src/cpu/x86/vm/methodHandles_x86.cpp

Tue, 14 Jul 2009 15:40:39 -0700

author
ysr
date
Tue, 14 Jul 2009 15:40:39 -0700
changeset 1280
df6caf649ff7
parent 1145
e5b0439ef4ae
child 1474
987e948ebbc8
permissions
-rw-r--r--

6700789: G1: Enable use of compressed oops with G1 heaps
Summary: Modifications to G1 so as to allow the use of compressed oops.
Reviewed-by: apetrusenko, coleenp, jmasa, kvn, never, phh, tonyp

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_methodHandles_x86.cpp.incl"
    28 #define __ _masm->
    30 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    31                                                 address interpreted_entry) {
    32   // Just before the actual machine code entry point, allocate space
    33   // for a MethodHandleEntry::Data record, so that we can manage everything
    34   // from one base pointer.
    35   __ align(wordSize);
    36   address target = __ pc() + sizeof(Data);
    37   while (__ pc() < target) {
    38     __ nop();
    39     __ align(wordSize);
    40   }
    42   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    43   me->set_end_address(__ pc());         // set a temporary end_address
    44   me->set_from_interpreted_entry(interpreted_entry);
    45   me->set_type_checking_entry(NULL);
    47   return (address) me;
    48 }
    50 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    51                                                 address start_addr) {
    52   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    53   assert(me->end_address() == start_addr, "valid ME");
    55   // Fill in the real end_address:
    56   __ align(wordSize);
    57   me->set_end_address(__ pc());
    59   return me;
    60 }
    62 #ifdef ASSERT
    63 static void verify_argslot(MacroAssembler* _masm, Register rax_argslot,
    64                            const char* error_message) {
    65   // Verify that argslot lies within (rsp, rbp].
    66   Label L_ok, L_bad;
    67   __ cmpptr(rax_argslot, rbp);
    68   __ jcc(Assembler::above, L_bad);
    69   __ cmpptr(rsp, rax_argslot);
    70   __ jcc(Assembler::below, L_ok);
    71   __ bind(L_bad);
    72   __ stop(error_message);
    73   __ bind(L_ok);
    74 }
    75 #endif
    78 // Code generation
    79 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
    80   // rbx: methodOop
    81   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
    82   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
    83   // rdx: garbage temp, blown away
    85   Register rbx_method = rbx;
    86   Register rcx_recv   = rcx;
    87   Register rax_mtype  = rax;
    88   Register rdx_temp   = rdx;
    90   // emit WrongMethodType path first, to enable jccb back-branch from main path
    91   Label wrong_method_type;
    92   __ bind(wrong_method_type);
    93   __ push(rax_mtype);       // required mtype
    94   __ push(rcx_recv);        // bad mh (1st stacked argument)
    95   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
    97   // here's where control starts out:
    98   __ align(CodeEntryAlignment);
    99   address entry_point = __ pc();
   101   // fetch the MethodType from the method handle into rax (the 'check' register)
   102   {
   103     Register tem = rbx_method;
   104     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   105       __ movptr(rax_mtype, Address(tem, *pchase));
   106       tem = rax_mtype;          // in case there is another indirection
   107     }
   108   }
   109   Register rbx_temp = rbx_method; // done with incoming methodOop
   111   // given the MethodType, find out where the MH argument is buried
   112   __ movptr(rdx_temp, Address(rax_mtype,
   113                               __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rbx_temp)));
   114   __ movl(rdx_temp, Address(rdx_temp,
   115                             __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rbx_temp)));
   116   __ movptr(rcx_recv, __ argument_address(rdx_temp));
   118   __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
   119   __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   121   return entry_point;
   122 }
   124 // Helper to insert argument slots into the stack.
   125 // arg_slots must be a multiple of stack_move_unit() and <= 0
   126 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   127                                      RegisterOrConstant arg_slots,
   128                                      int arg_mask,
   129                                      Register rax_argslot,
   130                                      Register rbx_temp, Register rdx_temp) {
   131   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   132                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   134 #ifdef ASSERT
   135   verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   136   if (arg_slots.is_register()) {
   137     Label L_ok, L_bad;
   138     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   139     __ jcc(Assembler::greater, L_bad);
   140     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   141     __ jcc(Assembler::zero, L_ok);
   142     __ bind(L_bad);
   143     __ stop("assert arg_slots <= 0 and clear low bits");
   144     __ bind(L_ok);
   145   } else {
   146     assert(arg_slots.as_constant() <= 0, "");
   147     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   148   }
   149 #endif //ASSERT
   151 #ifdef _LP64
   152   if (arg_slots.is_register()) {
   153     // clean high bits of stack motion register (was loaded as an int)
   154     __ movslq(arg_slots.as_register(), arg_slots.as_register());
   155   }
   156 #endif
   158   // Make space on the stack for the inserted argument(s).
   159   // Then pull down everything shallower than rax_argslot.
   160   // The stacked return address gets pulled down with everything else.
