src/share/vm/runtime/thread.cpp

Thu, 30 Sep 2010 12:05:08 -0400

author
zgu
date
Thu, 30 Sep 2010 12:05:08 -0400
changeset 2219
dfb38ea7da17
parent 2086
ee5cc9e78493
child 2226
75b0735b4d04
permissions
-rw-r--r--

6988363: Rebrand vm vendor property settings (jdk7 only)
Summary: Vendor properties should be initialized after JDK version is determined.
Reviewed-by: kamg, ohair, dcubed, dholmes

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_thread.cpp.incl"
    28 #ifdef DTRACE_ENABLED
    30 // Only bother with this argument setup if dtrace is available
    32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
    33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
    34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
    35   intptr_t, intptr_t, bool);
    36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
    37   intptr_t, intptr_t, bool);
    39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
    40   {                                                                        \
    41     ResourceMark rm(this);                                                 \
    42     int len = 0;                                                           \
    43     const char* name = (javathread)->get_thread_name();                    \
    44     len = strlen(name);                                                    \
    45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
    46       name, len,                                                           \
    47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
    48       (javathread)->osthread()->thread_id(),                               \
    49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
    50   }
    52 #else //  ndef DTRACE_ENABLED
    54 #define DTRACE_THREAD_PROBE(probe, javathread)
    56 #endif // ndef DTRACE_ENABLED
    58 // Class hierarchy
    59 // - Thread
    60 //   - VMThread
    61 //   - WatcherThread
    62 //   - ConcurrentMarkSweepThread
    63 //   - JavaThread
    64 //     - CompilerThread
    66 // ======= Thread ========
    68 // Support for forcing alignment of thread objects for biased locking
    69 void* Thread::operator new(size_t size) {
    70   if (UseBiasedLocking) {
    71     const int alignment = markOopDesc::biased_lock_alignment;
    72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
    73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
    74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
    75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
    76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
    77            "JavaThread alignment code overflowed allocated storage");
    78     if (TraceBiasedLocking) {
    79       if (aligned_addr != real_malloc_addr)
    80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
    81                       real_malloc_addr, aligned_addr);
    82     }
    83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
    84     return aligned_addr;
    85   } else {
    86     return CHeapObj::operator new(size);
    87   }
    88 }
    90 void Thread::operator delete(void* p) {
    91   if (UseBiasedLocking) {
    92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
    93     CHeapObj::operator delete(real_malloc_addr);
    94   } else {
    95     CHeapObj::operator delete(p);
    96   }
    97 }
   100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   101 // JavaThread
   104 Thread::Thread() {
   105   // stack
   106   _stack_base   = NULL;
   107   _stack_size   = 0;
   108   _self_raw_id  = 0;
   109   _lgrp_id      = -1;
   110   _osthread     = NULL;
   112   // allocated data structures
   113   set_resource_area(new ResourceArea());
   114   set_handle_area(new HandleArea(NULL));
   115   set_active_handles(NULL);
   116   set_free_handle_block(NULL);
   117   set_last_handle_mark(NULL);
   118   set_osthread(NULL);
   120   // This initial value ==> never claimed.
   121   _oops_do_parity = 0;
   123   // the handle mark links itself to last_handle_mark
   124   new HandleMark(this);
   126   // plain initialization
   127   debug_only(_owned_locks = NULL;)
   128   debug_only(_allow_allocation_count = 0;)
   129   NOT_PRODUCT(_allow_safepoint_count = 0;)
   130   NOT_PRODUCT(_skip_gcalot = false;)
   131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   132   _jvmti_env_iteration_count = 0;
   133   _vm_operation_started_count = 0;
   134   _vm_operation_completed_count = 0;
   135   _current_pending_monitor = NULL;
   136   _current_pending_monitor_is_from_java = true;
   137   _current_waiting_monitor = NULL;
   138   _num_nested_signal = 0;
   139   omFreeList = NULL ;
   140   omFreeCount = 0 ;
   141   omFreeProvision = 32 ;
   142   omInUseList = NULL ;
   143   omInUseCount = 0 ;
   145   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   146   _suspend_flags = 0;
   148   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   149   _hashStateX = os::random() ;
   150   _hashStateY = 842502087 ;
   151   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   152   _hashStateW = 273326509 ;
   154   _OnTrap   = 0 ;
   155   _schedctl = NULL ;
   156   _Stalled  = 0 ;
   157   _TypeTag  = 0x2BAD ;
   159   // Many of the following fields are effectively final - immutable
   160   // Note that nascent threads can't use the Native Monitor-Mutex
   161   // construct until the _MutexEvent is initialized ...
   162   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   163   // we might instead use a stack of ParkEvents that we could provision on-demand.
   164   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   165   // and ::Release()
   166   _ParkEvent   = ParkEvent::Allocate (this) ;
   167   _SleepEvent  = ParkEvent::Allocate (this) ;
   168   _MutexEvent  = ParkEvent::Allocate (this) ;
   169   _MuxEvent    = ParkEvent::Allocate (this) ;
   171 #ifdef CHECK_UNHANDLED_OOPS
   172   if (CheckUnhandledOops) {
   173     _unhandled_oops = new UnhandledOops(this);
   174   }
   175 #endif // CHECK_UNHANDLED_OOPS
   176 #ifdef ASSERT
   177   if (UseBiasedLocking) {
   178     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   179     assert(this == _real_malloc_address ||
   180            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   181            "bug in forced alignment of thread objects");
   182   }
   183 #endif /* ASSERT */
   184 }
   186 void Thread::initialize_thread_local_storage() {
   187   // Note: Make sure this method only calls
   188   // non-blocking operations. Otherwise, it might not work
   189   // with the thread-startup/safepoint interaction.
   191   // During Java thread startup, safepoint code should allow this
   192   // method to complete because it may need to allocate memory to
   193   // store information for the new thread.
   195   // initialize structure dependent on thread local storage
   196   ThreadLocalStorage::set_thread(this);
   198   // set up any platform-specific state.
   199   os::initialize_thread();
   201 }
   203 void Thread::record_stack_base_and_size() {
   204   set_stack_base(os::current_stack_base());
   205   set_stack_size(os::current_stack_size());
   206 }
   209 Thread::~Thread() {
   210   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   211   ObjectSynchronizer::omFlush (this) ;
   213   // deallocate data structures
   214   delete resource_area();
   215   // since the handle marks are using the handle area, we have to deallocated the root
   216   // handle mark before deallocating the thread's handle area,
   217   assert(last_handle_mark() != NULL, "check we have an element");
   218   delete last_handle_mark();
   219   assert(last_handle_mark() == NULL, "check we have reached the end");
   221   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   222   // We NULL out the fields for good hygiene.
   223   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   224   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   225   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   226   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   228   delete handle_area();
   230   // osthread() can be NULL, if creation of thread failed.
   231   if (osthread() != NULL) os::free_thread(osthread());
   233   delete _SR_lock;
   235   // clear thread local storage if the Thread is deleting itself
   236   if (this == Thread::current()) {
   237     ThreadLocalStorage::set_thread(NULL);
   238   } else {
   239     // In the case where we're not the current thread, invalidate all the
   240     // caches in case some code tries to get the current thread or the
   241     // thread that was destroyed, and gets stale information.
   242     ThreadLocalStorage::invalidate_all();
   243   }
   244   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   245 }
   247 // NOTE: dummy function for assertion purpose.
   248 void Thread::run() {
   249   ShouldNotReachHere();
   250 }
   252 #ifdef ASSERT
   253 // Private method to check for dangling thread pointer
   254 void check_for_dangling_thread_pointer(Thread *thread) {
   255  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   256          "possibility of dangling Thread pointer");
   257 }
   258 #endif
   261 #ifndef PRODUCT
   262 // Tracing method for basic thread operations
   263 void Thread::trace(const char* msg, const Thread* const thread) {
   264   if (!TraceThreadEvents) return;
   265   ResourceMark rm;
   266   ThreadCritical tc;
   267   const char *name = "non-Java thread";
   268   int prio = -1;
   269   if (thread->is_Java_thread()
   270       && !thread->is_Compiler_thread()) {
   271     // The Threads_lock must be held to get information about
   272     // this thread but may not be in some situations when
   273     // tracing  thread events.
   274     bool release_Threads_lock = false;
   275     if (!Threads_lock->owned_by_self()) {
   276       Threads_lock->lock();
   277       release_Threads_lock = true;
   278     }
   279     JavaThread* jt = (JavaThread *)thread;
   280     name = (char *)jt->get_thread_name();
   281     oop thread_oop = jt->threadObj();
   282     if (thread_oop != NULL) {
   283       prio = java_lang_Thread::priority(thread_oop);
   284     }
   285     if (release_Threads_lock) {
   286       Threads_lock->unlock();
   287     }
   288   }
   289   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   290 }
   291 #endif
   294 ThreadPriority Thread::get_priority(const Thread* const thread) {
   295   trace("get priority", thread);
   296   ThreadPriority priority;
   297   // Can return an error!
   298   (void)os::get_priority(thread, priority);
   299   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   300   return priority;
   301 }
   303 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   304   trace("set priority", thread);
   305   debug_only(check_for_dangling_thread_pointer(thread);)
   306   // Can return an error!
   307   (void)os::set_priority(thread, priority);
   308 }
   311 void Thread::start(Thread* thread) {
   312   trace("start", thread);
   313   // Start is different from resume in that its safety is guaranteed by context or
   314   // being called from a Java method synchronized on the Thread object.
   315   if (!DisableStartThread) {
   316     if (thread->is_Java_thread()) {
   317       // Initialize the thread state to RUNNABLE before starting this thread.
   318       // Can not set it after the thread started because we do not know the
   319       // exact thread state at that time. It could be in MONITOR_WAIT or
   320       // in SLEEPING or some other state.
   321       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   322                                           java_lang_Thread::RUNNABLE);
   323     }
   324     os::start_thread(thread);
   325   }
   326 }
   328 // Enqueue a VM_Operation to do the job for us - sometime later
   329 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   330   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   331   VMThread::execute(vm_stop);
   332 }
   335 //
   336 // Check if an external suspend request has completed (or has been
   337 // cancelled). Returns true if the thread is externally suspended and
   338 // false otherwise.
   339 //
   340 // The bits parameter returns information about the code path through
   341 // the routine. Useful for debugging:
   342 //
   343 // set in is_ext_suspend_completed():
   344 // 0x00000001 - routine was entered
   345 // 0x00000010 - routine return false at end
   346 // 0x00000100 - thread exited (return false)
   347 // 0x00000200 - suspend request cancelled (return false)
   348 // 0x00000400 - thread suspended (return true)
   349 // 0x00001000 - thread is in a suspend equivalent state (return true)
   350 // 0x00002000 - thread is native and walkable (return true)
   351 // 0x00004000 - thread is native_trans and walkable (needed retry)
   352 //
   353 // set in wait_for_ext_suspend_completion():
   354 // 0x00010000 - routine was entered
   355 // 0x00020000 - suspend request cancelled before loop (return false)
   356 // 0x00040000 - thread suspended before loop (return true)
   357 // 0x00080000 - suspend request cancelled in loop (return false)
   358 // 0x00100000 - thread suspended in loop (return true)
   359 // 0x00200000 - suspend not completed during retry loop (return false)
   360 //
   362 // Helper class for tracing suspend wait debug bits.
   363 //
   364 // 0x00000100 indicates that the target thread exited before it could
   365 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   366 // 0x00080000 each indicate a cancelled suspend request so they don't
   367 // count as wait failures either.
   368 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   370 class TraceSuspendDebugBits : public StackObj {
   371  private:
   372   JavaThread * jt;
   373   bool         is_wait;
   374   bool         called_by_wait;  // meaningful when !is_wait
   375   uint32_t *   bits;
   377  public:
   378   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   379                         uint32_t *_bits) {
   380     jt             = _jt;
   381     is_wait        = _is_wait;
   382     called_by_wait = _called_by_wait;
   383     bits           = _bits;
   384   }
   386   ~TraceSuspendDebugBits() {
   387     if (!is_wait) {
   388 #if 1
   389       // By default, don't trace bits for is_ext_suspend_completed() calls.
   390       // That trace is very chatty.
   391       return;
   392 #else
   393       if (!called_by_wait) {
   394         // If tracing for is_ext_suspend_completed() is enabled, then only
   395         // trace calls to it from wait_for_ext_suspend_completion()
   396         return;
   397       }
   398 #endif
   399     }
   401     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   402       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   403         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   404         ResourceMark rm;
   406         tty->print_cr(
   407             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   408             jt->get_thread_name(), *bits);
   410         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   411       }
   412     }
   413   }
   414 };
   415 #undef DEBUG_FALSE_BITS
   418 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   419   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   421   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   422   bool do_trans_retry;           // flag to force the retry
   424   *bits |= 0x00000001;
   426   do {
   427     do_trans_retry = false;
   429     if (is_exiting()) {
   430       // Thread is in the process of exiting. This is always checked
   431       // first to reduce the risk of dereferencing a freed JavaThread.
   432       *bits |= 0x00000100;
   433       return false;
   434     }
   436     if (!is_external_suspend()) {
   437       // Suspend request is cancelled. This is always checked before
   438       // is_ext_suspended() to reduce the risk of a rogue resume
   439       // confusing the thread that made the suspend request.
   440       *bits |= 0x00000200;
   441       return false;
   442     }
   444     if (is_ext_suspended()) {
   445       // thread is suspended
   446       *bits |= 0x00000400;
   447       return true;
   448     }
   450     // Now that we no longer do hard suspends of threads running
   451     // native code, the target thread can be changing thread state
   452     // while we are in this routine:
   453     //
   454     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   455     //
   456     // We save a copy of the thread state as observed at this moment
   457     // and make our decision about suspend completeness based on the
   458     // copy. This closes the race where the thread state is seen as
   459     // _thread_in_native_trans in the if-thread_blocked check, but is
   460     // seen as _thread_blocked in if-thread_in_native_trans check.
   461     JavaThreadState save_state = thread_state();
   463     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   464       // If the thread's state is _thread_blocked and this blocking
   465       // condition is known to be equivalent to a suspend, then we can
   466       // consider the thread to be externally suspended. This means that
   467       // the code that sets _thread_blocked has been modified to do
   468       // self-suspension if the blocking condition releases. We also
   469       // used to check for CONDVAR_WAIT here, but that is now covered by
   470       // the _thread_blocked with self-suspension check.
   471       //
   472       // Return true since we wouldn't be here unless there was still an
   473       // external suspend request.
   474       *bits |= 0x00001000;
   475       return true;
   476     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   477       // Threads running native code will self-suspend on native==>VM/Java
   478       // transitions. If its stack is walkable (should always be the case
   479       // unless this function is called before the actual java_suspend()
   480       // call), then the wait is done.
   481       *bits |= 0x00002000;
   482       return true;
   483     } else if (!called_by_wait && !did_trans_retry &&
   484                save_state == _thread_in_native_trans &&
   485                frame_anchor()->walkable()) {
   486       // The thread is transitioning from thread_in_native to another
   487       // thread state. check_safepoint_and_suspend_for_native_trans()
   488       // will force the thread to self-suspend. If it hasn't gotten
   489       // there yet we may have caught the thread in-between the native
   490       // code check above and the self-suspend. Lucky us. If we were
   491       // called by wait_for_ext_suspend_completion(), then it
   492       // will be doing the retries so we don't have to.
   493       //
   494       // Since we use the saved thread state in the if-statement above,
   495       // there is a chance that the thread has already transitioned to
   496       // _thread_blocked by the time we get here. In that case, we will
   497       // make a single unnecessary pass through the logic below. This
   498       // doesn't hurt anything since we still do the trans retry.
   500       *bits |= 0x00004000;
   502       // Once the thread leaves thread_in_native_trans for another
   503       // thread state, we break out of this retry loop. We shouldn't
   504       // need this flag to prevent us from getting back here, but
   505       // sometimes paranoia is good.
