src/share/vm/runtime/synchronizer.cpp

Mon, 29 Apr 2013 01:58:43 -0700

author
jiangli
date
Mon, 29 Apr 2013 01:58:43 -0700
changeset 5004
e01e02a9fcb6
parent 4967
5a9fa2ba85f0
child 4993
746b070f5022
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/biasedLocking.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/interfaceSupport.hpp"
    33 #include "runtime/mutexLocker.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/objectMonitor.inline.hpp"
    36 #include "runtime/osThread.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "runtime/synchronizer.hpp"
    39 #include "runtime/thread.inline.hpp"
    40 #include "utilities/dtrace.hpp"
    41 #include "utilities/events.hpp"
    42 #include "utilities/preserveException.hpp"
    43 #ifdef TARGET_OS_FAMILY_linux
    44 # include "os_linux.inline.hpp"
    45 #endif
    46 #ifdef TARGET_OS_FAMILY_solaris
    47 # include "os_solaris.inline.hpp"
    48 #endif
    49 #ifdef TARGET_OS_FAMILY_windows
    50 # include "os_windows.inline.hpp"
    51 #endif
    52 #ifdef TARGET_OS_FAMILY_bsd
    53 # include "os_bsd.inline.hpp"
    54 #endif
    56 #if defined(__GNUC__)
    57   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    58   #define ATTR __attribute__((noinline))
    59 #else
    60   #define ATTR
    61 #endif
    63 // The "core" versions of monitor enter and exit reside in this file.
    64 // The interpreter and compilers contain specialized transliterated
    65 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    66 // for instance.  If you make changes here, make sure to modify the
    67 // interpreter, and both C1 and C2 fast-path inline locking code emission.
    68 //
    69 //
    70 // -----------------------------------------------------------------------------
    72 #ifdef DTRACE_ENABLED
    74 // Only bother with this argument setup if dtrace is available
    75 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    77 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
    78   char* bytes = NULL;                                                      \
    79   int len = 0;                                                             \
    80   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    81   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
    82   if (klassname != NULL) {                                                 \
    83     bytes = (char*)klassname->bytes();                                     \
    84     len = klassname->utf8_length();                                        \
    85   }
    87 #ifndef USDT2
    88 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
    89   jlong, uintptr_t, char*, int, long);
    90 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    91   jlong, uintptr_t, char*, int);
    93 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
    94   {                                                                        \
    95     if (DTraceMonitorProbes) {                                            \
    96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
    97       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    98                        (monitor), bytes, len, (millis));                   \
    99     }                                                                      \
   100   }
   102 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   103   {                                                                        \
   104     if (DTraceMonitorProbes) {                                            \
   105       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   106       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   107                        (uintptr_t)(monitor), bytes, len);                  \
   108     }                                                                      \
   109   }
   111 #else /* USDT2 */
   113 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
   114   {                                                                        \
   115     if (DTraceMonitorProbes) {                                            \
   116       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   117       HOTSPOT_MONITOR_WAIT(jtid,                                           \
   118                            (uintptr_t)(monitor), bytes, len, (millis));  \
   119     }                                                                      \
   120   }
   122 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_PROBE_WAITED
   124 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   125   {                                                                        \
   126     if (DTraceMonitorProbes) {                                            \
   127       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   128       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
   129                        (uintptr_t)(monitor), bytes, len);                  \
   130     }                                                                      \
   131   }
   133 #endif /* USDT2 */
   134 #else //  ndef DTRACE_ENABLED
   136 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
   137 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
   139 #endif // ndef DTRACE_ENABLED
   141 // This exists only as a workaround of dtrace bug 6254741
   142 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
   143   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
   144   return 0;
   145 }
   147 #define NINFLATIONLOCKS 256
   148 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
   150 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
   151 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
   152 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
   153 int ObjectSynchronizer::gOmInUseCount = 0;
   154 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
   155 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
   156 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
   157 #define CHAINMARKER ((oop)-1)
   159 // -----------------------------------------------------------------------------
   160 //  Fast Monitor Enter/Exit
   161 // This the fast monitor enter. The interpreter and compiler use
   162 // some assembly copies of this code. Make sure update those code
   163 // if the following function is changed. The implementation is
   164 // extremely sensitive to race condition. Be careful.
   166 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
   167  if (UseBiasedLocking) {
   168     if (!SafepointSynchronize::is_at_safepoint()) {
   169       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
   170       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
   171         return;
   172       }
   173     } else {
   174       assert(!attempt_rebias, "can not rebias toward VM thread");
   175       BiasedLocking::revoke_at_safepoint(obj);
   176     }
   177     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   178  }
   180  slow_enter (obj, lock, THREAD) ;
   181 }
   183 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
   184   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
   185   // if displaced header is null, the previous enter is recursive enter, no-op
   186   markOop dhw = lock->displaced_header();
   187   markOop mark ;
   188   if (dhw == NULL) {
   189      // Recursive stack-lock.
   190      // Diagnostics -- Could be: stack-locked, inflating, inflated.
   191      mark = object->mark() ;
   192      assert (!mark->is_neutral(), "invariant") ;
   193      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
   194         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
   195      }
   196      if (mark->has_monitor()) {
   197         ObjectMonitor * m = mark->monitor() ;
   198         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
   199         assert(m->is_entered(THREAD), "invariant") ;
   200      }
   201      return ;
   202   }
   204   mark = object->mark() ;
   206   // If the object is stack-locked by the current thread, try to
   207   // swing the displaced header from the box back to the mark.
   208   if (mark == (markOop) lock) {
   209      assert (dhw->is_neutral(), "invariant") ;
   210      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
   211         TEVENT (fast_exit: release stacklock) ;
   212         return;
   213      }
   214   }
   216   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
   217 }
   219 // -----------------------------------------------------------------------------
   220 // Interpreter/Compiler Slow Case
   221 // This routine is used to handle interpreter/compiler slow case
   222 // We don't need to use fast path here, because it must have been
   223 // failed in the interpreter/compiler code.
   224 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
   225   markOop mark = obj->mark();
   226   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
   228   if (mark->is_neutral()) {
   229     // Anticipate successful CAS -- the ST of the displaced mark must
   230     // be visible <= the ST performed by the CAS.
   231     lock->set_displaced_header(mark);
   232     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
   233       TEVENT (slow_enter: release stacklock) ;
   234       return ;
   235     }
   236     // Fall through to inflate() ...
   237   } else
   238   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   239     assert(lock != mark->locker(), "must not re-lock the same lock");
   240     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
   241     lock->set_displaced_header(NULL);
   242     return;
   243   }
   245 #if 0
   246   // The following optimization isn't particularly useful.
   247   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
   248     lock->set_displaced_header (NULL) ;
   249     return ;
   250   }
   251 #endif
   253   // The object header will never be displaced to this lock,
   254   // so it does not matter what the value is, except that it
   255   // must be non-zero to avoid looking like a re-entrant lock,
   256   // and must not look locked either.
   257   lock->set_displaced_header(markOopDesc::unused_mark());
   258   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   259 }
   261 // This routine is used to handle interpreter/compiler slow case
   262 // We don't need to use fast path here, because it must have
   263 // failed in the interpreter/compiler code. Simply use the heavy
   264 // weight monitor should be ok, unless someone find otherwise.
