src/share/vm/opto/library_call.cpp

Tue, 11 May 2010 15:19:19 -0700

author
jrose
date
Tue, 11 May 2010 15:19:19 -0700
changeset 1868
df736661d0c8
parent 1851
e8e83be27dd7
parent 1859
ae8f909e5fc7
child 1907
c18cbe5936b8
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1999-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   137   bool inline_string_compareTo();
   138   bool inline_string_indexOf();
   139   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   140   bool inline_string_equals();
   141   Node* pop_math_arg();
   142   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   143   bool inline_math_native(vmIntrinsics::ID id);
   144   bool inline_trig(vmIntrinsics::ID id);
   145   bool inline_trans(vmIntrinsics::ID id);
   146   bool inline_abs(vmIntrinsics::ID id);
   147   bool inline_sqrt(vmIntrinsics::ID id);
   148   bool inline_pow(vmIntrinsics::ID id);
   149   bool inline_exp(vmIntrinsics::ID id);
   150   bool inline_min_max(vmIntrinsics::ID id);
   151   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   152   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   153   int classify_unsafe_addr(Node* &base, Node* &offset);
   154   Node* make_unsafe_address(Node* base, Node* offset);
   155   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   156   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   157   bool inline_unsafe_allocate();
   158   bool inline_unsafe_copyMemory();
   159   bool inline_native_currentThread();
   160   bool inline_native_time_funcs(bool isNano);
   161   bool inline_native_isInterrupted();
   162   bool inline_native_Class_query(vmIntrinsics::ID id);
   163   bool inline_native_subtype_check();
   165   bool inline_native_newArray();
   166   bool inline_native_getLength();
   167   bool inline_array_copyOf(bool is_copyOfRange);
   168   bool inline_array_equals();
   169   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   170   bool inline_native_clone(bool is_virtual);
   171   bool inline_native_Reflection_getCallerClass();
   172   bool inline_native_AtomicLong_get();
   173   bool inline_native_AtomicLong_attemptUpdate();
   174   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   175   // Helper function for inlining native object hash method
   176   bool inline_native_hashcode(bool is_virtual, bool is_static);
   177   bool inline_native_getClass();
   179   // Helper functions for inlining arraycopy
   180   bool inline_arraycopy();
   181   void generate_arraycopy(const TypePtr* adr_type,
   182                           BasicType basic_elem_type,
   183                           Node* src,  Node* src_offset,
   184                           Node* dest, Node* dest_offset,
   185                           Node* copy_length,
   186                           bool disjoint_bases = false,
   187                           bool length_never_negative = false,
   188                           RegionNode* slow_region = NULL);
   189   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   190                                                 RegionNode* slow_region);
   191   void generate_clear_array(const TypePtr* adr_type,
   192                             Node* dest,
   193                             BasicType basic_elem_type,
   194                             Node* slice_off,
   195                             Node* slice_len,
   196                             Node* slice_end);
   197   bool generate_block_arraycopy(const TypePtr* adr_type,
   198                                 BasicType basic_elem_type,
   199                                 AllocateNode* alloc,
   200                                 Node* src,  Node* src_offset,
   201                                 Node* dest, Node* dest_offset,
   202                                 Node* dest_size);
   203   void generate_slow_arraycopy(const TypePtr* adr_type,
   204                                Node* src,  Node* src_offset,
   205                                Node* dest, Node* dest_offset,
   206                                Node* copy_length);
   207   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   208                                      Node* dest_elem_klass,
   209                                      Node* src,  Node* src_offset,
   210                                      Node* dest, Node* dest_offset,
   211                                      Node* copy_length);
   212   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   213                                    Node* src,  Node* src_offset,
   214                                    Node* dest, Node* dest_offset,
   215                                    Node* copy_length);
   216   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   217                                     BasicType basic_elem_type,
   218                                     bool disjoint_bases,
   219                                     Node* src,  Node* src_offset,
   220                                     Node* dest, Node* dest_offset,
   221                                     Node* copy_length);
   222   bool inline_unsafe_CAS(BasicType type);
   223   bool inline_unsafe_ordered_store(BasicType type);
   224   bool inline_fp_conversions(vmIntrinsics::ID id);
   225   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   226   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   227   bool inline_bitCount(vmIntrinsics::ID id);
   228   bool inline_reverseBytes(vmIntrinsics::ID id);
   229 };
   232 //---------------------------make_vm_intrinsic----------------------------
   233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   234   vmIntrinsics::ID id = m->intrinsic_id();
   235   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   237   if (DisableIntrinsic[0] != '\0'
   238       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   239     // disabled by a user request on the command line:
   240     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   241     return NULL;
   242   }
   244   if (!m->is_loaded()) {
   245     // do not attempt to inline unloaded methods
   246     return NULL;
   247   }
   249   // Only a few intrinsics implement a virtual dispatch.
   250   // They are expensive calls which are also frequently overridden.
   251   if (is_virtual) {
   252     switch (id) {
   253     case vmIntrinsics::_hashCode:
   254     case vmIntrinsics::_clone:
   255       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   256       break;
   257     default:
   258       return NULL;
   259     }
   260   }
   262   // -XX:-InlineNatives disables nearly all intrinsics:
   263   if (!InlineNatives) {
   264     switch (id) {
   265     case vmIntrinsics::_indexOf:
   266     case vmIntrinsics::_compareTo:
   267     case vmIntrinsics::_equals:
   268     case vmIntrinsics::_equalsC:
   269       break;  // InlineNatives does not control String.compareTo
   270     default:
   271       return NULL;
   272     }
   273   }
   275   switch (id) {
   276   case vmIntrinsics::_compareTo:
   277     if (!SpecialStringCompareTo)  return NULL;
   278     break;
   279   case vmIntrinsics::_indexOf:
   280     if (!SpecialStringIndexOf)  return NULL;
   281     break;
   282   case vmIntrinsics::_equals:
   283     if (!SpecialStringEquals)  return NULL;
   284     break;
   285   case vmIntrinsics::_equalsC:
   286     if (!SpecialArraysEquals)  return NULL;
   287     break;
   288   case vmIntrinsics::_arraycopy:
   289     if (!InlineArrayCopy)  return NULL;
   290     break;
   291   case vmIntrinsics::_copyMemory:
   292     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   293     if (!InlineArrayCopy)  return NULL;
   294     break;
   295   case vmIntrinsics::_hashCode:
   296     if (!InlineObjectHash)  return NULL;
   297     break;
   298   case vmIntrinsics::_clone:
   299   case vmIntrinsics::_copyOf:
   300   case vmIntrinsics::_copyOfRange:
   301     if (!InlineObjectCopy)  return NULL;
   302     // These also use the arraycopy intrinsic mechanism:
   303     if (!InlineArrayCopy)  return NULL;
   304     break;
   305   case vmIntrinsics::_checkIndex:
   306     // We do not intrinsify this.  The optimizer does fine with it.
   307     return NULL;
   309   case vmIntrinsics::_get_AtomicLong:
   310   case vmIntrinsics::_attemptUpdate:
   311     if (!InlineAtomicLong)  return NULL;
   312     break;
   314   case vmIntrinsics::_getCallerClass:
   315     if (!UseNewReflection)  return NULL;
   316     if (!InlineReflectionGetCallerClass)  return NULL;
   317     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   318     break;
   320   case vmIntrinsics::_bitCount_i:
   321   case vmIntrinsics::_bitCount_l:
   322     if (!UsePopCountInstruction)  return NULL;
   323     break;
   325  default:
   326     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   327     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   328     break;
   329   }
   331   // -XX:-InlineClassNatives disables natives from the Class class.
   332   // The flag applies to all reflective calls, notably Array.newArray
   333   // (visible to Java programmers as Array.newInstance).
   334   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   335       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   336     if (!InlineClassNatives)  return NULL;
   337   }
   339   // -XX:-InlineThreadNatives disables natives from the Thread class.
   340   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   341     if (!InlineThreadNatives)  return NULL;
   342   }
   344   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   345   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   346       m->holder()->name() == ciSymbol::java_lang_Float() ||
   347       m->holder()->name() == ciSymbol::java_lang_Double()) {
   348     if (!InlineMathNatives)  return NULL;
   349   }
   351   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   352   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   353     if (!InlineUnsafeOps)  return NULL;
   354   }
   356   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   357 }
   359 //----------------------register_library_intrinsics-----------------------
   360 // Initialize this file's data structures, for each Compile instance.
   361 void Compile::register_library_intrinsics() {
   362   // Nothing to do here.
   363 }
   365 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   366   LibraryCallKit kit(jvms, this);
   367   Compile* C = kit.C;
   368   int nodes = C->unique();
   369 #ifndef PRODUCT
   370   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   371     char buf[1000];
   372     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   373     tty->print_cr("Intrinsic %s", str);
   374   }
   375 #endif
   376   if (kit.try_to_inline()) {
   377     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   378       tty->print("Inlining intrinsic %s%s at bci:%d in",
   379                  vmIntrinsics::name_at(intrinsic_id()),
   380                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   381       kit.caller()->print_short_name(tty);
   382       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   383     }
   384     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   385     if (C->log()) {
   386       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   387                      vmIntrinsics::name_at(intrinsic_id()),
   388                      (is_virtual() ? " virtual='1'" : ""),
   389                      C->unique() - nodes);
   390     }
   391     return kit.transfer_exceptions_into_jvms();
   392   }
   394   if (PrintIntrinsics) {
   395     tty->print("Did not inline intrinsic %s%s at bci:%d in",
   396                vmIntrinsics::name_at(intrinsic_id()),
   397                (is_virtual() ? " (virtual)" : ""), kit.bci());
   398     kit.caller()->print_short_name(tty);
   399     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   400   }
   401   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   402   return NULL;
   403 }
   405 bool LibraryCallKit::try_to_inline() {
   406   // Handle symbolic names for otherwise undistinguished boolean switches:
   407   const bool is_store       = true;
   408   const bool is_native_ptr  = true;
   409   const bool is_static      = true;
   411   switch (intrinsic_id()) {
   412   case vmIntrinsics::_hashCode:
   413     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   414   case vmIntrinsics::_identityHashCode:
   415     return inline_native_hashcode(/*!virtual*/ false, is_static);
   416   case vmIntrinsics::_getClass:
   417     return inline_native_getClass();
   419   case vmIntrinsics::_dsin:
   420   case vmIntrinsics::_dcos:
   421   case vmIntrinsics::_dtan:
   422   case vmIntrinsics::_dabs:
   423   case vmIntrinsics::_datan2:
   424   case vmIntrinsics::_dsqrt:
   425   case vmIntrinsics::_dexp:
   426   case vmIntrinsics::_dlog:
   427   case vmIntrinsics::_dlog10:
   428   case vmIntrinsics::_dpow:
   429     return inline_math_native(intrinsic_id());
   431   case vmIntrinsics::_min:
   432   case vmIntrinsics::_max:
   433     return inline_min_max(intrinsic_id());
   435   case vmIntrinsics::_arraycopy:
   436     return inline_arraycopy();
   438   case vmIntrinsics::_compareTo:
   439     return inline_string_compareTo();
   440   case vmIntrinsics::_indexOf:
   441     return inline_string_indexOf();
   442   case vmIntrinsics::_equals:
   443     return inline_string_equals();
   445   case vmIntrinsics::_getObject:
   446     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   447   case vmIntrinsics::_getBoolean:
   448     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   449   case vmIntrinsics::_getByte:
   450     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   451   case vmIntrinsics::_getShort:
   452     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   453   case vmIntrinsics::_getChar:
   454     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   455   case vmIntrinsics::_getInt:
   456     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   457   case vmIntrinsics::_getLong:
   458     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   459   case vmIntrinsics::_getFloat:
   460     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   461   case vmIntrinsics::_getDouble:
   462     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   464   case vmIntrinsics::_putObject:
   465     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   466   case vmIntrinsics::_putBoolean:
   467     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   468   case vmIntrinsics::_putByte:
   469     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   470   case vmIntrinsics::_putShort:
   471     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   472   case vmIntrinsics::_putChar:
   473     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   474   case vmIntrinsics::_putInt:
   475     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   476   case vmIntrinsics::_putLong:
   477     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   478   case vmIntrinsics::_putFloat:
   479     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   480   case vmIntrinsics::_putDouble:
   481     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   483   case vmIntrinsics::_getByte_raw:
   484     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   485   case vmIntrinsics::_getShort_raw:
   486     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   487   case vmIntrinsics::_getChar_raw:
   488     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   489   case vmIntrinsics::_getInt_raw:
   490     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   491   case vmIntrinsics::_getLong_raw:
   492     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   493   case vmIntrinsics::_getFloat_raw:
   494     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   495   case vmIntrinsics::_getDouble_raw:
   496     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   497   case vmIntrinsics::_getAddress_raw:
   498     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   500   case vmIntrinsics::_putByte_raw:
   501     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   502   case vmIntrinsics::_putShort_raw:
   503     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   504   case vmIntrinsics::_putChar_raw:
   505     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   506   case vmIntrinsics::_putInt_raw:
   507     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   508   case vmIntrinsics::_putLong_raw:
   509     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   510   case vmIntrinsics::_putFloat_raw:
   511     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   512   case vmIntrinsics::_putDouble_raw:
   513     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   514   case vmIntrinsics::_putAddress_raw:
   515     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   517   case vmIntrinsics::_getObjectVolatile:
   518     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   519   case vmIntrinsics::_getBooleanVolatile:
   520     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   521   case vmIntrinsics::_getByteVolatile:
   522     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   523   case vmIntrinsics::_getShortVolatile:
   524     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   525   case vmIntrinsics::_getCharVolatile:
   526     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   527   case vmIntrinsics::_getIntVolatile:
   528     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   529   case vmIntrinsics::_getLongVolatile:
   530     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   531   case vmIntrinsics::_getFloatVolatile:
   532     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   533   case vmIntrinsics::_getDoubleVolatile:
   534     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   536   case vmIntrinsics::_putObjectVolatile:
   537     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   538   case vmIntrinsics::_putBooleanVolatile:
   539     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   540   case vmIntrinsics::_putByteVolatile:
   541     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   542   case vmIntrinsics::_putShortVolatile:
   543     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   544   case vmIntrinsics::_putCharVolatile:
   545     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   546   case vmIntrinsics::_putIntVolatile:
   547     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   548   case vmIntrinsics::_putLongVolatile:
   549     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   550   case vmIntrinsics::_putFloatVolatile:
   551     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   552   case vmIntrinsics::_putDoubleVolatile:
   553     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   555   case vmIntrinsics::_prefetchRead:
   556     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   557   case vmIntrinsics::_prefetchWrite:
   558     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   559   case vmIntrinsics::_prefetchReadStatic:
   560     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   561   case vmIntrinsics::_prefetchWriteStatic:
   562     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   564   case vmIntrinsics::_compareAndSwapObject:
   565     return inline_unsafe_CAS(T_OBJECT);
   566   case vmIntrinsics::_compareAndSwapInt:
   567     return inline_unsafe_CAS(T_INT);
   568   case vmIntrinsics::_compareAndSwapLong:
   569     return inline_unsafe_CAS(T_LONG);
   571   case vmIntrinsics::_putOrderedObject:
   572     return inline_unsafe_ordered_store(T_OBJECT);
   573   case vmIntrinsics::_putOrderedInt:
   574     return inline_unsafe_ordered_store(T_INT);
   575   case vmIntrinsics::_putOrderedLong:
   576     return inline_unsafe_ordered_store(T_LONG);
   578   case vmIntrinsics::_currentThread:
   579     return inline_native_currentThread();
   580   case vmIntrinsics::_isInterrupted:
   581     return inline_native_isInterrupted();
   583   case vmIntrinsics::_currentTimeMillis:
   584     return inline_native_time_funcs(false);
   585   case vmIntrinsics::_nanoTime:
   586     return inline_native_time_funcs(true);
   587   case vmIntrinsics::_allocateInstance:
   588     return inline_unsafe_allocate();
   589   case vmIntrinsics::_copyMemory:
   590     return inline_unsafe_copyMemory();
   591   case vmIntrinsics::_newArray:
   592     return inline_native_newArray();
   593   case vmIntrinsics::_getLength:
   594     return inline_native_getLength();
   595   case vmIntrinsics::_copyOf:
   596     return inline_array_copyOf(false);
   597   case vmIntrinsics::_copyOfRange:
   598     return inline_array_copyOf(true);
   599   case vmIntrinsics::_equalsC:
   600     return inline_array_equals();
   601   case vmIntrinsics::_clone:
   602     return inline_native_clone(intrinsic()->is_virtual());
   604   case vmIntrinsics::_isAssignableFrom:
   605     return inline_native_subtype_check();
   607   case vmIntrinsics::_isInstance:
   608   case vmIntrinsics::_getModifiers:
   609   case vmIntrinsics::_isInterface:
   610   case vmIntrinsics::_isArray:
   611   case vmIntrinsics::_isPrimitive:
   612   case vmIntrinsics::_getSuperclass:
   613   case vmIntrinsics::_getComponentType:
   614   case vmIntrinsics::_getClassAccessFlags:
   615     return inline_native_Class_query(intrinsic_id());
   617   case vmIntrinsics::_floatToRawIntBits:
   618   case vmIntrinsics::_floatToIntBits:
   619   case vmIntrinsics::_intBitsToFloat:
   620   case vmIntrinsics::_doubleToRawLongBits:
   621   case vmIntrinsics::_doubleToLongBits:
   622   case vmIntrinsics::_longBitsToDouble:
   623     return inline_fp_conversions(intrinsic_id());
   625   case vmIntrinsics::_numberOfLeadingZeros_i:
   626   case vmIntrinsics::_numberOfLeadingZeros_l:
   627     return inline_numberOfLeadingZeros(intrinsic_id());
   629   case vmIntrinsics::_numberOfTrailingZeros_i:
   630   case vmIntrinsics::_numberOfTrailingZeros_l:
   631     return inline_numberOfTrailingZeros(intrinsic_id());
   633   case vmIntrinsics::_bitCount_i:
   634   case vmIntrinsics::_bitCount_l:
   635     return inline_bitCount(intrinsic_id());
   637   case vmIntrinsics::_reverseBytes_i:
   638   case vmIntrinsics::_reverseBytes_l:
   639   case vmIntrinsics::_reverseBytes_s:
   640   case vmIntrinsics::_reverseBytes_c:
   641     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   643   case vmIntrinsics::_get_AtomicLong:
   644     return inline_native_AtomicLong_get();
   645   case vmIntrinsics::_attemptUpdate:
   646     return inline_native_AtomicLong_attemptUpdate();
   648   case vmIntrinsics::_getCallerClass:
   649     return inline_native_Reflection_getCallerClass();
   651   default:
   652     // If you get here, it may be that someone has added a new intrinsic
   653     // to the list in vmSymbols.hpp without implementing it here.
   654 #ifndef PRODUCT
   655     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   656       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   657                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   658     }
   659 #endif
   660     return false;
   661   }
   662 }
   664 //------------------------------push_result------------------------------
   665 // Helper function for finishing intrinsics.
   666 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   667   record_for_igvn(region);
   668   set_control(_gvn.transform(region));
   669   BasicType value_type = value->type()->basic_type();
   670   push_node(value_type, _gvn.transform(value));
   671 }
   673 //------------------------------generate_guard---------------------------
   674 // Helper function for generating guarded fast-slow graph structures.
   675 // The given 'test', if true, guards a slow path.  If the test fails
   676 // then a fast path can be taken.  (We generally hope it fails.)
   677 // In all cases, GraphKit::control() is updated to the fast path.
   678 // The returned value represents the control for the slow path.
   679 // The return value is never 'top'; it is either a valid control
   680 // or NULL if it is obvious that the slow path can never be taken.
   681 // Also, if region and the slow control are not NULL, the slow edge
   682 // is appended to the region.
   683 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   684   if (stopped()) {
   685     // Already short circuited.
   686     return NULL;
   687   }
   689   // Build an if node and its projections.