   506       did_trans_retry = true;
   508       // We wait for the thread to transition to a more usable state.
   509       for (int i = 1; i <= SuspendRetryCount; i++) {
   510         // We used to do an "os::yield_all(i)" call here with the intention
   511         // that yielding would increase on each retry. However, the parameter
   512         // is ignored on Linux which means the yield didn't scale up. Waiting
   513         // on the SR_lock below provides a much more predictable scale up for
   514         // the delay. It also provides a simple/direct point to check for any
   515         // safepoint requests from the VMThread
   517         // temporarily drops SR_lock while doing wait with safepoint check
   518         // (if we're a JavaThread - the WatcherThread can also call this)
   519         // and increase delay with each retry
   520         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   522         // check the actual thread state instead of what we saved above
   523         if (thread_state() != _thread_in_native_trans) {
   524           // the thread has transitioned to another thread state so
   525           // try all the checks (except this one) one more time.
   526           do_trans_retry = true;
   527           break;
   528         }
   529       } // end retry loop
   532     }
   533   } while (do_trans_retry);
   535   *bits |= 0x00000010;
   536   return false;
   537 }
   539 //
   540 // Wait for an external suspend request to complete (or be cancelled).
   541 // Returns true if the thread is externally suspended and false otherwise.
   542 //
   543 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   544        uint32_t *bits) {
   545   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   546                              false /* !called_by_wait */, bits);
   548   // local flag copies to minimize SR_lock hold time
   549   bool is_suspended;
   550   bool pending;
   551   uint32_t reset_bits;
   553   // set a marker so is_ext_suspend_completed() knows we are the caller
   554   *bits |= 0x00010000;
   556   // We use reset_bits to reinitialize the bits value at the top of
   557   // each retry loop. This allows the caller to make use of any
   558   // unused bits for their own marking purposes.
   559   reset_bits = *bits;
   561   {
   562     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   563     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   564                                             delay, bits);
   565     pending = is_external_suspend();
   566   }
   567   // must release SR_lock to allow suspension to complete
   569   if (!pending) {
   570     // A cancelled suspend request is the only false return from
   571     // is_ext_suspend_completed() that keeps us from entering the
   572     // retry loop.
   573     *bits |= 0x00020000;
   574     return false;
   575   }
   577   if (is_suspended) {
   578     *bits |= 0x00040000;
   579     return true;
   580   }
   582   for (int i = 1; i <= retries; i++) {
   583     *bits = reset_bits;  // reinit to only track last retry
   585     // We used to do an "os::yield_all(i)" call here with the intention
   586     // that yielding would increase on each retry. However, the parameter
   587     // is ignored on Linux which means the yield didn't scale up. Waiting
   588     // on the SR_lock below provides a much more predictable scale up for
   589     // the delay. It also provides a simple/direct point to check for any
   590     // safepoint requests from the VMThread
   592     {
   593       MutexLocker ml(SR_lock());
   594       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   595       // can also call this)  and increase delay with each retry
   596       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   598       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   599                                               delay, bits);
   601       // It is possible for the external suspend request to be cancelled
   602       // (by a resume) before the actual suspend operation is completed.
   603       // Refresh our local copy to see if we still need to wait.
   604       pending = is_external_suspend();
   605     }
   607     if (!pending) {
   608       // A cancelled suspend request is the only false return from
   609       // is_ext_suspend_completed() that keeps us from staying in the
   610       // retry loop.
   611       *bits |= 0x00080000;
   612       return false;
   613     }
   615     if (is_suspended) {
   616       *bits |= 0x00100000;
   617       return true;
   618     }
   619   } // end retry loop
   621   // thread did not suspend after all our retries
   622   *bits |= 0x00200000;
   623   return false;
   624 }
   626 #ifndef PRODUCT
   627 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   629   // This should not need to be atomic as the only way for simultaneous
   630   // updates is via interrupts. Even then this should be rare or non-existant
   631   // and we don't care that much anyway.
   633   int index = _jmp_ring_index;
   634   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   635   _jmp_ring[index]._target = (intptr_t) target;
   636   _jmp_ring[index]._instruction = (intptr_t) instr;
   637   _jmp_ring[index]._file = file;
   638   _jmp_ring[index]._line = line;
   639 }
   640 #endif /* PRODUCT */
   642 // Called by flat profiler
   643 // Callers have already called wait_for_ext_suspend_completion
   644 // The assertion for that is currently too complex to put here:
   645 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   646   bool gotframe = false;
   647   // self suspension saves needed state.
   648   if (has_last_Java_frame() && _anchor.walkable()) {
   649      *_fr = pd_last_frame();
   650      gotframe = true;
   651   }
   652   return gotframe;
   653 }
   655 void Thread::interrupt(Thread* thread) {
   656   trace("interrupt", thread);
   657   debug_only(check_for_dangling_thread_pointer(thread);)
   658   os::interrupt(thread);
   659 }
   661 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   662   trace("is_interrupted", thread);
   663   debug_only(check_for_dangling_thread_pointer(thread);)
   664   // Note:  If clear_interrupted==false, this simply fetches and
   665   // returns the value of the field osthread()->interrupted().
   666   return os::is_interrupted(thread, clear_interrupted);
   667 }
   670 // GC Support
   671 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   672   jint thread_parity = _oops_do_parity;
   673   if (thread_parity != strong_roots_parity) {
   674     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   675     if (res == thread_parity) return true;
   676     else {
   677       guarantee(res == strong_roots_parity, "Or else what?");
   678       assert(SharedHeap::heap()->n_par_threads() > 0,
   679              "Should only fail when parallel.");
   680       return false;
   681     }
   682   }
   683   assert(SharedHeap::heap()->n_par_threads() > 0,
   684          "Should only fail when parallel.");
   685   return false;
   686 }
   688 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   689   active_handles()->oops_do(f);
   690   // Do oop for ThreadShadow
   691   f->do_oop((oop*)&_pending_exception);
   692   handle_area()->oops_do(f);
   693 }
   695 void Thread::nmethods_do(CodeBlobClosure* cf) {
   696   // no nmethods in a generic thread...
   697 }
   699 void Thread::print_on(outputStream* st) const {
   700   // get_priority assumes osthread initialized
   701   if (osthread() != NULL) {
   702     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   703     osthread()->print_on(st);
   704   }
   705   debug_only(if (WizardMode) print_owned_locks_on(st);)
   706 }
   708 // Thread::print_on_error() is called by fatal error handler. Don't use
   709 // any lock or allocate memory.
   710 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   711   if      (is_VM_thread())                  st->print("VMThread");
   712   else if (is_Compiler_thread())            st->print("CompilerThread");
   713   else if (is_Java_thread())                st->print("JavaThread");
   714   else if (is_GC_task_thread())             st->print("GCTaskThread");
   715   else if (is_Watcher_thread())             st->print("WatcherThread");
   716   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   717   else st->print("Thread");
   719   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   720             _stack_base - _stack_size, _stack_base);
   722   if (osthread()) {
   723     st->print(" [id=%d]", osthread()->thread_id());
   724   }
   725 }
   727 #ifdef ASSERT
   728 void Thread::print_owned_locks_on(outputStream* st) const {
   729   Monitor *cur = _owned_locks;
   730   if (cur == NULL) {
   731     st->print(" (no locks) ");
   732   } else {
   733     st->print_cr(" Locks owned:");
   734     while(cur) {
   735       cur->print_on(st);
   736       cur = cur->next();
   737     }
   738   }
   739 }
   741 static int ref_use_count  = 0;
   743 bool Thread::owns_locks_but_compiled_lock() const {
   744   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   745     if (cur != Compile_lock) return true;
   746   }
   747   return false;
   748 }
   751 #endif
   753 #ifndef PRODUCT
   755 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   756 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   757 // no threads which allow_vm_block's are held
   758 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   759     // Check if current thread is allowed to block at a safepoint
   760     if (!(_allow_safepoint_count == 0))
   761       fatal("Possible safepoint reached by thread that does not allow it");
   762     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   763       fatal("LEAF method calling lock?");
   764     }
   766 #ifdef ASSERT
   767     if (potential_vm_operation && is_Java_thread()
   768         && !Universe::is_bootstrapping()) {
   769       // Make sure we do not hold any locks that the VM thread also uses.
   770       // This could potentially lead to deadlocks
   771       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   772         // Threads_lock is special, since the safepoint synchronization will not start before this is
   773         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   774         // since it is used to transfer control between JavaThreads and the VMThread
   775         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   776         if ( (cur->allow_vm_block() &&
   777               cur != Threads_lock &&
   778               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   779               cur != VMOperationRequest_lock &&
   780               cur != VMOperationQueue_lock) ||
   781               cur->rank() == Mutex::special) {
   782           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   783         }
   784       }
   785     }
   787     if (GCALotAtAllSafepoints) {
   788       // We could enter a safepoint here and thus have a gc
   789       InterfaceSupport::check_gc_alot();
   790     }
   791 #endif
   792 }
   793 #endif
   795 bool Thread::is_in_stack(address adr) const {
   796   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   797   address end = os::current_stack_pointer();
   798   if (stack_base() >= adr && adr >= end) return true;
   800   return false;
   801 }
   804 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   805 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   806 // used for compilation in the future. If that change is made, the need for these methods
   807 // should be revisited, and they should be removed if possible.
   809 bool Thread::is_lock_owned(address adr) const {
   810   return on_local_stack(adr);
   811 }
   813 bool Thread::set_as_starting_thread() {
   814  // NOTE: this must be called inside the main thread.
   815   return os::create_main_thread((JavaThread*)this);
   816 }
   818 static void initialize_class(symbolHandle class_name, TRAPS) {
   819   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   820   instanceKlass::cast(klass)->initialize(CHECK);
   821 }
   824 // Creates the initial ThreadGroup
   825 static Handle create_initial_thread_group(TRAPS) {
   826   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   827   instanceKlassHandle klass (THREAD, k);
   829   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   830   {
   831     JavaValue result(T_VOID);
   832     JavaCalls::call_special(&result,
   833                             system_instance,
   834                             klass,
   835                             vmSymbolHandles::object_initializer_name(),
   836                             vmSymbolHandles::void_method_signature(),
   837                             CHECK_NH);
   838   }
   839   Universe::set_system_thread_group(system_instance());
   841   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   842   {
   843     JavaValue result(T_VOID);
   844     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   845     JavaCalls::call_special(&result,
   846                             main_instance,
   847                             klass,
   848                             vmSymbolHandles::object_initializer_name(),
   849                             vmSymbolHandles::threadgroup_string_void_signature(),
   850                             system_instance,
   851                             string,
   852                             CHECK_NH);
   853   }
   854   return main_instance;
   855 }
   857 // Creates the initial Thread
   858 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   859   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   860   instanceKlassHandle klass (THREAD, k);
   861   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   863   java_lang_Thread::set_thread(thread_oop(), thread);
   864   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   865   thread->set_threadObj(thread_oop());
   867   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   869   JavaValue result(T_VOID);
   870   JavaCalls::call_special(&result, thread_oop,
   871                                    klass,
   872                                    vmSymbolHandles::object_initializer_name(),
   873                                    vmSymbolHandles::threadgroup_string_void_signature(),
   874                                    thread_group,
   875                                    string,
   876                                    CHECK_NULL);
   877   return thread_oop();
   878 }
   880 static void call_initializeSystemClass(TRAPS) {
   881   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   882   instanceKlassHandle klass (THREAD, k);
   884   JavaValue result(T_VOID);
   885   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   886                                          vmSymbolHandles::void_method_signature(), CHECK);
   887 }
   889 #ifdef KERNEL
   890 static void set_jkernel_boot_classloader_hook(TRAPS) {
   891   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   892   instanceKlassHandle klass (THREAD, k);
   894   if (k == NULL) {
   895     // sun.jkernel.DownloadManager may not present in the JDK; just return
   896     return;
   897   }
   899   JavaValue result(T_VOID);
   900   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
   901                                          vmSymbolHandles::void_method_signature(), CHECK);
   902 }
   903 #endif // KERNEL
   905 static void reset_vm_info_property(TRAPS) {
   906   // the vm info string
   907   ResourceMark rm(THREAD);
   908   const char *vm_info = VM_Version::vm_info_string();
   910   // java.lang.System class
   911   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   912   instanceKlassHandle klass (THREAD, k);
   914   // setProperty arguments
   915   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   916   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   918   // return value
   919   JavaValue r(T_OBJECT);
   921   // public static String setProperty(String key, String value);
   922   JavaCalls::call_static(&r,
   923                          klass,
   924                          vmSymbolHandles::setProperty_name(),
   925                          vmSymbolHandles::string_string_string_signature(),
   926                          key_str,
   927                          value_str,
   928                          CHECK);
   929 }
   932 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
   933   assert(thread_group.not_null(), "thread group should be specified");
   934   assert(threadObj() == NULL, "should only create Java thread object once");
   936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
   937   instanceKlassHandle klass (THREAD, k);
   938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   940   java_lang_Thread::set_thread(thread_oop(), this);
   941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   942   set_threadObj(thread_oop());
   944   JavaValue result(T_VOID);
   945   if (thread_name != NULL) {
   946     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
   947     // Thread gets assigned specified name and null target
   948     JavaCalls::call_special(&result,
   949                             thread_oop,
   950                             klass,
   951                             vmSymbolHandles::object_initializer_name(),
   952                             vmSymbolHandles::threadgroup_string_void_signature(),
   953                             thread_group, // Argument 1
   954                             name,         // Argument 2
   955                             THREAD);
   956   } else {
   957     // Thread gets assigned name "Thread-nnn" and null target
   958     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
   959     JavaCalls::call_special(&result,
   960                             thread_oop,
   961                             klass,
   962                             vmSymbolHandles::object_initializer_name(),
   963                             vmSymbolHandles::threadgroup_runnable_void_signature(),
   964                             thread_group, // Argument 1
   965                             Handle(),     // Argument 2
   966                             THREAD);
   967   }
   970   if (daemon) {
   971       java_lang_Thread::set_daemon(thread_oop());
   972   }
   974   if (HAS_PENDING_EXCEPTION) {
   975     return;
   976   }
   978   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
   979   Handle threadObj(this, this->threadObj());
   981   JavaCalls::call_special(&result,
   982                          thread_group,
   983                          group,
   984                          vmSymbolHandles::add_method_name(),
   985                          vmSymbolHandles::thread_void_signature(),
   986                          threadObj,          // Arg 1
   987                          THREAD);
   990 }
   992 // NamedThread --  non-JavaThread subclasses with multiple
   993 // uniquely named instances should derive from this.
   994 NamedThread::NamedThread() : Thread() {
   995   _name = NULL;
   996   _processed_thread = NULL;
   997 }
   999 NamedThread::~NamedThread() {
  1000   if (_name != NULL) {
  1001     FREE_C_HEAP_ARRAY(char, _name);
  1002     _name = NULL;
  1006 void NamedThread::set_name(const char* format, ...) {
  1007   guarantee(_name == NULL, "Only get to set name once.");
  1008   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1009   guarantee(_name != NULL, "alloc failure");
  1010   va_list ap;
  1011   va_start(ap, format);
  1012   jio_vsnprintf(_name, max_name_len, format, ap);
  1013   va_end(ap);
  1016 // ======= WatcherThread ========
  1018 // The watcher thread exists to simulate timer interrupts.  It should
  1019 // be replaced by an abstraction over whatever native support for
  1020 // timer interrupts exists on the platform.
  1022 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1023 volatile bool  WatcherThread::_should_terminate = false;
  1025 WatcherThread::WatcherThread() : Thread() {
  1026   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1027   if (os::create_thread(this, os::watcher_thread)) {
  1028     _watcher_thread = this;
  1030     // Set the watcher thread to the highest OS priority which should not be
  1031     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1032     // is created. The only normal thread using this priority is the reference
  1033     // handler thread, which runs for very short intervals only.
  1034     // If the VMThread's priority is not lower than the WatcherThread profiling
  1035     // will be inaccurate.