   265 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
   266   fast_exit (object, lock, THREAD) ;
   267 }
   269 // -----------------------------------------------------------------------------
   270 // Class Loader  support to workaround deadlocks on the class loader lock objects
   271 // Also used by GC
   272 // complete_exit()/reenter() are used to wait on a nested lock
   273 // i.e. to give up an outer lock completely and then re-enter
   274 // Used when holding nested locks - lock acquisition order: lock1 then lock2
   275 //  1) complete_exit lock1 - saving recursion count
   276 //  2) wait on lock2
   277 //  3) when notified on lock2, unlock lock2
   278 //  4) reenter lock1 with original recursion count
   279 //  5) lock lock2
   280 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   281 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
   282   TEVENT (complete_exit) ;
   283   if (UseBiasedLocking) {
   284     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   285     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   286   }
   288   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   290   return monitor->complete_exit(THREAD);
   291 }
   293 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   294 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
   295   TEVENT (reenter) ;
   296   if (UseBiasedLocking) {
   297     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   298     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   299   }
   301   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   303   monitor->reenter(recursion, THREAD);
   304 }
   305 // -----------------------------------------------------------------------------
   306 // JNI locks on java objects
   307 // NOTE: must use heavy weight monitor to handle jni monitor enter
   308 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
   309   // the current locking is from JNI instead of Java code
   310   TEVENT (jni_enter) ;
   311   if (UseBiasedLocking) {
   312     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   313     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   314   }
   315   THREAD->set_current_pending_monitor_is_from_java(false);
   316   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   317   THREAD->set_current_pending_monitor_is_from_java(true);
   318 }
   320 // NOTE: must use heavy weight monitor to handle jni monitor enter
   321 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
   322   if (UseBiasedLocking) {
   323     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   324     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   325   }
   327   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
   328   return monitor->try_enter(THREAD);
   329 }
   332 // NOTE: must use heavy weight monitor to handle jni monitor exit
   333 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
   334   TEVENT (jni_exit) ;
   335   if (UseBiasedLocking) {
   336     Handle h_obj(THREAD, obj);
   337     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
   338     obj = h_obj();
   339   }
   340   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   342   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
   343   // If this thread has locked the object, exit the monitor.  Note:  can't use
   344   // monitor->check(CHECK); must exit even if an exception is pending.
   345   if (monitor->check(THREAD)) {
   346      monitor->exit(THREAD);
   347   }
   348 }
   350 // -----------------------------------------------------------------------------
   351 // Internal VM locks on java objects
   352 // standard constructor, allows locking failures
   353 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   354   _dolock = doLock;
   355   _thread = thread;
   356   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   357   _obj = obj;
   359   if (_dolock) {
   360     TEVENT (ObjectLocker) ;
   362     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   363   }
   364 }
   366 ObjectLocker::~ObjectLocker() {
   367   if (_dolock) {
   368     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   369   }
   370 }
   373 // -----------------------------------------------------------------------------
   374 //  Wait/Notify/NotifyAll
   375 // NOTE: must use heavy weight monitor to handle wait()
   376 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
   377   if (UseBiasedLocking) {
   378     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   379     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   380   }
   381   if (millis < 0) {
   382     TEVENT (wait - throw IAX) ;
   383     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   384   }
   385   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   386   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
   387   monitor->wait(millis, true, THREAD);
   389   /* This dummy call is in place to get around dtrace bug 6254741.  Once
   390      that's fixed we can uncomment the following line and remove the call */
   391   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
   392   dtrace_waited_probe(monitor, obj, THREAD);
   393 }
   395 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
   396   if (UseBiasedLocking) {
   397     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   398     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   399   }
   400   if (millis < 0) {
   401     TEVENT (wait - throw IAX) ;
   402     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   403   }
   404   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
   405 }
   407 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
   408  if (UseBiasedLocking) {
   409     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   410     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   411   }
   413   markOop mark = obj->mark();
   414   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   415     return;
   416   }
   417   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
   418 }
   420 // NOTE: see comment of notify()
   421 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
   422   if (UseBiasedLocking) {
   423     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   424     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   425   }
   427   markOop mark = obj->mark();
   428   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   429     return;
   430   }
   431   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
   432 }
   434 // -----------------------------------------------------------------------------
   435 // Hash Code handling
   436 //
   437 // Performance concern:
   438 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   439 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   440 // Many threads STing into a common location causes considerable cache migration
   441 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
   442 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
   443 // latency on the executing processor -- is a better choice as it scales on SMP
   444 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
   445 // discussion of coherency costs.  Note that all our current reference platforms
   446 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
   447 //
   448 // As a general policy we use "volatile" to control compiler-based reordering
   449 // and explicit fences (barriers) to control for architectural reordering performed
   450 // by the CPU(s) or platform.
   452 struct SharedGlobals {
   453     // These are highly shared mostly-read variables.
   454     // To avoid false-sharing they need to be the sole occupants of a $ line.
   455     double padPrefix [8];
   456     volatile int stwRandom ;
   457     volatile int stwCycle ;
   459     // Hot RW variables -- Sequester to avoid false-sharing
   460     double padSuffix [16];
   461     volatile int hcSequence ;
   462     double padFinal [8] ;
   463 } ;
   465 static SharedGlobals GVars ;
   466 static int MonitorScavengeThreshold = 1000000 ;
   467 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
   469 static markOop ReadStableMark (oop obj) {
   470   markOop mark = obj->mark() ;
   471   if (!mark->is_being_inflated()) {
   472     return mark ;       // normal fast-path return
   473   }
   475   int its = 0 ;
   476   for (;;) {
   477     markOop mark = obj->mark() ;
   478     if (!mark->is_being_inflated()) {
   479       return mark ;    // normal fast-path return
   480     }
   482     // The object is being inflated by some other thread.
   483     // The caller of ReadStableMark() must wait for inflation to complete.
   484     // Avoid live-lock
   485     // TODO: consider calling SafepointSynchronize::do_call_back() while
   486     // spinning to see if there's a safepoint pending.  If so, immediately
   487     // yielding or blocking would be appropriate.  Avoid spinning while
   488     // there is a safepoint pending.
   489     // TODO: add inflation contention performance counters.
   490     // TODO: restrict the aggregate number of spinners.
   492     ++its ;
   493     if (its > 10000 || !os::is_MP()) {
   494        if (its & 1) {
   495          os::NakedYield() ;
   496          TEVENT (Inflate: INFLATING - yield) ;
   497        } else {
   498          // Note that the following code attenuates the livelock problem but is not
   499          // a complete remedy.  A more complete solution would require that the inflating
   500          // thread hold the associated inflation lock.  The following code simply restricts
   501          // the number of spinners to at most one.  We'll have N-2 threads blocked
   502          // on the inflationlock, 1 thread holding the inflation lock and using
   503          // a yield/park strategy, and 1 thread in the midst of inflation.
   504          // A more refined approach would be to change the encoding of INFLATING
   505          // to allow encapsulation of a native thread pointer.  Threads waiting for
   506          // inflation to complete would use CAS to push themselves onto a singly linked
   507          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
   508          // and calling park().  When inflation was complete the thread that accomplished inflation
   509          // would detach the list and set the markword to inflated with a single CAS and
   510          // then for each thread on the list, set the flag and unpark() the thread.