   690   // If test is true we take the slow path, which we assume is uncommon.
   691   if (_gvn.type(test) == TypeInt::ZERO) {
   692     // The slow branch is never taken.  No need to build this guard.
   693     return NULL;
   694   }
   696   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   698   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   699   if (if_slow == top()) {
   700     // The slow branch is never taken.  No need to build this guard.
   701     return NULL;
   702   }
   704   if (region != NULL)
   705     region->add_req(if_slow);
   707   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   708   set_control(if_fast);
   710   return if_slow;
   711 }
   713 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   714   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   715 }
   716 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   717   return generate_guard(test, region, PROB_FAIR);
   718 }
   720 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   721                                                      Node* *pos_index) {
   722   if (stopped())
   723     return NULL;                // already stopped
   724   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   725     return NULL;                // index is already adequately typed
   726   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   727   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   728   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   729   if (is_neg != NULL && pos_index != NULL) {
   730     // Emulate effect of Parse::adjust_map_after_if.
   731     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   732     ccast->set_req(0, control());
   733     (*pos_index) = _gvn.transform(ccast);
   734   }
   735   return is_neg;
   736 }
   738 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   739                                                         Node* *pos_index) {
   740   if (stopped())
   741     return NULL;                // already stopped
   742   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   743     return NULL;                // index is already adequately typed
   744   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   745   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   746   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   747   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   748   if (is_notp != NULL && pos_index != NULL) {
   749     // Emulate effect of Parse::adjust_map_after_if.
   750     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   751     ccast->set_req(0, control());
   752     (*pos_index) = _gvn.transform(ccast);
   753   }
   754   return is_notp;
   755 }
   757 // Make sure that 'position' is a valid limit index, in [0..length].
   758 // There are two equivalent plans for checking this:
   759 //   A. (offset + copyLength)  unsigned<=  arrayLength
   760 //   B. offset  <=  (arrayLength - copyLength)
   761 // We require that all of the values above, except for the sum and
   762 // difference, are already known to be non-negative.
   763 // Plan A is robust in the face of overflow, if offset and copyLength
   764 // are both hugely positive.
   765 //
   766 // Plan B is less direct and intuitive, but it does not overflow at
   767 // all, since the difference of two non-negatives is always
   768 // representable.  Whenever Java methods must perform the equivalent
   769 // check they generally use Plan B instead of Plan A.
   770 // For the moment we use Plan A.
   771 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   772                                                   Node* subseq_length,
   773                                                   Node* array_length,
   774                                                   RegionNode* region) {
   775   if (stopped())
   776     return NULL;                // already stopped
   777   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   778   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   779     return NULL;                // common case of whole-array copy
   780   Node* last = subseq_length;
   781   if (!zero_offset)             // last += offset
   782     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   783   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   784   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   785   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   786   return is_over;
   787 }
   790 //--------------------------generate_current_thread--------------------
   791 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   792   ciKlass*    thread_klass = env()->Thread_klass();
   793   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   794   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   795   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   796   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   797   tls_output = thread;
   798   return threadObj;
   799 }
   802 //------------------------------make_string_method_node------------------------
   803 // Helper method for String intrinsic finctions.
   804 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   805   const int value_offset  = java_lang_String::value_offset_in_bytes();
   806   const int count_offset  = java_lang_String::count_offset_in_bytes();
   807   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   809   Node* no_ctrl = NULL;
   811   ciInstanceKlass* klass = env()->String_klass();
   812   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   814   const TypeAryPtr* value_type =
   815         TypeAryPtr::make(TypePtr::NotNull,
   816                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   817                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   819   // Get start addr of string and substring
   820   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   821   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   822   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   823   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   824   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   826   // Pin loads from String::equals() argument since it could be NULL.
   827   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
   828   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   829   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   830   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   831   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   832   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   834   Node* result = NULL;
   835   switch (opcode) {
   836   case Op_StrIndexOf:
   837     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   838                                        str1_start, cnt1, str2_start, cnt2);
   839     break;
   840   case Op_StrComp:
   841     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   842                                     str1_start, cnt1, str2_start, cnt2);
   843     break;
   844   case Op_StrEquals:
   845     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   846                                       str1_start, str2_start, cnt1);
   847     break;
   848   default:
   849     ShouldNotReachHere();
   850     return NULL;
   851   }
   853   // All these intrinsics have checks.
   854   C->set_has_split_ifs(true); // Has chance for split-if optimization
   856   return _gvn.transform(result);
   857 }
   859 //------------------------------inline_string_compareTo------------------------
   860 bool LibraryCallKit::inline_string_compareTo() {
   862   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   864   const int value_offset = java_lang_String::value_offset_in_bytes();
   865   const int count_offset = java_lang_String::count_offset_in_bytes();
   866   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   868   _sp += 2;
   869   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   870   Node *receiver = pop();
   872   // Null check on self without removing any arguments.  The argument
   873   // null check technically happens in the wrong place, which can lead to
   874   // invalid stack traces when string compare is inlined into a method
   875   // which handles NullPointerExceptions.
   876   _sp += 2;
   877   receiver = do_null_check(receiver, T_OBJECT);
   878   argument = do_null_check(argument, T_OBJECT);
   879   _sp -= 2;
   880   if (stopped()) {
   881     return true;
   882   }
   884   ciInstanceKlass* klass = env()->String_klass();
   885   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   886   Node* no_ctrl = NULL;
   888   // Get counts for string and argument
   889   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   890   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   892   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   893   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   895   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   896   push(compare);
   897   return true;
   898 }
   900 //------------------------------inline_string_equals------------------------
   901 bool LibraryCallKit::inline_string_equals() {
   903   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   905   const int value_offset = java_lang_String::value_offset_in_bytes();
   906   const int count_offset = java_lang_String::count_offset_in_bytes();
   907   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   909   _sp += 2;
   910   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   911   Node* receiver = pop();
   913   // Null check on self without removing any arguments.  The argument
   914   // null check technically happens in the wrong place, which can lead to
   915   // invalid stack traces when string compare is inlined into a method
   916   // which handles NullPointerExceptions.
   917   _sp += 2;
   918   receiver = do_null_check(receiver, T_OBJECT);
   919   //should not do null check for argument for String.equals(), because spec
   920   //allows to specify NULL as argument.
   921   _sp -= 2;
   923   if (stopped()) {
   924     return true;
   925   }
   927   // paths (plus control) merge
   928   RegionNode* region = new (C, 5) RegionNode(5);
   929   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   931   // does source == target string?
   932   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   933   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   935   Node* if_eq = generate_slow_guard(bol, NULL);
   936   if (if_eq != NULL) {
   937     // receiver == argument
   938     phi->init_req(2, intcon(1));
   939     region->init_req(2, if_eq);
   940   }
   942   // get String klass for instanceOf
   943   ciInstanceKlass* klass = env()->String_klass();
   945   if (!stopped()) {
   946     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   947     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   948     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
   950     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
   951     //instanceOf == true, fallthrough
   953     if (inst_false != NULL) {
   954       phi->init_req(3, intcon(0));
   955       region->init_req(3, inst_false);
   956     }
   957   }
   959   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   961   Node* no_ctrl = NULL;
   962   Node* receiver_cnt;
   963   Node* argument_cnt;
   965   if (!stopped()) {
   966     // Properly cast the argument to String
   967     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
   969     // Get counts for string and argument
   970     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   971     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   973     // Pin load from argument string since it could be NULL.
   974     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   975     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   977     // Check for receiver count != argument count
   978     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
   979     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
   980     Node* if_ne = generate_slow_guard(bol, NULL);
   981     if (if_ne != NULL) {
   982       phi->init_req(4, intcon(0));
   983       region->init_req(4, if_ne);
   984     }
   985   }
   987   // Check for count == 0 is done by mach node StrEquals.
   989   if (!stopped()) {
   990     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
   991     phi->init_req(1, equals);
   992     region->init_req(1, control());
   993   }
   995   // post merge
   996   set_control(_gvn.transform(region));
   997   record_for_igvn(region);
   999   push(_gvn.transform(phi));
  1001   return true;
  1004 //------------------------------inline_array_equals----------------------------
  1005 bool LibraryCallKit::inline_array_equals() {
  1007   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1009   _sp += 2;
  1010   Node *argument2 = pop();
  1011   Node *argument1 = pop();
  1013   Node* equals =
  1014     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1015                                         argument1, argument2) );
  1016   push(equals);
  1017   return true;
  1020 // Java version of String.indexOf(constant string)
  1021 // class StringDecl {
  1022 //   StringDecl(char[] ca) {
  1023 //     offset = 0;
  1024 //     count = ca.length;
  1025 //     value = ca;
  1026 //   }
  1027 //   int offset;
  1028 //   int count;
  1029 //   char[] value;
  1030 // }
  1031 //
  1032 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1033 //                             int targetOffset, int cache_i, int md2) {
  1034 //   int cache = cache_i;
  1035 //   int sourceOffset = string_object.offset;
  1036 //   int sourceCount = string_object.count;
  1037 //   int targetCount = target_object.length;
  1038 //
  1039 //   int targetCountLess1 = targetCount - 1;
  1040 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1041 //
  1042 //   char[] source = string_object.value;
  1043 //   char[] target = target_object;
  1044 //   int lastChar = target[targetCountLess1];
  1045 //
  1046 //  outer_loop:
  1047 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1048 //     int src = source[i + targetCountLess1];
  1049 //     if (src == lastChar) {
  1050 //       // With random strings and a 4-character alphabet,
  1051 //       // reverse matching at this point sets up 0.8% fewer
  1052 //       // frames, but (paradoxically) makes 0.3% more probes.
  1053 //       // Since those probes are nearer the lastChar probe,
  1054 //       // there is may be a net D$ win with reverse matching.
  1055 //       // But, reversing loop inhibits unroll of inner loop
  1056 //       // for unknown reason.  So, does running outer loop from
  1057 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1058 //       for (int j = 0; j < targetCountLess1; j++) {
  1059 //         if (target[targetOffset + j] != source[i+j]) {
  1060 //           if ((cache & (1 << source[i+j])) == 0) {
  1061 //             if (md2 < j+1) {
  1062 //               i += j+1;
  1063 //               continue outer_loop;
  1064 //             }
  1065 //           }
  1066 //           i += md2;
  1067 //           continue outer_loop;
  1068 //         }
  1069 //       }
  1070 //       return i - sourceOffset;
  1071 //     }
  1072 //     if ((cache & (1 << src)) == 0) {
  1073 //       i += targetCountLess1;
  1074 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1075 //     i++;
  1076 //   }
  1077 //   return -1;
  1078 // }
  1080 //------------------------------string_indexOf------------------------
  1081 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1082                                      jint cache_i, jint md2_i) {
  1084   Node* no_ctrl  = NULL;
  1085   float likely   = PROB_LIKELY(0.9);
  1086   float unlikely = PROB_UNLIKELY(0.9);
  1088   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1089   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1090   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1092   ciInstanceKlass* klass = env()->String_klass();
  1093   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1094   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1096   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1097   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1098   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1099   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1100   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1101   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1103   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
  1104   jint target_length = target_array->length();
  1105   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1106   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1108   IdealKit kit(gvn(), control(), merged_memory(), false, true);
  1109 #define __ kit.
  1110   Node* zero             = __ ConI(0);
  1111   Node* one              = __ ConI(1);
  1112   Node* cache            = __ ConI(cache_i);
  1113   Node* md2              = __ ConI(md2_i);
  1114   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1115   Node* targetCount      = __ ConI(target_length);
  1116   Node* targetCountLess1 = __ ConI(target_length - 1);
  1117   Node* targetOffset     = __ ConI(targetOffset_i);
  1118   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1120   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1121   Node* outer_loop = __ make_label(2 /* goto */);
  1122   Node* return_    = __ make_label(1);
  1124   __ set(rtn,__ ConI(-1));
  1125   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
  1126        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1127        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1128        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1129        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1130          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
  1131               Node* tpj = __ AddI(targetOffset, __ value(j));
  1132               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1133               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1134               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1135               __ if_then(targ, BoolTest::ne, src2); {
  1136                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1137                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1138                     __ increment(i, __ AddI(__ value(j), one));
  1139                     __ goto_(outer_loop);
  1140                   } __ end_if(); __ dead(j);
  1141                 }__ end_if(); __ dead(j);
  1142                 __ increment(i, md2);
  1143                 __ goto_(outer_loop);
  1144               }__ end_if();
  1145               __ increment(j, one);
  1146          }__ end_loop(); __ dead(j);
  1147          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1148          __ goto_(return_);
  1149        }__ end_if();
  1150        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1151          __ increment(i, targetCountLess1);
  1152        }__ end_if();
  1153        __ increment(i, one);
  1154        __ bind(outer_loop);
  1155   }__ end_loop(); __ dead(i);
  1156   __ bind(return_);
  1158   // Final sync IdealKit and GraphKit.
  1159   sync_kit(kit);
  1160   Node* result = __ value(rtn);
  1161 #undef __
  1162   C->set_has_loops(true);
  1163   return result;
  1166 //------------------------------inline_string_indexOf------------------------
  1167 bool LibraryCallKit::inline_string_indexOf() {
  1169   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1170   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1171   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1173   _sp += 2;
  1174   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1175   Node *receiver = pop();
  1177   Node* result;
  1178   // Disable the use of pcmpestri until it can be guaranteed that
  1179   // the load doesn't cross into the uncommited space.
  1180   if (false && Matcher::has_match_rule(Op_StrIndexOf) &&
  1181       UseSSE42Intrinsics) {
  1182     // Generate SSE4.2 version of indexOf
  1183     // We currently only have match rules that use SSE4.2
  1185     // Null check on self without removing any arguments.  The argument
  1186     // null check technically happens in the wrong place, which can lead to
  1187     // invalid stack traces when string compare is inlined into a method
  1188     // which handles NullPointerExceptions.
  1189     _sp += 2;
  1190     receiver = do_null_check(receiver, T_OBJECT);
  1191     argument = do_null_check(argument, T_OBJECT);
  1192     _sp -= 2;
  1194     if (stopped()) {
  1195       return true;
  1198     // Make the merge point
  1199     RegionNode* result_rgn = new (C, 3) RegionNode(3);
  1200     Node*       result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
  1201     Node* no_ctrl  = NULL;
  1203     ciInstanceKlass* klass = env()->String_klass();
  1204     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1206     // Get counts for string and substr
  1207     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1208     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1210     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1211     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1213     // Check for substr count > string count
  1214     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1215     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1216     Node* if_gt = generate_slow_guard(bol, NULL);
  1217     if (if_gt != NULL) {
  1218       result_phi->init_req(2, intcon(-1));
  1219       result_rgn->init_req(2, if_gt);
  1222     if (!stopped()) {
  1223       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1224       result_phi->init_req(1, result);
  1225       result_rgn->init_req(1, control());
  1227     set_control(_gvn.transform(result_rgn));
  1228     record_for_igvn(result_rgn);
  1229     result = _gvn.transform(result_phi);
  1231   } else { //Use LibraryCallKit::string_indexOf
  1232     // don't intrinsify is argument isn't a constant string.
  1233     if (!argument->is_Con()) {
  1234      return false;
  1236     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1237     if (str_type == NULL) {
  1238       return false;
  1240     ciInstanceKlass* klass = env()->String_klass();
  1241     ciObject* str_const = str_type->const_oop();
  1242     if (str_const == NULL || str_const->klass() != klass) {
  1243       return false;
  1245     ciInstance* str = str_const->as_instance();
  1246     assert(str != NULL, "must be instance");
  1248     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1249     int       o = str->field_value_by_offset(offset_offset).as_int();
  1250     int       c = str->field_value_by_offset(count_offset).as_int();
  1251     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1253     // constant strings have no offset and count == length which
  1254     // simplifies the resulting code somewhat so lets optimize for that.
  1255     if (o != 0 || c != pat->length()) {
  1256      return false;
  1259     // Null check on self without removing any arguments.  The argument
  1260     // null check technically happens in the wrong place, which can lead to
  1261     // invalid stack traces when string compare is inlined into a method
  1262     // which handles NullPointerExceptions.
  1263     _sp += 2;
  1264     receiver = do_null_check(receiver, T_OBJECT);
  1265     // No null check on the argument is needed since it's a constant String oop.
  1266     _sp -= 2;
  1267     if (stopped()) {
  1268      return true;
  1271     // The null string as a pattern always returns 0 (match at beginning of string)
  1272     if (c == 0) {
  1273       push(intcon(0));
  1274       return true;
  1277     // Generate default indexOf
  1278     jchar lastChar = pat->char_at(o + (c - 1));
  1279     int cache = 0;
  1280     int i;
  1281     for (i = 0; i < c - 1; i++) {
  1282       assert(i < pat->length(), "out of range");
  1283       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1286     int md2 = c;
  1287     for (i = 0; i < c - 1; i++) {
  1288       assert(i < pat->length(), "out of range");
  1289       if (pat->char_at(o + i) == lastChar) {
  1290         md2 = (c - 1) - i;
  1294     result = string_indexOf(receiver, pat, o, cache, md2);
  1297   push(result);
  1298   return true;
  1301 //--------------------------pop_math_arg--------------------------------
  1302 // Pop a double argument to a math function from the stack
  1303 // rounding it if necessary.
  1304 Node * LibraryCallKit::pop_math_arg() {
  1305   Node *arg = pop_pair();
  1306   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1307     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1308   return arg;
  1311 //------------------------------inline_trig----------------------------------
  1312 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1313 // argument reduction which will turn into a fast/slow diamond.
  1314 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1315   _sp += arg_size();            // restore stack pointer
  1316   Node* arg = pop_math_arg();
  1317   Node* trig = NULL;
  1319   switch (id) {
  1320   case vmIntrinsics::_dsin:
  1321     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1322     break;
  1323   case vmIntrinsics::_dcos:
  1324     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1325     break;
  1326   case vmIntrinsics::_dtan:
  1327     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1328     break;
  1329   default:
  1330     assert(false, "bad intrinsic was passed in");
  1331     return false;
  1334   // Rounding required?  Check for argument reduction!
  1335   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1337     static const double     pi_4 =  0.7853981633974483;
  1338     static const double neg_pi_4 = -0.7853981633974483;
  1339     // pi/2 in 80-bit extended precision
  1340     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1341     // -pi/2 in 80-bit extended precision
  1342     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1343     // Cutoff value for using this argument reduction technique
  1344     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1345     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1347     // Pseudocode for sin:
  1348     // if (x <= Math.PI / 4.0) {
  1349     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1350     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1351     // } else {
  1352     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1353     // }
  1354     // return StrictMath.sin(x);
  1356     // Pseudocode for cos:
  1357     // if (x <= Math.PI / 4.0) {
  1358     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1359     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1360     // } else {
  1361     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1362     // }
  1363     // return StrictMath.cos(x);
  1365     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1366     // requires a special machine instruction to load it.  Instead we'll try
  1367     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1368     // probably do the math inside the SIN encoding.
  1370     // Make the merge point
  1371     RegionNode *r = new (C, 3) RegionNode(3);
  1372     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1374     // Flatten arg so we need only 1 test
  1375     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1376     // Node for PI/4 constant
  1377     Node *pi4 = makecon(TypeD::make(pi_4));
  1378     // Check PI/4 : abs(arg)
  1379     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1380     // Check: If PI/4 < abs(arg) then go slow
  1381     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1382     // Branch either way
  1383     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1384     set_control(opt_iff(r,iff));
  1386     // Set fast path result
  1387     phi->init_req(2,trig);
  1389     // Slow path - non-blocking leaf call
  1390     Node* call = NULL;
  1391     switch (id) {
  1392     case vmIntrinsics::_dsin:
  1393       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1394                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1395                                "Sin", NULL, arg, top());
  1396       break;
  1397     case vmIntrinsics::_dcos:
  1398       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1399                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1400                                "Cos", NULL, arg, top());
  1401       break;
  1402     case vmIntrinsics::_dtan:
  1403       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1404                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1405                                "Tan", NULL, arg, top());
  1406       break;
  1408     assert(control()->in(0) == call, "");
  1409     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1410     r->init_req(1,control());
  1411     phi->init_req(1,slow_result);
  1413     // Post-merge
  1414     set_control(_gvn.transform(r));
  1415     record_for_igvn(r);
  1416     trig = _gvn.transform(phi);
  1418     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1420   // Push result back on JVM stack
  1421   push_pair(trig);
  1422   return true;
  1425 //------------------------------inline_sqrt-------------------------------------
  1426 // Inline square root instruction, if possible.