  1036     os::set_priority(this, MaxPriority);
  1037     if (!DisableStartThread) {
  1038       os::start_thread(this);
  1043 void WatcherThread::run() {
  1044   assert(this == watcher_thread(), "just checking");
  1046   this->record_stack_base_and_size();
  1047   this->initialize_thread_local_storage();
  1048   this->set_active_handles(JNIHandleBlock::allocate_block());
  1049   while(!_should_terminate) {
  1050     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1051     assert(watcher_thread() == this,  "thread consistency check");
  1053     // Calculate how long it'll be until the next PeriodicTask work
  1054     // should be done, and sleep that amount of time.
  1055     size_t time_to_wait = PeriodicTask::time_to_wait();
  1057     // we expect this to timeout - we only ever get unparked when
  1058     // we should terminate
  1060       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1062       jlong prev_time = os::javaTimeNanos();
  1063       for (;;) {
  1064         int res= _SleepEvent->park(time_to_wait);
  1065         if (res == OS_TIMEOUT || _should_terminate)
  1066           break;
  1067         // spurious wakeup of some kind
  1068         jlong now = os::javaTimeNanos();
  1069         time_to_wait -= (now - prev_time) / 1000000;
  1070         if (time_to_wait <= 0)
  1071           break;
  1072         prev_time = now;
  1076     if (is_error_reported()) {
  1077       // A fatal error has happened, the error handler(VMError::report_and_die)
  1078       // should abort JVM after creating an error log file. However in some
  1079       // rare cases, the error handler itself might deadlock. Here we try to
  1080       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1081       //
  1082       // This code is in WatcherThread because WatcherThread wakes up
  1083       // periodically so the fatal error handler doesn't need to do anything;
  1084       // also because the WatcherThread is less likely to crash than other
  1085       // threads.
  1087       for (;;) {
  1088         if (!ShowMessageBoxOnError
  1089          && (OnError == NULL || OnError[0] == '\0')
  1090          && Arguments::abort_hook() == NULL) {
  1091              os::sleep(this, 2 * 60 * 1000, false);
  1092              fdStream err(defaultStream::output_fd());
  1093              err.print_raw_cr("# [ timer expired, abort... ]");
  1094              // skip atexit/vm_exit/vm_abort hooks
  1095              os::die();
  1098         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1099         // ShowMessageBoxOnError when it is ready to abort.
  1100         os::sleep(this, 5 * 1000, false);
  1104     PeriodicTask::real_time_tick(time_to_wait);
  1106     // If we have no more tasks left due to dynamic disenrollment,
  1107     // shut down the thread since we don't currently support dynamic enrollment
  1108     if (PeriodicTask::num_tasks() == 0) {
  1109       _should_terminate = true;
  1113   // Signal that it is terminated
  1115     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1116     _watcher_thread = NULL;
  1117     Terminator_lock->notify();
  1120   // Thread destructor usually does this..
  1121   ThreadLocalStorage::set_thread(NULL);
  1124 void WatcherThread::start() {
  1125   if (watcher_thread() == NULL) {
  1126     _should_terminate = false;
  1127     // Create the single instance of WatcherThread
  1128     new WatcherThread();
  1132 void WatcherThread::stop() {
  1133   // it is ok to take late safepoints here, if needed
  1134   MutexLocker mu(Terminator_lock);
  1135   _should_terminate = true;
  1136   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1138   Thread* watcher = watcher_thread();
  1139   if (watcher != NULL)
  1140     watcher->_SleepEvent->unpark();
  1142   while(watcher_thread() != NULL) {
  1143     // This wait should make safepoint checks, wait without a timeout,
  1144     // and wait as a suspend-equivalent condition.
  1145     //
  1146     // Note: If the FlatProfiler is running, then this thread is waiting
  1147     // for the WatcherThread to terminate and the WatcherThread, via the
  1148     // FlatProfiler task, is waiting for the external suspend request on
  1149     // this thread to complete. wait_for_ext_suspend_completion() will
  1150     // eventually timeout, but that takes time. Making this wait a
  1151     // suspend-equivalent condition solves that timeout problem.
  1152     //
  1153     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1154                           Mutex::_as_suspend_equivalent_flag);
  1158 void WatcherThread::print_on(outputStream* st) const {
  1159   st->print("\"%s\" ", name());
  1160   Thread::print_on(st);
  1161   st->cr();
  1164 // ======= JavaThread ========
  1166 // A JavaThread is a normal Java thread
  1168 void JavaThread::initialize() {
  1169   // Initialize fields
  1171   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1172   set_claimed_par_id(-1);
  1174   set_saved_exception_pc(NULL);
  1175   set_threadObj(NULL);
  1176   _anchor.clear();
  1177   set_entry_point(NULL);
  1178   set_jni_functions(jni_functions());
  1179   set_callee_target(NULL);
  1180   set_vm_result(NULL);
  1181   set_vm_result_2(NULL);
  1182   set_vframe_array_head(NULL);
  1183   set_vframe_array_last(NULL);
  1184   set_deferred_locals(NULL);
  1185   set_deopt_mark(NULL);
  1186   clear_must_deopt_id();
  1187   set_monitor_chunks(NULL);
  1188   set_next(NULL);
  1189   set_thread_state(_thread_new);
  1190   _terminated = _not_terminated;
  1191   _privileged_stack_top = NULL;
  1192   _array_for_gc = NULL;
  1193   _suspend_equivalent = false;
  1194   _in_deopt_handler = 0;
  1195   _doing_unsafe_access = false;
  1196   _stack_guard_state = stack_guard_unused;
  1197   _exception_oop = NULL;
  1198   _exception_pc  = 0;
  1199   _exception_handler_pc = 0;
  1200   _exception_stack_size = 0;
  1201   _jvmti_thread_state= NULL;
  1202   _should_post_on_exceptions_flag = JNI_FALSE;
  1203   _jvmti_get_loaded_classes_closure = NULL;
  1204   _interp_only_mode    = 0;
  1205   _special_runtime_exit_condition = _no_async_condition;
  1206   _pending_async_exception = NULL;
  1207   _is_compiling = false;
  1208   _thread_stat = NULL;
  1209   _thread_stat = new ThreadStatistics();
  1210   _blocked_on_compilation = false;
  1211   _jni_active_critical = 0;
  1212   _do_not_unlock_if_synchronized = false;
  1213   _cached_monitor_info = NULL;
  1214   _parker = Parker::Allocate(this) ;
  1216 #ifndef PRODUCT
  1217   _jmp_ring_index = 0;
  1218   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1219     record_jump(NULL, NULL, NULL, 0);
  1221 #endif /* PRODUCT */
  1223   set_thread_profiler(NULL);
  1224   if (FlatProfiler::is_active()) {
  1225     // This is where we would decide to either give each thread it's own profiler
  1226     // or use one global one from FlatProfiler,
  1227     // or up to some count of the number of profiled threads, etc.
  1228     ThreadProfiler* pp = new ThreadProfiler();
  1229     pp->engage();
  1230     set_thread_profiler(pp);
  1233   // Setup safepoint state info for this thread
  1234   ThreadSafepointState::create(this);
  1236   debug_only(_java_call_counter = 0);
  1238   // JVMTI PopFrame support
  1239   _popframe_condition = popframe_inactive;
  1240   _popframe_preserved_args = NULL;
  1241   _popframe_preserved_args_size = 0;
  1243   pd_initialize();
  1246 #ifndef SERIALGC
  1247 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1248 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1249 #endif // !SERIALGC
  1251 JavaThread::JavaThread(bool is_attaching) :
  1252   Thread()
  1253 #ifndef SERIALGC
  1254   , _satb_mark_queue(&_satb_mark_queue_set),
  1255   _dirty_card_queue(&_dirty_card_queue_set)
  1256 #endif // !SERIALGC
  1258   initialize();
  1259   _is_attaching = is_attaching;
  1260   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1263 bool JavaThread::reguard_stack(address cur_sp) {
  1264   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1265     return true; // Stack already guarded or guard pages not needed.
  1268   if (register_stack_overflow()) {
  1269     // For those architectures which have separate register and
  1270     // memory stacks, we must check the register stack to see if
  1271     // it has overflowed.
  1272     return false;
  1275   // Java code never executes within the yellow zone: the latter is only
  1276   // there to provoke an exception during stack banging.  If java code
  1277   // is executing there, either StackShadowPages should be larger, or
  1278   // some exception code in c1, c2 or the interpreter isn't unwinding
  1279   // when it should.
  1280   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1282   enable_stack_yellow_zone();
  1283   return true;
  1286 bool JavaThread::reguard_stack(void) {
  1287   return reguard_stack(os::current_stack_pointer());
  1291 void JavaThread::block_if_vm_exited() {
  1292   if (_terminated == _vm_exited) {
  1293     // _vm_exited is set at safepoint, and Threads_lock is never released
  1294     // we will block here forever
  1295     Threads_lock->lock_without_safepoint_check();
  1296     ShouldNotReachHere();
  1301 // Remove this ifdef when C1 is ported to the compiler interface.
  1302 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1304 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1305   Thread()
  1306 #ifndef SERIALGC
  1307   , _satb_mark_queue(&_satb_mark_queue_set),
  1308   _dirty_card_queue(&_dirty_card_queue_set)
  1309 #endif // !SERIALGC
  1311   if (TraceThreadEvents) {
  1312     tty->print_cr("creating thread %p", this);
  1314   initialize();
  1315   _is_attaching = false;
  1316   set_entry_point(entry_point);
  1317   // Create the native thread itself.
  1318   // %note runtime_23
  1319   os::ThreadType thr_type = os::java_thread;
  1320   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1321                                                      os::java_thread;
  1322   os::create_thread(this, thr_type, stack_sz);
  1324   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1325   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1326   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1327   // the exception consists of creating the exception object & initializing it, initialization
  1328   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1329   //
  1330   // The thread is still suspended when we reach here. Thread must be explicit started
  1331   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1332   // by calling Threads:add. The reason why this is not done here, is because the thread
  1333   // object must be fully initialized (take a look at JVM_Start)
  1336 JavaThread::~JavaThread() {
  1337   if (TraceThreadEvents) {
  1338       tty->print_cr("terminate thread %p", this);
  1341   // JSR166 -- return the parker to the free list
  1342   Parker::Release(_parker);
  1343   _parker = NULL ;
  1345   // Free any remaining  previous UnrollBlock
  1346   vframeArray* old_array = vframe_array_last();
  1348   if (old_array != NULL) {
  1349     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1350     old_array->set_unroll_block(NULL);
  1351     delete old_info;
  1352     delete old_array;
  1355   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1356   if (deferred != NULL) {
  1357     // This can only happen if thread is destroyed before deoptimization occurs.
  1358     assert(deferred->length() != 0, "empty array!");
  1359     do {
  1360       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1361       deferred->remove_at(0);
  1362       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1363       delete dlv;
  1364     } while (deferred->length() != 0);
  1365     delete deferred;
  1368   // All Java related clean up happens in exit
  1369   ThreadSafepointState::destroy(this);
  1370   if (_thread_profiler != NULL) delete _thread_profiler;
  1371   if (_thread_stat != NULL) delete _thread_stat;
  1375 // The first routine called by a new Java thread
  1376 void JavaThread::run() {
  1377   // initialize thread-local alloc buffer related fields
  1378   this->initialize_tlab();
  1380   // used to test validitity of stack trace backs
  1381   this->record_base_of_stack_pointer();
  1383   // Record real stack base and size.
  1384   this->record_stack_base_and_size();
  1386   // Initialize thread local storage; set before calling MutexLocker
  1387   this->initialize_thread_local_storage();
  1389   this->create_stack_guard_pages();
  1391   this->cache_global_variables();
  1393   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1394   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1395   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1397   assert(JavaThread::current() == this, "sanity check");
  1398   assert(!Thread::current()->owns_locks(), "sanity check");
  1400   DTRACE_THREAD_PROBE(start, this);
  1402   // This operation might block. We call that after all safepoint checks for a new thread has
  1403   // been completed.
  1404   this->set_active_handles(JNIHandleBlock::allocate_block());
  1406   if (JvmtiExport::should_post_thread_life()) {
  1407     JvmtiExport::post_thread_start(this);
  1410   // We call another function to do the rest so we are sure that the stack addresses used
  1411   // from there will be lower than the stack base just computed
  1412   thread_main_inner();
  1414   // Note, thread is no longer valid at this point!
  1418 void JavaThread::thread_main_inner() {
  1419   assert(JavaThread::current() == this, "sanity check");
  1420   assert(this->threadObj() != NULL, "just checking");
  1422   // Execute thread entry point. If this thread is being asked to restart,
  1423   // or has been stopped before starting, do not reexecute entry point.
  1424   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1425   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1426     // enter the thread's entry point only if we have no pending exceptions
  1427     HandleMark hm(this);
  1428     this->entry_point()(this, this);
  1431   DTRACE_THREAD_PROBE(stop, this);
  1433   this->exit(false);
  1434   delete this;
  1438 static void ensure_join(JavaThread* thread) {
  1439   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1440   Handle threadObj(thread, thread->threadObj());
  1441   assert(threadObj.not_null(), "java thread object must exist");
  1442   ObjectLocker lock(threadObj, thread);
  1443   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1444   thread->clear_pending_exception();
  1445   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1446   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1447   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1448   // is dead when it gets notified.
  1449   java_lang_Thread::set_stillborn(threadObj());
  1450   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1451   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1452   java_lang_Thread::set_thread(threadObj(), NULL);
  1453   lock.notify_all(thread);
  1454   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1455   thread->clear_pending_exception();
  1459 // For any new cleanup additions, please check to see if they need to be applied to
  1460 // cleanup_failed_attach_current_thread as well.
  1461 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1462   assert(this == JavaThread::current(),  "thread consistency check");
  1463   if (!InitializeJavaLangSystem) return;
  1465   HandleMark hm(this);
  1466   Handle uncaught_exception(this, this->pending_exception());
  1467   this->clear_pending_exception();
  1468   Handle threadObj(this, this->threadObj());
  1469   assert(threadObj.not_null(), "Java thread object should be created");
  1471   if (get_thread_profiler() != NULL) {
  1472     get_thread_profiler()->disengage();
  1473     ResourceMark rm;
  1474     get_thread_profiler()->print(get_thread_name());
  1478   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1480     EXCEPTION_MARK;
  1482     CLEAR_PENDING_EXCEPTION;
  1484   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1485   // has to be fixed by a runtime query method
  1486   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1487     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1488     // java.lang.Thread.dispatchUncaughtException
  1489     if (uncaught_exception.not_null()) {
  1490       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1491       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1492         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1494         EXCEPTION_MARK;
  1495         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1496         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1497         // so call ThreadGroup.uncaughtException()
  1498         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1499         CallInfo callinfo;
  1500         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1501         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1502                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1503                                            vmSymbolHandles::throwable_void_signature(),
  1504                                            KlassHandle(), false, false, THREAD);
  1505         CLEAR_PENDING_EXCEPTION;
  1506         methodHandle method = callinfo.selected_method();
  1507         if (method.not_null()) {
  1508           JavaValue result(T_VOID);
  1509           JavaCalls::call_virtual(&result,
  1510                                   threadObj, thread_klass,
  1511                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1512                                   vmSymbolHandles::throwable_void_signature(),
  1513                                   uncaught_exception,
  1514                                   THREAD);
  1515         } else {
  1516           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1517           JavaValue result(T_VOID);
  1518           JavaCalls::call_virtual(&result,
  1519                                   group, thread_group,
  1520                                   vmSymbolHandles::uncaughtException_name(),
  1521                                   vmSymbolHandles::thread_throwable_void_signature(),
  1522                                   threadObj,           // Arg 1
  1523                                   uncaught_exception,  // Arg 2
  1524                                   THREAD);
  1526         CLEAR_PENDING_EXCEPTION;
  1530     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1531     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1532     // is deprecated anyhow.