   511          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
   512          // wakes at most one thread whereas we need to wake the entire list.
   513          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
   514          int YieldThenBlock = 0 ;
   515          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
   516          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
   517          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
   518          while (obj->mark() == markOopDesc::INFLATING()) {
   519            // Beware: NakedYield() is advisory and has almost no effect on some platforms
   520            // so we periodically call Self->_ParkEvent->park(1).
   521            // We use a mixed spin/yield/block mechanism.
   522            if ((YieldThenBlock++) >= 16) {
   523               Thread::current()->_ParkEvent->park(1) ;
   524            } else {
   525               os::NakedYield() ;
   526            }
   527          }
   528          Thread::muxRelease (InflationLocks + ix ) ;
   529          TEVENT (Inflate: INFLATING - yield/park) ;
   530        }
   531     } else {
   532        SpinPause() ;       // SMP-polite spinning
   533     }
   534   }
   535 }
   537 // hashCode() generation :
   538 //
   539 // Possibilities:
   540 // * MD5Digest of {obj,stwRandom}
   541 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
   542 // * A DES- or AES-style SBox[] mechanism
   543 // * One of the Phi-based schemes, such as:
   544 //   2654435761 = 2^32 * Phi (golden ratio)
   545 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
   546 // * A variation of Marsaglia's shift-xor RNG scheme.
   547 // * (obj ^ stwRandom) is appealing, but can result
   548 //   in undesirable regularity in the hashCode values of adjacent objects
   549 //   (objects allocated back-to-back, in particular).  This could potentially
   550 //   result in hashtable collisions and reduced hashtable efficiency.
   551 //   There are simple ways to "diffuse" the middle address bits over the
   552 //   generated hashCode values:
   553 //
   555 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
   556   intptr_t value = 0 ;
   557   if (hashCode == 0) {
   558      // This form uses an unguarded global Park-Miller RNG,
   559      // so it's possible for two threads to race and generate the same RNG.
   560      // On MP system we'll have lots of RW access to a global, so the
   561      // mechanism induces lots of coherency traffic.
   562      value = os::random() ;
   563   } else
   564   if (hashCode == 1) {
   565      // This variation has the property of being stable (idempotent)
   566      // between STW operations.  This can be useful in some of the 1-0
   567      // synchronization schemes.
   568      intptr_t addrBits = intptr_t(obj) >> 3 ;
   569      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   570   } else
   571   if (hashCode == 2) {
   572      value = 1 ;            // for sensitivity testing
   573   } else
   574   if (hashCode == 3) {
   575      value = ++GVars.hcSequence ;
   576   } else
   577   if (hashCode == 4) {
   578      value = intptr_t(obj) ;
   579   } else {
   580      // Marsaglia's xor-shift scheme with thread-specific state
   581      // This is probably the best overall implementation -- we'll
   582      // likely make this the default in future releases.
   583      unsigned t = Self->_hashStateX ;
   584      t ^= (t << 11) ;
   585      Self->_hashStateX = Self->_hashStateY ;
   586      Self->_hashStateY = Self->_hashStateZ ;
   587      Self->_hashStateZ = Self->_hashStateW ;
   588      unsigned v = Self->_hashStateW ;
   589      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
   590      Self->_hashStateW = v ;
   591      value = v ;
   592   }
   594   value &= markOopDesc::hash_mask;
   595   if (value == 0) value = 0xBAD ;
   596   assert (value != markOopDesc::no_hash, "invariant") ;
   597   TEVENT (hashCode: GENERATE) ;
   598   return value;
   599 }
   600 //
   601 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
   602   if (UseBiasedLocking) {
   603     // NOTE: many places throughout the JVM do not expect a safepoint
   604     // to be taken here, in particular most operations on perm gen
   605     // objects. However, we only ever bias Java instances and all of
   606     // the call sites of identity_hash that might revoke biases have
   607     // been checked to make sure they can handle a safepoint. The
   608     // added check of the bias pattern is to avoid useless calls to
   609     // thread-local storage.
   610     if (obj->mark()->has_bias_pattern()) {
   611       // Box and unbox the raw reference just in case we cause a STW safepoint.
   612       Handle hobj (Self, obj) ;
   613       // Relaxing assertion for bug 6320749.
   614       assert (Universe::verify_in_progress() ||
   615               !SafepointSynchronize::is_at_safepoint(),
   616              "biases should not be seen by VM thread here");
   617       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
   618       obj = hobj() ;
   619       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   620     }
   621   }
   623   // hashCode() is a heap mutator ...
   624   // Relaxing assertion for bug 6320749.
   625   assert (Universe::verify_in_progress() ||
   626           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
   627   assert (Universe::verify_in_progress() ||
   628           Self->is_Java_thread() , "invariant") ;
   629   assert (Universe::verify_in_progress() ||
   630          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   632   ObjectMonitor* monitor = NULL;
   633   markOop temp, test;
   634   intptr_t hash;
   635   markOop mark = ReadStableMark (obj);
   637   // object should remain ineligible for biased locking
   638   assert (!mark->has_bias_pattern(), "invariant") ;
   640   if (mark->is_neutral()) {
   641     hash = mark->hash();              // this is a normal header
   642     if (hash) {                       // if it has hash, just return it
   643       return hash;
   644     }
   645     hash = get_next_hash(Self, obj);  // allocate a new hash code
   646     temp = mark->copy_set_hash(hash); // merge the hash code into header
   647     // use (machine word version) atomic operation to install the hash
   648     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
   649     if (test == mark) {
   650       return hash;
   651     }
   652     // If atomic operation failed, we must inflate the header
   653     // into heavy weight monitor. We could add more code here
   654     // for fast path, but it does not worth the complexity.
   655   } else if (mark->has_monitor()) {
   656     monitor = mark->monitor();
   657     temp = monitor->header();
   658     assert (temp->is_neutral(), "invariant") ;
   659     hash = temp->hash();
   660     if (hash) {
   661       return hash;
   662     }
   663     // Skip to the following code to reduce code size
   664   } else if (Self->is_lock_owned((address)mark->locker())) {
   665     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
   666     assert (temp->is_neutral(), "invariant") ;
   667     hash = temp->hash();              // by current thread, check if the displaced
   668     if (hash) {                       // header contains hash code
   669       return hash;
   670     }
   671     // WARNING:
   672     //   The displaced header is strictly immutable.
   673     // It can NOT be changed in ANY cases. So we have
   674     // to inflate the header into heavyweight monitor
   675     // even the current thread owns the lock. The reason
   676     // is the BasicLock (stack slot) will be asynchronously
   677     // read by other threads during the inflate() function.
   678     // Any change to stack may not propagate to other threads
   679     // correctly.
