src/share/vm/gc_implementation/g1/concurrentMark.cpp

Tue, 29 Apr 2014 09:33:20 +0200

author
brutisso
date
Tue, 29 Apr 2014 09:33:20 +0200
changeset 7005
e0954897238a
parent 6996
f3aeae1f9fc5
child 7007
7df07d855c8e
permissions
-rw-r--r--

7132678: G1: verify that the marking bitmaps have no marks for objects over TAMS
Reviewed-by: jmasa, tschatzl, ehelin
Contributed-by: tony.printezis@oracle.com, bengt.rutisson@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    35 #include "gc_implementation/g1/g1RemSet.hpp"
    36 #include "gc_implementation/g1/heapRegion.inline.hpp"
    37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    39 #include "gc_implementation/shared/vmGCOperations.hpp"
    40 #include "gc_implementation/shared/gcTimer.hpp"
    41 #include "gc_implementation/shared/gcTrace.hpp"
    42 #include "gc_implementation/shared/gcTraceTime.hpp"
    43 #include "memory/allocation.hpp"
    44 #include "memory/genOopClosures.inline.hpp"
    45 #include "memory/referencePolicy.hpp"
    46 #include "memory/resourceArea.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "runtime/handles.inline.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/prefetch.inline.hpp"
    51 #include "services/memTracker.hpp"
    53 // Concurrent marking bit map wrapper
    55 CMBitMapRO::CMBitMapRO(int shifter) :
    56   _bm(),
    57   _shifter(shifter) {
    58   _bmStartWord = 0;
    59   _bmWordSize = 0;
    60 }
    62 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
    63                                                const HeapWord* limit) const {
    64   // First we must round addr *up* to a possible object boundary.
    65   addr = (HeapWord*)align_size_up((intptr_t)addr,
    66                                   HeapWordSize << _shifter);
    67   size_t addrOffset = heapWordToOffset(addr);
    68   if (limit == NULL) {
    69     limit = _bmStartWord + _bmWordSize;
    70   }
    71   size_t limitOffset = heapWordToOffset(limit);
    72   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    73   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    74   assert(nextAddr >= addr, "get_next_one postcondition");
    75   assert(nextAddr == limit || isMarked(nextAddr),
    76          "get_next_one postcondition");
    77   return nextAddr;
    78 }
    80 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
    81                                                  const HeapWord* limit) const {
    82   size_t addrOffset = heapWordToOffset(addr);
    83   if (limit == NULL) {
    84     limit = _bmStartWord + _bmWordSize;
    85   }
    86   size_t limitOffset = heapWordToOffset(limit);
    87   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    88   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    89   assert(nextAddr >= addr, "get_next_one postcondition");
    90   assert(nextAddr == limit || !isMarked(nextAddr),
    91          "get_next_one postcondition");
    92   return nextAddr;
    93 }
    95 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    96   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    97   return (int) (diff >> _shifter);
    98 }
   100 #ifndef PRODUCT
   101 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
   102   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   103   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   104          "size inconsistency");
   105   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
   106          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
   107 }
   108 #endif
   110 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   111   _bm.print_on_error(st, prefix);
   112 }
   114 bool CMBitMap::allocate(ReservedSpace heap_rs) {
   115   _bmStartWord = (HeapWord*)(heap_rs.base());
   116   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
   117   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
   118                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
   119   if (!brs.is_reserved()) {
   120     warning("ConcurrentMark marking bit map allocation failure");
   121     return false;
   122   }
   123   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
   124   // For now we'll just commit all of the bit map up front.
   125   // Later on we'll try to be more parsimonious with swap.
   126   if (!_virtual_space.initialize(brs, brs.size())) {
   127     warning("ConcurrentMark marking bit map backing store failure");
   128     return false;
   129   }
   130   assert(_virtual_space.committed_size() == brs.size(),
   131          "didn't reserve backing store for all of concurrent marking bit map?");
   132   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
   133   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
   134          _bmWordSize, "inconsistency in bit map sizing");
   135   _bm.set_size(_bmWordSize >> _shifter);
   136   return true;
   137 }
   139 void CMBitMap::clearAll() {
   140   _bm.clear();
   141   return;
   142 }
   144 void CMBitMap::markRange(MemRegion mr) {
   145   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   146   assert(!mr.is_empty(), "unexpected empty region");
   147   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   148           ((HeapWord *) mr.end())),
   149          "markRange memory region end is not card aligned");
   150   // convert address range into offset range
   151   _bm.at_put_range(heapWordToOffset(mr.start()),
   152                    heapWordToOffset(mr.end()), true);
   153 }
   155 void CMBitMap::clearRange(MemRegion mr) {
   156   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   157   assert(!mr.is_empty(), "unexpected empty region");
   158   // convert address range into offset range
   159   _bm.at_put_range(heapWordToOffset(mr.start()),
   160                    heapWordToOffset(mr.end()), false);
   161 }
   163 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   164                                             HeapWord* end_addr) {
   165   HeapWord* start = getNextMarkedWordAddress(addr);
   166   start = MIN2(start, end_addr);
   167   HeapWord* end   = getNextUnmarkedWordAddress(start);
   168   end = MIN2(end, end_addr);
   169   assert(start <= end, "Consistency check");
   170   MemRegion mr(start, end);
   171   if (!mr.is_empty()) {
   172     clearRange(mr);
   173   }
   174   return mr;
   175 }
   177 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   178   _base(NULL), _cm(cm)
   179 #ifdef ASSERT
   180   , _drain_in_progress(false)
   181   , _drain_in_progress_yields(false)
   182 #endif
   183 {}
   185 bool CMMarkStack::allocate(size_t capacity) {
   186   // allocate a stack of the requisite depth
   187   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   188   if (!rs.is_reserved()) {
   189     warning("ConcurrentMark MarkStack allocation failure");
   190     return false;
   191   }
   192   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   193   if (!_virtual_space.initialize(rs, rs.size())) {
   194     warning("ConcurrentMark MarkStack backing store failure");
   195     // Release the virtual memory reserved for the marking stack
   196     rs.release();
   197     return false;
   198   }
   199   assert(_virtual_space.committed_size() == rs.size(),
   200          "Didn't reserve backing store for all of ConcurrentMark stack?");
   201   _base = (oop*) _virtual_space.low();
   202   setEmpty();
   203   _capacity = (jint) capacity;
   204   _saved_index = -1;
   205   _should_expand = false;
   206   NOT_PRODUCT(_max_depth = 0);
   207   return true;
   208 }
   210 void CMMarkStack::expand() {
   211   // Called, during remark, if we've overflown the marking stack during marking.
   212   assert(isEmpty(), "stack should been emptied while handling overflow");
   213   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   214   // Clear expansion flag
   215   _should_expand = false;
   216   if (_capacity == (jint) MarkStackSizeMax) {
   217     if (PrintGCDetails && Verbose) {
   218       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   219     }
   220     return;
   221   }
   222   // Double capacity if possible
   223   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   224   // Do not give up existing stack until we have managed to
   225   // get the double capacity that we desired.
   226   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   227                                                            sizeof(oop)));
   228   if (rs.is_reserved()) {
   229     // Release the backing store associated with old stack
   230     _virtual_space.release();
   231     // Reinitialize virtual space for new stack
   232     if (!_virtual_space.initialize(rs, rs.size())) {
   233       fatal("Not enough swap for expanded marking stack capacity");
   234     }
   235     _base = (oop*)(_virtual_space.low());
   236     _index = 0;
   237     _capacity = new_capacity;
   238   } else {
   239     if (PrintGCDetails && Verbose) {
   240       // Failed to double capacity, continue;
   241       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   242                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   243                           _capacity / K, new_capacity / K);
   244     }
   245   }
   246 }
   248 void CMMarkStack::set_should_expand() {
   249   // If we're resetting the marking state because of an
   250   // marking stack overflow, record that we should, if
   251   // possible, expand the stack.
   252   _should_expand = _cm->has_overflown();
   253 }
   255 CMMarkStack::~CMMarkStack() {
   256   if (_base != NULL) {
   257     _base = NULL;
   258     _virtual_space.release();
   259   }
   260 }
   262 void CMMarkStack::par_push(oop ptr) {
   263   while (true) {
   264     if (isFull()) {
   265       _overflow = true;
   266       return;
   267     }
   268     // Otherwise...
   269     jint index = _index;
   270     jint next_index = index+1;
   271     jint res = Atomic::cmpxchg(next_index, &_index, index);
   272     if (res == index) {
   273       _base[index] = ptr;
   274       // Note that we don't maintain this atomically.  We could, but it
   275       // doesn't seem necessary.
   276       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   277       return;
   278     }
   279     // Otherwise, we need to try again.
   280   }
   281 }
   283 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   284   while (true) {
   285     if (isFull()) {
   286       _overflow = true;
   287       return;
   288     }
   289     // Otherwise...
   290     jint index = _index;
   291     jint next_index = index + n;
   292     if (next_index > _capacity) {
   293       _overflow = true;
   294       return;
   295     }
   296     jint res = Atomic::cmpxchg(next_index, &_index, index);
   297     if (res == index) {
   298       for (int i = 0; i < n; i++) {
   299         int  ind = index + i;
   300         assert(ind < _capacity, "By overflow test above.");
   301         _base[ind] = ptr_arr[i];
   302       }
   303       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   304       return;
   305     }
   306     // Otherwise, we need to try again.
   307   }
   308 }
   310 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   311   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   312   jint start = _index;
   313   jint next_index = start + n;
   314   if (next_index > _capacity) {
   315     _overflow = true;
   316     return;
   317   }
   318   // Otherwise.
   319   _index = next_index;
   320   for (int i = 0; i < n; i++) {
   321     int ind = start + i;
   322     assert(ind < _capacity, "By overflow test above.");
   323     _base[ind] = ptr_arr[i];
   324   }
   325   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   326 }
   328 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   329   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   330   jint index = _index;
   331   if (index == 0) {
   332     *n = 0;
   333     return false;
   334   } else {
   335     int k = MIN2(max, index);
   336     jint  new_ind = index - k;
   337     for (int j = 0; j < k; j++) {
   338       ptr_arr[j] = _base[new_ind + j];
   339     }
   340     _index = new_ind;
   341     *n = k;
   342     return true;
   343   }
   344 }
   346 template<class OopClosureClass>
   347 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   348   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   349          || SafepointSynchronize::is_at_safepoint(),
   350          "Drain recursion must be yield-safe.");
   351   bool res = true;
   352   debug_only(_drain_in_progress = true);
   353   debug_only(_drain_in_progress_yields = yield_after);
   354   while (!isEmpty()) {
   355     oop newOop = pop();
   356     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   357     assert(newOop->is_oop(), "Expected an oop");
   358     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   359            "only grey objects on this stack");
   360     newOop->oop_iterate(cl);
   361     if (yield_after && _cm->do_yield_check()) {
   362       res = false;
   363       break;
   364     }
   365   }
   366   debug_only(_drain_in_progress = false);
   367   return res;
   368 }
   370 void CMMarkStack::note_start_of_gc() {
   371   assert(_saved_index == -1,
   372          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   373   _saved_index = _index;
   374 }
   376 void CMMarkStack::note_end_of_gc() {
   377   // This is intentionally a guarantee, instead of an assert. If we
   378   // accidentally add something to the mark stack during GC, it
   379   // will be a correctness issue so it's better if we crash. we'll
   380   // only check this once per GC anyway, so it won't be a performance
   381   // issue in any way.
   382   guarantee(_saved_index == _index,
   383             err_msg("saved index: %d index: %d", _saved_index, _index));
   384   _saved_index = -1;
   385 }
   387 void CMMarkStack::oops_do(OopClosure* f) {
   388   assert(_saved_index == _index,
   389          err_msg("saved index: %d index: %d", _saved_index, _index));
   390   for (int i = 0; i < _index; i += 1) {
   391     f->do_oop(&_base[i]);
   392   }
   393 }
   395 bool ConcurrentMark::not_yet_marked(oop obj) const {
   396   return _g1h->is_obj_ill(obj);
   397 }
   399 CMRootRegions::CMRootRegions() :
   400   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   401   _should_abort(false),  _next_survivor(NULL) { }
   403 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   404   _young_list = g1h->young_list();
   405   _cm = cm;
   406 }
   408 void CMRootRegions::prepare_for_scan() {
   409   assert(!scan_in_progress(), "pre-condition");
   411   // Currently, only survivors can be root regions.
   412   assert(_next_survivor == NULL, "pre-condition");
   413   _next_survivor = _young_list->first_survivor_region();
   414   _scan_in_progress = (_next_survivor != NULL);
   415   _should_abort = false;
   416 }
   418 HeapRegion* CMRootRegions::claim_next() {
   419   if (_should_abort) {
   420     // If someone has set the should_abort flag, we return NULL to
   421     // force the caller to bail out of their loop.
   422     return NULL;
   423   }
   425   // Currently, only survivors can be root regions.
   426   HeapRegion* res = _next_survivor;
   427   if (res != NULL) {
   428     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   429     // Read it again in case it changed while we were waiting for the lock.
   430     res = _next_survivor;
   431     if (res != NULL) {
   432       if (res == _young_list->last_survivor_region()) {
   433         // We just claimed the last survivor so store NULL to indicate
   434         // that we're done.
   435         _next_survivor = NULL;
   436       } else {
   437         _next_survivor = res->get_next_young_region();
   438       }
   439     } else {
   440       // Someone else claimed the last survivor while we were trying
   441       // to take the lock so nothing else to do.
   442     }
   443   }
   444   assert(res == NULL || res->is_survivor(), "post-condition");
   446   return res;
   447 }
   449 void CMRootRegions::scan_finished() {
   450   assert(scan_in_progress(), "pre-condition");
   452   // Currently, only survivors can be root regions.
   453   if (!_should_abort) {
   454     assert(_next_survivor == NULL, "we should have claimed all survivors");
   455   }
   456   _next_survivor = NULL;
   458   {
   459     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   460     _scan_in_progress = false;
   461     RootRegionScan_lock->notify_all();
   462   }
   463 }
   465 bool CMRootRegions::wait_until_scan_finished() {
   466   if (!scan_in_progress()) return false;
   468   {
   469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   470     while (scan_in_progress()) {
   471       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   472     }
   473   }
   474   return true;
   475 }
   477 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   478 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   479 #endif // _MSC_VER
   481 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   482   return MAX2((n_par_threads + 2) / 4, 1U);
   483 }
   485 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
   486   _g1h(g1h),
   487   _markBitMap1(log2_intptr(MinObjAlignment)),
   488   _markBitMap2(log2_intptr(MinObjAlignment)),
   489   _parallel_marking_threads(0),
   490   _max_parallel_marking_threads(0),
   491   _sleep_factor(0.0),
   492   _marking_task_overhead(1.0),
   493   _cleanup_sleep_factor(0.0),
   494   _cleanup_task_overhead(1.0),
   495   _cleanup_list("Cleanup List"),
   496   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   497   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
   498             CardTableModRefBS::card_shift,
   499             false /* in_resource_area*/),
   501   _prevMarkBitMap(&_markBitMap1),
   502   _nextMarkBitMap(&_markBitMap2),
   504   _markStack(this),
   505   // _finger set in set_non_marking_state
   507   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   508   // _active_tasks set in set_non_marking_state
   509   // _tasks set inside the constructor
   510   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   511   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   513   _has_overflown(false),
   514   _concurrent(false),
   515   _has_aborted(false),
   516   _aborted_gc_id(GCId::undefined()),
   517   _restart_for_overflow(false),
   518   _concurrent_marking_in_progress(false),
   520   // _verbose_level set below
   522   _init_times(),
   523   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   524   _cleanup_times(),
   525   _total_counting_time(0.0),
   526   _total_rs_scrub_time(0.0),
   528   _parallel_workers(NULL),
   530   _count_card_bitmaps(NULL),
   531   _count_marked_bytes(NULL),
   532   _completed_initialization(false) {
   533   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   534   if (verbose_level < no_verbose) {
   535     verbose_level = no_verbose;
   536   }
   537   if (verbose_level > high_verbose) {
   538     verbose_level = high_verbose;
   539   }
   540   _verbose_level = verbose_level;
   542   if (verbose_low()) {
   543     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   544                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
   545   }
   547   if (!_markBitMap1.allocate(heap_rs)) {
   548     warning("Failed to allocate first CM bit map");
   549     return;
   550   }
   551   if (!_markBitMap2.allocate(heap_rs)) {
   552     warning("Failed to allocate second CM bit map");
   553     return;
   554   }
   556   // Create & start a ConcurrentMark thread.
   557   _cmThread = new ConcurrentMarkThread(this);
   558   assert(cmThread() != NULL, "CM Thread should have been created");
   559   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   560   if (_cmThread->osthread() == NULL) {
   561       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   562   }
   564   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   565   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
   566   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
   568   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   569   satb_qs.set_buffer_size(G1SATBBufferSize);
   571   _root_regions.init(_g1h, this);
   573   if (ConcGCThreads > ParallelGCThreads) {
   574     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
   575             "than ParallelGCThreads (" UINTX_FORMAT ").",
   576             ConcGCThreads, ParallelGCThreads);
   577     return;
   578   }
   579   if (ParallelGCThreads == 0) {
   580     // if we are not running with any parallel GC threads we will not
   581     // spawn any marking threads either
   582     _parallel_marking_threads =       0;
   583     _max_parallel_marking_threads =   0;
   584     _sleep_factor             =     0.0;
   585     _marking_task_overhead    =     1.0;
   586   } else {
   587     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   588       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   589       // if both are set
   590       _sleep_factor             = 0.0;
   591       _marking_task_overhead    = 1.0;
   592     } else if (G1MarkingOverheadPercent > 0) {
   593       // We will calculate the number of parallel marking threads based
   594       // on a target overhead with respect to the soft real-time goal
   595       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   596       double overall_cm_overhead =
   597         (double) MaxGCPauseMillis * marking_overhead /
   598         (double) GCPauseIntervalMillis;
   599       double cpu_ratio = 1.0 / (double) os::processor_count();
   600       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   601       double marking_task_overhead =
   602         overall_cm_overhead / marking_thread_num *
   603                                                 (double) os::processor_count();
   604       double sleep_factor =
   605                          (1.0 - marking_task_overhead) / marking_task_overhead;
   607       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   608       _sleep_factor             = sleep_factor;
   609       _marking_task_overhead    = marking_task_overhead;
   610     } else {
   611       // Calculate the number of parallel marking threads by scaling
   612       // the number of parallel GC threads.