  1533     { int count = 3;
  1534       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1535         EXCEPTION_MARK;
  1536         JavaValue result(T_VOID);
  1537         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1538         JavaCalls::call_virtual(&result,
  1539                               threadObj, thread_klass,
  1540                               vmSymbolHandles::exit_method_name(),
  1541                               vmSymbolHandles::void_method_signature(),
  1542                               THREAD);
  1543         CLEAR_PENDING_EXCEPTION;
  1547     // notify JVMTI
  1548     if (JvmtiExport::should_post_thread_life()) {
  1549       JvmtiExport::post_thread_end(this);
  1552     // We have notified the agents that we are exiting, before we go on,
  1553     // we must check for a pending external suspend request and honor it
  1554     // in order to not surprise the thread that made the suspend request.
  1555     while (true) {
  1557         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1558         if (!is_external_suspend()) {
  1559           set_terminated(_thread_exiting);
  1560           ThreadService::current_thread_exiting(this);
  1561           break;
  1563         // Implied else:
  1564         // Things get a little tricky here. We have a pending external
  1565         // suspend request, but we are holding the SR_lock so we
  1566         // can't just self-suspend. So we temporarily drop the lock
  1567         // and then self-suspend.
  1570       ThreadBlockInVM tbivm(this);
  1571       java_suspend_self();
  1573       // We're done with this suspend request, but we have to loop around
  1574       // and check again. Eventually we will get SR_lock without a pending
  1575       // external suspend request and will be able to mark ourselves as
  1576       // exiting.
  1578     // no more external suspends are allowed at this point
  1579   } else {
  1580     // before_exit() has already posted JVMTI THREAD_END events
  1583   // Notify waiters on thread object. This has to be done after exit() is called
  1584   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1585   // group should have the destroyed bit set before waiters are notified).
  1586   ensure_join(this);
  1587   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1589   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1590   // held by this thread must be released.  A detach operation must only
  1591   // get here if there are no Java frames on the stack.  Therefore, any
  1592   // owned monitors at this point MUST be JNI-acquired monitors which are
  1593   // pre-inflated and in the monitor cache.
  1594   //
  1595   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1596   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1597     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1598     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1599     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1602   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1603   // is in a consistent state, in case GC happens
  1604   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1606   if (active_handles() != NULL) {
  1607     JNIHandleBlock* block = active_handles();
  1608     set_active_handles(NULL);
  1609     JNIHandleBlock::release_block(block);
  1612   if (free_handle_block() != NULL) {
  1613     JNIHandleBlock* block = free_handle_block();
  1614     set_free_handle_block(NULL);
  1615     JNIHandleBlock::release_block(block);
  1618   // These have to be removed while this is still a valid thread.
  1619   remove_stack_guard_pages();
  1621   if (UseTLAB) {
  1622     tlab().make_parsable(true);  // retire TLAB
  1625   if (jvmti_thread_state() != NULL) {
  1626     JvmtiExport::cleanup_thread(this);
  1629 #ifndef SERIALGC
  1630   // We must flush G1-related buffers before removing a thread from
  1631   // the list of active threads.
  1632   if (UseG1GC) {
  1633     flush_barrier_queues();
  1635 #endif
  1637   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1638   Threads::remove(this);
  1641 #ifndef SERIALGC
  1642 // Flush G1-related queues.
  1643 void JavaThread::flush_barrier_queues() {
  1644   satb_mark_queue().flush();
  1645   dirty_card_queue().flush();
  1647 #endif
  1649 void JavaThread::cleanup_failed_attach_current_thread() {
  1650   if (get_thread_profiler() != NULL) {
  1651     get_thread_profiler()->disengage();
  1652     ResourceMark rm;
  1653     get_thread_profiler()->print(get_thread_name());
  1656   if (active_handles() != NULL) {
  1657     JNIHandleBlock* block = active_handles();
  1658     set_active_handles(NULL);
  1659     JNIHandleBlock::release_block(block);
  1662   if (free_handle_block() != NULL) {
  1663     JNIHandleBlock* block = free_handle_block();
  1664     set_free_handle_block(NULL);
  1665     JNIHandleBlock::release_block(block);
  1668   // These have to be removed while this is still a valid thread.
  1669   remove_stack_guard_pages();
  1671   if (UseTLAB) {
  1672     tlab().make_parsable(true);  // retire TLAB, if any
  1675 #ifndef SERIALGC
  1676   if (UseG1GC) {
  1677     flush_barrier_queues();
  1679 #endif
  1681   Threads::remove(this);
  1682   delete this;
  1688 JavaThread* JavaThread::active() {
  1689   Thread* thread = ThreadLocalStorage::thread();
  1690   assert(thread != NULL, "just checking");
  1691   if (thread->is_Java_thread()) {
  1692     return (JavaThread*) thread;
  1693   } else {
  1694     assert(thread->is_VM_thread(), "this must be a vm thread");
  1695     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1696     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1697     assert(ret->is_Java_thread(), "must be a Java thread");
  1698     return ret;
  1702 bool JavaThread::is_lock_owned(address adr) const {
  1703   if (Thread::is_lock_owned(adr)) return true;
  1705   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1706     if (chunk->contains(adr)) return true;
  1709   return false;
  1713 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1714   chunk->set_next(monitor_chunks());
  1715   set_monitor_chunks(chunk);
  1718 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1719   guarantee(monitor_chunks() != NULL, "must be non empty");
  1720   if (monitor_chunks() == chunk) {
  1721     set_monitor_chunks(chunk->next());
  1722   } else {
  1723     MonitorChunk* prev = monitor_chunks();
  1724     while (prev->next() != chunk) prev = prev->next();
  1725     prev->set_next(chunk->next());
  1729 // JVM support.
  1731 // Note: this function shouldn't block if it's called in
  1732 // _thread_in_native_trans state (such as from
  1733 // check_special_condition_for_native_trans()).
  1734 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1736   if (has_last_Java_frame() && has_async_condition()) {
  1737     // If we are at a polling page safepoint (not a poll return)
  1738     // then we must defer async exception because live registers
  1739     // will be clobbered by the exception path. Poll return is
  1740     // ok because the call we a returning from already collides
  1741     // with exception handling registers and so there is no issue.
  1742     // (The exception handling path kills call result registers but
  1743     //  this is ok since the exception kills the result anyway).
  1745     if (is_at_poll_safepoint()) {
  1746       // if the code we are returning to has deoptimized we must defer
  1747       // the exception otherwise live registers get clobbered on the
  1748       // exception path before deoptimization is able to retrieve them.
  1749       //
  1750       RegisterMap map(this, false);
  1751       frame caller_fr = last_frame().sender(&map);
  1752       assert(caller_fr.is_compiled_frame(), "what?");
  1753       if (caller_fr.is_deoptimized_frame()) {
  1754         if (TraceExceptions) {
  1755           ResourceMark rm;
  1756           tty->print_cr("deferred async exception at compiled safepoint");
  1758         return;
  1763   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1764   if (condition == _no_async_condition) {
  1765     // Conditions have changed since has_special_runtime_exit_condition()
  1766     // was called:
  1767     // - if we were here only because of an external suspend request,
  1768     //   then that was taken care of above (or cancelled) so we are done
  1769     // - if we were here because of another async request, then it has
  1770     //   been cleared between the has_special_runtime_exit_condition()
  1771     //   and now so again we are done
  1772     return;
  1775   // Check for pending async. exception
  1776   if (_pending_async_exception != NULL) {
  1777     // Only overwrite an already pending exception, if it is not a threadDeath.
  1778     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1780       // We cannot call Exceptions::_throw(...) here because we cannot block
  1781       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1783       if (TraceExceptions) {
  1784         ResourceMark rm;
  1785         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1786         if (has_last_Java_frame() ) {
  1787           frame f = last_frame();
  1788           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1790         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1792       _pending_async_exception = NULL;
  1793       clear_has_async_exception();
  1797   if (check_unsafe_error &&
  1798       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1799     condition = _no_async_condition;  // done
  1800     switch (thread_state()) {
  1801     case _thread_in_vm:
  1803         JavaThread* THREAD = this;
  1804         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1806     case _thread_in_native:
  1808         ThreadInVMfromNative tiv(this);
  1809         JavaThread* THREAD = this;
  1810         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1812     case _thread_in_Java:
  1814         ThreadInVMfromJava tiv(this);
  1815         JavaThread* THREAD = this;
  1816         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1818     default:
  1819       ShouldNotReachHere();
  1823   assert(condition == _no_async_condition || has_pending_exception() ||
  1824          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1825          "must have handled the async condition, if no exception");
  1828 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1829   //
  1830   // Check for pending external suspend. Internal suspend requests do
  1831   // not use handle_special_runtime_exit_condition().
  1832   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1833   // thread is not the current thread. In older versions of jdbx, jdbx
  1834   // threads could call into the VM with another thread's JNIEnv so we
  1835   // can be here operating on behalf of a suspended thread (4432884).
  1836   bool do_self_suspend = is_external_suspend_with_lock();
  1837   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1838     //
  1839     // Because thread is external suspended the safepoint code will count
  1840     // thread as at a safepoint. This can be odd because we can be here
  1841     // as _thread_in_Java which would normally transition to _thread_blocked
  1842     // at a safepoint. We would like to mark the thread as _thread_blocked
  1843     // before calling java_suspend_self like all other callers of it but
  1844     // we must then observe proper safepoint protocol. (We can't leave
  1845     // _thread_blocked with a safepoint in progress). However we can be
  1846     // here as _thread_in_native_trans so we can't use a normal transition
  1847     // constructor/destructor pair because they assert on that type of
  1848     // transition. We could do something like:
  1849     //
  1850     // JavaThreadState state = thread_state();
  1851     // set_thread_state(_thread_in_vm);
  1852     // {
  1853     //   ThreadBlockInVM tbivm(this);
  1854     //   java_suspend_self()
  1855     // }
  1856     // set_thread_state(_thread_in_vm_trans);
  1857     // if (safepoint) block;
  1858     // set_thread_state(state);
  1859     //
  1860     // but that is pretty messy. Instead we just go with the way the
  1861     // code has worked before and note that this is the only path to
  1862     // java_suspend_self that doesn't put the thread in _thread_blocked
  1863     // mode.
  1865     frame_anchor()->make_walkable(this);
  1866     java_suspend_self();
  1868     // We might be here for reasons in addition to the self-suspend request
  1869     // so check for other async requests.
  1872   if (check_asyncs) {
  1873     check_and_handle_async_exceptions();
  1877 void JavaThread::send_thread_stop(oop java_throwable)  {
  1878   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1879   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1880   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1882   // Do not throw asynchronous exceptions against the compiler thread
  1883   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1884   if (is_Compiler_thread()) return;
  1886   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  1887   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
  1888     java_lang_Thread::set_stillborn(threadObj());
  1892     // Actually throw the Throwable against the target Thread - however
  1893     // only if there is no thread death exception installed already.
  1894     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  1895       // If the topmost frame is a runtime stub, then we are calling into
  1896       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1897       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1898       // may not be valid
  1899       if (has_last_Java_frame()) {
  1900         frame f = last_frame();
  1901         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  1902           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  1903           RegisterMap reg_map(this, UseBiasedLocking);
  1904           frame compiled_frame = f.sender(&reg_map);
  1905           if (compiled_frame.can_be_deoptimized()) {
  1906             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  1911       // Set async. pending exception in thread.
  1912       set_pending_async_exception(java_throwable);
  1914       if (TraceExceptions) {
  1915        ResourceMark rm;
  1916        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1918       // for AbortVMOnException flag
  1919       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  1924   // Interrupt thread so it will wake up from a potential wait()
  1925   Thread::interrupt(this);
  1928 // External suspension mechanism.
  1929 //
  1930 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  1931 // to any VM_locks and it is at a transition
  1932 // Self-suspension will happen on the transition out of the vm.
  1933 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  1934 //
  1935 // Guarantees on return:
  1936 //   + Target thread will not execute any new bytecode (that's why we need to
  1937 //     force a safepoint)
  1938 //   + Target thread will not enter any new monitors
  1939 //
  1940 void JavaThread::java_suspend() {
  1941   { MutexLocker mu(Threads_lock);
  1942     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  1943        return;
  1947   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1948     if (!is_external_suspend()) {
  1949       // a racing resume has cancelled us; bail out now
  1950       return;
  1953     // suspend is done
  1954     uint32_t debug_bits = 0;
  1955     // Warning: is_ext_suspend_completed() may temporarily drop the
  1956     // SR_lock to allow the thread to reach a stable thread state if
  1957     // it is currently in a transient thread state.
  1958     if (is_ext_suspend_completed(false /* !called_by_wait */,
  1959                                  SuspendRetryDelay, &debug_bits) ) {
  1960       return;
  1964   VM_ForceSafepoint vm_suspend;
  1965   VMThread::execute(&vm_suspend);
  1968 // Part II of external suspension.
  1969 // A JavaThread self suspends when it detects a pending external suspend
  1970 // request. This is usually on transitions. It is also done in places
  1971 // where continuing to the next transition would surprise the caller,
  1972 // e.g., monitor entry.
  1973 //
  1974 // Returns the number of times that the thread self-suspended.
  1975 //
  1976 // Note: DO NOT call java_suspend_self() when you just want to block current
  1977 //       thread. java_suspend_self() is the second stage of cooperative
  1978 //       suspension for external suspend requests and should only be used
  1979 //       to complete an external suspend request.
  1980 //
  1981 int JavaThread::java_suspend_self() {
  1982   int ret = 0;
  1984   // we are in the process of exiting so don't suspend
  1985   if (is_exiting()) {
  1986      clear_external_suspend();
  1987      return ret;
  1990   assert(_anchor.walkable() ||
  1991     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  1992     "must have walkable stack");
  1994   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1996   assert(!this->is_ext_suspended(),
  1997     "a thread trying to self-suspend should not already be suspended");
  1999   if (this->is_suspend_equivalent()) {
  2000     // If we are self-suspending as a result of the lifting of a
  2001     // suspend equivalent condition, then the suspend_equivalent
  2002     // flag is not cleared until we set the ext_suspended flag so
  2003     // that wait_for_ext_suspend_completion() returns consistent
  2004     // results.
  2005     this->clear_suspend_equivalent();
  2008   // A racing resume may have cancelled us before we grabbed SR_lock
  2009   // above. Or another external suspend request could be waiting for us
  2010   // by the time we return from SR_lock()->wait(). The thread
  2011   // that requested the suspension may already be trying to walk our
  2012   // stack and if we return now, we can change the stack out from under
  2013   // it. This would be a "bad thing (TM)" and cause the stack walker
  2014   // to crash. We stay self-suspended until there are no more pending
  2015   // external suspend requests.
  2016   while (is_external_suspend()) {
  2017     ret++;
  2018     this->set_ext_suspended();
  2020     // _ext_suspended flag is cleared by java_resume()
  2021     while (is_ext_suspended()) {
  2022       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2026   return ret;
  2029 #ifdef ASSERT
  2030 // verify the JavaThread has not yet been published in the Threads::list, and
  2031 // hence doesn't need protection from concurrent access at this stage
  2032 void JavaThread::verify_not_published() {
  2033   if (!Threads_lock->owned_by_self()) {
  2034    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2035    assert( !Threads::includes(this),
  2036            "java thread shouldn't have been published yet!");
  2038   else {
  2039    assert( !Threads::includes(this),
  2040            "java thread shouldn't have been published yet!");
  2043 #endif
  2045 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2046 // progress or when _suspend_flags is non-zero.
  2047 // Current thread needs to self-suspend if there is a suspend request and/or
  2048 // block if a safepoint is in progress.
  2049 // Async exception ISN'T checked.
  2050 // Note only the ThreadInVMfromNative transition can call this function
  2051 // directly and when thread state is _thread_in_native_trans
  2052 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2053   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2055   JavaThread *curJT = JavaThread::current();
  2056   bool do_self_suspend = thread->is_external_suspend();
  2058   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2060   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2061   // thread is not the current thread. In older versions of jdbx, jdbx
  2062   // threads could call into the VM with another thread's JNIEnv so we
  2063   // can be here operating on behalf of a suspended thread (4432884).