  1427 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1428   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1429   _sp += arg_size();        // restore stack pointer
  1430   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1431   return true;
  1434 //------------------------------inline_abs-------------------------------------
  1435 // Inline absolute value instruction, if possible.
  1436 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1437   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1438   _sp += arg_size();        // restore stack pointer
  1439   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1440   return true;
  1443 //------------------------------inline_exp-------------------------------------
  1444 // Inline exp instructions, if possible.  The Intel hardware only misses
  1445 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1446 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1447   assert(id == vmIntrinsics::_dexp, "Not exp");
  1449   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1450   // every again.  NaN results requires StrictMath.exp handling.
  1451   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1453   // Do not intrinsify on older platforms which lack cmove.
  1454   if (ConditionalMoveLimit == 0)  return false;
  1456   _sp += arg_size();        // restore stack pointer
  1457   Node *x = pop_math_arg();
  1458   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1460   //-------------------
  1461   //result=(result.isNaN())? StrictMath::exp():result;
  1462   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1463   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1464   // Build the boolean node
  1465   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1467   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1468     // End the current control-flow path
  1469     push_pair(x);
  1470     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1471     // to handle.  Recompile without intrinsifying Math.exp
  1472     uncommon_trap(Deoptimization::Reason_intrinsic,
  1473                   Deoptimization::Action_make_not_entrant);
  1476   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1478   push_pair(result);
  1480   return true;
  1483 //------------------------------inline_pow-------------------------------------
  1484 // Inline power instructions, if possible.
  1485 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1486   assert(id == vmIntrinsics::_dpow, "Not pow");
  1488   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1489   // every again.  NaN results requires StrictMath.pow handling.
  1490   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1492   // Do not intrinsify on older platforms which lack cmove.
  1493   if (ConditionalMoveLimit == 0)  return false;
  1495   // Pseudocode for pow
  1496   // if (x <= 0.0) {
  1497   //   if ((double)((int)y)==y) { // if y is int
  1498   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1499   //   } else {
  1500   //     result = NaN;
  1501   //   }
  1502   // } else {
  1503   //   result = DPow(x,y);
  1504   // }
  1505   // if (result != result)?  {
  1506   //   uncommon_trap();
  1507   // }
  1508   // return result;
  1510   _sp += arg_size();        // restore stack pointer
  1511   Node* y = pop_math_arg();
  1512   Node* x = pop_math_arg();
  1514   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1516   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1517   // inside of something) then skip the fancy tests and just check for
  1518   // NaN result.
  1519   Node *result = NULL;
  1520   if( jvms()->depth() >= 1 ) {
  1521     result = fast_result;
  1522   } else {
  1524     // Set the merge point for If node with condition of (x <= 0.0)
  1525     // There are four possible paths to region node and phi node
  1526     RegionNode *r = new (C, 4) RegionNode(4);
  1527     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1529     // Build the first if node: if (x <= 0.0)
  1530     // Node for 0 constant
  1531     Node *zeronode = makecon(TypeD::ZERO);
  1532     // Check x:0
  1533     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1534     // Check: If (x<=0) then go complex path
  1535     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1536     // Branch either way
  1537     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1538     Node *opt_test = _gvn.transform(if1);
  1539     //assert( opt_test->is_If(), "Expect an IfNode");
  1540     IfNode *opt_if1 = (IfNode*)opt_test;
  1541     // Fast path taken; set region slot 3
  1542     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1543     r->init_req(3,fast_taken); // Capture fast-control
  1545     // Fast path not-taken, i.e. slow path
  1546     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1548     // Set fast path result
  1549     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1550     phi->init_req(3, fast_result);
  1552     // Complex path
  1553     // Build the second if node (if y is int)
  1554     // Node for (int)y
  1555     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1556     // Node for (double)((int) y)
  1557     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1558     // Check (double)((int) y) : y
  1559     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1560     // Check if (y isn't int) then go to slow path
  1562     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1563     // Branch either way
  1564     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1565     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1567     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1568     // Node for constant 1
  1569     Node *conone = intcon(1);
  1570     // 1& (int)y
  1571     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1572     // zero node
  1573     Node *conzero = intcon(0);
  1574     // Check (1&(int)y)==0?
  1575     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1576     // Check if (1&(int)y)!=0?, if so the result is negative
  1577     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1578     // abs(x)
  1579     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1580     // abs(x)^y
  1581     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1582     // -abs(x)^y
  1583     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1584     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1585     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1586     // Set complex path fast result
  1587     phi->init_req(2, signresult);
  1589     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1590     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1591     r->init_req(1,slow_path);
  1592     phi->init_req(1,slow_result);
  1594     // Post merge
  1595     set_control(_gvn.transform(r));
  1596     record_for_igvn(r);
  1597     result=_gvn.transform(phi);
  1600   //-------------------
  1601   //result=(result.isNaN())? uncommon_trap():result;
  1602   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1603   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1604   // Build the boolean node
  1605   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1607   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1608     // End the current control-flow path
  1609     push_pair(x);
  1610     push_pair(y);
  1611     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1612     // to handle.  Recompile without intrinsifying Math.pow.
  1613     uncommon_trap(Deoptimization::Reason_intrinsic,
  1614                   Deoptimization::Action_make_not_entrant);
  1617   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1619   push_pair(result);
  1621   return true;
  1624 //------------------------------inline_trans-------------------------------------
  1625 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1626 // these right, no funny corner cases missed.
  1627 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1628   _sp += arg_size();        // restore stack pointer
  1629   Node* arg = pop_math_arg();
  1630   Node* trans = NULL;
  1632   switch (id) {
  1633   case vmIntrinsics::_dlog:
  1634     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1635     break;
  1636   case vmIntrinsics::_dlog10:
  1637     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1638     break;
  1639   default:
  1640     assert(false, "bad intrinsic was passed in");
  1641     return false;
  1644   // Push result back on JVM stack
  1645   push_pair(trans);
  1646   return true;
  1649 //------------------------------runtime_math-----------------------------
  1650 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1651   Node* a = NULL;
  1652   Node* b = NULL;
  1654   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1655          "must be (DD)D or (D)D type");
  1657   // Inputs
  1658   _sp += arg_size();        // restore stack pointer
  1659   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1660     b = pop_math_arg();
  1662   a = pop_math_arg();
  1664   const TypePtr* no_memory_effects = NULL;
  1665   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1666                                  no_memory_effects,
  1667                                  a, top(), b, b ? top() : NULL);
  1668   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1669 #ifdef ASSERT
  1670   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1671   assert(value_top == top(), "second value must be top");
  1672 #endif
  1674   push_pair(value);
  1675   return true;
  1678 //------------------------------inline_math_native-----------------------------
  1679 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1680   switch (id) {
  1681     // These intrinsics are not properly supported on all hardware
  1682   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1683     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1684   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1685     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1686   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1687     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1689   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1690     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1691   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1692     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1694     // These intrinsics are supported on all hardware
  1695   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1696   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1698     // These intrinsics don't work on X86.  The ad implementation doesn't
  1699     // handle NaN's properly.  Instead of returning infinity, the ad
  1700     // implementation returns a NaN on overflow. See bug: 6304089
  1701     // Once the ad implementations are fixed, change the code below
  1702     // to match the intrinsics above
  1704   case vmIntrinsics::_dexp:  return
  1705     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1706   case vmIntrinsics::_dpow:  return
  1707     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1709    // These intrinsics are not yet correctly implemented
  1710   case vmIntrinsics::_datan2:
  1711     return false;
  1713   default:
  1714     ShouldNotReachHere();
  1715     return false;
  1719 static bool is_simple_name(Node* n) {
  1720   return (n->req() == 1         // constant
  1721           || (n->is_Type() && n->as_Type()->type()->singleton())
  1722           || n->is_Proj()       // parameter or return value
  1723           || n->is_Phi()        // local of some sort
  1724           );
  1727 //----------------------------inline_min_max-----------------------------------
  1728 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1729   push(generate_min_max(id, argument(0), argument(1)));
  1731   return true;
  1734 Node*
  1735 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1736   // These are the candidate return value:
  1737   Node* xvalue = x0;
  1738   Node* yvalue = y0;
  1740   if (xvalue == yvalue) {
  1741     return xvalue;
  1744   bool want_max = (id == vmIntrinsics::_max);
  1746   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1747   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1748   if (txvalue == NULL || tyvalue == NULL)  return top();
  1749   // This is not really necessary, but it is consistent with a
  1750   // hypothetical MaxINode::Value method:
  1751   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1753   // %%% This folding logic should (ideally) be in a different place.
  1754   // Some should be inside IfNode, and there to be a more reliable
  1755   // transformation of ?: style patterns into cmoves.  We also want
  1756   // more powerful optimizations around cmove and min/max.
  1758   // Try to find a dominating comparison of these guys.
  1759   // It can simplify the index computation for Arrays.copyOf
  1760   // and similar uses of System.arraycopy.
  1761   // First, compute the normalized version of CmpI(x, y).
  1762   int   cmp_op = Op_CmpI;
  1763   Node* xkey = xvalue;
  1764   Node* ykey = yvalue;
  1765   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1766   if (ideal_cmpxy->is_Cmp()) {
  1767     // E.g., if we have CmpI(length - offset, count),
  1768     // it might idealize to CmpI(length, count + offset)
  1769     cmp_op = ideal_cmpxy->Opcode();
  1770     xkey = ideal_cmpxy->in(1);
  1771     ykey = ideal_cmpxy->in(2);
  1774   // Start by locating any relevant comparisons.
  1775   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1776   Node* cmpxy = NULL;
  1777   Node* cmpyx = NULL;
  1778   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1779     Node* cmp = start_from->fast_out(k);
  1780     if (cmp->outcnt() > 0 &&            // must have prior uses
  1781         cmp->in(0) == NULL &&           // must be context-independent
  1782         cmp->Opcode() == cmp_op) {      // right kind of compare
  1783       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1784       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1788   const int NCMPS = 2;
  1789   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1790   int cmpn;
  1791   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1792     if (cmps[cmpn] != NULL)  break;     // find a result
  1794   if (cmpn < NCMPS) {
  1795     // Look for a dominating test that tells us the min and max.
  1796     int depth = 0;                // Limit search depth for speed
  1797     Node* dom = control();
  1798     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1799       if (++depth >= 100)  break;
  1800       Node* ifproj = dom;
  1801       if (!ifproj->is_Proj())  continue;
  1802       Node* iff = ifproj->in(0);
  1803       if (!iff->is_If())  continue;
  1804       Node* bol = iff->in(1);
  1805       if (!bol->is_Bool())  continue;
  1806       Node* cmp = bol->in(1);
  1807       if (cmp == NULL)  continue;
  1808       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1809         if (cmps[cmpn] == cmp)  break;
  1810       if (cmpn == NCMPS)  continue;
  1811       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1812       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1813       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1814       // At this point, we know that 'x btest y' is true.
  1815       switch (btest) {
  1816       case BoolTest::eq:
  1817         // They are proven equal, so we can collapse the min/max.
  1818         // Either value is the answer.  Choose the simpler.
  1819         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1820           return yvalue;
  1821         return xvalue;
  1822       case BoolTest::lt:          // x < y
  1823       case BoolTest::le:          // x <= y
  1824         return (want_max ? yvalue : xvalue);
  1825       case BoolTest::gt:          // x > y
  1826       case BoolTest::ge:          // x >= y
  1827         return (want_max ? xvalue : yvalue);
  1832   // We failed to find a dominating test.
  1833   // Let's pick a test that might GVN with prior tests.
  1834   Node*          best_bol   = NULL;
  1835   BoolTest::mask best_btest = BoolTest::illegal;
  1836   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1837     Node* cmp = cmps[cmpn];
  1838     if (cmp == NULL)  continue;
  1839     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1840       Node* bol = cmp->fast_out(j);
  1841       if (!bol->is_Bool())  continue;
  1842       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1843       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1844       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1845       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1846         best_bol   = bol->as_Bool();
  1847         best_btest = btest;
  1852   Node* answer_if_true  = NULL;
  1853   Node* answer_if_false = NULL;
  1854   switch (best_btest) {
  1855   default:
  1856     if (cmpxy == NULL)
  1857       cmpxy = ideal_cmpxy;
  1858     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1859     // and fall through:
  1860   case BoolTest::lt:          // x < y
  1861   case BoolTest::le:          // x <= y
  1862     answer_if_true  = (want_max ? yvalue : xvalue);
  1863     answer_if_false = (want_max ? xvalue : yvalue);
  1864     break;
  1865   case BoolTest::gt:          // x > y
  1866   case BoolTest::ge:          // x >= y
  1867     answer_if_true  = (want_max ? xvalue : yvalue);
  1868     answer_if_false = (want_max ? yvalue : xvalue);
  1869     break;
  1872   jint hi, lo;
  1873   if (want_max) {
  1874     // We can sharpen the minimum.
  1875     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1876     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1877   } else {
  1878     // We can sharpen the maximum.
  1879     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1880     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1883   // Use a flow-free graph structure, to avoid creating excess control edges
  1884   // which could hinder other optimizations.
  1885   // Since Math.min/max is often used with arraycopy, we want
  1886   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1887   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1888                                answer_if_false, answer_if_true,
  1889                                TypeInt::make(lo, hi, widen));
  1891   return _gvn.transform(cmov);
  1893   /*
  1894   // This is not as desirable as it may seem, since Min and Max
  1895   // nodes do not have a full set of optimizations.
  1896   // And they would interfere, anyway, with 'if' optimizations
  1897   // and with CMoveI canonical forms.
  1898   switch (id) {
  1899   case vmIntrinsics::_min:
  1900     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1901   case vmIntrinsics::_max:
  1902     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1903   default:
  1904     ShouldNotReachHere();
  1906   */
  1909 inline int
  1910 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1911   const TypePtr* base_type = TypePtr::NULL_PTR;
  1912   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1913   if (base_type == NULL) {
  1914     // Unknown type.
  1915     return Type::AnyPtr;
  1916   } else if (base_type == TypePtr::NULL_PTR) {
  1917     // Since this is a NULL+long form, we have to switch to a rawptr.
  1918     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1919     offset = MakeConX(0);
  1920     return Type::RawPtr;
  1921   } else if (base_type->base() == Type::RawPtr) {
  1922     return Type::RawPtr;
  1923   } else if (base_type->isa_oopptr()) {
  1924     // Base is never null => always a heap address.
  1925     if (base_type->ptr() == TypePtr::NotNull) {
  1926       return Type::OopPtr;
  1928     // Offset is small => always a heap address.
  1929     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1930     if (offset_type != NULL &&
  1931         base_type->offset() == 0 &&     // (should always be?)
  1932         offset_type->_lo >= 0 &&
  1933         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1934       return Type::OopPtr;
  1936     // Otherwise, it might either be oop+off or NULL+addr.
  1937     return Type::AnyPtr;
  1938   } else {
  1939     // No information:
  1940     return Type::AnyPtr;
  1944 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1945   int kind = classify_unsafe_addr(base, offset);
  1946   if (kind == Type::RawPtr) {
  1947     return basic_plus_adr(top(), base, offset);
  1948   } else {
  1949     return basic_plus_adr(base, offset);
  1953 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  1954 // inline int Integer.numberOfLeadingZeros(int)
  1955 // inline int Long.numberOfLeadingZeros(long)
  1956 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  1957   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  1958   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  1959   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  1960   _sp += arg_size();  // restore stack pointer
  1961   switch (id) {
  1962   case vmIntrinsics::_numberOfLeadingZeros_i:
  1963     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  1964     break;
  1965   case vmIntrinsics::_numberOfLeadingZeros_l:
  1966     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  1967     break;
  1968   default:
  1969     ShouldNotReachHere();
  1971   return true;
  1974 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  1975 // inline int Integer.numberOfTrailingZeros(int)
  1976 // inline int Long.numberOfTrailingZeros(long)
  1977 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  1978   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  1979   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  1980   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  1981   _sp += arg_size();  // restore stack pointer
  1982   switch (id) {
  1983   case vmIntrinsics::_numberOfTrailingZeros_i:
  1984     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  1985     break;
  1986   case vmIntrinsics::_numberOfTrailingZeros_l:
  1987     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  1988     break;
  1989   default:
  1990     ShouldNotReachHere();
  1992   return true;
  1995 //----------------------------inline_bitCount_int/long-----------------------
  1996 // inline int Integer.bitCount(int)
  1997 // inline int Long.bitCount(long)
  1998 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  1999   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2000   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2001   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2002   _sp += arg_size();  // restore stack pointer
  2003   switch (id) {
  2004   case vmIntrinsics::_bitCount_i:
  2005     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2006     break;
  2007   case vmIntrinsics::_bitCount_l:
  2008     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2009     break;
  2010   default:
  2011     ShouldNotReachHere();
  2013   return true;
  2016 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2017 // inline Integer.reverseBytes(int)
  2018 // inline Long.reverseBytes(long)
  2019 // inline Character.reverseBytes(char)
  2020 // inline Short.reverseBytes(short)
  2021 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2022   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2023          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2024          "not reverse Bytes");
  2025   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2026   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2027   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2028   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2029   _sp += arg_size();        // restore stack pointer
  2030   switch (id) {
  2031   case vmIntrinsics::_reverseBytes_i:
  2032     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2033     break;
  2034   case vmIntrinsics::_reverseBytes_l:
  2035     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2036     break;
  2037   case vmIntrinsics::_reverseBytes_c:
  2038     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2039     break;
  2040   case vmIntrinsics::_reverseBytes_s:
  2041     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2042     break;
  2043   default:
  2046   return true;
  2049 //----------------------------inline_unsafe_access----------------------------
  2051 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2053 // Interpret Unsafe.fieldOffset cookies correctly:
  2054 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2056 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2057   if (callee()->is_static())  return false;  // caller must have the capability!
  2059 #ifndef PRODUCT
  2061     ResourceMark rm;
  2062     // Check the signatures.
  2063     ciSignature* sig = signature();
  2064 #ifdef ASSERT
  2065     if (!is_store) {
  2066       // Object getObject(Object base, int/long offset), etc.
  2067       BasicType rtype = sig->return_type()->basic_type();
  2068       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2069           rtype = T_ADDRESS;  // it is really a C void*
  2070       assert(rtype == type, "getter must return the expected value");
  2071       if (!is_native_ptr) {
  2072         assert(sig->count() == 2, "oop getter has 2 arguments");
  2073         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2074         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2075       } else {
  2076         assert(sig->count() == 1, "native getter has 1 argument");
  2077         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2079     } else {
  2080       // void putObject(Object base, int/long offset, Object x), etc.
  2081       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2082       if (!is_native_ptr) {
  2083         assert(sig->count() == 3, "oop putter has 3 arguments");
  2084         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2085         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2086       } else {
  2087         assert(sig->count() == 2, "native putter has 2 arguments");
  2088         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2090       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2091       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2092         vtype = T_ADDRESS;  // it is really a C void*
  2093       assert(vtype == type, "putter must accept the expected value");
  2095 #endif // ASSERT
  2097 #endif //PRODUCT
  2099   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2101   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2103   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2104   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2106   debug_only(int saved_sp = _sp);
  2107   _sp += nargs;
  2109   Node* val;
  2110   debug_only(val = (Node*)(uintptr_t)-1);
  2113   if (is_store) {
  2114     // Get the value being stored.  (Pop it first; it was pushed last.)