   161   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   162   //   rsp -= size;
   163   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   164   //     rdx[-size] = rdx[0]
   165   //   argslot -= size;
   166   __ mov(rdx_temp, rsp);                        // source pointer for copy
   167   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   168   {
   169     Label loop;
   170     __ bind(loop);
   171     // pull one word down each time through the loop
   172     __ movptr(rbx_temp, Address(rdx_temp, 0));
   173     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   174     __ addptr(rdx_temp, wordSize);
   175     __ cmpptr(rdx_temp, rax_argslot);
   176     __ jcc(Assembler::less, loop);
   177   }
   179   // Now move the argslot down, to point to the opened-up space.
   180   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   182   if (TaggedStackInterpreter && arg_mask != _INSERT_NO_MASK) {
   183     // The caller has specified a bitmask of tags to put into the opened space.
   184     // This only works when the arg_slots value is an assembly-time constant.
   185     int constant_arg_slots = arg_slots.as_constant() / stack_move_unit();
   186     int tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
   187     for (int slot = 0; slot < constant_arg_slots; slot++) {
   188       BasicType slot_type   = ((arg_mask & (1 << slot)) == 0 ? T_OBJECT : T_INT);
   189       int       slot_offset = Interpreter::stackElementSize() * slot;
   190       Address   tag_addr(rax_argslot, slot_offset + tag_offset);
   191       __ movptr(tag_addr, frame::tag_for_basic_type(slot_type));
   192     }
   193     // Note that the new argument slots are tagged properly but contain
   194     // garbage at this point.  The value portions must be initialized
   195     // by the caller.  (Especially references!)
   196   }
   197 }
   199 // Helper to remove argument slots from the stack.
   200 // arg_slots must be a multiple of stack_move_unit() and >= 0
   201 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   202                                     RegisterOrConstant arg_slots,
   203                                     Register rax_argslot,
   204                                     Register rbx_temp, Register rdx_temp) {
   205   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   206                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   208 #ifdef ASSERT
   209   {
   210     // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   211     Label L_ok, L_bad;
   212     __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
   213     __ cmpptr(rbx_temp, rbp);
   214     __ jcc(Assembler::above, L_bad);
   215     __ cmpptr(rsp, rax_argslot);
   216     __ jcc(Assembler::below, L_ok);
   217     __ bind(L_bad);
   218     __ stop("deleted argument(s) must fall within current frame");
   219     __ bind(L_ok);
   220   }
   221   if (arg_slots.is_register()) {
   222     Label L_ok, L_bad;
   223     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   224     __ jcc(Assembler::less, L_bad);
   225     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   226     __ jcc(Assembler::zero, L_ok);
   227     __ bind(L_bad);
   228     __ stop("assert arg_slots >= 0 and clear low bits");
   229     __ bind(L_ok);
   230   } else {
   231     assert(arg_slots.as_constant() >= 0, "");
   232     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   233   }
   234 #endif //ASSERT
   236 #ifdef _LP64
   237   if (false) {                  // not needed, since register is positive
   238     // clean high bits of stack motion register (was loaded as an int)
   239     if (arg_slots.is_register())
   240       __ movslq(arg_slots.as_register(), arg_slots.as_register());
   241   }
   242 #endif
   244   // Pull up everything shallower than rax_argslot.
   245   // Then remove the excess space on the stack.
   246   // The stacked return address gets pulled up with everything else.
   247   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   248   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   249   //     rdx[size] = rdx[0]
   250   //   argslot += size;
   251   //   rsp += size;
   252   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   253   {
   254     Label loop;
   255     __ bind(loop);
   256     // pull one word up each time through the loop
   257     __ movptr(rbx_temp, Address(rdx_temp, 0));
   258     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   259     __ addptr(rdx_temp, -wordSize);
   260     __ cmpptr(rdx_temp, rsp);
   261     __ jcc(Assembler::greaterEqual, loop);
   262   }
   264   // Now move the argslot up, to point to the just-copied block.
   265   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   266   // And adjust the argslot address to point at the deletion point.
   267   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   268 }
   270 #ifndef PRODUCT
   271 void trace_method_handle_stub(const char* adaptername,
   272                               oopDesc* mh,
   273                               intptr_t* entry_sp,
   274                               intptr_t* saved_sp) {
   275   // called as a leaf from native code: do not block the JVM!
   276   printf("MH %s "PTR_FORMAT" "PTR_FORMAT" "INTX_FORMAT"\n", adaptername, (void*)mh, entry_sp, entry_sp - saved_sp);
   277 }
   278 #endif //PRODUCT
   280 // Generate an "entry" field for a method handle.
   281 // This determines how the method handle will respond to calls.