  2064   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2065     JavaThreadState state = thread->thread_state();
  2067     // We mark this thread_blocked state as a suspend-equivalent so
  2068     // that a caller to is_ext_suspend_completed() won't be confused.
  2069     // The suspend-equivalent state is cleared by java_suspend_self().
  2070     thread->set_suspend_equivalent();
  2072     // If the safepoint code sees the _thread_in_native_trans state, it will
  2073     // wait until the thread changes to other thread state. There is no
  2074     // guarantee on how soon we can obtain the SR_lock and complete the
  2075     // self-suspend request. It would be a bad idea to let safepoint wait for
  2076     // too long. Temporarily change the state to _thread_blocked to
  2077     // let the VM thread know that this thread is ready for GC. The problem
  2078     // of changing thread state is that safepoint could happen just after
  2079     // java_suspend_self() returns after being resumed, and VM thread will
  2080     // see the _thread_blocked state. We must check for safepoint
  2081     // after restoring the state and make sure we won't leave while a safepoint
  2082     // is in progress.
  2083     thread->set_thread_state(_thread_blocked);
  2084     thread->java_suspend_self();
  2085     thread->set_thread_state(state);
  2086     // Make sure new state is seen by VM thread
  2087     if (os::is_MP()) {
  2088       if (UseMembar) {
  2089         // Force a fence between the write above and read below
  2090         OrderAccess::fence();
  2091       } else {
  2092         // Must use this rather than serialization page in particular on Windows
  2093         InterfaceSupport::serialize_memory(thread);
  2098   if (SafepointSynchronize::do_call_back()) {
  2099     // If we are safepointing, then block the caller which may not be
  2100     // the same as the target thread (see above).
  2101     SafepointSynchronize::block(curJT);
  2104   if (thread->is_deopt_suspend()) {
  2105     thread->clear_deopt_suspend();
  2106     RegisterMap map(thread, false);
  2107     frame f = thread->last_frame();
  2108     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2109       f = f.sender(&map);
  2111     if (f.id() == thread->must_deopt_id()) {
  2112       thread->clear_must_deopt_id();
  2113       f.deoptimize(thread);
  2114     } else {
  2115       fatal("missed deoptimization!");
  2120 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2121 // progress or when _suspend_flags is non-zero.
  2122 // Current thread needs to self-suspend if there is a suspend request and/or
  2123 // block if a safepoint is in progress.
  2124 // Also check for pending async exception (not including unsafe access error).
  2125 // Note only the native==>VM/Java barriers can call this function and when
  2126 // thread state is _thread_in_native_trans.
  2127 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2128   check_safepoint_and_suspend_for_native_trans(thread);
  2130   if (thread->has_async_exception()) {
  2131     // We are in _thread_in_native_trans state, don't handle unsafe
  2132     // access error since that may block.
  2133     thread->check_and_handle_async_exceptions(false);
  2137 // We need to guarantee the Threads_lock here, since resumes are not
  2138 // allowed during safepoint synchronization
  2139 // Can only resume from an external suspension
  2140 void JavaThread::java_resume() {
  2141   assert_locked_or_safepoint(Threads_lock);
  2143   // Sanity check: thread is gone, has started exiting or the thread
  2144   // was not externally suspended.
  2145   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2146     return;
  2149   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2151   clear_external_suspend();
  2153   if (is_ext_suspended()) {
  2154     clear_ext_suspended();
  2155     SR_lock()->notify_all();
  2159 void JavaThread::create_stack_guard_pages() {
  2160   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2161   address low_addr = stack_base() - stack_size();
  2162   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2164   int allocate = os::allocate_stack_guard_pages();
  2165   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2167   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2168     warning("Attempt to allocate stack guard pages failed.");
  2169     return;
  2172   if (os::guard_memory((char *) low_addr, len)) {
  2173     _stack_guard_state = stack_guard_enabled;
  2174   } else {
  2175     warning("Attempt to protect stack guard pages failed.");
  2176     if (os::uncommit_memory((char *) low_addr, len)) {
  2177       warning("Attempt to deallocate stack guard pages failed.");
  2182 void JavaThread::remove_stack_guard_pages() {
  2183   if (_stack_guard_state == stack_guard_unused) return;
  2184   address low_addr = stack_base() - stack_size();
  2185   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2187   if (os::allocate_stack_guard_pages()) {
  2188     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2189       _stack_guard_state = stack_guard_unused;
  2190     } else {
  2191       warning("Attempt to deallocate stack guard pages failed.");
  2193   } else {
  2194     if (_stack_guard_state == stack_guard_unused) return;
  2195     if (os::unguard_memory((char *) low_addr, len)) {
  2196       _stack_guard_state = stack_guard_unused;
  2197     } else {
  2198         warning("Attempt to unprotect stack guard pages failed.");
  2203 void JavaThread::enable_stack_yellow_zone() {
  2204   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2205   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2207   // The base notation is from the stacks point of view, growing downward.
  2208   // We need to adjust it to work correctly with guard_memory()
  2209   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2211   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2212   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2214   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2215     _stack_guard_state = stack_guard_enabled;
  2216   } else {
  2217     warning("Attempt to guard stack yellow zone failed.");
  2219   enable_register_stack_guard();
  2222 void JavaThread::disable_stack_yellow_zone() {
  2223   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2224   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2226   // Simply return if called for a thread that does not use guard pages.
  2227   if (_stack_guard_state == stack_guard_unused) return;
  2229   // The base notation is from the stacks point of view, growing downward.
  2230   // We need to adjust it to work correctly with guard_memory()
  2231   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2233   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2234     _stack_guard_state = stack_guard_yellow_disabled;
  2235   } else {
  2236     warning("Attempt to unguard stack yellow zone failed.");
  2238   disable_register_stack_guard();
  2241 void JavaThread::enable_stack_red_zone() {
  2242   // The base notation is from the stacks point of view, growing downward.
  2243   // We need to adjust it to work correctly with guard_memory()
  2244   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2245   address base = stack_red_zone_base() - stack_red_zone_size();
  2247   guarantee(base < stack_base(),"Error calculating stack red zone");
  2248   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2250   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2251     warning("Attempt to guard stack red zone failed.");
  2255 void JavaThread::disable_stack_red_zone() {
  2256   // The base notation is from the stacks point of view, growing downward.
  2257   // We need to adjust it to work correctly with guard_memory()
  2258   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2259   address base = stack_red_zone_base() - stack_red_zone_size();
  2260   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2261     warning("Attempt to unguard stack red zone failed.");
  2265 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2266   // ignore is there is no stack
  2267   if (!has_last_Java_frame()) return;
  2268   // traverse the stack frames. Starts from top frame.
  2269   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2270     frame* fr = fst.current();
  2271     f(fr, fst.register_map());
  2276 #ifndef PRODUCT
  2277 // Deoptimization
  2278 // Function for testing deoptimization
  2279 void JavaThread::deoptimize() {
  2280   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2281   StackFrameStream fst(this, UseBiasedLocking);
  2282   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2283   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2284   // Iterate over all frames in the thread and deoptimize
  2285   for(; !fst.is_done(); fst.next()) {
  2286     if(fst.current()->can_be_deoptimized()) {
  2288       if (only_at) {
  2289         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2290         // consists of comma or carriage return separated numbers so
  2291         // search for the current bci in that string.
  2292         address pc = fst.current()->pc();
  2293         nmethod* nm =  (nmethod*) fst.current()->cb();
  2294         ScopeDesc* sd = nm->scope_desc_at( pc);
  2295         char buffer[8];
  2296         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2297         size_t len = strlen(buffer);
  2298         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2299         while (found != NULL) {
  2300           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2301               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2302             // Check that the bci found is bracketed by terminators.
  2303             break;
  2305           found = strstr(found + 1, buffer);
  2307         if (!found) {
  2308           continue;
  2312       if (DebugDeoptimization && !deopt) {
  2313         deopt = true; // One-time only print before deopt
  2314         tty->print_cr("[BEFORE Deoptimization]");
  2315         trace_frames();
  2316         trace_stack();
  2318       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2322   if (DebugDeoptimization && deopt) {
  2323     tty->print_cr("[AFTER Deoptimization]");
  2324     trace_frames();
  2329 // Make zombies
  2330 void JavaThread::make_zombies() {
  2331   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2332     if (fst.current()->can_be_deoptimized()) {
  2333       // it is a Java nmethod
  2334       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2335       nm->make_not_entrant();
  2339 #endif // PRODUCT
  2342 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2343   if (!has_last_Java_frame()) return;
  2344   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2345   StackFrameStream fst(this, UseBiasedLocking);
  2346   for(; !fst.is_done(); fst.next()) {
  2347     if (fst.current()->should_be_deoptimized()) {
  2348       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2354 // GC support
  2355 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2357 void JavaThread::gc_epilogue() {
  2358   frames_do(frame_gc_epilogue);
  2362 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2364 void JavaThread::gc_prologue() {
  2365   frames_do(frame_gc_prologue);
  2368 // If the caller is a NamedThread, then remember, in the current scope,
  2369 // the given JavaThread in its _processed_thread field.
  2370 class RememberProcessedThread: public StackObj {
  2371   NamedThread* _cur_thr;
  2372 public:
  2373   RememberProcessedThread(JavaThread* jthr) {
  2374     Thread* thread = Thread::current();
  2375     if (thread->is_Named_thread()) {
  2376       _cur_thr = (NamedThread *)thread;
  2377       _cur_thr->set_processed_thread(jthr);
  2378     } else {
  2379       _cur_thr = NULL;
  2383   ~RememberProcessedThread() {
  2384     if (_cur_thr) {
  2385       _cur_thr->set_processed_thread(NULL);
  2388 };
  2390 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2391   // Verify that the deferred card marks have been flushed.
  2392   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2394   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2395   // since there may be more than one thread using each ThreadProfiler.
  2397   // Traverse the GCHandles
  2398   Thread::oops_do(f, cf);
  2400   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2401           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2403   if (has_last_Java_frame()) {
  2404     // Record JavaThread to GC thread
  2405     RememberProcessedThread rpt(this);
  2407     // Traverse the privileged stack
  2408     if (_privileged_stack_top != NULL) {
  2409       _privileged_stack_top->oops_do(f);
  2412     // traverse the registered growable array
  2413     if (_array_for_gc != NULL) {
  2414       for (int index = 0; index < _array_for_gc->length(); index++) {
  2415         f->do_oop(_array_for_gc->adr_at(index));
  2419     // Traverse the monitor chunks
  2420     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2421       chunk->oops_do(f);
  2424     // Traverse the execution stack
  2425     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2426       fst.current()->oops_do(f, cf, fst.register_map());
  2430   // callee_target is never live across a gc point so NULL it here should
  2431   // it still contain a methdOop.
  2433   set_callee_target(NULL);
  2435   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2436   // If we have deferred set_locals there might be oops waiting to be
  2437   // written
  2438   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2439   if (list != NULL) {
  2440     for (int i = 0; i < list->length(); i++) {
  2441       list->at(i)->oops_do(f);
  2445   // Traverse instance variables at the end since the GC may be moving things
  2446   // around using this function
  2447   f->do_oop((oop*) &_threadObj);
  2448   f->do_oop((oop*) &_vm_result);
  2449   f->do_oop((oop*) &_vm_result_2);
  2450   f->do_oop((oop*) &_exception_oop);
  2451   f->do_oop((oop*) &_pending_async_exception);
  2453   if (jvmti_thread_state() != NULL) {
  2454     jvmti_thread_state()->oops_do(f);
  2458 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2459   Thread::nmethods_do(cf);  // (super method is a no-op)
  2461   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2462           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2464   if (has_last_Java_frame()) {
  2465     // Traverse the execution stack
  2466     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2467       fst.current()->nmethods_do(cf);
  2472 // Printing
  2473 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2474   switch (_thread_state) {
  2475   case _thread_uninitialized:     return "_thread_uninitialized";
  2476   case _thread_new:               return "_thread_new";
  2477   case _thread_new_trans:         return "_thread_new_trans";
  2478   case _thread_in_native:         return "_thread_in_native";
  2479   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2480   case _thread_in_vm:             return "_thread_in_vm";
  2481   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2482   case _thread_in_Java:           return "_thread_in_Java";
  2483   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2484   case _thread_blocked:           return "_thread_blocked";
  2485   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2486   default:                        return "unknown thread state";
  2490 #ifndef PRODUCT
  2491 void JavaThread::print_thread_state_on(outputStream *st) const {
  2492   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2493 };
  2494 void JavaThread::print_thread_state() const {
  2495   print_thread_state_on(tty);
  2496 };
  2497 #endif // PRODUCT
  2499 // Called by Threads::print() for VM_PrintThreads operation
  2500 void JavaThread::print_on(outputStream *st) const {
  2501   st->print("\"%s\" ", get_thread_name());
  2502   oop thread_oop = threadObj();
  2503   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2504   Thread::print_on(st);
  2505   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2506   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2507   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2508     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2510 #ifndef PRODUCT
  2511   print_thread_state_on(st);
  2512   _safepoint_state->print_on(st);
  2513 #endif // PRODUCT
  2516 // Called by fatal error handler. The difference between this and
  2517 // JavaThread::print() is that we can't grab lock or allocate memory.
  2518 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2519   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2520   oop thread_obj = threadObj();
  2521   if (thread_obj != NULL) {
  2522      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2524   st->print(" [");
  2525   st->print("%s", _get_thread_state_name(_thread_state));
  2526   if (osthread()) {
  2527     st->print(", id=%d", osthread()->thread_id());
  2529   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2530             _stack_base - _stack_size, _stack_base);
  2531   st->print("]");
  2532   return;
  2535 // Verification
  2537 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2539 void JavaThread::verify() {
  2540   // Verify oops in the thread.
  2541   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2543   // Verify the stack frames.
  2544   frames_do(frame_verify);
  2547 // CR 6300358 (sub-CR 2137150)
  2548 // Most callers of this method assume that it can't return NULL but a
  2549 // thread may not have a name whilst it is in the process of attaching to
  2550 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2551 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2552 // if vm exit occurs during initialization). These cases can all be accounted
  2553 // for such that this method never returns NULL.
  2554 const char* JavaThread::get_thread_name() const {
  2555 #ifdef ASSERT
  2556   // early safepoints can hit while current thread does not yet have TLS
  2557   if (!SafepointSynchronize::is_at_safepoint()) {
  2558     Thread *cur = Thread::current();
  2559     if (!(cur->is_Java_thread() && cur == this)) {
  2560       // Current JavaThreads are allowed to get their own name without
  2561       // the Threads_lock.
  2562       assert_locked_or_safepoint(Threads_lock);
  2565 #endif // ASSERT
  2566     return get_thread_name_string();
  2569 // Returns a non-NULL representation of this thread's name, or a suitable
  2570 // descriptive string if there is no set name
  2571 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2572   const char* name_str;
  2573   oop thread_obj = threadObj();
  2574   if (thread_obj != NULL) {
  2575     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2576     if (name != NULL) {
  2577       if (buf == NULL) {
  2578         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2580       else {
  2581         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2584     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2585       name_str = "<no-name - thread is attaching>";
  2587     else {
  2588       name_str = Thread::name();
  2591   else {
  2592     name_str = Thread::name();
  2594   assert(name_str != NULL, "unexpected NULL thread name");
  2595   return name_str;
  2599 const char* JavaThread::get_threadgroup_name() const {
  2600   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2601   oop thread_obj = threadObj();
  2602   if (thread_obj != NULL) {
  2603     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2604     if (thread_group != NULL) {
  2605       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2606       // ThreadGroup.name can be null
  2607       if (name != NULL) {
  2608         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2609         return str;
  2613   return NULL;
  2616 const char* JavaThread::get_parent_name() const {
  2617   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2618   oop thread_obj = threadObj();
  2619   if (thread_obj != NULL) {
  2620     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2621     if (thread_group != NULL) {
  2622       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2623       if (parent != NULL) {
  2624         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2625         // ThreadGroup.name can be null
  2626         if (name != NULL) {
  2627           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2628           return str;
  2633   return NULL;
  2636 ThreadPriority JavaThread::java_priority() const {
  2637   oop thr_oop = threadObj();
  2638   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2639   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2640   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2641   return priority;
  2644 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2646   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2647   // Link Java Thread object <-> C++ Thread
  2649   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2650   // and put it into a new Handle.  The Handle "thread_oop" can then
  2651   // be used to pass the C++ thread object to other methods.