   680   }
   682   // Inflate the monitor to set hash code
   683   monitor = ObjectSynchronizer::inflate(Self, obj);
   684   // Load displaced header and check it has hash code
   685   mark = monitor->header();
   686   assert (mark->is_neutral(), "invariant") ;
   687   hash = mark->hash();
   688   if (hash == 0) {
   689     hash = get_next_hash(Self, obj);
   690     temp = mark->copy_set_hash(hash); // merge hash code into header
   691     assert (temp->is_neutral(), "invariant") ;
   692     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
   693     if (test != mark) {
   694       // The only update to the header in the monitor (outside GC)
   695       // is install the hash code. If someone add new usage of
   696       // displaced header, please update this code
   697       hash = test->hash();
   698       assert (test->is_neutral(), "invariant") ;
   699       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
   700     }
   701   }
   702   // We finally get the hash
   703   return hash;
   704 }
   706 // Deprecated -- use FastHashCode() instead.
   708 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
   709   return FastHashCode (Thread::current(), obj()) ;
   710 }
   713 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
   714                                                    Handle h_obj) {
   715   if (UseBiasedLocking) {
   716     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
   717     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   718   }
   720   assert(thread == JavaThread::current(), "Can only be called on current thread");
   721   oop obj = h_obj();
   723   markOop mark = ReadStableMark (obj) ;
   725   // Uncontended case, header points to stack
   726   if (mark->has_locker()) {
   727     return thread->is_lock_owned((address)mark->locker());
   728   }
   729   // Contended case, header points to ObjectMonitor (tagged pointer)
   730   if (mark->has_monitor()) {
   731     ObjectMonitor* monitor = mark->monitor();
   732     return monitor->is_entered(thread) != 0 ;
   733   }
   734   // Unlocked case, header in place
   735   assert(mark->is_neutral(), "sanity check");
   736   return false;
   737 }
   739 // Be aware of this method could revoke bias of the lock object.
   740 // This method querys the ownership of the lock handle specified by 'h_obj'.
   741 // If the current thread owns the lock, it returns owner_self. If no
   742 // thread owns the lock, it returns owner_none. Otherwise, it will return
   743 // ower_other.
   744 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
   745 (JavaThread *self, Handle h_obj) {
   746   // The caller must beware this method can revoke bias, and
   747   // revocation can result in a safepoint.
   748   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   749   assert (self->thread_state() != _thread_blocked , "invariant") ;
   751   // Possible mark states: neutral, biased, stack-locked, inflated
   753   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
   754     // CASE: biased
   755     BiasedLocking::revoke_and_rebias(h_obj, false, self);
   756     assert(!h_obj->mark()->has_bias_pattern(),
   757            "biases should be revoked by now");
   758   }
   760   assert(self == JavaThread::current(), "Can only be called on current thread");
   761   oop obj = h_obj();
   762   markOop mark = ReadStableMark (obj) ;
   764   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
   765   if (mark->has_locker()) {
   766     return self->is_lock_owned((address)mark->locker()) ?
   767       owner_self : owner_other;
   768   }
   770   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
   771   // The Object:ObjectMonitor relationship is stable as long as we're
   772   // not at a safepoint.
   773   if (mark->has_monitor()) {
   774     void * owner = mark->monitor()->_owner ;
   775     if (owner == NULL) return owner_none ;
   776     return (owner == self ||
   777             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
   778   }
   780   // CASE: neutral
   781   assert(mark->is_neutral(), "sanity check");
   782   return owner_none ;           // it's unlocked
   783 }
   785 // FIXME: jvmti should call this
   786 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
   787   if (UseBiasedLocking) {
   788     if (SafepointSynchronize::is_at_safepoint()) {
   789       BiasedLocking::revoke_at_safepoint(h_obj);
   790     } else {
   791       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
   792     }
   793     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   794   }
   796   oop obj = h_obj();
   797   address owner = NULL;
   799   markOop mark = ReadStableMark (obj) ;
   801   // Uncontended case, header points to stack
   802   if (mark->has_locker()) {
   803     owner = (address) mark->locker();
   804   }
   806   // Contended case, header points to ObjectMonitor (tagged pointer)
   807   if (mark->has_monitor()) {
   808     ObjectMonitor* monitor = mark->monitor();
   809     assert(monitor != NULL, "monitor should be non-null");
   810     owner = (address) monitor->owner();
   811   }
   813   if (owner != NULL) {
   814     // owning_thread_from_monitor_owner() may also return NULL here
   815     return Threads::owning_thread_from_monitor_owner(owner, doLock);
   816   }
   818   // Unlocked case, header in place
   819   // Cannot have assertion since this object may have been
   820   // locked by another thread when reaching here.
   821   // assert(mark->is_neutral(), "sanity check");
   823   return NULL;
   824 }
   825 // Visitors ...
   827 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
   828   ObjectMonitor* block = gBlockList;
   829   ObjectMonitor* mid;
   830   while (block) {
   831     assert(block->object() == CHAINMARKER, "must be a block header");
   832     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
   833       mid = block + i;
   834       oop object = (oop) mid->object();
   835       if (object != NULL) {
   836         closure->do_monitor(mid);
   837       }
   838     }
   839     block = (ObjectMonitor*) block->FreeNext;
   840   }
   841 }
   843 // Get the next block in the block list.
   844 static inline ObjectMonitor* next(ObjectMonitor* block) {
   845   assert(block->object() == CHAINMARKER, "must be a block header");
   846   block = block->FreeNext ;
   847   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
   848   return block;
   849 }
   852 void ObjectSynchronizer::oops_do(OopClosure* f) {
   853   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
   854   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
   855     assert(block->object() == CHAINMARKER, "must be a block header");
   856     for (int i = 1; i < _BLOCKSIZE; i++) {
   857       ObjectMonitor* mid = &block[i];
   858       if (mid->object() != NULL) {
   859         f->do_oop((oop*)mid->object_addr());
   860       }
   861     }
   862   }
   863 }
   866 // -----------------------------------------------------------------------------
   867 // ObjectMonitor Lifecycle
   868 // -----------------------
   869 // Inflation unlinks monitors from the global gFreeList and
   870 // associates them with objects.  Deflation -- which occurs at
   871 // STW-time -- disassociates idle monitors from objects.  Such
   872 // scavenged monitors are returned to the gFreeList.
   873 //
   874 // The global list is protected by ListLock.  All the critical sections
   875 // are short and operate in constant-time.
   876 //
   877 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
   878 //
   879 // Lifecycle:
   880 // --   unassigned and on the global free list
   881 // --   unassigned and on a thread's private omFreeList
   882 // --   assigned to an object.  The object is inflated and the mark refers
   883 //      to the objectmonitor.
   884 //
   887 // Constraining monitor pool growth via MonitorBound ...
   888 //
   889 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
   890 // the rate of scavenging is driven primarily by GC.  As such,  we can find
   891 // an inordinate number of monitors in circulation.
   892 // To avoid that scenario we can artificially induce a STW safepoint
   893 // if the pool appears to be growing past some reasonable bound.
   894 // Generally we favor time in space-time tradeoffs, but as there's no
   895 // natural back-pressure on the # of extant monitors we need to impose some
   896 // type of limit.  Beware that if MonitorBound is set to too low a value
   897 // we could just loop. In addition, if MonitorBound is set to a low value
   898 // we'll incur more safepoints, which are harmful to performance.
   899 // See also: GuaranteedSafepointInterval
   900 //
   901 // The current implementation uses asynchronous VM operations.
