src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 14 Jul 2009 15:40:39 -0700

author
ysr
date
Tue, 14 Jul 2009 15:40:39 -0700
changeset 1280
df6caf649ff7
parent 1273
0316eac49d5a
child 1281
42d84bbbecf4
permissions
-rw-r--r--

6700789: G1: Enable use of compressed oops with G1 heaps
Summary: Modifications to G1 so as to allow the use of compressed oops.
Reviewed-by: apetrusenko, coleenp, jmasa, kvn, never, phh, tonyp

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    26 // It uses the "Garbage First" heap organization and algorithm, which
    27 // may combine concurrent marking with parallel, incremental compaction of
    28 // heap subsets that will yield large amounts of garbage.
    30 class HeapRegion;
    31 class HeapRegionSeq;
    32 class PermanentGenerationSpec;
    33 class GenerationSpec;
    34 class OopsInHeapRegionClosure;
    35 class G1ScanHeapEvacClosure;
    36 class ObjectClosure;
    37 class SpaceClosure;
    38 class CompactibleSpaceClosure;
    39 class Space;
    40 class G1CollectorPolicy;
    41 class GenRemSet;
    42 class G1RemSet;
    43 class HeapRegionRemSetIterator;
    44 class ConcurrentMark;
    45 class ConcurrentMarkThread;
    46 class ConcurrentG1Refine;
    47 class ConcurrentZFThread;
    49 // If want to accumulate detailed statistics on work queues
    50 // turn this on.
    51 #define G1_DETAILED_STATS 0
    53 #if G1_DETAILED_STATS
    54 #  define IF_G1_DETAILED_STATS(code) code
    55 #else
    56 #  define IF_G1_DETAILED_STATS(code)
    57 #endif
    59 typedef GenericTaskQueue<StarTask>    RefToScanQueue;
    60 typedef GenericTaskQueueSet<StarTask> RefToScanQueueSet;
    62 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    63 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    65 enum G1GCThreadGroups {
    66   G1CRGroup = 0,
    67   G1ZFGroup = 1,
    68   G1CMGroup = 2,
    69   G1CLGroup = 3
    70 };
    72 enum GCAllocPurpose {
    73   GCAllocForTenured,
    74   GCAllocForSurvived,
    75   GCAllocPurposeCount
    76 };
    78 class YoungList : public CHeapObj {
    79 private:
    80   G1CollectedHeap* _g1h;
    82   HeapRegion* _head;
    84   HeapRegion* _scan_only_head;
    85   HeapRegion* _scan_only_tail;
    86   size_t      _length;
    87   size_t      _scan_only_length;
    89   size_t      _last_sampled_rs_lengths;
    90   size_t      _sampled_rs_lengths;
    91   HeapRegion* _curr;
    92   HeapRegion* _curr_scan_only;
    94   HeapRegion* _survivor_head;
    95   HeapRegion* _survivor_tail;
    96   size_t      _survivor_length;
    98   void          empty_list(HeapRegion* list);
   100 public:
   101   YoungList(G1CollectedHeap* g1h);
   103   void          push_region(HeapRegion* hr);
   104   void          add_survivor_region(HeapRegion* hr);
   105   HeapRegion*   pop_region();
   106   void          empty_list();
   107   bool          is_empty() { return _length == 0; }
   108   size_t        length() { return _length; }
   109   size_t        scan_only_length() { return _scan_only_length; }
   110   size_t        survivor_length() { return _survivor_length; }
   112   void rs_length_sampling_init();
   113   bool rs_length_sampling_more();
   114   void rs_length_sampling_next();
   116   void reset_sampled_info() {
   117     _last_sampled_rs_lengths =   0;
   118   }
   119   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   121   // for development purposes
   122   void reset_auxilary_lists();
   123   HeapRegion* first_region() { return _head; }
   124   HeapRegion* first_scan_only_region() { return _scan_only_head; }
   125   HeapRegion* first_survivor_region() { return _survivor_head; }
   126   HeapRegion* last_survivor_region() { return _survivor_tail; }
   127   HeapRegion* par_get_next_scan_only_region() {
   128     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   129     HeapRegion* ret = _curr_scan_only;
   130     if (ret != NULL)
   131       _curr_scan_only = ret->get_next_young_region();
   132     return ret;
   133   }
   135   // debugging
   136   bool          check_list_well_formed();
   137   bool          check_list_empty(bool ignore_scan_only_list,
   138                                  bool check_sample = true);
   139   void          print();
   140 };
   142 class RefineCardTableEntryClosure;
   143 class G1CollectedHeap : public SharedHeap {
   144   friend class VM_G1CollectForAllocation;
   145   friend class VM_GenCollectForPermanentAllocation;
   146   friend class VM_G1CollectFull;
   147   friend class VM_G1IncCollectionPause;
   148   friend class VMStructs;
   150   // Closures used in implementation.
   151   friend class G1ParCopyHelper;
   152   friend class G1IsAliveClosure;
   153   friend class G1EvacuateFollowersClosure;
   154   friend class G1ParScanThreadState;
   155   friend class G1ParScanClosureSuper;
   156   friend class G1ParEvacuateFollowersClosure;
   157   friend class G1ParTask;
   158   friend class G1FreeGarbageRegionClosure;
   159   friend class RefineCardTableEntryClosure;
   160   friend class G1PrepareCompactClosure;
   161   friend class RegionSorter;
   162   friend class CountRCClosure;
   163   friend class EvacPopObjClosure;
   164   friend class G1ParCleanupCTTask;
   166   // Other related classes.
   167   friend class G1MarkSweep;
   169 private:
   170   enum SomePrivateConstants {
   171     VeryLargeInBytes = HeapRegion::GrainBytes/2,
   172     VeryLargeInWords = VeryLargeInBytes/HeapWordSize,
   173     MinHeapDeltaBytes = 10 * HeapRegion::GrainBytes,      // FIXME
   174     NumAPIs = HeapRegion::MaxAge
   175   };
   177   // The one and only G1CollectedHeap, so static functions can find it.
   178   static G1CollectedHeap* _g1h;
   180   // Storage for the G1 heap (excludes the permanent generation).
   181   VirtualSpace _g1_storage;
   182   MemRegion    _g1_reserved;
   184   // The part of _g1_storage that is currently committed.
   185   MemRegion _g1_committed;
   187   // The maximum part of _g1_storage that has ever been committed.
   188   MemRegion _g1_max_committed;
   190   // The number of regions that are completely free.
   191   size_t _free_regions;
   193   // The number of regions we could create by expansion.
   194   size_t _expansion_regions;
   196   // Return the number of free regions in the heap (by direct counting.)
   197   size_t count_free_regions();
   198   // Return the number of free regions on the free and unclean lists.
   199   size_t count_free_regions_list();
   201   // The block offset table for the G1 heap.
   202   G1BlockOffsetSharedArray* _bot_shared;
   204   // Move all of the regions off the free lists, then rebuild those free
   205   // lists, before and after full GC.
   206   void tear_down_region_lists();
   207   void rebuild_region_lists();
   208   // This sets all non-empty regions to need zero-fill (which they will if
   209   // they are empty after full collection.)
   210   void set_used_regions_to_need_zero_fill();
   212   // The sequence of all heap regions in the heap.
   213   HeapRegionSeq* _hrs;
   215   // The region from which normal-sized objects are currently being
   216   // allocated.  May be NULL.
   217   HeapRegion* _cur_alloc_region;
   219   // Postcondition: cur_alloc_region == NULL.
   220   void abandon_cur_alloc_region();
   221   void abandon_gc_alloc_regions();
   223   // The to-space memory regions into which objects are being copied during
   224   // a GC.
   225   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   226   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   227   // These are the regions, one per GCAllocPurpose, that are half-full
   228   // at the end of a collection and that we want to reuse during the
   229   // next collection.
   230   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   231   // This specifies whether we will keep the last half-full region at
   232   // the end of a collection so that it can be reused during the next
   233   // collection (this is specified per GCAllocPurpose)
   234   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   236   // A list of the regions that have been set to be alloc regions in the
   237   // current collection.