   282 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
   283   // Here is the register state during an interpreted call,
   284   // as set up by generate_method_handle_interpreter_entry():
   285   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
   286   // - rcx: receiver method handle
   287   // - rax: method handle type (only used by the check_mtype entry point)
   288   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   289   // - rdx: garbage temp, can blow away
   291   Register rcx_recv    = rcx;
   292   Register rax_argslot = rax;
   293   Register rbx_temp    = rbx;
   294   Register rdx_temp    = rdx;
   296   guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
   298   // some handy addresses
   299   Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
   301   Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
   302   Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
   304   Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
   305   Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
   307   Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
   308   Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
   309   Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
   310   Address vmarg;                // __ argument_address(vmargslot)
   312   int tag_offset = -1;
   313   if (TaggedStackInterpreter) {
   314     tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
   315     assert(tag_offset = wordSize, "stack grows as expected");
   316   }
   318   if (have_entry(ek)) {
   319     __ nop();                   // empty stubs make SG sick
   320     return;
   321   }
   323   address interp_entry = __ pc();
   324   if (UseCompressedOops)  __ unimplemented("UseCompressedOops");
   326 #ifndef PRODUCT
   327   if (TraceMethodHandles) {
   328     __ push(rax); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rsi); __ push(rdi);
   329     __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
   330     // arguments:
   331     __ push(rsi);               // saved_sp
   332     __ push(rax);               // entry_sp
   333     __ push(rcx);               // mh
   334     __ push(rcx);
   335     __ movptr(Address(rsp, 0), (intptr_t)entry_name(ek));
   336     __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 4);
   337     __ pop(rdi); __ pop(rsi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ pop(rax);
   338   }
   339 #endif //PRODUCT
   341   switch ((int) ek) {
   342   case _check_mtype:
   343     {
   344       // this stub is special, because it requires a live mtype argument
   345       Register rax_mtype = rax;
   347       // emit WrongMethodType path first, to enable jccb back-branch
   348       Label wrong_method_type;
   349       __ bind(wrong_method_type);
   350       __ movptr(rdx_temp, ExternalAddress((address) &_entries[_wrong_method_type]));
   351       __ jmp(Address(rdx_temp, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
   352       __ hlt();
   354       interp_entry = __ pc();
   355       __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
   356       // now rax_mtype is dead; subsequent stubs will use it as a temp
   358       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   359     }
   360     break;
   362   case _wrong_method_type:
   363     {
   364       // this stub is special, because it requires a live mtype argument
   365       Register rax_mtype = rax;
   367       interp_entry = __ pc();
   368       __ push(rax_mtype);       // required mtype
   369       __ push(rcx_recv);        // random mh (1st stacked argument)
   370       __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   371     }
   372     break;
   374   case _invokestatic_mh:
   375   case _invokespecial_mh:
   376     {
   377       Register rbx_method = rbx_temp;
   378       __ movptr(rbx_method, rcx_mh_vmtarget); // target is a methodOop
   379       __ verify_oop(rbx_method);
   380       // same as TemplateTable::invokestatic or invokespecial,
   381       // minus the CP setup and profiling:
   382       if (ek == _invokespecial_mh) {
   383         // Must load & check the first argument before entering the target method.
   384         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   385         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   386         __ null_check(rcx_recv);
   387         __ verify_oop(rcx_recv);
   388       }
   389       __ jmp(rbx_method_fie);
   390     }
   391     break;
   393   case _invokevirtual_mh:
   394     {
   395       // same as TemplateTable::invokevirtual,
   396       // minus the CP setup and profiling:
   398       // pick out the vtable index and receiver offset from the MH,
   399       // and then we can discard it:
   400       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   401       Register rbx_index = rbx_temp;
   402       __ movl(rbx_index, rcx_dmh_vmindex);
   403       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
   404       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   405       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   407       // get receiver klass
   408       Register rax_klass = rax_argslot;
   409       __ load_klass(rax_klass, rcx_recv);
   410       __ verify_oop(rax_klass);
   412       // get target methodOop & entry point
   413       const int base = instanceKlass::vtable_start_offset() * wordSize;
   414       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
   415       Address vtable_entry_addr(rax_klass,
   416                                 rbx_index, Address::times_ptr,
   417                                 base + vtableEntry::method_offset_in_bytes());
   418       Register rbx_method = rbx_temp;
   419       __ movl(rbx_method, vtable_entry_addr);
   421       __ verify_oop(rbx_method);
   422       __ jmp(rbx_method_fie);
   423     }
   424     break;
   426   case _invokeinterface_mh:
   427     {
   428       // same as TemplateTable::invokeinterface,
   429       // minus the CP setup and profiling:
   431       // pick out the interface and itable index from the MH.
   432       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   433       Register rdx_intf  = rdx_temp;
   434       Register rbx_index = rbx_temp;
   435       __ movptr(rdx_intf,  rcx_mh_vmtarget);
   436       __ movl(rbx_index,   rcx_dmh_vmindex);
   437       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   438       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   440       // get receiver klass
   441       Register rax_klass = rax_argslot;
   442       __ load_klass(rax_klass, rcx_recv);
   443       __ verify_oop(rax_klass);
   445       Register rcx_temp   = rcx_recv;
   446       Register rbx_method = rbx_index;
   448       // get interface klass
   449       Label no_such_interface;
   450       __ verify_oop(rdx_intf);
   451       __ lookup_interface_method(rax_klass, rdx_intf,
   452                                  // note: next two args must be the same:
   453                                  rbx_index, rbx_method,
   454                                  rcx_temp,
   455                                  no_such_interface);
   457       __ verify_oop(rbx_method);
   458       __ jmp(rbx_method_fie);
   459       __ hlt();
   461       __ bind(no_such_interface);
   462       // Throw an exception.