   902 //
   904 static void InduceScavenge (Thread * Self, const char * Whence) {
   905   // Induce STW safepoint to trim monitors
   906   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
   907   // More precisely, trigger an asynchronous STW safepoint as the number
   908   // of active monitors passes the specified threshold.
   909   // TODO: assert thread state is reasonable
   911   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
   912     if (ObjectMonitor::Knob_Verbose) {
   913       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   914       ::fflush(stdout) ;
   915     }
   916     // Induce a 'null' safepoint to scavenge monitors
   917     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
   918     // to the VMthread and have a lifespan longer than that of this activation record.
   919     // The VMThread will delete the op when completed.
   920     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
   922     if (ObjectMonitor::Knob_Verbose) {
   923       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   924       ::fflush(stdout) ;
   925     }
   926   }
   927 }
   928 /* Too slow for general assert or debug
   929 void ObjectSynchronizer::verifyInUse (Thread *Self) {
   930    ObjectMonitor* mid;
   931    int inusetally = 0;
   932    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
   933      inusetally ++;
   934    }
   935    assert(inusetally == Self->omInUseCount, "inuse count off");
   937    int freetally = 0;
   938    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
   939      freetally ++;
   940    }
   941    assert(freetally == Self->omFreeCount, "free count off");
   942 }
   943 */
   944 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
   945     // A large MAXPRIVATE value reduces both list lock contention
   946     // and list coherency traffic, but also tends to increase the
   947     // number of objectMonitors in circulation as well as the STW
   948     // scavenge costs.  As usual, we lean toward time in space-time
   949     // tradeoffs.
   950     const int MAXPRIVATE = 1024 ;
   951     for (;;) {
   952         ObjectMonitor * m ;
   954         // 1: try to allocate from the thread's local omFreeList.
   955         // Threads will attempt to allocate first from their local list, then
   956         // from the global list, and only after those attempts fail will the thread
   957         // attempt to instantiate new monitors.   Thread-local free lists take
   958         // heat off the ListLock and improve allocation latency, as well as reducing
   959         // coherency traffic on the shared global list.
   960         m = Self->omFreeList ;
   961         if (m != NULL) {
   962            Self->omFreeList = m->FreeNext ;
   963            Self->omFreeCount -- ;
   964            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
   965            guarantee (m->object() == NULL, "invariant") ;
   966            if (MonitorInUseLists) {
   967              m->FreeNext = Self->omInUseList;
   968              Self->omInUseList = m;
   969              Self->omInUseCount ++;
   970              // verifyInUse(Self);
   971            } else {
   972              m->FreeNext = NULL;
   973            }
   974            return m ;
   975         }
   977         // 2: try to allocate from the global gFreeList
   978         // CONSIDER: use muxTry() instead of muxAcquire().
   979         // If the muxTry() fails then drop immediately into case 3.
   980         // If we're using thread-local free lists then try
   981         // to reprovision the caller's free list.
   982         if (gFreeList != NULL) {
   983             // Reprovision the thread's omFreeList.
   984             // Use bulk transfers to reduce the allocation rate and heat
   985             // on various locks.
   986             Thread::muxAcquire (&ListLock, "omAlloc") ;
   987             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
   988                 MonitorFreeCount --;
   989                 ObjectMonitor * take = gFreeList ;
   990                 gFreeList = take->FreeNext ;
   991                 guarantee (take->object() == NULL, "invariant") ;
   992                 guarantee (!take->is_busy(), "invariant") ;
   993                 take->Recycle() ;
   994                 omRelease (Self, take, false) ;
   995             }
   996             Thread::muxRelease (&ListLock) ;
   997             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
   998             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
   999             TEVENT (omFirst - reprovision) ;
  1001             const int mx = MonitorBound ;
  1002             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
  1003               // We can't safely induce a STW safepoint from omAlloc() as our thread
  1004               // state may not be appropriate for such activities and callers may hold
  1005               // naked oops, so instead we defer the action.
  1006               InduceScavenge (Self, "omAlloc") ;
  1008             continue;
  1011         // 3: allocate a block of new ObjectMonitors
  1012         // Both the local and global free lists are empty -- resort to malloc().
  1013         // In the current implementation objectMonitors are TSM - immortal.
  1014         assert (_BLOCKSIZE > 1, "invariant") ;
  1015         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
  1017         // NOTE: (almost) no way to recover if allocation failed.
  1018         // We might be able to induce a STW safepoint and scavenge enough
  1019         // objectMonitors to permit progress.
  1020         if (temp == NULL) {
  1021             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
  1024         // Format the block.
  1025         // initialize the linked list, each monitor points to its next
  1026         // forming the single linked free list, the very first monitor
  1027         // will points to next block, which forms the block list.
  1028         // The trick of using the 1st element in the block as gBlockList
  1029         // linkage should be reconsidered.  A better implementation would
  1030         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
  1032         for (int i = 1; i < _BLOCKSIZE ; i++) {
  1033            temp[i].FreeNext = &temp[i+1];
  1036         // terminate the last monitor as the end of list
  1037         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
  1039         // Element [0] is reserved for global list linkage
  1040         temp[0].set_object(CHAINMARKER);
  1042         // Consider carving out this thread's current request from the
  1043         // block in hand.  This avoids some lock traffic and redundant
  1044         // list activity.
  1046         // Acquire the ListLock to manipulate BlockList and FreeList.
  1047         // An Oyama-Taura-Yonezawa scheme might be more efficient.
  1048         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
  1049         MonitorPopulation += _BLOCKSIZE-1;
  1050         MonitorFreeCount += _BLOCKSIZE-1;
  1052         // Add the new block to the list of extant blocks (gBlockList).
  1053         // The very first objectMonitor in a block is reserved and dedicated.
  1054         // It serves as blocklist "next" linkage.
  1055         temp[0].FreeNext = gBlockList;
  1056         gBlockList = temp;
  1058         // Add the new string of objectMonitors to the global free list
  1059         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
  1060         gFreeList = temp + 1;
  1061         Thread::muxRelease (&ListLock) ;
  1062         TEVENT (Allocate block of monitors) ;
  1066 // Place "m" on the caller's private per-thread omFreeList.
  1067 // In practice there's no need to clamp or limit the number of
  1068 // monitors on a thread's omFreeList as the only time we'll call
  1069 // omRelease is to return a monitor to the free list after a CAS
  1070 // attempt failed.  This doesn't allow unbounded #s of monitors to
  1071 // accumulate on a thread's free list.
  1072 //
  1074 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
  1075     guarantee (m->object() == NULL, "invariant") ;
  1077     // Remove from omInUseList
  1078     if (MonitorInUseLists && fromPerThreadAlloc) {
  1079       ObjectMonitor* curmidinuse = NULL;
  1080       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
  1081        if (m == mid) {
  1082          // extract from per-thread in-use-list
  1083          if (mid == Self->omInUseList) {
  1084            Self->omInUseList = mid->FreeNext;
  1085          } else if (curmidinuse != NULL) {
  1086            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1088          Self->omInUseCount --;
  1089          // verifyInUse(Self);
  1090          break;
  1091        } else {
  1092          curmidinuse = mid;
  1093          mid = mid->FreeNext;
  1098   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
  1099   m->FreeNext = Self->omFreeList ;
  1100   Self->omFreeList = m ;
  1101   Self->omFreeCount ++ ;
  1104 // Return the monitors of a moribund thread's local free list to
  1105 // the global free list.  Typically a thread calls omFlush() when
  1106 // it's dying.  We could also consider having the VM thread steal
  1107 // monitors from threads that have not run java code over a few
  1108 // consecutive STW safepoints.  Relatedly, we might decay
  1109 // omFreeProvision at STW safepoints.