   613       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   614       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   615       _sleep_factor             = 0.0;
   616       _marking_task_overhead    = 1.0;
   617     }
   619     assert(ConcGCThreads > 0, "Should have been set");
   620     _parallel_marking_threads = (uint) ConcGCThreads;
   621     _max_parallel_marking_threads = _parallel_marking_threads;
   623     if (parallel_marking_threads() > 1) {
   624       _cleanup_task_overhead = 1.0;
   625     } else {
   626       _cleanup_task_overhead = marking_task_overhead();
   627     }
   628     _cleanup_sleep_factor =
   629                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   631 #if 0
   632     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   633     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   634     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   635     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   636     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   637 #endif
   639     guarantee(parallel_marking_threads() > 0, "peace of mind");
   640     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   641          _max_parallel_marking_threads, false, true);
   642     if (_parallel_workers == NULL) {
   643       vm_exit_during_initialization("Failed necessary allocation.");
   644     } else {
   645       _parallel_workers->initialize_workers();
   646     }
   647   }
   649   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   650     uintx mark_stack_size =
   651       MIN2(MarkStackSizeMax,
   652           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   653     // Verify that the calculated value for MarkStackSize is in range.
   654     // It would be nice to use the private utility routine from Arguments.
   655     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   656       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   657               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   658               mark_stack_size, (uintx) 1, MarkStackSizeMax);
   659       return;
   660     }
   661     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   662   } else {
   663     // Verify MarkStackSize is in range.
   664     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   665       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   666         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   667           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   668                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   669                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
   670           return;
   671         }
   672       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   673         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   674           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   675                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   676                   MarkStackSize, MarkStackSizeMax);
   677           return;
   678         }
   679       }
   680     }
   681   }
   683   if (!_markStack.allocate(MarkStackSize)) {
   684     warning("Failed to allocate CM marking stack");
   685     return;
   686   }
   688   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   689   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   691   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   692   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   694   BitMap::idx_t card_bm_size = _card_bm.size();
   696   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   697   _active_tasks = _max_worker_id;
   699   size_t max_regions = (size_t) _g1h->max_regions();
   700   for (uint i = 0; i < _max_worker_id; ++i) {
   701     CMTaskQueue* task_queue = new CMTaskQueue();
   702     task_queue->initialize();
   703     _task_queues->register_queue(i, task_queue);
   705     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   706     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   708     _tasks[i] = new CMTask(i, this,
   709                            _count_marked_bytes[i],
   710                            &_count_card_bitmaps[i],
   711                            task_queue, _task_queues);
   713     _accum_task_vtime[i] = 0.0;
   714   }
   716   // Calculate the card number for the bottom of the heap. Used
   717   // in biasing indexes into the accounting card bitmaps.
   718   _heap_bottom_card_num =
   719     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   720                                 CardTableModRefBS::card_shift);
   722   // Clear all the liveness counting data
   723   clear_all_count_data();
   725   // so that the call below can read a sensible value
   726   _heap_start = (HeapWord*) heap_rs.base();
   727   set_non_marking_state();
   728   _completed_initialization = true;
   729 }
   731 void ConcurrentMark::update_g1_committed(bool force) {
   732   // If concurrent marking is not in progress, then we do not need to
   733   // update _heap_end.
   734   if (!concurrent_marking_in_progress() && !force) return;
   736   MemRegion committed = _g1h->g1_committed();
   737   assert(committed.start() == _heap_start, "start shouldn't change");
   738   HeapWord* new_end = committed.end();
   739   if (new_end > _heap_end) {
   740     // The heap has been expanded.
   742     _heap_end = new_end;
   743   }
   744   // Notice that the heap can also shrink. However, this only happens
   745   // during a Full GC (at least currently) and the entire marking
   746   // phase will bail out and the task will not be restarted. So, let's
   747   // do nothing.
   748 }
   750 void ConcurrentMark::reset() {
   751   // Starting values for these two. This should be called in a STW
   752   // phase. CM will be notified of any future g1_committed expansions
   753   // will be at the end of evacuation pauses, when tasks are
   754   // inactive.
   755   MemRegion committed = _g1h->g1_committed();
   756   _heap_start = committed.start();
   757   _heap_end   = committed.end();
   759   // Separated the asserts so that we know which one fires.
   760   assert(_heap_start != NULL, "heap bounds should look ok");
   761   assert(_heap_end != NULL, "heap bounds should look ok");
   762   assert(_heap_start < _heap_end, "heap bounds should look ok");
   764   // Reset all the marking data structures and any necessary flags
   765   reset_marking_state();
   767   if (verbose_low()) {
   768     gclog_or_tty->print_cr("[global] resetting");
   769   }
   771   // We do reset all of them, since different phases will use
   772   // different number of active threads. So, it's easiest to have all
   773   // of them ready.
   774   for (uint i = 0; i < _max_worker_id; ++i) {
   775     _tasks[i]->reset(_nextMarkBitMap);
   776   }
   778   // we need this to make sure that the flag is on during the evac
   779   // pause with initial mark piggy-backed
   780   set_concurrent_marking_in_progress();
   781 }
   784 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   785   _markStack.set_should_expand();
   786   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   787   if (clear_overflow) {
   788     clear_has_overflown();
   789   } else {
   790     assert(has_overflown(), "pre-condition");
   791   }
   792   _finger = _heap_start;
   794   for (uint i = 0; i < _max_worker_id; ++i) {
   795     CMTaskQueue* queue = _task_queues->queue(i);
   796     queue->set_empty();
   797   }
   798 }
   800 void ConcurrentMark::set_concurrency(uint active_tasks) {
   801   assert(active_tasks <= _max_worker_id, "we should not have more");
   803   _active_tasks = active_tasks;
   804   // Need to update the three data structures below according to the
   805   // number of active threads for this phase.
   806   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   807   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   808   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   809 }
   811 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   812   set_concurrency(active_tasks);
   814   _concurrent = concurrent;
   815   // We propagate this to all tasks, not just the active ones.
   816   for (uint i = 0; i < _max_worker_id; ++i)
   817     _tasks[i]->set_concurrent(concurrent);
   819   if (concurrent) {
   820     set_concurrent_marking_in_progress();
   821   } else {
   822     // We currently assume that the concurrent flag has been set to
   823     // false before we start remark. At this point we should also be
   824     // in a STW phase.
   825     assert(!concurrent_marking_in_progress(), "invariant");
   826     assert(out_of_regions(),
   827            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   828                    p2i(_finger), p2i(_heap_end)));
   829     update_g1_committed(true);
   830   }
   831 }
   833 void ConcurrentMark::set_non_marking_state() {
   834   // We set the global marking state to some default values when we're
   835   // not doing marking.
   836   reset_marking_state();
   837   _active_tasks = 0;
   838   clear_concurrent_marking_in_progress();
   839 }
   841 ConcurrentMark::~ConcurrentMark() {
   842   // The ConcurrentMark instance is never freed.
   843   ShouldNotReachHere();
   844 }
   846 void ConcurrentMark::clearNextBitmap() {
   847   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   848   G1CollectorPolicy* g1p = g1h->g1_policy();
   850   // Make sure that the concurrent mark thread looks to still be in
   851   // the current cycle.
   852   guarantee(cmThread()->during_cycle(), "invariant");
   854   // We are finishing up the current cycle by clearing the next
   855   // marking bitmap and getting it ready for the next cycle. During
   856   // this time no other cycle can start. So, let's make sure that this
   857   // is the case.
   858   guarantee(!g1h->mark_in_progress(), "invariant");
   860   // clear the mark bitmap (no grey objects to start with).
   861   // We need to do this in chunks and offer to yield in between
   862   // each chunk.
   863   HeapWord* start  = _nextMarkBitMap->startWord();
   864   HeapWord* end    = _nextMarkBitMap->endWord();
   865   HeapWord* cur    = start;
   866   size_t chunkSize = M;
   867   while (cur < end) {
   868     HeapWord* next = cur + chunkSize;
   869     if (next > end) {
   870       next = end;
   871     }
   872     MemRegion mr(cur,next);
   873     _nextMarkBitMap->clearRange(mr);
   874     cur = next;
   875     do_yield_check();
   877     // Repeat the asserts from above. We'll do them as asserts here to
   878     // minimize their overhead on the product. However, we'll have
   879     // them as guarantees at the beginning / end of the bitmap
   880     // clearing to get some checking in the product.
   881     assert(cmThread()->during_cycle(), "invariant");
   882     assert(!g1h->mark_in_progress(), "invariant");
   883   }
   885   // Clear the liveness counting data
   886   clear_all_count_data();
   888   // Repeat the asserts from above.
   889   guarantee(cmThread()->during_cycle(), "invariant");
   890   guarantee(!g1h->mark_in_progress(), "invariant");
   891 }
   893 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   894 public:
   895   bool doHeapRegion(HeapRegion* r) {
   896     if (!r->continuesHumongous()) {
   897       r->note_start_of_marking();
   898     }
   899     return false;
   900   }
   901 };
   903 void ConcurrentMark::checkpointRootsInitialPre() {
   904   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   905   G1CollectorPolicy* g1p = g1h->g1_policy();
   907   _has_aborted = false;
   909 #ifndef PRODUCT
   910   if (G1PrintReachableAtInitialMark) {
   911     print_reachable("at-cycle-start",
   912                     VerifyOption_G1UsePrevMarking, true /* all */);
   913   }
   914 #endif
   916   // Initialise marking structures. This has to be done in a STW phase.
   917   reset();
   919   // For each region note start of marking.
   920   NoteStartOfMarkHRClosure startcl;
   921   g1h->heap_region_iterate(&startcl);
   922 }
   925 void ConcurrentMark::checkpointRootsInitialPost() {
   926   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   928   // If we force an overflow during remark, the remark operation will
   929   // actually abort and we'll restart concurrent marking. If we always
   930   // force an oveflow during remark we'll never actually complete the
   931   // marking phase. So, we initilize this here, at the start of the
   932   // cycle, so that at the remaining overflow number will decrease at
   933   // every remark and we'll eventually not need to cause one.
   934   force_overflow_stw()->init();
   936   // Start Concurrent Marking weak-reference discovery.
   937   ReferenceProcessor* rp = g1h->ref_processor_cm();
   938   // enable ("weak") refs discovery
   939   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   940   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   942   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   943   // This is the start of  the marking cycle, we're expected all
   944   // threads to have SATB queues with active set to false.
   945   satb_mq_set.set_active_all_threads(true, /* new active value */
   946                                      false /* expected_active */);
   948   _root_regions.prepare_for_scan();
   950   // update_g1_committed() will be called at the end of an evac pause
   951   // when marking is on. So, it's also called at the end of the
   952   // initial-mark pause to update the heap end, if the heap expands
   953   // during it. No need to call it here.
   954 }
   956 /*
   957  * Notice that in the next two methods, we actually leave the STS
   958  * during the barrier sync and join it immediately afterwards. If we
   959  * do not do this, the following deadlock can occur: one thread could
   960  * be in the barrier sync code, waiting for the other thread to also
   961  * sync up, whereas another one could be trying to yield, while also
   962  * waiting for the other threads to sync up too.
   963  *
   964  * Note, however, that this code is also used during remark and in
   965  * this case we should not attempt to leave / enter the STS, otherwise
   966  * we'll either hit an asseert (debug / fastdebug) or deadlock
   967  * (product). So we should only leave / enter the STS if we are
   968  * operating concurrently.
   969  *
   970  * Because the thread that does the sync barrier has left the STS, it
   971  * is possible to be suspended for a Full GC or an evacuation pause
   972  * could occur. This is actually safe, since the entering the sync
   973  * barrier is one of the last things do_marking_step() does, and it
   974  * doesn't manipulate any data structures afterwards.
   975  */
   977 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   978   if (verbose_low()) {
   979     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   980   }
   982   if (concurrent()) {
   983     SuspendibleThreadSet::leave();
   984   }
   986   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
   988   if (concurrent()) {
   989     SuspendibleThreadSet::join();
   990   }
   991   // at this point everyone should have synced up and not be doing any
   992   // more work
   994   if (verbose_low()) {
   995     if (barrier_aborted) {
   996       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
   997     } else {
   998       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
   999     }
  1002   if (barrier_aborted) {
  1003     // If the barrier aborted we ignore the overflow condition and
  1004     // just abort the whole marking phase as quickly as possible.
  1005     return;
  1008   // If we're executing the concurrent phase of marking, reset the marking
  1009   // state; otherwise the marking state is reset after reference processing,
  1010   // during the remark pause.
  1011   // If we reset here as a result of an overflow during the remark we will
  1012   // see assertion failures from any subsequent set_concurrency_and_phase()
  1013   // calls.
  1014   if (concurrent()) {
  1015     // let the task associated with with worker 0 do this
  1016     if (worker_id == 0) {
  1017       // task 0 is responsible for clearing the global data structures
  1018       // We should be here because of an overflow. During STW we should
  1019       // not clear the overflow flag since we rely on it being true when
  1020       // we exit this method to abort the pause and restart concurent
  1021       // marking.
  1022       reset_marking_state(true /* clear_overflow */);
  1023       force_overflow()->update();
  1025       if (G1Log::fine()) {
  1026         gclog_or_tty->gclog_stamp(concurrent_gc_id());
  1027         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1032   // after this, each task should reset its own data structures then
  1033   // then go into the second barrier
  1036 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1037   if (verbose_low()) {
  1038     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1041   if (concurrent()) {
  1042     SuspendibleThreadSet::leave();
  1045   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
  1047   if (concurrent()) {
  1048     SuspendibleThreadSet::join();
  1050   // at this point everything should be re-initialized and ready to go
  1052   if (verbose_low()) {
  1053     if (barrier_aborted) {
  1054       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
  1055     } else {
  1056       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1061 #ifndef PRODUCT
  1062 void ForceOverflowSettings::init() {
  1063   _num_remaining = G1ConcMarkForceOverflow;
  1064   _force = false;
  1065   update();
  1068 void ForceOverflowSettings::update() {
  1069   if (_num_remaining > 0) {
  1070     _num_remaining -= 1;
  1071     _force = true;
  1072   } else {
  1073     _force = false;
  1077 bool ForceOverflowSettings::should_force() {
  1078   if (_force) {
  1079     _force = false;
  1080     return true;
  1081   } else {
  1082     return false;
  1085 #endif // !PRODUCT
  1087 class CMConcurrentMarkingTask: public AbstractGangTask {
  1088 private:
  1089   ConcurrentMark*       _cm;
  1090   ConcurrentMarkThread* _cmt;
  1092 public:
  1093   void work(uint worker_id) {
  1094     assert(Thread::current()->is_ConcurrentGC_thread(),
  1095            "this should only be done by a conc GC thread");
  1096     ResourceMark rm;
  1098     double start_vtime = os::elapsedVTime();
  1100     SuspendibleThreadSet::join();
  1102     assert(worker_id < _cm->active_tasks(), "invariant");
  1103     CMTask* the_task = _cm->task(worker_id);
  1104     the_task->record_start_time();
  1105     if (!_cm->has_aborted()) {
  1106       do {
  1107         double start_vtime_sec = os::elapsedVTime();
  1108         double start_time_sec = os::elapsedTime();
  1109         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1111         the_task->do_marking_step(mark_step_duration_ms,
  1112                                   true  /* do_termination */,
  1113                                   false /* is_serial*/);
  1115         double end_time_sec = os::elapsedTime();
  1116         double end_vtime_sec = os::elapsedVTime();
  1117         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1118         double elapsed_time_sec = end_time_sec - start_time_sec;
  1119         _cm->clear_has_overflown();
  1121         bool ret = _cm->do_yield_check(worker_id);
  1123         jlong sleep_time_ms;
  1124         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1125           sleep_time_ms =
  1126             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1127           SuspendibleThreadSet::leave();
  1128           os::sleep(Thread::current(), sleep_time_ms, false);
  1129           SuspendibleThreadSet::join();
  1131         double end_time2_sec = os::elapsedTime();
  1132         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1134 #if 0
  1135           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1136                                  "overhead %1.4lf",
  1137                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1138                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1139           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1140                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1141 #endif
  1142       } while (!_cm->has_aborted() && the_task->has_aborted());
  1144     the_task->record_end_time();
  1145     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1147     SuspendibleThreadSet::leave();
  1149     double end_vtime = os::elapsedVTime();
  1150     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1153   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1154                           ConcurrentMarkThread* cmt) :
  1155       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1157   ~CMConcurrentMarkingTask() { }
  1158 };
  1160 // Calculates the number of active workers for a concurrent
  1161 // phase.
  1162 uint ConcurrentMark::calc_parallel_marking_threads() {
  1163   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1164     uint n_conc_workers = 0;
  1165     if (!UseDynamicNumberOfGCThreads ||
  1166         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1167          !ForceDynamicNumberOfGCThreads)) {
  1168       n_conc_workers = max_parallel_marking_threads();
  1169     } else {
  1170       n_conc_workers =
  1171         AdaptiveSizePolicy::calc_default_active_workers(
  1172                                      max_parallel_marking_threads(),
  1173                                      1, /* Minimum workers */
  1174                                      parallel_marking_threads(),
  1175                                      Threads::number_of_non_daemon_threads());
  1176       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1177       // that scaling has already gone into "_max_parallel_marking_threads".
  1179     assert(n_conc_workers > 0, "Always need at least 1");
  1180     return n_conc_workers;
  1182   // If we are not running with any parallel GC threads we will not
  1183   // have spawned any marking threads either. Hence the number of
  1184   // concurrent workers should be 0.
  1185   return 0;
  1188 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1189   // Currently, only survivors can be root regions.
  1190   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1191   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1193   const uintx interval = PrefetchScanIntervalInBytes;
  1194   HeapWord* curr = hr->bottom();
  1195   const HeapWord* end = hr->top();
  1196   while (curr < end) {
  1197     Prefetch::read(curr, interval);
  1198     oop obj = oop(curr);
  1199     int size = obj->oop_iterate(&cl);
  1200     assert(size == obj->size(), "sanity");
  1201     curr += size;
  1205 class CMRootRegionScanTask : public AbstractGangTask {
  1206 private:
  1207   ConcurrentMark* _cm;
  1209 public:
  1210   CMRootRegionScanTask(ConcurrentMark* cm) :
  1211     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1213   void work(uint worker_id) {
  1214     assert(Thread::current()->is_ConcurrentGC_thread(),
  1215            "this should only be done by a conc GC thread");
  1217     CMRootRegions* root_regions = _cm->root_regions();
  1218     HeapRegion* hr = root_regions->claim_next();
  1219     while (hr != NULL) {
  1220       _cm->scanRootRegion(hr, worker_id);
  1221       hr = root_regions->claim_next();
  1224 };
  1226 void ConcurrentMark::scanRootRegions() {
  1227   // Start of concurrent marking.
  1228   ClassLoaderDataGraph::clear_claimed_marks();
  1230   // scan_in_progress() will have been set to true only if there was
  1231   // at least one root region to scan. So, if it's false, we
  1232   // should not attempt to do any further work.