  2115     switch (type) {
  2116     case T_DOUBLE:
  2117     case T_LONG:
  2118     case T_ADDRESS:
  2119       val = pop_pair();
  2120       break;
  2121     default:
  2122       val = pop();
  2126   // Build address expression.  See the code in inline_unsafe_prefetch.
  2127   Node *adr;
  2128   Node *heap_base_oop = top();
  2129   if (!is_native_ptr) {
  2130     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2131     Node* offset = pop_pair();
  2132     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2133     Node* base   = pop();
  2134     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2135     // to be plain byte offsets, which are also the same as those accepted
  2136     // by oopDesc::field_base.
  2137     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2138            "fieldOffset must be byte-scaled");
  2139     // 32-bit machines ignore the high half!
  2140     offset = ConvL2X(offset);
  2141     adr = make_unsafe_address(base, offset);
  2142     heap_base_oop = base;
  2143   } else {
  2144     Node* ptr = pop_pair();
  2145     // Adjust Java long to machine word:
  2146     ptr = ConvL2X(ptr);
  2147     adr = make_unsafe_address(NULL, ptr);
  2150   // Pop receiver last:  it was pushed first.
  2151   Node *receiver = pop();
  2153   assert(saved_sp == _sp, "must have correct argument count");
  2155   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2157   // First guess at the value type.
  2158   const Type *value_type = Type::get_const_basic_type(type);
  2160   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2161   // there was not enough information to nail it down.
  2162   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2163   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2165   // We will need memory barriers unless we can determine a unique
  2166   // alias category for this reference.  (Note:  If for some reason
  2167   // the barriers get omitted and the unsafe reference begins to "pollute"
  2168   // the alias analysis of the rest of the graph, either Compile::can_alias
  2169   // or Compile::must_alias will throw a diagnostic assert.)
  2170   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2172   if (!is_store && type == T_OBJECT) {
  2173     // Attempt to infer a sharper value type from the offset and base type.
  2174     ciKlass* sharpened_klass = NULL;
  2176     // See if it is an instance field, with an object type.
  2177     if (alias_type->field() != NULL) {
  2178       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2179       if (alias_type->field()->type()->is_klass()) {
  2180         sharpened_klass = alias_type->field()->type()->as_klass();
  2184     // See if it is a narrow oop array.
  2185     if (adr_type->isa_aryptr()) {
  2186       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2187         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2188         if (elem_type != NULL) {
  2189           sharpened_klass = elem_type->klass();
  2194     if (sharpened_klass != NULL) {
  2195       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2197       // Sharpen the value type.
  2198       value_type = tjp;
  2200 #ifndef PRODUCT
  2201       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2202         tty->print("  from base type:  ");   adr_type->dump();
  2203         tty->print("  sharpened value: "); value_type->dump();
  2205 #endif
  2209   // Null check on self without removing any arguments.  The argument
  2210   // null check technically happens in the wrong place, which can lead to
  2211   // invalid stack traces when the primitive is inlined into a method
  2212   // which handles NullPointerExceptions.
  2213   _sp += nargs;
  2214   do_null_check(receiver, T_OBJECT);
  2215   _sp -= nargs;
  2216   if (stopped()) {
  2217     return true;
  2219   // Heap pointers get a null-check from the interpreter,
  2220   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2221   // and it is not possible to fully distinguish unintended nulls
  2222   // from intended ones in this API.
  2224   if (is_volatile) {
  2225     // We need to emit leading and trailing CPU membars (see below) in
  2226     // addition to memory membars when is_volatile. This is a little
  2227     // too strong, but avoids the need to insert per-alias-type
  2228     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2229     // we cannot do effectively here because we probably only have a
  2230     // rough approximation of type.
  2231     need_mem_bar = true;
  2232     // For Stores, place a memory ordering barrier now.
  2233     if (is_store)
  2234       insert_mem_bar(Op_MemBarRelease);
  2237   // Memory barrier to prevent normal and 'unsafe' accesses from
  2238   // bypassing each other.  Happens after null checks, so the
  2239   // exception paths do not take memory state from the memory barrier,
  2240   // so there's no problems making a strong assert about mixing users
  2241   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2242   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2243   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2245   if (!is_store) {
  2246     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2247     // load value and push onto stack
  2248     switch (type) {
  2249     case T_BOOLEAN:
  2250     case T_CHAR:
  2251     case T_BYTE:
  2252     case T_SHORT:
  2253     case T_INT:
  2254     case T_FLOAT:
  2255     case T_OBJECT:
  2256       push( p );
  2257       break;
  2258     case T_ADDRESS:
  2259       // Cast to an int type.
  2260       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2261       p = ConvX2L(p);
  2262       push_pair(p);
  2263       break;
  2264     case T_DOUBLE:
  2265     case T_LONG:
  2266       push_pair( p );
  2267       break;
  2268     default: ShouldNotReachHere();
  2270   } else {
  2271     // place effect of store into memory
  2272     switch (type) {
  2273     case T_DOUBLE:
  2274       val = dstore_rounding(val);
  2275       break;
  2276     case T_ADDRESS:
  2277       // Repackage the long as a pointer.
  2278       val = ConvL2X(val);
  2279       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2280       break;
  2283     if (type != T_OBJECT ) {
  2284       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2285     } else {
  2286       // Possibly an oop being stored to Java heap or native memory
  2287       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2288         // oop to Java heap.
  2289         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2290       } else {
  2291         // We can't tell at compile time if we are storing in the Java heap or outside
  2292         // of it. So we need to emit code to conditionally do the proper type of
  2293         // store.
  2295         IdealKit ideal(gvn(), control(),  merged_memory());
  2296 #define __ ideal.
  2297         // QQQ who knows what probability is here??
  2298         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2299           // Sync IdealKit and graphKit.
  2300           set_all_memory( __ merged_memory());
  2301           set_control(__ ctrl());
  2302           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2303           // Update IdealKit memory.
  2304           __ set_all_memory(merged_memory());
  2305           __ set_ctrl(control());
  2306         } __ else_(); {
  2307           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2308         } __ end_if();
  2309         // Final sync IdealKit and GraphKit.
  2310         sync_kit(ideal);
  2311 #undef __
  2316   if (is_volatile) {
  2317     if (!is_store)
  2318       insert_mem_bar(Op_MemBarAcquire);
  2319     else
  2320       insert_mem_bar(Op_MemBarVolatile);
  2323   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2325   return true;
  2328 //----------------------------inline_unsafe_prefetch----------------------------
  2330 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2331 #ifndef PRODUCT
  2333     ResourceMark rm;
  2334     // Check the signatures.
  2335     ciSignature* sig = signature();
  2336 #ifdef ASSERT
  2337     // Object getObject(Object base, int/long offset), etc.
  2338     BasicType rtype = sig->return_type()->basic_type();
  2339     if (!is_native_ptr) {
  2340       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2341       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2342       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2343     } else {
  2344       assert(sig->count() == 1, "native prefetch has 1 argument");
  2345       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2347 #endif // ASSERT
  2349 #endif // !PRODUCT
  2351   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2353   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2354   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2356   debug_only(int saved_sp = _sp);
  2357   _sp += nargs;
  2359   // Build address expression.  See the code in inline_unsafe_access.
  2360   Node *adr;
  2361   if (!is_native_ptr) {
  2362     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2363     Node* offset = pop_pair();
  2364     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2365     Node* base   = pop();
  2366     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2367     // to be plain byte offsets, which are also the same as those accepted
  2368     // by oopDesc::field_base.
  2369     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2370            "fieldOffset must be byte-scaled");
  2371     // 32-bit machines ignore the high half!
  2372     offset = ConvL2X(offset);
  2373     adr = make_unsafe_address(base, offset);
  2374   } else {
  2375     Node* ptr = pop_pair();
  2376     // Adjust Java long to machine word:
  2377     ptr = ConvL2X(ptr);
  2378     adr = make_unsafe_address(NULL, ptr);
  2381   if (is_static) {
  2382     assert(saved_sp == _sp, "must have correct argument count");
  2383   } else {
  2384     // Pop receiver last:  it was pushed first.
  2385     Node *receiver = pop();
  2386     assert(saved_sp == _sp, "must have correct argument count");
  2388     // Null check on self without removing any arguments.  The argument
  2389     // null check technically happens in the wrong place, which can lead to
  2390     // invalid stack traces when the primitive is inlined into a method
  2391     // which handles NullPointerExceptions.
  2392     _sp += nargs;
  2393     do_null_check(receiver, T_OBJECT);
  2394     _sp -= nargs;
  2395     if (stopped()) {
  2396       return true;
  2400   // Generate the read or write prefetch
  2401   Node *prefetch;
  2402   if (is_store) {
  2403     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2404   } else {
  2405     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2407   prefetch->init_req(0, control());
  2408   set_i_o(_gvn.transform(prefetch));
  2410   return true;
  2413 //----------------------------inline_unsafe_CAS----------------------------
  2415 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2416   // This basic scheme here is the same as inline_unsafe_access, but
  2417   // differs in enough details that combining them would make the code
  2418   // overly confusing.  (This is a true fact! I originally combined
  2419   // them, but even I was confused by it!) As much code/comments as
  2420   // possible are retained from inline_unsafe_access though to make
  2421   // the correspondences clearer. - dl
  2423   if (callee()->is_static())  return false;  // caller must have the capability!
  2425 #ifndef PRODUCT
  2427     ResourceMark rm;
  2428     // Check the signatures.
  2429     ciSignature* sig = signature();
  2430 #ifdef ASSERT
  2431     BasicType rtype = sig->return_type()->basic_type();
  2432     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2433     assert(sig->count() == 4, "CAS has 4 arguments");
  2434     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2435     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2436 #endif // ASSERT
  2438 #endif //PRODUCT
  2440   // number of stack slots per value argument (1 or 2)
  2441   int type_words = type2size[type];
  2443   // Cannot inline wide CAS on machines that don't support it natively
  2444   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2445     return false;
  2447   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2449   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2450   int nargs = 1 + 1 + 2  + type_words + type_words;
  2452   // pop arguments: newval, oldval, offset, base, and receiver
  2453   debug_only(int saved_sp = _sp);
  2454   _sp += nargs;
  2455   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2456   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2457   Node *offset   = pop_pair();
  2458   Node *base     = pop();
  2459   Node *receiver = pop();
  2460   assert(saved_sp == _sp, "must have correct argument count");
  2462   //  Null check receiver.
  2463   _sp += nargs;
  2464   do_null_check(receiver, T_OBJECT);
  2465   _sp -= nargs;
  2466   if (stopped()) {
  2467     return true;
  2470   // Build field offset expression.
  2471   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2472   // to be plain byte offsets, which are also the same as those accepted
  2473   // by oopDesc::field_base.
  2474   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2475   // 32-bit machines ignore the high half of long offsets
  2476   offset = ConvL2X(offset);
  2477   Node* adr = make_unsafe_address(base, offset);
  2478   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2480   // (Unlike inline_unsafe_access, there seems no point in trying
  2481   // to refine types. Just use the coarse types here.
  2482   const Type *value_type = Type::get_const_basic_type(type);
  2483   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2484   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2485   int alias_idx = C->get_alias_index(adr_type);
  2487   // Memory-model-wise, a CAS acts like a little synchronized block,
  2488   // so needs barriers on each side.  These don't translate into
  2489   // actual barriers on most machines, but we still need rest of
  2490   // compiler to respect ordering.
  2492   insert_mem_bar(Op_MemBarRelease);
  2493   insert_mem_bar(Op_MemBarCPUOrder);
  2495   // 4984716: MemBars must be inserted before this
  2496   //          memory node in order to avoid a false
  2497   //          dependency which will confuse the scheduler.
  2498   Node *mem = memory(alias_idx);
  2500   // For now, we handle only those cases that actually exist: ints,
  2501   // longs, and Object. Adding others should be straightforward.
  2502   Node* cas;
  2503   switch(type) {
  2504   case T_INT:
  2505     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2506     break;
  2507   case T_LONG:
  2508     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2509     break;
  2510   case T_OBJECT:
  2511      // reference stores need a store barrier.
  2512     // (They don't if CAS fails, but it isn't worth checking.)
  2513     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
  2514 #ifdef _LP64
  2515     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2516       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2517       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2518       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2519                                                           newval_enc, oldval_enc));
  2520     } else
  2521 #endif
  2523       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2525     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2526     break;
  2527   default:
  2528     ShouldNotReachHere();
  2529     break;
  2532   // SCMemProjNodes represent the memory state of CAS. Their main
  2533   // role is to prevent CAS nodes from being optimized away when their
  2534   // results aren't used.
  2535   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2536   set_memory(proj, alias_idx);
  2538   // Add the trailing membar surrounding the access
  2539   insert_mem_bar(Op_MemBarCPUOrder);
  2540   insert_mem_bar(Op_MemBarAcquire);
  2542   push(cas);
  2543   return true;
  2546 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2547   // This is another variant of inline_unsafe_access, differing in
  2548   // that it always issues store-store ("release") barrier and ensures
  2549   // store-atomicity (which only matters for "long").
  2551   if (callee()->is_static())  return false;  // caller must have the capability!
  2553 #ifndef PRODUCT
  2555     ResourceMark rm;
  2556     // Check the signatures.
  2557     ciSignature* sig = signature();
  2558 #ifdef ASSERT
  2559     BasicType rtype = sig->return_type()->basic_type();
  2560     assert(rtype == T_VOID, "must return void");
  2561     assert(sig->count() == 3, "has 3 arguments");
  2562     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2563     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2564 #endif // ASSERT
  2566 #endif //PRODUCT
  2568   // number of stack slots per value argument (1 or 2)
  2569   int type_words = type2size[type];
  2571   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2573   // Argument words:  "this" plus oop plus offset plus value;
  2574   int nargs = 1 + 1 + 2 + type_words;
  2576   // pop arguments: val, offset, base, and receiver
  2577   debug_only(int saved_sp = _sp);
  2578   _sp += nargs;
  2579   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2580   Node *offset   = pop_pair();
  2581   Node *base     = pop();
  2582   Node *receiver = pop();
  2583   assert(saved_sp == _sp, "must have correct argument count");
  2585   //  Null check receiver.
  2586   _sp += nargs;
  2587   do_null_check(receiver, T_OBJECT);
  2588   _sp -= nargs;
  2589   if (stopped()) {
  2590     return true;
  2593   // Build field offset expression.
  2594   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2595   // 32-bit machines ignore the high half of long offsets
  2596   offset = ConvL2X(offset);
  2597   Node* adr = make_unsafe_address(base, offset);
  2598   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2599   const Type *value_type = Type::get_const_basic_type(type);
  2600   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2602   insert_mem_bar(Op_MemBarRelease);
  2603   insert_mem_bar(Op_MemBarCPUOrder);
  2604   // Ensure that the store is atomic for longs:
  2605   bool require_atomic_access = true;
  2606   Node* store;
  2607   if (type == T_OBJECT) // reference stores need a store barrier.
  2608     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2609   else {
  2610     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2612   insert_mem_bar(Op_MemBarCPUOrder);
  2613   return true;
  2616 bool LibraryCallKit::inline_unsafe_allocate() {
  2617   if (callee()->is_static())  return false;  // caller must have the capability!
  2618   int nargs = 1 + 1;
  2619   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2620   null_check_receiver(callee());  // check then ignore argument(0)
  2621   _sp += nargs;  // set original stack for use by uncommon_trap
  2622   Node* cls = do_null_check(argument(1), T_OBJECT);
  2623   _sp -= nargs;
  2624   if (stopped())  return true;
  2626   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2627   _sp += nargs;  // set original stack for use by uncommon_trap
  2628   kls = do_null_check(kls, T_OBJECT);
  2629   _sp -= nargs;
  2630   if (stopped())  return true;  // argument was like int.class
  2632   // Note:  The argument might still be an illegal value like
  2633   // Serializable.class or Object[].class.   The runtime will handle it.
  2634   // But we must make an explicit check for initialization.
  2635   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2636   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2637   Node* bits = intcon(instanceKlass::fully_initialized);
  2638   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2639   // The 'test' is non-zero if we need to take a slow path.
  2641   Node* obj = new_instance(kls, test);
  2642   push(obj);
  2644   return true;
  2647 //------------------------inline_native_time_funcs--------------
  2648 // inline code for System.currentTimeMillis() and System.nanoTime()
  2649 // these have the same type and signature
  2650 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2651   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2652                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2653   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2654   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2655   const TypePtr* no_memory_effects = NULL;
  2656   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2657   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2658 #ifdef ASSERT
  2659   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2660   assert(value_top == top(), "second value must be top");
  2661 #endif
  2662   push_pair(value);
  2663   return true;
  2666 //------------------------inline_native_currentThread------------------
  2667 bool LibraryCallKit::inline_native_currentThread() {
  2668   Node* junk = NULL;
  2669   push(generate_current_thread(junk));
  2670   return true;
  2673 //------------------------inline_native_isInterrupted------------------
  2674 bool LibraryCallKit::inline_native_isInterrupted() {
  2675   const int nargs = 1+1;  // receiver + boolean
  2676   assert(nargs == arg_size(), "sanity");
  2677   // Add a fast path to t.isInterrupted(clear_int):
  2678   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2679   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2680   // So, in the common case that the interrupt bit is false,
  2681   // we avoid making a call into the VM.  Even if the interrupt bit
  2682   // is true, if the clear_int argument is false, we avoid the VM call.
  2683   // However, if the receiver is not currentThread, we must call the VM,
  2684   // because there must be some locking done around the operation.
  2686   // We only go to the fast case code if we pass two guards.
  2687   // Paths which do not pass are accumulated in the slow_region.
  2688   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2689   record_for_igvn(slow_region);
  2690   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2691   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2692   enum { no_int_result_path   = 1,
  2693          no_clear_result_path = 2,
  2694          slow_result_path     = 3
  2695   };
  2697   // (a) Receiving thread must be the current thread.
  2698   Node* rec_thr = argument(0);
  2699   Node* tls_ptr = NULL;
  2700   Node* cur_thr = generate_current_thread(tls_ptr);
  2701   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2702   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2704   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2705   if (!known_current_thread)
  2706     generate_slow_guard(bol_thr, slow_region);
  2708   // (b) Interrupt bit on TLS must be false.
  2709   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2710   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2711   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2712   // Set the control input on the field _interrupted read to prevent it floating up.
  2713   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2714   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2715   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2717   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2719   // First fast path:  if (!TLS._interrupted) return false;
  2720   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2721   result_rgn->init_req(no_int_result_path, false_bit);
  2722   result_val->init_req(no_int_result_path, intcon(0));
  2724   // drop through to next case
  2725   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2727   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2728   Node* clr_arg = argument(1);
  2729   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2730   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2731   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2733   // Second fast path:  ... else if (!clear_int) return true;
  2734   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2735   result_rgn->init_req(no_clear_result_path, false_arg);
  2736   result_val->init_req(no_clear_result_path, intcon(1));
  2738   // drop through to next case
  2739   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2741   // (d) Otherwise, go to the slow path.
  2742   slow_region->add_req(control());
  2743   set_control( _gvn.transform(slow_region) );
  2745   if (stopped()) {
  2746     // There is no slow path.
  2747     result_rgn->init_req(slow_result_path, top());
  2748     result_val->init_req(slow_result_path, top());
  2749   } else {
  2750     // non-virtual because it is a private non-static
  2751     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2753     Node* slow_val = set_results_for_java_call(slow_call);
  2754     // this->control() comes from set_results_for_java_call
  2756     // If we know that the result of the slow call will be true, tell the optimizer!