  1110 //
  1111 // Also return the monitors of a moribund thread"s omInUseList to
  1112 // a global gOmInUseList under the global list lock so these
  1113 // will continue to be scanned.
  1114 //
  1115 // We currently call omFlush() from the Thread:: dtor _after the thread
  1116 // has been excised from the thread list and is no longer a mutator.
  1117 // That means that omFlush() can run concurrently with a safepoint and
  1118 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
  1119 // be a better choice as we could safely reason that that the JVM is
  1120 // not at a safepoint at the time of the call, and thus there could
  1121 // be not inopportune interleavings between omFlush() and the scavenge
  1122 // operator.
  1124 void ObjectSynchronizer::omFlush (Thread * Self) {
  1125     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
  1126     Self->omFreeList = NULL ;
  1127     ObjectMonitor * Tail = NULL ;
  1128     int Tally = 0;
  1129     if (List != NULL) {
  1130       ObjectMonitor * s ;
  1131       for (s = List ; s != NULL ; s = s->FreeNext) {
  1132           Tally ++ ;
  1133           Tail = s ;
  1134           guarantee (s->object() == NULL, "invariant") ;
  1135           guarantee (!s->is_busy(), "invariant") ;
  1136           s->set_owner (NULL) ;   // redundant but good hygiene
  1137           TEVENT (omFlush - Move one) ;
  1139       guarantee (Tail != NULL && List != NULL, "invariant") ;
  1142     ObjectMonitor * InUseList = Self->omInUseList;
  1143     ObjectMonitor * InUseTail = NULL ;
  1144     int InUseTally = 0;
  1145     if (InUseList != NULL) {
  1146       Self->omInUseList = NULL;
  1147       ObjectMonitor *curom;
  1148       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
  1149         InUseTail = curom;
  1150         InUseTally++;
  1152 // TODO debug
  1153       assert(Self->omInUseCount == InUseTally, "inuse count off");
  1154       Self->omInUseCount = 0;
  1155       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
  1158     Thread::muxAcquire (&ListLock, "omFlush") ;
  1159     if (Tail != NULL) {
  1160       Tail->FreeNext = gFreeList ;
  1161       gFreeList = List ;
  1162       MonitorFreeCount += Tally;
  1165     if (InUseTail != NULL) {
  1166       InUseTail->FreeNext = gOmInUseList;
  1167       gOmInUseList = InUseList;
  1168       gOmInUseCount += InUseTally;
  1171     Thread::muxRelease (&ListLock) ;
  1172     TEVENT (omFlush) ;
  1175 // Fast path code shared by multiple functions
  1176 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  1177   markOop mark = obj->mark();
  1178   if (mark->has_monitor()) {
  1179     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
  1180     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
  1181     return mark->monitor();
  1183   return ObjectSynchronizer::inflate(Thread::current(), obj);
  1187 // Note that we could encounter some performance loss through false-sharing as
  1188 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1191 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1192   // Inflate mutates the heap ...
  1193   // Relaxing assertion for bug 6320749.
  1194   assert (Universe::verify_in_progress() ||
  1195           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1197   for (;;) {
  1198       const markOop mark = object->mark() ;
  1199       assert (!mark->has_bias_pattern(), "invariant") ;
  1201       // The mark can be in one of the following states:
  1202       // *  Inflated     - just return
  1203       // *  Stack-locked - coerce it to inflated
  1204       // *  INFLATING    - busy wait for conversion to complete
  1205       // *  Neutral      - aggressively inflate the object.
  1206       // *  BIASED       - Illegal.  We should never see this
  1208       // CASE: inflated
  1209       if (mark->has_monitor()) {
  1210           ObjectMonitor * inf = mark->monitor() ;
  1211           assert (inf->header()->is_neutral(), "invariant");
  1212           assert (inf->object() == object, "invariant") ;
  1213           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
  1214           return inf ;
  1217       // CASE: inflation in progress - inflating over a stack-lock.
  1218       // Some other thread is converting from stack-locked to inflated.
  1219       // Only that thread can complete inflation -- other threads must wait.
  1220       // The INFLATING value is transient.
  1221       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
  1222       // We could always eliminate polling by parking the thread on some auxiliary list.
  1223       if (mark == markOopDesc::INFLATING()) {
  1224          TEVENT (Inflate: spin while INFLATING) ;
  1225          ReadStableMark(object) ;
  1226          continue ;
  1229       // CASE: stack-locked
  1230       // Could be stack-locked either by this thread or by some other thread.
  1231       //
  1232       // Note that we allocate the objectmonitor speculatively, _before_ attempting
  1233       // to install INFLATING into the mark word.  We originally installed INFLATING,
  1234       // allocated the objectmonitor, and then finally STed the address of the
  1235       // objectmonitor into the mark.  This was correct, but artificially lengthened
  1236       // the interval in which INFLATED appeared in the mark, thus increasing
  1237       // the odds of inflation contention.
  1238       //
  1239       // We now use per-thread private objectmonitor free lists.
  1240       // These list are reprovisioned from the global free list outside the
  1241       // critical INFLATING...ST interval.  A thread can transfer
  1242       // multiple objectmonitors en-mass from the global free list to its local free list.
  1243       // This reduces coherency traffic and lock contention on the global free list.
  1244       // Using such local free lists, it doesn't matter if the omAlloc() call appears
  1245       // before or after the CAS(INFLATING) operation.
  1246       // See the comments in omAlloc().
  1248       if (mark->has_locker()) {
  1249           ObjectMonitor * m = omAlloc (Self) ;
  1250           // Optimistically prepare the objectmonitor - anticipate successful CAS
  1251           // We do this before the CAS in order to minimize the length of time
  1252           // in which INFLATING appears in the mark.
  1253           m->Recycle();
  1254           m->_Responsible  = NULL ;
  1255           m->OwnerIsThread = 0 ;
  1256           m->_recursions   = 0 ;
  1257           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
  1259           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1260           if (cmp != mark) {
  1261              omRelease (Self, m, true) ;
  1262              continue ;       // Interference -- just retry
  1265           // We've successfully installed INFLATING (0) into the mark-word.
  1266           // This is the only case where 0 will appear in a mark-work.
  1267           // Only the singular thread that successfully swings the mark-word
  1268           // to 0 can perform (or more precisely, complete) inflation.
  1269           //
  1270           // Why do we CAS a 0 into the mark-word instead of just CASing the
  1271           // mark-word from the stack-locked value directly to the new inflated state?
  1272           // Consider what happens when a thread unlocks a stack-locked object.