  1233   if (root_regions()->scan_in_progress()) {
  1234     _parallel_marking_threads = calc_parallel_marking_threads();
  1235     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1236            "Maximum number of marking threads exceeded");
  1237     uint active_workers = MAX2(1U, parallel_marking_threads());
  1239     CMRootRegionScanTask task(this);
  1240     if (use_parallel_marking_threads()) {
  1241       _parallel_workers->set_active_workers((int) active_workers);
  1242       _parallel_workers->run_task(&task);
  1243     } else {
  1244       task.work(0);
  1247     // It's possible that has_aborted() is true here without actually
  1248     // aborting the survivor scan earlier. This is OK as it's
  1249     // mainly used for sanity checking.
  1250     root_regions()->scan_finished();
  1254 void ConcurrentMark::markFromRoots() {
  1255   // we might be tempted to assert that:
  1256   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1257   //        "inconsistent argument?");
  1258   // However that wouldn't be right, because it's possible that
  1259   // a safepoint is indeed in progress as a younger generation
  1260   // stop-the-world GC happens even as we mark in this generation.
  1262   _restart_for_overflow = false;
  1263   force_overflow_conc()->init();
  1265   // _g1h has _n_par_threads
  1266   _parallel_marking_threads = calc_parallel_marking_threads();
  1267   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1268     "Maximum number of marking threads exceeded");
  1270   uint active_workers = MAX2(1U, parallel_marking_threads());
  1272   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1273   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1275   CMConcurrentMarkingTask markingTask(this, cmThread());
  1276   if (use_parallel_marking_threads()) {
  1277     _parallel_workers->set_active_workers((int)active_workers);
  1278     // Don't set _n_par_threads because it affects MT in process_roots()
  1279     // and the decisions on that MT processing is made elsewhere.
  1280     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1281     _parallel_workers->run_task(&markingTask);
  1282   } else {
  1283     markingTask.work(0);
  1285   print_stats();
  1288 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1289   // world is stopped at this checkpoint
  1290   assert(SafepointSynchronize::is_at_safepoint(),
  1291          "world should be stopped");
  1293   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1295   // If a full collection has happened, we shouldn't do this.
  1296   if (has_aborted()) {
  1297     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1298     return;
  1301   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1303   if (VerifyDuringGC) {
  1304     HandleMark hm;  // handle scope
  1305     Universe::heap()->prepare_for_verify();
  1306     Universe::verify(VerifyOption_G1UsePrevMarking,
  1307                      " VerifyDuringGC:(before)");
  1309   g1h->check_bitmaps("Remark Start");
  1311   G1CollectorPolicy* g1p = g1h->g1_policy();
  1312   g1p->record_concurrent_mark_remark_start();
  1314   double start = os::elapsedTime();
  1316   checkpointRootsFinalWork();
  1318   double mark_work_end = os::elapsedTime();
  1320   weakRefsWork(clear_all_soft_refs);
  1322   if (has_overflown()) {
  1323     // Oops.  We overflowed.  Restart concurrent marking.
  1324     _restart_for_overflow = true;
  1325     if (G1TraceMarkStackOverflow) {
  1326       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1329     // Verify the heap w.r.t. the previous marking bitmap.
  1330     if (VerifyDuringGC) {
  1331       HandleMark hm;  // handle scope
  1332       Universe::heap()->prepare_for_verify();
  1333       Universe::verify(VerifyOption_G1UsePrevMarking,
  1334                        " VerifyDuringGC:(overflow)");
  1337     // Clear the marking state because we will be restarting
  1338     // marking due to overflowing the global mark stack.
  1339     reset_marking_state();
  1340   } else {
  1341     // Aggregate the per-task counting data that we have accumulated
  1342     // while marking.
  1343     aggregate_count_data();
  1345     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1346     // We're done with marking.
  1347     // This is the end of  the marking cycle, we're expected all
  1348     // threads to have SATB queues with active set to true.
  1349     satb_mq_set.set_active_all_threads(false, /* new active value */
  1350                                        true /* expected_active */);
  1352     if (VerifyDuringGC) {
  1353       HandleMark hm;  // handle scope
  1354       Universe::heap()->prepare_for_verify();
  1355       Universe::verify(VerifyOption_G1UseNextMarking,
  1356                        " VerifyDuringGC:(after)");
  1358     g1h->check_bitmaps("Remark End");
  1359     assert(!restart_for_overflow(), "sanity");
  1360     // Completely reset the marking state since marking completed
  1361     set_non_marking_state();
  1364   // Expand the marking stack, if we have to and if we can.
  1365   if (_markStack.should_expand()) {
  1366     _markStack.expand();
  1369   // Statistics
  1370   double now = os::elapsedTime();
  1371   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1372   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1373   _remark_times.add((now - start) * 1000.0);
  1375   g1p->record_concurrent_mark_remark_end();
  1377   G1CMIsAliveClosure is_alive(g1h);
  1378   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1381 // Base class of the closures that finalize and verify the
  1382 // liveness counting data.
  1383 class CMCountDataClosureBase: public HeapRegionClosure {
  1384 protected:
  1385   G1CollectedHeap* _g1h;
  1386   ConcurrentMark* _cm;
  1387   CardTableModRefBS* _ct_bs;
  1389   BitMap* _region_bm;
  1390   BitMap* _card_bm;
  1392   // Takes a region that's not empty (i.e., it has at least one
  1393   // live object in it and sets its corresponding bit on the region
  1394   // bitmap to 1. If the region is "starts humongous" it will also set
  1395   // to 1 the bits on the region bitmap that correspond to its
  1396   // associated "continues humongous" regions.
  1397   void set_bit_for_region(HeapRegion* hr) {
  1398     assert(!hr->continuesHumongous(), "should have filtered those out");
  1400     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1401     if (!hr->startsHumongous()) {
  1402       // Normal (non-humongous) case: just set the bit.
  1403       _region_bm->par_at_put(index, true);
  1404     } else {
  1405       // Starts humongous case: calculate how many regions are part of
  1406       // this humongous region and then set the bit range.
  1407       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1408       _region_bm->par_at_put_range(index, end_index, true);
  1412 public:
  1413   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1414                          BitMap* region_bm, BitMap* card_bm):
  1415     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1416     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1417     _region_bm(region_bm), _card_bm(card_bm) { }
  1418 };
  1420 // Closure that calculates the # live objects per region. Used
  1421 // for verification purposes during the cleanup pause.
  1422 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1423   CMBitMapRO* _bm;
  1424   size_t _region_marked_bytes;
  1426 public:
  1427   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1428                          BitMap* region_bm, BitMap* card_bm) :
  1429     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1430     _bm(bm), _region_marked_bytes(0) { }
  1432   bool doHeapRegion(HeapRegion* hr) {
  1434     if (hr->continuesHumongous()) {
  1435       // We will ignore these here and process them when their
  1436       // associated "starts humongous" region is processed (see
  1437       // set_bit_for_heap_region()). Note that we cannot rely on their
  1438       // associated "starts humongous" region to have their bit set to
  1439       // 1 since, due to the region chunking in the parallel region
  1440       // iteration, a "continues humongous" region might be visited
  1441       // before its associated "starts humongous".
  1442       return false;
  1445     HeapWord* ntams = hr->next_top_at_mark_start();
  1446     HeapWord* start = hr->bottom();
  1448     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1449            err_msg("Preconditions not met - "
  1450                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1451                    p2i(start), p2i(ntams), p2i(hr->end())));
  1453     // Find the first marked object at or after "start".
  1454     start = _bm->getNextMarkedWordAddress(start, ntams);
  1456     size_t marked_bytes = 0;
  1458     while (start < ntams) {
  1459       oop obj = oop(start);
  1460       int obj_sz = obj->size();
  1461       HeapWord* obj_end = start + obj_sz;
  1463       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1464       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1466       // Note: if we're looking at the last region in heap - obj_end
  1467       // could be actually just beyond the end of the heap; end_idx
  1468       // will then correspond to a (non-existent) card that is also
  1469       // just beyond the heap.
  1470       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1471         // end of object is not card aligned - increment to cover
  1472         // all the cards spanned by the object
  1473         end_idx += 1;
  1476       // Set the bits in the card BM for the cards spanned by this object.
  1477       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1479       // Add the size of this object to the number of marked bytes.
  1480       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1482       // Find the next marked object after this one.
  1483       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1486     // Mark the allocated-since-marking portion...
  1487     HeapWord* top = hr->top();
  1488     if (ntams < top) {
  1489       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1490       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1492       // Note: if we're looking at the last region in heap - top
  1493       // could be actually just beyond the end of the heap; end_idx
  1494       // will then correspond to a (non-existent) card that is also
  1495       // just beyond the heap.
  1496       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1497         // end of object is not card aligned - increment to cover
  1498         // all the cards spanned by the object
  1499         end_idx += 1;
  1501       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1503       // This definitely means the region has live objects.
  1504       set_bit_for_region(hr);
  1507     // Update the live region bitmap.
  1508     if (marked_bytes > 0) {
  1509       set_bit_for_region(hr);
  1512     // Set the marked bytes for the current region so that
  1513     // it can be queried by a calling verificiation routine
  1514     _region_marked_bytes = marked_bytes;
  1516     return false;
  1519   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1520 };
  1522 // Heap region closure used for verifying the counting data
  1523 // that was accumulated concurrently and aggregated during
  1524 // the remark pause. This closure is applied to the heap
  1525 // regions during the STW cleanup pause.
  1527 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1528   G1CollectedHeap* _g1h;
  1529   ConcurrentMark* _cm;
  1530   CalcLiveObjectsClosure _calc_cl;
  1531   BitMap* _region_bm;   // Region BM to be verified
  1532   BitMap* _card_bm;     // Card BM to be verified
  1533   bool _verbose;        // verbose output?
  1535   BitMap* _exp_region_bm; // Expected Region BM values
  1536   BitMap* _exp_card_bm;   // Expected card BM values
  1538   int _failures;
  1540 public:
  1541   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1542                                 BitMap* region_bm,
  1543                                 BitMap* card_bm,
  1544                                 BitMap* exp_region_bm,
  1545                                 BitMap* exp_card_bm,
  1546                                 bool verbose) :
  1547     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1548     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1549     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1550     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1551     _failures(0) { }
  1553   int failures() const { return _failures; }
  1555   bool doHeapRegion(HeapRegion* hr) {
  1556     if (hr->continuesHumongous()) {
  1557       // We will ignore these here and process them when their
  1558       // associated "starts humongous" region is processed (see
  1559       // set_bit_for_heap_region()). Note that we cannot rely on their
  1560       // associated "starts humongous" region to have their bit set to
  1561       // 1 since, due to the region chunking in the parallel region
  1562       // iteration, a "continues humongous" region might be visited
  1563       // before its associated "starts humongous".
  1564       return false;
  1567     int failures = 0;
  1569     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1570     // this region and set the corresponding bits in the expected region
  1571     // and card bitmaps.
  1572     bool res = _calc_cl.doHeapRegion(hr);
  1573     assert(res == false, "should be continuing");
  1575     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1576                     Mutex::_no_safepoint_check_flag);
  1578     // Verify the marked bytes for this region.
  1579     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1580     size_t act_marked_bytes = hr->next_marked_bytes();
  1582     // We're not OK if expected marked bytes > actual marked bytes. It means
  1583     // we have missed accounting some objects during the actual marking.
  1584     if (exp_marked_bytes > act_marked_bytes) {
  1585       if (_verbose) {
  1586         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1587                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1588                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1590       failures += 1;
  1593     // Verify the bit, for this region, in the actual and expected
  1594     // (which was just calculated) region bit maps.
  1595     // We're not OK if the bit in the calculated expected region
  1596     // bitmap is set and the bit in the actual region bitmap is not.
  1597     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1599     bool expected = _exp_region_bm->at(index);
  1600     bool actual = _region_bm->at(index);
  1601     if (expected && !actual) {
  1602       if (_verbose) {
  1603         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1604                                "expected: %s, actual: %s",
  1605                                hr->hrs_index(),
  1606                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1608       failures += 1;
  1611     // Verify that the card bit maps for the cards spanned by the current
  1612     // region match. We have an error if we have a set bit in the expected
  1613     // bit map and the corresponding bit in the actual bitmap is not set.
  1615     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1616     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1618     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1619       expected = _exp_card_bm->at(i);
  1620       actual = _card_bm->at(i);
  1622       if (expected && !actual) {
  1623         if (_verbose) {
  1624           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1625                                  "expected: %s, actual: %s",
  1626                                  hr->hrs_index(), i,
  1627                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1629         failures += 1;
  1633     if (failures > 0 && _verbose)  {
  1634       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1635                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1636                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
  1637                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1640     _failures += failures;
  1642     // We could stop iteration over the heap when we
  1643     // find the first violating region by returning true.
  1644     return false;
  1646 };
  1648 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1649 protected:
  1650   G1CollectedHeap* _g1h;
  1651   ConcurrentMark* _cm;
  1652   BitMap* _actual_region_bm;
  1653   BitMap* _actual_card_bm;
  1655   uint    _n_workers;
  1657   BitMap* _expected_region_bm;
  1658   BitMap* _expected_card_bm;
  1660   int  _failures;
  1661   bool _verbose;
  1663 public:
  1664   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1665                             BitMap* region_bm, BitMap* card_bm,
  1666                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1667     : AbstractGangTask("G1 verify final counting"),
  1668       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1669       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1670       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1671       _failures(0), _verbose(false),
  1672       _n_workers(0) {
  1673     assert(VerifyDuringGC, "don't call this otherwise");
  1675     // Use the value already set as the number of active threads
  1676     // in the call to run_task().
  1677     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1678       assert( _g1h->workers()->active_workers() > 0,
  1679         "Should have been previously set");
  1680       _n_workers = _g1h->workers()->active_workers();
  1681     } else {
  1682       _n_workers = 1;
  1685     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1686     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1688     _verbose = _cm->verbose_medium();
  1691   void work(uint worker_id) {
  1692     assert(worker_id < _n_workers, "invariant");
  1694     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1695                                             _actual_region_bm, _actual_card_bm,
  1696                                             _expected_region_bm,
  1697                                             _expected_card_bm,
  1698                                             _verbose);
  1700     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1701       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1702                                             worker_id,
  1703                                             _n_workers,
  1704                                             HeapRegion::VerifyCountClaimValue);
  1705     } else {
  1706       _g1h->heap_region_iterate(&verify_cl);
  1709     Atomic::add(verify_cl.failures(), &_failures);
  1712   int failures() const { return _failures; }
  1713 };
  1715 // Closure that finalizes the liveness counting data.
  1716 // Used during the cleanup pause.
  1717 // Sets the bits corresponding to the interval [NTAMS, top]
  1718 // (which contains the implicitly live objects) in the
  1719 // card liveness bitmap. Also sets the bit for each region,
  1720 // containing live data, in the region liveness bitmap.
  1722 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1723  public:
  1724   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1725                               BitMap* region_bm,
  1726                               BitMap* card_bm) :
  1727     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1729   bool doHeapRegion(HeapRegion* hr) {
  1731     if (hr->continuesHumongous()) {
  1732       // We will ignore these here and process them when their
  1733       // associated "starts humongous" region is processed (see
  1734       // set_bit_for_heap_region()). Note that we cannot rely on their
  1735       // associated "starts humongous" region to have their bit set to
  1736       // 1 since, due to the region chunking in the parallel region
  1737       // iteration, a "continues humongous" region might be visited
  1738       // before its associated "starts humongous".
  1739       return false;
  1742     HeapWord* ntams = hr->next_top_at_mark_start();
  1743     HeapWord* top   = hr->top();
  1745     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1747     // Mark the allocated-since-marking portion...
  1748     if (ntams < top) {
  1749       // This definitely means the region has live objects.
  1750       set_bit_for_region(hr);
  1752       // Now set the bits in the card bitmap for [ntams, top)
  1753       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1754       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1756       // Note: if we're looking at the last region in heap - top
  1757       // could be actually just beyond the end of the heap; end_idx
  1758       // will then correspond to a (non-existent) card that is also
  1759       // just beyond the heap.
  1760       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1761         // end of object is not card aligned - increment to cover
  1762         // all the cards spanned by the object
  1763         end_idx += 1;
  1766       assert(end_idx <= _card_bm->size(),
  1767              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1768                      end_idx, _card_bm->size()));
  1769       assert(start_idx < _card_bm->size(),
  1770              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1771                      start_idx, _card_bm->size()));
  1773       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1776     // Set the bit for the region if it contains live data
  1777     if (hr->next_marked_bytes() > 0) {
  1778       set_bit_for_region(hr);
  1781     return false;
  1783 };
  1785 class G1ParFinalCountTask: public AbstractGangTask {
  1786 protected:
  1787   G1CollectedHeap* _g1h;
  1788   ConcurrentMark* _cm;
  1789   BitMap* _actual_region_bm;
  1790   BitMap* _actual_card_bm;
  1792   uint    _n_workers;
  1794 public:
  1795   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1796     : AbstractGangTask("G1 final counting"),
  1797       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1798       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1799       _n_workers(0) {
  1800     // Use the value already set as the number of active threads
  1801     // in the call to run_task().
  1802     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1803       assert( _g1h->workers()->active_workers() > 0,
  1804         "Should have been previously set");
  1805       _n_workers = _g1h->workers()->active_workers();
  1806     } else {
  1807       _n_workers = 1;
  1811   void work(uint worker_id) {
  1812     assert(worker_id < _n_workers, "invariant");
  1814     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1815                                                 _actual_region_bm,
  1816                                                 _actual_card_bm);
  1818     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1819       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1820                                             worker_id,
  1821                                             _n_workers,
  1822                                             HeapRegion::FinalCountClaimValue);
  1823     } else {
  1824       _g1h->heap_region_iterate(&final_update_cl);
  1827 };
  1829 class G1ParNoteEndTask;
  1831 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1832   G1CollectedHeap* _g1;
  1833   size_t _max_live_bytes;
  1834   uint _regions_claimed;
  1835   size_t _freed_bytes;
  1836   FreeRegionList* _local_cleanup_list;
  1837   HeapRegionSetCount _old_regions_removed;
  1838   HeapRegionSetCount _humongous_regions_removed;
  1839   HRRSCleanupTask* _hrrs_cleanup_task;
  1840   double _claimed_region_time;
  1841   double _max_region_time;
  1843 public:
  1844   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1845                              FreeRegionList* local_cleanup_list,
  1846                              HRRSCleanupTask* hrrs_cleanup_task) :
  1847     _g1(g1),
  1848     _max_live_bytes(0), _regions_claimed(0),
  1849     _freed_bytes(0),
  1850     _claimed_region_time(0.0), _max_region_time(0.0),
  1851     _local_cleanup_list(local_cleanup_list),
  1852     _old_regions_removed(),
  1853     _humongous_regions_removed(),
  1854     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1856   size_t freed_bytes() { return _freed_bytes; }
  1857   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1858   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1860   bool doHeapRegion(HeapRegion *hr) {
  1861     if (hr->continuesHumongous()) {
  1862       return false;
  1864     // We use a claim value of zero here because all regions
  1865     // were claimed with value 1 in the FinalCount task.
