pc();
  1871   // rax: exception
  1872   // rdx: return address/pc that threw exception
  1874   Label return_with_exception;
  1875   Label unwind_and_forward;
  1877   // restore state pointer.
  1878   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1880   __ movptr(rbx, STATE(_method));                       // get method
  1881 #ifdef _LP64
  1882   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
  1883 #else
  1884   __ movl(rcx, STATE(_thread));                       // get thread
  1886   // Store exception with interpreter will expect it
  1887   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
  1888 #endif // _LP64
  1890   // is current frame vanilla or native?
  1892   __ movl(rdx, access_flags);
  1893   __ testl(rdx, JVM_ACC_NATIVE);
  1894   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
  1896   // We drop thru to unwind a native interpreted frame with a pending exception
  1897   // We jump here for the initial interpreter frame with exception pending
  1898   // We unwind the current acivation and forward it to our caller.
  1900   __ bind(unwind_and_forward);
  1902   // unwind rbp, return stack to unextended value and re-push return address
  1904   __ movptr(rcx, STATE(_sender_sp));
  1905   __ leave();
  1906   __ pop(rdx);
  1907   __ mov(rsp, rcx);
  1908   __ push(rdx);
  1909   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1911   // Return point from a call which returns a result in the native abi
  1912   // (c1/c2/jni-native). This result must be processed onto the java
  1913   // expression stack.
  1914   //
  1915   // A pending exception may be present in which case there is no result present
  1917   Label resume_interpreter;
  1918   Label do_float;
  1919   Label do_double;
  1920   Label done_conv;
  1922   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
  1923   if (UseSSE < 2) {
  1924     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1925     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
  1926     __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1927     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1928     __ jcc(Assembler::equal, do_float);
  1929     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1930     __ jcc(Assembler::equal, do_double);
  1931 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  1932     __ empty_FPU_stack();
  1933 #endif // COMPILER2
  1934     __ jmp(done_conv);
  1936     __ bind(do_float);
  1937 #ifdef COMPILER2
  1938     for (int i = 1; i < 8; i++) {
  1939       __ ffree(i);
  1941 #endif // COMPILER2
  1942     __ jmp(done_conv);
  1943     __ bind(do_double);
  1944 #ifdef COMPILER2
  1945     for (int i = 1; i < 8; i++) {
  1946       __ ffree(i);
  1948 #endif // COMPILER2
  1949     __ jmp(done_conv);
  1950   } else {
  1951     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
  1952     __ jmp(done_conv);
  1955   // Return point to interpreter from compiled/native method
  1956   InternalAddress return_from_native_method(__ pc());
  1958   __ bind(done_conv);
  1961   // Result if any is in tosca. The java expression stack is in the state that the
  1962   // calling convention left it (i.e. params may or may not be present)
  1963   // Copy the result from tosca and place it on java expression stack.
  1965   // Restore rsi/r13 as compiled code may not preserve it
  1967   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1969   // restore stack to what we had when we left (in case i2c extended it)
  1971   __ movptr(rsp, STATE(_stack));
  1972   __ lea(rsp, Address(rsp, wordSize));
  1974   // If there is a pending exception then we don't really have a result to process
  1976 #ifdef _LP64
  1977   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1978 #else
  1979   __ movptr(rcx, STATE(_thread));                       // get thread
  1980   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1981 #endif // _LP64
  1982   __ jcc(Assembler::notZero, return_with_exception);
  1984   // get method just executed
  1985   __ movptr(rbx, STATE(_result._to_call._callee));
  1987   // callee left args on top of expression stack, remove them
  1988   __ load_unsigned_short(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
  1989   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
  1991   __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1992   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1993   // Address index(noreg, rax, Address::times_ptr);
  1994   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1995   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1996   __ call(rcx);                                               // call result converter
  1997   __ jmp(resume_interpreter);
  1999   // An exception is being caught on return to a vanilla interpreter frame.
  2000   // Empty the stack and resume interpreter
  2002   __ bind(return_with_exception);
  2004   // Exception present, empty stack
  2005   __ movptr(rsp, STATE(_stack_base));
  2006   __ jmp(resume_interpreter);
  2008   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  2009   // interpreter call, or native) and unwind this interpreter activation.
  2010   // All monitors should be unlocked.