  2757     if (known_current_thread)  slow_val = intcon(1);
  2759     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2760     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2761     // These two phis are pre-filled with copies of of the fast IO and Memory
  2762     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2763     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2765     result_rgn->init_req(slow_result_path, control());
  2766     io_phi    ->init_req(slow_result_path, i_o());
  2767     mem_phi   ->init_req(slow_result_path, reset_memory());
  2768     result_val->init_req(slow_result_path, slow_val);
  2770     set_all_memory( _gvn.transform(mem_phi) );
  2771     set_i_o(        _gvn.transform(io_phi) );
  2774   push_result(result_rgn, result_val);
  2775   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2777   return true;
  2780 //---------------------------load_mirror_from_klass----------------------------
  2781 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2782 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2783   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2784   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2787 //-----------------------load_klass_from_mirror_common-------------------------
  2788 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2789 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2790 // and branch to the given path on the region.
  2791 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2792 // compile for the non-null case.
  2793 // If the region is NULL, force never_see_null = true.
  2794 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2795                                                     bool never_see_null,
  2796                                                     int nargs,
  2797                                                     RegionNode* region,
  2798                                                     int null_path,
  2799                                                     int offset) {
  2800   if (region == NULL)  never_see_null = true;
  2801   Node* p = basic_plus_adr(mirror, offset);
  2802   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2803   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2804   _sp += nargs; // any deopt will start just before call to enclosing method
  2805   Node* null_ctl = top();
  2806   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2807   if (region != NULL) {
  2808     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2809     region->init_req(null_path, null_ctl);
  2810   } else {
  2811     assert(null_ctl == top(), "no loose ends");
  2813   _sp -= nargs;
  2814   return kls;
  2817 //--------------------(inline_native_Class_query helpers)---------------------
  2818 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2819 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2820 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2821   // Branch around if the given klass has the given modifier bit set.
  2822   // Like generate_guard, adds a new path onto the region.
  2823   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2824   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2825   Node* mask = intcon(modifier_mask);
  2826   Node* bits = intcon(modifier_bits);
  2827   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2828   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2829   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2830   return generate_fair_guard(bol, region);
  2832 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2833   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2836 //-------------------------inline_native_Class_query-------------------
  2837 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2838   int nargs = 1+0;  // just the Class mirror, in most cases
  2839   const Type* return_type = TypeInt::BOOL;
  2840   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2841   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2842   bool expect_prim = false;     // most of these guys expect to work on refs
  2844   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2846   switch (id) {
  2847   case vmIntrinsics::_isInstance:
  2848     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2849     // nothing is an instance of a primitive type
  2850     prim_return_value = intcon(0);
  2851     break;
  2852   case vmIntrinsics::_getModifiers:
  2853     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2854     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2855     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2856     break;
  2857   case vmIntrinsics::_isInterface:
  2858     prim_return_value = intcon(0);
  2859     break;
  2860   case vmIntrinsics::_isArray:
  2861     prim_return_value = intcon(0);
  2862     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2863     break;
  2864   case vmIntrinsics::_isPrimitive:
  2865     prim_return_value = intcon(1);
  2866     expect_prim = true;  // obviously
  2867     break;
  2868   case vmIntrinsics::_getSuperclass:
  2869     prim_return_value = null();
  2870     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2871     break;
  2872   case vmIntrinsics::_getComponentType:
  2873     prim_return_value = null();
  2874     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2875     break;
  2876   case vmIntrinsics::_getClassAccessFlags:
  2877     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2878     return_type = TypeInt::INT;  // not bool!  6297094
  2879     break;
  2880   default:
  2881     ShouldNotReachHere();
  2884   Node* mirror =                      argument(0);
  2885   Node* obj    = (nargs <= 1)? top(): argument(1);
  2887   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2888   if (mirror_con == NULL)  return false;  // cannot happen?
  2890 #ifndef PRODUCT
  2891   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2892     ciType* k = mirror_con->java_mirror_type();
  2893     if (k) {
  2894       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2895       k->print_name();
  2896       tty->cr();
  2899 #endif
  2901   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2902   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2903   record_for_igvn(region);
  2904   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2906   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2907   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2908   // if it is. See bug 4774291.
  2910   // For Reflection.getClassAccessFlags(), the null check occurs in
  2911   // the wrong place; see inline_unsafe_access(), above, for a similar
  2912   // situation.
  2913   _sp += nargs;  // set original stack for use by uncommon_trap
  2914   mirror = do_null_check(mirror, T_OBJECT);
  2915   _sp -= nargs;
  2916   // If mirror or obj is dead, only null-path is taken.
  2917   if (stopped())  return true;
  2919   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2921   // Now load the mirror's klass metaobject, and null-check it.
  2922   // Side-effects region with the control path if the klass is null.
  2923   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2924                                      region, _prim_path);
  2925   // If kls is null, we have a primitive mirror.
  2926   phi->init_req(_prim_path, prim_return_value);
  2927   if (stopped()) { push_result(region, phi); return true; }
  2929   Node* p;  // handy temp
  2930   Node* null_ctl;
  2932   // Now that we have the non-null klass, we can perform the real query.
  2933   // For constant classes, the query will constant-fold in LoadNode::Value.
  2934   Node* query_value = top();
  2935   switch (id) {
  2936   case vmIntrinsics::_isInstance:
  2937     // nothing is an instance of a primitive type
  2938     query_value = gen_instanceof(obj, kls);
  2939     break;
  2941   case vmIntrinsics::_getModifiers:
  2942     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2943     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2944     break;
  2946   case vmIntrinsics::_isInterface:
  2947     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2948     if (generate_interface_guard(kls, region) != NULL)
  2949       // A guard was added.  If the guard is taken, it was an interface.
  2950       phi->add_req(intcon(1));
  2951     // If we fall through, it's a plain class.
  2952     query_value = intcon(0);
  2953     break;
  2955   case vmIntrinsics::_isArray:
  2956     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2957     if (generate_array_guard(kls, region) != NULL)
  2958       // A guard was added.  If the guard is taken, it was an array.
  2959       phi->add_req(intcon(1));
  2960     // If we fall through, it's a plain class.
  2961     query_value = intcon(0);
  2962     break;
  2964   case vmIntrinsics::_isPrimitive:
  2965     query_value = intcon(0); // "normal" path produces false
  2966     break;
  2968   case vmIntrinsics::_getSuperclass:
  2969     // The rules here are somewhat unfortunate, but we can still do better
  2970     // with random logic than with a JNI call.
  2971     // Interfaces store null or Object as _super, but must report null.
  2972     // Arrays store an intermediate super as _super, but must report Object.
  2973     // Other types can report the actual _super.
  2974     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2975     if (generate_interface_guard(kls, region) != NULL)
  2976       // A guard was added.  If the guard is taken, it was an interface.
  2977       phi->add_req(null());
  2978     if (generate_array_guard(kls, region) != NULL)
  2979       // A guard was added.  If the guard is taken, it was an array.
  2980       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2981     // If we fall through, it's a plain class.  Get its _super.
  2982     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2983     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2984     null_ctl = top();
  2985     kls = null_check_oop(kls, &null_ctl);
  2986     if (null_ctl != top()) {
  2987       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2988       region->add_req(null_ctl);
  2989       phi   ->add_req(null());
  2991     if (!stopped()) {
  2992       query_value = load_mirror_from_klass(kls);
  2994     break;
  2996   case vmIntrinsics::_getComponentType:
  2997     if (generate_array_guard(kls, region) != NULL) {
  2998       // Be sure to pin the oop load to the guard edge just created:
  2999       Node* is_array_ctrl = region->in(region->req()-1);
  3000       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  3001       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3002       phi->add_req(cmo);
  3004     query_value = null();  // non-array case is null
  3005     break;
  3007   case vmIntrinsics::_getClassAccessFlags:
  3008     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  3009     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3010     break;
  3012   default:
  3013     ShouldNotReachHere();
  3016   // Fall-through is the normal case of a query to a real class.
  3017   phi->init_req(1, query_value);
  3018   region->init_req(1, control());
  3020   push_result(region, phi);
  3021   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3023   return true;
  3026 //--------------------------inline_native_subtype_check------------------------
  3027 // This intrinsic takes the JNI calls out of the heart of
  3028 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3029 bool LibraryCallKit::inline_native_subtype_check() {
  3030   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3032   // Pull both arguments off the stack.
  3033   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3034   args[0] = argument(0);
  3035   args[1] = argument(1);
  3036   Node* klasses[2];             // corresponding Klasses: superk, subk
  3037   klasses[0] = klasses[1] = top();
  3039   enum {
  3040     // A full decision tree on {superc is prim, subc is prim}:
  3041     _prim_0_path = 1,           // {P,N} => false
  3042                                 // {P,P} & superc!=subc => false
  3043     _prim_same_path,            // {P,P} & superc==subc => true
  3044     _prim_1_path,               // {N,P} => false
  3045     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3046     _both_ref_path,             // {N,N} & subtype check loses => false
  3047     PATH_LIMIT
  3048   };
  3050   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3051   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3052   record_for_igvn(region);
  3054   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3055   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3056   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3058   // First null-check both mirrors and load each mirror's klass metaobject.
  3059   int which_arg;
  3060   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3061     Node* arg = args[which_arg];
  3062     _sp += nargs;  // set original stack for use by uncommon_trap
  3063     arg = do_null_check(arg, T_OBJECT);
  3064     _sp -= nargs;
  3065     if (stopped())  break;
  3066     args[which_arg] = _gvn.transform(arg);
  3068     Node* p = basic_plus_adr(arg, class_klass_offset);
  3069     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3070     klasses[which_arg] = _gvn.transform(kls);
  3073   // Having loaded both klasses, test each for null.
  3074   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3075   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3076     Node* kls = klasses[which_arg];
  3077     Node* null_ctl = top();
  3078     _sp += nargs;  // set original stack for use by uncommon_trap
  3079     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3080     _sp -= nargs;
  3081     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3082     region->init_req(prim_path, null_ctl);
  3083     if (stopped())  break;
  3084     klasses[which_arg] = kls;
  3087   if (!stopped()) {
  3088     // now we have two reference types, in klasses[0..1]
  3089     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3090     Node* superk = klasses[0];  // the receiver
  3091     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3092     // now we have a successful reference subtype check
  3093     region->set_req(_ref_subtype_path, control());
  3096   // If both operands are primitive (both klasses null), then
  3097   // we must return true when they are identical primitives.
  3098   // It is convenient to test this after the first null klass check.
  3099   set_control(region->in(_prim_0_path)); // go back to first null check
  3100   if (!stopped()) {
  3101     // Since superc is primitive, make a guard for the superc==subc case.
  3102     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3103     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3104     generate_guard(bol_eq, region, PROB_FAIR);
  3105     if (region->req() == PATH_LIMIT+1) {
  3106       // A guard was added.  If the added guard is taken, superc==subc.
  3107       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3108       region->del_req(PATH_LIMIT);
  3110     region->set_req(_prim_0_path, control()); // Not equal after all.
  3113   // these are the only paths that produce 'true':
  3114   phi->set_req(_prim_same_path,   intcon(1));
  3115   phi->set_req(_ref_subtype_path, intcon(1));
  3117   // pull together the cases:
  3118   assert(region->req() == PATH_LIMIT, "sane region");
  3119   for (uint i = 1; i < region->req(); i++) {
  3120     Node* ctl = region->in(i);
  3121     if (ctl == NULL || ctl == top()) {
  3122       region->set_req(i, top());
  3123       phi   ->set_req(i, top());
  3124     } else if (phi->in(i) == NULL) {
  3125       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3129   set_control(_gvn.transform(region));
  3130   push(_gvn.transform(phi));
  3132   return true;
  3135 //---------------------generate_array_guard_common------------------------
  3136 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3137                                                   bool obj_array, bool not_array) {
  3138   // If obj_array/non_array==false/false:
  3139   // Branch around if the given klass is in fact an array (either obj or prim).
  3140   // If obj_array/non_array==false/true:
  3141   // Branch around if the given klass is not an array klass of any kind.
  3142   // If obj_array/non_array==true/true:
  3143   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3144   // If obj_array/non_array==true/false:
  3145   // Branch around if the kls is an oop array (Object[] or subtype)
  3146   //
  3147   // Like generate_guard, adds a new path onto the region.
  3148   jint  layout_con = 0;
  3149   Node* layout_val = get_layout_helper(kls, layout_con);
  3150   if (layout_val == NULL) {
  3151     bool query = (obj_array
  3152                   ? Klass::layout_helper_is_objArray(layout_con)
  3153                   : Klass::layout_helper_is_javaArray(layout_con));
  3154     if (query == not_array) {
  3155       return NULL;                       // never a branch
  3156     } else {                             // always a branch
  3157       Node* always_branch = control();
  3158       if (region != NULL)
  3159         region->add_req(always_branch);
  3160       set_control(top());
  3161       return always_branch;
  3164   // Now test the correct condition.
  3165   jint  nval = (obj_array
  3166                 ? ((jint)Klass::_lh_array_tag_type_value
  3167                    <<    Klass::_lh_array_tag_shift)
  3168                 : Klass::_lh_neutral_value);
  3169   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3170   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3171   // invert the test if we are looking for a non-array
  3172   if (not_array)  btest = BoolTest(btest).negate();
  3173   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3174   return generate_fair_guard(bol, region);
  3178 //-----------------------inline_native_newArray--------------------------
  3179 bool LibraryCallKit::inline_native_newArray() {
  3180   int nargs = 2;
  3181   Node* mirror    = argument(0);
  3182   Node* count_val = argument(1);
  3184   _sp += nargs;  // set original stack for use by uncommon_trap
  3185   mirror = do_null_check(mirror, T_OBJECT);
  3186   _sp -= nargs;
  3187   // If mirror or obj is dead, only null-path is taken.
  3188   if (stopped())  return true;
  3190   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3191   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3192   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3193                                                       TypeInstPtr::NOTNULL);
  3194   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3195   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3196                                                       TypePtr::BOTTOM);
  3198   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3199   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3200                                                   nargs,
  3201                                                   result_reg, _slow_path);
  3202   Node* normal_ctl   = control();
  3203   Node* no_array_ctl = result_reg->in(_slow_path);
  3205   // Generate code for the slow case.  We make a call to newArray().
  3206   set_control(no_array_ctl);
  3207   if (!stopped()) {
  3208     // Either the input type is void.class, or else the
  3209     // array klass has not yet been cached.  Either the
  3210     // ensuing call will throw an exception, or else it
  3211     // will cache the array klass for next time.
  3212     PreserveJVMState pjvms(this);
  3213     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3214     Node* slow_result = set_results_for_java_call(slow_call);
  3215     // this->control() comes from set_results_for_java_call
  3216     result_reg->set_req(_slow_path, control());
  3217     result_val->set_req(_slow_path, slow_result);
  3218     result_io ->set_req(_slow_path, i_o());
  3219     result_mem->set_req(_slow_path, reset_memory());
  3222   set_control(normal_ctl);
  3223   if (!stopped()) {
  3224     // Normal case:  The array type has been cached in the java.lang.Class.
  3225     // The following call works fine even if the array type is polymorphic.
  3226     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3227     Node* obj = new_array(klass_node, count_val, nargs);
  3228     result_reg->init_req(_normal_path, control());
  3229     result_val->init_req(_normal_path, obj);
  3230     result_io ->init_req(_normal_path, i_o());
  3231     result_mem->init_req(_normal_path, reset_memory());
  3234   // Return the combined state.
  3235   set_i_o(        _gvn.transform(result_io)  );
  3236   set_all_memory( _gvn.transform(result_mem) );
  3237   push_result(result_reg, result_val);
  3238   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3240   return true;
  3243 //----------------------inline_native_getLength--------------------------
  3244 bool LibraryCallKit::inline_native_getLength() {
  3245   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3247   int nargs = 1;
  3248   Node* array = argument(0);
  3250   _sp += nargs;  // set original stack for use by uncommon_trap
  3251   array = do_null_check(array, T_OBJECT);
  3252   _sp -= nargs;
  3254   // If array is dead, only null-path is taken.
  3255   if (stopped())  return true;
  3257   // Deoptimize if it is a non-array.
  3258   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3260   if (non_array != NULL) {
  3261     PreserveJVMState pjvms(this);
  3262     set_control(non_array);
  3263     _sp += nargs;  // push the arguments back on the stack
  3264     uncommon_trap(Deoptimization::Reason_intrinsic,
  3265                   Deoptimization::Action_maybe_recompile);
  3268   // If control is dead, only non-array-path is taken.
  3269   if (stopped())  return true;
  3271   // The works fine even if the array type is polymorphic.
  3272   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3273   push( load_array_length(array) );
  3275   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3277   return true;
  3280 //------------------------inline_array_copyOf----------------------------
  3281 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3282   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3284   // Restore the stack and pop off the arguments.
  3285   int nargs = 3 + (is_copyOfRange? 1: 0);
  3286   Node* original          = argument(0);
  3287   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3288   Node* end               = is_copyOfRange? argument(2): argument(1);
  3289   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3291   Node* newcopy;
  3293   //set the original stack and the reexecute bit for the interpreter to reexecute
  3294   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3295   { PreserveReexecuteState preexecs(this);
  3296     _sp += nargs;
  3297     jvms()->set_should_reexecute(true);
  3299     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3300     original          = do_null_check(original, T_OBJECT);
  3302     // Check if a null path was taken unconditionally.
  3303     if (stopped())  return true;
  3305     Node* orig_length = load_array_length(original);
  3307     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3308                                               NULL, 0);
  3309     klass_node = do_null_check(klass_node, T_OBJECT);
  3311     RegionNode* bailout = new (C, 1) RegionNode(1);
  3312     record_for_igvn(bailout);
  3314     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3315     // Bail out if that is so.
  3316     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3317     if (not_objArray != NULL) {
  3318       // Improve the klass node's type from the new optimistic assumption:
  3319       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3320       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3321       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3322       cast->init_req(0, control());
  3323       klass_node = _gvn.transform(cast);
  3326     // Bail out if either start or end is negative.
  3327     generate_negative_guard(start, bailout, &start);
  3328     generate_negative_guard(end,   bailout, &end);
  3330     Node* length = end;
  3331     if (_gvn.type(start) != TypeInt::ZERO) {
  3332       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3335     // Bail out if length is negative.
  3336     // ...Not needed, since the new_array will throw the right exception.
  3337     //generate_negative_guard(length, bailout, &length);
  3339     if (bailout->req() > 1) {
  3340       PreserveJVMState pjvms(this);
  3341       set_control( _gvn.transform(bailout) );
  3342       uncommon_trap(Deoptimization::Reason_intrinsic,
  3343                     Deoptimization::Action_maybe_recompile);
  3346     if (!stopped()) {
  3348       // How many elements will we copy from the original?
  3349       // The answer is MinI(orig_length - start, length).
  3350       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3351       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3353       const bool raw_mem_only = true;
  3354       newcopy = new_array(klass_node, length, 0, raw_mem_only);
  3356       // Generate a direct call to the right arraycopy function(s).
  3357       // We know the copy is disjoint but we might not know if the
  3358       // oop stores need checking.
  3359       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3360       // This will fail a store-check if x contains any non-nulls.
  3361       bool disjoint_bases = true;
  3362       bool length_never_negative = true;
  3363       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3364                          original, start, newcopy, intcon(0), moved,
  3365                          disjoint_bases, length_never_negative);
  3367   } //original reexecute and sp are set back here
  3369   if(!stopped()) {
  3370     push(newcopy);
  3373   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3375   return true;
  3379 //----------------------generate_virtual_guard---------------------------
  3380 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3381 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3382                                              RegionNode* slow_region) {
  3383   ciMethod* method = callee();
  3384   int vtable_index = method->vtable_index();
  3385   // Get the methodOop out of the appropriate vtable entry.
  3386   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3387                      vtable_index*vtableEntry::size()) * wordSize +
  3388                      vtableEntry::method_offset_in_bytes();
  3389   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3390   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3392   // Compare the target method with the expected method (e.g., Object.hashCode).
  3393   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3395   Node* native_call = makecon(native_call_addr);
  3396   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3397   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3399   return generate_slow_guard(test_native, slow_region);
  3402 //-----------------------generate_method_call----------------------------
  3403 // Use generate_method_call to make a slow-call to the real
  3404 // method if the fast path fails.  An alternative would be to
  3405 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3406 // This only works for expanding the current library call,
  3407 // not another intrinsic.  (E.g., don't use this for making an
  3408 // arraycopy call inside of the copyOf intrinsic.)