  1866     _g1->reset_gc_time_stamps(hr);
  1867     double start = os::elapsedTime();
  1868     _regions_claimed++;
  1869     hr->note_end_of_marking();
  1870     _max_live_bytes += hr->max_live_bytes();
  1872     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1873       _freed_bytes += hr->used();
  1874       hr->set_containing_set(NULL);
  1875       if (hr->isHumongous()) {
  1876         assert(hr->startsHumongous(), "we should only see starts humongous");
  1877         _humongous_regions_removed.increment(1u, hr->capacity());
  1878         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1879       } else {
  1880         _old_regions_removed.increment(1u, hr->capacity());
  1881         _g1->free_region(hr, _local_cleanup_list, true);
  1883     } else {
  1884       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1887     double region_time = (os::elapsedTime() - start);
  1888     _claimed_region_time += region_time;
  1889     if (region_time > _max_region_time) {
  1890       _max_region_time = region_time;
  1892     return false;
  1895   size_t max_live_bytes() { return _max_live_bytes; }
  1896   uint regions_claimed() { return _regions_claimed; }
  1897   double claimed_region_time_sec() { return _claimed_region_time; }
  1898   double max_region_time_sec() { return _max_region_time; }
  1899 };
  1901 class G1ParNoteEndTask: public AbstractGangTask {
  1902   friend class G1NoteEndOfConcMarkClosure;
  1904 protected:
  1905   G1CollectedHeap* _g1h;
  1906   size_t _max_live_bytes;
  1907   size_t _freed_bytes;
  1908   FreeRegionList* _cleanup_list;
  1910 public:
  1911   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1912                    FreeRegionList* cleanup_list) :
  1913     AbstractGangTask("G1 note end"), _g1h(g1h),
  1914     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1916   void work(uint worker_id) {
  1917     double start = os::elapsedTime();
  1918     FreeRegionList local_cleanup_list("Local Cleanup List");
  1919     HRRSCleanupTask hrrs_cleanup_task;
  1920     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
  1921                                            &hrrs_cleanup_task);
  1922     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1923       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1924                                             _g1h->workers()->active_workers(),
  1925                                             HeapRegion::NoteEndClaimValue);
  1926     } else {
  1927       _g1h->heap_region_iterate(&g1_note_end);
  1929     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1931     // Now update the lists
  1932     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1934       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1935       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1936       _max_live_bytes += g1_note_end.max_live_bytes();
  1937       _freed_bytes += g1_note_end.freed_bytes();
  1939       // If we iterate over the global cleanup list at the end of
  1940       // cleanup to do this printing we will not guarantee to only
  1941       // generate output for the newly-reclaimed regions (the list
  1942       // might not be empty at the beginning of cleanup; we might
  1943       // still be working on its previous contents). So we do the
  1944       // printing here, before we append the new regions to the global
  1945       // cleanup list.
  1947       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1948       if (hr_printer->is_active()) {
  1949         FreeRegionListIterator iter(&local_cleanup_list);
  1950         while (iter.more_available()) {
  1951           HeapRegion* hr = iter.get_next();
  1952           hr_printer->cleanup(hr);
  1956       _cleanup_list->add_ordered(&local_cleanup_list);
  1957       assert(local_cleanup_list.is_empty(), "post-condition");
  1959       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1962   size_t max_live_bytes() { return _max_live_bytes; }
  1963   size_t freed_bytes() { return _freed_bytes; }
  1964 };
  1966 class G1ParScrubRemSetTask: public AbstractGangTask {
  1967 protected:
  1968   G1RemSet* _g1rs;
  1969   BitMap* _region_bm;
  1970   BitMap* _card_bm;
  1971 public:
  1972   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1973                        BitMap* region_bm, BitMap* card_bm) :
  1974     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1975     _region_bm(region_bm), _card_bm(card_bm) { }
  1977   void work(uint worker_id) {
  1978     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1979       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1980                        HeapRegion::ScrubRemSetClaimValue);
  1981     } else {
  1982       _g1rs->scrub(_region_bm, _card_bm);
  1986 };
  1988 void ConcurrentMark::cleanup() {
  1989   // world is stopped at this checkpoint
  1990   assert(SafepointSynchronize::is_at_safepoint(),
  1991          "world should be stopped");
  1992   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1994   // If a full collection has happened, we shouldn't do this.
  1995   if (has_aborted()) {
  1996     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1997     return;
  2000   g1h->verify_region_sets_optional();
  2002   if (VerifyDuringGC) {
  2003     HandleMark hm;  // handle scope
  2004     Universe::heap()->prepare_for_verify();
  2005     Universe::verify(VerifyOption_G1UsePrevMarking,
  2006                      " VerifyDuringGC:(before)");
  2008   g1h->check_bitmaps("Cleanup Start");
  2010   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2011   g1p->record_concurrent_mark_cleanup_start();
  2013   double start = os::elapsedTime();
  2015   HeapRegionRemSet::reset_for_cleanup_tasks();
  2017   uint n_workers;
  2019   // Do counting once more with the world stopped for good measure.
  2020   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2022   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2023    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2024            "sanity check");
  2026     g1h->set_par_threads();
  2027     n_workers = g1h->n_par_threads();
  2028     assert(g1h->n_par_threads() == n_workers,
  2029            "Should not have been reset");
  2030     g1h->workers()->run_task(&g1_par_count_task);
  2031     // Done with the parallel phase so reset to 0.
  2032     g1h->set_par_threads(0);
  2034     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2035            "sanity check");
  2036   } else {
  2037     n_workers = 1;
  2038     g1_par_count_task.work(0);
  2041   if (VerifyDuringGC) {
  2042     // Verify that the counting data accumulated during marking matches
  2043     // that calculated by walking the marking bitmap.
  2045     // Bitmaps to hold expected values
  2046     BitMap expected_region_bm(_region_bm.size(), true);
  2047     BitMap expected_card_bm(_card_bm.size(), true);
  2049     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2050                                                  &_region_bm,
  2051                                                  &_card_bm,
  2052                                                  &expected_region_bm,
  2053                                                  &expected_card_bm);
  2055     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2056       g1h->set_par_threads((int)n_workers);
  2057       g1h->workers()->run_task(&g1_par_verify_task);
  2058       // Done with the parallel phase so reset to 0.
  2059       g1h->set_par_threads(0);
  2061       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2062              "sanity check");
  2063     } else {
  2064       g1_par_verify_task.work(0);
  2067     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2070   size_t start_used_bytes = g1h->used();
  2071   g1h->set_marking_complete();
  2073   double count_end = os::elapsedTime();
  2074   double this_final_counting_time = (count_end - start);
  2075   _total_counting_time += this_final_counting_time;
  2077   if (G1PrintRegionLivenessInfo) {
  2078     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2079     _g1h->heap_region_iterate(&cl);
  2082   // Install newly created mark bitMap as "prev".
  2083   swapMarkBitMaps();
  2085   g1h->reset_gc_time_stamp();
  2087   // Note end of marking in all heap regions.
  2088   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2089   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2090     g1h->set_par_threads((int)n_workers);
  2091     g1h->workers()->run_task(&g1_par_note_end_task);
  2092     g1h->set_par_threads(0);
  2094     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2095            "sanity check");
  2096   } else {
  2097     g1_par_note_end_task.work(0);
  2099   g1h->check_gc_time_stamps();
  2101   if (!cleanup_list_is_empty()) {
  2102     // The cleanup list is not empty, so we'll have to process it
  2103     // concurrently. Notify anyone else that might be wanting free
  2104     // regions that there will be more free regions coming soon.
  2105     g1h->set_free_regions_coming();
  2108   // call below, since it affects the metric by which we sort the heap
  2109   // regions.
  2110   if (G1ScrubRemSets) {
  2111     double rs_scrub_start = os::elapsedTime();
  2112     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2113     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2114       g1h->set_par_threads((int)n_workers);
  2115       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2116       g1h->set_par_threads(0);
  2118       assert(g1h->check_heap_region_claim_values(
  2119                                             HeapRegion::ScrubRemSetClaimValue),
  2120              "sanity check");
  2121     } else {
  2122       g1_par_scrub_rs_task.work(0);
  2125     double rs_scrub_end = os::elapsedTime();
  2126     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2127     _total_rs_scrub_time += this_rs_scrub_time;
  2130   // this will also free any regions totally full of garbage objects,
  2131   // and sort the regions.
  2132   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2134   // Statistics.
  2135   double end = os::elapsedTime();
  2136   _cleanup_times.add((end - start) * 1000.0);
  2138   if (G1Log::fine()) {
  2139     g1h->print_size_transition(gclog_or_tty,
  2140                                start_used_bytes,
  2141                                g1h->used(),
  2142                                g1h->capacity());
  2145   // Clean up will have freed any regions completely full of garbage.
  2146   // Update the soft reference policy with the new heap occupancy.
  2147   Universe::update_heap_info_at_gc();
  2149   if (VerifyDuringGC) {
  2150     HandleMark hm;  // handle scope
  2151     Universe::heap()->prepare_for_verify();
  2152     Universe::verify(VerifyOption_G1UsePrevMarking,
  2153                      " VerifyDuringGC:(after)");
  2155   g1h->check_bitmaps("Cleanup End");
  2157   g1h->verify_region_sets_optional();
  2159   // We need to make this be a "collection" so any collection pause that
  2160   // races with it goes around and waits for completeCleanup to finish.
  2161   g1h->increment_total_collections();
  2163   // Clean out dead classes and update Metaspace sizes.
  2164   if (ClassUnloadingWithConcurrentMark) {
  2165     ClassLoaderDataGraph::purge();
  2167   MetaspaceGC::compute_new_size();
  2169   // We reclaimed old regions so we should calculate the sizes to make
  2170   // sure we update the old gen/space data.
  2171   g1h->g1mm()->update_sizes();
  2173   g1h->trace_heap_after_concurrent_cycle();
  2176 void ConcurrentMark::completeCleanup() {
  2177   if (has_aborted()) return;
  2179   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2181   _cleanup_list.verify_optional();
  2182   FreeRegionList tmp_free_list("Tmp Free List");
  2184   if (G1ConcRegionFreeingVerbose) {
  2185     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2186                            "cleanup list has %u entries",
  2187                            _cleanup_list.length());
  2190   // Noone else should be accessing the _cleanup_list at this point,
  2191   // so it's not necessary to take any locks
  2192   while (!_cleanup_list.is_empty()) {
  2193     HeapRegion* hr = _cleanup_list.remove_head();
  2194     assert(hr != NULL, "Got NULL from a non-empty list");
  2195     hr->par_clear();
  2196     tmp_free_list.add_ordered(hr);
  2198     // Instead of adding one region at a time to the secondary_free_list,
  2199     // we accumulate them in the local list and move them a few at a
  2200     // time. This also cuts down on the number of notify_all() calls
  2201     // we do during this process. We'll also append the local list when
  2202     // _cleanup_list is empty (which means we just removed the last
  2203     // region from the _cleanup_list).
  2204     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2205         _cleanup_list.is_empty()) {
  2206       if (G1ConcRegionFreeingVerbose) {
  2207         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2208                                "appending %u entries to the secondary_free_list, "
  2209                                "cleanup list still has %u entries",
  2210                                tmp_free_list.length(),
  2211                                _cleanup_list.length());
  2215         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2216         g1h->secondary_free_list_add(&tmp_free_list);
  2217         SecondaryFreeList_lock->notify_all();
  2220       if (G1StressConcRegionFreeing) {
  2221         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2222           os::sleep(Thread::current(), (jlong) 1, false);
  2227   assert(tmp_free_list.is_empty(), "post-condition");
  2230 // Supporting Object and Oop closures for reference discovery
  2231 // and processing in during marking
  2233 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2234   HeapWord* addr = (HeapWord*)obj;
  2235   return addr != NULL &&
  2236          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2239 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2240 // Uses the CMTask associated with a worker thread (for serial reference
  2241 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2242 // trace referent objects.
  2243 //
  2244 // Using the CMTask and embedded local queues avoids having the worker
  2245 // threads operating on the global mark stack. This reduces the risk
  2246 // of overflowing the stack - which we would rather avoid at this late
  2247 // state. Also using the tasks' local queues removes the potential
  2248 // of the workers interfering with each other that could occur if
  2249 // operating on the global stack.
  2251 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2252   ConcurrentMark* _cm;
  2253   CMTask*         _task;
  2254   int             _ref_counter_limit;
  2255   int             _ref_counter;
  2256   bool            _is_serial;
  2257  public:
  2258   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2259     _cm(cm), _task(task), _is_serial(is_serial),
  2260     _ref_counter_limit(G1RefProcDrainInterval) {
  2261     assert(_ref_counter_limit > 0, "sanity");
  2262     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2263     _ref_counter = _ref_counter_limit;
  2266   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2267   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2269   template <class T> void do_oop_work(T* p) {
  2270     if (!_cm->has_overflown()) {
  2271       oop obj = oopDesc::load_decode_heap_oop(p);
  2272       if (_cm->verbose_high()) {
  2273         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2274                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2275                                _task->worker_id(), p2i(p), p2i((void*) obj));
  2278       _task->deal_with_reference(obj);
  2279       _ref_counter--;
  2281       if (_ref_counter == 0) {
  2282         // We have dealt with _ref_counter_limit references, pushing them
  2283         // and objects reachable from them on to the local stack (and
  2284         // possibly the global stack). Call CMTask::do_marking_step() to
  2285         // process these entries.
  2286         //
  2287         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2288         // there's nothing more to do (i.e. we're done with the entries that
  2289         // were pushed as a result of the CMTask::deal_with_reference() calls
  2290         // above) or we overflow.
  2291         //
  2292         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2293         // flag while there may still be some work to do. (See the comment at
  2294         // the beginning of CMTask::do_marking_step() for those conditions -
  2295         // one of which is reaching the specified time target.) It is only
  2296         // when CMTask::do_marking_step() returns without setting the
  2297         // has_aborted() flag that the marking step has completed.
  2298         do {
  2299           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2300           _task->do_marking_step(mark_step_duration_ms,
  2301                                  false      /* do_termination */,
  2302                                  _is_serial);
  2303         } while (_task->has_aborted() && !_cm->has_overflown());
  2304         _ref_counter = _ref_counter_limit;
  2306     } else {
  2307       if (_cm->verbose_high()) {
  2308          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2312 };
  2314 // 'Drain' oop closure used by both serial and parallel reference processing.
  2315 // Uses the CMTask associated with a given worker thread (for serial
  2316 // reference processing the CMtask for worker 0 is used). Calls the
  2317 // do_marking_step routine, with an unbelievably large timeout value,
  2318 // to drain the marking data structures of the remaining entries
  2319 // added by the 'keep alive' oop closure above.
  2321 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2322   ConcurrentMark* _cm;
  2323   CMTask*         _task;
  2324   bool            _is_serial;
  2325  public:
  2326   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2327     _cm(cm), _task(task), _is_serial(is_serial) {
  2328     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2331   void do_void() {
  2332     do {
  2333       if (_cm->verbose_high()) {
  2334         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2335                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2338       // We call CMTask::do_marking_step() to completely drain the local
  2339       // and global marking stacks of entries pushed by the 'keep alive'
  2340       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2341       //
  2342       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2343       // if there's nothing more to do (i.e. we'completely drained the
  2344       // entries that were pushed as a a result of applying the 'keep alive'
  2345       // closure to the entries on the discovered ref lists) or we overflow
  2346       // the global marking stack.
  2347       //
  2348       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2349       // flag while there may still be some work to do. (See the comment at
  2350       // the beginning of CMTask::do_marking_step() for those conditions -
  2351       // one of which is reaching the specified time target.) It is only
  2352       // when CMTask::do_marking_step() returns without setting the
  2353       // has_aborted() flag that the marking step has completed.
  2355       _task->do_marking_step(1000000000.0 /* something very large */,
  2356                              true         /* do_termination */,
  2357                              _is_serial);
  2358     } while (_task->has_aborted() && !_cm->has_overflown());
  2360 };
  2362 // Implementation of AbstractRefProcTaskExecutor for parallel
  2363 // reference processing at the end of G1 concurrent marking
  2365 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2366 private:
  2367   G1CollectedHeap* _g1h;
  2368   ConcurrentMark*  _cm;
  2369   WorkGang*        _workers;
  2370   int              _active_workers;
  2372 public:
  2373   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2374                         ConcurrentMark* cm,
  2375                         WorkGang* workers,
  2376                         int n_workers) :
  2377     _g1h(g1h), _cm(cm),
  2378     _workers(workers), _active_workers(n_workers) { }
  2380   // Executes the given task using concurrent marking worker threads.
  2381   virtual void execute(ProcessTask& task);
  2382   virtual void execute(EnqueueTask& task);
  2383 };
  2385 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2386   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2387   ProcessTask&     _proc_task;
  2388   G1CollectedHeap* _g1h;
  2389   ConcurrentMark*  _cm;
  2391 public:
  2392   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2393                      G1CollectedHeap* g1h,
  2394                      ConcurrentMark* cm) :
  2395     AbstractGangTask("Process reference objects in parallel"),
  2396     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2397     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2398     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2401   virtual void work(uint worker_id) {
  2402     CMTask* task = _cm->task(worker_id);
  2403     G1CMIsAliveClosure g1_is_alive(_g1h);
  2404     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2405     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2407     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2409 };
  2411 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2412   assert(_workers != NULL, "Need parallel worker threads.");
  2413   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2415   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2417   // We need to reset the concurrency level before each
  2418   // proxy task execution, so that the termination protocol
  2419   // and overflow handling in CMTask::do_marking_step() knows
  2420   // how many workers to wait for.
  2421   _cm->set_concurrency(_active_workers);
  2422   _g1h->set_par_threads(_active_workers);
  2423   _workers->run_task(&proc_task_proxy);
  2424   _g1h->set_par_threads(0);
  2427 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2428   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2429   EnqueueTask& _enq_task;
  2431 public:
  2432   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2433     AbstractGangTask("Enqueue reference objects in parallel"),
  2434     _enq_task(enq_task) { }
  2436   virtual void work(uint worker_id) {
  2437     _enq_task.work(worker_id);
  2439 };
  2441 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2442   assert(_workers != NULL, "Need parallel worker threads.");
  2443   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2445   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2447   // Not strictly necessary but...
  2448   //
  2449   // We need to reset the concurrency level before each
  2450   // proxy task execution, so that the termination protocol
  2451   // and overflow handling in CMTask::do_marking_step() knows
  2452   // how many workers to wait for.
  2453   _cm->set_concurrency(_active_workers);
  2454   _g1h->set_par_threads(_active_workers);
  2455   _workers->run_task(&enq_task_proxy);
  2456   _g1h->set_par_threads(0);
  2459 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  2460   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
  2463 // Helper class to get rid of some boilerplate code.