   463       // For historical reasons, it will be IncompatibleClassChangeError.
   464       __ should_not_reach_here(); // %%% FIXME NYI
   465     }
   466     break;
   468   case _bound_ref_mh:
   469   case _bound_int_mh:
   470   case _bound_long_mh:
   471   case _bound_ref_direct_mh:
   472   case _bound_int_direct_mh:
   473   case _bound_long_direct_mh:
   474     {
   475       bool direct_to_method = (ek >= _bound_ref_direct_mh);
   476       BasicType arg_type = T_ILLEGAL;
   477       if (ek == _bound_long_mh || ek == _bound_long_direct_mh) {
   478         arg_type = T_LONG;
   479       } else if (ek == _bound_int_mh || ek == _bound_int_direct_mh) {
   480         arg_type = T_INT;
   481       } else {
   482         assert(ek == _bound_ref_mh || ek == _bound_ref_direct_mh, "must be ref");
   483         arg_type = T_OBJECT;
   484       }
   485       int arg_slots = type2size[arg_type];
   486       int arg_mask  = (arg_type == T_OBJECT ? _INSERT_REF_MASK :
   487                        arg_slots == 1       ? _INSERT_INT_MASK :  _INSERT_LONG_MASK);
   489       // make room for the new argument:
   490       __ movl(rax_argslot, rcx_bmh_vmargslot);
   491       __ lea(rax_argslot, __ argument_address(rax_argslot));
   492       insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
   493                        rax_argslot, rbx_temp, rdx_temp);
   495       // store bound argument into the new stack slot:
   496       __ movptr(rbx_temp, rcx_bmh_argument);
   497       Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
   498       if (arg_type == T_OBJECT) {
   499         __ movptr(Address(rax_argslot, 0), rbx_temp);
   500       } else {
   501         __ load_sized_value(rbx_temp, prim_value_addr,
   502                             type2aelembytes(arg_type), is_signed_subword_type(arg_type));
   503         __ movptr(Address(rax_argslot, 0), rbx_temp);
   504 #ifndef _LP64
   505         if (arg_slots == 2) {
   506           __ movl(rbx_temp, prim_value_addr.plus_disp(wordSize));
   507           __ movl(Address(rax_argslot, Interpreter::stackElementSize()), rbx_temp);
   508         }
   509 #endif //_LP64
   510         break;
   511       }
   513       if (direct_to_method) {
   514         Register rbx_method = rbx_temp;
   515         __ movptr(rbx_method, rcx_mh_vmtarget);
   516         __ verify_oop(rbx_method);
   517         __ jmp(rbx_method_fie);
   518       } else {
   519         __ movptr(rcx_recv, rcx_mh_vmtarget);
   520         __ verify_oop(rcx_recv);
   521         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   522       }
   523     }
   524     break;
   526   case _adapter_retype_only:
   527     // immediately jump to the next MH layer:
   528     __ movptr(rcx_recv, rcx_mh_vmtarget);
   529     __ verify_oop(rcx_recv);
   530     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   531     // This is OK when all parameter types widen.
   532     // It is also OK when a return type narrows.
   533     break;
   535   case _adapter_check_cast:
   536     {
   537       // temps:
   538       Register rbx_klass = rbx_temp; // interesting AMH data
   540       // check a reference argument before jumping to the next layer of MH:
   541       __ movl(rax_argslot, rcx_amh_vmargslot);
   542       vmarg = __ argument_address(rax_argslot);
   544       // What class are we casting to?
   545       __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
   546       __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
   548       // get the new MH:
   549       __ movptr(rcx_recv, rcx_mh_vmtarget);
   550       // (now we are done with the old MH)
   552       Label done;
   553       __ movptr(rdx_temp, vmarg);
   554       __ testl(rdx_temp, rdx_temp);
   555       __ jcc(Assembler::zero, done);          // no cast if null
   556       __ load_klass(rdx_temp, rdx_temp);
   558       // live at this point:
   559       // - rbx_klass:  klass required by the target method
   560       // - rdx_temp:   argument klass to test
   561       // - rcx_recv:   method handle to invoke (after cast succeeds)
   562       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
   564       // If we get here, the type check failed!
   565       // Call the wrong_method_type stub, passing the failing argument type in rax.
   566       Register rax_mtype = rax_argslot;
   567       __ push(rbx_klass);       // missed klass (required type)
   568       __ push(rdx_temp);        // bad actual type (1st stacked argument)
   569       __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   571       __ bind(done);
   572       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   573     }
   574     break;
   576   case _adapter_prim_to_prim:
   577   case _adapter_ref_to_prim:
   578     // handled completely by optimized cases
   579     __ stop("init_AdapterMethodHandle should not issue this");
   580     break;
   582   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
   583 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
   584   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
   585   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
   586     {
   587       // perform an in-place conversion to int or an int subword
   588       __ movl(rax_argslot, rcx_amh_vmargslot);
   589       vmarg = __ argument_address(rax_argslot);
   591       switch (ek) {
   592       case _adapter_opt_i2i:
   593         __ movl(rdx_temp, vmarg);
   594         break;
   595       case _adapter_opt_l2i:
   596         {
   597           // just delete the extra slot; on a little-endian machine we keep the first
   598           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   599           remove_arg_slots(_masm, -stack_move_unit(),
   600                            rax_argslot, rbx_temp, rdx_temp);
   601           vmarg = Address(rax_argslot, -Interpreter::stackElementSize());
   602           __ movl(rdx_temp, vmarg);
   603         }
   604         break;
   605       case _adapter_opt_unboxi:
   606         {
   607           // Load the value up from the heap.