  3409 CallJavaNode*
  3410 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3411   // When compiling the intrinsic method itself, do not use this technique.
  3412   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3414   ciMethod* method = callee();
  3415   // ensure the JVMS we have will be correct for this call
  3416   guarantee(method_id == method->intrinsic_id(), "must match");
  3418   const TypeFunc* tf = TypeFunc::make(method);
  3419   int tfdc = tf->domain()->cnt();
  3420   CallJavaNode* slow_call;
  3421   if (is_static) {
  3422     assert(!is_virtual, "");
  3423     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3424                                 SharedRuntime::get_resolve_static_call_stub(),
  3425                                 method, bci());
  3426   } else if (is_virtual) {
  3427     null_check_receiver(method);
  3428     int vtable_index = methodOopDesc::invalid_vtable_index;
  3429     if (UseInlineCaches) {
  3430       // Suppress the vtable call
  3431     } else {
  3432       // hashCode and clone are not a miranda methods,
  3433       // so the vtable index is fixed.
  3434       // No need to use the linkResolver to get it.
  3435        vtable_index = method->vtable_index();
  3437     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3438                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3439                                 method, vtable_index, bci());
  3440   } else {  // neither virtual nor static:  opt_virtual
  3441     null_check_receiver(method);
  3442     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3443                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3444                                 method, bci());
  3445     slow_call->set_optimized_virtual(true);
  3447   set_arguments_for_java_call(slow_call);
  3448   set_edges_for_java_call(slow_call);
  3449   return slow_call;
  3453 //------------------------------inline_native_hashcode--------------------
  3454 // Build special case code for calls to hashCode on an object.
  3455 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3456   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3457   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3459   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3461   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3462   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3463                                                       TypeInt::INT);
  3464   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3465   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3466                                                       TypePtr::BOTTOM);
  3467   Node* obj = NULL;
  3468   if (!is_static) {
  3469     // Check for hashing null object
  3470     obj = null_check_receiver(callee());
  3471     if (stopped())  return true;        // unconditionally null
  3472     result_reg->init_req(_null_path, top());
  3473     result_val->init_req(_null_path, top());
  3474   } else {
  3475     // Do a null check, and return zero if null.
  3476     // System.identityHashCode(null) == 0
  3477     obj = argument(0);
  3478     Node* null_ctl = top();
  3479     obj = null_check_oop(obj, &null_ctl);
  3480     result_reg->init_req(_null_path, null_ctl);
  3481     result_val->init_req(_null_path, _gvn.intcon(0));
  3484   // Unconditionally null?  Then return right away.
  3485   if (stopped()) {
  3486     set_control( result_reg->in(_null_path) );
  3487     if (!stopped())
  3488       push(      result_val ->in(_null_path) );
  3489     return true;
  3492   // After null check, get the object's klass.
  3493   Node* obj_klass = load_object_klass(obj);
  3495   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3496   // For each case we generate slightly different code.
  3498   // We only go to the fast case code if we pass a number of guards.  The
  3499   // paths which do not pass are accumulated in the slow_region.
  3500   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3501   record_for_igvn(slow_region);
  3503   // If this is a virtual call, we generate a funny guard.  We pull out
  3504   // the vtable entry corresponding to hashCode() from the target object.
  3505   // If the target method which we are calling happens to be the native
  3506   // Object hashCode() method, we pass the guard.  We do not need this
  3507   // guard for non-virtual calls -- the caller is known to be the native
  3508   // Object hashCode().
  3509   if (is_virtual) {
  3510     generate_virtual_guard(obj_klass, slow_region);
  3513   // Get the header out of the object, use LoadMarkNode when available
  3514   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3515   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  3516   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  3518   // Test the header to see if it is unlocked.
  3519   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3520   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3521   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3522   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3523   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3525   generate_slow_guard(test_unlocked, slow_region);
  3527   // Get the hash value and check to see that it has been properly assigned.
  3528   // We depend on hash_mask being at most 32 bits and avoid the use of
  3529   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3530   // vm: see markOop.hpp.
  3531   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3532   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3533   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3534   // This hack lets the hash bits live anywhere in the mark object now, as long
  3535   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3536   // Java spec says that HashCode is an int so there's no point in capturing
  3537   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3538   hshifted_header      = ConvX2I(hshifted_header);
  3539   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3541   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3542   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3543   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3545   generate_slow_guard(test_assigned, slow_region);
  3547   Node* init_mem = reset_memory();
  3548   // fill in the rest of the null path:
  3549   result_io ->init_req(_null_path, i_o());
  3550   result_mem->init_req(_null_path, init_mem);
  3552   result_val->init_req(_fast_path, hash_val);
  3553   result_reg->init_req(_fast_path, control());
  3554   result_io ->init_req(_fast_path, i_o());
  3555   result_mem->init_req(_fast_path, init_mem);
  3557   // Generate code for the slow case.  We make a call to hashCode().
  3558   set_control(_gvn.transform(slow_region));
  3559   if (!stopped()) {
  3560     // No need for PreserveJVMState, because we're using up the present state.
  3561     set_all_memory(init_mem);
  3562     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3563     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3564     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3565     Node* slow_result = set_results_for_java_call(slow_call);
  3566     // this->control() comes from set_results_for_java_call
  3567     result_reg->init_req(_slow_path, control());
  3568     result_val->init_req(_slow_path, slow_result);
  3569     result_io  ->set_req(_slow_path, i_o());
  3570     result_mem ->set_req(_slow_path, reset_memory());
  3573   // Return the combined state.
  3574   set_i_o(        _gvn.transform(result_io)  );
  3575   set_all_memory( _gvn.transform(result_mem) );
  3576   push_result(result_reg, result_val);
  3578   return true;
  3581 //---------------------------inline_native_getClass----------------------------
  3582 // Build special case code for calls to getClass on an object.
  3583 bool LibraryCallKit::inline_native_getClass() {
  3584   Node* obj = null_check_receiver(callee());
  3585   if (stopped())  return true;
  3586   push( load_mirror_from_klass(load_object_klass(obj)) );
  3587   return true;
  3590 //-----------------inline_native_Reflection_getCallerClass---------------------
  3591 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3592 //
  3593 // NOTE that this code must perform the same logic as
  3594 // vframeStream::security_get_caller_frame in that it must skip
  3595 // Method.invoke() and auxiliary frames.
  3600 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3601   ciMethod*       method = callee();
  3603 #ifndef PRODUCT
  3604   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3605     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3607 #endif
  3609   debug_only(int saved_sp = _sp);
  3611   // Argument words:  (int depth)
  3612   int nargs = 1;
  3614   _sp += nargs;
  3615   Node* caller_depth_node = pop();
  3617   assert(saved_sp == _sp, "must have correct argument count");
  3619   // The depth value must be a constant in order for the runtime call
  3620   // to be eliminated.
  3621   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3622   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3623 #ifndef PRODUCT
  3624     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3625       tty->print_cr("  Bailing out because caller depth was not a constant");
  3627 #endif
  3628     return false;
  3630   // Note that the JVM state at this point does not include the
  3631   // getCallerClass() frame which we are trying to inline. The
  3632   // semantics of getCallerClass(), however, are that the "first"
  3633   // frame is the getCallerClass() frame, so we subtract one from the
  3634   // requested depth before continuing. We don't inline requests of
  3635   // getCallerClass(0).
  3636   int caller_depth = caller_depth_type->get_con() - 1;
  3637   if (caller_depth < 0) {
  3638 #ifndef PRODUCT
  3639     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3640       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3642 #endif
  3643     return false;
  3646   if (!jvms()->has_method()) {
  3647 #ifndef PRODUCT
  3648     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3649       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3651 #endif
  3652     return false;
  3654   int _depth = jvms()->depth();  // cache call chain depth
  3656   // Walk back up the JVM state to find the caller at the required
  3657   // depth. NOTE that this code must perform the same logic as
  3658   // vframeStream::security_get_caller_frame in that it must skip
  3659   // Method.invoke() and auxiliary frames. Note also that depth is
  3660   // 1-based (1 is the bottom of the inlining).
  3661   int inlining_depth = _depth;
  3662   JVMState* caller_jvms = NULL;
  3664   if (inlining_depth > 0) {
  3665     caller_jvms = jvms();
  3666     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3667     do {
  3668       // The following if-tests should be performed in this order
  3669       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3670         // Skip a Method.invoke() or auxiliary frame
  3671       } else if (caller_depth > 0) {
  3672         // Skip real frame
  3673         --caller_depth;
  3674       } else {
  3675         // We're done: reached desired caller after skipping.
  3676         break;
  3678       caller_jvms = caller_jvms->caller();
  3679       --inlining_depth;
  3680     } while (inlining_depth > 0);
  3683   if (inlining_depth == 0) {
  3684 #ifndef PRODUCT
  3685     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3686       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3687       tty->print_cr("  JVM state at this point:");
  3688       for (int i = _depth; i >= 1; i--) {
  3689         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3692 #endif
  3693     return false; // Reached end of inlining
  3696   // Acquire method holder as java.lang.Class
  3697   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3698   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3699   // Push this as a constant
  3700   push(makecon(TypeInstPtr::make(caller_mirror)));
  3701 #ifndef PRODUCT
  3702   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3703     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3704     tty->print_cr("  JVM state at this point:");
  3705     for (int i = _depth; i >= 1; i--) {
  3706       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3709 #endif
  3710   return true;
  3713 // Helper routine for above
  3714 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3715   ciMethod* method = jvms->method();
  3717   // Is this the Method.invoke method itself?
  3718   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3719     return true;
  3721   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3722   ciKlass* k = method->holder();
  3723   if (k->is_instance_klass()) {
  3724     ciInstanceKlass* ik = k->as_instance_klass();
  3725     for (; ik != NULL; ik = ik->super()) {
  3726       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3727           ik == env()->find_system_klass(ik->name())) {
  3728         return true;
  3732   else if (method->is_method_handle_adapter()) {
  3733     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3734     return true;
  3737   return false;
  3740 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3741                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3742                                      // computing it since there is no lookup field by name function in the
  3743                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3744                                      // Using a static variable here is safe even if we have multiple compilation
  3745                                      // threads because the offset is constant.  At worst the same offset will be
  3746                                      // computed and  stored multiple
  3748 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3749   // Restore the stack and pop off the argument
  3750   _sp+=1;
  3751   Node *obj = pop();
  3753   // get the offset of the "value" field. Since the CI interfaces
  3754   // does not provide a way to look up a field by name, we scan the bytecodes
  3755   // to get the field index.  We expect the first 2 instructions of the method
  3756   // to be:
  3757   //    0 aload_0
  3758   //    1 getfield "value"
  3759   ciMethod* method = callee();
  3760   if (value_field_offset == -1)
  3762     ciField* value_field;
  3763     ciBytecodeStream iter(method);
  3764     Bytecodes::Code bc = iter.next();
  3766     if ((bc != Bytecodes::_aload_0) &&
  3767               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3768       return false;
  3769     bc = iter.next();
  3770     if (bc != Bytecodes::_getfield)
  3771       return false;
  3772     bool ignore;
  3773     value_field = iter.get_field(ignore);
  3774     value_field_offset = value_field->offset_in_bytes();
  3777   // Null check without removing any arguments.
  3778   _sp++;
  3779   obj = do_null_check(obj, T_OBJECT);
  3780   _sp--;
  3781   // Check for locking null object
  3782   if (stopped()) return true;
  3784   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3785   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3786   int alias_idx = C->get_alias_index(adr_type);
  3788   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3790   push_pair(result);
  3792   return true;
  3795 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3796   // Restore the stack and pop off the arguments
  3797   _sp+=5;
  3798   Node *newVal = pop_pair();
  3799   Node *oldVal = pop_pair();
  3800   Node *obj = pop();
  3802   // we need the offset of the "value" field which was computed when
  3803   // inlining the get() method.  Give up if we don't have it.
  3804   if (value_field_offset == -1)
  3805     return false;
  3807   // Null check without removing any arguments.
  3808   _sp+=5;
  3809   obj = do_null_check(obj, T_OBJECT);
  3810   _sp-=5;
  3811   // Check for locking null object
  3812   if (stopped()) return true;
  3814   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3815   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3816   int alias_idx = C->get_alias_index(adr_type);
  3818   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3819   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3820   set_memory(store_proj, alias_idx);
  3821   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3823   Node *result;
  3824   // CMove node is not used to be able fold a possible check code
  3825   // after attemptUpdate() call. This code could be transformed
  3826   // into CMove node by loop optimizations.
  3828     RegionNode *r = new (C, 3) RegionNode(3);
  3829     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3831     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3832     Node *iftrue = opt_iff(r, iff);
  3833     r->init_req(1, iftrue);
  3834     result->init_req(1, intcon(1));
  3835     result->init_req(2, intcon(0));
  3837     set_control(_gvn.transform(r));
  3838     record_for_igvn(r);
  3840     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3843   push(_gvn.transform(result));
  3844   return true;
  3847 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3848   // restore the arguments
  3849   _sp += arg_size();
  3851   switch (id) {
  3852   case vmIntrinsics::_floatToRawIntBits:
  3853     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3854     break;
  3856   case vmIntrinsics::_intBitsToFloat:
  3857     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3858     break;
  3860   case vmIntrinsics::_doubleToRawLongBits:
  3861     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3862     break;
  3864   case vmIntrinsics::_longBitsToDouble:
  3865     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3866     break;
  3868   case vmIntrinsics::_doubleToLongBits: {
  3869     Node* value = pop_pair();
  3871     // two paths (plus control) merge in a wood
  3872     RegionNode *r = new (C, 3) RegionNode(3);
  3873     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3875     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3876     // Build the boolean node
  3877     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3879     // Branch either way.
  3880     // NaN case is less traveled, which makes all the difference.
  3881     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3882     Node *opt_isnan = _gvn.transform(ifisnan);
  3883     assert( opt_isnan->is_If(), "Expect an IfNode");
  3884     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3885     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3887     set_control(iftrue);
  3889     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3890     Node *slow_result = longcon(nan_bits); // return NaN
  3891     phi->init_req(1, _gvn.transform( slow_result ));
  3892     r->init_req(1, iftrue);
  3894     // Else fall through
  3895     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3896     set_control(iffalse);
  3898     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3899     r->init_req(2, iffalse);
  3901     // Post merge
  3902     set_control(_gvn.transform(r));
  3903     record_for_igvn(r);
  3905     Node* result = _gvn.transform(phi);
  3906     assert(result->bottom_type()->isa_long(), "must be");
  3907     push_pair(result);
  3909     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3911     break;
  3914   case vmIntrinsics::_floatToIntBits: {
  3915     Node* value = pop();
  3917     // two paths (plus control) merge in a wood
  3918     RegionNode *r = new (C, 3) RegionNode(3);
  3919     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3921     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3922     // Build the boolean node
  3923     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3925     // Branch either way.
  3926     // NaN case is less traveled, which makes all the difference.
  3927     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3928     Node *opt_isnan = _gvn.transform(ifisnan);
  3929     assert( opt_isnan->is_If(), "Expect an IfNode");
  3930     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3931     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3933     set_control(iftrue);
  3935     static const jint nan_bits = 0x7fc00000;
  3936     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3937     phi->init_req(1, _gvn.transform( slow_result ));
  3938     r->init_req(1, iftrue);
  3940     // Else fall through
  3941     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3942     set_control(iffalse);
  3944     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3945     r->init_req(2, iffalse);
  3947     // Post merge
  3948     set_control(_gvn.transform(r));
  3949     record_for_igvn(r);
  3951     Node* result = _gvn.transform(phi);
  3952     assert(result->bottom_type()->isa_int(), "must be");
  3953     push(result);
  3955     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3957     break;
  3960   default:
  3961     ShouldNotReachHere();
  3964   return true;
  3967 #ifdef _LP64
  3968 #define XTOP ,top() /*additional argument*/
  3969 #else  //_LP64
  3970 #define XTOP        /*no additional argument*/
  3971 #endif //_LP64
  3973 //----------------------inline_unsafe_copyMemory-------------------------
  3974 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3975   if (callee()->is_static())  return false;  // caller must have the capability!
  3976   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3977   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3978   null_check_receiver(callee());  // check then ignore argument(0)
  3979   if (stopped())  return true;
  3981   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3983   Node* src_ptr = argument(1);
  3984   Node* src_off = ConvL2X(argument(2));
  3985   assert(argument(3)->is_top(), "2nd half of long");
  3986   Node* dst_ptr = argument(4);
  3987   Node* dst_off = ConvL2X(argument(5));
  3988   assert(argument(6)->is_top(), "2nd half of long");
  3989   Node* size    = ConvL2X(argument(7));
  3990   assert(argument(8)->is_top(), "2nd half of long");
  3992   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3993          "fieldOffset must be byte-scaled");
  3995   Node* src = make_unsafe_address(src_ptr, src_off);
  3996   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  3998   // Conservatively insert a memory barrier on all memory slices.
  3999   // Do not let writes of the copy source or destination float below the copy.
  4000   insert_mem_bar(Op_MemBarCPUOrder);
  4002   // Call it.  Note that the length argument is not scaled.
  4003   make_runtime_call(RC_LEAF|RC_NO_FP,
  4004                     OptoRuntime::fast_arraycopy_Type(),
  4005                     StubRoutines::unsafe_arraycopy(),
  4006                     "unsafe_arraycopy",
  4007                     TypeRawPtr::BOTTOM,
  4008                     src, dst, size XTOP);
  4010   // Do not let reads of the copy destination float above the copy.
  4011   insert_mem_bar(Op_MemBarCPUOrder);
  4013   return true;
  4016 //------------------------clone_coping-----------------------------------
  4017 // Helper function for inline_native_clone.
  4018 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4019   assert(obj_size != NULL, "");
  4020   Node* raw_obj = alloc_obj->in(1);
  4021   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4023   if (ReduceBulkZeroing) {
  4024     // We will be completely responsible for initializing this object -
  4025     // mark Initialize node as complete.
  4026     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4027     // The object was just allocated - there should be no any stores!
  4028     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4031   // Copy the fastest available way.
  4032   // TODO: generate fields copies for small objects instead.
  4033   Node* src  = obj;
  4034   Node* dest = alloc_obj;
  4035   Node* size = _gvn.transform(obj_size);
  4037   // Exclude the header but include array length to copy by 8 bytes words.
  4038   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4039   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4040                             instanceOopDesc::base_offset_in_bytes();
  4041   // base_off:
  4042   // 8  - 32-bit VM
  4043   // 12 - 64-bit VM, compressed oops
  4044   // 16 - 64-bit VM, normal oops
  4045   if (base_off % BytesPerLong != 0) {
  4046     assert(UseCompressedOops, "");
  4047     if (is_array) {
  4048       // Exclude length to copy by 8 bytes words.
  4049       base_off += sizeof(int);
  4050     } else {
  4051       // Include klass to copy by 8 bytes words.
  4052       base_off = instanceOopDesc::klass_offset_in_bytes();
  4054     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4056   src  = basic_plus_adr(src,  base_off);
  4057   dest = basic_plus_adr(dest, base_off);
  4059   // Compute the length also, if needed:
  4060   Node* countx = size;
  4061   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4062   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4064   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4065   bool disjoint_bases = true;
  4066   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4067                                src, NULL, dest, NULL, countx);
  4069   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4070   if (card_mark) {
  4071     assert(!is_array, "");
  4072     // Put in store barrier for any and all oops we are sticking
  4073     // into this object.  (We could avoid this if we could prove
  4074     // that the object type contains no oop fields at all.)
  4075     Node* no_particular_value = NULL;
  4076     Node* no_particular_field = NULL;
  4077     int raw_adr_idx = Compile::AliasIdxRaw;
  4078     post_barrier(control(),
  4079                  memory(raw_adr_type),
  4080                  alloc_obj,
  4081                  no_particular_field,
  4082                  raw_adr_idx,
  4083                  no_particular_value,
  4084                  T_OBJECT,
  4085                  false);
  4088   // Do not let reads from the cloned object float above the arraycopy.