  2653   // Set the Java level thread object (jthread) field of the
  2654   // new thread (a JavaThread *) to C++ thread object using the
  2655   // "thread_oop" handle.
  2657   // Set the thread field (a JavaThread *) of the
  2658   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2660   Handle thread_oop(Thread::current(),
  2661                     JNIHandles::resolve_non_null(jni_thread));
  2662   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2663     "must be initialized");
  2664   set_threadObj(thread_oop());
  2665   java_lang_Thread::set_thread(thread_oop(), this);
  2667   if (prio == NoPriority) {
  2668     prio = java_lang_Thread::priority(thread_oop());
  2669     assert(prio != NoPriority, "A valid priority should be present");
  2672   // Push the Java priority down to the native thread; needs Threads_lock
  2673   Thread::set_priority(this, prio);
  2675   // Add the new thread to the Threads list and set it in motion.
  2676   // We must have threads lock in order to call Threads::add.
  2677   // It is crucial that we do not block before the thread is
  2678   // added to the Threads list for if a GC happens, then the java_thread oop
  2679   // will not be visited by GC.
  2680   Threads::add(this);
  2683 oop JavaThread::current_park_blocker() {
  2684   // Support for JSR-166 locks
  2685   oop thread_oop = threadObj();
  2686   if (thread_oop != NULL &&
  2687       JDK_Version::current().supports_thread_park_blocker()) {
  2688     return java_lang_Thread::park_blocker(thread_oop);
  2690   return NULL;
  2694 void JavaThread::print_stack_on(outputStream* st) {
  2695   if (!has_last_Java_frame()) return;
  2696   ResourceMark rm;
  2697   HandleMark   hm;
  2699   RegisterMap reg_map(this);
  2700   vframe* start_vf = last_java_vframe(&reg_map);
  2701   int count = 0;
  2702   for (vframe* f = start_vf; f; f = f->sender() ) {
  2703     if (f->is_java_frame()) {
  2704       javaVFrame* jvf = javaVFrame::cast(f);
  2705       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2707       // Print out lock information
  2708       if (JavaMonitorsInStackTrace) {
  2709         jvf->print_lock_info_on(st, count);
  2711     } else {
  2712       // Ignore non-Java frames
  2715     // Bail-out case for too deep stacks
  2716     count++;
  2717     if (MaxJavaStackTraceDepth == count) return;
  2722 // JVMTI PopFrame support
  2723 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2724   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2725   if (in_bytes(size_in_bytes) != 0) {
  2726     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2727     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2728     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2732 void* JavaThread::popframe_preserved_args() {
  2733   return _popframe_preserved_args;
  2736 ByteSize JavaThread::popframe_preserved_args_size() {
  2737   return in_ByteSize(_popframe_preserved_args_size);
  2740 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2741   int sz = in_bytes(popframe_preserved_args_size());
  2742   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2743   return in_WordSize(sz / wordSize);
  2746 void JavaThread::popframe_free_preserved_args() {
  2747   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2748   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2749   _popframe_preserved_args = NULL;
  2750   _popframe_preserved_args_size = 0;
  2753 #ifndef PRODUCT
  2755 void JavaThread::trace_frames() {
  2756   tty->print_cr("[Describe stack]");
  2757   int frame_no = 1;
  2758   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2759     tty->print("  %d. ", frame_no++);
  2760     fst.current()->print_value_on(tty,this);
  2761     tty->cr();
  2766 void JavaThread::trace_stack_from(vframe* start_vf) {
  2767   ResourceMark rm;
  2768   int vframe_no = 1;
  2769   for (vframe* f = start_vf; f; f = f->sender() ) {
  2770     if (f->is_java_frame()) {
  2771       javaVFrame::cast(f)->print_activation(vframe_no++);
  2772     } else {
  2773       f->print();
  2775     if (vframe_no > StackPrintLimit) {
  2776       tty->print_cr("...<more frames>...");
  2777       return;
  2783 void JavaThread::trace_stack() {
  2784   if (!has_last_Java_frame()) return;
  2785   ResourceMark rm;
  2786   HandleMark   hm;
  2787   RegisterMap reg_map(this);
  2788   trace_stack_from(last_java_vframe(&reg_map));
  2792 #endif // PRODUCT
  2795 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2796   assert(reg_map != NULL, "a map must be given");
  2797   frame f = last_frame();
  2798   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2799     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2801   return NULL;
  2805 klassOop JavaThread::security_get_caller_class(int depth) {
  2806   vframeStream vfst(this);
  2807   vfst.security_get_caller_frame(depth);
  2808   if (!vfst.at_end()) {
  2809     return vfst.method()->method_holder();
  2811   return NULL;
  2814 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2815   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2816   CompileBroker::compiler_thread_loop();
  2819 // Create a CompilerThread
  2820 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2821 : JavaThread(&compiler_thread_entry) {
  2822   _env   = NULL;
  2823   _log   = NULL;
  2824   _task  = NULL;
  2825   _queue = queue;
  2826   _counters = counters;
  2827   _buffer_blob = NULL;
  2829 #ifndef PRODUCT
  2830   _ideal_graph_printer = NULL;
  2831 #endif
  2835 // ======= Threads ========
  2837 // The Threads class links together all active threads, and provides
  2838 // operations over all threads.  It is protected by its own Mutex
  2839 // lock, which is also used in other contexts to protect thread
  2840 // operations from having the thread being operated on from exiting
  2841 // and going away unexpectedly (e.g., safepoint synchronization)
  2843 JavaThread* Threads::_thread_list = NULL;
  2844 int         Threads::_number_of_threads = 0;
  2845 int         Threads::_number_of_non_daemon_threads = 0;
  2846 int         Threads::_return_code = 0;
  2847 size_t      JavaThread::_stack_size_at_create = 0;
  2849 // All JavaThreads
  2850 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2852 void os_stream();
  2854 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2855 void Threads::threads_do(ThreadClosure* tc) {
  2856   assert_locked_or_safepoint(Threads_lock);
  2857   // ALL_JAVA_THREADS iterates through all JavaThreads
  2858   ALL_JAVA_THREADS(p) {
  2859     tc->do_thread(p);
  2861   // Someday we could have a table or list of all non-JavaThreads.
  2862   // For now, just manually iterate through them.
  2863   tc->do_thread(VMThread::vm_thread());
  2864   Universe::heap()->gc_threads_do(tc);
  2865   WatcherThread *wt = WatcherThread::watcher_thread();
  2866   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2867   // the data for WatcherThread is still valid upon being examined. However,
  2868   // considering that WatchThread terminates when the VM is on the way to
  2869   // exit at safepoint, the chance of the above is extremely small. The right
  2870   // way to prevent termination of WatcherThread would be to acquire
  2871   // Terminator_lock, but we can't do that without violating the lock rank
  2872   // checking in some cases.
  2873   if (wt != NULL)
  2874     tc->do_thread(wt);
  2876   // If CompilerThreads ever become non-JavaThreads, add them here
  2879 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2881   extern void JDK_Version_init();
  2883   // Check version
  2884   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2886   // Initialize the output stream module
  2887   ostream_init();
  2889   // Process java launcher properties.
  2890   Arguments::process_sun_java_launcher_properties(args);
  2892   // Initialize the os module before using TLS
  2893   os::init();
  2895   // Initialize system properties.
  2896   Arguments::init_system_properties();
  2898   // So that JDK version can be used as a discrimintor when parsing arguments
  2899   JDK_Version_init();
  2901   // Update/Initialize System properties after JDK version number is known
  2902   Arguments::init_version_specific_system_properties();
  2904   // Parse arguments
  2905   jint parse_result = Arguments::parse(args);
  2906   if (parse_result != JNI_OK) return parse_result;
  2908   if (PauseAtStartup) {
  2909     os::pause();
  2912   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  2914   // Record VM creation timing statistics
  2915   TraceVmCreationTime create_vm_timer;
  2916   create_vm_timer.start();
  2918   // Timing (must come after argument parsing)
  2919   TraceTime timer("Create VM", TraceStartupTime);
  2921   // Initialize the os module after parsing the args
  2922   jint os_init_2_result = os::init_2();
  2923   if (os_init_2_result != JNI_OK) return os_init_2_result;
  2925   // Initialize output stream logging
  2926   ostream_init_log();
  2928   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  2929   // Must be before create_vm_init_agents()
  2930   if (Arguments::init_libraries_at_startup()) {
  2931     convert_vm_init_libraries_to_agents();
  2934   // Launch -agentlib/-agentpath and converted -Xrun agents
  2935   if (Arguments::init_agents_at_startup()) {
  2936     create_vm_init_agents();
  2939   // Initialize Threads state
  2940   _thread_list = NULL;
  2941   _number_of_threads = 0;
  2942   _number_of_non_daemon_threads = 0;
  2944   // Initialize TLS
  2945   ThreadLocalStorage::init();
  2947   // Initialize global data structures and create system classes in heap
  2948   vm_init_globals();
  2950   // Attach the main thread to this os thread
  2951   JavaThread* main_thread = new JavaThread();
  2952   main_thread->set_thread_state(_thread_in_vm);
  2953   // must do this before set_active_handles and initialize_thread_local_storage
  2954   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  2955   // change the stack size recorded here to one based on the java thread
  2956   // stacksize. This adjusted size is what is used to figure the placement
  2957   // of the guard pages.
  2958   main_thread->record_stack_base_and_size();
  2959   main_thread->initialize_thread_local_storage();
  2961   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  2963   if (!main_thread->set_as_starting_thread()) {
  2964     vm_shutdown_during_initialization(
  2965       "Failed necessary internal allocation. Out of swap space");
  2966     delete main_thread;
  2967     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2968     return JNI_ENOMEM;
  2971   // Enable guard page *after* os::create_main_thread(), otherwise it would
  2972   // crash Linux VM, see notes in os_linux.cpp.
  2973   main_thread->create_stack_guard_pages();
  2975   // Initialize Java-Leve synchronization subsystem
  2976   ObjectSynchronizer::Initialize() ;
  2978   // Initialize global modules
  2979   jint status = init_globals();
  2980   if (status != JNI_OK) {
  2981     delete main_thread;
  2982     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2983     return status;
  2986   // Should be done after the heap is fully created
  2987   main_thread->cache_global_variables();
  2989   HandleMark hm;
  2991   { MutexLocker mu(Threads_lock);
  2992     Threads::add(main_thread);
  2995   // Any JVMTI raw monitors entered in onload will transition into
  2996   // real raw monitor. VM is setup enough here for raw monitor enter.
  2997   JvmtiExport::transition_pending_onload_raw_monitors();
  2999   if (VerifyBeforeGC &&
  3000       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3001     Universe::heap()->prepare_for_verify();
  3002     Universe::verify();   // make sure we're starting with a clean slate
  3005   // Create the VMThread
  3006   { TraceTime timer("Start VMThread", TraceStartupTime);
  3007     VMThread::create();
  3008     Thread* vmthread = VMThread::vm_thread();
  3010     if (!os::create_thread(vmthread, os::vm_thread))
  3011       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3013     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3014     // Monitors can have spurious returns, must always check another state flag
  3016       MutexLocker ml(Notify_lock);
  3017       os::start_thread(vmthread);
  3018       while (vmthread->active_handles() == NULL) {
  3019         Notify_lock->wait();
  3024   assert (Universe::is_fully_initialized(), "not initialized");
  3025   EXCEPTION_MARK;
  3027   // At this point, the Universe is initialized, but we have not executed
  3028   // any byte code.  Now is a good time (the only time) to dump out the
  3029   // internal state of the JVM for sharing.
  3031   if (DumpSharedSpaces) {
  3032     Universe::heap()->preload_and_dump(CHECK_0);
  3033     ShouldNotReachHere();
  3036   // Always call even when there are not JVMTI environments yet, since environments
  3037   // may be attached late and JVMTI must track phases of VM execution
  3038   JvmtiExport::enter_start_phase();
  3040   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3041   JvmtiExport::post_vm_start();
  3044     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3046     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3047       create_vm_init_libraries();
  3050     if (InitializeJavaLangString) {
  3051       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  3052     } else {
  3053       warning("java.lang.String not initialized");
  3056     if (AggressiveOpts) {
  3058         // Forcibly initialize java/util/HashMap and mutate the private
  3059         // static final "frontCacheEnabled" field before we start creating instances
  3060 #ifdef ASSERT
  3061         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3062         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3063 #endif
  3064         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3065         KlassHandle k = KlassHandle(THREAD, k_o);
  3066         guarantee(k.not_null(), "Must find java/util/HashMap");
  3067         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3068         ik->initialize(CHECK_0);
  3069         fieldDescriptor fd;
  3070         // Possible we might not find this field; if so, don't break
  3071         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3072           k()->bool_field_put(fd.offset(), true);
  3076       if (UseStringCache) {
  3077         // Forcibly initialize java/lang/StringValue and mutate the private
  3078         // static final "stringCacheEnabled" field before we start creating instances
  3079         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3080         // Possible that StringValue isn't present: if so, silently don't break
  3081         if (k_o != NULL) {
  3082           KlassHandle k = KlassHandle(THREAD, k_o);
  3083           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3084           ik->initialize(CHECK_0);
  3085           fieldDescriptor fd;
  3086           // Possible we might not find this field: if so, silently don't break
  3087           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3088             k()->bool_field_put(fd.offset(), true);
  3094     // Initialize java_lang.System (needed before creating the thread)
  3095     if (InitializeJavaLangSystem) {
  3096       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3097       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3098       Handle thread_group = create_initial_thread_group(CHECK_0);
  3099       Universe::set_main_thread_group(thread_group());
  3100       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3101       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3102       main_thread->set_threadObj(thread_object);
  3103       // Set thread status to running since main thread has
  3104       // been started and running.
  3105       java_lang_Thread::set_thread_status(thread_object,
  3106                                           java_lang_Thread::RUNNABLE);
  3108       // The VM preresolve methods to these classes. Make sure that get initialized
  3109       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3110       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3111       // The VM creates & returns objects of this class. Make sure it's initialized.
  3112       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3113       call_initializeSystemClass(CHECK_0);
  3114     } else {
  3115       warning("java.lang.System not initialized");
  3118     // an instance of OutOfMemory exception has been allocated earlier
  3119     if (InitializeJavaLangExceptionsErrors) {
  3120       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3121       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3122       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3123       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3124       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3125       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3126       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3127     } else {
  3128       warning("java.lang.OutOfMemoryError has not been initialized");
  3129       warning("java.lang.NullPointerException has not been initialized");
  3130       warning("java.lang.ClassCastException has not been initialized");
  3131       warning("java.lang.ArrayStoreException has not been initialized");
  3132       warning("java.lang.ArithmeticException has not been initialized");
  3133       warning("java.lang.StackOverflowError has not been initialized");
  3136     if (EnableInvokeDynamic) {
  3137       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
  3138       // the compiler.
  3139       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
  3143   // See        : bugid 4211085.
  3144   // Background : the static initializer of java.lang.Compiler tries to read
  3145   //              property"java.compiler" and read & write property "java.vm.info".
  3146   //              When a security manager is installed through the command line
  3147   //              option "-Djava.security.manager", the above properties are not
  3148   //              readable and the static initializer for java.lang.Compiler fails
  3149   //              resulting in a NoClassDefFoundError.  This can happen in any
  3150   //              user code which calls methods in java.lang.Compiler.