   608           __ movptr(rdx_temp, vmarg);
   609           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
   610 #ifdef ASSERT
   611           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
   612             if (is_subword_type(BasicType(bt)))
   613               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
   614           }
   615 #endif
   616           __ null_check(rdx_temp, value_offset);
   617           __ movl(rdx_temp, Address(rdx_temp, value_offset));
   618           // We load this as a word.  Because we are little-endian,
   619           // the low bits will be correct, but the high bits may need cleaning.
   620           // The vminfo will guide us to clean those bits.
   621         }
   622         break;
   623       default:
   624         assert(false, "");
   625       }
   626       goto finish_int_conversion;
   627     }
   629   finish_int_conversion:
   630     {
   631       Register rbx_vminfo = rbx_temp;
   632       __ movl(rbx_vminfo, rcx_amh_conversion);
   633       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   635       // get the new MH:
   636       __ movptr(rcx_recv, rcx_mh_vmtarget);
   637       // (now we are done with the old MH)
   639       // original 32-bit vmdata word must be of this form:
   640       //    | MBZ:16 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
   641       __ xchgl(rcx, rbx_vminfo);                // free rcx for shifts
   642       __ shll(rdx_temp /*, rcx*/);
   643       Label zero_extend, done;
   644       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
   645       __ jcc(Assembler::zero, zero_extend);
   647       // this path is taken for int->byte, int->short
   648       __ sarl(rdx_temp /*, rcx*/);
   649       __ jmp(done);
   651       __ bind(zero_extend);
   652       // this is taken for int->char
   653       __ shrl(rdx_temp /*, rcx*/);
   655       __ bind(done);
   656       __ movptr(vmarg, rdx_temp);
   657       __ xchgl(rcx, rbx_vminfo);                // restore rcx_recv
   659       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   660     }
   661     break;
   663   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
   664   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
   665     {
   666       // perform an in-place int-to-long or ref-to-long conversion
   667       __ movl(rax_argslot, rcx_amh_vmargslot);
   669       // on a little-endian machine we keep the first slot and add another after
   670       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   671       insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   672                        rax_argslot, rbx_temp, rdx_temp);
   673       Address vmarg1(rax_argslot, -Interpreter::stackElementSize());
   674       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize());
   676       switch (ek) {
   677       case _adapter_opt_i2l:
   678         {
   679           __ movl(rdx_temp, vmarg1);
   680           __ sarl(rdx_temp, 31);  // __ extend_sign()
   681           __ movl(vmarg2, rdx_temp); // store second word
   682         }
   683         break;
   684       case _adapter_opt_unboxl:
   685         {
   686           // Load the value up from the heap.
   687           __ movptr(rdx_temp, vmarg1);
   688           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
   689           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
   690           __ null_check(rdx_temp, value_offset);
   691           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
   692           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
   693           __ movl(vmarg1, rbx_temp);
   694           __ movl(vmarg2, rdx_temp);
   695         }
   696         break;
   697       default:
   698         assert(false, "");
   699       }
   701       __ movptr(rcx_recv, rcx_mh_vmtarget);
   702       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   703     }
   704     break;
   706   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
   707   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
   708     {
   709       // perform an in-place floating primitive conversion
   710       __ movl(rax_argslot, rcx_amh_vmargslot);
   711       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   712       if (ek == _adapter_opt_f2d) {
   713         insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   714                          rax_argslot, rbx_temp, rdx_temp);
   715       }
   716       Address vmarg(rax_argslot, -Interpreter::stackElementSize());
   718 #ifdef _LP64
   719       if (ek == _adapter_opt_f2d) {
   720         __ movflt(xmm0, vmarg);
   721         __ cvtss2sd(xmm0, xmm0);
   722         __ movdbl(vmarg, xmm0);
   723       } else {
   724         __ movdbl(xmm0, vmarg);
   725         __ cvtsd2ss(xmm0, xmm0);
   726         __ movflt(vmarg, xmm0);
   727       }
   728 #else //_LP64
   729       if (ek == _adapter_opt_f2d) {
   730         __ fld_s(vmarg);        // load float to ST0
   731         __ fstp_s(vmarg);       // store single
   732       } else if (!TaggedStackInterpreter) {