  4089   insert_mem_bar(Op_MemBarCPUOrder);
  4092 //------------------------inline_native_clone----------------------------
  4093 // Here are the simple edge cases:
  4094 //  null receiver => normal trap
  4095 //  virtual and clone was overridden => slow path to out-of-line clone
  4096 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4097 //
  4098 // The general case has two steps, allocation and copying.
  4099 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4100 //
  4101 // Copying also has two cases, oop arrays and everything else.
  4102 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4103 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4104 //
  4105 // These steps fold up nicely if and when the cloned object's klass
  4106 // can be sharply typed as an object array, a type array, or an instance.
  4107 //
  4108 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4109   int nargs = 1;
  4110   PhiNode* result_val;
  4112   //set the original stack and the reexecute bit for the interpreter to reexecute
  4113   //the bytecode that invokes Object.clone if deoptimization happens
  4114   { PreserveReexecuteState preexecs(this);
  4115     jvms()->set_should_reexecute(true);
  4117     //null_check_receiver will adjust _sp (push and pop)
  4118     Node* obj = null_check_receiver(callee());
  4119     if (stopped())  return true;
  4121     _sp += nargs;
  4123     Node* obj_klass = load_object_klass(obj);
  4124     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4125     const TypeOopPtr*   toop   = ((tklass != NULL)
  4126                                 ? tklass->as_instance_type()
  4127                                 : TypeInstPtr::NOTNULL);
  4129     // Conservatively insert a memory barrier on all memory slices.
  4130     // Do not let writes into the original float below the clone.
  4131     insert_mem_bar(Op_MemBarCPUOrder);
  4133     // paths into result_reg:
  4134     enum {
  4135       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4136       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4137       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4138       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4139       PATH_LIMIT
  4140     };
  4141     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4142     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4143                                                         TypeInstPtr::NOTNULL);
  4144     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4145     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4146                                                         TypePtr::BOTTOM);
  4147     record_for_igvn(result_reg);
  4149     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4150     int raw_adr_idx = Compile::AliasIdxRaw;
  4151     const bool raw_mem_only = true;
  4154     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4155     if (array_ctl != NULL) {
  4156       // It's an array.
  4157       PreserveJVMState pjvms(this);
  4158       set_control(array_ctl);
  4159       Node* obj_length = load_array_length(obj);
  4160       Node* obj_size  = NULL;
  4161       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
  4162                                   raw_mem_only, &obj_size);
  4164       if (!use_ReduceInitialCardMarks()) {
  4165         // If it is an oop array, it requires very special treatment,
  4166         // because card marking is required on each card of the array.
  4167         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4168         if (is_obja != NULL) {
  4169           PreserveJVMState pjvms2(this);
  4170           set_control(is_obja);
  4171           // Generate a direct call to the right arraycopy function(s).
  4172           bool disjoint_bases = true;
  4173           bool length_never_negative = true;
  4174           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4175                              obj, intcon(0), alloc_obj, intcon(0),
  4176                              obj_length,
  4177                              disjoint_bases, length_never_negative);
  4178           result_reg->init_req(_objArray_path, control());
  4179           result_val->init_req(_objArray_path, alloc_obj);
  4180           result_i_o ->set_req(_objArray_path, i_o());
  4181           result_mem ->set_req(_objArray_path, reset_memory());
  4184       // Otherwise, there are no card marks to worry about.
  4185       // (We can dispense with card marks if we know the allocation
  4186       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4187       //  causes the non-eden paths to take compensating steps to
  4188       //  simulate a fresh allocation, so that no further
  4189       //  card marks are required in compiled code to initialize
  4190       //  the object.)
  4192       if (!stopped()) {
  4193         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4195         // Present the results of the copy.
  4196         result_reg->init_req(_array_path, control());
  4197         result_val->init_req(_array_path, alloc_obj);
  4198         result_i_o ->set_req(_array_path, i_o());
  4199         result_mem ->set_req(_array_path, reset_memory());
  4203     // We only go to the instance fast case code if we pass a number of guards.
  4204     // The paths which do not pass are accumulated in the slow_region.
  4205     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4206     record_for_igvn(slow_region);
  4207     if (!stopped()) {
  4208       // It's an instance (we did array above).  Make the slow-path tests.
  4209       // If this is a virtual call, we generate a funny guard.  We grab
  4210       // the vtable entry corresponding to clone() from the target object.
  4211       // If the target method which we are calling happens to be the
  4212       // Object clone() method, we pass the guard.  We do not need this
  4213       // guard for non-virtual calls; the caller is known to be the native
  4214       // Object clone().
  4215       if (is_virtual) {
  4216         generate_virtual_guard(obj_klass, slow_region);
  4219       // The object must be cloneable and must not have a finalizer.
  4220       // Both of these conditions may be checked in a single test.
  4221       // We could optimize the cloneable test further, but we don't care.
  4222       generate_access_flags_guard(obj_klass,
  4223                                   // Test both conditions:
  4224                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4225                                   // Must be cloneable but not finalizer:
  4226                                   JVM_ACC_IS_CLONEABLE,
  4227                                   slow_region);
  4230     if (!stopped()) {
  4231       // It's an instance, and it passed the slow-path tests.
  4232       PreserveJVMState pjvms(this);
  4233       Node* obj_size  = NULL;
  4234       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4236       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4238       // Present the results of the slow call.
  4239       result_reg->init_req(_instance_path, control());
  4240       result_val->init_req(_instance_path, alloc_obj);
  4241       result_i_o ->set_req(_instance_path, i_o());
  4242       result_mem ->set_req(_instance_path, reset_memory());
  4245     // Generate code for the slow case.  We make a call to clone().
  4246     set_control(_gvn.transform(slow_region));
  4247     if (!stopped()) {
  4248       PreserveJVMState pjvms(this);
  4249       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4250       Node* slow_result = set_results_for_java_call(slow_call);
  4251       // this->control() comes from set_results_for_java_call
  4252       result_reg->init_req(_slow_path, control());
  4253       result_val->init_req(_slow_path, slow_result);
  4254       result_i_o ->set_req(_slow_path, i_o());
  4255       result_mem ->set_req(_slow_path, reset_memory());
  4258     // Return the combined state.
  4259     set_control(    _gvn.transform(result_reg) );
  4260     set_i_o(        _gvn.transform(result_i_o) );
  4261     set_all_memory( _gvn.transform(result_mem) );
  4262   } //original reexecute and sp are set back here
  4264   push(_gvn.transform(result_val));
  4266   return true;
  4270 // constants for computing the copy function
  4271 enum {
  4272   COPYFUNC_UNALIGNED = 0,
  4273   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  4274   COPYFUNC_CONJOINT = 0,
  4275   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  4276 };
  4278 // Note:  The condition "disjoint" applies also for overlapping copies
  4279 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  4280 static address
  4281 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  4282   int selector =
  4283     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  4284     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  4286 #define RETURN_STUB(xxx_arraycopy) { \
  4287   name = #xxx_arraycopy; \
  4288   return StubRoutines::xxx_arraycopy(); }
  4290   switch (t) {
  4291   case T_BYTE:
  4292   case T_BOOLEAN:
  4293     switch (selector) {
  4294     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4295     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4296     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4297     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4299   case T_CHAR:
  4300   case T_SHORT:
  4301     switch (selector) {
  4302     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4303     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4304     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4305     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4307   case T_INT:
  4308   case T_FLOAT:
  4309     switch (selector) {
  4310     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4311     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4312     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4313     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4315   case T_DOUBLE:
  4316   case T_LONG:
  4317     switch (selector) {
  4318     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4319     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4320     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4321     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4323   case T_ARRAY:
  4324   case T_OBJECT:
  4325     switch (selector) {
  4326     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4327     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4328     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4329     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4331   default:
  4332     ShouldNotReachHere();
  4333     return NULL;
  4336 #undef RETURN_STUB
  4339 //------------------------------basictype2arraycopy----------------------------
  4340 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4341                                             Node* src_offset,
  4342                                             Node* dest_offset,
  4343                                             bool disjoint_bases,
  4344                                             const char* &name) {
  4345   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4346   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4348   bool aligned = false;
  4349   bool disjoint = disjoint_bases;
  4351   // if the offsets are the same, we can treat the memory regions as
  4352   // disjoint, because either the memory regions are in different arrays,
  4353   // or they are identical (which we can treat as disjoint.)  We can also
  4354   // treat a copy with a destination index  less that the source index
  4355   // as disjoint since a low->high copy will work correctly in this case.
  4356   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4357       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4358     // both indices are constants
  4359     int s_offs = src_offset_inttype->get_con();
  4360     int d_offs = dest_offset_inttype->get_con();
  4361     int element_size = type2aelembytes(t);
  4362     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4363               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4364     if (s_offs >= d_offs)  disjoint = true;
  4365   } else if (src_offset == dest_offset && src_offset != NULL) {
  4366     // This can occur if the offsets are identical non-constants.
  4367     disjoint = true;
  4370   return select_arraycopy_function(t, aligned, disjoint, name);
  4374 //------------------------------inline_arraycopy-----------------------
  4375 bool LibraryCallKit::inline_arraycopy() {
  4376   // Restore the stack and pop off the arguments.
  4377   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4378   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4380   Node *src         = argument(0);
  4381   Node *src_offset  = argument(1);
  4382   Node *dest        = argument(2);
  4383   Node *dest_offset = argument(3);
  4384   Node *length      = argument(4);
  4386   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4387   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4388   // is.  The checks we choose to mandate at compile time are:
  4389   //
  4390   // (1) src and dest are arrays.
  4391   const Type* src_type = src->Value(&_gvn);
  4392   const Type* dest_type = dest->Value(&_gvn);
  4393   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4394   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4395   if (top_src  == NULL || top_src->klass()  == NULL ||
  4396       top_dest == NULL || top_dest->klass() == NULL) {
  4397     // Conservatively insert a memory barrier on all memory slices.
  4398     // Do not let writes into the source float below the arraycopy.
  4399     insert_mem_bar(Op_MemBarCPUOrder);
  4401     // Call StubRoutines::generic_arraycopy stub.
  4402     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4403                        src, src_offset, dest, dest_offset, length);
  4405     // Do not let reads from the destination float above the arraycopy.
  4406     // Since we cannot type the arrays, we don't know which slices
  4407     // might be affected.  We could restrict this barrier only to those
  4408     // memory slices which pertain to array elements--but don't bother.
  4409     if (!InsertMemBarAfterArraycopy)
  4410       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4411       insert_mem_bar(Op_MemBarCPUOrder);
  4412     return true;
  4415   // (2) src and dest arrays must have elements of the same BasicType
  4416   // Figure out the size and type of the elements we will be copying.
  4417   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4418   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4419   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4420   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4422   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4423     // The component types are not the same or are not recognized.  Punt.
  4424     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4425     generate_slow_arraycopy(TypePtr::BOTTOM,
  4426                             src, src_offset, dest, dest_offset, length);
  4427     return true;
  4430   //---------------------------------------------------------------------------
  4431   // We will make a fast path for this call to arraycopy.
  4433   // We have the following tests left to perform:
  4434   //
  4435   // (3) src and dest must not be null.
  4436   // (4) src_offset must not be negative.
  4437   // (5) dest_offset must not be negative.
  4438   // (6) length must not be negative.
  4439   // (7) src_offset + length must not exceed length of src.
  4440   // (8) dest_offset + length must not exceed length of dest.
  4441   // (9) each element of an oop array must be assignable
  4443   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4444   record_for_igvn(slow_region);
  4446   // (3) operands must not be null
  4447   // We currently perform our null checks with the do_null_check routine.
  4448   // This means that the null exceptions will be reported in the caller
  4449   // rather than (correctly) reported inside of the native arraycopy call.
  4450   // This should be corrected, given time.  We do our null check with the
  4451   // stack pointer restored.
  4452   _sp += nargs;
  4453   src  = do_null_check(src,  T_ARRAY);
  4454   dest = do_null_check(dest, T_ARRAY);
  4455   _sp -= nargs;
  4457   // (4) src_offset must not be negative.
  4458   generate_negative_guard(src_offset, slow_region);
  4460   // (5) dest_offset must not be negative.
  4461   generate_negative_guard(dest_offset, slow_region);
  4463   // (6) length must not be negative (moved to generate_arraycopy()).
  4464   // generate_negative_guard(length, slow_region);
  4466   // (7) src_offset + length must not exceed length of src.
  4467   generate_limit_guard(src_offset, length,
  4468                        load_array_length(src),
  4469                        slow_region);
  4471   // (8) dest_offset + length must not exceed length of dest.
  4472   generate_limit_guard(dest_offset, length,
  4473                        load_array_length(dest),
  4474                        slow_region);
  4476   // (9) each element of an oop array must be assignable
  4477   // The generate_arraycopy subroutine checks this.
  4479   // This is where the memory effects are placed:
  4480   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4481   generate_arraycopy(adr_type, dest_elem,
  4482                      src, src_offset, dest, dest_offset, length,
  4483                      false, false, slow_region);
  4485   return true;
  4488 //-----------------------------generate_arraycopy----------------------
  4489 // Generate an optimized call to arraycopy.
  4490 // Caller must guard against non-arrays.
  4491 // Caller must determine a common array basic-type for both arrays.
  4492 // Caller must validate offsets against array bounds.
  4493 // The slow_region has already collected guard failure paths
  4494 // (such as out of bounds length or non-conformable array types).
  4495 // The generated code has this shape, in general:
  4496 //
  4497 //     if (length == 0)  return   // via zero_path
  4498 //     slowval = -1
  4499 //     if (types unknown) {
  4500 //       slowval = call generic copy loop
  4501 //       if (slowval == 0)  return  // via checked_path
  4502 //     } else if (indexes in bounds) {
  4503 //       if ((is object array) && !(array type check)) {
  4504 //         slowval = call checked copy loop
  4505 //         if (slowval == 0)  return  // via checked_path
  4506 //       } else {
  4507 //         call bulk copy loop
  4508 //         return  // via fast_path
  4509 //       }
  4510 //     }
  4511 //     // adjust params for remaining work:
  4512 //     if (slowval != -1) {
  4513 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4514 //     }
  4515 //   slow_region:
  4516 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4517 //     return  // via slow_call_path
  4518 //
  4519 // This routine is used from several intrinsics:  System.arraycopy,
  4520 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4521 //
  4522 void
  4523 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4524                                    BasicType basic_elem_type,
  4525                                    Node* src,  Node* src_offset,
  4526                                    Node* dest, Node* dest_offset,
  4527                                    Node* copy_length,
  4528                                    bool disjoint_bases,
  4529                                    bool length_never_negative,
  4530                                    RegionNode* slow_region) {
  4532   if (slow_region == NULL) {
  4533     slow_region = new(C,1) RegionNode(1);
  4534     record_for_igvn(slow_region);
  4537   Node* original_dest      = dest;
  4538   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4539   bool  must_clear_dest    = false;
  4541   // See if this is the initialization of a newly-allocated array.
  4542   // If so, we will take responsibility here for initializing it to zero.
  4543   // (Note:  Because tightly_coupled_allocation performs checks on the
  4544   // out-edges of the dest, we need to avoid making derived pointers
  4545   // from it until we have checked its uses.)
  4546   if (ReduceBulkZeroing
  4547       && !ZeroTLAB              // pointless if already zeroed
  4548       && basic_elem_type != T_CONFLICT // avoid corner case
  4549       && !_gvn.eqv_uncast(src, dest)
  4550       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4551           != NULL)
  4552       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4553       && alloc->maybe_set_complete(&_gvn)) {
  4554     // "You break it, you buy it."
  4555     InitializeNode* init = alloc->initialization();
  4556     assert(init->is_complete(), "we just did this");
  4557     assert(dest->is_CheckCastPP(), "sanity");
  4558     assert(dest->in(0)->in(0) == init, "dest pinned");
  4559     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4560     // From this point on, every exit path is responsible for
  4561     // initializing any non-copied parts of the object to zero.
  4562     must_clear_dest = true;
  4563   } else {
  4564     // No zeroing elimination here.
  4565     alloc             = NULL;
  4566     //original_dest   = dest;
  4567     //must_clear_dest = false;
  4570   // Results are placed here:
  4571   enum { fast_path        = 1,  // normal void-returning assembly stub
  4572          checked_path     = 2,  // special assembly stub with cleanup
  4573          slow_call_path   = 3,  // something went wrong; call the VM
  4574          zero_path        = 4,  // bypass when length of copy is zero
  4575          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4576          PATH_LIMIT       = 6
  4577   };
  4578   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4579   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4580   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4581   record_for_igvn(result_region);
  4582   _gvn.set_type_bottom(result_i_o);
  4583   _gvn.set_type_bottom(result_memory);
  4584   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4586   // The slow_control path:
  4587   Node* slow_control;
  4588   Node* slow_i_o = i_o();
  4589   Node* slow_mem = memory(adr_type);
  4590   debug_only(slow_control = (Node*) badAddress);
  4592   // Checked control path:
  4593   Node* checked_control = top();
  4594   Node* checked_mem     = NULL;
  4595   Node* checked_i_o     = NULL;
  4596   Node* checked_value   = NULL;
  4598   if (basic_elem_type == T_CONFLICT) {
  4599     assert(!must_clear_dest, "");
  4600     Node* cv = generate_generic_arraycopy(adr_type,
  4601                                           src, src_offset, dest, dest_offset,
  4602                                           copy_length);
  4603     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4604     checked_control = control();
  4605     checked_i_o     = i_o();
  4606     checked_mem     = memory(adr_type);
  4607     checked_value   = cv;
  4608     set_control(top());         // no fast path
  4611   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4612   if (not_pos != NULL) {
  4613     PreserveJVMState pjvms(this);
  4614     set_control(not_pos);
  4616     // (6) length must not be negative.
  4617     if (!length_never_negative) {
  4618       generate_negative_guard(copy_length, slow_region);
  4621     // copy_length is 0.
  4622     if (!stopped() && must_clear_dest) {
  4623       Node* dest_length = alloc->in(AllocateNode::ALength);
  4624       if (_gvn.eqv_uncast(copy_length, dest_length)
  4625           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4626         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4627       } else {
  4628         // Clear the whole thing since there are no source elements to copy.
  4629         generate_clear_array(adr_type, dest, basic_elem_type,
  4630                              intcon(0), NULL,
  4631                              alloc->in(AllocateNode::AllocSize));
  4632         // Use a secondary InitializeNode as raw memory barrier.
  4633         // Currently it is needed only on this path since other
  4634         // paths have stub or runtime calls as raw memory barriers.
  4635         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4636                                                        Compile::AliasIdxRaw,
  4637                                                        top())->as_Initialize();
  4638         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4642     // Present the results of the fast call.
  4643     result_region->init_req(zero_path, control());
  4644     result_i_o   ->init_req(zero_path, i_o());
  4645     result_memory->init_req(zero_path, memory(adr_type));
  4648   if (!stopped() && must_clear_dest) {
  4649     // We have to initialize the *uncopied* part of the array to zero.
  4650     // The copy destination is the slice dest[off..off+len].  The other slices
  4651     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4652     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4653     Node* dest_length = alloc->in(AllocateNode::ALength);
  4654     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4655                                                           copy_length) );
  4657     // If there is a head section that needs zeroing, do it now.
  4658     if (find_int_con(dest_offset, -1) != 0) {
  4659       generate_clear_array(adr_type, dest, basic_elem_type,
  4660                            intcon(0), dest_offset,
  4661                            NULL);
  4664     // Next, perform a dynamic check on the tail length.
  4665     // It is often zero, and we can win big if we prove this.
  4666     // There are two wins:  Avoid generating the ClearArray
  4667     // with its attendant messy index arithmetic, and upgrade
  4668     // the copy to a more hardware-friendly word size of 64 bits.