  3151   // Hack :       the hack is to pre-load and initialize this class, so that only
  3152   //              system domains are on the stack when the properties are read.
  3153   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3154   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3155   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3156   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3157   //              Once that is done, we should remove this hack.
  3158   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3160   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3161   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3162   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3163   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3164   // This should also be taken out as soon as 4211383 gets fixed.
  3165   reset_vm_info_property(CHECK_0);
  3167   quicken_jni_functions();
  3169   // Set flag that basic initialization has completed. Used by exceptions and various
  3170   // debug stuff, that does not work until all basic classes have been initialized.
  3171   set_init_completed();
  3173   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3175   // record VM initialization completion time
  3176   Management::record_vm_init_completed();
  3178   // Compute system loader. Note that this has to occur after set_init_completed, since
  3179   // valid exceptions may be thrown in the process.
  3180   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3181   // set_init_completed has just been called, causing exceptions not to be shortcut
  3182   // anymore. We call vm_exit_during_initialization directly instead.
  3183   SystemDictionary::compute_java_system_loader(THREAD);
  3184   if (HAS_PENDING_EXCEPTION) {
  3185     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3188 #ifdef KERNEL
  3189   if (JDK_Version::is_gte_jdk17x_version()) {
  3190     set_jkernel_boot_classloader_hook(THREAD);
  3192 #endif // KERNEL
  3194 #ifndef SERIALGC
  3195   // Support for ConcurrentMarkSweep. This should be cleaned up
  3196   // and better encapsulated. The ugly nested if test would go away
  3197   // once things are properly refactored. XXX YSR
  3198   if (UseConcMarkSweepGC || UseG1GC) {
  3199     if (UseConcMarkSweepGC) {
  3200       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3201     } else {
  3202       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3204     if (HAS_PENDING_EXCEPTION) {
  3205       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3208 #endif // SERIALGC
  3210   // Always call even when there are not JVMTI environments yet, since environments
  3211   // may be attached late and JVMTI must track phases of VM execution
  3212   JvmtiExport::enter_live_phase();
  3214   // Signal Dispatcher needs to be started before VMInit event is posted
  3215   os::signal_init();
  3217   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3218   if (!DisableAttachMechanism) {
  3219     if (StartAttachListener || AttachListener::init_at_startup()) {
  3220       AttachListener::init();
  3224   // Launch -Xrun agents
  3225   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3226   // back-end can launch with -Xdebug -Xrunjdwp.
  3227   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3228     create_vm_init_libraries();
  3231   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3232   JvmtiExport::post_vm_initialized();
  3234   Chunk::start_chunk_pool_cleaner_task();
  3236   // initialize compiler(s)
  3237   CompileBroker::compilation_init();
  3239   Management::initialize(THREAD);
  3240   if (HAS_PENDING_EXCEPTION) {
  3241     // management agent fails to start possibly due to
  3242     // configuration problem and is responsible for printing
  3243     // stack trace if appropriate. Simply exit VM.
  3244     vm_exit(1);
  3247   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3248   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3249   if (MemProfiling)                   MemProfiler::engage();
  3250   StatSampler::engage();
  3251   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3253   BiasedLocking::init();
  3256   // Start up the WatcherThread if there are any periodic tasks
  3257   // NOTE:  All PeriodicTasks should be registered by now. If they
  3258   //   aren't, late joiners might appear to start slowly (we might
  3259   //   take a while to process their first tick).
  3260   if (PeriodicTask::num_tasks() > 0) {
  3261     WatcherThread::start();
  3264   // Give os specific code one last chance to start
  3265   os::init_3();
  3267   create_vm_timer.end();
  3268   return JNI_OK;
  3271 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3272 extern "C" {
  3273   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3275 // Find a command line agent library and return its entry point for
  3276 //         -agentlib:  -agentpath:   -Xrun
  3277 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3278 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3279   OnLoadEntry_t on_load_entry = NULL;
  3280   void *library = agent->os_lib();  // check if we have looked it up before
  3282   if (library == NULL) {
  3283     char buffer[JVM_MAXPATHLEN];
  3284     char ebuf[1024];
  3285     const char *name = agent->name();
  3286     const char *msg = "Could not find agent library ";
  3288     if (agent->is_absolute_path()) {
  3289       library = hpi::dll_load(name, ebuf, sizeof ebuf);
  3290       if (library == NULL) {
  3291         const char *sub_msg = " in absolute path, with error: ";
  3292         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3293         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3294         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3295         // If we can't find the agent, exit.
  3296         vm_exit_during_initialization(buf, NULL);
  3297         FREE_C_HEAP_ARRAY(char, buf);
  3299     } else {
  3300       // Try to load the agent from the standard dll directory
  3301       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3302       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3303 #ifdef KERNEL
  3304       // Download instrument dll
  3305       if (library == NULL && strcmp(name, "instrument") == 0) {
  3306         char *props = Arguments::get_kernel_properties();
  3307         char *home  = Arguments::get_java_home();
  3308         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3309                       " sun.jkernel.DownloadManager -download client_jvm";
  3310         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3311         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3312         jio_snprintf(cmd, length, fmt, home, props);
  3313         int status = os::fork_and_exec(cmd);
  3314         FreeHeap(props);
  3315         if (status == -1) {
  3316           warning(cmd);
  3317           vm_exit_during_initialization("fork_and_exec failed: %s",
  3318                                          strerror(errno));
  3320         FREE_C_HEAP_ARRAY(char, cmd);
  3321         // when this comes back the instrument.dll should be where it belongs.
  3322         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3324 #endif // KERNEL
  3325       if (library == NULL) { // Try the local directory
  3326         char ns[1] = {0};
  3327         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
  3328         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3329         if (library == NULL) {
  3330           const char *sub_msg = " on the library path, with error: ";
  3331           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3332           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3333           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3334           // If we can't find the agent, exit.
  3335           vm_exit_during_initialization(buf, NULL);
  3336           FREE_C_HEAP_ARRAY(char, buf);
  3340     agent->set_os_lib(library);
  3343   // Find the OnLoad function.
  3344   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3345     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
  3346     if (on_load_entry != NULL) break;
  3348   return on_load_entry;
  3351 // Find the JVM_OnLoad entry point
  3352 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3353   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3354   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3357 // Find the Agent_OnLoad entry point
  3358 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3359   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3360   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3363 // For backwards compatibility with -Xrun
  3364 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3365 // treated like -agentpath:
  3366 // Must be called before agent libraries are created
  3367 void Threads::convert_vm_init_libraries_to_agents() {
  3368   AgentLibrary* agent;
  3369   AgentLibrary* next;
  3371   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3372     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3373     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3375     // If there is an JVM_OnLoad function it will get called later,
  3376     // otherwise see if there is an Agent_OnLoad
  3377     if (on_load_entry == NULL) {
  3378       on_load_entry = lookup_agent_on_load(agent);
  3379       if (on_load_entry != NULL) {
  3380         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3381         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3382         Arguments::convert_library_to_agent(agent);
  3383       } else {
  3384         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3390 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3391 // Invokes Agent_OnLoad
  3392 // Called very early -- before JavaThreads exist
  3393 void Threads::create_vm_init_agents() {
  3394   extern struct JavaVM_ main_vm;
  3395   AgentLibrary* agent;
  3397   JvmtiExport::enter_onload_phase();
  3398   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3399     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3401     if (on_load_entry != NULL) {
  3402       // Invoke the Agent_OnLoad function
  3403       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3404       if (err != JNI_OK) {
  3405         vm_exit_during_initialization("agent library failed to init", agent->name());
  3407     } else {
  3408       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3411   JvmtiExport::enter_primordial_phase();
  3414 extern "C" {
  3415   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3418 void Threads::shutdown_vm_agents() {
  3419   // Send any Agent_OnUnload notifications
  3420   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3421   extern struct JavaVM_ main_vm;
  3422   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3424     // Find the Agent_OnUnload function.
  3425     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3426       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3427                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3429       // Invoke the Agent_OnUnload function
  3430       if (unload_entry != NULL) {
  3431         JavaThread* thread = JavaThread::current();
  3432         ThreadToNativeFromVM ttn(thread);
  3433         HandleMark hm(thread);
  3434         (*unload_entry)(&main_vm);
  3435         break;
  3441 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3442 // Invokes JVM_OnLoad
  3443 void Threads::create_vm_init_libraries() {
  3444   extern struct JavaVM_ main_vm;
  3445   AgentLibrary* agent;
  3447   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3448     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3450     if (on_load_entry != NULL) {
  3451       // Invoke the JVM_OnLoad function
  3452       JavaThread* thread = JavaThread::current();
  3453       ThreadToNativeFromVM ttn(thread);
  3454       HandleMark hm(thread);
  3455       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3456       if (err != JNI_OK) {
  3457         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3459     } else {
  3460       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3465 // Last thread running calls java.lang.Shutdown.shutdown()
  3466 void JavaThread::invoke_shutdown_hooks() {
  3467   HandleMark hm(this);
  3469   // We could get here with a pending exception, if so clear it now.
  3470   if (this->has_pending_exception()) {
  3471     this->clear_pending_exception();
  3474   EXCEPTION_MARK;
  3475   klassOop k =
  3476     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3477                                       THREAD);
  3478   if (k != NULL) {
  3479     // SystemDictionary::resolve_or_null will return null if there was
  3480     // an exception.  If we cannot load the Shutdown class, just don't
  3481     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3482     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3483     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3484     // was called, the Shutdown class would have already been loaded
  3485     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3486     instanceKlassHandle shutdown_klass (THREAD, k);
  3487     JavaValue result(T_VOID);
  3488     JavaCalls::call_static(&result,
  3489                            shutdown_klass,
  3490                            vmSymbolHandles::shutdown_method_name(),
  3491                            vmSymbolHandles::void_method_signature(),
  3492                            THREAD);
  3494   CLEAR_PENDING_EXCEPTION;
  3497 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3498 // the program falls off the end of main(). Another VM exit path is through
  3499 // vm_exit() when the program calls System.exit() to return a value or when
  3500 // there is a serious error in VM. The two shutdown paths are not exactly
  3501 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3502 // and VM_Exit op at VM level.
  3503 //
  3504 // Shutdown sequence:
  3505 //   + Wait until we are the last non-daemon thread to execute
  3506 //     <-- every thing is still working at this moment -->
  3507 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3508 //        shutdown hooks, run finalizers if finalization-on-exit
  3509 //   + Call before_exit(), prepare for VM exit
  3510 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3511 //        currently the only user of this mechanism is File.deleteOnExit())
  3512 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3513 //        post thread end and vm death events to JVMTI,
  3514 //        stop signal thread
  3515 //   + Call JavaThread::exit(), it will:
  3516 //      > release JNI handle blocks, remove stack guard pages
  3517 //      > remove this thread from Threads list
  3518 //     <-- no more Java code from this thread after this point -->
  3519 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3520 //     the compiler threads at safepoint
  3521 //     <-- do not use anything that could get blocked by Safepoint -->
  3522 //   + Disable tracing at JNI/JVM barriers
  3523 //   + Set _vm_exited flag for threads that are still running native code
  3524 //   + Delete this thread
  3525 //   + Call exit_globals()
  3526 //      > deletes tty
  3527 //      > deletes PerfMemory resources
  3528 //   + Return to caller
  3530 bool Threads::destroy_vm() {
  3531   JavaThread* thread = JavaThread::current();
  3533   // Wait until we are the last non-daemon thread to execute
  3534   { MutexLocker nu(Threads_lock);
  3535     while (Threads::number_of_non_daemon_threads() > 1 )
  3536       // This wait should make safepoint checks, wait without a timeout,
  3537       // and wait as a suspend-equivalent condition.
  3538       //
  3539       // Note: If the FlatProfiler is running and this thread is waiting
  3540       // for another non-daemon thread to finish, then the FlatProfiler
  3541       // is waiting for the external suspend request on this thread to
  3542       // complete. wait_for_ext_suspend_completion() will eventually
  3543       // timeout, but that takes time. Making this wait a suspend-
  3544       // equivalent condition solves that timeout problem.
  3545       //
  3546       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3547                          Mutex::_as_suspend_equivalent_flag);
  3550   // Hang forever on exit if we are reporting an error.
  3551   if (ShowMessageBoxOnError && is_error_reported()) {
  3552     os::infinite_sleep();
  3555   if (JDK_Version::is_jdk12x_version()) {
  3556     // We are the last thread running, so check if finalizers should be run.
  3557     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3558     HandleMark rm(thread);
  3559     Universe::run_finalizers_on_exit();
  3560   } else {
  3561     // run Java level shutdown hooks
  3562     thread->invoke_shutdown_hooks();
  3565   before_exit(thread);
  3567   thread->exit(true);
  3569   // Stop VM thread.
  3571     // 4945125 The vm thread comes to a safepoint during exit.
  3572     // GC vm_operations can get caught at the safepoint, and the
  3573     // heap is unparseable if they are caught. Grab the Heap_lock
  3574     // to prevent this. The GC vm_operations will not be able to
  3575     // queue until after the vm thread is dead.
  3576     MutexLocker ml(Heap_lock);
  3578     VMThread::wait_for_vm_thread_exit();
  3579     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3580     VMThread::destroy();
  3583   // clean up ideal graph printers
  3584 #if defined(COMPILER2) && !defined(PRODUCT)
  3585   IdealGraphPrinter::clean_up();
  3586 #endif
  3588   // Now, all Java threads are gone except daemon threads. Daemon threads
  3589   // running Java code or in VM are stopped by the Safepoint. However,
  3590   // daemon threads executing native code are still running.  But they
  3591   // will be stopped at native=>Java/VM barriers. Note that we can't
  3592   // simply kill or suspend them, as it is inherently deadlock-prone.
  3594 #ifndef PRODUCT
  3595   // disable function tracing at JNI/JVM barriers
  3596   TraceHPI = false;
  3597   TraceJNICalls = false;
  3598   TraceJVMCalls = false;
  3599   TraceRuntimeCalls = false;
  3600 #endif
  3602   VM_Exit::set_vm_exited();
  3604   notify_vm_shutdown();
  3606   delete thread;
  3608   // exit_globals() will delete tty
  3609   exit_globals();
  3611   return true;
  3615 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3616   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3617   return is_supported_jni_version(version);
  3621 jboolean Threads::is_supported_jni_version(jint version) {
  3622   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3623   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3624   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3625   return JNI_FALSE;
  3629 void Threads::add(JavaThread* p, bool force_daemon) {
  3630   // The threads lock must be owned at this point
  3631   assert_locked_or_safepoint(Threads_lock);
  3632   p->set_next(_thread_list);
  3633   _thread_list = p;
  3634   _number_of_threads++;
  3635   oop threadObj = p->threadObj();
  3636   bool daemon = true;
  3637   // Bootstrapping problem: threadObj can be null for initial
  3638   // JavaThread (or for threads attached via JNI)
  3639   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3640     _number_of_non_daemon_threads++;
  3641     daemon = false;
  3644   ThreadService::add_thread(p, daemon);
  3646   // Possible GC point.
  3647   Events::log("Thread added: " INTPTR_FORMAT, p);
  3650 void Threads::remove(JavaThread* p) {
  3651   // Extra scope needed for Thread_lock, so we can check
  3652   // that we do not remove thread without safepoint code notice
  3653   { MutexLocker ml(Threads_lock);
  3655     assert(includes(p), "p must be present");
  3657     JavaThread* current = _thread_list;
  3658     JavaThread* prev    = NULL;
  3660     while (current != p) {
  3661       prev    = current;
  3662       current = current->next();
  3665     if (prev) {
  3666       prev->set_next(current->next());
  3667     } else {
  3668       _thread_list = p->next();
  3670     _number_of_threads--;
  3671     oop threadObj = p->threadObj();
  3672     bool daemon = true;
  3673     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3674       _number_of_non_daemon_threads--;
  3675       daemon = false;
  3677       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3678       // on destroy_vm will wake up.