   238   HeapRegion* _gc_alloc_region_list;
   240   // When called by par thread, require par_alloc_during_gc_lock() to be held.
   241   void push_gc_alloc_region(HeapRegion* hr);
   243   // This should only be called single-threaded.  Undeclares all GC alloc
   244   // regions.
   245   void forget_alloc_region_list();
   247   // Should be used to set an alloc region, because there's other
   248   // associated bookkeeping.
   249   void set_gc_alloc_region(int purpose, HeapRegion* r);
   251   // Check well-formedness of alloc region list.
   252   bool check_gc_alloc_regions();
   254   // Outside of GC pauses, the number of bytes used in all regions other
   255   // than the current allocation region.
   256   size_t _summary_bytes_used;
   258   // This is used for a quick test on whether a reference points into
   259   // the collection set or not. Basically, we have an array, with one
   260   // byte per region, and that byte denotes whether the corresponding
   261   // region is in the collection set or not. The entry corresponding
   262   // the bottom of the heap, i.e., region 0, is pointed to by
   263   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   264   // biased so that it actually points to address 0 of the address
   265   // space, to make the test as fast as possible (we can simply shift
   266   // the address to address into it, instead of having to subtract the
   267   // bottom of the heap from the address before shifting it; basically
   268   // it works in the same way the card table works).
   269   bool* _in_cset_fast_test;
   271   // The allocated array used for the fast test on whether a reference
   272   // points into the collection set or not. This field is also used to
   273   // free the array.
   274   bool* _in_cset_fast_test_base;
   276   // The length of the _in_cset_fast_test_base array.
   277   size_t _in_cset_fast_test_length;
   279   volatile unsigned _gc_time_stamp;
   281   size_t* _surviving_young_words;
   283   void setup_surviving_young_words();
   284   void update_surviving_young_words(size_t* surv_young_words);
   285   void cleanup_surviving_young_words();
   287 protected:
   289   // Returns "true" iff none of the gc alloc regions have any allocations
   290   // since the last call to "save_marks".
   291   bool all_alloc_regions_no_allocs_since_save_marks();
   292   // Perform finalization stuff on all allocation regions.
   293   void retire_all_alloc_regions();
   295   // The number of regions allocated to hold humongous objects.
   296   int         _num_humongous_regions;
   297   YoungList*  _young_list;
   299   // The current policy object for the collector.
   300   G1CollectorPolicy* _g1_policy;
   302   // Parallel allocation lock to protect the current allocation region.
   303   Mutex  _par_alloc_during_gc_lock;
   304   Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
   306   // If possible/desirable, allocate a new HeapRegion for normal object
   307   // allocation sufficient for an allocation of the given "word_size".
   308   // If "do_expand" is true, will attempt to expand the heap if necessary
   309   // to to satisfy the request.  If "zero_filled" is true, requires a
   310   // zero-filled region.
   311   // (Returning NULL will trigger a GC.)
   312   virtual HeapRegion* newAllocRegion_work(size_t word_size,
   313                                           bool do_expand,
   314                                           bool zero_filled);
   316   virtual HeapRegion* newAllocRegion(size_t word_size,
   317                                      bool zero_filled = true) {
   318     return newAllocRegion_work(word_size, false, zero_filled);
   319   }
   320   virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
   321                                                   size_t word_size,
   322                                                   bool zero_filled = true);
   324   // Attempt to allocate an object of the given (very large) "word_size".
   325   // Returns "NULL" on failure.
   326   virtual HeapWord* humongousObjAllocate(size_t word_size);
   328   // If possible, allocate a block of the given word_size, else return "NULL".
   329   // Returning NULL will trigger GC or heap expansion.
   330   // These two methods have rather awkward pre- and
   331   // post-conditions. If they are called outside a safepoint, then
   332   // they assume that the caller is holding the heap lock. Upon return
   333   // they release the heap lock, if they are returning a non-NULL
   334   // value. attempt_allocation_slow() also dirties the cards of a
   335   // newly-allocated young region after it releases the heap
   336   // lock. This change in interface was the neatest way to achieve
   337   // this card dirtying without affecting mem_allocate(), which is a
   338   // more frequently called method. We tried two or three different
   339   // approaches, but they were even more hacky.
   340   HeapWord* attempt_allocation(size_t word_size,
   341                                bool permit_collection_pause = true);
   343   HeapWord* attempt_allocation_slow(size_t word_size,
   344                                     bool permit_collection_pause = true);
   346   // Allocate blocks during garbage collection. Will ensure an
   347   // allocation region, either by picking one or expanding the
   348   // heap, and then allocate a block of the given size. The block
   349   // may not be a humongous - it must fit into a single heap region.
   350   HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   351   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   353   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   354                                     HeapRegion*    alloc_region,
   355                                     bool           par,
   356                                     size_t         word_size);
   358   // Ensure that no further allocations can happen in "r", bearing in mind
   359   // that parallel threads might be attempting allocations.
   360   void par_allocate_remaining_space(HeapRegion* r);
   362   // Retires an allocation region when it is full or at the end of a
   363   // GC pause.
   364   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   366   // Helper function for two callbacks below.
   367   // "full", if true, indicates that the GC is for a System.gc() request,
   368   // and should collect the entire heap.  If "clear_all_soft_refs" is true,
   369   // all soft references are cleared during the GC.  If "full" is false,
   370   // "word_size" describes the allocation that the GC should
   371   // attempt (at least) to satisfy.
   372   void do_collection(bool full, bool clear_all_soft_refs,
   373                      size_t word_size);
   375   // Callback from VM_G1CollectFull operation.
   376   // Perform a full collection.
   377   void do_full_collection(bool clear_all_soft_refs);
   379   // Resize the heap if necessary after a full collection.  If this is
   380   // after a collect-for allocation, "word_size" is the allocation size,
   381   // and will be considered part of the used portion of the heap.
   382   void resize_if_necessary_after_full_collection(size_t word_size);
   384   // Callback from VM_G1CollectForAllocation operation.
   385   // This function does everything necessary/possible to satisfy a
   386   // failed allocation request (including collection, expansion, etc.)
   387   HeapWord* satisfy_failed_allocation(size_t word_size);
   389   // Attempting to expand the heap sufficiently
   390   // to support an allocation of the given "word_size".  If
   391   // successful, perform the allocation and return the address of the
   392   // allocated block, or else "NULL".
   393   virtual HeapWord* expand_and_allocate(size_t word_size);
   395 public:
   396   // Expand the garbage-first heap by at least the given size (in bytes!).
   397   // (Rounds up to a HeapRegion boundary.)
   398   virtual void expand(size_t expand_bytes);
   400   // Do anything common to GC's.
   401   virtual void gc_prologue(bool full);
   402   virtual void gc_epilogue(bool full);
   404   // We register a region with the fast "in collection set" test. We
   405   // simply set to true the array slot corresponding to this region.
   406   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   407     assert(_in_cset_fast_test_base != NULL, "sanity");
   408     assert(r->in_collection_set(), "invariant");
   409     int index = r->hrs_index();
   410     assert(0 <= (size_t) index && (size_t) index < _in_cset_fast_test_length,
   411            "invariant");
   412     assert(!_in_cset_fast_test_base[index], "invariant");
   413     _in_cset_fast_test_base[index] = true;
   414   }
   416   // This is a fast test on whether a reference points into the
   417   // collection set or not. It does not assume that the reference
   418   // points into the heap; if it doesn't, it will return false.
   419   bool in_cset_fast_test(oop obj) {
   420     assert(_in_cset_fast_test != NULL, "sanity");
   421     if (_g1_committed.contains((HeapWord*) obj)) {
   422       // no need to subtract the bottom of the heap from obj,
   423       // _in_cset_fast_test is biased
   424       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   425       bool ret = _in_cset_fast_test[index];
   426       // let's make sure the result is consistent with what the slower
   427       // test returns
   428       assert( ret || !obj_in_cs(obj), "sanity");
   429       assert(!ret ||  obj_in_cs(obj), "sanity");
   430       return ret;
   431     } else {
   432       return false;
   433     }
   434   }
   436 protected:
   438   // Shrink the garbage-first heap by at most the given size (in bytes!).