  1273           // It attempts to use CAS to swing the displaced header value from the
  1274           // on-stack basiclock back into the object header.  Recall also that the
  1275           // header value (hashcode, etc) can reside in (a) the object header, or
  1276           // (b) a displaced header associated with the stack-lock, or (c) a displaced
  1277           // header in an objectMonitor.  The inflate() routine must copy the header
  1278           // value from the basiclock on the owner's stack to the objectMonitor, all
  1279           // the while preserving the hashCode stability invariants.  If the owner
  1280           // decides to release the lock while the value is 0, the unlock will fail
  1281           // and control will eventually pass from slow_exit() to inflate.  The owner
  1282           // will then spin, waiting for the 0 value to disappear.   Put another way,
  1283           // the 0 causes the owner to stall if the owner happens to try to
  1284           // drop the lock (restoring the header from the basiclock to the object)
  1285           // while inflation is in-progress.  This protocol avoids races that might
  1286           // would otherwise permit hashCode values to change or "flicker" for an object.
  1287           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
  1288           // 0 serves as a "BUSY" inflate-in-progress indicator.
  1291           // fetch the displaced mark from the owner's stack.
  1292           // The owner can't die or unwind past the lock while our INFLATING
  1293           // object is in the mark.  Furthermore the owner can't complete
  1294           // an unlock on the object, either.
  1295           markOop dmw = mark->displaced_mark_helper() ;
  1296           assert (dmw->is_neutral(), "invariant") ;
  1298           // Setup monitor fields to proper values -- prepare the monitor
  1299           m->set_header(dmw) ;
  1301           // Optimization: if the mark->locker stack address is associated
  1302           // with this thread we could simply set m->_owner = Self and
  1303           // m->OwnerIsThread = 1. Note that a thread can inflate an object
  1304           // that it has stack-locked -- as might happen in wait() -- directly
  1305           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
  1306           m->set_owner(mark->locker());
  1307           m->set_object(object);
  1308           // TODO-FIXME: assert BasicLock->dhw != 0.
  1310           // Must preserve store ordering. The monitor state must
  1311           // be stable at the time of publishing the monitor address.
  1312           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
  1313           object->release_set_mark(markOopDesc::encode(m));
  1315           // Hopefully the performance counters are allocated on distinct cache lines
  1316           // to avoid false sharing on MP systems ...
  1317           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1318           TEVENT(Inflate: overwrite stacklock) ;
  1319           if (TraceMonitorInflation) {
  1320             if (object->is_instance()) {
  1321               ResourceMark rm;
  1322               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1323                 (intptr_t) object, (intptr_t) object->mark(),
  1324                 object->klass()->external_name());
  1327           return m ;
  1330       // CASE: neutral
  1331       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
  1332       // If we know we're inflating for entry it's better to inflate by swinging a
  1333       // pre-locked objectMonitor pointer into the object header.   A successful
  1334       // CAS inflates the object *and* confers ownership to the inflating thread.
  1335       // In the current implementation we use a 2-step mechanism where we CAS()
  1336       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
  1337       // An inflateTry() method that we could call from fast_enter() and slow_enter()
  1338       // would be useful.
  1340       assert (mark->is_neutral(), "invariant");
  1341       ObjectMonitor * m = omAlloc (Self) ;
  1342       // prepare m for installation - set monitor to initial state
  1343       m->Recycle();
  1344       m->set_header(mark);
  1345       m->set_owner(NULL);
  1346       m->set_object(object);
  1347       m->OwnerIsThread = 1 ;
  1348       m->_recursions   = 0 ;
  1349       m->_Responsible  = NULL ;
  1350       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
  1352       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1353           m->set_object (NULL) ;
  1354           m->set_owner  (NULL) ;
  1355           m->OwnerIsThread = 0 ;
  1356           m->Recycle() ;
  1357           omRelease (Self, m, true) ;
  1358           m = NULL ;
  1359           continue ;
  1360           // interference - the markword changed - just retry.
  1361           // The state-transitions are one-way, so there's no chance of
  1362           // live-lock -- "Inflated" is an absorbing state.
  1365       // Hopefully the performance counters are allocated on distinct
  1366       // cache lines to avoid false sharing on MP systems ...
  1367       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1368       TEVENT(Inflate: overwrite neutral) ;
  1369       if (TraceMonitorInflation) {
  1370         if (object->is_instance()) {
  1371           ResourceMark rm;
  1372           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1373             (intptr_t) object, (intptr_t) object->mark(),
  1374             object->klass()->external_name());
  1377       return m ;
  1381 // Note that we could encounter some performance loss through false-sharing as
  1382 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1385 // Deflate_idle_monitors() is called at all safepoints, immediately
  1386 // after all mutators are stopped, but before any objects have moved.
  1387 // It traverses the list of known monitors, deflating where possible.
  1388 // The scavenged monitor are returned to the monitor free list.
  1389 //
  1390 // Beware that we scavenge at *every* stop-the-world point.
  1391 // Having a large number of monitors in-circulation negatively
  1392 // impacts the performance of some applications (e.g., PointBase).
  1393 // Broadly, we want to minimize the # of monitors in circulation.
  1394 //
  1395 // We have added a flag, MonitorInUseLists, which creates a list
  1396 // of active monitors for each thread. deflate_idle_monitors()
  1397 // only scans the per-thread inuse lists. omAlloc() puts all
  1398 // assigned monitors on the per-thread list. deflate_idle_monitors()
  1399 // returns the non-busy monitors to the global free list.
  1400 // When a thread dies, omFlush() adds the list of active monitors for
  1401 // that thread to a global gOmInUseList acquiring the
  1402 // global list lock. deflate_idle_monitors() acquires the global
  1403 // list lock to scan for non-busy monitors to the global free list.
  1404 // An alternative could have used a single global inuse list. The
  1405 // downside would have been the additional cost of acquiring the global list lock
  1406 // for every omAlloc().
  1407 //
  1408 // Perversely, the heap size -- and thus the STW safepoint rate --
  1409 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
  1410 // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1411 // This is an unfortunate aspect of this design.
  1412 //
  1414 enum ManifestConstants {
  1415     ClearResponsibleAtSTW   = 0,
  1416     MaximumRecheckInterval  = 1000
  1417 } ;
  1419 // Deflate a single monitor if not in use
  1420 // Return true if deflated, false if in use
  1421 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
  1422                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1423   bool deflated;
  1424   // Normal case ... The monitor is associated with obj.
  1425   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  1426   guarantee (mid == obj->mark()->monitor(), "invariant");
  1427   guarantee (mid->header()->is_neutral(), "invariant");
  1429   if (mid->is_busy()) {
  1430      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
  1431      deflated = false;
  1432   } else {
  1433      // Deflate the monitor if it is no longer being used
  1434      // It's idle - scavenge and return to the global free list
  1435      // plain old deflation ...
  1436      TEVENT (deflate_idle_monitors - scavenge1) ;
  1437      if (TraceMonitorInflation) {
  1438        if (obj->is_instance()) {
  1439          ResourceMark rm;
  1440            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1441                 (intptr_t) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
  1445      // Restore the header back to obj
  1446      obj->release_set_mark(mid->header());
  1447      mid->clear();
  1449      assert (mid->object() == NULL, "invariant") ;
  1451      // Move the object to the working free list defined by FreeHead,FreeTail.