  2464 class G1RemarkGCTraceTime : public GCTraceTime {
  2465   static bool doit_and_prepend(bool doit) {
  2466     if (doit) {
  2467       gclog_or_tty->put(' ');
  2469     return doit;
  2472  public:
  2473   G1RemarkGCTraceTime(const char* title, bool doit)
  2474     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
  2475         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  2477 };
  2479 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2480   if (has_overflown()) {
  2481     // Skip processing the discovered references if we have
  2482     // overflown the global marking stack. Reference objects
  2483     // only get discovered once so it is OK to not
  2484     // de-populate the discovered reference lists. We could have,
  2485     // but the only benefit would be that, when marking restarts,
  2486     // less reference objects are discovered.
  2487     return;
  2490   ResourceMark rm;
  2491   HandleMark   hm;
  2493   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2495   // Is alive closure.
  2496   G1CMIsAliveClosure g1_is_alive(g1h);
  2498   // Inner scope to exclude the cleaning of the string and symbol
  2499   // tables from the displayed time.
  2501     if (G1Log::finer()) {
  2502       gclog_or_tty->put(' ');
  2504     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
  2506     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2508     // See the comment in G1CollectedHeap::ref_processing_init()
  2509     // about how reference processing currently works in G1.
  2511     // Set the soft reference policy
  2512     rp->setup_policy(clear_all_soft_refs);
  2513     assert(_markStack.isEmpty(), "mark stack should be empty");
  2515     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2516     // in serial reference processing. Note these closures are also
  2517     // used for serially processing (by the the current thread) the
  2518     // JNI references during parallel reference processing.
  2519     //
  2520     // These closures do not need to synchronize with the worker
  2521     // threads involved in parallel reference processing as these
  2522     // instances are executed serially by the current thread (e.g.
  2523     // reference processing is not multi-threaded and is thus
  2524     // performed by the current thread instead of a gang worker).
  2525     //
  2526     // The gang tasks involved in parallel reference procssing create
  2527     // their own instances of these closures, which do their own
  2528     // synchronization among themselves.
  2529     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2530     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2532     // We need at least one active thread. If reference processing
  2533     // is not multi-threaded we use the current (VMThread) thread,
  2534     // otherwise we use the work gang from the G1CollectedHeap and
  2535     // we utilize all the worker threads we can.
  2536     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2537     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2538     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2540     // Parallel processing task executor.
  2541     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2542                                               g1h->workers(), active_workers);
  2543     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2545     // Set the concurrency level. The phase was already set prior to
  2546     // executing the remark task.
  2547     set_concurrency(active_workers);
  2549     // Set the degree of MT processing here.  If the discovery was done MT,
  2550     // the number of threads involved during discovery could differ from
  2551     // the number of active workers.  This is OK as long as the discovered
  2552     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2553     rp->set_active_mt_degree(active_workers);
  2555     // Process the weak references.
  2556     const ReferenceProcessorStats& stats =
  2557         rp->process_discovered_references(&g1_is_alive,
  2558                                           &g1_keep_alive,
  2559                                           &g1_drain_mark_stack,
  2560                                           executor,
  2561                                           g1h->gc_timer_cm(),
  2562                                           concurrent_gc_id());
  2563     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2565     // The do_oop work routines of the keep_alive and drain_marking_stack
  2566     // oop closures will set the has_overflown flag if we overflow the
  2567     // global marking stack.
  2569     assert(_markStack.overflow() || _markStack.isEmpty(),
  2570             "mark stack should be empty (unless it overflowed)");
  2572     if (_markStack.overflow()) {
  2573       // This should have been done already when we tried to push an
  2574       // entry on to the global mark stack. But let's do it again.
  2575       set_has_overflown();
  2578     assert(rp->num_q() == active_workers, "why not");
  2580     rp->enqueue_discovered_references(executor);
  2582     rp->verify_no_references_recorded();
  2583     assert(!rp->discovery_enabled(), "Post condition");
  2586   if (has_overflown()) {
  2587     // We can not trust g1_is_alive if the marking stack overflowed
  2588     return;
  2591   assert(_markStack.isEmpty(), "Marking should have completed");
  2593   // Unload Klasses, String, Symbols, Code Cache, etc.
  2595     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
  2597     if (ClassUnloadingWithConcurrentMark) {
  2598       bool purged_classes;
  2601         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
  2602         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
  2606         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
  2607         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
  2611     if (G1StringDedup::is_enabled()) {
  2612       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
  2613       G1StringDedup::unlink(&g1_is_alive);
  2618 void ConcurrentMark::swapMarkBitMaps() {
  2619   CMBitMapRO* temp = _prevMarkBitMap;
  2620   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2621   _nextMarkBitMap  = (CMBitMap*)  temp;
  2624 class CMObjectClosure;
  2626 // Closure for iterating over objects, currently only used for
  2627 // processing SATB buffers.
  2628 class CMObjectClosure : public ObjectClosure {
  2629 private:
  2630   CMTask* _task;
  2632 public:
  2633   void do_object(oop obj) {
  2634     _task->deal_with_reference(obj);
  2637   CMObjectClosure(CMTask* task) : _task(task) { }
  2638 };
  2640 class G1RemarkThreadsClosure : public ThreadClosure {
  2641   CMObjectClosure _cm_obj;
  2642   G1CMOopClosure _cm_cl;
  2643   MarkingCodeBlobClosure _code_cl;
  2644   int _thread_parity;
  2645   bool _is_par;
  2647  public:
  2648   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
  2649     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
  2650     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
  2652   void do_thread(Thread* thread) {
  2653     if (thread->is_Java_thread()) {
  2654       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2655         JavaThread* jt = (JavaThread*)thread;
  2657         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
  2658         // however the liveness of oops reachable from nmethods have very complex lifecycles:
  2659         // * Alive if on the stack of an executing method
  2660         // * Weakly reachable otherwise
  2661         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
  2662         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
  2663         jt->nmethods_do(&_code_cl);
  2665         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
  2667     } else if (thread->is_VM_thread()) {
  2668       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2669         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
  2673 };
  2675 class CMRemarkTask: public AbstractGangTask {
  2676 private:
  2677   ConcurrentMark* _cm;
  2678   bool            _is_serial;
  2679 public:
  2680   void work(uint worker_id) {
  2681     // Since all available tasks are actually started, we should
  2682     // only proceed if we're supposed to be actived.
  2683     if (worker_id < _cm->active_tasks()) {
  2684       CMTask* task = _cm->task(worker_id);
  2685       task->record_start_time();
  2687         ResourceMark rm;
  2688         HandleMark hm;
  2690         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
  2691         Threads::threads_do(&threads_f);
  2694       do {
  2695         task->do_marking_step(1000000000.0 /* something very large */,
  2696                               true         /* do_termination       */,
  2697                               _is_serial);
  2698       } while (task->has_aborted() && !_cm->has_overflown());
  2699       // If we overflow, then we do not want to restart. We instead
  2700       // want to abort remark and do concurrent marking again.
  2701       task->record_end_time();
  2705   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2706     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2707     _cm->terminator()->reset_for_reuse(active_workers);
  2709 };
  2711 void ConcurrentMark::checkpointRootsFinalWork() {
  2712   ResourceMark rm;
  2713   HandleMark   hm;
  2714   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2716   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
  2718   g1h->ensure_parsability(false);
  2720   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2721     G1CollectedHeap::StrongRootsScope srs(g1h);
  2722     // this is remark, so we'll use up all active threads
  2723     uint active_workers = g1h->workers()->active_workers();
  2724     if (active_workers == 0) {
  2725       assert(active_workers > 0, "Should have been set earlier");
  2726       active_workers = (uint) ParallelGCThreads;
  2727       g1h->workers()->set_active_workers(active_workers);
  2729     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2730     // Leave _parallel_marking_threads at it's
  2731     // value originally calculated in the ConcurrentMark
  2732     // constructor and pass values of the active workers
  2733     // through the gang in the task.
  2735     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2736     // We will start all available threads, even if we decide that the
  2737     // active_workers will be fewer. The extra ones will just bail out
  2738     // immediately.
  2739     g1h->set_par_threads(active_workers);
  2740     g1h->workers()->run_task(&remarkTask);
  2741     g1h->set_par_threads(0);
  2742   } else {
  2743     G1CollectedHeap::StrongRootsScope srs(g1h);
  2744     uint active_workers = 1;
  2745     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2747     // Note - if there's no work gang then the VMThread will be
  2748     // the thread to execute the remark - serially. We have
  2749     // to pass true for the is_serial parameter so that
  2750     // CMTask::do_marking_step() doesn't enter the sync
  2751     // barriers in the event of an overflow. Doing so will
  2752     // cause an assert that the current thread is not a
  2753     // concurrent GC thread.
  2754     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2755     remarkTask.work(0);
  2757   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2758   guarantee(has_overflown() ||
  2759             satb_mq_set.completed_buffers_num() == 0,
  2760             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2761                     BOOL_TO_STR(has_overflown()),
  2762                     satb_mq_set.completed_buffers_num()));
  2764   print_stats();
  2767 #ifndef PRODUCT
  2769 class PrintReachableOopClosure: public OopClosure {
  2770 private:
  2771   G1CollectedHeap* _g1h;
  2772   outputStream*    _out;
  2773   VerifyOption     _vo;
  2774   bool             _all;
  2776 public:
  2777   PrintReachableOopClosure(outputStream* out,
  2778                            VerifyOption  vo,
  2779                            bool          all) :
  2780     _g1h(G1CollectedHeap::heap()),
  2781     _out(out), _vo(vo), _all(all) { }
  2783   void do_oop(narrowOop* p) { do_oop_work(p); }
  2784   void do_oop(      oop* p) { do_oop_work(p); }
  2786   template <class T> void do_oop_work(T* p) {
  2787     oop         obj = oopDesc::load_decode_heap_oop(p);
  2788     const char* str = NULL;
  2789     const char* str2 = "";
  2791     if (obj == NULL) {
  2792       str = "";
  2793     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2794       str = " O";
  2795     } else {
  2796       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2797       guarantee(hr != NULL, "invariant");
  2798       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2799       bool marked = _g1h->is_marked(obj, _vo);
  2801       if (over_tams) {
  2802         str = " >";
  2803         if (marked) {
  2804           str2 = " AND MARKED";
  2806       } else if (marked) {
  2807         str = " M";
  2808       } else {
  2809         str = " NOT";
  2813     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2814                    p2i(p), p2i((void*) obj), str, str2);
  2816 };
  2818 class PrintReachableObjectClosure : public ObjectClosure {
  2819 private:
  2820   G1CollectedHeap* _g1h;
  2821   outputStream*    _out;
  2822   VerifyOption     _vo;
  2823   bool             _all;
  2824   HeapRegion*      _hr;
  2826 public:
  2827   PrintReachableObjectClosure(outputStream* out,
  2828                               VerifyOption  vo,
  2829                               bool          all,
  2830                               HeapRegion*   hr) :
  2831     _g1h(G1CollectedHeap::heap()),
  2832     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2834   void do_object(oop o) {
  2835     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2836     bool marked = _g1h->is_marked(o, _vo);
  2837     bool print_it = _all || over_tams || marked;
  2839     if (print_it) {
  2840       _out->print_cr(" "PTR_FORMAT"%s",
  2841                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
  2842       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2843       o->oop_iterate_no_header(&oopCl);
  2846 };
  2848 class PrintReachableRegionClosure : public HeapRegionClosure {
  2849 private:
  2850   G1CollectedHeap* _g1h;
  2851   outputStream*    _out;
  2852   VerifyOption     _vo;
  2853   bool             _all;
  2855 public:
  2856   bool doHeapRegion(HeapRegion* hr) {
  2857     HeapWord* b = hr->bottom();
  2858     HeapWord* e = hr->end();
  2859     HeapWord* t = hr->top();
  2860     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2861     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2862                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
  2863     _out->cr();
  2865     HeapWord* from = b;
  2866     HeapWord* to   = t;
  2868     if (to > from) {
  2869       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
  2870       _out->cr();
  2871       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2872       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2873       _out->cr();
  2876     return false;
  2879   PrintReachableRegionClosure(outputStream* out,
  2880                               VerifyOption  vo,
  2881                               bool          all) :
  2882     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2883 };
  2885 void ConcurrentMark::print_reachable(const char* str,
  2886                                      VerifyOption vo,
  2887                                      bool all) {
  2888   gclog_or_tty->cr();
  2889   gclog_or_tty->print_cr("== Doing heap dump... ");
  2891   if (G1PrintReachableBaseFile == NULL) {
  2892     gclog_or_tty->print_cr("  #### error: no base file defined");
  2893     return;
  2896   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2897       (JVM_MAXPATHLEN - 1)) {
  2898     gclog_or_tty->print_cr("  #### error: file name too long");
  2899     return;
  2902   char file_name[JVM_MAXPATHLEN];
  2903   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2904   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2906   fileStream fout(file_name);
  2907   if (!fout.is_open()) {
  2908     gclog_or_tty->print_cr("  #### error: could not open file");
  2909     return;
  2912   outputStream* out = &fout;
  2913   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2914   out->cr();
  2916   out->print_cr("--- ITERATING OVER REGIONS");
  2917   out->cr();
  2918   PrintReachableRegionClosure rcl(out, vo, all);
  2919   _g1h->heap_region_iterate(&rcl);
  2920   out->cr();
  2922   gclog_or_tty->print_cr("  done");
  2923   gclog_or_tty->flush();
  2926 #endif // PRODUCT
  2928 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2929   // Note we are overriding the read-only view of the prev map here, via
  2930   // the cast.
  2931   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2934 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2935   _nextMarkBitMap->clearRange(mr);
  2938 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  2939   clearRangePrevBitmap(mr);
  2940   clearRangeNextBitmap(mr);
  2943 HeapRegion*
  2944 ConcurrentMark::claim_region(uint worker_id) {
  2945   // "checkpoint" the finger
  2946   HeapWord* finger = _finger;
  2948   // _heap_end will not change underneath our feet; it only changes at
  2949   // yield points.
  2950   while (finger < _heap_end) {
  2951     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2953     // Note on how this code handles humongous regions. In the
  2954     // normal case the finger will reach the start of a "starts
  2955     // humongous" (SH) region. Its end will either be the end of the
  2956     // last "continues humongous" (CH) region in the sequence, or the
  2957     // standard end of the SH region (if the SH is the only region in
  2958     // the sequence). That way claim_region() will skip over the CH
  2959     // regions. However, there is a subtle race between a CM thread
  2960     // executing this method and a mutator thread doing a humongous
  2961     // object allocation. The two are not mutually exclusive as the CM
  2962     // thread does not need to hold the Heap_lock when it gets
  2963     // here. So there is a chance that claim_region() will come across
  2964     // a free region that's in the progress of becoming a SH or a CH
  2965     // region. In the former case, it will either
  2966     //   a) Miss the update to the region's end, in which case it will
  2967     //      visit every subsequent CH region, will find their bitmaps
  2968     //      empty, and do nothing, or
  2969     //   b) Will observe the update of the region's end (in which case
  2970     //      it will skip the subsequent CH regions).
  2971     // If it comes across a region that suddenly becomes CH, the
  2972     // scenario will be similar to b). So, the race between
  2973     // claim_region() and a humongous object allocation might force us
  2974     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2975     // iterations) but it should not introduce and correctness issues.
  2976     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
  2977     HeapWord*   bottom        = curr_region->bottom();
  2978     HeapWord*   end           = curr_region->end();
  2979     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2981     if (verbose_low()) {
  2982       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  2983                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2984                              "limit = "PTR_FORMAT,
  2985                              worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
  2988     // Is the gap between reading the finger and doing the CAS too long?
  2989     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2990     if (res == finger) {
  2991       // we succeeded
  2993       // notice that _finger == end cannot be guaranteed here since,
  2994       // someone else might have moved the finger even further
  2995       assert(_finger >= end, "the finger should have moved forward");
  2997       if (verbose_low()) {
  2998         gclog_or_tty->print_cr("[%u] we were successful with region = "
  2999                                PTR_FORMAT, worker_id, p2i(curr_region));
  3002       if (limit > bottom) {
  3003         if (verbose_low()) {
  3004           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  3005                                  "returning it ", worker_id, p2i(curr_region));
  3007         return curr_region;
  3008       } else {
  3009         assert(limit == bottom,
  3010                "the region limit should be at bottom");
  3011         if (verbose_low()) {
  3012           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  3013                                  "returning NULL", worker_id, p2i(curr_region));
  3015         // we return NULL and the caller should try calling
  3016         // claim_region() again.
  3017         return NULL;
  3019     } else {
  3020       assert(_finger > finger, "the finger should have moved forward");
  3021       if (verbose_low()) {
  3022         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  3023                                "global finger = "PTR_FORMAT", "
  3024                                "our finger = "PTR_FORMAT,
  3025                                worker_id, p2i(_finger), p2i(finger));
  3028       // read it again
  3029       finger = _finger;
  3033   return NULL;
  3036 #ifndef PRODUCT
  3037 enum VerifyNoCSetOopsPhase {
  3038   VerifyNoCSetOopsStack,
  3039   VerifyNoCSetOopsQueues,
  3040   VerifyNoCSetOopsSATBCompleted,
  3041   VerifyNoCSetOopsSATBThread
  3042 };
  3044 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3045 private:
  3046   G1CollectedHeap* _g1h;
  3047   VerifyNoCSetOopsPhase _phase;
  3048   int _info;
  3050   const char* phase_str() {
  3051     switch (_phase) {
  3052     case VerifyNoCSetOopsStack:         return "Stack";
  3053     case VerifyNoCSetOopsQueues:        return "Queue";
  3054     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  3055     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  3056     default:                            ShouldNotReachHere();
  3058     return NULL;
  3061   void do_object_work(oop obj) {
  3062     guarantee(!_g1h->obj_in_cs(obj),
  3063               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  3064                       p2i((void*) obj), phase_str(), _info));
  3067 public:
  3068   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3070   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3071     _phase = phase;
  3072     _info = info;
  3075   virtual void do_oop(oop* p) {
  3076     oop obj = oopDesc::load_decode_heap_oop(p);
  3077     do_object_work(obj);
  3080   virtual void do_oop(narrowOop* p) {
  3081     // We should not come across narrow oops while scanning marking
  3082     // stacks and SATB buffers.