  2012   __ bind(return_from_interpreted_method);
  2014   Label return_to_initial_caller;
  2016   __ movptr(rbx, STATE(_method));                                   // get method just executed
  2017   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
  2018   __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
  2019   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
  2021   // Copy result to callers java stack
  2022   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
  2023   // Address index(noreg, rax, Address::times_ptr);
  2025   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
  2026   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
  2027   __ call(rax);                                                     // call result converter
  2029   Label unwind_recursive_activation;
  2030   __ bind(unwind_recursive_activation);
  2032   // returning to interpreter method from "recursive" interpreter call
  2033   // result converter left rax pointing to top of the java stack for method we are returning
  2034   // to. Now all we must do is unwind the state from the completed call
  2036   __ movptr(state, STATE(_prev_link));                              // unwind state
  2037   __ leave();                                                       // pop the frame
  2038   __ mov(rsp, rax);                                                 // unwind stack to remove args
  2040   // Resume the interpreter. The current frame contains the current interpreter
  2041   // state object.
  2042   //
  2044   __ bind(resume_interpreter);
  2046   // state == interpreterState object for method we are resuming
  2048   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
  2049   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  2050   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  2051                                                                    // result if any on stack already )
  2052   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  2053   __ jmp(call_interpreter_2);                                      // No need to bang
  2055   // interpreter returning to native code (call_stub/c1/c2)
  2056   // convert result and unwind initial activation
  2057   // rax - result index
  2059   __ bind(return_to_initial_caller);
  2060   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
  2061   // Address index(noreg, rax, Address::times_ptr);
  2063   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
  2064   __ call(rax);                                                    // call result converter
  2066   Label unwind_initial_activation;
  2067   __ bind(unwind_initial_activation);
  2069   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
  2071   /* Current stack picture
  2073         [ incoming parameters ]
  2074         [ extra locals ]
  2075         [ return address to CALL_STUB/C1/C2]
  2076   fp -> [ CALL_STUB/C1/C2 fp ]
  2077         BytecodeInterpreter object
  2078         expression stack
  2079   sp ->
  2081   */
  2083   // return restoring the stack to the original sender_sp value
  2085   __ movptr(rcx, STATE(_sender_sp));
  2086   __ leave();
  2087   __ pop(rdi);                                                        // get return address
  2088   // set stack to sender's sp
  2089   __ mov(rsp, rcx);
  2090   __ jmp(rdi);                                                        // return to call_stub
  2092   // OSR request, adjust return address to make current frame into adapter frame
  2093   // and enter OSR nmethod
  2095   __ bind(do_OSR);
  2097   Label remove_initial_frame;
  2099   // We are going to pop this frame. Is there another interpreter frame underneath
  2100   // it or is it callstub/compiled?
  2102   // Move buffer to the expected parameter location
  2103   __ movptr(rcx, STATE(_result._osr._osr_buf));
  2105   __ movptr(rax, STATE(_result._osr._osr_entry));
  2107   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
  2108   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
  2110   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
  2111   __ leave();                                                  // pop the frame
  2112   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
  2115   // We know we are calling compiled so push specialized return
  2116   // method uses specialized entry, push a return so we look like call stub setup
  2117   // this path will handle fact that result is returned in registers and not
  2118   // on the java stack.
  2120   __ pushptr(return_from_native_method.addr());
  2122   __ jmp(rax);
  2124   __ bind(remove_initial_frame);
  2126   __ movptr(rdx, STATE(_sender_sp));
  2127   __ leave();
  2128   // get real return
  2129   __ pop(rsi);
  2130   // set stack to sender's sp
  2131   __ mov(rsp, rdx);
  2132   // repush real return
  2133   __ push(rsi);
  2134   // Enter OSR nmethod
  2135   __ jmp(rax);
  2140   // Call a new method. All we do is (temporarily) trim the expression stack
  2141   // push a return address to bring us back to here and leap to the new entry.
  2143   __ bind(call_method);
  2145   // stack points to next free location and not top element on expression stack
  2146   // method expects sp to be pointing to topmost element
  2148   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
  2149   __ lea(rsp, Address(rsp, wordSize));
  2151   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
  2153   // don't need a return address if reinvoking interpreter
  2155   // Make it look like call_stub calling conventions
  2157   // Get (potential) receiver
  2158   __ load_unsigned_short(rcx, size_of_parameters);                   // get size of parameters in words
  2160   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
  2161   __ pushptr(recursive.addr());                                      // make it look good in the debugger
  2163   InternalAddress entry(entry_point);
  2164   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
  2165   __ jcc(Assembler::equal, re_dispatch);                             // yes
  2167   __ pop(rax);                                                       // pop dummy address
  2170   // get specialized entry
  2171   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
  2172   // set sender SP
  2173   __ mov(sender_sp_on_entry, rsp);
  2175   // method uses specialized entry, push a return so we look like call stub setup
  2176   // this path will handle fact that result is returned in registers and not
  2177   // on the java stack.