   439   // (Rounds down to a HeapRegion boundary.)
   440   virtual void shrink(size_t expand_bytes);
   441   void shrink_helper(size_t expand_bytes);
   443   // Do an incremental collection: identify a collection set, and evacuate
   444   // its live objects elsewhere.
   445   virtual void do_collection_pause();
   447   // The guts of the incremental collection pause, executed by the vm
   448   // thread.
   449   virtual void do_collection_pause_at_safepoint();
   451   // Actually do the work of evacuating the collection set.
   452   virtual void evacuate_collection_set();
   454   // If this is an appropriate right time, do a collection pause.
   455   // The "word_size" argument, if non-zero, indicates the size of an
   456   // allocation request that is prompting this query.
   457   void do_collection_pause_if_appropriate(size_t word_size);
   459   // The g1 remembered set of the heap.
   460   G1RemSet* _g1_rem_set;
   461   // And it's mod ref barrier set, used to track updates for the above.
   462   ModRefBarrierSet* _mr_bs;
   464   // A set of cards that cover the objects for which the Rsets should be updated
   465   // concurrently after the collection.
   466   DirtyCardQueueSet _dirty_card_queue_set;
   468   // The Heap Region Rem Set Iterator.
   469   HeapRegionRemSetIterator** _rem_set_iterator;
   471   // The closure used to refine a single card.
   472   RefineCardTableEntryClosure* _refine_cte_cl;
   474   // A function to check the consistency of dirty card logs.
   475   void check_ct_logs_at_safepoint();
   477   // After a collection pause, make the regions in the CS into free
   478   // regions.
   479   void free_collection_set(HeapRegion* cs_head);
   481   // Applies "scan_non_heap_roots" to roots outside the heap,
   482   // "scan_rs" to roots inside the heap (having done "set_region" to
   483   // indicate the region in which the root resides), and does "scan_perm"
   484   // (setting the generation to the perm generation.)  If "scan_rs" is
   485   // NULL, then this step is skipped.  The "worker_i"
   486   // param is for use with parallel roots processing, and should be
   487   // the "i" of the calling parallel worker thread's work(i) function.
   488   // In the sequential case this param will be ignored.
   489   void g1_process_strong_roots(bool collecting_perm_gen,
   490                                SharedHeap::ScanningOption so,
   491                                OopClosure* scan_non_heap_roots,
   492                                OopsInHeapRegionClosure* scan_rs,
   493                                OopsInHeapRegionClosure* scan_so,
   494                                OopsInGenClosure* scan_perm,
   495                                int worker_i);
   497   void scan_scan_only_set(OopsInHeapRegionClosure* oc,
   498                           int worker_i);
   499   void scan_scan_only_region(HeapRegion* hr,
   500                              OopsInHeapRegionClosure* oc,
   501                              int worker_i);
   503   // Apply "blk" to all the weak roots of the system.  These include
   504   // JNI weak roots, the code cache, system dictionary, symbol table,
   505   // string table, and referents of reachable weak refs.
   506   void g1_process_weak_roots(OopClosure* root_closure,
   507                              OopClosure* non_root_closure);
   509   // Invoke "save_marks" on all heap regions.
   510   void save_marks();
   512   // Free a heap region.
   513   void free_region(HeapRegion* hr);
   514   // A component of "free_region", exposed for 'batching'.
   515   // All the params after "hr" are out params: the used bytes of the freed
   516   // region(s), the number of H regions cleared, the number of regions
   517   // freed, and pointers to the head and tail of a list of freed contig
   518   // regions, linked throught the "next_on_unclean_list" field.
   519   void free_region_work(HeapRegion* hr,
   520                         size_t& pre_used,
   521                         size_t& cleared_h,
   522                         size_t& freed_regions,
   523                         UncleanRegionList* list,
   524                         bool par = false);
   527   // The concurrent marker (and the thread it runs in.)
   528   ConcurrentMark* _cm;
   529   ConcurrentMarkThread* _cmThread;
   530   bool _mark_in_progress;
   532   // The concurrent refiner.
   533   ConcurrentG1Refine* _cg1r;
   535   // The concurrent zero-fill thread.
   536   ConcurrentZFThread* _czft;
   538   // The parallel task queues
   539   RefToScanQueueSet *_task_queues;
   541   // True iff a evacuation has failed in the current collection.
   542   bool _evacuation_failed;
   544   // Set the attribute indicating whether evacuation has failed in the
   545   // current collection.
   546   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   548   // Failed evacuations cause some logical from-space objects to have
   549   // forwarding pointers to themselves.  Reset them.
   550   void remove_self_forwarding_pointers();
   552   // When one is non-null, so is the other.  Together, they each pair is
   553   // an object with a preserved mark, and its mark value.
   554   GrowableArray<oop>*     _objs_with_preserved_marks;
   555   GrowableArray<markOop>* _preserved_marks_of_objs;
   557   // Preserve the mark of "obj", if necessary, in preparation for its mark
   558   // word being overwritten with a self-forwarding-pointer.
   559   void preserve_mark_if_necessary(oop obj, markOop m);
   561   // The stack of evac-failure objects left to be scanned.
   562   GrowableArray<oop>*    _evac_failure_scan_stack;
   563   // The closure to apply to evac-failure objects.
   565   OopsInHeapRegionClosure* _evac_failure_closure;
   566   // Set the field above.
   567   void
   568   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   569     _evac_failure_closure = evac_failure_closure;
   570   }
   572   // Push "obj" on the scan stack.
   573   void push_on_evac_failure_scan_stack(oop obj);
   574   // Process scan stack entries until the stack is empty.
   575   void drain_evac_failure_scan_stack();
   576   // True iff an invocation of "drain_scan_stack" is in progress; to
   577   // prevent unnecessary recursion.
   578   bool _drain_in_progress;
   580   // Do any necessary initialization for evacuation-failure handling.
   581   // "cl" is the closure that will be used to process evac-failure
   582   // objects.
   583   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   584   // Do any necessary cleanup for evacuation-failure handling data
   585   // structures.
   586   void finalize_for_evac_failure();
   588   // An attempt to evacuate "obj" has failed; take necessary steps.
   589   void handle_evacuation_failure(oop obj);
   590   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   591   void handle_evacuation_failure_common(oop obj, markOop m);
   594   // Ensure that the relevant gc_alloc regions are set.
   595   void get_gc_alloc_regions();
   596   // We're done with GC alloc regions. We are going to tear down the
   597   // gc alloc list and remove the gc alloc tag from all the regions on
   598   // that list. However, we will also retain the last (i.e., the one
   599   // that is half-full) GC alloc region, per GCAllocPurpose, for
   600   // possible reuse during the next collection, provided
   601   // _retain_gc_alloc_region[] indicates that it should be the
   602   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   603   // array. If the parameter totally is set, we will not retain any
   604   // regions, irrespective of what _retain_gc_alloc_region[]
   605   // indicates.
   606   void release_gc_alloc_regions(bool totally);
   607 #ifndef PRODUCT
   608   // Useful for debugging.
   609   void print_gc_alloc_regions();
   610 #endif // !PRODUCT
   612   // ("Weak") Reference processing support
   613   ReferenceProcessor* _ref_processor;
   615   enum G1H_process_strong_roots_tasks {
   616     G1H_PS_mark_stack_oops_do,
   617     G1H_PS_refProcessor_oops_do,
   618     // Leave this one last.
   619     G1H_PS_NumElements
   620   };
   622   SubTasksDone* _process_strong_tasks;
   624   // List of regions which require zero filling.
   625   UncleanRegionList _unclean_region_list;
   626   bool _unclean_regions_coming;
   628 public:
   629   void set_refine_cte_cl_concurrency(bool concurrent);
   631   RefToScanQueue *task_queue(int i);
   633   // A set of cards where updates happened during the GC
   634   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   636   // Create a G1CollectedHeap with the specified policy.