   733         __ fld_d(vmarg);        // load double to ST0
   734         __ fstp_s(vmarg);       // store single
   735       } else {
   736         Address vmarg_tag = vmarg.plus_disp(tag_offset);
   737         Address vmarg2    = vmarg.plus_disp(Interpreter::stackElementSize());
   738         // vmarg2_tag does not participate in this code
   739         Register rbx_tag = rbx_temp;
   740         __ movl(rbx_tag, vmarg_tag); // preserve tag
   741         __ movl(rdx_temp, vmarg2); // get second word of double
   742         __ movl(vmarg_tag, rdx_temp); // align with first word
   743         __ fld_d(vmarg);        // load double to ST0
   744         __ movl(vmarg_tag, rbx_tag); // restore tag
   745         __ fstp_s(vmarg);       // store single
   746       }
   747 #endif //_LP64
   749       if (ek == _adapter_opt_d2f) {
   750         remove_arg_slots(_masm, -stack_move_unit(),
   751                          rax_argslot, rbx_temp, rdx_temp);
   752       }
   754       __ movptr(rcx_recv, rcx_mh_vmtarget);
   755       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   756     }
   757     break;
   759   case _adapter_prim_to_ref:
   760     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
   761     break;
   763   case _adapter_swap_args:
   764   case _adapter_rot_args:
   765     // handled completely by optimized cases
   766     __ stop("init_AdapterMethodHandle should not issue this");
   767     break;
   769   case _adapter_opt_swap_1:
   770   case _adapter_opt_swap_2:
   771   case _adapter_opt_rot_1_up:
   772   case _adapter_opt_rot_1_down:
   773   case _adapter_opt_rot_2_up:
   774   case _adapter_opt_rot_2_down:
   775     {
   776       int rotate = 0, swap_slots = 0;
   777       switch ((int)ek) {
   778       case _adapter_opt_swap_1:     swap_slots = 1; break;
   779       case _adapter_opt_swap_2:     swap_slots = 2; break;
   780       case _adapter_opt_rot_1_up:   swap_slots = 1; rotate++; break;
   781       case _adapter_opt_rot_1_down: swap_slots = 1; rotate--; break;
   782       case _adapter_opt_rot_2_up:   swap_slots = 2; rotate++; break;
   783       case _adapter_opt_rot_2_down: swap_slots = 2; rotate--; break;
   784       default: assert(false, "");
   785       }
   787       // the real size of the move must be doubled if TaggedStackInterpreter:
   788       int swap_bytes = (int)( swap_slots * Interpreter::stackElementWords() * wordSize );
   790       // 'argslot' is the position of the first argument to swap
   791       __ movl(rax_argslot, rcx_amh_vmargslot);
   792       __ lea(rax_argslot, __ argument_address(rax_argslot));
   794       // 'vminfo' is the second
   795       Register rbx_destslot = rbx_temp;
   796       __ movl(rbx_destslot, rcx_amh_conversion);
   797       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   798       __ andl(rbx_destslot, CONV_VMINFO_MASK);
   799       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
   800       DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
   802       if (!rotate) {
   803         for (int i = 0; i < swap_bytes; i += wordSize) {
   804           __ movptr(rdx_temp, Address(rax_argslot , i));
   805           __ push(rdx_temp);
   806           __ movptr(rdx_temp, Address(rbx_destslot, i));
   807           __ movptr(Address(rax_argslot, i), rdx_temp);
   808           __ pop(rdx_temp);
   809           __ movptr(Address(rbx_destslot, i), rdx_temp);
   810         }
   811       } else {
   812         // push the first chunk, which is going to get overwritten
   813         for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
   814           __ movptr(rdx_temp, Address(rax_argslot, i));
   815           __ push(rdx_temp);
   816         }
   818         if (rotate > 0) {
   819           // rotate upward
   820           __ subptr(rax_argslot, swap_bytes);
   821 #ifdef ASSERT
   822           {
   823             // Verify that argslot > destslot, by at least swap_bytes.
   824             Label L_ok;
   825             __ cmpptr(rax_argslot, rbx_destslot);
   826             __ jcc(Assembler::aboveEqual, L_ok);
   827             __ stop("source must be above destination (upward rotation)");
   828             __ bind(L_ok);
   829           }
   830 #endif
   831           // work argslot down to destslot, copying contiguous data upwards
   832           // pseudo-code:
   833           //   rax = src_addr - swap_bytes
   834           //   rbx = dest_addr
   835           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
   836           Label loop;
   837           __ bind(loop);
   838           __ movptr(rdx_temp, Address(rax_argslot, 0));
   839           __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
   840           __ addptr(rax_argslot, -wordSize);
   841           __ cmpptr(rax_argslot, rbx_destslot);
   842           __ jcc(Assembler::aboveEqual, loop);
   843         } else {
   844           __ addptr(rax_argslot, swap_bytes);
   845 #ifdef ASSERT
   846           {
   847             // Verify that argslot < destslot, by at least swap_bytes.