  2179   __ pushptr(return_from_native_method.addr());
  2181   __ jmp(rax);
  2183   __ bind(bad_msg);
  2184   __ stop("Bad message from interpreter");
  2186   // Interpreted method "returned" with an exception pass it on...
  2187   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2188   // We handle result (if any) differently based on return to interpreter or call_stub
  2190   Label unwind_initial_with_pending_exception;
  2192   __ bind(throw_exception);
  2193   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
  2194   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
  2195   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
  2196   __ addptr(rax, wordSize);                                         // account for prepush before we return
  2197   __ jmp(unwind_recursive_activation);
  2199   __ bind(unwind_initial_with_pending_exception);
  2201   // We will unwind the current (initial) interpreter frame and forward
  2202   // the exception to the caller. We must put the exception in the
  2203   // expected register and clear pending exception and then forward.
  2205   __ jmp(unwind_and_forward);
  2207   interpreter_frame_manager = entry_point;
  2208   return entry_point;
  2211 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  2212   // determine code generation flags
  2213   bool synchronized = false;
  2214   address entry_point = NULL;
  2216   switch (kind) {
  2217     case Interpreter::zerolocals             :                                                                             break;
  2218     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  2219     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  2220     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  2221     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  2222     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  2223     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  2224     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
  2226     case Interpreter::java_lang_math_sin     : // fall thru
  2227     case Interpreter::java_lang_math_cos     : // fall thru
  2228     case Interpreter::java_lang_math_tan     : // fall thru
  2229     case Interpreter::java_lang_math_abs     : // fall thru
  2230     case Interpreter::java_lang_math_log     : // fall thru
  2231     case Interpreter::java_lang_math_log10   : // fall thru
  2232     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  2233     case Interpreter::java_lang_ref_reference_get
  2234                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  2235     default                                  : ShouldNotReachHere();                                                       break;
  2238   if (entry_point) return entry_point;
  2240   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  2244 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2245  : CppInterpreterGenerator(code) {
  2246    generate_all(); // down here so it can be "virtual"
  2249 // Deoptimization helpers for C++ interpreter
  2251 // How much stack a method activation needs in words.
  2252 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  2254   const int stub_code = 4;  // see generate_call_stub
  2255   // Save space for one monitor to get into the interpreted method in case
  2256   // the method is synchronized
  2257   int monitor_size    = method->is_synchronized() ?
  2258                                 1*frame::interpreter_frame_monitor_size() : 0;
  2260   // total static overhead size. Account for interpreter state object, return
  2261   // address, saved rbp and 2 words for a "static long no_params() method" issue.
  2263   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
  2264     ( frame::sender_sp_offset - frame::link_offset) + 2;
  2266   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2267   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  2268                            Interpreter::stackElementWords();
  2269   return overhead_size + method_stack + stub_code;
  2272 // returns the activation size.
  2273 static int size_activation_helper(int extra_locals_size, int monitor_size) {
  2274   return (extra_locals_size +                  // the addition space for locals
  2275           2*BytesPerWord +                     // return address and saved rbp
  2276           2*BytesPerWord +                     // "static long no_params() method" issue
  2277           sizeof(BytecodeInterpreter) +               // interpreterState
  2278           monitor_size);                       // monitors
  2281 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2282                                            frame* caller,
  2283                                            frame* current,
  2284                                            methodOop method,
  2285                                            intptr_t* locals,
  2286                                            intptr_t* stack,
  2287                                            intptr_t* stack_base,
  2288                                            intptr_t* monitor_base,
  2289                                            intptr_t* frame_bottom,
  2290                                            bool is_top_frame
  2293   // What about any vtable?
  2294   //
  2295   to_fill->_thread = JavaThread::current();
  2296   // This gets filled in later but make it something recognizable for now
  2297   to_fill->_bcp = method->code_base();
  2298   to_fill->_locals = locals;
  2299   to_fill->_constants = method->constants()->cache();
  2300   to_fill->_method = method;
  2301   to_fill->_mdx = NULL;
  2302   to_fill->_stack = stack;
  2303   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2304     to_fill->_msg = deopt_resume2;
  2305   } else {
  2306     to_fill->_msg = method_resume;
  2308   to_fill->_result._to_call._bcp_advance = 0;
  2309   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2310   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2311   to_fill->_prev_link = NULL;
  2313   to_fill->_sender_sp = caller->unextended_sp();
  2315   if (caller->is_interpreted_frame()) {
  2316     interpreterState prev  = caller->get_interpreterState();
  2317     to_fill->_prev_link = prev;
  2318     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
  2319     // Make the prev callee look proper
  2320     prev->_result._to_call._callee = method;
  2321     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2322       prev->_result._to_call._bcp_advance = 5;
  2323     } else {
  2324       prev->_result._to_call._bcp_advance = 3;
  2327   to_fill->_oop_temp = NULL;
  2328   to_fill->_stack_base = stack_base;
  2329   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2330   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2331   // See generate_compute_interpreter_state.