   637   // Must call the initialize method afterwards.
   638   // May not return if something goes wrong.
   639   G1CollectedHeap(G1CollectorPolicy* policy);
   641   // Initialize the G1CollectedHeap to have the initial and
   642   // maximum sizes, permanent generation, and remembered and barrier sets
   643   // specified by the policy object.
   644   jint initialize();
   646   void ref_processing_init();
   648   void set_par_threads(int t) {
   649     SharedHeap::set_par_threads(t);
   650     _process_strong_tasks->set_par_threads(t);
   651   }
   653   virtual CollectedHeap::Name kind() const {
   654     return CollectedHeap::G1CollectedHeap;
   655   }
   657   // The current policy object for the collector.
   658   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   660   // Adaptive size policy.  No such thing for g1.
   661   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   663   // The rem set and barrier set.
   664   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   665   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   667   // The rem set iterator.
   668   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   669     return _rem_set_iterator[i];
   670   }
   672   HeapRegionRemSetIterator* rem_set_iterator() {
   673     return _rem_set_iterator[0];
   674   }
   676   unsigned get_gc_time_stamp() {
   677     return _gc_time_stamp;
   678   }
   680   void reset_gc_time_stamp() {
   681     _gc_time_stamp = 0;
   682     OrderAccess::fence();
   683   }
   685   void increment_gc_time_stamp() {
   686     ++_gc_time_stamp;
   687     OrderAccess::fence();
   688   }
   690   void iterate_dirty_card_closure(bool concurrent, int worker_i);
   692   // The shared block offset table array.
   693   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   695   // Reference Processing accessor
   696   ReferenceProcessor* ref_processor() { return _ref_processor; }
   698   // Reserved (g1 only; super method includes perm), capacity and the used
   699   // portion in bytes.
   700   size_t g1_reserved_obj_bytes() { return _g1_reserved.byte_size(); }
   701   virtual size_t capacity() const;
   702   virtual size_t used() const;
   703   size_t recalculate_used() const;
   704 #ifndef PRODUCT
   705   size_t recalculate_used_regions() const;
   706 #endif // PRODUCT
   708   // These virtual functions do the actual allocation.
   709   virtual HeapWord* mem_allocate(size_t word_size,
   710                                  bool   is_noref,
   711                                  bool   is_tlab,
   712                                  bool* gc_overhead_limit_was_exceeded);
   714   // Some heaps may offer a contiguous region for shared non-blocking
   715   // allocation, via inlined code (by exporting the address of the top and
   716   // end fields defining the extent of the contiguous allocation region.)
   717   // But G1CollectedHeap doesn't yet support this.
   719   // Return an estimate of the maximum allocation that could be performed
   720   // without triggering any collection or expansion activity.  In a
   721   // generational collector, for example, this is probably the largest
   722   // allocation that could be supported (without expansion) in the youngest
   723   // generation.  It is "unsafe" because no locks are taken; the result
   724   // should be treated as an approximation, not a guarantee, for use in
   725   // heuristic resizing decisions.
   726   virtual size_t unsafe_max_alloc();
   728   virtual bool is_maximal_no_gc() const {
   729     return _g1_storage.uncommitted_size() == 0;
   730   }
   732   // The total number of regions in the heap.
   733   size_t n_regions();
   735   // The number of regions that are completely free.
   736   size_t max_regions();
   738   // The number of regions that are completely free.
   739   size_t free_regions();
   741   // The number of regions that are not completely free.
   742   size_t used_regions() { return n_regions() - free_regions(); }
   744   // True iff the ZF thread should run.
   745   bool should_zf();
   747   // The number of regions available for "regular" expansion.
   748   size_t expansion_regions() { return _expansion_regions; }
   750 #ifndef PRODUCT
   751   bool regions_accounted_for();
   752   bool print_region_accounting_info();
   753   void print_region_counts();
   754 #endif
   756   HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
   757   HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
   759   void put_region_on_unclean_list(HeapRegion* r);
   760   void put_region_on_unclean_list_locked(HeapRegion* r);
   762   void prepend_region_list_on_unclean_list(UncleanRegionList* list);
   763   void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
   765   void set_unclean_regions_coming(bool b);
   766   void set_unclean_regions_coming_locked(bool b);
   767   // Wait for cleanup to be complete.
   768   void wait_for_cleanup_complete();
   769   // Like above, but assumes that the calling thread owns the Heap_lock.
   770   void wait_for_cleanup_complete_locked();
   772   // Return the head of the unclean list.
   773   HeapRegion* peek_unclean_region_list_locked();
   774   // Remove and return the head of the unclean list.
   775   HeapRegion* pop_unclean_region_list_locked();
   777   // List of regions which are zero filled and ready for allocation.
   778   HeapRegion* _free_region_list;
   779   // Number of elements on the free list.
   780   size_t _free_region_list_size;
   782   // If the head of the unclean list is ZeroFilled, move it to the free
   783   // list.
   784   bool move_cleaned_region_to_free_list_locked();
   785   bool move_cleaned_region_to_free_list();
   787   void put_free_region_on_list_locked(HeapRegion* r);
   788   void put_free_region_on_list(HeapRegion* r);
   790   // Remove and return the head element of the free list.
   791   HeapRegion* pop_free_region_list_locked();
   793   // If "zero_filled" is true, we first try the free list, then we try the
   794   // unclean list, zero-filling the result.  If "zero_filled" is false, we
   795   // first try the unclean list, then the zero-filled list.
   796   HeapRegion* alloc_free_region_from_lists(bool zero_filled);
   798   // Verify the integrity of the region lists.
   799   void remove_allocated_regions_from_lists();
   800   bool verify_region_lists();
   801   bool verify_region_lists_locked();
   802   size_t unclean_region_list_length();
   803   size_t free_region_list_length();
   805   // Perform a collection of the heap; intended for use in implementing
   806   // "System.gc".  This probably implies as full a collection as the
   807   // "CollectedHeap" supports.
   808   virtual void collect(GCCause::Cause cause);
   810   // The same as above but assume that the caller holds the Heap_lock.
   811   void collect_locked(GCCause::Cause cause);
   813   // This interface assumes that it's being called by the
   814   // vm thread. It collects the heap assuming that the
   815   // heap lock is already held and that we are executing in
   816   // the context of the vm thread.
   817   virtual void collect_as_vm_thread(GCCause::Cause cause);
   819   // True iff a evacuation has failed in the most-recent collection.
   820   bool evacuation_failed() { return _evacuation_failed; }
   822   // Free a region if it is totally full of garbage.  Returns the number of
   823   // bytes freed (0 ==> didn't free it).
   824   size_t free_region_if_totally_empty(HeapRegion *hr);
   825   void free_region_if_totally_empty_work(HeapRegion *hr,
   826                                          size_t& pre_used,
   827                                          size_t& cleared_h_regions,
   828                                          size_t& freed_regions,
   829                                          UncleanRegionList* list,
   830                                          bool par = false);
   832   // If we've done free region work that yields the given changes, update
   833   // the relevant global variables.
   834   void finish_free_region_work(size_t pre_used,
   835                                size_t cleared_h_regions,
   836                                size_t freed_regions,
   837                                UncleanRegionList* list);
   840   // Returns "TRUE" iff "p" points into the allocated area of the heap.
   841   virtual bool is_in(const void* p) const;
   843   // Return "TRUE" iff the given object address is within the collection
   844   // set.
   845   inline bool obj_in_cs(oop obj);
   847   // Return "TRUE" iff the given object address is in the reserved
   848   // region of g1 (excluding the permanent generation).
   849   bool is_in_g1_reserved(const void* p) const {
   850     return _g1_reserved.contains(p);
   851   }
   853   // Returns a MemRegion that corresponds to the space that  has been
   854   // committed in the heap
   855   MemRegion g1_committed() {
   856     return _g1_committed;
   857   }
   859   NOT_PRODUCT( bool is_in_closed_subset(const void* p) const; )
   861   // Dirty card table entries covering a list of young regions.
   862   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
   864   // This resets the card table to all zeros.  It is used after
   865   // a collection pause which used the card table to claim cards.
   866   void cleanUpCardTable();
   868   // Iteration functions.
   870   // Iterate over all the ref-containing fields of all objects, calling
   871   // "cl.do_oop" on each.
   872   virtual void oop_iterate(OopClosure* cl) {
   873     oop_iterate(cl, true);
   874   }
   875   void oop_iterate(OopClosure* cl, bool do_perm);
   877   // Same as above, restricted to a memory region.
   878   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
   879     oop_iterate(mr, cl, true);
   880   }
   881   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
   883   // Iterate over all objects, calling "cl.do_object" on each.
   884   virtual void object_iterate(ObjectClosure* cl) {
   885     object_iterate(cl, true);
   886   }
   887   virtual void safe_object_iterate(ObjectClosure* cl) {
   888     object_iterate(cl, true);
   889   }
   890   void object_iterate(ObjectClosure* cl, bool do_perm);
   892   // Iterate over all objects allocated since the last collection, calling
   893   // "cl.do_object" on each.  The heap must have been initialized properly
   894   // to support this function, or else this call will fail.
   895   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
   897   // Iterate over all spaces in use in the heap, in ascending address order.
   898   virtual void space_iterate(SpaceClosure* cl);
   900   // Iterate over heap regions, in address order, terminating the
   901   // iteration early if the "doHeapRegion" method returns "true".
   902   void heap_region_iterate(HeapRegionClosure* blk);
   904   // Iterate over heap regions starting with r (or the first region if "r"
   905   // is NULL), in address order, terminating early if the "doHeapRegion"
   906   // method returns "true".
   907   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
   909   // As above but starting from the region at index idx.
   910   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
   912   HeapRegion* region_at(size_t idx);
   914   // Divide the heap region sequence into "chunks" of some size (the number
   915   // of regions divided by the number of parallel threads times some
   916   // overpartition factor, currently 4).  Assumes that this will be called
   917   // in parallel by ParallelGCThreads worker threads with discinct worker
   918   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
   919   // calls will use the same "claim_value", and that that claim value is
   920   // different from the claim_value of any heap region before the start of
   921   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
   922   // attempting to claim the first region in each chunk, and, if
   923   // successful, applying the closure to each region in the chunk (and
   924   // setting the claim value of the second and subsequent regions of the
   925   // chunk.)  For now requires that "doHeapRegion" always returns "false",
   926   // i.e., that a closure never attempt to abort a traversal.
   927   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
   928                                        int worker,
   929                                        jint claim_value);
   931   // It resets all the region claim values to the default.
   932   void reset_heap_region_claim_values();
   934 #ifdef ASSERT
   935   bool check_heap_region_claim_values(jint claim_value);
   936 #endif // ASSERT
   938   // Iterate over the regions (if any) in the current collection set.
   939   void collection_set_iterate(HeapRegionClosure* blk);
   941   // As above but starting from region r
   942   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
   944   // Returns the first (lowest address) compactible space in the heap.
   945   virtual CompactibleSpace* first_compactible_space();
   947   // A CollectedHeap will contain some number of spaces.  This finds the
   948   // space containing a given address, or else returns NULL.
   949   virtual Space* space_containing(const void* addr) const;
   951   // A G1CollectedHeap will contain some number of heap regions.  This
   952   // finds the region containing a given address, or else returns NULL.
   953   HeapRegion* heap_region_containing(const void* addr) const;
   955   // Like the above, but requires "addr" to be in the heap (to avoid a
   956   // null-check), and unlike the above, may return an continuing humongous
   957   // region.
   958   HeapRegion* heap_region_containing_raw(const void* addr) const;
   960   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   961   // each address in the (reserved) heap is a member of exactly
   962   // one block.  The defining characteristic of a block is that it is
   963   // possible to find its size, and thus to progress forward to the next
   964   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   965   // represent Java objects, or they might be free blocks in a
   966   // free-list-based heap (or subheap), as long as the two kinds are
   967   // distinguishable and the size of each is determinable.
   969   // Returns the address of the start of the "block" that contains the
   970   // address "addr".  We say "blocks" instead of "object" since some heaps
   971   // may not pack objects densely; a chunk may either be an object or a
   972   // non-object.
   973   virtual HeapWord* block_start(const void* addr) const;
   975   // Requires "addr" to be the start of a chunk, and returns its size.
   976   // "addr + size" is required to be the start of a new chunk, or the end
   977   // of the active area of the heap.
   978   virtual size_t block_size(const HeapWord* addr) const;
   980   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   981   // the block is an object.
   982   virtual bool block_is_obj(const HeapWord* addr) const;
   984   // Does this heap support heap inspection? (+PrintClassHistogram)
   985   virtual bool supports_heap_inspection() const { return true; }
   987   // Section on thread-local allocation buffers (TLABs)
   988   // See CollectedHeap for semantics.
   990   virtual bool supports_tlab_allocation() const;
   991   virtual size_t tlab_capacity(Thread* thr) const;
   992   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   993   virtual HeapWord* allocate_new_tlab(size_t size);
   995   // Can a compiler initialize a new object without store barriers?
   996   // This permission only extends from the creation of a new object
   997   // via a TLAB up to the first subsequent safepoint.
   998   virtual bool can_elide_tlab_store_barriers() const {
   999     // Since G1's TLAB's may, on occasion, come from non-young regions
  1000     // as well. (Is there a flag controlling that? XXX)
  1001     return false;
  1004   // Can a compiler elide a store barrier when it writes
  1005   // a permanent oop into the heap?  Applies when the compiler
  1006   // is storing x to the heap, where x->is_perm() is true.
  1007   virtual bool can_elide_permanent_oop_store_barriers() const {
  1008     // At least until perm gen collection is also G1-ified, at
  1009     // which point this should return false.
  1010     return true;
  1013   virtual bool allocs_are_zero_filled();
  1015   // The boundary between a "large" and "small" array of primitives, in
  1016   // words.
  1017   virtual size_t large_typearray_limit();
  1019   // Returns "true" iff the given word_size is "very large".
  1020   static bool isHumongous(size_t word_size) {
  1021     return word_size >= VeryLargeInWords;
  1024   // Update mod union table with the set of dirty cards.
  1025   void updateModUnion();
  1027   // Set the mod union bits corresponding to the given memRegion.  Note
  1028   // that this is always a safe operation, since it doesn't clear any
  1029   // bits.
  1030   void markModUnionRange(MemRegion mr);
  1032   // Records the fact that a marking phase is no longer in progress.
  1033   void set_marking_complete() {
  1034     _mark_in_progress = false;
  1036   void set_marking_started() {
  1037     _mark_in_progress = true;
  1039   bool mark_in_progress() {
  1040     return _mark_in_progress;
  1043   // Print the maximum heap capacity.
  1044   virtual size_t max_capacity() const;
  1046   virtual jlong millis_since_last_gc();
  1048   // Perform any cleanup actions necessary before allowing a verification.
  1049   virtual void prepare_for_verify();
  1051   // Perform verification.
  1053   // use_prev_marking == true  -> use "prev" marking information,
  1054   // use_prev_marking == false -> use "next" marking information
  1055   // NOTE: Only the "prev" marking information is guaranteed to be
  1056   // consistent most of the time, so most calls to this should use
  1057   // use_prev_marking == true. Currently, there is only one case where
  1058   // this is called with use_prev_marking == false, which is to verify
  1059   // the "next" marking information at the end of remark.
  1060   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1062   // Override; it uses the "prev" marking information
  1063   virtual void verify(bool allow_dirty, bool silent);
  1064   // Default behavior by calling print(tty);
  1065   virtual void print() const;
  1066   // This calls print_on(st, PrintHeapAtGCExtended).
  1067   virtual void print_on(outputStream* st) const;
  1068   // If extended is true, it will print out information for all
  1069   // regions in the heap by calling print_on_extended(st).
  1070   virtual void print_on(outputStream* st, bool extended) const;
  1071   virtual void print_on_extended(outputStream* st) const;
  1073   virtual void print_gc_threads_on(outputStream* st) const;
  1074   virtual void gc_threads_do(ThreadClosure* tc) const;
  1076   // Override
  1077   void print_tracing_info() const;
  1079   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1080   // number indicating the "arena" within the heap in which "addr" falls.
  1081   // Or else returns 0.
  1082   virtual int addr_to_arena_id(void* addr) const;
  1084   // Convenience function to be used in situations where the heap type can be
  1085   // asserted to be this type.
  1086   static G1CollectedHeap* heap();
  1088   void empty_young_list();
  1089   bool should_set_young_locked();
  1091   void set_region_short_lived_locked(HeapRegion* hr);
  1092   // add appropriate methods for any other surv rate groups
  1094   void young_list_rs_length_sampling_init() {
  1095     _young_list->rs_length_sampling_init();
  1097   bool young_list_rs_length_sampling_more() {
  1098     return _young_list->rs_length_sampling_more();
  1100   void young_list_rs_length_sampling_next() {
  1101     _young_list->rs_length_sampling_next();
  1103   size_t young_list_sampled_rs_lengths() {
  1104     return _young_list->sampled_rs_lengths();
  1107   size_t young_list_length()   { return _young_list->length(); }
  1108   size_t young_list_scan_only_length() {
  1109                                       return _young_list->scan_only_length(); }
  1111   HeapRegion* pop_region_from_young_list() {
  1112     return _young_list->pop_region();
  1115   HeapRegion* young_list_first_region() {
  1116     return _young_list->first_region();
  1119   // debugging
  1120   bool check_young_list_well_formed() {
  1121     return _young_list->check_list_well_formed();
  1123   bool check_young_list_empty(bool ignore_scan_only_list,
  1124                               bool check_sample = true);
  1126   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1127   // many of these need to be public.
  1129   // The functions below are helper functions that a subclass of
  1130   // "CollectedHeap" can use in the implementation of its virtual
  1131   // functions.
  1132   // This performs a concurrent marking of the live objects in a
  1133   // bitmap off to the side.
  1134   void doConcurrentMark();
  1136   // This is called from the marksweep collector which then does
  1137   // a concurrent mark and verifies that the results agree with
  1138   // the stop the world marking.
  1139   void checkConcurrentMark();
  1140   void do_sync_mark();
  1142   bool isMarkedPrev(oop obj) const;
  1143   bool isMarkedNext(oop obj) const;
  1145   // use_prev_marking == true  -> use "prev" marking information,
  1146   // use_prev_marking == false -> use "next" marking information
  1147   bool is_obj_dead_cond(const oop obj,
  1148                         const HeapRegion* hr,
  1149                         const bool use_prev_marking) const {
  1150     if (use_prev_marking) {
  1151       return is_obj_dead(obj, hr);
  1152     } else {
  1153       return is_obj_ill(obj, hr);
  1157   // Determine if an object is dead, given the object and also
  1158   // the region to which the object belongs. An object is dead
  1159   // iff a) it was not allocated since the last mark and b) it
  1160   // is not marked.
  1162   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1163     return
  1164       !hr->obj_allocated_since_prev_marking(obj) &&
  1165       !isMarkedPrev(obj);
  1168   // This is used when copying an object to survivor space.
  1169   // If the object is marked live, then we mark the copy live.
  1170   // If the object is allocated since the start of this mark
  1171   // cycle, then we mark the copy live.
  1172   // If the object has been around since the previous mark
  1173   // phase, and hasn't been marked yet during this phase,
  1174   // then we don't mark it, we just wait for the
  1175   // current marking cycle to get to it.
  1177   // This function returns true when an object has been
  1178   // around since the previous marking and hasn't yet
  1179   // been marked during this marking.
  1181   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1182     return
  1183       !hr->obj_allocated_since_next_marking(obj) &&
  1184       !isMarkedNext(obj);
  1187   // Determine if an object is dead, given only the object itself.
  1188   // This will find the region to which the object belongs and
  1189   // then call the region version of the same function.
  1191   // Added if it is in permanent gen it isn't dead.
  1192   // Added if it is NULL it isn't dead.
  1194   // use_prev_marking == true  -> use "prev" marking information,
  1195   // use_prev_marking == false -> use "next" marking information
  1196   bool is_obj_dead_cond(const oop obj,
  1197                         const bool use_prev_marking) {
  1198     if (use_prev_marking) {
  1199       return is_obj_dead(obj);
  1200     } else {
  1201       return is_obj_ill(obj);
  1205   bool is_obj_dead(const oop obj) {
  1206     const HeapRegion* hr = heap_region_containing(obj);
  1207     if (hr == NULL) {
  1208       if (Universe::heap()->is_in_permanent(obj))
  1209         return false;
  1210       else if (obj == NULL) return false;
  1211       else return true;
  1213     else return is_obj_dead(obj, hr);
  1216   bool is_obj_ill(const oop obj) {
  1217     const HeapRegion* hr = heap_region_containing(obj);
  1218     if (hr == NULL) {
  1219       if (Universe::heap()->is_in_permanent(obj))
  1220         return false;
  1221       else if (obj == NULL) return false;
  1222       else return true;
  1224     else return is_obj_ill(obj, hr);
  1227   // The following is just to alert the verification code
  1228   // that a full collection has occurred and that the
  1229   // remembered sets are no longer up to date.
  1230   bool _full_collection;
  1231   void set_full_collection() { _full_collection = true;}
  1232   void clear_full_collection() {_full_collection = false;}
  1233   bool full_collection() {return _full_collection;}
  1235   ConcurrentMark* concurrent_mark() const { return _cm; }
  1236   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1238   // The dirty cards region list is used to record a subset of regions
  1239   // whose cards need clearing. The list if populated during the
  1240   // remembered set scanning and drained during the card table
  1241   // cleanup. Although the methods are reentrant, population/draining
  1242   // phases must not overlap. For synchronization purposes the last
  1243   // element on the list points to itself.
  1244   HeapRegion* _dirty_cards_region_list;
  1245   void push_dirty_cards_region(HeapRegion* hr);
  1246   HeapRegion* pop_dirty_cards_region();
  1248 public:
  1249   void stop_conc_gc_threads();
  1251   // <NEW PREDICTION>
  1253   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1254   void check_if_region_is_too_expensive(double predicted_time_ms);
  1255   size_t pending_card_num();
  1256   size_t max_pending_card_num();
  1257   size_t cards_scanned();
  1259   // </NEW PREDICTION>
  1261 protected:
  1262   size_t _max_heap_capacity;
  1264 //  debug_only(static void check_for_valid_allocation_state();)
  1266 public:
  1267   // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
  1268   // MemoryService).  In productization, we can make this assert false
  1269   // to catch such places (as well as searching for calls to this...)
  1270   static void g1_unimplemented();
  1272 };
  1274 #define use_local_bitmaps         1
  1275 #define verify_local_bitmaps      0
  1276 #define oop_buffer_length       256
  1278 #ifndef PRODUCT
  1279 class GCLabBitMap;
  1280 class GCLabBitMapClosure: public BitMapClosure {
  1281 private:
  1282   ConcurrentMark* _cm;
  1283   GCLabBitMap*    _bitmap;
  1285 public:
  1286   GCLabBitMapClosure(ConcurrentMark* cm,
  1287                      GCLabBitMap* bitmap) {
  1288     _cm     = cm;
  1289     _bitmap = bitmap;
  1292   virtual bool do_bit(size_t offset);
  1293 };
  1294 #endif // !PRODUCT
  1296 class GCLabBitMap: public BitMap {
  1297 private:
  1298   ConcurrentMark* _cm;
  1300   int       _shifter;
  1301   size_t    _bitmap_word_covers_words;
  1303   // beginning of the heap
  1304   HeapWord* _heap_start;
  1306   // this is the actual start of the GCLab
  1307   HeapWord* _real_start_word;
  1309   // this is the actual end of the GCLab
  1310   HeapWord* _real_end_word;
  1312   // this is the first word, possibly located before the actual start
  1313   // of the GCLab, that corresponds to the first bit of the bitmap
  1314   HeapWord* _start_word;
  1316   // size of a GCLab in words
  1317   size_t _gclab_word_size;
  1319   static int shifter() {
  1320     return MinObjAlignment - 1;
  1323   // how many heap words does a single bitmap word corresponds to?
  1324   static size_t bitmap_word_covers_words() {
  1325     return BitsPerWord << shifter();
  1328   static size_t gclab_word_size() {
  1329     return G1ParallelGCAllocBufferSize / HeapWordSize;
  1332   static size_t bitmap_size_in_bits() {
  1333     size_t bits_in_bitmap = gclab_word_size() >> shifter();
  1334     // We are going to ensure that the beginning of a word in this
  1335     // bitmap also corresponds to the beginning of a word in the
  1336     // global marking bitmap. To handle the case where a GCLab
  1337     // starts from the middle of the bitmap, we need to add enough
  1338     // space (i.e. up to a bitmap word) to ensure that we have
  1339     // enough bits in the bitmap.
  1340     return bits_in_bitmap + BitsPerWord - 1;
  1342 public:
  1343   GCLabBitMap(HeapWord* heap_start)
  1344     : BitMap(bitmap_size_in_bits()),
  1345       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1346       _shifter(shifter()),
  1347       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1348       _heap_start(heap_start),
  1349       _gclab_word_size(gclab_word_size()),
  1350       _real_start_word(NULL),
  1351       _real_end_word(NULL),
  1352       _start_word(NULL)
  1354     guarantee( size_in_words() >= bitmap_size_in_words(),
  1355                "just making sure");
  1358   inline unsigned heapWordToOffset(HeapWord* addr) {
  1359     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1360     assert(offset < size(), "offset should be within bounds");
  1361     return offset;
  1364   inline HeapWord* offsetToHeapWord(size_t offset) {
  1365     HeapWord* addr =  _start_word + (offset << _shifter);
  1366     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1367     return addr;
  1370   bool fields_well_formed() {
  1371     bool ret1 = (_real_start_word == NULL) &&
  1372                 (_real_end_word == NULL) &&
  1373                 (_start_word == NULL);
  1374     if (ret1)
  1375       return true;
  1377     bool ret2 = _real_start_word >= _start_word &&
  1378       _start_word < _real_end_word &&
  1379       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1380       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1381                                                               > _real_end_word;
  1382     return ret2;
  1385   inline bool mark(HeapWord* addr) {
  1386     guarantee(use_local_bitmaps, "invariant");
  1387     assert(fields_well_formed(), "invariant");
  1389     if (addr >= _real_start_word && addr < _real_end_word) {
  1390       assert(!isMarked(addr), "should not have already been marked");
  1392       // first mark it on the bitmap
  1393       at_put(heapWordToOffset(addr), true);
  1395       return true;
  1396     } else {
  1397       return false;
  1401   inline bool isMarked(HeapWord* addr) {
  1402     guarantee(use_local_bitmaps, "invariant");
  1403     assert(fields_well_formed(), "invariant");
  1405     return at(heapWordToOffset(addr));
  1408   void set_buffer(HeapWord* start) {
  1409     guarantee(use_local_bitmaps, "invariant");
  1410     clear();
  1412     assert(start != NULL, "invariant");
  1413     _real_start_word = start;
  1414     _real_end_word   = start + _gclab_word_size;
  1416     size_t diff =
  1417       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1418     _start_word = start - diff;
  1420     assert(fields_well_formed(), "invariant");
  1423 #ifndef PRODUCT
  1424   void verify() {
  1425     // verify that the marks have been propagated
  1426     GCLabBitMapClosure cl(_cm, this);
  1427     iterate(&cl);
  1429 #endif // PRODUCT
  1431   void retire() {
  1432     guarantee(use_local_bitmaps, "invariant");
  1433     assert(fields_well_formed(), "invariant");
  1435     if (_start_word != NULL) {
  1436       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1438       // this means that the bitmap was set up for the GCLab
  1439       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1441       mark_bitmap->mostly_disjoint_range_union(this,
  1442                                 0, // always start from the start of the bitmap
  1443                                 _start_word,
  1444                                 size_in_words());
  1445       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1447 #ifndef PRODUCT
  1448       if (use_local_bitmaps && verify_local_bitmaps)
  1449         verify();
  1450 #endif // PRODUCT
  1451     } else {
  1452       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1456   static size_t bitmap_size_in_words() {
  1457     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
  1459 };
  1461 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1462 private:
  1463   bool        _retired;
  1464   bool        _during_marking;
  1465   GCLabBitMap _bitmap;
  1467 public:
  1468   G1ParGCAllocBuffer() :
  1469     ParGCAllocBuffer(G1ParallelGCAllocBufferSize / HeapWordSize),
  1470     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1471     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
  1472     _retired(false)
  1473   { }
  1475   inline bool mark(HeapWord* addr) {
  1476     guarantee(use_local_bitmaps, "invariant");
  1477     assert(_during_marking, "invariant");
  1478     return _bitmap.mark(addr);
  1481   inline void set_buf(HeapWord* buf) {
  1482     if (use_local_bitmaps && _during_marking)
  1483       _bitmap.set_buffer(buf);
  1484     ParGCAllocBuffer::set_buf(buf);
  1485     _retired = false;
  1488   inline void retire(bool end_of_gc, bool retain) {
  1489     if (_retired)
  1490       return;
  1491     if (use_local_bitmaps && _during_marking) {
  1492       _bitmap.retire();
  1494     ParGCAllocBuffer::retire(end_of_gc, retain);
  1495     _retired = true;
  1497 };
  1499 class G1ParScanThreadState : public StackObj {
  1500 protected:
  1501   G1CollectedHeap* _g1h;
  1502   RefToScanQueue*  _refs;
  1503   DirtyCardQueue   _dcq;
  1504   CardTableModRefBS* _ct_bs;
  1505   G1RemSet* _g1_rem;
  1507   typedef GrowableArray<StarTask> OverflowQueue;
  1508   OverflowQueue* _overflowed_refs;
  1510   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
  1511   ageTable           _age_table;
  1513   size_t           _alloc_buffer_waste;
  1514   size_t           _undo_waste;
  1516   OopsInHeapRegionClosure*      _evac_failure_cl;
  1517   G1ParScanHeapEvacClosure*     _evac_cl;
  1518   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1520   int _hash_seed;
  1521   int _queue_num;
  1523   int _term_attempts;
  1524 #if G1_DETAILED_STATS
  1525   int _pushes, _pops, _steals, _steal_attempts;
  1526   int _overflow_pushes;
  1527 #endif
  1529   double _start;
  1530   double _start_strong_roots;
  1531   double _strong_roots_time;
  1532   double _start_term;
  1533   double _term_time;
  1535   // Map from young-age-index (0 == not young, 1 is youngest) to
  1536   // surviving words. base is what we get back from the malloc call
  1537   size_t* _surviving_young_words_base;
  1538   // this points into the array, as we use the first few entries for padding
  1539   size_t* _surviving_young_words;
  1541 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
  1543   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1545   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1547   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1548   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1550   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1551     if (!from->is_survivor()) {
  1552       _g1_rem->par_write_ref(from, p, tid);
  1556   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1557     // If the new value of the field points to the same region or
  1558     // is the to-space, we don't need to include it in the Rset updates.
  1559     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1560       size_t card_index = ctbs()->index_for(p);
  1561       // If the card hasn't been added to the buffer, do it.