  1452      if (*FreeHeadp == NULL) *FreeHeadp = mid;
  1453      if (*FreeTailp != NULL) {
  1454        ObjectMonitor * prevtail = *FreeTailp;
  1455        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
  1456        prevtail->FreeNext = mid;
  1458      *FreeTailp = mid;
  1459      deflated = true;
  1461   return deflated;
  1464 // Caller acquires ListLock
  1465 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
  1466                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1467   ObjectMonitor* mid;
  1468   ObjectMonitor* next;
  1469   ObjectMonitor* curmidinuse = NULL;
  1470   int deflatedcount = 0;
  1472   for (mid = *listheadp; mid != NULL; ) {
  1473      oop obj = (oop) mid->object();
  1474      bool deflated = false;
  1475      if (obj != NULL) {
  1476        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
  1478      if (deflated) {
  1479        // extract from per-thread in-use-list
  1480        if (mid == *listheadp) {
  1481          *listheadp = mid->FreeNext;
  1482        } else if (curmidinuse != NULL) {
  1483          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1485        next = mid->FreeNext;
  1486        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
  1487        mid = next;
  1488        deflatedcount++;
  1489      } else {
  1490        curmidinuse = mid;
  1491        mid = mid->FreeNext;
  1494   return deflatedcount;
  1497 void ObjectSynchronizer::deflate_idle_monitors() {
  1498   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1499   int nInuse = 0 ;              // currently associated with objects
  1500   int nInCirculation = 0 ;      // extant
  1501   int nScavenged = 0 ;          // reclaimed
  1502   bool deflated = false;
  1504   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  1505   ObjectMonitor * FreeTail = NULL ;
  1507   TEVENT (deflate_idle_monitors) ;
  1508   // Prevent omFlush from changing mids in Thread dtor's during deflation
  1509   // And in case the vm thread is acquiring a lock during a safepoint
  1510   // See e.g. 6320749
  1511   Thread::muxAcquire (&ListLock, "scavenge - return") ;
  1513   if (MonitorInUseLists) {
  1514     int inUse = 0;
  1515     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
  1516       nInCirculation+= cur->omInUseCount;
  1517       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
  1518       cur->omInUseCount-= deflatedcount;
  1519       // verifyInUse(cur);
  1520       nScavenged += deflatedcount;
  1521       nInuse += cur->omInUseCount;
  1524    // For moribund threads, scan gOmInUseList
  1525    if (gOmInUseList) {
  1526      nInCirculation += gOmInUseCount;
  1527      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
  1528      gOmInUseCount-= deflatedcount;
  1529      nScavenged += deflatedcount;
  1530      nInuse += gOmInUseCount;
  1533   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1534   // Iterate over all extant monitors - Scavenge all idle monitors.
  1535     assert(block->object() == CHAINMARKER, "must be a block header");
  1536     nInCirculation += _BLOCKSIZE ;
  1537     for (int i = 1 ; i < _BLOCKSIZE; i++) {
  1538       ObjectMonitor* mid = &block[i];
  1539       oop obj = (oop) mid->object();
  1541       if (obj == NULL) {
  1542         // The monitor is not associated with an object.
  1543         // The monitor should either be a thread-specific private
  1544         // free list or the global free list.
  1545         // obj == NULL IMPLIES mid->is_busy() == 0
  1546         guarantee (!mid->is_busy(), "invariant") ;
  1547         continue ;
  1549       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
  1551       if (deflated) {
  1552         mid->FreeNext = NULL ;
  1553         nScavenged ++ ;
  1554       } else {
  1555         nInuse ++;
  1560   MonitorFreeCount += nScavenged;
  1562   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
  1564   if (ObjectMonitor::Knob_Verbose) {
  1565     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
  1566         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
  1567         MonitorPopulation, MonitorFreeCount) ;
  1568     ::fflush(stdout) ;
  1571   ForceMonitorScavenge = 0;    // Reset
  1573   // Move the scavenged monitors back to the global free list.
  1574   if (FreeHead != NULL) {
  1575      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
  1576      assert (FreeTail->FreeNext == NULL, "invariant") ;
  1577      // constant-time list splice - prepend scavenged segment to gFreeList
  1578      FreeTail->FreeNext = gFreeList ;
  1579      gFreeList = FreeHead ;
  1581   Thread::muxRelease (&ListLock) ;
  1583   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
  1584   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
  1586   // TODO: Add objectMonitor leak detection.
  1587   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  1588   GVars.stwRandom = os::random() ;
  1589   GVars.stwCycle ++ ;
  1592 // Monitor cleanup on JavaThread::exit
  1594 // Iterate through monitor cache and attempt to release thread's monitors
  1595 // Gives up on a particular monitor if an exception occurs, but continues
  1596 // the overall iteration, swallowing the exception.
  1597 class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1598 private:
  1599   TRAPS;
  1601 public:
  1602   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1603   void do_monitor(ObjectMonitor* mid) {
  1604     if (mid->owner() == THREAD) {
  1605       (void)mid->complete_exit(CHECK);
  1608 };
  1610 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1611 // ignored.  This is meant to be called during JNI thread detach which assumes
  1612 // all remaining monitors are heavyweight.  All exceptions are swallowed.
  1613 // Scanning the extant monitor list can be time consuming.
  1614 // A simple optimization is to add a per-thread flag that indicates a thread
  1615 // called jni_monitorenter() during its lifetime.
  1616 //
  1617 // Instead of No_Savepoint_Verifier it might be cheaper to
  1618 // use an idiom of the form:
  1619 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1620 //   <code that must not run at safepoint>
  1621 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1622 // Since the tests are extremely cheap we could leave them enabled
  1623 // for normal product builds.
  1625 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1626   assert(THREAD == JavaThread::current(), "must be current Java thread");
  1627   No_Safepoint_Verifier nsv ;
  1628   ReleaseJavaMonitorsClosure rjmc(THREAD);
  1629   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1630   ObjectSynchronizer::monitors_iterate(&rjmc);
  1631   Thread::muxRelease(&ListLock);
  1632   THREAD->clear_pending_exception();
  1635 //------------------------------------------------------------------------------
  1636 // Non-product code
  1638 #ifndef PRODUCT
  1640 // Verify all monitors in the monitor cache, the verification is weak.
  1641 void ObjectSynchronizer::verify() {
  1642   ObjectMonitor* block = gBlockList;
  1643   ObjectMonitor* mid;
  1644   while (block) {
  1645     assert(block->object() == CHAINMARKER, "must be a block header");
  1646     for (int i = 1; i < _BLOCKSIZE; i++) {
  1647       mid = block + i;
  1648       oop object = (oop) mid->object();
  1649       if (object != NULL) {
  1650         mid->verify();
  1653     block = (ObjectMonitor*) block->FreeNext;
  1657 // Check if monitor belongs to the monitor cache
  1658 // The list is grow-only so it's *relatively* safe to traverse
  1659 // the list of extant blocks without taking a lock.
  1661 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  1662   ObjectMonitor* block = gBlockList;
  1664   while (block) {
  1665     assert(block->object() == CHAINMARKER, "must be a block header");
  1666     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
  1667       address mon = (address) monitor;
  1668       address blk = (address) block;
  1669       size_t diff = mon - blk;
  1670       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
  1671       return 1;
  1673     block = (ObjectMonitor*) block->FreeNext;
  1675   return 0;
  1678 #endif

mercurial