  4669     Node* tail_ctl = NULL;
  4670     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4671       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4672       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4673       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4674       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4677     // At this point, let's assume there is no tail.
  4678     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4679       // There is no tail.  Try an upgrade to a 64-bit copy.
  4680       bool didit = false;
  4681       { PreserveJVMState pjvms(this);
  4682         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4683                                          src, src_offset, dest, dest_offset,
  4684                                          dest_size);
  4685         if (didit) {
  4686           // Present the results of the block-copying fast call.
  4687           result_region->init_req(bcopy_path, control());
  4688           result_i_o   ->init_req(bcopy_path, i_o());
  4689           result_memory->init_req(bcopy_path, memory(adr_type));
  4692       if (didit)
  4693         set_control(top());     // no regular fast path
  4696     // Clear the tail, if any.
  4697     if (tail_ctl != NULL) {
  4698       Node* notail_ctl = stopped() ? NULL : control();
  4699       set_control(tail_ctl);
  4700       if (notail_ctl == NULL) {
  4701         generate_clear_array(adr_type, dest, basic_elem_type,
  4702                              dest_tail, NULL,
  4703                              dest_size);
  4704       } else {
  4705         // Make a local merge.
  4706         Node* done_ctl = new(C,3) RegionNode(3);
  4707         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4708         done_ctl->init_req(1, notail_ctl);
  4709         done_mem->init_req(1, memory(adr_type));
  4710         generate_clear_array(adr_type, dest, basic_elem_type,
  4711                              dest_tail, NULL,
  4712                              dest_size);
  4713         done_ctl->init_req(2, control());
  4714         done_mem->init_req(2, memory(adr_type));
  4715         set_control( _gvn.transform(done_ctl) );
  4716         set_memory(  _gvn.transform(done_mem), adr_type );
  4721   BasicType copy_type = basic_elem_type;
  4722   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4723   if (!stopped() && copy_type == T_OBJECT) {
  4724     // If src and dest have compatible element types, we can copy bits.
  4725     // Types S[] and D[] are compatible if D is a supertype of S.
  4726     //
  4727     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4728     // which performs a fast optimistic per-oop check, and backs off
  4729     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4730     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4732     // Get the klassOop for both src and dest
  4733     Node* src_klass  = load_object_klass(src);
  4734     Node* dest_klass = load_object_klass(dest);
  4736     // Generate the subtype check.
  4737     // This might fold up statically, or then again it might not.
  4738     //
  4739     // Non-static example:  Copying List<String>.elements to a new String[].
  4740     // The backing store for a List<String> is always an Object[],
  4741     // but its elements are always type String, if the generic types
  4742     // are correct at the source level.
  4743     //
  4744     // Test S[] against D[], not S against D, because (probably)
  4745     // the secondary supertype cache is less busy for S[] than S.
  4746     // This usually only matters when D is an interface.
  4747     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4748     // Plug failing path into checked_oop_disjoint_arraycopy
  4749     if (not_subtype_ctrl != top()) {
  4750       PreserveJVMState pjvms(this);
  4751       set_control(not_subtype_ctrl);
  4752       // (At this point we can assume disjoint_bases, since types differ.)
  4753       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4754       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4755       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4756       Node* dest_elem_klass = _gvn.transform(n1);
  4757       Node* cv = generate_checkcast_arraycopy(adr_type,
  4758                                               dest_elem_klass,
  4759                                               src, src_offset, dest, dest_offset,
  4760                                               copy_length);
  4761       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4762       checked_control = control();
  4763       checked_i_o     = i_o();
  4764       checked_mem     = memory(adr_type);
  4765       checked_value   = cv;
  4767     // At this point we know we do not need type checks on oop stores.
  4769     // Let's see if we need card marks:
  4770     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4771       // If we do not need card marks, copy using the jint or jlong stub.
  4772       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4773       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4774              "sizes agree");
  4778   if (!stopped()) {
  4779     // Generate the fast path, if possible.
  4780     PreserveJVMState pjvms(this);
  4781     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4782                                  src, src_offset, dest, dest_offset,
  4783                                  ConvI2X(copy_length));
  4785     // Present the results of the fast call.
  4786     result_region->init_req(fast_path, control());
  4787     result_i_o   ->init_req(fast_path, i_o());
  4788     result_memory->init_req(fast_path, memory(adr_type));
  4791   // Here are all the slow paths up to this point, in one bundle:
  4792   slow_control = top();
  4793   if (slow_region != NULL)
  4794     slow_control = _gvn.transform(slow_region);
  4795   debug_only(slow_region = (RegionNode*)badAddress);
  4797   set_control(checked_control);
  4798   if (!stopped()) {
  4799     // Clean up after the checked call.
  4800     // The returned value is either 0 or -1^K,
  4801     // where K = number of partially transferred array elements.
  4802     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4803     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4804     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4806     // If it is 0, we are done, so transfer to the end.
  4807     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4808     result_region->init_req(checked_path, checks_done);
  4809     result_i_o   ->init_req(checked_path, checked_i_o);
  4810     result_memory->init_req(checked_path, checked_mem);
  4812     // If it is not zero, merge into the slow call.
  4813     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4814     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4815     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4816     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4817     record_for_igvn(slow_reg2);
  4818     slow_reg2  ->init_req(1, slow_control);
  4819     slow_i_o2  ->init_req(1, slow_i_o);
  4820     slow_mem2  ->init_req(1, slow_mem);
  4821     slow_reg2  ->init_req(2, control());
  4822     slow_i_o2  ->init_req(2, checked_i_o);
  4823     slow_mem2  ->init_req(2, checked_mem);
  4825     slow_control = _gvn.transform(slow_reg2);
  4826     slow_i_o     = _gvn.transform(slow_i_o2);
  4827     slow_mem     = _gvn.transform(slow_mem2);
  4829     if (alloc != NULL) {
  4830       // We'll restart from the very beginning, after zeroing the whole thing.
  4831       // This can cause double writes, but that's OK since dest is brand new.
  4832       // So we ignore the low 31 bits of the value returned from the stub.
  4833     } else {
  4834       // We must continue the copy exactly where it failed, or else
  4835       // another thread might see the wrong number of writes to dest.
  4836       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4837       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4838       slow_offset->init_req(1, intcon(0));
  4839       slow_offset->init_req(2, checked_offset);
  4840       slow_offset  = _gvn.transform(slow_offset);
  4842       // Adjust the arguments by the conditionally incoming offset.
  4843       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4844       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4845       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4847       // Tweak the node variables to adjust the code produced below:
  4848       src_offset  = src_off_plus;
  4849       dest_offset = dest_off_plus;
  4850       copy_length = length_minus;
  4854   set_control(slow_control);
  4855   if (!stopped()) {
  4856     // Generate the slow path, if needed.
  4857     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4859     set_memory(slow_mem, adr_type);
  4860     set_i_o(slow_i_o);
  4862     if (must_clear_dest) {
  4863       generate_clear_array(adr_type, dest, basic_elem_type,
  4864                            intcon(0), NULL,
  4865                            alloc->in(AllocateNode::AllocSize));
  4868     generate_slow_arraycopy(adr_type,
  4869                             src, src_offset, dest, dest_offset,
  4870                             copy_length);
  4872     result_region->init_req(slow_call_path, control());
  4873     result_i_o   ->init_req(slow_call_path, i_o());
  4874     result_memory->init_req(slow_call_path, memory(adr_type));
  4877   // Remove unused edges.
  4878   for (uint i = 1; i < result_region->req(); i++) {
  4879     if (result_region->in(i) == NULL)
  4880       result_region->init_req(i, top());
  4883   // Finished; return the combined state.
  4884   set_control( _gvn.transform(result_region) );
  4885   set_i_o(     _gvn.transform(result_i_o)    );
  4886   set_memory(  _gvn.transform(result_memory), adr_type );
  4888   // The memory edges above are precise in order to model effects around
  4889   // array copies accurately to allow value numbering of field loads around
  4890   // arraycopy.  Such field loads, both before and after, are common in Java
  4891   // collections and similar classes involving header/array data structures.
  4892   //
  4893   // But with low number of register or when some registers are used or killed
  4894   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4895   // The next memory barrier is added to avoid it. If the arraycopy can be
  4896   // optimized away (which it can, sometimes) then we can manually remove
  4897   // the membar also.
  4898   //
  4899   // Do not let reads from the cloned object float above the arraycopy.
  4900   if (InsertMemBarAfterArraycopy || alloc != NULL)
  4901     insert_mem_bar(Op_MemBarCPUOrder);
  4905 // Helper function which determines if an arraycopy immediately follows
  4906 // an allocation, with no intervening tests or other escapes for the object.
  4907 AllocateArrayNode*
  4908 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4909                                            RegionNode* slow_region) {
  4910   if (stopped())             return NULL;  // no fast path
  4911   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4913   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4914   if (alloc == NULL)  return NULL;
  4916   Node* rawmem = memory(Compile::AliasIdxRaw);
  4917   // Is the allocation's memory state untouched?
  4918   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4919     // Bail out if there have been raw-memory effects since the allocation.
  4920     // (Example:  There might have been a call or safepoint.)
  4921     return NULL;
  4923   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4924   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4925     return NULL;
  4928   // There must be no unexpected observers of this allocation.
  4929   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4930     Node* obs = ptr->fast_out(i);
  4931     if (obs != this->map()) {
  4932       return NULL;
  4936   // This arraycopy must unconditionally follow the allocation of the ptr.
  4937   Node* alloc_ctl = ptr->in(0);
  4938   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4940   Node* ctl = control();
  4941   while (ctl != alloc_ctl) {
  4942     // There may be guards which feed into the slow_region.
  4943     // Any other control flow means that we might not get a chance
  4944     // to finish initializing the allocated object.
  4945     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4946       IfNode* iff = ctl->in(0)->as_If();
  4947       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4948       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4949       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4950         ctl = iff->in(0);       // This test feeds the known slow_region.
  4951         continue;
  4953       // One more try:  Various low-level checks bottom out in
  4954       // uncommon traps.  If the debug-info of the trap omits
  4955       // any reference to the allocation, as we've already
  4956       // observed, then there can be no objection to the trap.
  4957       bool found_trap = false;
  4958       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4959         Node* obs = not_ctl->fast_out(j);
  4960         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4961             (obs->as_Call()->entry_point() ==
  4962              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  4963           found_trap = true; break;
  4966       if (found_trap) {
  4967         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4968         continue;
  4971     return NULL;
  4974   // If we get this far, we have an allocation which immediately
  4975   // precedes the arraycopy, and we can take over zeroing the new object.
  4976   // The arraycopy will finish the initialization, and provide
  4977   // a new control state to which we will anchor the destination pointer.
  4979   return alloc;
  4982 // Helper for initialization of arrays, creating a ClearArray.
  4983 // It writes zero bits in [start..end), within the body of an array object.
  4984 // The memory effects are all chained onto the 'adr_type' alias category.
  4985 //
  4986 // Since the object is otherwise uninitialized, we are free
  4987 // to put a little "slop" around the edges of the cleared area,
  4988 // as long as it does not go back into the array's header,
  4989 // or beyond the array end within the heap.
  4990 //
  4991 // The lower edge can be rounded down to the nearest jint and the
  4992 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4993 //
  4994 // Arguments:
  4995 //   adr_type           memory slice where writes are generated
  4996 //   dest               oop of the destination array
  4997 //   basic_elem_type    element type of the destination
  4998 //   slice_idx          array index of first element to store
  4999 //   slice_len          number of elements to store (or NULL)
  5000 //   dest_size          total size in bytes of the array object
  5001 //
  5002 // Exactly one of slice_len or dest_size must be non-NULL.
  5003 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5004 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5005 void
  5006 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5007                                      Node* dest,
  5008                                      BasicType basic_elem_type,
  5009                                      Node* slice_idx,
  5010                                      Node* slice_len,
  5011                                      Node* dest_size) {
  5012   // one or the other but not both of slice_len and dest_size:
  5013   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5014   if (slice_len == NULL)  slice_len = top();
  5015   if (dest_size == NULL)  dest_size = top();
  5017   // operate on this memory slice:
  5018   Node* mem = memory(adr_type); // memory slice to operate on
  5020   // scaling and rounding of indexes:
  5021   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5022   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5023   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5024   int bump_bit  = (-1 << scale) & BytesPerInt;
  5026   // determine constant starts and ends
  5027   const intptr_t BIG_NEG = -128;
  5028   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5029   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5030   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5031   if (slice_len_con == 0) {
  5032     return;                     // nothing to do here
  5034   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5035   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5036   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5037     assert(end_con < 0, "not two cons");
  5038     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5039                        BytesPerLong);
  5042   if (start_con >= 0 && end_con >= 0) {
  5043     // Constant start and end.  Simple.
  5044     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5045                                        start_con, end_con, &_gvn);
  5046   } else if (start_con >= 0 && dest_size != top()) {
  5047     // Constant start, pre-rounded end after the tail of the array.
  5048     Node* end = dest_size;
  5049     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5050                                        start_con, end, &_gvn);
  5051   } else if (start_con >= 0 && slice_len != top()) {
  5052     // Constant start, non-constant end.  End needs rounding up.
  5053     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5054     intptr_t end_base  = abase + (slice_idx_con << scale);
  5055     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5056     Node*    end       = ConvI2X(slice_len);
  5057     if (scale != 0)
  5058       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5059     end_base += end_round;
  5060     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5061     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5062     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5063                                        start_con, end, &_gvn);
  5064   } else if (start_con < 0 && dest_size != top()) {
  5065     // Non-constant start, pre-rounded end after the tail of the array.
  5066     // This is almost certainly a "round-to-end" operation.
  5067     Node* start = slice_idx;
  5068     start = ConvI2X(start);
  5069     if (scale != 0)
  5070       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5071     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5072     if ((bump_bit | clear_low) != 0) {
  5073       int to_clear = (bump_bit | clear_low);
  5074       // Align up mod 8, then store a jint zero unconditionally
  5075       // just before the mod-8 boundary.
  5076       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5077           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5078         bump_bit = 0;
  5079         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5080       } else {
  5081         // Bump 'start' up to (or past) the next jint boundary:
  5082         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5083         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5085       // Round bumped 'start' down to jlong boundary in body of array.
  5086       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5087       if (bump_bit != 0) {
  5088         // Store a zero to the immediately preceding jint:
  5089         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5090         Node* p1 = basic_plus_adr(dest, x1);
  5091         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5092         mem = _gvn.transform(mem);
  5095     Node* end = dest_size; // pre-rounded
  5096     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5097                                        start, end, &_gvn);
  5098   } else {
  5099     // Non-constant start, unrounded non-constant end.
  5100     // (Nobody zeroes a random midsection of an array using this routine.)
  5101     ShouldNotReachHere();       // fix caller
  5104   // Done.
  5105   set_memory(mem, adr_type);
  5109 bool
  5110 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5111                                          BasicType basic_elem_type,
  5112                                          AllocateNode* alloc,
  5113                                          Node* src,  Node* src_offset,
  5114                                          Node* dest, Node* dest_offset,
  5115                                          Node* dest_size) {
  5116   // See if there is an advantage from block transfer.
  5117   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5118   if (scale >= LogBytesPerLong)
  5119     return false;               // it is already a block transfer
  5121   // Look at the alignment of the starting offsets.
  5122   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5123   const intptr_t BIG_NEG = -128;
  5124   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5126   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5127   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5128   if (src_off < 0 || dest_off < 0)
  5129     // At present, we can only understand constants.
  5130     return false;
  5132   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5133     // Non-aligned; too bad.
  5134     // One more chance:  Pick off an initial 32-bit word.
  5135     // This is a common case, since abase can be odd mod 8.
  5136     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5137         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5138       Node* sptr = basic_plus_adr(src,  src_off);
  5139       Node* dptr = basic_plus_adr(dest, dest_off);
  5140       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5141       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5142       src_off += BytesPerInt;
  5143       dest_off += BytesPerInt;
  5144     } else {
  5145       return false;
  5148   assert(src_off % BytesPerLong == 0, "");
  5149   assert(dest_off % BytesPerLong == 0, "");
  5151   // Do this copy by giant steps.
  5152   Node* sptr  = basic_plus_adr(src,  src_off);
  5153   Node* dptr  = basic_plus_adr(dest, dest_off);
  5154   Node* countx = dest_size;
  5155   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5156   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5158   bool disjoint_bases = true;   // since alloc != NULL
  5159   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5160                                sptr, NULL, dptr, NULL, countx);
  5162   return true;
  5166 // Helper function; generates code for the slow case.
  5167 // We make a call to a runtime method which emulates the native method,
  5168 // but without the native wrapper overhead.
  5169 void
  5170 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5171                                         Node* src,  Node* src_offset,
  5172                                         Node* dest, Node* dest_offset,
  5173                                         Node* copy_length) {
  5174   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5175                                  OptoRuntime::slow_arraycopy_Type(),
  5176                                  OptoRuntime::slow_arraycopy_Java(),
  5177                                  "slow_arraycopy", adr_type,
  5178                                  src, src_offset, dest, dest_offset,
  5179                                  copy_length);
  5181   // Handle exceptions thrown by this fellow:
  5182   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5185 // Helper function; generates code for cases requiring runtime checks.
  5186 Node*
  5187 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5188                                              Node* dest_elem_klass,
  5189                                              Node* src,  Node* src_offset,
  5190                                              Node* dest, Node* dest_offset,
  5191                                              Node* copy_length) {
  5192   if (stopped())  return NULL;
  5194   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  5195   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5196     return NULL;
  5199   // Pick out the parameters required to perform a store-check
  5200   // for the target array.  This is an optimistic check.  It will
  5201   // look in each non-null element's class, at the desired klass's
  5202   // super_check_offset, for the desired klass.
  5203   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5204   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5205   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  5206   Node* check_offset = _gvn.transform(n3);
  5207   Node* check_value  = dest_elem_klass;
  5209   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5210   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5212   // (We know the arrays are never conjoint, because their types differ.)
  5213   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5214                                  OptoRuntime::checkcast_arraycopy_Type(),
  5215                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5216                                  // five arguments, of which two are
  5217                                  // intptr_t (jlong in LP64)
  5218                                  src_start, dest_start,
  5219                                  copy_length XTOP,
  5220                                  check_offset XTOP,
  5221                                  check_value);
  5223   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5227 // Helper function; generates code for cases requiring runtime checks.
  5228 Node*
  5229 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5230                                            Node* src,  Node* src_offset,
  5231                                            Node* dest, Node* dest_offset,
  5232                                            Node* copy_length) {
  5233   if (stopped())  return NULL;
  5235   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5236   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5237     return NULL;
  5240   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5241                     OptoRuntime::generic_arraycopy_Type(),
  5242                     copyfunc_addr, "generic_arraycopy", adr_type,
  5243                     src, src_offset, dest, dest_offset, copy_length);
  5245   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5248 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5249 void
  5250 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5251                                              BasicType basic_elem_type,
  5252                                              bool disjoint_bases,
  5253                                              Node* src,  Node* src_offset,
  5254                                              Node* dest, Node* dest_offset,
  5255                                              Node* copy_length) {
  5256   if (stopped())  return;               // nothing to do
  5258   Node* src_start  = src;
  5259   Node* dest_start = dest;
  5260   if (src_offset != NULL || dest_offset != NULL) {
  5261     assert(src_offset != NULL && dest_offset != NULL, "");
  5262     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5263     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5266   // Figure out which arraycopy runtime method to call.
  5267   const char* copyfunc_name = "arraycopy";
  5268   address     copyfunc_addr =
  5269       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5270                           disjoint_bases, copyfunc_name);
  5272   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5273   make_runtime_call(RC_LEAF|RC_NO_FP,
  5274                     OptoRuntime::fast_arraycopy_Type(),
  5275                     copyfunc_addr, copyfunc_name, adr_type,
  5276                     src_start, dest_start, copy_length XTOP);

mercurial