  2332   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2333   to_fill->_stack_limit = stack_base - (method->max_stack() + extra_stack + 1);
  2334   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2336   to_fill->_self_link = to_fill;
  2337   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
  2338          "Stack top out of range");
  2341 int AbstractInterpreter::layout_activation(methodOop method,
  2342                                                 int tempcount,  //
  2343                                                 int popframe_extra_args,
  2344                                                 int moncount,
  2345                                                 int callee_param_count,
  2346                                                 int callee_locals,
  2347                                                 frame* caller,
  2348                                                 frame* interpreter_frame,
  2349                                                 bool is_top_frame) {
  2351   assert(popframe_extra_args == 0, "FIX ME");
  2352   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2353   // does as far as allocating an interpreter frame.
  2354   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2355   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2356   // as determined by a previous call to this method.
  2357   // It is also guaranteed to be walkable even though it is in a skeletal state
  2358   // NOTE: return size is in words not bytes
  2359   // NOTE: tempcount is the current size of the java expression stack. For top most
  2360   //       frames we will allocate a full sized expression stack and not the curback
  2361   //       version that non-top frames have.
  2363   // Calculate the amount our frame will be adjust by the callee. For top frame
  2364   // this is zero.
  2366   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2367   // calculates the extra locals based on itself. Not what the callee does
  2368   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2369   // as getting sender_sp correct.
  2371   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
  2372   int monitor_size = sizeof(BasicObjectLock) * moncount;
  2374   // First calculate the frame size without any java expression stack
  2375   int short_frame_size = size_activation_helper(extra_locals_size,
  2376                                                 monitor_size);
  2378   // Now with full size expression stack
  2379   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2380   int full_frame_size = short_frame_size + (method->max_stack() + extra_stack) * BytesPerWord;
  2382   // and now with only live portion of the expression stack
  2383   short_frame_size = short_frame_size + tempcount * BytesPerWord;
  2385   // the size the activation is right now. Only top frame is full size
  2386   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
  2388   if (interpreter_frame != NULL) {
  2389 #ifdef ASSERT
  2390     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  2391 #endif
  2393     // MUCHO HACK
  2395     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
  2397     /* Now fillin the interpreterState object */
  2399     // The state object is the first thing on the frame and easily located
  2401     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
  2404     // Find the locals pointer. This is rather simple on x86 because there is no
  2405     // confusing rounding at the callee to account for. We can trivially locate
  2406     // our locals based on the current fp().
  2407     // Note: the + 2 is for handling the "static long no_params() method" issue.
  2408     // (too bad I don't really remember that issue well...)
  2410     intptr_t* locals;
  2411     // If the caller is interpreted we need to make sure that locals points to the first
  2412     // argument that the caller passed and not in an area where the stack might have been extended.
  2413     // because the stack to stack to converter needs a proper locals value in order to remove the
  2414     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
  2415     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
  2416     // adjust the stack?? HMMM QQQ
  2417     //
  2418     if (caller->is_interpreted_frame()) {
  2419       // locals must agree with the caller because it will be used to set the
  2420       // caller's tos when we return.
  2421       interpreterState prev  = caller->get_interpreterState();
  2422       // stack() is prepushed.
  2423       locals = prev->stack() + method->size_of_parameters();
  2424       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
  2425       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
  2426         // os::breakpoint();
  2428     } else {
  2429       // this is where a c2i would have placed locals (except for the +2)
  2430       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
  2433     intptr_t* monitor_base = (intptr_t*) cur_state;
  2434     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
  2435     /* +1 because stack is always prepushed */
  2436     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
  2439     BytecodeInterpreter::layout_interpreterState(cur_state,
  2440                                           caller,
  2441                                           interpreter_frame,
  2442                                           method,
  2443                                           locals,
  2444                                           stack,
  2445                                           stack_base,
  2446                                           monitor_base,
  2447                                           frame_bottom,
  2448                                           is_top_frame);
  2450     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2452   return frame_size/BytesPerWord;
  2455 #endif // CC_INTERP (all)

mercurial