  1562       if (ctbs()->mark_card_deferred(card_index)) {
  1563         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1568 public:
  1569   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1571   ~G1ParScanThreadState() {
  1572     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1575   RefToScanQueue*   refs()            { return _refs;             }
  1576   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
  1577   ageTable*         age_table()       { return &_age_table;       }
  1579   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1580     return &_alloc_buffers[purpose];
  1583   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
  1584   size_t undo_waste()                            { return _undo_waste; }
  1586   template <class T> void push_on_queue(T* ref) {
  1587     assert(ref != NULL, "invariant");
  1588     assert(has_partial_array_mask(ref) ||
  1589            _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(ref)), "invariant");
  1590 #ifdef ASSERT
  1591     if (has_partial_array_mask(ref)) {
  1592       oop p = clear_partial_array_mask(ref);
  1593       // Verify that we point into the CS
  1594       assert(_g1h->obj_in_cs(p), "Should be in CS");
  1596 #endif
  1597     if (!refs()->push(ref)) {
  1598       overflowed_refs()->push(ref);
  1599       IF_G1_DETAILED_STATS(note_overflow_push());
  1600     } else {
  1601       IF_G1_DETAILED_STATS(note_push());
  1605   void pop_from_queue(StarTask& ref) {
  1606     if (refs()->pop_local(ref)) {
  1607       assert((oop*)ref != NULL, "pop_local() returned true");
  1608       assert(UseCompressedOops || !ref.is_narrow(), "Error");
  1609       assert(has_partial_array_mask((oop*)ref) ||
  1610              _g1h->obj_in_cs(ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)ref)
  1611                                              : oopDesc::load_decode_heap_oop((oop*)ref)),
  1612              "invariant");
  1613       IF_G1_DETAILED_STATS(note_pop());
  1614     } else {
  1615       StarTask null_task;
  1616       ref = null_task;
  1620   void pop_from_overflow_queue(StarTask& ref) {
  1621     StarTask new_ref = overflowed_refs()->pop();
  1622     assert((oop*)new_ref != NULL, "pop() from a local non-empty stack");
  1623     assert(UseCompressedOops || !new_ref.is_narrow(), "Error");
  1624     assert(has_partial_array_mask((oop*)new_ref) ||
  1625            _g1h->obj_in_cs(new_ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)new_ref)
  1626                                                : oopDesc::load_decode_heap_oop((oop*)new_ref)),
  1627              "invariant");
  1628     ref = new_ref;
  1631   int refs_to_scan()                             { return refs()->size();                 }
  1632   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
  1634   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1635     if (G1DeferredRSUpdate) {
  1636       deferred_rs_update(from, p, tid);
  1637     } else {
  1638       immediate_rs_update(from, p, tid);
  1642   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1644     HeapWord* obj = NULL;
  1645     if (word_sz * 100 <
  1646         (size_t)(G1ParallelGCAllocBufferSize / HeapWordSize) *
  1647                                                   ParallelGCBufferWastePct) {
  1648       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1649       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1650       alloc_buf->retire(false, false);
  1652       HeapWord* buf =
  1653         _g1h->par_allocate_during_gc(purpose, G1ParallelGCAllocBufferSize / HeapWordSize);
  1654       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1655       // Otherwise.
  1656       alloc_buf->set_buf(buf);
  1658       obj = alloc_buf->allocate(word_sz);
  1659       assert(obj != NULL, "buffer was definitely big enough...");
  1660     } else {
  1661       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1663     return obj;
  1666   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1667     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1668     if (obj != NULL) return obj;
  1669     return allocate_slow(purpose, word_sz);
  1672   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1673     if (alloc_buffer(purpose)->contains(obj)) {
  1674       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1675              "should contain whole object");
  1676       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1677     } else {
  1678       CollectedHeap::fill_with_object(obj, word_sz);
  1679       add_to_undo_waste(word_sz);
  1683   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1684     _evac_failure_cl = evac_failure_cl;
  1686   OopsInHeapRegionClosure* evac_failure_closure() {
  1687     return _evac_failure_cl;
  1690   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1691     _evac_cl = evac_cl;
  1694   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1695     _partial_scan_cl = partial_scan_cl;
  1698   int* hash_seed() { return &_hash_seed; }
  1699   int  queue_num() { return _queue_num; }
  1701   int term_attempts()   { return _term_attempts; }
  1702   void note_term_attempt()  { _term_attempts++; }
  1704 #if G1_DETAILED_STATS
  1705   int pushes()          { return _pushes; }
  1706   int pops()            { return _pops; }
  1707   int steals()          { return _steals; }
  1708   int steal_attempts()  { return _steal_attempts; }
  1709   int overflow_pushes() { return _overflow_pushes; }
  1711   void note_push()          { _pushes++; }
  1712   void note_pop()           { _pops++; }
  1713   void note_steal()         { _steals++; }
  1714   void note_steal_attempt() { _steal_attempts++; }
  1715   void note_overflow_push() { _overflow_pushes++; }
  1716 #endif
  1718   void start_strong_roots() {
  1719     _start_strong_roots = os::elapsedTime();
  1721   void end_strong_roots() {
  1722     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1724   double strong_roots_time() { return _strong_roots_time; }
  1726   void start_term_time() {
  1727     note_term_attempt();
  1728     _start_term = os::elapsedTime();
  1730   void end_term_time() {
  1731     _term_time += (os::elapsedTime() - _start_term);
  1733   double term_time() { return _term_time; }
  1735   double elapsed() {
  1736     return os::elapsedTime() - _start;
  1739   size_t* surviving_young_words() {
  1740     // We add on to hide entry 0 which accumulates surviving words for
  1741     // age -1 regions (i.e. non-young ones)
  1742     return _surviving_young_words;
  1745   void retire_alloc_buffers() {
  1746     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1747       size_t waste = _alloc_buffers[ap].words_remaining();
  1748       add_to_alloc_buffer_waste(waste);
  1749       _alloc_buffers[ap].retire(true, false);
  1753 private:
  1754   template <class T> void deal_with_reference(T* ref_to_scan) {
  1755     if (has_partial_array_mask(ref_to_scan)) {
  1756       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1757     } else {
  1758       // Note: we can use "raw" versions of "region_containing" because
  1759       // "obj_to_scan" is definitely in the heap, and is not in a
  1760       // humongous region.
  1761       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1762       _evac_cl->set_region(r);
  1763       _evac_cl->do_oop_nv(ref_to_scan);
  1767 public:
  1768   void trim_queue() {
  1769     // I've replicated the loop twice, first to drain the overflow
  1770     // queue, second to drain the task queue. This is better than
  1771     // having a single loop, which checks both conditions and, inside
  1772     // it, either pops the overflow queue or the task queue, as each
  1773     // loop is tighter. Also, the decision to drain the overflow queue
  1774     // first is not arbitrary, as the overflow queue is not visible
  1775     // to the other workers, whereas the task queue is. So, we want to
  1776     // drain the "invisible" entries first, while allowing the other
  1777     // workers to potentially steal the "visible" entries.
  1779     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  1780       while (overflowed_refs_to_scan() > 0) {
  1781         StarTask ref_to_scan;
  1782         assert((oop*)ref_to_scan == NULL, "Constructed above");
  1783         pop_from_overflow_queue(ref_to_scan);
  1784         // We shouldn't have pushed it on the queue if it was not
  1785         // pointing into the CSet.
  1786         assert((oop*)ref_to_scan != NULL, "Follows from inner loop invariant");
  1787         if (ref_to_scan.is_narrow()) {
  1788           assert(UseCompressedOops, "Error");
  1789           narrowOop* p = (narrowOop*)ref_to_scan;
  1790           assert(!has_partial_array_mask(p) &&
  1791                  _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
  1792           deal_with_reference(p);
  1793         } else {
  1794           oop* p = (oop*)ref_to_scan;
  1795           assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
  1796                  _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
  1797           deal_with_reference(p);
  1801       while (refs_to_scan() > 0) {
  1802         StarTask ref_to_scan;
  1803         assert((oop*)ref_to_scan == NULL, "Constructed above");
  1804         pop_from_queue(ref_to_scan);
  1805         if ((oop*)ref_to_scan != NULL) {
  1806           if (ref_to_scan.is_narrow()) {
  1807             assert(UseCompressedOops, "Error");
  1808             narrowOop* p = (narrowOop*)ref_to_scan;
  1809             assert(!has_partial_array_mask(p) &&
  1810                    _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
  1811             deal_with_reference(p);
  1812           } else {
  1813             oop* p = (oop*)ref_to_scan;
  1814             assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
  1815                   _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "sanity");
  1816             deal_with_reference(p);
  1822 };

mercurial