  3679       if (number_of_non_daemon_threads() == 1)
  3680         Threads_lock->notify_all();
  3682     ThreadService::remove_thread(p, daemon);
  3684     // Make sure that safepoint code disregard this thread. This is needed since
  3685     // the thread might mess around with locks after this point. This can cause it
  3686     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3687     // of this thread since it is removed from the queue.
  3688     p->set_terminated_value();
  3689   } // unlock Threads_lock
  3691   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3692   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3695 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3696 bool Threads::includes(JavaThread* p) {
  3697   assert(Threads_lock->is_locked(), "sanity check");
  3698   ALL_JAVA_THREADS(q) {
  3699     if (q == p ) {
  3700       return true;
  3703   return false;
  3706 // Operations on the Threads list for GC.  These are not explicitly locked,
  3707 // but the garbage collector must provide a safe context for them to run.
  3708 // In particular, these things should never be called when the Threads_lock
  3709 // is held by some other thread. (Note: the Safepoint abstraction also
  3710 // uses the Threads_lock to gurantee this property. It also makes sure that
  3711 // all threads gets blocked when exiting or starting).
  3713 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3714   ALL_JAVA_THREADS(p) {
  3715     p->oops_do(f, cf);
  3717   VMThread::vm_thread()->oops_do(f, cf);
  3720 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3721   // Introduce a mechanism allowing parallel threads to claim threads as
  3722   // root groups.  Overhead should be small enough to use all the time,
  3723   // even in sequential code.
  3724   SharedHeap* sh = SharedHeap::heap();
  3725   bool is_par = (sh->n_par_threads() > 0);
  3726   int cp = SharedHeap::heap()->strong_roots_parity();
  3727   ALL_JAVA_THREADS(p) {
  3728     if (p->claim_oops_do(is_par, cp)) {
  3729       p->oops_do(f, cf);
  3732   VMThread* vmt = VMThread::vm_thread();
  3733   if (vmt->claim_oops_do(is_par, cp))
  3734     vmt->oops_do(f, cf);
  3737 #ifndef SERIALGC
  3738 // Used by ParallelScavenge
  3739 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3740   ALL_JAVA_THREADS(p) {
  3741     q->enqueue(new ThreadRootsTask(p));
  3743   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3746 // Used by Parallel Old
  3747 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3748   ALL_JAVA_THREADS(p) {
  3749     q->enqueue(new ThreadRootsMarkingTask(p));
  3751   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3753 #endif // SERIALGC
  3755 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3756   ALL_JAVA_THREADS(p) {
  3757     p->nmethods_do(cf);
  3759   VMThread::vm_thread()->nmethods_do(cf);
  3762 void Threads::gc_epilogue() {
  3763   ALL_JAVA_THREADS(p) {
  3764     p->gc_epilogue();
  3768 void Threads::gc_prologue() {
  3769   ALL_JAVA_THREADS(p) {
  3770     p->gc_prologue();
  3774 void Threads::deoptimized_wrt_marked_nmethods() {
  3775   ALL_JAVA_THREADS(p) {
  3776     p->deoptimized_wrt_marked_nmethods();
  3781 // Get count Java threads that are waiting to enter the specified monitor.
  3782 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3783   address monitor, bool doLock) {
  3784   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3785     "must grab Threads_lock or be at safepoint");
  3786   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3788   int i = 0;
  3790     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3791     ALL_JAVA_THREADS(p) {
  3792       if (p->is_Compiler_thread()) continue;
  3794       address pending = (address)p->current_pending_monitor();
  3795       if (pending == monitor) {             // found a match
  3796         if (i < count) result->append(p);   // save the first count matches
  3797         i++;
  3801   return result;
  3805 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3806   assert(doLock ||
  3807          Threads_lock->owned_by_self() ||
  3808          SafepointSynchronize::is_at_safepoint(),
  3809          "must grab Threads_lock or be at safepoint");
  3811   // NULL owner means not locked so we can skip the search
  3812   if (owner == NULL) return NULL;
  3815     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3816     ALL_JAVA_THREADS(p) {
  3817       // first, see if owner is the address of a Java thread
  3818       if (owner == (address)p) return p;
  3821   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3822   if (UseHeavyMonitors) return NULL;
  3824   //
  3825   // If we didn't find a matching Java thread and we didn't force use of
  3826   // heavyweight monitors, then the owner is the stack address of the
  3827   // Lock Word in the owning Java thread's stack.
  3828   //
  3829   JavaThread* the_owner = NULL;
  3831     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3832     ALL_JAVA_THREADS(q) {
  3833       if (q->is_lock_owned(owner)) {
  3834         the_owner = q;
  3835         break;
  3839   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3840   return the_owner;
  3843 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3844 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3845   char buf[32];
  3846   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3848   st->print_cr("Full thread dump %s (%s %s):",
  3849                 Abstract_VM_Version::vm_name(),
  3850                 Abstract_VM_Version::vm_release(),
  3851                 Abstract_VM_Version::vm_info_string()
  3852                );
  3853   st->cr();
  3855 #ifndef SERIALGC
  3856   // Dump concurrent locks
  3857   ConcurrentLocksDump concurrent_locks;
  3858   if (print_concurrent_locks) {
  3859     concurrent_locks.dump_at_safepoint();
  3861 #endif // SERIALGC
  3863   ALL_JAVA_THREADS(p) {
  3864     ResourceMark rm;
  3865     p->print_on(st);
  3866     if (print_stacks) {
  3867       if (internal_format) {
  3868         p->trace_stack();
  3869       } else {
  3870         p->print_stack_on(st);
  3873     st->cr();
  3874 #ifndef SERIALGC
  3875     if (print_concurrent_locks) {
  3876       concurrent_locks.print_locks_on(p, st);
  3878 #endif // SERIALGC
  3881   VMThread::vm_thread()->print_on(st);
  3882   st->cr();
  3883   Universe::heap()->print_gc_threads_on(st);
  3884   WatcherThread* wt = WatcherThread::watcher_thread();
  3885   if (wt != NULL) wt->print_on(st);
  3886   st->cr();
  3887   CompileBroker::print_compiler_threads_on(st);
  3888   st->flush();
  3891 // Threads::print_on_error() is called by fatal error handler. It's possible
  3892 // that VM is not at safepoint and/or current thread is inside signal handler.
  3893 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3894 // memory (even in resource area), it might deadlock the error handler.
  3895 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3896   bool found_current = false;
  3897   st->print_cr("Java Threads: ( => current thread )");
  3898   ALL_JAVA_THREADS(thread) {
  3899     bool is_current = (current == thread);
  3900     found_current = found_current || is_current;
  3902     st->print("%s", is_current ? "=>" : "  ");
  3904     st->print(PTR_FORMAT, thread);
  3905     st->print(" ");
  3906     thread->print_on_error(st, buf, buflen);
  3907     st->cr();
  3909   st->cr();
  3911   st->print_cr("Other Threads:");
  3912   if (VMThread::vm_thread()) {
  3913     bool is_current = (current == VMThread::vm_thread());
  3914     found_current = found_current || is_current;
  3915     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  3917     st->print(PTR_FORMAT, VMThread::vm_thread());
  3918     st->print(" ");
  3919     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  3920     st->cr();
  3922   WatcherThread* wt = WatcherThread::watcher_thread();
  3923   if (wt != NULL) {
  3924     bool is_current = (current == wt);
  3925     found_current = found_current || is_current;
  3926     st->print("%s", is_current ? "=>" : "  ");
  3928     st->print(PTR_FORMAT, wt);
  3929     st->print(" ");
  3930     wt->print_on_error(st, buf, buflen);
  3931     st->cr();
  3933   if (!found_current) {
  3934     st->cr();
  3935     st->print("=>" PTR_FORMAT " (exited) ", current);
  3936     current->print_on_error(st, buf, buflen);
  3937     st->cr();
  3942 // Lifecycle management for TSM ParkEvents.
  3943 // ParkEvents are type-stable (TSM).
  3944 // In our particular implementation they happen to be immortal.
  3945 //
  3946 // We manage concurrency on the FreeList with a CAS-based
  3947 // detach-modify-reattach idiom that avoids the ABA problems
  3948 // that would otherwise be present in a simple CAS-based
  3949 // push-pop implementation.   (push-one and pop-all)
  3950 //
  3951 // Caveat: Allocate() and Release() may be called from threads
  3952 // other than the thread associated with the Event!
  3953 // If we need to call Allocate() when running as the thread in
  3954 // question then look for the PD calls to initialize native TLS.
  3955 // Native TLS (Win32/Linux/Solaris) can only be initialized or
  3956 // accessed by the associated thread.
  3957 // See also pd_initialize().
  3958 //
  3959 // Note that we could defer associating a ParkEvent with a thread
  3960 // until the 1st time the thread calls park().  unpark() calls to
  3961 // an unprovisioned thread would be ignored.  The first park() call
  3962 // for a thread would allocate and associate a ParkEvent and return
  3963 // immediately.
  3965 volatile int ParkEvent::ListLock = 0 ;
  3966 ParkEvent * volatile ParkEvent::FreeList = NULL ;
  3968 ParkEvent * ParkEvent::Allocate (Thread * t) {
  3969   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
  3970   ParkEvent * ev ;
  3972   // Start by trying to recycle an existing but unassociated
  3973   // ParkEvent from the global free list.
  3974   for (;;) {
  3975     ev = FreeList ;
  3976     if (ev == NULL) break ;
  3977     // 1: Detach - sequester or privatize the list
  3978     // Tantamount to ev = Swap (&FreeList, NULL)
  3979     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
  3980        continue ;
  3983     // We've detached the list.  The list in-hand is now
  3984     // local to this thread.   This thread can operate on the
  3985     // list without risk of interference from other threads.
  3986     // 2: Extract -- pop the 1st element from the list.
  3987     ParkEvent * List = ev->FreeNext ;
  3988     if (List == NULL) break ;
  3989     for (;;) {
  3990         // 3: Try to reattach the residual list
  3991         guarantee (List != NULL, "invariant") ;
  3992         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  3993         if (Arv == NULL) break ;
  3995         // New nodes arrived.  Try to detach the recent arrivals.
  3996         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  3997             continue ;
  3999         guarantee (Arv != NULL, "invariant") ;
  4000         // 4: Merge Arv into List
  4001         ParkEvent * Tail = List ;
  4002         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  4003         Tail->FreeNext = Arv ;
  4005     break ;
  4008   if (ev != NULL) {
  4009     guarantee (ev->AssociatedWith == NULL, "invariant") ;
  4010   } else {
  4011     // Do this the hard way -- materialize a new ParkEvent.
  4012     // In rare cases an allocating thread might detach a long list --
  4013     // installing null into FreeList -- and then stall or be obstructed.
  4014     // A 2nd thread calling Allocate() would see FreeList == null.
  4015     // The list held privately by the 1st thread is unavailable to the 2nd thread.
  4016     // In that case the 2nd thread would have to materialize a new ParkEvent,
  4017     // even though free ParkEvents existed in the system.  In this case we end up
  4018     // with more ParkEvents in circulation than we need, but the race is
  4019     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
  4020     // is equal to the maximum # of threads that existed at any one time.
  4021     // Because of the race mentioned above, segments of the freelist
  4022     // can be transiently inaccessible.  At worst we may end up with the
  4023     // # of ParkEvents in circulation slightly above the ideal.
  4024     // Note that if we didn't have the TSM/immortal constraint, then
  4025     // when reattaching, above, we could trim the list.
  4026     ev = new ParkEvent () ;
  4027     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
  4029   ev->reset() ;                     // courtesy to caller
  4030   ev->AssociatedWith = t ;          // Associate ev with t
  4031   ev->FreeNext       = NULL ;
  4032   return ev ;
  4035 void ParkEvent::Release (ParkEvent * ev) {
  4036   if (ev == NULL) return ;
  4037   guarantee (ev->FreeNext == NULL      , "invariant") ;
  4038   ev->AssociatedWith = NULL ;
  4039   for (;;) {
  4040     // Push ev onto FreeList
  4041     // The mechanism is "half" lock-free.
  4042     ParkEvent * List = FreeList ;
  4043     ev->FreeNext = List ;
  4044     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
  4048 // Override operator new and delete so we can ensure that the
  4049 // least significant byte of ParkEvent addresses is 0.
  4050 // Beware that excessive address alignment is undesirable
  4051 // as it can result in D$ index usage imbalance as
  4052 // well as bank access imbalance on Niagara-like platforms,
  4053 // although Niagara's hash function should help.
  4055 void * ParkEvent::operator new (size_t sz) {
  4056   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
  4059 void ParkEvent::operator delete (void * a) {
  4060   // ParkEvents are type-stable and immortal ...
  4061   ShouldNotReachHere();
  4065 // 6399321 As a temporary measure we copied & modified the ParkEvent::
  4066 // allocate() and release() code for use by Parkers.  The Parker:: forms
  4067 // will eventually be removed as we consolide and shift over to ParkEvents
  4068 // for both builtin synchronization and JSR166 operations.
  4070 volatile int Parker::ListLock = 0 ;
  4071 Parker * volatile Parker::FreeList = NULL ;
  4073 Parker * Parker::Allocate (JavaThread * t) {
  4074   guarantee (t != NULL, "invariant") ;
  4075   Parker * p ;
  4077   // Start by trying to recycle an existing but unassociated
  4078   // Parker from the global free list.
  4079   for (;;) {
  4080     p = FreeList ;
  4081     if (p  == NULL) break ;
  4082     // 1: Detach
  4083     // Tantamount to p = Swap (&FreeList, NULL)
  4084     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
  4085        continue ;
  4088     // We've detached the list.  The list in-hand is now
  4089     // local to this thread.   This thread can operate on the
  4090     // list without risk of interference from other threads.
  4091     // 2: Extract -- pop the 1st element from the list.
  4092     Parker * List = p->FreeNext ;
  4093     if (List == NULL) break ;
  4094     for (;;) {
  4095         // 3: Try to reattach the residual list
  4096         guarantee (List != NULL, "invariant") ;
  4097         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  4098         if (Arv == NULL) break ;
  4100         // New nodes arrived.  Try to detach the recent arrivals.
  4101         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  4102             continue ;
  4104         guarantee (Arv != NULL, "invariant") ;
  4105         // 4: Merge Arv into List
  4106         Parker * Tail = List ;
  4107         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  4108         Tail->FreeNext = Arv ;
  4110     break ;
  4113   if (p != NULL) {
  4114     guarantee (p->AssociatedWith == NULL, "invariant") ;
  4115   } else {
  4116     // Do this the hard way -- materialize a new Parker..
  4117     // In rare cases an allocating thread might detach
  4118     // a long list -- installing null into FreeList --and
  4119     // then stall.  Another thread calling Allocate() would see
  4120     // FreeList == null and then invoke the ctor.  In this case we
  4121     // end up with more Parkers in circulation than we need, but
  4122     // the race is rare and the outcome is benign.
  4123     // Ideally, the # of extant Parkers is equal to the
  4124     // maximum # of threads that existed at any one time.
  4125     // Because of the race mentioned above, segments of the
  4126     // freelist can be transiently inaccessible.  At worst
  4127     // we may end up with the # of Parkers in circulation
  4128     // slightly above the ideal.
  4129     p = new Parker() ;
  4131   p->AssociatedWith = t ;          // Associate p with t
  4132   p->FreeNext       = NULL ;
  4133   return p ;
  4137 void Parker::Release (Parker * p) {
  4138   if (p == NULL) return ;
  4139   guarantee (p->AssociatedWith != NULL, "invariant") ;
  4140   guarantee (p->FreeNext == NULL      , "invariant") ;
  4141   p->AssociatedWith = NULL ;
  4142   for (;;) {
  4143     // Push p onto FreeList
  4144     Parker * List = FreeList ;
  4145     p->FreeNext = List ;
  4146     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
  4150 void Threads::verify() {
  4151   ALL_JAVA_THREADS(p) {
  4152     p->verify();
  4154   VMThread* thread = VMThread::vm_thread();
  4155   if (thread != NULL) thread->verify();

mercurial