   848             Label L_ok;
   849             __ cmpptr(rax_argslot, rbx_destslot);
   850             __ jcc(Assembler::belowEqual, L_ok);
   851             __ stop("source must be below destination (downward rotation)");
   852             __ bind(L_ok);
   853           }
   854 #endif
   855           // work argslot up to destslot, copying contiguous data downwards
   856           // pseudo-code:
   857           //   rax = src_addr + swap_bytes
   858           //   rbx = dest_addr
   859           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
   860           Label loop;
   861           __ bind(loop);
   862           __ movptr(rdx_temp, Address(rax_argslot, 0));
   863           __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
   864           __ addptr(rax_argslot, wordSize);
   865           __ cmpptr(rax_argslot, rbx_destslot);
   866           __ jcc(Assembler::belowEqual, loop);
   867         }
   869         // pop the original first chunk into the destination slot, now free
   870         for (int i = 0; i < swap_bytes; i += wordSize) {
   871           __ pop(rdx_temp);
   872           __ movptr(Address(rbx_destslot, i), rdx_temp);
   873         }
   874       }
   876       __ movptr(rcx_recv, rcx_mh_vmtarget);
   877       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   878     }
   879     break;
   881   case _adapter_dup_args:
   882     {
   883       // 'argslot' is the position of the first argument to duplicate
   884       __ movl(rax_argslot, rcx_amh_vmargslot);
   885       __ lea(rax_argslot, __ argument_address(rax_argslot));
   887       // 'stack_move' is negative number of words to duplicate
   888       Register rdx_stack_move = rdx_temp;
   889       __ movl(rdx_stack_move, rcx_amh_conversion);
   890       __ sarl(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
   892       int argslot0_num = 0;
   893       Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
   894       assert(argslot0.base() == rsp, "");
   895       int pre_arg_size = argslot0.disp();
   896       assert(pre_arg_size % wordSize == 0, "");
   897       assert(pre_arg_size > 0, "must include PC");
   899       // remember the old rsp+1 (argslot[0])
   900       Register rbx_oldarg = rbx_temp;
   901       __ lea(rbx_oldarg, argslot0);
   903       // move rsp down to make room for dups
   904       __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
   906       // compute the new rsp+1 (argslot[0])
   907       Register rdx_newarg = rdx_temp;
   908       __ lea(rdx_newarg, argslot0);
   910       __ push(rdi);             // need a temp
   911       // (preceding push must be done after arg addresses are taken!)
   913       // pull down the pre_arg_size data (PC)
   914       for (int i = -pre_arg_size; i < 0; i += wordSize) {
   915         __ movptr(rdi, Address(rbx_oldarg, i));
   916         __ movptr(Address(rdx_newarg, i), rdi);
   917       }
   919       // copy from rax_argslot[0...] down to new_rsp[1...]
   920       // pseudo-code:
   921       //   rbx = old_rsp+1
   922       //   rdx = new_rsp+1
   923       //   rax = argslot
   924       //   while (rdx < rbx) *rdx++ = *rax++
   925       Label loop;
   926       __ bind(loop);
   927       __ movptr(rdi, Address(rax_argslot, 0));
   928       __ movptr(Address(rdx_newarg, 0), rdi);
   929       __ addptr(rax_argslot, wordSize);
   930       __ addptr(rdx_newarg, wordSize);
   931       __ cmpptr(rdx_newarg, rbx_oldarg);
   932       __ jcc(Assembler::less, loop);
   934       __ pop(rdi);              // restore temp
   936       __ movptr(rcx_recv, rcx_mh_vmtarget);
   937       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   938     }
   939     break;
   941   case _adapter_drop_args:
   942     {
   943       // 'argslot' is the position of the first argument to nuke
   944       __ movl(rax_argslot, rcx_amh_vmargslot);
   945       __ lea(rax_argslot, __ argument_address(rax_argslot));
   947       __ push(rdi);             // need a temp
   948       // (must do previous push after argslot address is taken)
   950       // 'stack_move' is number of words to drop
   951       Register rdi_stack_move = rdi;
   952       __ movl(rdi_stack_move, rcx_amh_conversion);
   953       __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
   954       remove_arg_slots(_masm, rdi_stack_move,
   955                        rax_argslot, rbx_temp, rdx_temp);
   957       __ pop(rdi);              // restore temp
   959       __ movptr(rcx_recv, rcx_mh_vmtarget);
   960       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   961     }
   962     break;
   964   case _adapter_collect_args:
   965     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
   966     break;
   968   case _adapter_spread_args:
   969     // handled completely by optimized cases
   970     __ stop("init_AdapterMethodHandle should not issue this");
   971     break;
   973   case _adapter_opt_spread_0:
   974   case _adapter_opt_spread_1:
   975   case _adapter_opt_spread_more:
   976     {
   977       // spread an array out into a group of arguments
   978       int length_constant = -1;
   979       switch (ek) {
   980       case _adapter_opt_spread_0: length_constant = 0; break;
   981       case _adapter_opt_spread_1: length_constant = 1; break;
   982       }
   984       // find the address of the array argument
   985       __ movl(rax_argslot, rcx_amh_vmargslot);
   986       __ lea(rax_argslot, __ argument_address(rax_argslot));
   988       // grab some temps
   989       { __ push(rsi); __ push(rdi); }
   990       // (preceding pushes must be done after argslot address is taken!)
   991 #define UNPUSH_RSI_RDI \
   992       { __ pop(rdi); __ pop(rsi); }
   994       // arx_argslot points both to the array and to the first output arg
   995       vmarg = Address(rax_argslot, 0);
   997       // Get the array value.