  3083     ShouldNotReachHere();
  3086   virtual void do_object(oop obj) {
  3087     do_object_work(obj);
  3089 };
  3091 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  3092                                          bool verify_enqueued_buffers,
  3093                                          bool verify_thread_buffers,
  3094                                          bool verify_fingers) {
  3095   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3096   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3097     return;
  3100   VerifyNoCSetOopsClosure cl;
  3102   if (verify_stacks) {
  3103     // Verify entries on the global mark stack
  3104     cl.set_phase(VerifyNoCSetOopsStack);
  3105     _markStack.oops_do(&cl);
  3107     // Verify entries on the task queues
  3108     for (uint i = 0; i < _max_worker_id; i += 1) {
  3109       cl.set_phase(VerifyNoCSetOopsQueues, i);
  3110       CMTaskQueue* queue = _task_queues->queue(i);
  3111       queue->oops_do(&cl);
  3115   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  3117   // Verify entries on the enqueued SATB buffers
  3118   if (verify_enqueued_buffers) {
  3119     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  3120     satb_qs.iterate_completed_buffers_read_only(&cl);
  3123   // Verify entries on the per-thread SATB buffers
  3124   if (verify_thread_buffers) {
  3125     cl.set_phase(VerifyNoCSetOopsSATBThread);
  3126     satb_qs.iterate_thread_buffers_read_only(&cl);
  3129   if (verify_fingers) {
  3130     // Verify the global finger
  3131     HeapWord* global_finger = finger();
  3132     if (global_finger != NULL && global_finger < _heap_end) {
  3133       // The global finger always points to a heap region boundary. We
  3134       // use heap_region_containing_raw() to get the containing region
  3135       // given that the global finger could be pointing to a free region
  3136       // which subsequently becomes continues humongous. If that
  3137       // happens, heap_region_containing() will return the bottom of the
  3138       // corresponding starts humongous region and the check below will
  3139       // not hold any more.
  3140       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3141       guarantee(global_finger == global_hr->bottom(),
  3142                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3143                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
  3146     // Verify the task fingers
  3147     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3148     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3149       CMTask* task = _tasks[i];
  3150       HeapWord* task_finger = task->finger();
  3151       if (task_finger != NULL && task_finger < _heap_end) {
  3152         // See above note on the global finger verification.
  3153         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3154         guarantee(task_finger == task_hr->bottom() ||
  3155                   !task_hr->in_collection_set(),
  3156                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3157                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
  3162 #endif // PRODUCT
  3164 // Aggregate the counting data that was constructed concurrently
  3165 // with marking.
  3166 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3167   G1CollectedHeap* _g1h;
  3168   ConcurrentMark* _cm;
  3169   CardTableModRefBS* _ct_bs;
  3170   BitMap* _cm_card_bm;
  3171   uint _max_worker_id;
  3173  public:
  3174   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3175                               BitMap* cm_card_bm,
  3176                               uint max_worker_id) :
  3177     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3178     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3179     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3181   bool doHeapRegion(HeapRegion* hr) {
  3182     if (hr->continuesHumongous()) {
  3183       // We will ignore these here and process them when their
  3184       // associated "starts humongous" region is processed.
  3185       // Note that we cannot rely on their associated
  3186       // "starts humongous" region to have their bit set to 1
  3187       // since, due to the region chunking in the parallel region
  3188       // iteration, a "continues humongous" region might be visited
  3189       // before its associated "starts humongous".
  3190       return false;
  3193     HeapWord* start = hr->bottom();
  3194     HeapWord* limit = hr->next_top_at_mark_start();
  3195     HeapWord* end = hr->end();
  3197     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3198            err_msg("Preconditions not met - "
  3199                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3200                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3201                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
  3203     assert(hr->next_marked_bytes() == 0, "Precondition");
  3205     if (start == limit) {
  3206       // NTAMS of this region has not been set so nothing to do.
  3207       return false;
  3210     // 'start' should be in the heap.
  3211     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3212     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3213     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3215     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3216     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3217     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3219     // If ntams is not card aligned then we bump card bitmap index
  3220     // for limit so that we get the all the cards spanned by
  3221     // the object ending at ntams.
  3222     // Note: if this is the last region in the heap then ntams
  3223     // could be actually just beyond the end of the the heap;
  3224     // limit_idx will then  correspond to a (non-existent) card
  3225     // that is also outside the heap.
  3226     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3227       limit_idx += 1;
  3230     assert(limit_idx <= end_idx, "or else use atomics");
  3232     // Aggregate the "stripe" in the count data associated with hr.
  3233     uint hrs_index = hr->hrs_index();
  3234     size_t marked_bytes = 0;
  3236     for (uint i = 0; i < _max_worker_id; i += 1) {
  3237       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3238       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3240       // Fetch the marked_bytes in this region for task i and
  3241       // add it to the running total for this region.
  3242       marked_bytes += marked_bytes_array[hrs_index];
  3244       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3245       // into the global card bitmap.
  3246       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3248       while (scan_idx < limit_idx) {
  3249         assert(task_card_bm->at(scan_idx) == true, "should be");
  3250         _cm_card_bm->set_bit(scan_idx);
  3251         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3253         // BitMap::get_next_one_offset() can handle the case when
  3254         // its left_offset parameter is greater than its right_offset
  3255         // parameter. It does, however, have an early exit if
  3256         // left_offset == right_offset. So let's limit the value
  3257         // passed in for left offset here.
  3258         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3259         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3263     // Update the marked bytes for this region.
  3264     hr->add_to_marked_bytes(marked_bytes);
  3266     // Next heap region
  3267     return false;
  3269 };
  3271 class G1AggregateCountDataTask: public AbstractGangTask {
  3272 protected:
  3273   G1CollectedHeap* _g1h;
  3274   ConcurrentMark* _cm;
  3275   BitMap* _cm_card_bm;
  3276   uint _max_worker_id;
  3277   int _active_workers;
  3279 public:
  3280   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3281                            ConcurrentMark* cm,
  3282                            BitMap* cm_card_bm,
  3283                            uint max_worker_id,
  3284                            int n_workers) :
  3285     AbstractGangTask("Count Aggregation"),
  3286     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3287     _max_worker_id(max_worker_id),
  3288     _active_workers(n_workers) { }
  3290   void work(uint worker_id) {
  3291     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3293     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3294       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3295                                             _active_workers,
  3296                                             HeapRegion::AggregateCountClaimValue);
  3297     } else {
  3298       _g1h->heap_region_iterate(&cl);
  3301 };
  3304 void ConcurrentMark::aggregate_count_data() {
  3305   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3306                         _g1h->workers()->active_workers() :
  3307                         1);
  3309   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3310                                            _max_worker_id, n_workers);
  3312   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3313     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3314            "sanity check");
  3315     _g1h->set_par_threads(n_workers);
  3316     _g1h->workers()->run_task(&g1_par_agg_task);
  3317     _g1h->set_par_threads(0);
  3319     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3320            "sanity check");
  3321     _g1h->reset_heap_region_claim_values();
  3322   } else {
  3323     g1_par_agg_task.work(0);
  3327 // Clear the per-worker arrays used to store the per-region counting data
  3328 void ConcurrentMark::clear_all_count_data() {
  3329   // Clear the global card bitmap - it will be filled during
  3330   // liveness count aggregation (during remark) and the
  3331   // final counting task.
  3332   _card_bm.clear();
  3334   // Clear the global region bitmap - it will be filled as part
  3335   // of the final counting task.
  3336   _region_bm.clear();
  3338   uint max_regions = _g1h->max_regions();
  3339   assert(_max_worker_id > 0, "uninitialized");
  3341   for (uint i = 0; i < _max_worker_id; i += 1) {
  3342     BitMap* task_card_bm = count_card_bitmap_for(i);
  3343     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3345     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3346     assert(marked_bytes_array != NULL, "uninitialized");
  3348     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3349     task_card_bm->clear();
  3353 void ConcurrentMark::print_stats() {
  3354   if (verbose_stats()) {
  3355     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3356     for (size_t i = 0; i < _active_tasks; ++i) {
  3357       _tasks[i]->print_stats();
  3358       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3363 // abandon current marking iteration due to a Full GC
  3364 void ConcurrentMark::abort() {
  3365   // Clear all marks to force marking thread to do nothing
  3366   _nextMarkBitMap->clearAll();
  3368   // Note we cannot clear the previous marking bitmap here
  3369   // since VerifyDuringGC verifies the objects marked during
  3370   // a full GC against the previous bitmap.
  3372   // Clear the liveness counting data
  3373   clear_all_count_data();
  3374   // Empty mark stack
  3375   reset_marking_state();
  3376   for (uint i = 0; i < _max_worker_id; ++i) {
  3377     _tasks[i]->clear_region_fields();
  3379   _first_overflow_barrier_sync.abort();
  3380   _second_overflow_barrier_sync.abort();
  3381   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  3382   if (!gc_id.is_undefined()) {
  3383     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
  3384     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
  3385     _aborted_gc_id = gc_id;
  3387   _has_aborted = true;
  3389   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3390   satb_mq_set.abandon_partial_marking();
  3391   // This can be called either during or outside marking, we'll read
  3392   // the expected_active value from the SATB queue set.
  3393   satb_mq_set.set_active_all_threads(
  3394                                  false, /* new active value */
  3395                                  satb_mq_set.is_active() /* expected_active */);
  3397   _g1h->trace_heap_after_concurrent_cycle();
  3398   _g1h->register_concurrent_cycle_end();
  3401 const GCId& ConcurrentMark::concurrent_gc_id() {
  3402   if (has_aborted()) {
  3403     return _aborted_gc_id;
  3405   return _g1h->gc_tracer_cm()->gc_id();
  3408 static void print_ms_time_info(const char* prefix, const char* name,
  3409                                NumberSeq& ns) {
  3410   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3411                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3412   if (ns.num() > 0) {
  3413     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3414                            prefix, ns.sd(), ns.maximum());
  3418 void ConcurrentMark::print_summary_info() {
  3419   gclog_or_tty->print_cr(" Concurrent marking:");
  3420   print_ms_time_info("  ", "init marks", _init_times);
  3421   print_ms_time_info("  ", "remarks", _remark_times);
  3423     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3424     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3427   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3428   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3429                          _total_counting_time,
  3430                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3431                           (double)_cleanup_times.num()
  3432                          : 0.0));
  3433   if (G1ScrubRemSets) {
  3434     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3435                            _total_rs_scrub_time,
  3436                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3437                             (double)_cleanup_times.num()
  3438                            : 0.0));
  3440   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3441                          (_init_times.sum() + _remark_times.sum() +
  3442                           _cleanup_times.sum())/1000.0);
  3443   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3444                 "(%8.2f s marking).",
  3445                 cmThread()->vtime_accum(),
  3446                 cmThread()->vtime_mark_accum());
  3449 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3450   if (use_parallel_marking_threads()) {
  3451     _parallel_workers->print_worker_threads_on(st);
  3455 void ConcurrentMark::print_on_error(outputStream* st) const {
  3456   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3457       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
  3458   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3459   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3462 // We take a break if someone is trying to stop the world.
  3463 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3464   if (SuspendibleThreadSet::should_yield()) {
  3465     if (worker_id == 0) {
  3466       _g1h->g1_policy()->record_concurrent_pause();
  3468     SuspendibleThreadSet::yield();
  3469     return true;
  3470   } else {
  3471     return false;
  3475 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3476   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3477   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3480 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3481                                                  void* last) {
  3482   return containing_card_is_marked(start) &&
  3483          containing_card_is_marked(last);
  3486 #ifndef PRODUCT
  3487 // for debugging purposes
  3488 void ConcurrentMark::print_finger() {
  3489   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3490                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
  3491   for (uint i = 0; i < _max_worker_id; ++i) {
  3492     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
  3494   gclog_or_tty->cr();
  3496 #endif
  3498 void CMTask::scan_object(oop obj) {
  3499   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3501   if (_cm->verbose_high()) {
  3502     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3503                            _worker_id, p2i((void*) obj));
  3506   size_t obj_size = obj->size();
  3507   _words_scanned += obj_size;
  3509   obj->oop_iterate(_cm_oop_closure);
  3510   statsOnly( ++_objs_scanned );
  3511   check_limits();
  3514 // Closure for iteration over bitmaps
  3515 class CMBitMapClosure : public BitMapClosure {
  3516 private:
  3517   // the bitmap that is being iterated over
  3518   CMBitMap*                   _nextMarkBitMap;
  3519   ConcurrentMark*             _cm;
  3520   CMTask*                     _task;
  3522 public:
  3523   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3524     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3526   bool do_bit(size_t offset) {
  3527     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3528     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3529     assert( addr < _cm->finger(), "invariant");
  3531     statsOnly( _task->increase_objs_found_on_bitmap() );
  3532     assert(addr >= _task->finger(), "invariant");
  3534     // We move that task's local finger along.
  3535     _task->move_finger_to(addr);
  3537     _task->scan_object(oop(addr));
  3538     // we only partially drain the local queue and global stack
  3539     _task->drain_local_queue(true);
  3540     _task->drain_global_stack(true);
  3542     // if the has_aborted flag has been raised, we need to bail out of
  3543     // the iteration
  3544     return !_task->has_aborted();
  3546 };
  3548 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3549                                ConcurrentMark* cm,
  3550                                CMTask* task)
  3551   : _g1h(g1h), _cm(cm), _task(task) {
  3552   assert(_ref_processor == NULL, "should be initialized to NULL");
  3554   if (G1UseConcMarkReferenceProcessing) {
  3555     _ref_processor = g1h->ref_processor_cm();
  3556     assert(_ref_processor != NULL, "should not be NULL");
  3560 void CMTask::setup_for_region(HeapRegion* hr) {
  3561   // Separated the asserts so that we know which one fires.
  3562   assert(hr != NULL,
  3563         "claim_region() should have filtered out continues humongous regions");
  3564   assert(!hr->continuesHumongous(),
  3565         "claim_region() should have filtered out continues humongous regions");
  3567   if (_cm->verbose_low()) {
  3568     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3569                            _worker_id, p2i(hr));
  3572   _curr_region  = hr;
  3573   _finger       = hr->bottom();
  3574   update_region_limit();
  3577 void CMTask::update_region_limit() {
  3578   HeapRegion* hr            = _curr_region;
  3579   HeapWord* bottom          = hr->bottom();
  3580   HeapWord* limit           = hr->next_top_at_mark_start();
  3582   if (limit == bottom) {
  3583     if (_cm->verbose_low()) {
  3584       gclog_or_tty->print_cr("[%u] found an empty region "
  3585                              "["PTR_FORMAT", "PTR_FORMAT")",
  3586                              _worker_id, p2i(bottom), p2i(limit));
  3588     // The region was collected underneath our feet.
  3589     // We set the finger to bottom to ensure that the bitmap
  3590     // iteration that will follow this will not do anything.
  3591     // (this is not a condition that holds when we set the region up,
  3592     // as the region is not supposed to be empty in the first place)
  3593     _finger = bottom;
  3594   } else if (limit >= _region_limit) {
  3595     assert(limit >= _finger, "peace of mind");
  3596   } else {
  3597     assert(limit < _region_limit, "only way to get here");
  3598     // This can happen under some pretty unusual circumstances.  An
  3599     // evacuation pause empties the region underneath our feet (NTAMS
  3600     // at bottom). We then do some allocation in the region (NTAMS
  3601     // stays at bottom), followed by the region being used as a GC
  3602     // alloc region (NTAMS will move to top() and the objects
  3603     // originally below it will be grayed). All objects now marked in
  3604     // the region are explicitly grayed, if below the global finger,
  3605     // and we do not need in fact to scan anything else. So, we simply
  3606     // set _finger to be limit to ensure that the bitmap iteration
  3607     // doesn't do anything.
  3608     _finger = limit;
  3611   _region_limit = limit;
  3614 void CMTask::giveup_current_region() {
  3615   assert(_curr_region != NULL, "invariant");
  3616   if (_cm->verbose_low()) {
  3617     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3618                            _worker_id, p2i(_curr_region));
  3620   clear_region_fields();
  3623 void CMTask::clear_region_fields() {
  3624   // Values for these three fields that indicate that we're not
  3625   // holding on to a region.
  3626   _curr_region   = NULL;
  3627   _finger        = NULL;
  3628   _region_limit  = NULL;
  3631 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3632   if (cm_oop_closure == NULL) {
  3633     assert(_cm_oop_closure != NULL, "invariant");
  3634   } else {
  3635     assert(_cm_oop_closure == NULL, "invariant");
  3637   _cm_oop_closure = cm_oop_closure;
  3640 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3641   guarantee(nextMarkBitMap != NULL, "invariant");
  3643   if (_cm->verbose_low()) {
  3644     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3647   _nextMarkBitMap                = nextMarkBitMap;
  3648   clear_region_fields();
  3650   _calls                         = 0;
  3651   _elapsed_time_ms               = 0.0;
  3652   _termination_time_ms           = 0.0;
  3653   _termination_start_time_ms     = 0.0;
  3655 #if _MARKING_STATS_
  3656   _local_pushes                  = 0;
  3657   _local_pops                    = 0;
  3658   _local_max_size                = 0;
  3659   _objs_scanned                  = 0;
  3660   _global_pushes                 = 0;
  3661   _global_pops                   = 0;
  3662   _global_max_size               = 0;
  3663   _global_transfers_to           = 0;
  3664   _global_transfers_from         = 0;
  3665   _regions_claimed               = 0;
  3666   _objs_found_on_bitmap          = 0;
  3667   _satb_buffers_processed        = 0;
  3668   _steal_attempts                = 0;
  3669   _steals                        = 0;
  3670   _aborted                       = 0;
  3671   _aborted_overflow              = 0;
  3672   _aborted_cm_aborted            = 0;
  3673   _aborted_yield                 = 0;
  3674   _aborted_timed_out             = 0;
  3675   _aborted_satb                  = 0;
  3676   _aborted_termination           = 0;
  3677 #endif // _MARKING_STATS_
  3680 bool CMTask::should_exit_termination() {
  3681   regular_clock_call();
  3682   // This is called when we are in the termination protocol. We should
  3683   // quit if, for some reason, this task wants to abort or the global
  3684   // stack is not empty (this means that we can get work from it).
  3685   return !_cm->mark_stack_empty() || has_aborted();
  3688 void CMTask::reached_limit() {
  3689   assert(_words_scanned >= _words_scanned_limit ||
  3690          _refs_reached >= _refs_reached_limit ,
  3691          "shouldn't have been called otherwise");
  3692   regular_clock_call();
  3695 void CMTask::regular_clock_call() {
  3696   if (has_aborted()) return;
  3698   // First, we need to recalculate the words scanned and refs reached
  3699   // limits for the next clock call.
  3700   recalculate_limits();
  3702   // During the regular clock call we do the following
  3704   // (1) If an overflow has been flagged, then we abort.
  3705   if (_cm->has_overflown()) {
  3706     set_has_aborted();
  3707     return;
  3710   // If we are not concurrent (i.e. we're doing remark) we don't need
  3711   // to check anything else. The other steps are only needed during
  3712   // the concurrent marking phase.
  3713   if (!concurrent()) return;
  3715   // (2) If marking has been aborted for Full GC, then we also abort.
  3716   if (_cm->has_aborted()) {
  3717     set_has_aborted();
  3718     statsOnly( ++_aborted_cm_aborted );
  3719     return;
  3722   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3724   // (3) If marking stats are enabled, then we update the step history.
  3725 #if _MARKING_STATS_
  3726   if (_words_scanned >= _words_scanned_limit) {
  3727     ++_clock_due_to_scanning;
  3729   if (_refs_reached >= _refs_reached_limit) {
  3730     ++_clock_due_to_marking;
  3733   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3734   _interval_start_time_ms = curr_time_ms;
  3735   _all_clock_intervals_ms.add(last_interval_ms);
  3737   if (_cm->verbose_medium()) {
  3738       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3739                         "scanned = %d%s, refs reached = %d%s",
  3740                         _worker_id, last_interval_ms,
  3741                         _words_scanned,
  3742                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3743                         _refs_reached,
  3744                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3746 #endif // _MARKING_STATS_
  3748   // (4) We check whether we should yield. If we have to, then we abort.
  3749   if (SuspendibleThreadSet::should_yield()) {
  3750     // We should yield. To do this we abort the task. The caller is
  3751     // responsible for yielding.
  3752     set_has_aborted();
  3753     statsOnly( ++_aborted_yield );
  3754     return;
  3757   // (5) We check whether we've reached our time quota. If we have,
  3758   // then we abort.
  3759   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3760   if (elapsed_time_ms > _time_target_ms) {
  3761     set_has_aborted();
  3762     _has_timed_out = true;
  3763     statsOnly( ++_aborted_timed_out );
  3764     return;
  3767   // (6) Finally, we check whether there are enough completed STAB
  3768   // buffers available for processing. If there are, we abort.
  3769   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3770   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3771     if (_cm->verbose_low()) {
  3772       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3773                              _worker_id);
  3775     // we do need to process SATB buffers, we'll abort and restart
  3776     // the marking task to do so
  3777     set_has_aborted();
  3778     statsOnly( ++_aborted_satb );
  3779     return;
  3783 void CMTask::recalculate_limits() {
  3784   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3785   _words_scanned_limit      = _real_words_scanned_limit;
  3787   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3788   _refs_reached_limit       = _real_refs_reached_limit;
  3791 void CMTask::decrease_limits() {
  3792   // This is called when we believe that we're going to do an infrequent
  3793   // operation which will increase the per byte scanned cost (i.e. move
  3794   // entries to/from the global stack). It basically tries to decrease the
  3795   // scanning limit so that the clock is called earlier.
  3797   if (_cm->verbose_medium()) {
  3798     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3801   _words_scanned_limit = _real_words_scanned_limit -
  3802     3 * words_scanned_period / 4;
  3803   _refs_reached_limit  = _real_refs_reached_limit -
  3804     3 * refs_reached_period / 4;
  3807 void CMTask::move_entries_to_global_stack() {
  3808   // local array where we'll store the entries that will be popped
  3809   // from the local queue
  3810   oop buffer[global_stack_transfer_size];
  3812   int n = 0;
  3813   oop obj;
  3814   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3815     buffer[n] = obj;
  3816     ++n;
  3819   if (n > 0) {
  3820     // we popped at least one entry from the local queue
  3822     statsOnly( ++_global_transfers_to; _local_pops += n );
  3824     if (!_cm->mark_stack_push(buffer, n)) {
  3825       if (_cm->verbose_low()) {
  3826         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3827                                _worker_id);
  3829       set_has_aborted();
  3830     } else {
  3831       // the transfer was successful
  3833       if (_cm->verbose_medium()) {
  3834         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3835                                _worker_id, n);
  3837       statsOnly( int tmp_size = _cm->mark_stack_size();
  3838                  if (tmp_size > _global_max_size) {
  3839                    _global_max_size = tmp_size;
  3841                  _global_pushes += n );
  3845   // this operation was quite expensive, so decrease the limits
  3846   decrease_limits();
  3849 void CMTask::get_entries_from_global_stack() {
  3850   // local array where we'll store the entries that will be popped
  3851   // from the global stack.
  3852   oop buffer[global_stack_transfer_size];
  3853   int n;
  3854   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3855   assert(n <= global_stack_transfer_size,
  3856          "we should not pop more than the given limit");
  3857   if (n > 0) {
  3858     // yes, we did actually pop at least one entry
  3860     statsOnly( ++_global_transfers_from; _global_pops += n );
  3861     if (_cm->verbose_medium()) {
  3862       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3863                              _worker_id, n);
  3865     for (int i = 0; i < n; ++i) {
  3866       bool success = _task_queue->push(buffer[i]);
  3867       // We only call this when the local queue is empty or under a
  3868       // given target limit. So, we do not expect this push to fail.
  3869       assert(success, "invariant");
  3872     statsOnly( int tmp_size = _task_queue->size();
  3873                if (tmp_size > _local_max_size) {
  3874                  _local_max_size = tmp_size;
  3876                _local_pushes += n );
  3879   // this operation was quite expensive, so decrease the limits
  3880   decrease_limits();
  3883 void CMTask::drain_local_queue(bool partially) {
  3884   if (has_aborted()) return;
  3886   // Decide what the target size is, depending whether we're going to
  3887   // drain it partially (so that other tasks can steal if they run out
  3888   // of things to do) or totally (at the very end).
  3889   size_t target_size;
  3890   if (partially) {
  3891     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3892   } else {
  3893     target_size = 0;
  3896   if (_task_queue->size() > target_size) {
  3897     if (_cm->verbose_high()) {
  3898       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
  3899                              _worker_id, target_size);
  3902     oop obj;
  3903     bool ret = _task_queue->pop_local(obj);
  3904     while (ret) {
  3905       statsOnly( ++_local_pops );
  3907       if (_cm->verbose_high()) {
  3908         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3909                                p2i((void*) obj));
  3912       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3913       assert(!_g1h->is_on_master_free_list(
  3914                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3916       scan_object(obj);
  3918       if (_task_queue->size() <= target_size || has_aborted()) {
  3919         ret = false;
  3920       } else {
  3921         ret = _task_queue->pop_local(obj);
  3925     if (_cm->verbose_high()) {
  3926       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3927                              _worker_id, _task_queue->size());
  3932 void CMTask::drain_global_stack(bool partially) {
  3933   if (has_aborted()) return;
  3935   // We have a policy to drain the local queue before we attempt to
  3936   // drain the global stack.
  3937   assert(partially || _task_queue->size() == 0, "invariant");
  3939   // Decide what the target size is, depending whether we're going to
  3940   // drain it partially (so that other tasks can steal if they run out
  3941   // of things to do) or totally (at the very end).  Notice that,
  3942   // because we move entries from the global stack in chunks or
  3943   // because another task might be doing the same, we might in fact
  3944   // drop below the target. But, this is not a problem.
  3945   size_t target_size;
  3946   if (partially) {
  3947     target_size = _cm->partial_mark_stack_size_target();
  3948   } else {
  3949     target_size = 0;
  3952   if (_cm->mark_stack_size() > target_size) {
  3953     if (_cm->verbose_low()) {
  3954       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
  3955                              _worker_id, target_size);
  3958     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3959       get_entries_from_global_stack();
  3960       drain_local_queue(partially);
  3963     if (_cm->verbose_low()) {
  3964       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
  3965                              _worker_id, _cm->mark_stack_size());
  3970 // SATB Queue has several assumptions on whether to call the par or
  3971 // non-par versions of the methods. this is why some of the code is
  3972 // replicated. We should really get rid of the single-threaded version
  3973 // of the code to simplify things.
  3974 void CMTask::drain_satb_buffers() {
  3975   if (has_aborted()) return;
  3977   // We set this so that the regular clock knows that we're in the
  3978   // middle of draining buffers and doesn't set the abort flag when it
  3979   // notices that SATB buffers are available for draining. It'd be
  3980   // very counter productive if it did that. :-)
  3981   _draining_satb_buffers = true;
  3983   CMObjectClosure oc(this);
  3984   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3985   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3986     satb_mq_set.set_par_closure(_worker_id, &oc);
  3987   } else {
  3988     satb_mq_set.set_closure(&oc);
  3991   // This keeps claiming and applying the closure to completed buffers
  3992   // until we run out of buffers or we need to abort.
  3993   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3994     while (!has_aborted() &&
  3995            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  3996       if (_cm->verbose_medium()) {
  3997         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  3999       statsOnly( ++_satb_buffers_processed );
  4000       regular_clock_call();
  4002   } else {
  4003     while (!has_aborted() &&
  4004            satb_mq_set.apply_closure_to_completed_buffer()) {
  4005       if (_cm->verbose_medium()) {
  4006         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4008       statsOnly( ++_satb_buffers_processed );
  4009       regular_clock_call();
  4013   _draining_satb_buffers = false;
  4015   assert(has_aborted() ||
  4016          concurrent() ||
  4017          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4019   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4020     satb_mq_set.set_par_closure(_worker_id, NULL);
  4021   } else {
  4022     satb_mq_set.set_closure(NULL);
  4025   // again, this was a potentially expensive operation, decrease the
  4026   // limits to get the regular clock call early
  4027   decrease_limits();
  4030 void CMTask::print_stats() {
  4031   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  4032                          _worker_id, _calls);
  4033   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4034                          _elapsed_time_ms, _termination_time_ms);
  4035   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4036                          _step_times_ms.num(), _step_times_ms.avg(),
  4037                          _step_times_ms.sd());
  4038   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4039                          _step_times_ms.maximum(), _step_times_ms.sum());
  4041 #if _MARKING_STATS_
  4042   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4043                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4044                          _all_clock_intervals_ms.sd());
  4045   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4046                          _all_clock_intervals_ms.maximum(),
  4047                          _all_clock_intervals_ms.sum());
  4048   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4049                          _clock_due_to_scanning, _clock_due_to_marking);
  4050   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4051                          _objs_scanned, _objs_found_on_bitmap);
  4052   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4053                          _local_pushes, _local_pops, _local_max_size);
  4054   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4055                          _global_pushes, _global_pops, _global_max_size);
  4056   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4057                          _global_transfers_to,_global_transfers_from);
  4058   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  4059   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4060   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4061                          _steal_attempts, _steals);
  4062   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4063   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4064                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4065   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4066                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4067 #endif // _MARKING_STATS_
  4070 /*****************************************************************************
  4072     The do_marking_step(time_target_ms, ...) method is the building
  4073     block of the parallel marking framework. It can be called in parallel
  4074     with other invocations of do_marking_step() on different tasks
  4075     (but only one per task, obviously) and concurrently with the
  4076     mutator threads, or during remark, hence it eliminates the need
  4077     for two versions of the code. When called during remark, it will
  4078     pick up from where the task left off during the concurrent marking
  4079     phase. Interestingly, tasks are also claimable during evacuation
  4080     pauses too, since do_marking_step() ensures that it aborts before
  4081     it needs to yield.
  4083     The data structures that it uses to do marking work are the
  4084     following:
  4086       (1) Marking Bitmap. If there are gray objects that appear only
  4087       on the bitmap (this happens either when dealing with an overflow
  4088       or when the initial marking phase has simply marked the roots
  4089       and didn't push them on the stack), then tasks claim heap
  4090       regions whose bitmap they then scan to find gray objects. A
  4091       global finger indicates where the end of the last claimed region
  4092       is. A local finger indicates how far into the region a task has
  4093       scanned. The two fingers are used to determine how to gray an
  4094       object (i.e. whether simply marking it is OK, as it will be
  4095       visited by a task in the future, or whether it needs to be also
  4096       pushed on a stack).
  4098       (2) Local Queue. The local queue of the task which is accessed
  4099       reasonably efficiently by the task. Other tasks can steal from
  4100       it when they run out of work. Throughout the marking phase, a
  4101       task attempts to keep its local queue short but not totally
  4102       empty, so that entries are available for stealing by other
  4103       tasks. Only when there is no more work, a task will totally
  4104       drain its local queue.
  4106       (3) Global Mark Stack. This handles local queue overflow. During
  4107       marking only sets of entries are moved between it and the local
  4108       queues, as access to it requires a mutex and more fine-grain
  4109       interaction with it which might cause contention. If it
  4110       overflows, then the marking phase should restart and iterate
  4111       over the bitmap to identify gray objects. Throughout the marking
  4112       phase, tasks attempt to keep the global mark stack at a small
  4113       length but not totally empty, so that entries are available for
  4114       popping by other tasks. Only when there is no more work, tasks
  4115       will totally drain the global mark stack.
  4117       (4) SATB Buffer Queue. This is where completed SATB buffers are
  4118       made available. Buffers are regularly removed from this queue
  4119       and scanned for roots, so that the queue doesn't get too
  4120       long. During remark, all completed buffers are processed, as
  4121       well as the filled in parts of any uncompleted buffers.
  4123     The do_marking_step() method tries to abort when the time target
  4124     has been reached. There are a few other cases when the
  4125     do_marking_step() method also aborts:
  4127       (1) When the marking phase has been aborted (after a Full GC).
  4129       (2) When a global overflow (on the global stack) has been
  4130       triggered. Before the task aborts, it will actually sync up with
  4131       the other tasks to ensure that all the marking data structures
  4132       (local queues, stacks, fingers etc.)  are re-initialized so that
  4133       when do_marking_step() completes, the marking phase can
  4134       immediately restart.
  4136       (3) When enough completed SATB buffers are available. The
  4137       do_marking_step() method only tries to drain SATB buffers right
  4138       at the beginning. So, if enough buffers are available, the
  4139       marking step aborts and the SATB buffers are processed at
  4140       the beginning of the next invocation.
  4142       (4) To yield. when we have to yield then we abort and yield
  4143       right at the end of do_marking_step(). This saves us from a lot
  4144       of hassle as, by yielding we might allow a Full GC. If this
  4145       happens then objects will be compacted underneath our feet, the
  4146       heap might shrink, etc. We save checking for this by just
  4147       aborting and doing the yield right at the end.
  4149     From the above it follows that the do_marking_step() method should
  4150     be called in a loop (or, otherwise, regularly) until it completes.
  4152     If a marking step completes without its has_aborted() flag being
  4153     true, it means it has completed the current marking phase (and
  4154     also all other marking tasks have done so and have all synced up).
  4156     A method called regular_clock_call() is invoked "regularly" (in
  4157     sub ms intervals) throughout marking. It is this clock method that
  4158     checks all the abort conditions which were mentioned above and
  4159     decides when the task should abort. A work-based scheme is used to
  4160     trigger this clock method: when the number of object words the
  4161     marking phase has scanned or the number of references the marking
  4162     phase has visited reach a given limit. Additional invocations to
  4163     the method clock have been planted in a few other strategic places
  4164     too. The initial reason for the clock method was to avoid calling
  4165     vtime too regularly, as it is quite expensive. So, once it was in
  4166     place, it was natural to piggy-back all the other conditions on it
  4167     too and not constantly check them throughout the code.
  4169     If do_termination is true then do_marking_step will enter its
  4170     termination protocol.
  4172     The value of is_serial must be true when do_marking_step is being
  4173     called serially (i.e. by the VMThread) and do_marking_step should
  4174     skip any synchronization in the termination and overflow code.
  4175     Examples include the serial remark code and the serial reference
  4176     processing closures.
  4178     The value of is_serial must be false when do_marking_step is
  4179     being called by any of the worker threads in a work gang.
  4180     Examples include the concurrent marking code (CMMarkingTask),
  4181     the MT remark code, and the MT reference processing closures.
  4183  *****************************************************************************/
  4185 void CMTask::do_marking_step(double time_target_ms,
  4186                              bool do_termination,
  4187                              bool is_serial) {
  4188   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4189   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4191   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4192   assert(_task_queues != NULL, "invariant");
  4193   assert(_task_queue != NULL, "invariant");
  4194   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4196   assert(!_claimed,
  4197          "only one thread should claim this task at any one time");
  4199   // OK, this doesn't safeguard again all possible scenarios, as it is
  4200   // possible for two threads to set the _claimed flag at the same
  4201   // time. But it is only for debugging purposes anyway and it will
  4202   // catch most problems.
  4203   _claimed = true;
  4205   _start_time_ms = os::elapsedVTime() * 1000.0;
  4206   statsOnly( _interval_start_time_ms = _start_time_ms );
  4208   // If do_stealing is true then do_marking_step will attempt to
  4209   // steal work from the other CMTasks. It only makes sense to
  4210   // enable stealing when the termination protocol is enabled
  4211   // and do_marking_step() is not being called serially.
  4212   bool do_stealing = do_termination && !is_serial;
  4214   double diff_prediction_ms =
  4215     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4216   _time_target_ms = time_target_ms - diff_prediction_ms;
  4218   // set up the variables that are used in the work-based scheme to
  4219   // call the regular clock method
  4220   _words_scanned = 0;
  4221   _refs_reached  = 0;
  4222   recalculate_limits();
  4224   // clear all flags
  4225   clear_has_aborted();
  4226   _has_timed_out = false;
  4227   _draining_satb_buffers = false;
  4229   ++_calls;
  4231   if (_cm->verbose_low()) {
  4232     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4233                            "target = %1.2lfms >>>>>>>>>>",
  4234                            _worker_id, _calls, _time_target_ms);
  4237   // Set up the bitmap and oop closures. Anything that uses them is
  4238   // eventually called from this method, so it is OK to allocate these
  4239   // statically.
  4240   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4241   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4242   set_cm_oop_closure(&cm_oop_closure);
  4244   if (_cm->has_overflown()) {
  4245     // This can happen if the mark stack overflows during a GC pause
  4246     // and this task, after a yield point, restarts. We have to abort
  4247     // as we need to get into the overflow protocol which happens
  4248     // right at the end of this task.
  4249     set_has_aborted();
  4252   // First drain any available SATB buffers. After this, we will not
  4253   // look at SATB buffers before the next invocation of this method.
  4254   // If enough completed SATB buffers are queued up, the regular clock
  4255   // will abort this task so that it restarts.
  4256   drain_satb_buffers();
  4257   // ...then partially drain the local queue and the global stack
  4258   drain_local_queue(true);
  4259   drain_global_stack(true);
  4261   do {
  4262     if (!has_aborted() && _curr_region != NULL) {
  4263       // This means that we're already holding on to a region.
  4264       assert(_finger != NULL, "if region is not NULL, then the finger "
  4265              "should not be NULL either");
  4267       // We might have restarted this task after an evacuation pause
  4268       // which might have evacuated the region we're holding on to
  4269       // underneath our feet. Let's read its limit again to make sure
  4270       // that we do not iterate over a region of the heap that
  4271       // contains garbage (update_region_limit() will also move
  4272       // _finger to the start of the region if it is found empty).
  4273       update_region_limit();
  4274       // We will start from _finger not from the start of the region,
  4275       // as we might be restarting this task after aborting half-way
  4276       // through scanning this region. In this case, _finger points to
  4277       // the address where we last found a marked object. If this is a
  4278       // fresh region, _finger points to start().
  4279       MemRegion mr = MemRegion(_finger, _region_limit);
  4281       if (_cm->verbose_low()) {
  4282         gclog_or_tty->print_cr("[%u] we're scanning part "
  4283                                "["PTR_FORMAT", "PTR_FORMAT") "
  4284                                "of region "HR_FORMAT,
  4285                                _worker_id, p2i(_finger), p2i(_region_limit),
  4286                                HR_FORMAT_PARAMS(_curr_region));
  4289       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4290              "humongous regions should go around loop once only");
  4292       // Some special cases:
  4293       // If the memory region is empty, we can just give up the region.
  4294       // If the current region is humongous then we only need to check
  4295       // the bitmap for the bit associated with the start of the object,
  4296       // scan the object if it's live, and give up the region.
  4297       // Otherwise, let's iterate over the bitmap of the part of the region
  4298       // that is left.
  4299       // If the iteration is successful, give up the region.
  4300       if (mr.is_empty()) {
  4301         giveup_current_region();
  4302         regular_clock_call();
  4303       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4304         if (_nextMarkBitMap->isMarked(mr.start())) {
  4305           // The object is marked - apply the closure
  4306           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4307           bitmap_closure.do_bit(offset);
  4309         // Even if this task aborted while scanning the humongous object
  4310         // we can (and should) give up the current region.
  4311         giveup_current_region();
  4312         regular_clock_call();
  4313       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4314         giveup_current_region();
  4315         regular_clock_call();
  4316       } else {
  4317         assert(has_aborted(), "currently the only way to do so");
  4318         // The only way to abort the bitmap iteration is to return
  4319         // false from the do_bit() method. However, inside the
  4320         // do_bit() method we move the _finger to point to the
  4321         // object currently being looked at. So, if we bail out, we
  4322         // have definitely set _finger to something non-null.
  4323         assert(_finger != NULL, "invariant");
  4325         // Region iteration was actually aborted. So now _finger
  4326         // points to the address of the object we last scanned. If we
  4327         // leave it there, when we restart this task, we will rescan
  4328         // the object. It is easy to avoid this. We move the finger by
  4329         // enough to point to the next possible object header (the
  4330         // bitmap knows by how much we need to move it as it knows its
  4331         // granularity).
  4332         assert(_finger < _region_limit, "invariant");
  4333         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4334         // Check if bitmap iteration was aborted while scanning the last object
  4335         if (new_finger >= _region_limit) {
  4336           giveup_current_region();
  4337         } else {
  4338           move_finger_to(new_finger);
  4342     // At this point we have either completed iterating over the
  4343     // region we were holding on to, or we have aborted.
  4345     // We then partially drain the local queue and the global stack.
  4346     // (Do we really need this?)
  4347     drain_local_queue(true);
  4348     drain_global_stack(true);
  4350     // Read the note on the claim_region() method on why it might
  4351     // return NULL with potentially more regions available for
  4352     // claiming and why we have to check out_of_regions() to determine
  4353     // whether we're done or not.
  4354     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4355       // We are going to try to claim a new region. We should have
  4356       // given up on the previous one.
  4357       // Separated the asserts so that we know which one fires.
  4358       assert(_curr_region  == NULL, "invariant");
  4359       assert(_finger       == NULL, "invariant");
  4360       assert(_region_limit == NULL, "invariant");
  4361       if (_cm->verbose_low()) {
  4362         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4364       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4365       if (claimed_region != NULL) {
  4366         // Yes, we managed to claim one
  4367         statsOnly( ++_regions_claimed );
  4369         if (_cm->verbose_low()) {
  4370           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4371                                  "region "PTR_FORMAT,
  4372                                  _worker_id, p2i(claimed_region));
  4375         setup_for_region(claimed_region);
  4376         assert(_curr_region == claimed_region, "invariant");
  4378       // It is important to call the regular clock here. It might take
  4379       // a while to claim a region if, for example, we hit a large
  4380       // block of empty regions. So we need to call the regular clock
  4381       // method once round the loop to make sure it's called
  4382       // frequently enough.
  4383       regular_clock_call();
  4386     if (!has_aborted() && _curr_region == NULL) {
  4387       assert(_cm->out_of_regions(),
  4388              "at this point we should be out of regions");
  4390   } while ( _curr_region != NULL && !has_aborted());
  4392   if (!has_aborted()) {
  4393     // We cannot check whether the global stack is empty, since other
  4394     // tasks might be pushing objects to it concurrently.
  4395     assert(_cm->out_of_regions(),
  4396            "at this point we should be out of regions");
  4398     if (_cm->verbose_low()) {
  4399       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4402     // Try to reduce the number of available SATB buffers so that
  4403     // remark has less work to do.
  4404     drain_satb_buffers();
  4407   // Since we've done everything else, we can now totally drain the
  4408   // local queue and global stack.
  4409   drain_local_queue(false);
  4410   drain_global_stack(false);
  4412   // Attempt at work stealing from other task's queues.
  4413   if (do_stealing && !has_aborted()) {
  4414     // We have not aborted. This means that we have finished all that
  4415     // we could. Let's try to do some stealing...
  4417     // We cannot check whether the global stack is empty, since other
  4418     // tasks might be pushing objects to it concurrently.
  4419     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4420            "only way to reach here");
  4422     if (_cm->verbose_low()) {
  4423       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4426     while (!has_aborted()) {
  4427       oop obj;
  4428       statsOnly( ++_steal_attempts );
  4430       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4431         if (_cm->verbose_medium()) {
  4432           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4433                                  _worker_id, p2i((void*) obj));
  4436         statsOnly( ++_steals );
  4438         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4439                "any stolen object should be marked");
  4440         scan_object(obj);
  4442         // And since we're towards the end, let's totally drain the
  4443         // local queue and global stack.
  4444         drain_local_queue(false);
  4445         drain_global_stack(false);
  4446       } else {
  4447         break;
  4452   // If we are about to wrap up and go into termination, check if we
  4453   // should raise the overflow flag.
  4454   if (do_termination && !has_aborted()) {
  4455     if (_cm->force_overflow()->should_force()) {
  4456       _cm->set_has_overflown();
  4457       regular_clock_call();
  4461   // We still haven't aborted. Now, let's try to get into the
  4462   // termination protocol.
  4463   if (do_termination && !has_aborted()) {
  4464     // We cannot check whether the global stack is empty, since other
  4465     // tasks might be concurrently pushing objects on it.
  4466     // Separated the asserts so that we know which one fires.
  4467     assert(_cm->out_of_regions(), "only way to reach here");
  4468     assert(_task_queue->size() == 0, "only way to reach here");
  4470     if (_cm->verbose_low()) {
  4471       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4474     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4476     // The CMTask class also extends the TerminatorTerminator class,
  4477     // hence its should_exit_termination() method will also decide
  4478     // whether to exit the termination protocol or not.
  4479     bool finished = (is_serial ||
  4480                      _cm->terminator()->offer_termination(this));
  4481     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4482     _termination_time_ms +=
  4483       termination_end_time_ms - _termination_start_time_ms;
  4485     if (finished) {
  4486       // We're all done.
  4488       if (_worker_id == 0) {
  4489         // let's allow task 0 to do this
  4490         if (concurrent()) {
  4491           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4492           // we need to set this to false before the next
  4493           // safepoint. This way we ensure that the marking phase
  4494           // doesn't observe any more heap expansions.
  4495           _cm->clear_concurrent_marking_in_progress();
  4499       // We can now guarantee that the global stack is empty, since
  4500       // all other tasks have finished. We separated the guarantees so
  4501       // that, if a condition is false, we can immediately find out
  4502       // which one.
  4503       guarantee(_cm->out_of_regions(), "only way to reach here");
  4504       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4505       guarantee(_task_queue->size() == 0, "only way to reach here");
  4506       guarantee(!_cm->has_overflown(), "only way to reach here");
  4507       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4509       if (_cm->verbose_low()) {
  4510         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4512     } else {
  4513       // Apparently there's more work to do. Let's abort this task. It
  4514       // will restart it and we can hopefully find more things to do.
  4516       if (_cm->verbose_low()) {
  4517         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4518                                _worker_id);
  4521       set_has_aborted();
  4522       statsOnly( ++_aborted_termination );
  4526   // Mainly for debugging purposes to make sure that a pointer to the
  4527   // closure which was statically allocated in this frame doesn't
  4528   // escape it by accident.
  4529   set_cm_oop_closure(NULL);
  4530   double end_time_ms = os::elapsedVTime() * 1000.0;
  4531   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4532   // Update the step history.
  4533   _step_times_ms.add(elapsed_time_ms);
  4535   if (has_aborted()) {
  4536     // The task was aborted for some reason.
  4538     statsOnly( ++_aborted );
  4540     if (_has_timed_out) {
  4541       double diff_ms = elapsed_time_ms - _time_target_ms;
  4542       // Keep statistics of how well we did with respect to hitting
  4543       // our target only if we actually timed out (if we aborted for
  4544       // other reasons, then the results might get skewed).
  4545       _marking_step_diffs_ms.add(diff_ms);
  4548     if (_cm->has_overflown()) {
  4549       // This is the interesting one. We aborted because a global
  4550       // overflow was raised. This means we have to restart the
  4551       // marking phase and start iterating over regions. However, in
  4552       // order to do this we have to make sure that all tasks stop
  4553       // what they are doing and re-initialise in a safe manner. We
  4554       // will achieve this with the use of two barrier sync points.
  4556       if (_cm->verbose_low()) {
  4557         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4560       if (!is_serial) {
  4561         // We only need to enter the sync barrier if being called
  4562         // from a parallel context
  4563         _cm->enter_first_sync_barrier(_worker_id);
  4565         // When we exit this sync barrier we know that all tasks have
  4566         // stopped doing marking work. So, it's now safe to
  4567         // re-initialise our data structures. At the end of this method,
  4568         // task 0 will clear the global data structures.
  4571       statsOnly( ++_aborted_overflow );
  4573       // We clear the local state of this task...
  4574       clear_region_fields();
  4576       if (!is_serial) {
  4577         // ...and enter the second barrier.
  4578         _cm->enter_second_sync_barrier(_worker_id);
  4580       // At this point, if we're during the concurrent phase of
  4581       // marking, everything has been re-initialized and we're
  4582       // ready to restart.
  4585     if (_cm->verbose_low()) {
  4586       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4587                              "elapsed = %1.2lfms <<<<<<<<<<",
  4588                              _worker_id, _time_target_ms, elapsed_time_ms);
  4589       if (_cm->has_aborted()) {
  4590         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4591                                _worker_id);
  4594   } else {
  4595     if (_cm->verbose_low()) {
  4596       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4597                              "elapsed = %1.2lfms <<<<<<<<<<",
  4598                              _worker_id, _time_target_ms, elapsed_time_ms);
  4602   _claimed = false;
  4605 CMTask::CMTask(uint worker_id,
  4606                ConcurrentMark* cm,
  4607                size_t* marked_bytes,
  4608                BitMap* card_bm,
  4609                CMTaskQueue* task_queue,
  4610                CMTaskQueueSet* task_queues)
  4611   : _g1h(G1CollectedHeap::heap()),
  4612     _worker_id(worker_id), _cm(cm),
  4613     _claimed(false),
  4614     _nextMarkBitMap(NULL), _hash_seed(17),
  4615     _task_queue(task_queue),
  4616     _task_queues(task_queues),
  4617     _cm_oop_closure(NULL),
  4618     _marked_bytes_array(marked_bytes),
  4619     _card_bm(card_bm) {
  4620   guarantee(task_queue != NULL, "invariant");
  4621   guarantee(task_queues != NULL, "invariant");
  4623   statsOnly( _clock_due_to_scanning = 0;
  4624              _clock_due_to_marking  = 0 );
  4626   _marking_step_diffs_ms.add(0.5);
  4629 // These are formatting macros that are used below to ensure
  4630 // consistent formatting. The *_H_* versions are used to format the
  4631 // header for a particular value and they should be kept consistent
  4632 // with the corresponding macro. Also note that most of the macros add
  4633 // the necessary white space (as a prefix) which makes them a bit
  4634 // easier to compose.
  4636 // All the output lines are prefixed with this string to be able to
  4637 // identify them easily in a large log file.
  4638 #define G1PPRL_LINE_PREFIX            "###"
  4640 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4641 #ifdef _LP64
  4642 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4643 #else // _LP64
  4644 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4645 #endif // _LP64
  4647 // For per-region info
  4648 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4649 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4650 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4651 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4652 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4653 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4655 // For summary info
  4656 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4657 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4658 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4659 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4661 G1PrintRegionLivenessInfoClosure::
  4662 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4663   : _out(out),
  4664     _total_used_bytes(0), _total_capacity_bytes(0),
  4665     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4666     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4667     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4668     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4669   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4670   MemRegion g1_committed = g1h->g1_committed();
  4671   MemRegion g1_reserved = g1h->g1_reserved();
  4672   double now = os::elapsedTime();
  4674   // Print the header of the output.
  4675   _out->cr();
  4676   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4677   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4678                  G1PPRL_SUM_ADDR_FORMAT("committed")
  4679                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4680                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4681                  p2i(g1_committed.start()), p2i(g1_committed.end()),
  4682                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
  4683                  HeapRegion::GrainBytes);
  4684   _out->print_cr(G1PPRL_LINE_PREFIX);
  4685   _out->print_cr(G1PPRL_LINE_PREFIX
  4686                 G1PPRL_TYPE_H_FORMAT
  4687                 G1PPRL_ADDR_BASE_H_FORMAT
  4688                 G1PPRL_BYTE_H_FORMAT
  4689                 G1PPRL_BYTE_H_FORMAT
  4690                 G1PPRL_BYTE_H_FORMAT
  4691                 G1PPRL_DOUBLE_H_FORMAT
  4692                 G1PPRL_BYTE_H_FORMAT
  4693                 G1PPRL_BYTE_H_FORMAT,
  4694                 "type", "address-range",
  4695                 "used", "prev-live", "next-live", "gc-eff",
  4696                 "remset", "code-roots");
  4697   _out->print_cr(G1PPRL_LINE_PREFIX
  4698                 G1PPRL_TYPE_H_FORMAT
  4699                 G1PPRL_ADDR_BASE_H_FORMAT
  4700                 G1PPRL_BYTE_H_FORMAT
  4701                 G1PPRL_BYTE_H_FORMAT
  4702                 G1PPRL_BYTE_H_FORMAT
  4703                 G1PPRL_DOUBLE_H_FORMAT
  4704                 G1PPRL_BYTE_H_FORMAT
  4705                 G1PPRL_BYTE_H_FORMAT,
  4706                 "", "",
  4707                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4708                 "(bytes)", "(bytes)");
  4711 // It takes as a parameter a reference to one of the _hum_* fields, it
  4712 // deduces the corresponding value for a region in a humongous region
  4713 // series (either the region size, or what's left if the _hum_* field
  4714 // is < the region size), and updates the _hum_* field accordingly.
  4715 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4716   size_t bytes = 0;
  4717   // The > 0 check is to deal with the prev and next live bytes which
  4718   // could be 0.
  4719   if (*hum_bytes > 0) {
  4720     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4721     *hum_bytes -= bytes;
  4723   return bytes;
  4726 // It deduces the values for a region in a humongous region series
  4727 // from the _hum_* fields and updates those accordingly. It assumes
  4728 // that that _hum_* fields have already been set up from the "starts
  4729 // humongous" region and we visit the regions in address order.
  4730 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4731                                                      size_t* capacity_bytes,
  4732                                                      size_t* prev_live_bytes,
  4733                                                      size_t* next_live_bytes) {
  4734   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4735   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4736   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4737   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4738   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4741 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4742   const char* type = "";
  4743   HeapWord* bottom       = r->bottom();
  4744   HeapWord* end          = r->end();
  4745   size_t capacity_bytes  = r->capacity();
  4746   size_t used_bytes      = r->used();
  4747   size_t prev_live_bytes = r->live_bytes();
  4748   size_t next_live_bytes = r->next_live_bytes();
  4749   double gc_eff          = r->gc_efficiency();
  4750   size_t remset_bytes    = r->rem_set()->mem_size();
  4751   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4753   if (r->used() == 0) {
  4754     type = "FREE";
  4755   } else if (r->is_survivor()) {
  4756     type = "SURV";
  4757   } else if (r->is_young()) {
  4758     type = "EDEN";
  4759   } else if (r->startsHumongous()) {
  4760     type = "HUMS";
  4762     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4763            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4764            "they should have been zeroed after the last time we used them");
  4765     // Set up the _hum_* fields.
  4766     _hum_capacity_bytes  = capacity_bytes;
  4767     _hum_used_bytes      = used_bytes;
  4768     _hum_prev_live_bytes = prev_live_bytes;
  4769     _hum_next_live_bytes = next_live_bytes;
  4770     get_hum_bytes(&used_bytes, &capacity_bytes,
  4771                   &prev_live_bytes, &next_live_bytes);
  4772     end = bottom + HeapRegion::GrainWords;
  4773   } else if (r->continuesHumongous()) {
  4774     type = "HUMC";
  4775     get_hum_bytes(&used_bytes, &capacity_bytes,
  4776                   &prev_live_bytes, &next_live_bytes);
  4777     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4778   } else {
  4779     type = "OLD";
  4782   _total_used_bytes      += used_bytes;
  4783   _total_capacity_bytes  += capacity_bytes;
  4784   _total_prev_live_bytes += prev_live_bytes;
  4785   _total_next_live_bytes += next_live_bytes;
  4786   _total_remset_bytes    += remset_bytes;
  4787   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4789   // Print a line for this particular region.
  4790   _out->print_cr(G1PPRL_LINE_PREFIX
  4791                  G1PPRL_TYPE_FORMAT
  4792                  G1PPRL_ADDR_BASE_FORMAT
  4793                  G1PPRL_BYTE_FORMAT
  4794                  G1PPRL_BYTE_FORMAT
  4795                  G1PPRL_BYTE_FORMAT
  4796                  G1PPRL_DOUBLE_FORMAT
  4797                  G1PPRL_BYTE_FORMAT
  4798                  G1PPRL_BYTE_FORMAT,
  4799                  type, p2i(bottom), p2i(end),
  4800                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4801                  remset_bytes, strong_code_roots_bytes);
  4803   return false;
  4806 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4807   // add static memory usages to remembered set sizes
  4808   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4809   // Print the footer of the output.
  4810   _out->print_cr(G1PPRL_LINE_PREFIX);
  4811   _out->print_cr(G1PPRL_LINE_PREFIX
  4812                  " SUMMARY"
  4813                  G1PPRL_SUM_MB_FORMAT("capacity")
  4814                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4815                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4816                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4817                  G1PPRL_SUM_MB_FORMAT("remset")
  4818                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4819                  bytes_to_mb(_total_capacity_bytes),
  4820                  bytes_to_mb(_total_used_bytes),
  4821                  perc(_total_used_bytes, _total_capacity_bytes),
  4822                  bytes_to_mb(_total_prev_live_bytes),
  4823                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4824                  bytes_to_mb(_total_next_live_bytes),
  4825                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4826                  bytes_to_mb(_total_remset_bytes),
  4827                  bytes_to_mb(_total_strong_code_roots_bytes));
  4828   _out->cr();

mercurial