   998       Register  rsi_array       = rsi;
   999       Register  rdx_array_klass = rdx_temp;
  1000       BasicType elem_type       = T_OBJECT;
  1001       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  1002       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  1003       __ movptr(rsi_array, vmarg);
  1004       Label skip_array_check;
  1005       if (length_constant == 0) {
  1006         __ testptr(rsi_array, rsi_array);
  1007         __ jcc(Assembler::zero, skip_array_check);
  1009       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
  1010       __ load_klass(rdx_array_klass, rsi_array);
  1012       // Check the array type.
  1013       Register rbx_klass = rbx_temp;
  1014       __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
  1015       __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
  1017       Label ok_array_klass, bad_array_klass, bad_array_length;
  1018       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
  1019       // If we get here, the type check failed!
  1020       __ jmp(bad_array_klass);
  1021       __ bind(ok_array_klass);
  1023       // Check length.
  1024       if (length_constant >= 0) {
  1025         __ cmpl(Address(rsi_array, length_offset), length_constant);
  1026       } else {
  1027         Register rbx_vminfo = rbx_temp;
  1028         __ movl(rbx_vminfo, rcx_amh_conversion);
  1029         assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  1030         __ andl(rbx_vminfo, CONV_VMINFO_MASK);
  1031         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
  1033       __ jcc(Assembler::notEqual, bad_array_length);
  1035       Register rdx_argslot_limit = rdx_temp;
  1037       // Array length checks out.  Now insert any required stack slots.
  1038       if (length_constant == -1) {
  1039         // Form a pointer to the end of the affected region.
  1040         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize()));
  1041         // 'stack_move' is negative number of words to insert
  1042         Register rdi_stack_move = rdi;
  1043         __ movl(rdi_stack_move, rcx_amh_conversion);
  1044         __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
  1045         Register rsi_temp = rsi_array;  // spill this
  1046         insert_arg_slots(_masm, rdi_stack_move, -1,
  1047                          rax_argslot, rbx_temp, rsi_temp);
  1048         // reload the array (since rsi was killed)
  1049         __ movptr(rsi_array, vmarg);
  1050       } else if (length_constant > 1) {
  1051         int arg_mask = 0;
  1052         int new_slots = (length_constant - 1);
  1053         for (int i = 0; i < new_slots; i++) {
  1054           arg_mask <<= 1;
  1055           arg_mask |= _INSERT_REF_MASK;
  1057         insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
  1058                          rax_argslot, rbx_temp, rdx_temp);
  1059       } else if (length_constant == 1) {
  1060         // no stack resizing required
  1061       } else if (length_constant == 0) {
  1062         remove_arg_slots(_masm, -stack_move_unit(),
  1063                          rax_argslot, rbx_temp, rdx_temp);
  1066       // Copy from the array to the new slots.
  1067       // Note: Stack change code preserves integrity of rax_argslot pointer.
  1068       // So even after slot insertions, rax_argslot still points to first argument.
  1069       if (length_constant == -1) {
  1070         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  1071         Register rsi_source = rsi_array;
  1072         __ lea(rsi_source, Address(rsi_array, elem0_offset));
  1073         Label loop;
  1074         __ bind(loop);
  1075         __ movptr(rbx_temp, Address(rsi_source, 0));
  1076         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1077         __ addptr(rsi_source, type2aelembytes(elem_type));
  1078         if (TaggedStackInterpreter) {
  1079           __ movptr(Address(rax_argslot, tag_offset),
  1080                     frame::tag_for_basic_type(elem_type));
  1082         __ addptr(rax_argslot, Interpreter::stackElementSize());
  1083         __ cmpptr(rax_argslot, rdx_argslot_limit);
  1084         __ jcc(Assembler::less, loop);
  1085       } else if (length_constant == 0) {
  1086         __ bind(skip_array_check);
  1087         // nothing to copy
  1088       } else {
  1089         int elem_offset = elem0_offset;
  1090         int slot_offset = 0;
  1091         for (int index = 0; index < length_constant; index++) {
  1092           __ movptr(rbx_temp, Address(rsi_array, elem_offset));
  1093           __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
  1094           elem_offset += type2aelembytes(elem_type);
  1095           if (TaggedStackInterpreter) {
  1096             __ movptr(Address(rax_argslot, slot_offset + tag_offset),
  1097                       frame::tag_for_basic_type(elem_type));
  1099           slot_offset += Interpreter::stackElementSize();
  1103       // Arguments are spread.  Move to next method handle.
  1104       UNPUSH_RSI_RDI;
  1105       __ movptr(rcx_recv, rcx_mh_vmtarget);
  1106       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1108       __ bind(bad_array_klass);
  1109       UNPUSH_RSI_RDI;
  1110       __ stop("bad array klass NYI");
  1112       __ bind(bad_array_length);
  1113       UNPUSH_RSI_RDI;
  1114       __ stop("bad array length NYI");
  1116 #undef UNPUSH_RSI_RDI
  1118     break;
  1120   case _adapter_flyby:
  1121   case _adapter_ricochet:
  1122     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1123     break;
  1125   default:  ShouldNotReachHere();
  1127   __ hlt();
  1129   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  1130   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1132   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial