src/cpu/sparc/vm/assembler_sparc.cpp

Tue, 14 Jul 2009 15:40:39 -0700

author
ysr
date
Tue, 14 Jul 2009 15:40:39 -0700
changeset 1280
df6caf649ff7
parent 1229
315a5d70b295
child 1421
62001a362ce9
permissions
-rw-r--r--

6700789: G1: Enable use of compressed oops with G1 heaps
Summary: Modifications to G1 so as to allow the use of compressed oops.
Reviewed-by: apetrusenko, coleenp, jmasa, kvn, never, phh, tonyp

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_sparc.cpp.incl"
    28 // Convert the raw encoding form into the form expected by the
    29 // constructor for Address.
    30 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
    31   assert(scale == 0, "not supported");
    32   RelocationHolder rspec;
    33   if (disp_is_oop) {
    34     rspec = Relocation::spec_simple(relocInfo::oop_type);
    35   }
    37   Register rindex = as_Register(index);
    38   if (rindex != G0) {
    39     Address madr(as_Register(base), rindex);
    40     madr._rspec = rspec;
    41     return madr;
    42   } else {
    43     Address madr(as_Register(base), disp);
    44     madr._rspec = rspec;
    45     return madr;
    46   }
    47 }
    49 Address Argument::address_in_frame() const {
    50   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    51   //          op codes such as ld or ldx, only access disp() to get
    52   //          their simm13 argument.
    53   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    54   if (is_in())
    55     return Address(FP, disp); // In argument.
    56   else
    57     return Address(SP, disp); // Out argument.
    58 }
    60 static const char* argumentNames[][2] = {
    61   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    62   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    63   {"A(n>9)","P(n>9)"}
    64 };
    66 const char* Argument::name() const {
    67   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    68   int num = number();
    69   if (num >= nofArgs)  num = nofArgs - 1;
    70   return argumentNames[num][is_in() ? 1 : 0];
    71 }
    73 void Assembler::print_instruction(int inst) {
    74   const char* s;
    75   switch (inv_op(inst)) {
    76   default:         s = "????"; break;
    77   case call_op:    s = "call"; break;
    78   case branch_op:
    79     switch (inv_op2(inst)) {
    80       case bpr_op2:    s = "bpr";  break;
    81       case fb_op2:     s = "fb";   break;
    82       case fbp_op2:    s = "fbp";  break;
    83       case br_op2:     s = "br";   break;
    84       case bp_op2:     s = "bp";   break;
    85       case cb_op2:     s = "cb";   break;
    86       default:         s = "????"; break;
    87     }
    88   }
    89   ::tty->print("%s", s);
    90 }
    93 // Patch instruction inst at offset inst_pos to refer to dest_pos
    94 // and return the resulting instruction.
    95 // We should have pcs, not offsets, but since all is relative, it will work out
    96 // OK.
    97 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
    99   int m; // mask for displacement field
   100   int v; // new value for displacement field
   101   const int word_aligned_ones = -4;
   102   switch (inv_op(inst)) {
   103   default: ShouldNotReachHere();
   104   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   105   case branch_op:
   106     switch (inv_op2(inst)) {
   107       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
   108       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   109       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   110       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   111       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   112       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   113       default: ShouldNotReachHere();
   114     }
   115   }
   116   return  inst & ~m  |  v;
   117 }
   119 // Return the offset of the branch destionation of instruction inst
   120 // at offset pos.
   121 // Should have pcs, but since all is relative, it works out.
   122 int Assembler::branch_destination(int inst, int pos) {
   123   int r;
   124   switch (inv_op(inst)) {
   125   default: ShouldNotReachHere();
   126   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   127   case branch_op:
   128     switch (inv_op2(inst)) {
   129       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   130       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   131       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   132       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   133       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   134       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   135       default: ShouldNotReachHere();
   136     }
   137   }
   138   return r;
   139 }
   141 int AbstractAssembler::code_fill_byte() {
   142   return 0x00;                  // illegal instruction 0x00000000
   143 }
   145 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   146   switch (in) {
   147   case rc_z:   return equal;
   148   case rc_lez: return lessEqual;
   149   case rc_lz:  return less;
   150   case rc_nz:  return notEqual;
   151   case rc_gz:  return greater;
   152   case rc_gez: return greaterEqual;
   153   default:
   154     ShouldNotReachHere();
   155   }
   156   return equal;
   157 }
   159 // Generate a bunch 'o stuff (including v9's
   160 #ifndef PRODUCT
   161 void Assembler::test_v9() {
   162   add(    G0, G1, G2 );
   163   add(    G3,  0, G4 );
   165   addcc(  G5, G6, G7 );
   166   addcc(  I0,  1, I1 );
   167   addc(   I2, I3, I4 );
   168   addc(   I5, -1, I6 );
   169   addccc( I7, L0, L1 );
   170   addccc( L2, (1 << 12) - 2, L3 );
   172   Label lbl1, lbl2, lbl3;
   174   bind(lbl1);
   176   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   177   delayed()->nop();
   178   bpr( rc_lez, false, pt, L5, lbl1);
   179   delayed()->nop();
   181   fb( f_never,     true, pc() + 4,  relocInfo::none);
   182   delayed()->nop();
   183   fb( f_notEqual, false, lbl2 );
   184   delayed()->nop();
   186   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   187   delayed()->nop();
   188   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   189   delayed()->nop();
   191   br( equal,  true, pc() + 1024, relocInfo::none);
   192   delayed()->nop();
   193   br( lessEqual, false, lbl1 );
   194   delayed()->nop();
   195   br( never, false, lbl1 );
   196   delayed()->nop();
   198   bp( less,               true, icc, pn, pc(), relocInfo::none);
   199   delayed()->nop();
   200   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   201   delayed()->nop();
   203   call( pc(), relocInfo::none);
   204   delayed()->nop();
   205   call( lbl3 );
   206   delayed()->nop();
   209   casa(  L6, L7, O0 );
   210   casxa( O1, O2, O3, 0 );
   212   udiv(   O4, O5, O7 );
   213   udiv(   G0, (1 << 12) - 1, G1 );
   214   sdiv(   G1, G2, G3 );
   215   sdiv(   G4, -((1 << 12) - 1), G5 );
   216   udivcc( G6, G7, I0 );
   217   udivcc( I1, -((1 << 12) - 2), I2 );
   218   sdivcc( I3, I4, I5 );
   219   sdivcc( I6, -((1 << 12) - 0), I7 );
   221   done();
   222   retry();
   224   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   225   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   227   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   228   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   230   ftox( FloatRegisterImpl::D, F2, F4 );
   231   ftoi( FloatRegisterImpl::Q, F4, F8 );
   233   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   235   fxtof( FloatRegisterImpl::S, F4, F5 );
   236   fitof( FloatRegisterImpl::D, F6, F8 );
   238   fmov( FloatRegisterImpl::Q, F16, F20 );
   239   fneg( FloatRegisterImpl::S, F6, F7 );
   240   fabs( FloatRegisterImpl::D, F10, F12 );
   242   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   243   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   244   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   246   fsqrt( FloatRegisterImpl::S, F13, F14 );
   248   flush( L0, L1 );
   249   flush( L2, -1 );
   251   flushw();
   253   illtrap( (1 << 22) - 2);
   255   impdep1( 17, (1 << 19) - 1 );
   256   impdep2( 3,  0 );
   258   jmpl( L3, L4, L5 );
   259   delayed()->nop();
   260   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   261   delayed()->nop();
   264   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   265   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   268   ldfsr(  O3, O4 );
   269   ldfsr(  O5, -1 );
   270   ldxfsr( O6, O7 );
   271   ldxfsr( I0, -1 );
   273   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   274   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   276   ldsb(  I4, I5, I6 );
   277   ldsb(  I7, -1, G0 );
   278   ldsh(  G1, G3, G4 );
   279   ldsh(  G5, -1, G6 );
   280   ldsw(  G7, L0, L1 );
   281   ldsw(  L2, -1, L3 );
   282   ldub(  L4, L5, L6 );
   283   ldub(  L7, -1, O0 );
   284   lduh(  O1, O2, O3 );
   285   lduh(  O4, -1, O5 );
   286   lduw(  O6, O7, G0 );
   287   lduw(  G1, -1, G2 );
   288   ldx(   G3, G4, G5 );
   289   ldx(   G6, -1, G7 );
   290   ldd(   I0, I1, I2 );
   291   ldd(   I3, -1, I4 );
   293   ldsba(  I5, I6, 2, I7 );
   294   ldsba(  L0, -1, L1 );
   295   ldsha(  L2, L3, 3, L4 );
   296   ldsha(  L5, -1, L6 );
   297   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   298   ldswa(  O2, -1, O3 );
   299   lduba(  O4, O5, 0, O6 );
   300   lduba(  O7, -1, I0 );
   301   lduha(  I1, I2, 1, I3 );
   302   lduha(  I4, -1, I5 );
   303   lduwa(  I6, I7, 2, L0 );
   304   lduwa(  L1, -1, L2 );
   305   ldxa(   L3, L4, 3, L5 );
   306   ldxa(   L6, -1, L7 );
   307   ldda(   G0, G1, 4, G2 );
   308   ldda(   G3, -1, G4 );
   310   ldstub(  G5, G6, G7 );
   311   ldstub(  O0, -1, O1 );
   313   ldstuba( O2, O3, 5, O4 );
   314   ldstuba( O5, -1, O6 );
   316   and3(    I0, L0, O0 );
   317   and3(    G7, -1, O7 );
   318   andcc(   L2, I2, G2 );
   319   andcc(   L4, -1, G4 );
   320   andn(    I5, I6, I7 );
   321   andn(    I6, -1, I7 );
   322   andncc(  I5, I6, I7 );
   323   andncc(  I7, -1, I6 );
   324   or3(     I5, I6, I7 );
   325   or3(     I7, -1, I6 );
   326   orcc(    I5, I6, I7 );
   327   orcc(    I7, -1, I6 );
   328   orn(     I5, I6, I7 );
   329   orn(     I7, -1, I6 );
   330   orncc(   I5, I6, I7 );
   331   orncc(   I7, -1, I6 );
   332   xor3(    I5, I6, I7 );
   333   xor3(    I7, -1, I6 );
   334   xorcc(   I5, I6, I7 );
   335   xorcc(   I7, -1, I6 );
   336   xnor(    I5, I6, I7 );
   337   xnor(    I7, -1, I6 );
   338   xnorcc(  I5, I6, I7 );
   339   xnorcc(  I7, -1, I6 );
   341   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   342   membar( StoreStore );
   343   membar( LoadStore );
   344   membar( StoreLoad );
   345   membar( LoadLoad );
   346   membar( Sync );
   347   membar( MemIssue );
   348   membar( Lookaside );
   350   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   351   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   353   movcc( overflowClear,  false, icc, I6, L4 );
   354   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   356   movr( rc_nz, I5, I6, I7 );
   357   movr( rc_gz, L1, -1,  L2 );
   359   mulx(  I5, I6, I7 );
   360   mulx(  I7, -1, I6 );
   361   sdivx( I5, I6, I7 );
   362   sdivx( I7, -1, I6 );
   363   udivx( I5, I6, I7 );
   364   udivx( I7, -1, I6 );
   366   umul(   I5, I6, I7 );
   367   umul(   I7, -1, I6 );
   368   smul(   I5, I6, I7 );
   369   smul(   I7, -1, I6 );
   370   umulcc( I5, I6, I7 );
   371   umulcc( I7, -1, I6 );
   372   smulcc( I5, I6, I7 );
   373   smulcc( I7, -1, I6 );
   375   mulscc(   I5, I6, I7 );
   376   mulscc(   I7, -1, I6 );
   378   nop();
   381   popc( G0,  G1);
   382   popc( -1, G2);
   384   prefetch(   L1, L2,    severalReads );
   385   prefetch(   L3, -1,    oneRead );
   386   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   387   prefetcha(  G2, -1,    oneWrite );
   389   rett( I7, I7);
   390   delayed()->nop();
   391   rett( G0, -1, relocInfo::none);
   392   delayed()->nop();
   394   save(    I5, I6, I7 );
   395   save(    I7, -1, I6 );
   396   restore( I5, I6, I7 );
   397   restore( I7, -1, I6 );
   399   saved();
   400   restored();
   402   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   404   sll(  I5, I6, I7 );
   405   sll(  I7, 31, I6 );
   406   srl(  I5, I6, I7 );
   407   srl(  I7,  0, I6 );
   408   sra(  I5, I6, I7 );
   409   sra(  I7, 30, I6 );
   410   sllx( I5, I6, I7 );
   411   sllx( I7, 63, I6 );
   412   srlx( I5, I6, I7 );
   413   srlx( I7,  0, I6 );
   414   srax( I5, I6, I7 );
   415   srax( I7, 62, I6 );
   417   sir( -1 );
   419   stbar();
   421   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   422   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   424   stfsr(  L1, L2 );
   425   stfsr(  I7, -1 );
   426   stxfsr( I6, I5 );
   427   stxfsr( L4, -1 );
   429   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   430   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   432   stb(  L5, O2, I7 );
   433   stb(  I7, I6, -1 );
   434   sth(  L5, O2, I7 );
   435   sth(  I7, I6, -1 );
   436   stw(  L5, O2, I7 );
   437   stw(  I7, I6, -1 );
   438   stx(  L5, O2, I7 );
   439   stx(  I7, I6, -1 );
   440   std(  L5, O2, I7 );
   441   std(  I7, I6, -1 );
   443   stba(  L5, O2, I7, 8 );
   444   stba(  I7, I6, -1    );
   445   stha(  L5, O2, I7, 9 );
   446   stha(  I7, I6, -1    );
   447   stwa(  L5, O2, I7, 0 );
   448   stwa(  I7, I6, -1    );
   449   stxa(  L5, O2, I7, 11 );
   450   stxa(  I7, I6, -1     );
   451   stda(  L5, O2, I7, 12 );
   452   stda(  I7, I6, -1     );
   454   sub(    I5, I6, I7 );
   455   sub(    I7, -1, I6 );
   456   subcc(  I5, I6, I7 );
   457   subcc(  I7, -1, I6 );
   458   subc(   I5, I6, I7 );
   459   subc(   I7, -1, I6 );
   460   subccc( I5, I6, I7 );
   461   subccc( I7, -1, I6 );
   463   swap( I5, I6, I7 );
   464   swap( I7, -1, I6 );
   466   swapa(   G0, G1, 13, G2 );
   467   swapa(   I7, -1,     I6 );
   469   taddcc(    I5, I6, I7 );
   470   taddcc(    I7, -1, I6 );
   471   taddcctv(  I5, I6, I7 );
   472   taddcctv(  I7, -1, I6 );
   474   tsubcc(    I5, I6, I7 );
   475   tsubcc(    I7, -1, I6 );
   476   tsubcctv(  I5, I6, I7 );
   477   tsubcctv(  I7, -1, I6 );
   479   trap( overflowClear, xcc, G0, G1 );
   480   trap( lessEqual,     icc, I7, 17 );
   482   bind(lbl2);
   483   bind(lbl3);
   485   code()->decode();
   486 }
   488 // Generate a bunch 'o stuff unique to V8
   489 void Assembler::test_v8_onlys() {
   490   Label lbl1;
   492   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   493   delayed()->nop();
   494   cb( cp_never,    true, lbl1);
   495   delayed()->nop();
   497   cpop1(1, 2, 3, 4);
   498   cpop2(5, 6, 7, 8);
   500   ldc( I0, I1, 31);
   501   ldc( I2, -1,  0);
   503   lddc( I4, I4, 30);
   504   lddc( I6,  0, 1 );
   506   ldcsr( L0, L1, 0);
   507   ldcsr( L1, (1 << 12) - 1, 17 );
   509   stc( 31, L4, L5);
   510   stc( 30, L6, -(1 << 12) );
   512   stdc( 0, L7, G0);
   513   stdc( 1, G1, 0 );
   515   stcsr( 16, G2, G3);
   516   stcsr( 17, G4, 1 );
   518   stdcq( 4, G5, G6);
   519   stdcq( 5, G7, -1 );
   521   bind(lbl1);
   523   code()->decode();
   524 }
   525 #endif
   527 // Implementation of MacroAssembler
   529 void MacroAssembler::null_check(Register reg, int offset) {
   530   if (needs_explicit_null_check((intptr_t)offset)) {
   531     // provoke OS NULL exception if reg = NULL by
   532     // accessing M[reg] w/o changing any registers
   533     ld_ptr(reg, 0, G0);
   534   }
   535   else {
   536     // nothing to do, (later) access of M[reg + offset]
   537     // will provoke OS NULL exception if reg = NULL
   538   }
   539 }
   541 // Ring buffer jumps
   543 #ifndef PRODUCT
   544 void MacroAssembler::ret(  bool trace )   { if (trace) {
   545                                                     mov(I7, O7); // traceable register
   546                                                     JMP(O7, 2 * BytesPerInstWord);
   547                                                   } else {
   548                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   549                                                   }
   550                                                 }
   552 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   553                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   554 #endif /* PRODUCT */
   557 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   558   assert_not_delayed();
   559   // This can only be traceable if r1 & r2 are visible after a window save
   560   if (TraceJumps) {
   561 #ifndef PRODUCT
   562     save_frame(0);
   563     verify_thread();
   564     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   565     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   566     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   567     add(O2, O1, O1);
   569     add(r1->after_save(), r2->after_save(), O2);
   570     set((intptr_t)file, O3);
   571     set(line, O4);
   572     Label L;
   573     // get nearby pc, store jmp target
   574     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   575     delayed()->st(O2, O1, 0);
   576     bind(L);
   578     // store nearby pc
   579     st(O7, O1, sizeof(intptr_t));
   580     // store file
   581     st(O3, O1, 2*sizeof(intptr_t));
   582     // store line
   583     st(O4, O1, 3*sizeof(intptr_t));
   584     add(O0, 1, O0);
   585     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   586     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   587     restore();
   588 #endif /* PRODUCT */
   589   }
   590   jmpl(r1, r2, G0);
   591 }
   592 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   593   assert_not_delayed();
   594   // This can only be traceable if r1 is visible after a window save
   595   if (TraceJumps) {
   596 #ifndef PRODUCT
   597     save_frame(0);
   598     verify_thread();
   599     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   600     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   601     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   602     add(O2, O1, O1);
   604     add(r1->after_save(), offset, O2);
   605     set((intptr_t)file, O3);
   606     set(line, O4);
   607     Label L;
   608     // get nearby pc, store jmp target
   609     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   610     delayed()->st(O2, O1, 0);
   611     bind(L);
   613     // store nearby pc
   614     st(O7, O1, sizeof(intptr_t));
   615     // store file
   616     st(O3, O1, 2*sizeof(intptr_t));
   617     // store line
   618     st(O4, O1, 3*sizeof(intptr_t));
   619     add(O0, 1, O0);
   620     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   621     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   622     restore();
   623 #endif /* PRODUCT */
   624   }
   625   jmp(r1, offset);
   626 }
   628 // This code sequence is relocatable to any address, even on LP64.
   629 void MacroAssembler::jumpl(AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   630   assert_not_delayed();
   631   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   632   // variable length instruction streams.
   633   patchable_sethi(addrlit, temp);
   634   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   635   if (TraceJumps) {
   636 #ifndef PRODUCT
   637     // Must do the add here so relocation can find the remainder of the
   638     // value to be relocated.
   639     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   640     save_frame(0);
   641     verify_thread();
   642     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   643     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   644     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   645     add(O2, O1, O1);
   647     set((intptr_t)file, O3);
   648     set(line, O4);
   649     Label L;
   651     // get nearby pc, store jmp target
   652     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   653     delayed()->st(a.base()->after_save(), O1, 0);
   654     bind(L);
   656     // store nearby pc
   657     st(O7, O1, sizeof(intptr_t));
   658     // store file
   659     st(O3, O1, 2*sizeof(intptr_t));
   660     // store line
   661     st(O4, O1, 3*sizeof(intptr_t));
   662     add(O0, 1, O0);
   663     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   664     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   665     restore();
   666     jmpl(a.base(), G0, d);
   667 #else
   668     jmpl(a.base(), a.disp(), d);
   669 #endif /* PRODUCT */
   670   } else {
   671     jmpl(a.base(), a.disp(), d);
   672   }
   673 }
   675 void MacroAssembler::jump(AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   676   jumpl(addrlit, temp, G0, offset, file, line);
   677 }
   680 // Convert to C varargs format
   681 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   682   // spill register-resident args to their memory slots
   683   // (SPARC calling convention requires callers to have already preallocated these)
   684   // Note that the inArg might in fact be an outgoing argument,
   685   // if a leaf routine or stub does some tricky argument shuffling.
   686   // This routine must work even though one of the saved arguments
   687   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   688   for (Argument savePtr = inArg;
   689        savePtr.is_register();
   690        savePtr = savePtr.successor()) {
   691     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   692   }
   693   // return the address of the first memory slot
   694   Address a = inArg.address_in_frame();
   695   add(a.base(), a.disp(), d);
   696 }
   698 // Conditional breakpoint (for assertion checks in assembly code)
   699 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   700   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   701 }
   703 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   704 void MacroAssembler::breakpoint_trap() {
   705   trap(ST_RESERVED_FOR_USER_0);
   706 }
   708 // flush windows (except current) using flushw instruction if avail.
   709 void MacroAssembler::flush_windows() {
   710   if (VM_Version::v9_instructions_work())  flushw();
   711   else                                     flush_windows_trap();
   712 }
   714 // Write serialization page so VM thread can do a pseudo remote membar
   715 // We use the current thread pointer to calculate a thread specific
   716 // offset to write to within the page. This minimizes bus traffic
   717 // due to cache line collision.
   718 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   719   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   720   if (Assembler::is_simm13(os::vm_page_size())) {
   721     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   722   }
   723   else {
   724     set((os::vm_page_size() - sizeof(int)), tmp1);
   725     and3(tmp2, tmp1, tmp2);
   726   }
   727   set(os::get_memory_serialize_page(), tmp1);
   728   st(G0, tmp1, tmp2);
   729 }
   733 void MacroAssembler::enter() {
   734   Unimplemented();
   735 }
   737 void MacroAssembler::leave() {
   738   Unimplemented();
   739 }
   741 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   742   if(VM_Version::v9_instructions_work()) {
   743     mulx (s1, s2, d);
   744   } else {
   745     smul (s1, s2, d);
   746   }
   747 }
   749 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   750   if(VM_Version::v9_instructions_work()) {
   751     mulx (s1, simm13a, d);
   752   } else {
   753     smul (s1, simm13a, d);
   754   }
   755 }
   758 #ifdef ASSERT
   759 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   760   const Register s1 = G3_scratch;
   761   const Register s2 = G4_scratch;
   762   Label get_psr_test;
   763   // Get the condition codes the V8 way.
   764   read_ccr_trap(s1);
   765   mov(ccr_save, s2);
   766   // This is a test of V8 which has icc but not xcc
   767   // so mask off the xcc bits
   768   and3(s2, 0xf, s2);
   769   // Compare condition codes from the V8 and V9 ways.
   770   subcc(s2, s1, G0);
   771   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   772   delayed()->breakpoint_trap();
   773   bind(get_psr_test);
   774 }
   776 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   777   const Register s1 = G3_scratch;
   778   const Register s2 = G4_scratch;
   779   Label set_psr_test;
   780   // Write out the saved condition codes the V8 way
   781   write_ccr_trap(ccr_save, s1, s2);
   782   // Read back the condition codes using the V9 instruction
   783   rdccr(s1);
   784   mov(ccr_save, s2);
   785   // This is a test of V8 which has icc but not xcc
   786   // so mask off the xcc bits
   787   and3(s2, 0xf, s2);
   788   and3(s1, 0xf, s1);
   789   // Compare the V8 way with the V9 way.
   790   subcc(s2, s1, G0);
   791   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   792   delayed()->breakpoint_trap();
   793   bind(set_psr_test);
   794 }
   795 #else
   796 #define read_ccr_v8_assert(x)
   797 #define write_ccr_v8_assert(x)
   798 #endif // ASSERT
   800 void MacroAssembler::read_ccr(Register ccr_save) {
   801   if (VM_Version::v9_instructions_work()) {
   802     rdccr(ccr_save);
   803     // Test code sequence used on V8.  Do not move above rdccr.
   804     read_ccr_v8_assert(ccr_save);
   805   } else {
   806     read_ccr_trap(ccr_save);
   807   }
   808 }
   810 void MacroAssembler::write_ccr(Register ccr_save) {
   811   if (VM_Version::v9_instructions_work()) {
   812     // Test code sequence used on V8.  Do not move below wrccr.
   813     write_ccr_v8_assert(ccr_save);
   814     wrccr(ccr_save);
   815   } else {
   816     const Register temp_reg1 = G3_scratch;
   817     const Register temp_reg2 = G4_scratch;
   818     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   819   }
   820 }
   823 // Calls to C land
   825 #ifdef ASSERT
   826 // a hook for debugging
   827 static Thread* reinitialize_thread() {
   828   return ThreadLocalStorage::thread();
   829 }
   830 #else
   831 #define reinitialize_thread ThreadLocalStorage::thread
   832 #endif
   834 #ifdef ASSERT
   835 address last_get_thread = NULL;
   836 #endif
   838 // call this when G2_thread is not known to be valid
   839 void MacroAssembler::get_thread() {
   840   save_frame(0);                // to avoid clobbering O0
   841   mov(G1, L0);                  // avoid clobbering G1
   842   mov(G5_method, L1);           // avoid clobbering G5
   843   mov(G3, L2);                  // avoid clobbering G3 also
   844   mov(G4, L5);                  // avoid clobbering G4
   845 #ifdef ASSERT
   846   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   847   set(last_get_thread_addrlit, L3);
   848   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   849   st_ptr(L4, L3, 0);
   850 #endif
   851   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   852   delayed()->nop();
   853   mov(L0, G1);
   854   mov(L1, G5_method);
   855   mov(L2, G3);
   856   mov(L5, G4);
   857   restore(O0, 0, G2_thread);
   858 }
   860 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   861   Thread* correct_value = ThreadLocalStorage::thread();
   862   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   863   return correct_value;
   864 }
   866 void MacroAssembler::verify_thread() {
   867   if (VerifyThread) {
   868     // NOTE: this chops off the heads of the 64-bit O registers.
   869 #ifdef CC_INTERP
   870     save_frame(0);
   871 #else
   872     // make sure G2_thread contains the right value
   873     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   874     mov(G1, L1);                // avoid clobbering G1
   875     // G2 saved below
   876     mov(G3, L3);                // avoid clobbering G3
   877     mov(G4, L4);                // avoid clobbering G4
   878     mov(G5_method, L5);         // avoid clobbering G5_method
   879 #endif /* CC_INTERP */
   880 #if defined(COMPILER2) && !defined(_LP64)
   881     // Save & restore possible 64-bit Long arguments in G-regs
   882     srlx(G1,32,L0);
   883     srlx(G4,32,L6);
   884 #endif
   885     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   886     delayed()->mov(G2_thread, O0);
   888     mov(L1, G1);                // Restore G1
   889     // G2 restored below
   890     mov(L3, G3);                // restore G3
   891     mov(L4, G4);                // restore G4
   892     mov(L5, G5_method);         // restore G5_method
   893 #if defined(COMPILER2) && !defined(_LP64)
   894     // Save & restore possible 64-bit Long arguments in G-regs
   895     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   896     sllx(G1, 0,G1);             // Clear current high G1 bits
   897     or3 (G1,G2,G1);             // Recover 64-bit G1
   898     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   899     sllx(G4, 0,G4);             // Clear current high G4 bits
   900     or3 (G4,G2,G4);             // Recover 64-bit G4
   901 #endif
   902     restore(O0, 0, G2_thread);
   903   }
   904 }
   907 void MacroAssembler::save_thread(const Register thread_cache) {
   908   verify_thread();
   909   if (thread_cache->is_valid()) {
   910     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   911     mov(G2_thread, thread_cache);
   912   }
   913   if (VerifyThread) {
   914     // smash G2_thread, as if the VM were about to anyway
   915     set(0x67676767, G2_thread);
   916   }
   917 }
   920 void MacroAssembler::restore_thread(const Register thread_cache) {
   921   if (thread_cache->is_valid()) {
   922     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   923     mov(thread_cache, G2_thread);
   924     verify_thread();
   925   } else {
   926     // do it the slow way
   927     get_thread();
   928   }
   929 }
   932 // %%% maybe get rid of [re]set_last_Java_frame
   933 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   934   assert_not_delayed();
   935   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   936                            JavaFrameAnchor::flags_offset());
   937   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   939   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   940   // has_last_Java_frame is true and users will look at the rest of the fields.
   941   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   943 #ifdef ASSERT
   944   // Verify that flags was zeroed on return to Java
   945   Label PcOk;
   946   save_frame(0);                // to avoid clobbering O0
   947   ld_ptr(pc_addr, L0);
   948   tst(L0);
   949 #ifdef _LP64
   950   brx(Assembler::zero, false, Assembler::pt, PcOk);
   951 #else
   952   br(Assembler::zero, false, Assembler::pt, PcOk);
   953 #endif // _LP64
   954   delayed() -> nop();
   955   stop("last_Java_pc not zeroed before leaving Java");
   956   bind(PcOk);
   958   // Verify that flags was zeroed on return to Java
   959   Label FlagsOk;
   960   ld(flags, L0);
   961   tst(L0);
   962   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   963   delayed() -> restore();
   964   stop("flags not zeroed before leaving Java");
   965   bind(FlagsOk);
   966 #endif /* ASSERT */
   967   //
   968   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   969   // will always be set to NULL. It is set here so that if we are doing a call to
   970   // native (not VM) that we capture the known pc and don't have to rely on the
   971   // native call having a standard frame linkage where we can find the pc.
   973   if (last_Java_pc->is_valid()) {
   974     st_ptr(last_Java_pc, pc_addr);
   975   }
   977 #ifdef _LP64
   978 #ifdef ASSERT
   979   // Make sure that we have an odd stack
   980   Label StackOk;
   981   andcc(last_java_sp, 0x01, G0);
   982   br(Assembler::notZero, false, Assembler::pt, StackOk);
   983   delayed() -> nop();
   984   stop("Stack Not Biased in set_last_Java_frame");
   985   bind(StackOk);
   986 #endif // ASSERT
   987   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
   988   add( last_java_sp, STACK_BIAS, G4_scratch );
   989   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
   990 #else
   991   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
   992 #endif // _LP64
   993 }
   995 void MacroAssembler::reset_last_Java_frame(void) {
   996   assert_not_delayed();
   998   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
   999   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1000   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1002 #ifdef ASSERT
  1003   // check that it WAS previously set
  1004 #ifdef CC_INTERP
  1005     save_frame(0);
  1006 #else
  1007     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1008 #endif /* CC_INTERP */
  1009     ld_ptr(sp_addr, L0);
  1010     tst(L0);
  1011     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1012     restore();
  1013 #endif // ASSERT
  1015   st_ptr(G0, sp_addr);
  1016   // Always return last_Java_pc to zero
  1017   st_ptr(G0, pc_addr);
  1018   // Always null flags after return to Java
  1019   st(G0, flags);
  1023 void MacroAssembler::call_VM_base(
  1024   Register        oop_result,
  1025   Register        thread_cache,
  1026   Register        last_java_sp,
  1027   address         entry_point,
  1028   int             number_of_arguments,
  1029   bool            check_exceptions)
  1031   assert_not_delayed();
  1033   // determine last_java_sp register
  1034   if (!last_java_sp->is_valid()) {
  1035     last_java_sp = SP;
  1037   // debugging support
  1038   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1040   // 64-bit last_java_sp is biased!
  1041   set_last_Java_frame(last_java_sp, noreg);
  1042   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1043   save_thread(thread_cache);
  1044   // do the call
  1045   call(entry_point, relocInfo::runtime_call_type);
  1046   if (!VerifyThread)
  1047     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1048   else
  1049     delayed()->nop();             // (thread already passed)
  1050   restore_thread(thread_cache);
  1051   reset_last_Java_frame();
  1053   // check for pending exceptions. use Gtemp as scratch register.
  1054   if (check_exceptions) {
  1055     check_and_forward_exception(Gtemp);
  1058   // get oop result if there is one and reset the value in the thread
  1059   if (oop_result->is_valid()) {
  1060     get_vm_result(oop_result);
  1064 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1066   Label L;
  1068   check_and_handle_popframe(scratch_reg);
  1069   check_and_handle_earlyret(scratch_reg);
  1071   Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1072   ld_ptr(exception_addr, scratch_reg);
  1073   br_null(scratch_reg,false,pt,L);
  1074   delayed()->nop();
  1075   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1076   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1077   delayed()->nop();
  1078   bind(L);
  1082 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1086 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1090 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1091   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1095 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1096   // O0 is reserved for the thread
  1097   mov(arg_1, O1);
  1098   call_VM(oop_result, entry_point, 1, check_exceptions);
  1102 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1103   // O0 is reserved for the thread
  1104   mov(arg_1, O1);
  1105   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1106   call_VM(oop_result, entry_point, 2, check_exceptions);
  1110 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1111   // O0 is reserved for the thread
  1112   mov(arg_1, O1);
  1113   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1114   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1115   call_VM(oop_result, entry_point, 3, check_exceptions);
  1120 // Note: The following call_VM overloadings are useful when a "save"
  1121 // has already been performed by a stub, and the last Java frame is
  1122 // the previous one.  In that case, last_java_sp must be passed as FP
  1123 // instead of SP.
  1126 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1127   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1131 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1132   // O0 is reserved for the thread
  1133   mov(arg_1, O1);
  1134   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1138 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1139   // O0 is reserved for the thread
  1140   mov(arg_1, O1);
  1141   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1142   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1146 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1147   // O0 is reserved for the thread
  1148   mov(arg_1, O1);
  1149   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1150   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1151   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1156 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1157   assert_not_delayed();
  1158   save_thread(thread_cache);
  1159   // do the call
  1160   call(entry_point, relocInfo::runtime_call_type);
  1161   delayed()->nop();
  1162   restore_thread(thread_cache);
  1166 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1167   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1171 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1172   mov(arg_1, O0);
  1173   call_VM_leaf(thread_cache, entry_point, 1);
  1177 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1178   mov(arg_1, O0);
  1179   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1180   call_VM_leaf(thread_cache, entry_point, 2);
  1184 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1185   mov(arg_1, O0);
  1186   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1187   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1188   call_VM_leaf(thread_cache, entry_point, 3);
  1192 void MacroAssembler::get_vm_result(Register oop_result) {
  1193   verify_thread();
  1194   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1195   ld_ptr(    vm_result_addr, oop_result);
  1196   st_ptr(G0, vm_result_addr);
  1197   verify_oop(oop_result);
  1201 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1202   verify_thread();
  1203   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
  1204   ld_ptr(vm_result_addr_2, oop_result);
  1205   st_ptr(G0, vm_result_addr_2);
  1206   verify_oop(oop_result);
  1210 // We require that C code which does not return a value in vm_result will
  1211 // leave it undisturbed.
  1212 void MacroAssembler::set_vm_result(Register oop_result) {
  1213   verify_thread();
  1214   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1215   verify_oop(oop_result);
  1217 # ifdef ASSERT
  1218     // Check that we are not overwriting any other oop.
  1219 #ifdef CC_INTERP
  1220     save_frame(0);
  1221 #else
  1222     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1223 #endif /* CC_INTERP */
  1224     ld_ptr(vm_result_addr, L0);
  1225     tst(L0);
  1226     restore();
  1227     breakpoint_trap(notZero, Assembler::ptr_cc);
  1228     // }
  1229 # endif
  1231   st_ptr(oop_result, vm_result_addr);
  1235 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1236                                       Register tmp, Register obj) {
  1237 #ifdef _LP64
  1238   srlx(obj, CardTableModRefBS::card_shift, obj);
  1239 #else
  1240   srl(obj, CardTableModRefBS::card_shift, obj);
  1241 #endif
  1242   assert(tmp != obj, "need separate temp reg");
  1243   set((address) byte_map_base, tmp);
  1244   stb(G0, tmp, obj);
  1248 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1249   address save_pc;
  1250   int shiftcnt;
  1251 #ifdef _LP64
  1252 # ifdef CHECK_DELAY
  1253   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1254 # endif
  1255   v9_dep();
  1256   save_pc = pc();
  1258   int msb32 = (int) (addrlit.value() >> 32);
  1259   int lsb32 = (int) (addrlit.value());
  1261   if (msb32 == 0 && lsb32 >= 0) {
  1262     Assembler::sethi(lsb32, d, addrlit.rspec());
  1264   else if (msb32 == -1) {
  1265     Assembler::sethi(~lsb32, d, addrlit.rspec());
  1266     xor3(d, ~low10(~0), d);
  1268   else {
  1269     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
  1270     if (msb32 & 0x3ff)                            // Any bits?
  1271       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
  1272     if (lsb32 & 0xFFFFFC00) {                     // done?
  1273       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
  1274         sllx(d, 12, d);                           // Make room for next 12 bits
  1275         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
  1276         shiftcnt = 0;                             // We already shifted
  1278       else
  1279         shiftcnt = 12;
  1280       if ((lsb32 >> 10) & 0x3ff) {
  1281         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
  1282         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
  1283         shiftcnt = 0;
  1285       else
  1286         shiftcnt = 10;
  1287       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
  1289     else
  1290       sllx(d, 32, d);
  1292   // Pad out the instruction sequence so it can be patched later.
  1293   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
  1294                            addrlit.rtype() != relocInfo::runtime_call_type)) {
  1295     while (pc() < (save_pc + (7 * BytesPerInstWord)))
  1296       nop();
  1298 #else
  1299   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
  1300 #endif
  1304 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  1305   internal_sethi(addrlit, d, false);
  1309 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  1310   internal_sethi(addrlit, d, true);
  1314 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
  1315 #ifdef _LP64
  1316   if (worst_case) return 7;
  1317   intptr_t iaddr = (intptr_t)a;
  1318   int hi32 = (int)(iaddr >> 32);
  1319   int lo32 = (int)(iaddr);
  1320   int inst_count;
  1321   if (hi32 == 0 && lo32 >= 0)
  1322     inst_count = 1;
  1323   else if (hi32 == -1)
  1324     inst_count = 2;
  1325   else {
  1326     inst_count = 2;
  1327     if ( hi32 & 0x3ff )
  1328       inst_count++;
  1329     if ( lo32 & 0xFFFFFC00 ) {
  1330       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
  1331       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
  1334   return BytesPerInstWord * inst_count;
  1335 #else
  1336   return BytesPerInstWord;
  1337 #endif
  1340 int MacroAssembler::worst_case_size_of_set() {
  1341   return size_of_sethi(NULL, true) + 1;
  1345 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1346   intptr_t value = addrlit.value();
  1348   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
  1349     // can optimize
  1350     if (-4096 <= value && value <= 4095) {
  1351       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1352       return;
  1354     if (inv_hi22(hi22(value)) == value) {
  1355       sethi(addrlit, d);
  1356       return;
  1359   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1360   internal_sethi(addrlit, d, ForceRelocatable);
  1361   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
  1362     add(d, addrlit.low10(), d, addrlit.rspec());
  1366 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1367   internal_set(al, d, false);
  1370 void MacroAssembler::set(intptr_t value, Register d) {
  1371   AddressLiteral al(value);
  1372   internal_set(al, d, false);
  1375 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1376   AddressLiteral al(addr, rspec);
  1377   internal_set(al, d, false);
  1380 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1381   internal_set(al, d, true);
  1384 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1385   AddressLiteral al(value);
  1386   internal_set(al, d, true);
  1390 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1391   assert_not_delayed();
  1392   v9_dep();
  1394   int hi = (int)(value >> 32);
  1395   int lo = (int)(value & ~0);
  1396   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1397   if (Assembler::is_simm13(lo) && value == lo) {
  1398     or3(G0, lo, d);
  1399   } else if (hi == 0) {
  1400     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1401     if (low10(lo) != 0)
  1402       or3(d, low10(lo), d);
  1404   else if (hi == -1) {
  1405     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1406     xor3(d, low10(lo) ^ ~low10(~0), d);
  1408   else if (lo == 0) {
  1409     if (Assembler::is_simm13(hi)) {
  1410       or3(G0, hi, d);
  1411     } else {
  1412       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1413       if (low10(hi) != 0)
  1414         or3(d, low10(hi), d);
  1416     sllx(d, 32, d);
  1418   else {
  1419     Assembler::sethi(hi, tmp);
  1420     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1421     if (low10(hi) != 0)
  1422       or3 (tmp, low10(hi), tmp);
  1423     if (low10(lo) != 0)
  1424       or3 (  d, low10(lo),   d);
  1425     sllx(tmp, 32, tmp);
  1426     or3 (d, tmp, d);
  1430 // compute size in bytes of sparc frame, given
  1431 // number of extraWords
  1432 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1434   int nWords = frame::memory_parameter_word_sp_offset;
  1436   nWords += extraWords;
  1438   if (nWords & 1) ++nWords; // round up to double-word
  1440   return nWords * BytesPerWord;
  1444 // save_frame: given number of "extra" words in frame,
  1445 // issue approp. save instruction (p 200, v8 manual)
  1447 void MacroAssembler::save_frame(int extraWords = 0) {
  1448   int delta = -total_frame_size_in_bytes(extraWords);
  1449   if (is_simm13(delta)) {
  1450     save(SP, delta, SP);
  1451   } else {
  1452     set(delta, G3_scratch);
  1453     save(SP, G3_scratch, SP);
  1458 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1459   if (is_simm13(-size_in_bytes)) {
  1460     save(SP, -size_in_bytes, SP);
  1461   } else {
  1462     set(-size_in_bytes, G3_scratch);
  1463     save(SP, G3_scratch, SP);
  1468 void MacroAssembler::save_frame_and_mov(int extraWords,
  1469                                         Register s1, Register d1,
  1470                                         Register s2, Register d2) {
  1471   assert_not_delayed();
  1473   // The trick here is to use precisely the same memory word
  1474   // that trap handlers also use to save the register.
  1475   // This word cannot be used for any other purpose, but
  1476   // it works fine to save the register's value, whether or not
  1477   // an interrupt flushes register windows at any given moment!
  1478   Address s1_addr;
  1479   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1480     s1_addr = s1->address_in_saved_window();
  1481     st_ptr(s1, s1_addr);
  1484   Address s2_addr;
  1485   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1486     s2_addr = s2->address_in_saved_window();
  1487     st_ptr(s2, s2_addr);
  1490   save_frame(extraWords);
  1492   if (s1_addr.base() == SP) {
  1493     ld_ptr(s1_addr.after_save(), d1);
  1494   } else if (s1->is_valid()) {
  1495     mov(s1->after_save(), d1);
  1498   if (s2_addr.base() == SP) {
  1499     ld_ptr(s2_addr.after_save(), d2);
  1500   } else if (s2->is_valid()) {
  1501     mov(s2->after_save(), d2);
  1506 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
  1507   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1508   int oop_index = oop_recorder()->allocate_index(obj);
  1509   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1513 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1514   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1515   int oop_index = oop_recorder()->find_index(obj);
  1516   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1519 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1520   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1521   int oop_index = oop_recorder()->find_index(obj);
  1522   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1524   assert_not_delayed();
  1525   // Relocation with special format (see relocInfo_sparc.hpp).
  1526   relocate(rspec, 1);
  1527   // Assembler::sethi(0x3fffff, d);
  1528   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1529   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1530   add(d, 0x3ff, d);
  1535 void MacroAssembler::align(int modulus) {
  1536   while (offset() % modulus != 0) nop();
  1540 void MacroAssembler::safepoint() {
  1541   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1545 void RegistersForDebugging::print(outputStream* s) {
  1546   int j;
  1547   for ( j = 0;  j < 8;  ++j )
  1548     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1549     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1550   s->cr();
  1552   for ( j = 0;  j < 8;  ++j )
  1553     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1554   s->cr();
  1556   for ( j = 0;  j < 8;  ++j )
  1557     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1558     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1559   s->cr();
  1561   for ( j = 0;  j < 8;  ++j )
  1562     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1563   s->cr();
  1565   // print out floats with compression
  1566   for (j = 0; j < 32; ) {
  1567     jfloat val = f[j];
  1568     int last = j;
  1569     for ( ;  last+1 < 32;  ++last ) {
  1570       char b1[1024], b2[1024];
  1571       sprintf(b1, "%f", val);
  1572       sprintf(b2, "%f", f[last+1]);
  1573       if (strcmp(b1, b2))
  1574         break;
  1576     s->print("f%d", j);
  1577     if ( j != last )  s->print(" - f%d", last);
  1578     s->print(" = %f", val);
  1579     s->fill_to(25);
  1580     s->print_cr(" (0x%x)", val);
  1581     j = last + 1;
  1583   s->cr();
  1585   // and doubles (evens only)
  1586   for (j = 0; j < 32; ) {
  1587     jdouble val = d[j];
  1588     int last = j;
  1589     for ( ;  last+1 < 32;  ++last ) {
  1590       char b1[1024], b2[1024];
  1591       sprintf(b1, "%f", val);
  1592       sprintf(b2, "%f", d[last+1]);
  1593       if (strcmp(b1, b2))
  1594         break;
  1596     s->print("d%d", 2 * j);
  1597     if ( j != last )  s->print(" - d%d", last);
  1598     s->print(" = %f", val);
  1599     s->fill_to(30);
  1600     s->print("(0x%x)", *(int*)&val);
  1601     s->fill_to(42);
  1602     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1603     j = last + 1;
  1605   s->cr();
  1608 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1609   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1610   a->flush_windows();
  1611   int i;
  1612   for (i = 0; i < 8; ++i) {
  1613     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1614     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1615     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1616     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1618   for (i = 0;  i < 32; ++i) {
  1619     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1621   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1622     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1626 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1627   for (int i = 1; i < 8;  ++i) {
  1628     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1630   for (int j = 0; j < 32; ++j) {
  1631     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1633   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1634     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1639 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1640 void MacroAssembler::push_fTOS() {
  1641   // %%%%%% need to implement this
  1644 // pops double TOS element from CPU stack and pushes on FPU stack
  1645 void MacroAssembler::pop_fTOS() {
  1646   // %%%%%% need to implement this
  1649 void MacroAssembler::empty_FPU_stack() {
  1650   // %%%%%% need to implement this
  1653 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1654   // plausibility check for oops
  1655   if (!VerifyOops) return;
  1657   if (reg == G0)  return;       // always NULL, which is always an oop
  1659   char buffer[64];
  1660 #ifdef COMPILER1
  1661   if (CommentedAssembly) {
  1662     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1663     block_comment(buffer);
  1665 #endif
  1667   int len = strlen(file) + strlen(msg) + 1 + 4;
  1668   sprintf(buffer, "%d", line);
  1669   len += strlen(buffer);
  1670   sprintf(buffer, " at offset %d ", offset());
  1671   len += strlen(buffer);
  1672   char * real_msg = new char[len];
  1673   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1675   // Call indirectly to solve generation ordering problem
  1676   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1678   // Make some space on stack above the current register window.
  1679   // Enough to hold 8 64-bit registers.
  1680   add(SP,-8*8,SP);
  1682   // Save some 64-bit registers; a normal 'save' chops the heads off
  1683   // of 64-bit longs in the 32-bit build.
  1684   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1685   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1686   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1687   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1689   set((intptr_t)real_msg, O1);
  1690   // Load address to call to into O7
  1691   load_ptr_contents(a, O7);
  1692   // Register call to verify_oop_subroutine
  1693   callr(O7, G0);
  1694   delayed()->nop();
  1695   // recover frame size
  1696   add(SP, 8*8,SP);
  1699 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1700   // plausibility check for oops
  1701   if (!VerifyOops) return;
  1703   char buffer[64];
  1704   sprintf(buffer, "%d", line);
  1705   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1706   sprintf(buffer, " at SP+%d ", addr.disp());
  1707   len += strlen(buffer);
  1708   char * real_msg = new char[len];
  1709   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1711   // Call indirectly to solve generation ordering problem
  1712   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1714   // Make some space on stack above the current register window.
  1715   // Enough to hold 8 64-bit registers.
  1716   add(SP,-8*8,SP);
  1718   // Save some 64-bit registers; a normal 'save' chops the heads off
  1719   // of 64-bit longs in the 32-bit build.
  1720   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1721   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1722   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1723   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1725   set((intptr_t)real_msg, O1);
  1726   // Load address to call to into O7
  1727   load_ptr_contents(a, O7);
  1728   // Register call to verify_oop_subroutine
  1729   callr(O7, G0);
  1730   delayed()->nop();
  1731   // recover frame size
  1732   add(SP, 8*8,SP);
  1735 // side-door communication with signalHandler in os_solaris.cpp
  1736 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1738 // This macro is expanded just once; it creates shared code.  Contract:
  1739 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1740 // registers, including flags.  May not use a register 'save', as this blows
  1741 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1742 // call.
  1743 void MacroAssembler::verify_oop_subroutine() {
  1744   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1746   // Leaf call; no frame.
  1747   Label succeed, fail, null_or_fail;
  1749   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1750   // O0 is now the oop to be checked.  O7 is the return address.
  1751   Register O0_obj = O0;
  1753   // Save some more registers for temps.
  1754   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1755   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1756   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1757   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1759   // Save flags
  1760   Register O5_save_flags = O5;
  1761   rdccr( O5_save_flags );
  1763   { // count number of verifies
  1764     Register O2_adr   = O2;
  1765     Register O3_accum = O3;
  1766     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1769   Register O2_mask = O2;
  1770   Register O3_bits = O3;
  1771   Register O4_temp = O4;
  1773   // mark lower end of faulting range
  1774   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1775   _verify_oop_implicit_branch[0] = pc();
  1777   // We can't check the mark oop because it could be in the process of
  1778   // locking or unlocking while this is running.
  1779   set(Universe::verify_oop_mask (), O2_mask);
  1780   set(Universe::verify_oop_bits (), O3_bits);
  1782   // assert((obj & oop_mask) == oop_bits);
  1783   and3(O0_obj, O2_mask, O4_temp);
  1784   cmp(O4_temp, O3_bits);
  1785   brx(notEqual, false, pn, null_or_fail);
  1786   delayed()->nop();
  1788   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1789     // the null_or_fail case is useless; must test for null separately
  1790     br_null(O0_obj, false, pn, succeed);
  1791     delayed()->nop();
  1794   // Check the klassOop of this object for being in the right area of memory.
  1795   // Cannot do the load in the delay above slot in case O0 is null
  1796   load_klass(O0_obj, O0_obj);
  1797   // assert((klass & klass_mask) == klass_bits);
  1798   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1799     set(Universe::verify_klass_mask(), O2_mask);
  1800   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1801     set(Universe::verify_klass_bits(), O3_bits);
  1802   and3(O0_obj, O2_mask, O4_temp);
  1803   cmp(O4_temp, O3_bits);
  1804   brx(notEqual, false, pn, fail);
  1805   delayed()->nop();
  1806   // Check the klass's klass
  1807   load_klass(O0_obj, O0_obj);
  1808   and3(O0_obj, O2_mask, O4_temp);
  1809   cmp(O4_temp, O3_bits);
  1810   brx(notEqual, false, pn, fail);
  1811   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1813   // mark upper end of faulting range
  1814   _verify_oop_implicit_branch[1] = pc();
  1816   //-----------------------
  1817   // all tests pass
  1818   bind(succeed);
  1820   // Restore prior 64-bit registers
  1821   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1822   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1823   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1824   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1825   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1826   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1828   retl();                       // Leaf return; restore prior O7 in delay slot
  1829   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1831   //-----------------------
  1832   bind(null_or_fail);           // nulls are less common but OK
  1833   br_null(O0_obj, false, pt, succeed);
  1834   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1836   //-----------------------
  1837   // report failure:
  1838   bind(fail);
  1839   _verify_oop_implicit_branch[2] = pc();
  1841   wrccr( O5_save_flags ); // Restore CCR's
  1843   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1845   // stop_subroutine expects message pointer in I1.
  1846   mov(I1, O1);
  1848   // Restore prior 64-bit registers
  1849   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1850   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1851   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1852   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1853   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1854   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1856   // factor long stop-sequence into subroutine to save space
  1857   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1859   // call indirectly to solve generation ordering problem
  1860   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1861   load_ptr_contents(al, O5);
  1862   jmpl(O5, 0, O7);
  1863   delayed()->nop();
  1867 void MacroAssembler::stop(const char* msg) {
  1868   // save frame first to get O7 for return address
  1869   // add one word to size in case struct is odd number of words long
  1870   // It must be doubleword-aligned for storing doubles into it.
  1872     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1874     // stop_subroutine expects message pointer in I1.
  1875     set((intptr_t)msg, O1);
  1877     // factor long stop-sequence into subroutine to save space
  1878     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1880     // call indirectly to solve generation ordering problem
  1881     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1882     load_ptr_contents(a, O5);
  1883     jmpl(O5, 0, O7);
  1884     delayed()->nop();
  1886     breakpoint_trap();   // make stop actually stop rather than writing
  1887                          // unnoticeable results in the output files.
  1889     // restore(); done in callee to save space!
  1893 void MacroAssembler::warn(const char* msg) {
  1894   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1895   RegistersForDebugging::save_registers(this);
  1896   mov(O0, L0);
  1897   set((intptr_t)msg, O0);
  1898   call( CAST_FROM_FN_PTR(address, warning) );
  1899   delayed()->nop();
  1900 //  ret();
  1901 //  delayed()->restore();
  1902   RegistersForDebugging::restore_registers(this, L0);
  1903   restore();
  1907 void MacroAssembler::untested(const char* what) {
  1908   // We must be able to turn interactive prompting off
  1909   // in order to run automated test scripts on the VM
  1910   // Use the flag ShowMessageBoxOnError
  1912   char* b = new char[1024];
  1913   sprintf(b, "untested: %s", what);
  1915   if ( ShowMessageBoxOnError )   stop(b);
  1916   else                           warn(b);
  1920 void MacroAssembler::stop_subroutine() {
  1921   RegistersForDebugging::save_registers(this);
  1923   // for the sake of the debugger, stick a PC on the current frame
  1924   // (this assumes that the caller has performed an extra "save")
  1925   mov(I7, L7);
  1926   add(O7, -7 * BytesPerInt, I7);
  1928   save_frame(); // one more save to free up another O7 register
  1929   mov(I0, O1); // addr of reg save area
  1931   // We expect pointer to message in I1. Caller must set it up in O1
  1932   mov(I1, O0); // get msg
  1933   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1934   delayed()->nop();
  1936   restore();
  1938   RegistersForDebugging::restore_registers(this, O0);
  1940   save_frame(0);
  1941   call(CAST_FROM_FN_PTR(address,breakpoint));
  1942   delayed()->nop();
  1943   restore();
  1945   mov(L7, I7);
  1946   retl();
  1947   delayed()->restore(); // see stop above
  1951 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1952   if ( ShowMessageBoxOnError ) {
  1953       JavaThreadState saved_state = JavaThread::current()->thread_state();
  1954       JavaThread::current()->set_thread_state(_thread_in_vm);
  1956         // In order to get locks work, we need to fake a in_VM state
  1957         ttyLocker ttyl;
  1958         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1959         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1960           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  1962         if (os::message_box(msg, "Execution stopped, print registers?"))
  1963           regs->print(::tty);
  1965       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1967   else
  1968      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1969   assert(false, "error");
  1973 #ifndef PRODUCT
  1974 void MacroAssembler::test() {
  1975   ResourceMark rm;
  1977   CodeBuffer cb("test", 10000, 10000);
  1978   MacroAssembler* a = new MacroAssembler(&cb);
  1979   VM_Version::allow_all();
  1980   a->test_v9();
  1981   a->test_v8_onlys();
  1982   VM_Version::revert();
  1984   StubRoutines::Sparc::test_stop_entry()();
  1986 #endif
  1989 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  1990   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  1991   Label no_extras;
  1992   br( negative, true, pt, no_extras ); // if neg, clear reg
  1993   delayed()->set(0, Rresult);          // annuled, so only if taken
  1994   bind( no_extras );
  1998 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  1999 #ifdef _LP64
  2000   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2001 #else
  2002   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2003 #endif
  2004   bclr(1, Rresult);
  2005   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2009 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2010   calc_frame_size(Rextra_words, Rresult);
  2011   neg(Rresult);
  2012   save(SP, Rresult, SP);
  2016 // ---------------------------------------------------------
  2017 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2018   switch (c) {
  2019     /*case zero: */
  2020     case Assembler::equal:        return Assembler::rc_z;
  2021     case Assembler::lessEqual:    return Assembler::rc_lez;
  2022     case Assembler::less:         return Assembler::rc_lz;
  2023     /*case notZero:*/
  2024     case Assembler::notEqual:     return Assembler::rc_nz;
  2025     case Assembler::greater:      return Assembler::rc_gz;
  2026     case Assembler::greaterEqual: return Assembler::rc_gez;
  2028   ShouldNotReachHere();
  2029   return Assembler::rc_z;
  2032 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2033 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2034   tst(s1);
  2035   br (c, a, p, L);
  2039 // Compares a pointer register with zero and branches on null.
  2040 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2041 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2042   assert_not_delayed();
  2043 #ifdef _LP64
  2044   bpr( rc_z, a, p, s1, L );
  2045 #else
  2046   tst(s1);
  2047   br ( zero, a, p, L );
  2048 #endif
  2051 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2052   assert_not_delayed();
  2053 #ifdef _LP64
  2054   bpr( rc_nz, a, p, s1, L );
  2055 #else
  2056   tst(s1);
  2057   br ( notZero, a, p, L );
  2058 #endif
  2061 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2062                                      Register s1, address d,
  2063                                      relocInfo::relocType rt ) {
  2064   if (VM_Version::v9_instructions_work()) {
  2065     bpr(rc, a, p, s1, d, rt);
  2066   } else {
  2067     tst(s1);
  2068     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
  2072 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2073                                      Register s1, Label& L ) {
  2074   if (VM_Version::v9_instructions_work()) {
  2075     bpr(rc, a, p, s1, L);
  2076   } else {
  2077     tst(s1);
  2078     br(reg_cond_to_cc_cond(rc), a, p, L);
  2083 // instruction sequences factored across compiler & interpreter
  2086 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2087                            Register Rb_hi, Register Rb_low,
  2088                            Register Rresult) {
  2090   Label check_low_parts, done;
  2092   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2093   br(equal, true, pt, check_low_parts);
  2094   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2096   // And, with an unsigned comparison, it does not matter if the numbers
  2097   // are negative or not.
  2098   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2099   // The second one is bigger (unsignedly).
  2101   // Other notes:  The first move in each triplet can be unconditional
  2102   // (and therefore probably prefetchable).
  2103   // And the equals case for the high part does not need testing,
  2104   // since that triplet is reached only after finding the high halves differ.
  2106   if (VM_Version::v9_instructions_work()) {
  2108                                     mov  (                     -1, Rresult);
  2109     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2111   else {
  2112     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2113     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2116   bind( check_low_parts );
  2118   if (VM_Version::v9_instructions_work()) {
  2119     mov(                               -1, Rresult);
  2120     movcc(equal,           false, icc,  0, Rresult);
  2121     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2123   else {
  2124                                                     set(-1, Rresult);
  2125     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2126     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2128   bind( done );
  2131 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2132   subcc(  G0, Rlow, Rlow );
  2133   subc(   G0, Rhi,  Rhi  );
  2136 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2137                            Register Rcount,
  2138                            Register Rout_high, Register Rout_low,
  2139                            Register Rtemp ) {
  2142   Register Ralt_count = Rtemp;
  2143   Register Rxfer_bits = Rtemp;
  2145   assert( Ralt_count != Rin_high
  2146       &&  Ralt_count != Rin_low
  2147       &&  Ralt_count != Rcount
  2148       &&  Rxfer_bits != Rin_low
  2149       &&  Rxfer_bits != Rin_high
  2150       &&  Rxfer_bits != Rcount
  2151       &&  Rxfer_bits != Rout_low
  2152       &&  Rout_low   != Rin_high,
  2153         "register alias checks");
  2155   Label big_shift, done;
  2157   // This code can be optimized to use the 64 bit shifts in V9.
  2158   // Here we use the 32 bit shifts.
  2160   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2161   subcc(Rcount,         31,             Ralt_count);
  2162   br(greater, true, pn, big_shift);
  2163   delayed()->
  2164   dec(Ralt_count);
  2166   // shift < 32 bits, Ralt_count = Rcount-31
  2168   // We get the transfer bits by shifting right by 32-count the low
  2169   // register. This is done by shifting right by 31-count and then by one
  2170   // more to take care of the special (rare) case where count is zero
  2171   // (shifting by 32 would not work).
  2173   neg(  Ralt_count                                 );
  2175   // The order of the next two instructions is critical in the case where
  2176   // Rin and Rout are the same and should not be reversed.
  2178   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2179   if (Rcount != Rout_low) {
  2180     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2182   sll(  Rin_high,       Rcount,         Rout_high  );
  2183   if (Rcount == Rout_low) {
  2184     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2186   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2187   ba (false, done);
  2188   delayed()->
  2189   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2191   // shift >= 32 bits, Ralt_count = Rcount-32
  2192   bind(big_shift);
  2193   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2194   clr(  Rout_low                                   );
  2196   bind(done);
  2200 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2201                            Register Rcount,
  2202                            Register Rout_high, Register Rout_low,
  2203                            Register Rtemp ) {
  2205   Register Ralt_count = Rtemp;
  2206   Register Rxfer_bits = Rtemp;
  2208   assert( Ralt_count != Rin_high
  2209       &&  Ralt_count != Rin_low
  2210       &&  Ralt_count != Rcount
  2211       &&  Rxfer_bits != Rin_low
  2212       &&  Rxfer_bits != Rin_high
  2213       &&  Rxfer_bits != Rcount
  2214       &&  Rxfer_bits != Rout_high
  2215       &&  Rout_high  != Rin_low,
  2216         "register alias checks");
  2218   Label big_shift, done;
  2220   // This code can be optimized to use the 64 bit shifts in V9.
  2221   // Here we use the 32 bit shifts.
  2223   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2224   subcc(Rcount,         31,             Ralt_count);
  2225   br(greater, true, pn, big_shift);
  2226   delayed()->dec(Ralt_count);
  2228   // shift < 32 bits, Ralt_count = Rcount-31
  2230   // We get the transfer bits by shifting left by 32-count the high
  2231   // register. This is done by shifting left by 31-count and then by one
  2232   // more to take care of the special (rare) case where count is zero
  2233   // (shifting by 32 would not work).
  2235   neg(  Ralt_count                                  );
  2236   if (Rcount != Rout_low) {
  2237     srl(        Rin_low,        Rcount,         Rout_low    );
  2240   // The order of the next two instructions is critical in the case where
  2241   // Rin and Rout are the same and should not be reversed.
  2243   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2244   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2245   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2246   if (Rcount == Rout_low) {
  2247     srl(        Rin_low,        Rcount,         Rout_low    );
  2249   ba (false, done);
  2250   delayed()->
  2251   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2253   // shift >= 32 bits, Ralt_count = Rcount-32
  2254   bind(big_shift);
  2256   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2257   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2259   bind( done );
  2264 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2265                             Register Rcount,
  2266                             Register Rout_high, Register Rout_low,
  2267                             Register Rtemp ) {
  2269   Register Ralt_count = Rtemp;
  2270   Register Rxfer_bits = Rtemp;
  2272   assert( Ralt_count != Rin_high
  2273       &&  Ralt_count != Rin_low
  2274       &&  Ralt_count != Rcount
  2275       &&  Rxfer_bits != Rin_low
  2276       &&  Rxfer_bits != Rin_high
  2277       &&  Rxfer_bits != Rcount
  2278       &&  Rxfer_bits != Rout_high
  2279       &&  Rout_high  != Rin_low,
  2280         "register alias checks");
  2282   Label big_shift, done;
  2284   // This code can be optimized to use the 64 bit shifts in V9.
  2285   // Here we use the 32 bit shifts.
  2287   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2288   subcc(Rcount,         31,             Ralt_count);
  2289   br(greater, true, pn, big_shift);
  2290   delayed()->dec(Ralt_count);
  2292   // shift < 32 bits, Ralt_count = Rcount-31
  2294   // We get the transfer bits by shifting left by 32-count the high
  2295   // register. This is done by shifting left by 31-count and then by one
  2296   // more to take care of the special (rare) case where count is zero
  2297   // (shifting by 32 would not work).
  2299   neg(  Ralt_count                                  );
  2300   if (Rcount != Rout_low) {
  2301     srl(        Rin_low,        Rcount,         Rout_low    );
  2304   // The order of the next two instructions is critical in the case where
  2305   // Rin and Rout are the same and should not be reversed.
  2307   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2308   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2309   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2310   if (Rcount == Rout_low) {
  2311     srl(        Rin_low,        Rcount,         Rout_low    );
  2313   ba (false, done);
  2314   delayed()->
  2315   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2317   // shift >= 32 bits, Ralt_count = Rcount-32
  2318   bind(big_shift);
  2320   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2321   clr(  Rout_high                                   );
  2323   bind( done );
  2326 #ifdef _LP64
  2327 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2328   cmp(Ra, Rb);
  2329   mov(                       -1, Rresult);
  2330   movcc(equal,   false, xcc,  0, Rresult);
  2331   movcc(greater, false, xcc,  1, Rresult);
  2333 #endif
  2336 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2337                                 FloatRegister Fa, FloatRegister Fb,
  2338                                 Register Rresult) {
  2340   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2342   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2343   Condition eq =                          f_equal;
  2344   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2346   if (VM_Version::v9_instructions_work()) {
  2348     mov(                   -1, Rresult );
  2349     movcc( eq, true, fcc0,  0, Rresult );
  2350     movcc( gt, true, fcc0,  1, Rresult );
  2352   } else {
  2353     Label done;
  2355                                          set( -1, Rresult );
  2356     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2357     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2358     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2360     bind (done);
  2365 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2367   if (VM_Version::v9_instructions_work()) {
  2368     Assembler::fneg(w, s, d);
  2369   } else {
  2370     if (w == FloatRegisterImpl::S) {
  2371       Assembler::fneg(w, s, d);
  2372     } else if (w == FloatRegisterImpl::D) {
  2373       // number() does a sanity check on the alignment.
  2374       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2375         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2377       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2378       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2379     } else {
  2380       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2382       // number() does a sanity check on the alignment.
  2383       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2384         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2386       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2387       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2388       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2389       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2394 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2396   if (VM_Version::v9_instructions_work()) {
  2397     Assembler::fmov(w, s, d);
  2398   } else {
  2399     if (w == FloatRegisterImpl::S) {
  2400       Assembler::fmov(w, s, d);
  2401     } else if (w == FloatRegisterImpl::D) {
  2402       // number() does a sanity check on the alignment.
  2403       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2404         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2406       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2407       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2408     } else {
  2409       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2411       // number() does a sanity check on the alignment.
  2412       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2413         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2415       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2416       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2417       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2418       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2423 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2425   if (VM_Version::v9_instructions_work()) {
  2426     Assembler::fabs(w, s, d);
  2427   } else {
  2428     if (w == FloatRegisterImpl::S) {
  2429       Assembler::fabs(w, s, d);
  2430     } else if (w == FloatRegisterImpl::D) {
  2431       // number() does a sanity check on the alignment.
  2432       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2433         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2435       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2436       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2437     } else {
  2438       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2440       // number() does a sanity check on the alignment.
  2441       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2442        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2444       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2445       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2446       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2447       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2452 void MacroAssembler::save_all_globals_into_locals() {
  2453   mov(G1,L1);
  2454   mov(G2,L2);
  2455   mov(G3,L3);
  2456   mov(G4,L4);
  2457   mov(G5,L5);
  2458   mov(G6,L6);
  2459   mov(G7,L7);
  2462 void MacroAssembler::restore_globals_from_locals() {
  2463   mov(L1,G1);
  2464   mov(L2,G2);
  2465   mov(L3,G3);
  2466   mov(L4,G4);
  2467   mov(L5,G5);
  2468   mov(L6,G6);
  2469   mov(L7,G7);
  2472 // Use for 64 bit operation.
  2473 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2475   // store ptr_reg as the new top value
  2476 #ifdef _LP64
  2477   casx(top_ptr_reg, top_reg, ptr_reg);
  2478 #else
  2479   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2480 #endif // _LP64
  2483 // [RGV] This routine does not handle 64 bit operations.
  2484 //       use casx_under_lock() or casx directly!!!
  2485 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2487   // store ptr_reg as the new top value
  2488   if (VM_Version::v9_instructions_work()) {
  2489     cas(top_ptr_reg, top_reg, ptr_reg);
  2490   } else {
  2492     // If the register is not an out nor global, it is not visible
  2493     // after the save.  Allocate a register for it, save its
  2494     // value in the register save area (the save may not flush
  2495     // registers to the save area).
  2497     Register top_ptr_reg_after_save;
  2498     Register top_reg_after_save;
  2499     Register ptr_reg_after_save;
  2501     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2502       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2503     } else {
  2504       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2505       top_ptr_reg_after_save = L0;
  2506       st(top_ptr_reg, reg_save_addr);
  2509     if (top_reg->is_out() || top_reg->is_global()) {
  2510       top_reg_after_save = top_reg->after_save();
  2511     } else {
  2512       Address reg_save_addr = top_reg->address_in_saved_window();
  2513       top_reg_after_save = L1;
  2514       st(top_reg, reg_save_addr);
  2517     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2518       ptr_reg_after_save = ptr_reg->after_save();
  2519     } else {
  2520       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2521       ptr_reg_after_save = L2;
  2522       st(ptr_reg, reg_save_addr);
  2525     const Register& lock_reg = L3;
  2526     const Register& lock_ptr_reg = L4;
  2527     const Register& value_reg = L5;
  2528     const Register& yield_reg = L6;
  2529     const Register& yieldall_reg = L7;
  2531     save_frame();
  2533     if (top_ptr_reg_after_save == L0) {
  2534       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2537     if (top_reg_after_save == L1) {
  2538       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2541     if (ptr_reg_after_save == L2) {
  2542       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2545     Label(retry_get_lock);
  2546     Label(not_same);
  2547     Label(dont_yield);
  2549     assert(lock_addr, "lock_address should be non null for v8");
  2550     set((intptr_t)lock_addr, lock_ptr_reg);
  2551     // Initialize yield counter
  2552     mov(G0,yield_reg);
  2553     mov(G0, yieldall_reg);
  2554     set(StubRoutines::Sparc::locked, lock_reg);
  2556     bind(retry_get_lock);
  2557     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2558     br(Assembler::less, false, Assembler::pt, dont_yield);
  2559     delayed()->nop();
  2561     if(use_call_vm) {
  2562       Untested("Need to verify global reg consistancy");
  2563       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2564     } else {
  2565       // Save the regs and make space for a C call
  2566       save(SP, -96, SP);
  2567       save_all_globals_into_locals();
  2568       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2569       delayed()->mov(yieldall_reg, O0);
  2570       restore_globals_from_locals();
  2571       restore();
  2574     // reset the counter
  2575     mov(G0,yield_reg);
  2576     add(yieldall_reg, 1, yieldall_reg);
  2578     bind(dont_yield);
  2579     // try to get lock
  2580     swap(lock_ptr_reg, 0, lock_reg);
  2582     // did we get the lock?
  2583     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2584     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2585     delayed()->add(yield_reg,1,yield_reg);
  2587     // yes, got lock.  do we have the same top?
  2588     ld(top_ptr_reg_after_save, 0, value_reg);
  2589     cmp(value_reg, top_reg_after_save);
  2590     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2591     delayed()->nop();
  2593     // yes, same top.
  2594     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2595     membar(Assembler::StoreStore);
  2597     bind(not_same);
  2598     mov(value_reg, ptr_reg_after_save);
  2599     st(lock_reg, lock_ptr_reg, 0); // unlock
  2601     restore();
  2605 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2606                                                       Register tmp,
  2607                                                       int offset) {
  2608   intptr_t value = *delayed_value_addr;
  2609   if (value != 0)
  2610     return RegisterOrConstant(value + offset);
  2612   // load indirectly to solve generation ordering problem
  2613   AddressLiteral a(delayed_value_addr);
  2614   load_ptr_contents(a, tmp);
  2616 #ifdef ASSERT
  2617   tst(tmp);
  2618   breakpoint_trap(zero, xcc);
  2619 #endif
  2621   if (offset != 0)
  2622     add(tmp, offset, tmp);
  2624   return RegisterOrConstant(tmp);
  2628 void MacroAssembler::regcon_inc_ptr( RegisterOrConstant& dest, RegisterOrConstant src, Register temp ) {
  2629   assert(dest.register_or_noreg() != G0, "lost side effect");
  2630   if ((src.is_constant() && src.as_constant() == 0) ||
  2631       (src.is_register() && src.as_register() == G0)) {
  2632     // do nothing
  2633   } else if (dest.is_register()) {
  2634     add(dest.as_register(), ensure_rs2(src, temp), dest.as_register());
  2635   } else if (src.is_constant()) {
  2636     intptr_t res = dest.as_constant() + src.as_constant();
  2637     dest = RegisterOrConstant(res); // side effect seen by caller
  2638   } else {
  2639     assert(temp != noreg, "cannot handle constant += register");
  2640     add(src.as_register(), ensure_rs2(dest, temp), temp);
  2641     dest = RegisterOrConstant(temp); // side effect seen by caller
  2645 void MacroAssembler::regcon_sll_ptr( RegisterOrConstant& dest, RegisterOrConstant src, Register temp ) {
  2646   assert(dest.register_or_noreg() != G0, "lost side effect");
  2647   if (!is_simm13(src.constant_or_zero()))
  2648     src = (src.as_constant() & 0xFF);
  2649   if ((src.is_constant() && src.as_constant() == 0) ||
  2650       (src.is_register() && src.as_register() == G0)) {
  2651     // do nothing
  2652   } else if (dest.is_register()) {
  2653     sll_ptr(dest.as_register(), src, dest.as_register());
  2654   } else if (src.is_constant()) {
  2655     intptr_t res = dest.as_constant() << src.as_constant();
  2656     dest = RegisterOrConstant(res); // side effect seen by caller
  2657   } else {
  2658     assert(temp != noreg, "cannot handle constant <<= register");
  2659     set(dest.as_constant(), temp);
  2660     sll_ptr(temp, src, temp);
  2661     dest = RegisterOrConstant(temp); // side effect seen by caller
  2666 // Look up the method for a megamorphic invokeinterface call.
  2667 // The target method is determined by <intf_klass, itable_index>.
  2668 // The receiver klass is in recv_klass.
  2669 // On success, the result will be in method_result, and execution falls through.
  2670 // On failure, execution transfers to the given label.
  2671 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2672                                              Register intf_klass,
  2673                                              RegisterOrConstant itable_index,
  2674                                              Register method_result,
  2675                                              Register scan_temp,
  2676                                              Register sethi_temp,
  2677                                              Label& L_no_such_interface) {
  2678   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2679   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2680          "caller must use same register for non-constant itable index as for method");
  2682   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2683   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  2684   int scan_step   = itableOffsetEntry::size() * wordSize;
  2685   int vte_size    = vtableEntry::size() * wordSize;
  2687   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2688   // %%% We should store the aligned, prescaled offset in the klassoop.
  2689   // Then the next several instructions would fold away.
  2691   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2692   int itb_offset = vtable_base;
  2693   if (round_to_unit != 0) {
  2694     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2695     itb_offset += round_to_unit - wordSize;
  2697   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2698   sll(scan_temp, itb_scale,  scan_temp);
  2699   add(scan_temp, itb_offset, scan_temp);
  2700   if (round_to_unit != 0) {
  2701     // Round up to align_object_offset boundary
  2702     // see code for instanceKlass::start_of_itable!
  2703     // Was: round_to(scan_temp, BytesPerLong);
  2704     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2705     and3(scan_temp, -round_to_unit, scan_temp);
  2707   add(recv_klass, scan_temp, scan_temp);
  2709   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2710   RegisterOrConstant itable_offset = itable_index;
  2711   regcon_sll_ptr(itable_offset, exact_log2(itableMethodEntry::size() * wordSize));
  2712   regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes());
  2713   add(recv_klass, ensure_rs2(itable_offset, sethi_temp), recv_klass);
  2715   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2716   //   if (scan->interface() == intf) {
  2717   //     result = (klass + scan->offset() + itable_index);
  2718   //   }
  2719   // }
  2720   Label search, found_method;
  2722   for (int peel = 1; peel >= 0; peel--) {
  2723     // %%%% Could load both offset and interface in one ldx, if they were
  2724     // in the opposite order.  This would save a load.
  2725     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2727     // Check that this entry is non-null.  A null entry means that
  2728     // the receiver class doesn't implement the interface, and wasn't the
  2729     // same as when the caller was compiled.
  2730     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
  2731     delayed()->cmp(method_result, intf_klass);
  2733     if (peel) {
  2734       brx(Assembler::equal,    false, Assembler::pt, found_method);
  2735     } else {
  2736       brx(Assembler::notEqual, false, Assembler::pn, search);
  2737       // (invert the test to fall through to found_method...)
  2739     delayed()->add(scan_temp, scan_step, scan_temp);
  2741     if (!peel)  break;
  2743     bind(search);
  2746   bind(found_method);
  2748   // Got a hit.
  2749   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  2750   // scan_temp[-scan_step] points to the vtable offset we need
  2751   ito_offset -= scan_step;
  2752   lduw(scan_temp, ito_offset, scan_temp);
  2753   ld_ptr(recv_klass, scan_temp, method_result);
  2757 void MacroAssembler::check_klass_subtype(Register sub_klass,
  2758                                          Register super_klass,
  2759                                          Register temp_reg,
  2760                                          Register temp2_reg,
  2761                                          Label& L_success) {
  2762   Label L_failure, L_pop_to_failure;
  2763   check_klass_subtype_fast_path(sub_klass, super_klass,
  2764                                 temp_reg, temp2_reg,
  2765                                 &L_success, &L_failure, NULL);
  2766   Register sub_2 = sub_klass;
  2767   Register sup_2 = super_klass;
  2768   if (!sub_2->is_global())  sub_2 = L0;
  2769   if (!sup_2->is_global())  sup_2 = L1;
  2771   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2772   check_klass_subtype_slow_path(sub_2, sup_2,
  2773                                 L2, L3, L4, L5,
  2774                                 NULL, &L_pop_to_failure);
  2776   // on success:
  2777   restore();
  2778   ba(false, L_success);
  2779   delayed()->nop();
  2781   // on failure:
  2782   bind(L_pop_to_failure);
  2783   restore();
  2784   bind(L_failure);
  2788 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  2789                                                    Register super_klass,
  2790                                                    Register temp_reg,
  2791                                                    Register temp2_reg,
  2792                                                    Label* L_success,
  2793                                                    Label* L_failure,
  2794                                                    Label* L_slow_path,
  2795                                         RegisterOrConstant super_check_offset,
  2796                                         Register instanceof_hack) {
  2797   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2798                    Klass::secondary_super_cache_offset_in_bytes());
  2799   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2800                     Klass::super_check_offset_offset_in_bytes());
  2802   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  2803   bool need_slow_path = (must_load_sco ||
  2804                          super_check_offset.constant_or_zero() == sco_offset);
  2806   assert_different_registers(sub_klass, super_klass, temp_reg);
  2807   if (super_check_offset.is_register()) {
  2808     assert_different_registers(sub_klass, super_klass,
  2809                                super_check_offset.as_register());
  2810   } else if (must_load_sco) {
  2811     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  2814   Label L_fallthrough;
  2815   int label_nulls = 0;
  2816   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2817   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2818   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  2819   assert(label_nulls <= 1 || instanceof_hack != noreg ||
  2820          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  2821          "at most one NULL in the batch, usually");
  2823   // Support for the instanceof hack, which uses delay slots to
  2824   // set a destination register to zero or one.
  2825   bool do_bool_sets = (instanceof_hack != noreg);
  2826 #define BOOL_SET(bool_value)                            \
  2827   if (do_bool_sets && bool_value >= 0)                  \
  2828     set(bool_value, instanceof_hack)
  2829 #define DELAYED_BOOL_SET(bool_value)                    \
  2830   if (do_bool_sets && bool_value >= 0)                  \
  2831     delayed()->set(bool_value, instanceof_hack);        \
  2832   else delayed()->nop()
  2833   // Hacked ba(), which may only be used just before L_fallthrough.
  2834 #define FINAL_JUMP(label, bool_value)                   \
  2835   if (&(label) == &L_fallthrough) {                     \
  2836     BOOL_SET(bool_value);                               \
  2837   } else {                                              \
  2838     ba((do_bool_sets && bool_value >= 0), label);       \
  2839     DELAYED_BOOL_SET(bool_value);                       \
  2842   // If the pointers are equal, we are done (e.g., String[] elements).
  2843   // This self-check enables sharing of secondary supertype arrays among
  2844   // non-primary types such as array-of-interface.  Otherwise, each such
  2845   // type would need its own customized SSA.
  2846   // We move this check to the front of the fast path because many
  2847   // type checks are in fact trivially successful in this manner,
  2848   // so we get a nicely predicted branch right at the start of the check.
  2849   cmp(super_klass, sub_klass);
  2850   brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  2851   DELAYED_BOOL_SET(1);
  2853   // Check the supertype display:
  2854   if (must_load_sco) {
  2855     // The super check offset is always positive...
  2856     lduw(super_klass, sco_offset, temp2_reg);
  2857     super_check_offset = RegisterOrConstant(temp2_reg);
  2859   ld_ptr(sub_klass, super_check_offset, temp_reg);
  2860   cmp(super_klass, temp_reg);
  2862   // This check has worked decisively for primary supers.
  2863   // Secondary supers are sought in the super_cache ('super_cache_addr').
  2864   // (Secondary supers are interfaces and very deeply nested subtypes.)
  2865   // This works in the same check above because of a tricky aliasing
  2866   // between the super_cache and the primary super display elements.
  2867   // (The 'super_check_addr' can address either, as the case requires.)
  2868   // Note that the cache is updated below if it does not help us find
  2869   // what we need immediately.
  2870   // So if it was a primary super, we can just fail immediately.
  2871   // Otherwise, it's the slow path for us (no success at this point).
  2873   if (super_check_offset.is_register()) {
  2874     brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  2875     delayed(); if (do_bool_sets)  BOOL_SET(1);
  2876     // if !do_bool_sets, sneak the next cmp into the delay slot:
  2877     cmp(super_check_offset.as_register(), sc_offset);
  2879     if (L_failure == &L_fallthrough) {
  2880       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
  2881       delayed()->nop();
  2882       BOOL_SET(0);  // fallthrough on failure
  2883     } else {
  2884       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  2885       DELAYED_BOOL_SET(0);
  2886       FINAL_JUMP(*L_slow_path, -1);  // -1 => vanilla delay slot
  2888   } else if (super_check_offset.as_constant() == sc_offset) {
  2889     // Need a slow path; fast failure is impossible.
  2890     if (L_slow_path == &L_fallthrough) {
  2891       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  2892       DELAYED_BOOL_SET(1);
  2893     } else {
  2894       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  2895       delayed()->nop();
  2896       FINAL_JUMP(*L_success, 1);
  2898   } else {
  2899     // No slow path; it's a fast decision.
  2900     if (L_failure == &L_fallthrough) {
  2901       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  2902       DELAYED_BOOL_SET(1);
  2903       BOOL_SET(0);
  2904     } else {
  2905       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  2906       DELAYED_BOOL_SET(0);
  2907       FINAL_JUMP(*L_success, 1);
  2911   bind(L_fallthrough);
  2913 #undef final_jump
  2914 #undef bool_set
  2915 #undef DELAYED_BOOL_SET
  2916 #undef final_jump
  2920 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  2921                                                    Register super_klass,
  2922                                                    Register count_temp,
  2923                                                    Register scan_temp,
  2924                                                    Register scratch_reg,
  2925                                                    Register coop_reg,
  2926                                                    Label* L_success,
  2927                                                    Label* L_failure) {
  2928   assert_different_registers(sub_klass, super_klass,
  2929                              count_temp, scan_temp, scratch_reg, coop_reg);
  2931   Label L_fallthrough, L_loop;
  2932   int label_nulls = 0;
  2933   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2934   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2935   assert(label_nulls <= 1, "at most one NULL in the batch");
  2937   // a couple of useful fields in sub_klass:
  2938   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  2939                    Klass::secondary_supers_offset_in_bytes());
  2940   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2941                    Klass::secondary_super_cache_offset_in_bytes());
  2943   // Do a linear scan of the secondary super-klass chain.
  2944   // This code is rarely used, so simplicity is a virtue here.
  2946 #ifndef PRODUCT
  2947   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  2948   inc_counter((address) pst_counter, count_temp, scan_temp);
  2949 #endif
  2951   // We will consult the secondary-super array.
  2952   ld_ptr(sub_klass, ss_offset, scan_temp);
  2954   // Compress superclass if necessary.
  2955   Register search_key = super_klass;
  2956   bool decode_super_klass = false;
  2957   if (UseCompressedOops) {
  2958     if (coop_reg != noreg) {
  2959       encode_heap_oop_not_null(super_klass, coop_reg);
  2960       search_key = coop_reg;
  2961     } else {
  2962       encode_heap_oop_not_null(super_klass);
  2963       decode_super_klass = true; // scarce temps!
  2965     // The superclass is never null; it would be a basic system error if a null
  2966     // pointer were to sneak in here.  Note that we have already loaded the
  2967     // Klass::super_check_offset from the super_klass in the fast path,
  2968     // so if there is a null in that register, we are already in the afterlife.
  2971   // Load the array length.  (Positive movl does right thing on LP64.)
  2972   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
  2974   // Check for empty secondary super list
  2975   tst(count_temp);
  2977   // Top of search loop
  2978   bind(L_loop);
  2979   br(Assembler::equal, false, Assembler::pn, *L_failure);
  2980   delayed()->add(scan_temp, heapOopSize, scan_temp);
  2981   assert(heapOopSize != 0, "heapOopSize should be initialized");
  2983   // Skip the array header in all array accesses.
  2984   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
  2985   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
  2987   // Load next super to check
  2988   if (UseCompressedOops) {
  2989     // Don't use load_heap_oop; we don't want to decode the element.
  2990     lduw(   scan_temp, elem_offset, scratch_reg );
  2991   } else {
  2992     ld_ptr( scan_temp, elem_offset, scratch_reg );
  2995   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  2996   cmp(scratch_reg, search_key);
  2998   // A miss means we are NOT a subtype and need to keep looping
  2999   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  3000   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  3002   // Falling out the bottom means we found a hit; we ARE a subtype
  3003   if (decode_super_klass) decode_heap_oop(super_klass);
  3005   // Success.  Cache the super we found and proceed in triumph.
  3006   st_ptr(super_klass, sub_klass, sc_offset);
  3008   if (L_success != &L_fallthrough) {
  3009     ba(false, *L_success);
  3010     delayed()->nop();
  3013   bind(L_fallthrough);
  3019 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  3020                                               Register temp_reg,
  3021                                               Label& wrong_method_type) {
  3022   assert_different_registers(mtype_reg, mh_reg, temp_reg);
  3023   // compare method type against that of the receiver
  3024   RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
  3025   ld_ptr(mh_reg, mhtype_offset, temp_reg);
  3026   cmp(temp_reg, mtype_reg);
  3027   br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
  3028   delayed()->nop();
  3032 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  3033   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
  3034   assert_different_registers(mh_reg, temp_reg);
  3036   // pick out the interpreted side of the handler
  3037   ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
  3039   // off we go...
  3040   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
  3041   jmp(temp_reg, 0);
  3043   // for the various stubs which take control at this point,
  3044   // see MethodHandles::generate_method_handle_stub
  3046   // (Can any caller use this delay slot?  If so, add an option for supression.)
  3047   delayed()->nop();
  3050 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  3051                                                    int extra_slot_offset) {
  3052   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3053   int stackElementSize = Interpreter::stackElementWords() * wordSize;
  3054   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  3055   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  3056   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  3057   if (arg_slot.is_constant()) {
  3058     offset += arg_slot.as_constant() * stackElementSize;
  3059     return offset;
  3060   } else {
  3061     Register temp = arg_slot.as_register();
  3062     sll_ptr(temp, exact_log2(stackElementSize), temp);
  3063     if (offset != 0)
  3064       add(temp, offset, temp);
  3065     return temp;
  3071 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  3072                                           Register temp_reg,
  3073                                           Label& done, Label* slow_case,
  3074                                           BiasedLockingCounters* counters) {
  3075   assert(UseBiasedLocking, "why call this otherwise?");
  3077   if (PrintBiasedLockingStatistics) {
  3078     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  3079     if (counters == NULL)
  3080       counters = BiasedLocking::counters();
  3083   Label cas_label;
  3085   // Biased locking
  3086   // See whether the lock is currently biased toward our thread and
  3087   // whether the epoch is still valid
  3088   // Note that the runtime guarantees sufficient alignment of JavaThread
  3089   // pointers to allow age to be placed into low bits
  3090   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  3091   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3092   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3093   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  3094   delayed()->nop();
  3096   load_klass(obj_reg, temp_reg);
  3097   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3098   or3(G2_thread, temp_reg, temp_reg);
  3099   xor3(mark_reg, temp_reg, temp_reg);
  3100   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  3101   if (counters != NULL) {
  3102     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3103     // Reload mark_reg as we may need it later
  3104     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  3106   brx(Assembler::equal, true, Assembler::pt, done);
  3107   delayed()->nop();
  3109   Label try_revoke_bias;
  3110   Label try_rebias;
  3111   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  3112   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3114   // At this point we know that the header has the bias pattern and
  3115   // that we are not the bias owner in the current epoch. We need to
  3116   // figure out more details about the state of the header in order to
  3117   // know what operations can be legally performed on the object's
  3118   // header.
  3120   // If the low three bits in the xor result aren't clear, that means
  3121   // the prototype header is no longer biased and we have to revoke
  3122   // the bias on this object.
  3123   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  3124   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  3126   // Biasing is still enabled for this data type. See whether the
  3127   // epoch of the current bias is still valid, meaning that the epoch
  3128   // bits of the mark word are equal to the epoch bits of the
  3129   // prototype header. (Note that the prototype header's epoch bits
  3130   // only change at a safepoint.) If not, attempt to rebias the object
  3131   // toward the current thread. Note that we must be absolutely sure
  3132   // that the current epoch is invalid in order to do this because
  3133   // otherwise the manipulations it performs on the mark word are
  3134   // illegal.
  3135   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  3136   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  3138   // The epoch of the current bias is still valid but we know nothing
  3139   // about the owner; it might be set or it might be clear. Try to
  3140   // acquire the bias of the object using an atomic operation. If this
  3141   // fails we will go in to the runtime to revoke the object's bias.
  3142   // Note that we first construct the presumed unbiased header so we
  3143   // don't accidentally blow away another thread's valid bias.
  3144   delayed()->and3(mark_reg,
  3145                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  3146                   mark_reg);
  3147   or3(G2_thread, mark_reg, temp_reg);
  3148   casn(mark_addr.base(), mark_reg, temp_reg);
  3149   // If the biasing toward our thread failed, this means that
  3150   // another thread succeeded in biasing it toward itself and we
  3151   // need to revoke that bias. The revocation will occur in the
  3152   // interpreter runtime in the slow case.
  3153   cmp(mark_reg, temp_reg);
  3154   if (counters != NULL) {
  3155     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3157   if (slow_case != NULL) {
  3158     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3159     delayed()->nop();
  3161   br(Assembler::always, false, Assembler::pt, done);
  3162   delayed()->nop();
  3164   bind(try_rebias);
  3165   // At this point we know the epoch has expired, meaning that the
  3166   // current "bias owner", if any, is actually invalid. Under these
  3167   // circumstances _only_, we are allowed to use the current header's
  3168   // value as the comparison value when doing the cas to acquire the
  3169   // bias in the current epoch. In other words, we allow transfer of
  3170   // the bias from one thread to another directly in this situation.
  3171   //
  3172   // FIXME: due to a lack of registers we currently blow away the age
  3173   // bits in this situation. Should attempt to preserve them.
  3174   load_klass(obj_reg, temp_reg);
  3175   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3176   or3(G2_thread, temp_reg, temp_reg);
  3177   casn(mark_addr.base(), mark_reg, temp_reg);
  3178   // If the biasing toward our thread failed, this means that
  3179   // another thread succeeded in biasing it toward itself and we
  3180   // need to revoke that bias. The revocation will occur in the
  3181   // interpreter runtime in the slow case.
  3182   cmp(mark_reg, temp_reg);
  3183   if (counters != NULL) {
  3184     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3186   if (slow_case != NULL) {
  3187     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3188     delayed()->nop();
  3190   br(Assembler::always, false, Assembler::pt, done);
  3191   delayed()->nop();
  3193   bind(try_revoke_bias);
  3194   // The prototype mark in the klass doesn't have the bias bit set any
  3195   // more, indicating that objects of this data type are not supposed
  3196   // to be biased any more. We are going to try to reset the mark of
  3197   // this object to the prototype value and fall through to the
  3198   // CAS-based locking scheme. Note that if our CAS fails, it means
  3199   // that another thread raced us for the privilege of revoking the
  3200   // bias of this particular object, so it's okay to continue in the
  3201   // normal locking code.
  3202   //
  3203   // FIXME: due to a lack of registers we currently blow away the age
  3204   // bits in this situation. Should attempt to preserve them.
  3205   load_klass(obj_reg, temp_reg);
  3206   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3207   casn(mark_addr.base(), mark_reg, temp_reg);
  3208   // Fall through to the normal CAS-based lock, because no matter what
  3209   // the result of the above CAS, some thread must have succeeded in
  3210   // removing the bias bit from the object's header.
  3211   if (counters != NULL) {
  3212     cmp(mark_reg, temp_reg);
  3213     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3216   bind(cas_label);
  3219 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3220                                           bool allow_delay_slot_filling) {
  3221   // Check for biased locking unlock case, which is a no-op
  3222   // Note: we do not have to check the thread ID for two reasons.
  3223   // First, the interpreter checks for IllegalMonitorStateException at
  3224   // a higher level. Second, if the bias was revoked while we held the
  3225   // lock, the object could not be rebiased toward another thread, so
  3226   // the bias bit would be clear.
  3227   ld_ptr(mark_addr, temp_reg);
  3228   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3229   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3230   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3231   delayed();
  3232   if (!allow_delay_slot_filling) {
  3233     nop();
  3238 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3239 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3241 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3242   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  3247 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3248 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3249 // The code could be tightened up considerably.
  3250 //
  3251 // box->dhw disposition - post-conditions at DONE_LABEL.
  3252 // -   Successful inflated lock:  box->dhw != 0.
  3253 //     Any non-zero value suffices.
  3254 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3255 // -   Successful Stack-lock: box->dhw == mark.
  3256 //     box->dhw must contain the displaced mark word value
  3257 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3258 //     The slow-path fast_enter() and slow_enter() operators
  3259 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3260 // -   Biased: box->dhw is undefined
  3261 //
  3262 // SPARC refworkload performance - specifically jetstream and scimark - are
  3263 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3264 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3265 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3266 // effect).
  3269 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3270                                           Register Rbox, Register Rscratch,
  3271                                           BiasedLockingCounters* counters,
  3272                                           bool try_bias) {
  3273    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3275    verify_oop(Roop);
  3276    Label done ;
  3278    if (counters != NULL) {
  3279      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3282    if (EmitSync & 1) {
  3283      mov    (3, Rscratch) ;
  3284      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3285      cmp    (SP, G0) ;
  3286      return ;
  3289    if (EmitSync & 2) {
  3291      // Fetch object's markword
  3292      ld_ptr(mark_addr, Rmark);
  3294      if (try_bias) {
  3295         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3298      // Save Rbox in Rscratch to be used for the cas operation
  3299      mov(Rbox, Rscratch);
  3301      // set Rmark to markOop | markOopDesc::unlocked_value
  3302      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3304      // Initialize the box.  (Must happen before we update the object mark!)
  3305      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3307      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3308      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3309      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3310         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3312      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3313      // hence we are done
  3314      cmp(Rmark, Rscratch);
  3315 #ifdef _LP64
  3316      sub(Rscratch, STACK_BIAS, Rscratch);
  3317 #endif
  3318      brx(Assembler::equal, false, Assembler::pt, done);
  3319      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3321      // we did not find an unlocked object so see if this is a recursive case
  3322      // sub(Rscratch, SP, Rscratch);
  3323      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3324      andcc(Rscratch, 0xfffff003, Rscratch);
  3325      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3326      bind (done) ;
  3327      return ;
  3330    Label Egress ;
  3332    if (EmitSync & 256) {
  3333       Label IsInflated ;
  3335       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3336       // Triage: biased, stack-locked, neutral, inflated
  3337       if (try_bias) {
  3338         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3339         // Invariant: if control reaches this point in the emitted stream
  3340         // then Rmark has not been modified.
  3343       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3344       // Critically, this must happen before the CAS
  3345       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3346       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3347       andcc  (Rmark, 2, G0) ;
  3348       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3349       delayed() ->
  3351       // Try stack-lock acquisition.
  3352       // Beware: the 1st instruction is in a delay slot
  3353       mov    (Rbox,  Rscratch);
  3354       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3355       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3356       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3357       cmp    (Rmark, Rscratch);
  3358       brx    (Assembler::equal, false, Assembler::pt, done);
  3359       delayed()->sub(Rscratch, SP, Rscratch);
  3361       // Stack-lock attempt failed - check for recursive stack-lock.
  3362       // See the comments below about how we might remove this case.
  3363 #ifdef _LP64
  3364       sub    (Rscratch, STACK_BIAS, Rscratch);
  3365 #endif
  3366       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3367       andcc  (Rscratch, 0xfffff003, Rscratch);
  3368       br     (Assembler::always, false, Assembler::pt, done) ;
  3369       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3371       bind   (IsInflated) ;
  3372       if (EmitSync & 64) {
  3373          // If m->owner != null goto IsLocked
  3374          // Pessimistic form: Test-and-CAS vs CAS
  3375          // The optimistic form avoids RTS->RTO cache line upgrades.
  3376          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3377          andcc  (Rscratch, Rscratch, G0) ;
  3378          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3379          delayed()->nop() ;
  3380          // m->owner == null : it's unlocked.
  3383       // Try to CAS m->owner from null to Self
  3384       // Invariant: if we acquire the lock then _recursions should be 0.
  3385       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3386       mov    (G2_thread, Rscratch) ;
  3387       casn   (Rmark, G0, Rscratch) ;
  3388       cmp    (Rscratch, G0) ;
  3389       // Intentional fall-through into done
  3390    } else {
  3391       // Aggressively avoid the Store-before-CAS penalty
  3392       // Defer the store into box->dhw until after the CAS
  3393       Label IsInflated, Recursive ;
  3395 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3396 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3398       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3399       // Triage: biased, stack-locked, neutral, inflated
  3401       if (try_bias) {
  3402         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3403         // Invariant: if control reaches this point in the emitted stream
  3404         // then Rmark has not been modified.
  3406       andcc  (Rmark, 2, G0) ;
  3407       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3408       delayed()->                         // Beware - dangling delay-slot
  3410       // Try stack-lock acquisition.
  3411       // Transiently install BUSY (0) encoding in the mark word.
  3412       // if the CAS of 0 into the mark was successful then we execute:
  3413       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3414       //   ST obj->mark = box    -- overwrite transient 0 value
  3415       // This presumes TSO, of course.
  3417       mov    (0, Rscratch) ;
  3418       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3419       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3420       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3421 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3422       cmp    (Rscratch, Rmark) ;
  3423       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  3424       delayed() ->
  3425         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3426       if (counters != NULL) {
  3427         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3429       br     (Assembler::always, false, Assembler::pt, done);
  3430       delayed() ->
  3431         st_ptr (Rbox, mark_addr) ;
  3433       bind   (Recursive) ;
  3434       // Stack-lock attempt failed - check for recursive stack-lock.
  3435       // Tests show that we can remove the recursive case with no impact
  3436       // on refworkload 0.83.  If we need to reduce the size of the code
  3437       // emitted by compiler_lock_object() the recursive case is perfect
  3438       // candidate.
  3439       //
  3440       // A more extreme idea is to always inflate on stack-lock recursion.
  3441       // This lets us eliminate the recursive checks in compiler_lock_object
  3442       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3443       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3444       // and showed a performance *increase*.  In the same experiment I eliminated
  3445       // the fast-path stack-lock code from the interpreter and always passed
  3446       // control to the "slow" operators in synchronizer.cpp.
  3448       // RScratch contains the fetched obj->mark value from the failed CASN.
  3449 #ifdef _LP64
  3450       sub    (Rscratch, STACK_BIAS, Rscratch);
  3451 #endif
  3452       sub(Rscratch, SP, Rscratch);
  3453       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3454       andcc  (Rscratch, 0xfffff003, Rscratch);
  3455       if (counters != NULL) {
  3456         // Accounting needs the Rscratch register
  3457         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3458         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3459         br     (Assembler::always, false, Assembler::pt, done) ;
  3460         delayed()->nop() ;
  3461       } else {
  3462         br     (Assembler::always, false, Assembler::pt, done) ;
  3463         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3466       bind   (IsInflated) ;
  3467       if (EmitSync & 64) {
  3468          // If m->owner != null goto IsLocked
  3469          // Test-and-CAS vs CAS
  3470          // Pessimistic form avoids futile (doomed) CAS attempts
  3471          // The optimistic form avoids RTS->RTO cache line upgrades.
  3472          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3473          andcc  (Rscratch, Rscratch, G0) ;
  3474          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3475          delayed()->nop() ;
  3476          // m->owner == null : it's unlocked.
  3479       // Try to CAS m->owner from null to Self
  3480       // Invariant: if we acquire the lock then _recursions should be 0.
  3481       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3482       mov    (G2_thread, Rscratch) ;
  3483       casn   (Rmark, G0, Rscratch) ;
  3484       cmp    (Rscratch, G0) ;
  3485       // ST box->displaced_header = NonZero.
  3486       // Any non-zero value suffices:
  3487       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3488       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3489       // Intentional fall-through into done
  3492    bind   (done) ;
  3495 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3496                                             Register Rbox, Register Rscratch,
  3497                                             bool try_bias) {
  3498    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3500    Label done ;
  3502    if (EmitSync & 4) {
  3503      cmp  (SP, G0) ;
  3504      return ;
  3507    if (EmitSync & 8) {
  3508      if (try_bias) {
  3509         biased_locking_exit(mark_addr, Rscratch, done);
  3512      // Test first if it is a fast recursive unlock
  3513      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3514      cmp(Rmark, G0);
  3515      brx(Assembler::equal, false, Assembler::pt, done);
  3516      delayed()->nop();
  3518      // Check if it is still a light weight lock, this is is true if we see
  3519      // the stack address of the basicLock in the markOop of the object
  3520      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3521      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3522        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3523      br (Assembler::always, false, Assembler::pt, done);
  3524      delayed()->cmp(Rbox, Rmark);
  3525      bind (done) ;
  3526      return ;
  3529    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3530    // is too large performance rolls abruptly off a cliff.
  3531    // This could be related to inlining policies, code cache management, or
  3532    // I$ effects.
  3533    Label LStacked ;
  3535    if (try_bias) {
  3536       // TODO: eliminate redundant LDs of obj->mark
  3537       biased_locking_exit(mark_addr, Rscratch, done);
  3540    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3541    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3542    andcc  (Rscratch, Rscratch, G0);
  3543    brx    (Assembler::zero, false, Assembler::pn, done);
  3544    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3545    andcc  (Rmark, 2, G0) ;
  3546    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3547    delayed()-> nop() ;
  3549    // It's inflated
  3550    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3551    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3552    // and stores within the critical section from reordering (floating)
  3553    // past the store that releases the lock.  But TSO is a strong memory model
  3554    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3555    // Note that we use 1-0 locking by default for the inflated case.  We
  3556    // close the resultant (and rare) race by having contented threads in
  3557    // monitorenter periodically poll _owner.
  3558    ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3559    ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3560    xor3   (Rscratch, G2_thread, Rscratch) ;
  3561    orcc   (Rbox, Rscratch, Rbox) ;
  3562    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3563    delayed()->
  3564    ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3565    ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3566    orcc   (Rbox, Rscratch, G0) ;
  3567    if (EmitSync & 65536) {
  3568       Label LSucc ;
  3569       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3570       delayed()->nop() ;
  3571       br     (Assembler::always, false, Assembler::pt, done) ;
  3572       delayed()->
  3573       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3575       bind   (LSucc) ;
  3576       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3577       if (os::is_MP()) { membar (StoreLoad) ; }
  3578       ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3579       andcc  (Rscratch, Rscratch, G0) ;
  3580       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3581       delayed()-> andcc (G0, G0, G0) ;
  3582       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3583       mov    (G2_thread, Rscratch) ;
  3584       casn   (Rmark, G0, Rscratch) ;
  3585       cmp    (Rscratch, G0) ;
  3586       // invert icc.zf and goto done
  3587       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3588       delayed() -> cmp (G0, G0) ;
  3589       br     (Assembler::always, false, Assembler::pt, done);
  3590       delayed() -> cmp (G0, 1) ;
  3591    } else {
  3592       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3593       delayed()->nop() ;
  3594       br     (Assembler::always, false, Assembler::pt, done) ;
  3595       delayed()->
  3596       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3599    bind   (LStacked) ;
  3600    // Consider: we could replace the expensive CAS in the exit
  3601    // path with a simple ST of the displaced mark value fetched from
  3602    // the on-stack basiclock box.  That admits a race where a thread T2
  3603    // in the slow lock path -- inflating with monitor M -- could race a
  3604    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3605    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3606    // inflated mark value M installed by T2, resulting in an orphan
  3607    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3608    // by having T2 periodically poll the object's mark word using timed wait
  3609    // operations.  If T2 discovers that a stomp has occurred it vacates
  3610    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3611    // In addition the monitor scavenger, which performs deflation,
  3612    // would also need to check for orpan monitors and stranded threads.
  3613    //
  3614    // Finally, inflation is also used when T2 needs to assign a hashCode
  3615    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3616    // an assigned hashCode value to be lost.  We can avoid that condition
  3617    // and provide the necessary hashCode stability invariants by ensuring
  3618    // that hashCode generation is idempotent between copying GCs.
  3619    // For example we could compute the hashCode of an object O as
  3620    // O's heap address XOR some high quality RNG value that is refreshed
  3621    // at GC-time.  The monitor scavenger would install the hashCode
  3622    // found in any orphan monitors.  Again, the mechanism admits a
  3623    // lost-update "stomp" WAW race but detects and recovers as needed.
  3624    //
  3625    // A prototype implementation showed excellent results, although
  3626    // the scavenger and timeout code was rather involved.
  3628    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3629    cmp    (Rbox, Rscratch);
  3630    // Intentional fall through into done ...
  3632    bind   (done) ;
  3637 void MacroAssembler::print_CPU_state() {
  3638   // %%%%% need to implement this
  3641 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3642   // %%%%% need to implement this
  3645 void MacroAssembler::push_IU_state() {
  3646   // %%%%% need to implement this
  3650 void MacroAssembler::pop_IU_state() {
  3651   // %%%%% need to implement this
  3655 void MacroAssembler::push_FPU_state() {
  3656   // %%%%% need to implement this
  3660 void MacroAssembler::pop_FPU_state() {
  3661   // %%%%% need to implement this
  3665 void MacroAssembler::push_CPU_state() {
  3666   // %%%%% need to implement this
  3670 void MacroAssembler::pop_CPU_state() {
  3671   // %%%%% need to implement this
  3676 void MacroAssembler::verify_tlab() {
  3677 #ifdef ASSERT
  3678   if (UseTLAB && VerifyOops) {
  3679     Label next, next2, ok;
  3680     Register t1 = L0;
  3681     Register t2 = L1;
  3682     Register t3 = L2;
  3684     save_frame(0);
  3685     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3686     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3687     or3(t1, t2, t3);
  3688     cmp(t1, t2);
  3689     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3690     delayed()->nop();
  3691     stop("assert(top >= start)");
  3692     should_not_reach_here();
  3694     bind(next);
  3695     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3696     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3697     or3(t3, t2, t3);
  3698     cmp(t1, t2);
  3699     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3700     delayed()->nop();
  3701     stop("assert(top <= end)");
  3702     should_not_reach_here();
  3704     bind(next2);
  3705     and3(t3, MinObjAlignmentInBytesMask, t3);
  3706     cmp(t3, 0);
  3707     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3708     delayed()->nop();
  3709     stop("assert(aligned)");
  3710     should_not_reach_here();
  3712     bind(ok);
  3713     restore();
  3715 #endif
  3719 void MacroAssembler::eden_allocate(
  3720   Register obj,                        // result: pointer to object after successful allocation
  3721   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3722   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3723   Register t1,                         // temp register
  3724   Register t2,                         // temp register
  3725   Label&   slow_case                   // continuation point if fast allocation fails
  3726 ){
  3727   // make sure arguments make sense
  3728   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3729   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3730   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3732   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3733     // No allocation in the shared eden.
  3734     br(Assembler::always, false, Assembler::pt, slow_case);
  3735     delayed()->nop();
  3736   } else {
  3737     // get eden boundaries
  3738     // note: we need both top & top_addr!
  3739     const Register top_addr = t1;
  3740     const Register end      = t2;
  3742     CollectedHeap* ch = Universe::heap();
  3743     set((intx)ch->top_addr(), top_addr);
  3744     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3745     ld_ptr(top_addr, delta, end);
  3746     ld_ptr(top_addr, 0, obj);
  3748     // try to allocate
  3749     Label retry;
  3750     bind(retry);
  3751 #ifdef ASSERT
  3752     // make sure eden top is properly aligned
  3754       Label L;
  3755       btst(MinObjAlignmentInBytesMask, obj);
  3756       br(Assembler::zero, false, Assembler::pt, L);
  3757       delayed()->nop();
  3758       stop("eden top is not properly aligned");
  3759       bind(L);
  3761 #endif // ASSERT
  3762     const Register free = end;
  3763     sub(end, obj, free);                                   // compute amount of free space
  3764     if (var_size_in_bytes->is_valid()) {
  3765       // size is unknown at compile time
  3766       cmp(free, var_size_in_bytes);
  3767       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3768       delayed()->add(obj, var_size_in_bytes, end);
  3769     } else {
  3770       // size is known at compile time
  3771       cmp(free, con_size_in_bytes);
  3772       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3773       delayed()->add(obj, con_size_in_bytes, end);
  3775     // Compare obj with the value at top_addr; if still equal, swap the value of
  3776     // end with the value at top_addr. If not equal, read the value at top_addr
  3777     // into end.
  3778     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3779     // if someone beat us on the allocation, try again, otherwise continue
  3780     cmp(obj, end);
  3781     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3782     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3784 #ifdef ASSERT
  3785     // make sure eden top is properly aligned
  3787       Label L;
  3788       const Register top_addr = t1;
  3790       set((intx)ch->top_addr(), top_addr);
  3791       ld_ptr(top_addr, 0, top_addr);
  3792       btst(MinObjAlignmentInBytesMask, top_addr);
  3793       br(Assembler::zero, false, Assembler::pt, L);
  3794       delayed()->nop();
  3795       stop("eden top is not properly aligned");
  3796       bind(L);
  3798 #endif // ASSERT
  3803 void MacroAssembler::tlab_allocate(
  3804   Register obj,                        // result: pointer to object after successful allocation
  3805   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3806   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3807   Register t1,                         // temp register
  3808   Label&   slow_case                   // continuation point if fast allocation fails
  3809 ){
  3810   // make sure arguments make sense
  3811   assert_different_registers(obj, var_size_in_bytes, t1);
  3812   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3813   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3815   const Register free  = t1;
  3817   verify_tlab();
  3819   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3821   // calculate amount of free space
  3822   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3823   sub(free, obj, free);
  3825   Label done;
  3826   if (var_size_in_bytes == noreg) {
  3827     cmp(free, con_size_in_bytes);
  3828   } else {
  3829     cmp(free, var_size_in_bytes);
  3831   br(Assembler::less, false, Assembler::pn, slow_case);
  3832   // calculate the new top pointer
  3833   if (var_size_in_bytes == noreg) {
  3834     delayed()->add(obj, con_size_in_bytes, free);
  3835   } else {
  3836     delayed()->add(obj, var_size_in_bytes, free);
  3839   bind(done);
  3841 #ifdef ASSERT
  3842   // make sure new free pointer is properly aligned
  3844     Label L;
  3845     btst(MinObjAlignmentInBytesMask, free);
  3846     br(Assembler::zero, false, Assembler::pt, L);
  3847     delayed()->nop();
  3848     stop("updated TLAB free is not properly aligned");
  3849     bind(L);
  3851 #endif // ASSERT
  3853   // update the tlab top pointer
  3854   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3855   verify_tlab();
  3859 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3860   Register top = O0;
  3861   Register t1 = G1;
  3862   Register t2 = G3;
  3863   Register t3 = O1;
  3864   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3865   Label do_refill, discard_tlab;
  3867   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3868     // No allocation in the shared eden.
  3869     br(Assembler::always, false, Assembler::pt, slow_case);
  3870     delayed()->nop();
  3873   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3874   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3875   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3877   // calculate amount of free space
  3878   sub(t1, top, t1);
  3879   srl_ptr(t1, LogHeapWordSize, t1);
  3881   // Retain tlab and allocate object in shared space if
  3882   // the amount free in the tlab is too large to discard.
  3883   cmp(t1, t2);
  3884   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  3886   // increment waste limit to prevent getting stuck on this slow path
  3887   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  3888   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3889   if (TLABStats) {
  3890     // increment number of slow_allocations
  3891     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  3892     add(t2, 1, t2);
  3893     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  3895   br(Assembler::always, false, Assembler::pt, try_eden);
  3896   delayed()->nop();
  3898   bind(discard_tlab);
  3899   if (TLABStats) {
  3900     // increment number of refills
  3901     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  3902     add(t2, 1, t2);
  3903     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  3904     // accumulate wastage
  3905     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  3906     add(t2, t1, t2);
  3907     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  3910   // if tlab is currently allocated (top or end != null) then
  3911   // fill [top, end + alignment_reserve) with array object
  3912   br_null(top, false, Assembler::pn, do_refill);
  3913   delayed()->nop();
  3915   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  3916   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  3917   // set klass to intArrayKlass
  3918   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  3919   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  3920   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  3921   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  3922   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  3923   ld_ptr(t2, 0, t2);
  3924   // store klass last.  concurrent gcs assumes klass length is valid if
  3925   // klass field is not null.
  3926   store_klass(t2, top);
  3927   verify_oop(top);
  3929   // refill the tlab with an eden allocation
  3930   bind(do_refill);
  3931   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  3932   sll_ptr(t1, LogHeapWordSize, t1);
  3933   // add object_size ??
  3934   eden_allocate(top, t1, 0, t2, t3, slow_case);
  3936   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  3937   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3938 #ifdef ASSERT
  3939   // check that tlab_size (t1) is still valid
  3941     Label ok;
  3942     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  3943     sll_ptr(t2, LogHeapWordSize, t2);
  3944     cmp(t1, t2);
  3945     br(Assembler::equal, false, Assembler::pt, ok);
  3946     delayed()->nop();
  3947     stop("assert(t1 == tlab_size)");
  3948     should_not_reach_here();
  3950     bind(ok);
  3952 #endif // ASSERT
  3953   add(top, t1, top); // t1 is tlab_size
  3954   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  3955   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  3956   verify_tlab();
  3957   br(Assembler::always, false, Assembler::pt, retry);
  3958   delayed()->nop();
  3961 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  3962   switch (cond) {
  3963     // Note some conditions are synonyms for others
  3964     case Assembler::never:                return Assembler::always;
  3965     case Assembler::zero:                 return Assembler::notZero;
  3966     case Assembler::lessEqual:            return Assembler::greater;
  3967     case Assembler::less:                 return Assembler::greaterEqual;
  3968     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  3969     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  3970     case Assembler::negative:             return Assembler::positive;
  3971     case Assembler::overflowSet:          return Assembler::overflowClear;
  3972     case Assembler::always:               return Assembler::never;
  3973     case Assembler::notZero:              return Assembler::zero;
  3974     case Assembler::greater:              return Assembler::lessEqual;
  3975     case Assembler::greaterEqual:         return Assembler::less;
  3976     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  3977     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  3978     case Assembler::positive:             return Assembler::negative;
  3979     case Assembler::overflowClear:        return Assembler::overflowSet;
  3982   ShouldNotReachHere(); return Assembler::overflowClear;
  3985 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  3986                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  3987   Condition negated_cond = negate_condition(cond);
  3988   Label L;
  3989   brx(negated_cond, false, Assembler::pt, L);
  3990   delayed()->nop();
  3991   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  3992   bind(L);
  3995 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  3996   AddressLiteral addrlit(counter_addr);
  3997   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  3998   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  3999   ld(addr, Rtmp2);
  4000   inc(Rtmp2);
  4001   st(Rtmp2, addr);
  4004 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  4005   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  4008 SkipIfEqual::SkipIfEqual(
  4009     MacroAssembler* masm, Register temp, const bool* flag_addr,
  4010     Assembler::Condition condition) {
  4011   _masm = masm;
  4012   AddressLiteral flag(flag_addr);
  4013   _masm->sethi(flag, temp);
  4014   _masm->ldub(temp, flag.low10(), temp);
  4015   _masm->tst(temp);
  4016   _masm->br(condition, false, Assembler::pt, _label);
  4017   _masm->delayed()->nop();
  4020 SkipIfEqual::~SkipIfEqual() {
  4021   _masm->bind(_label);
  4025 // Writes to stack successive pages until offset reached to check for
  4026 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  4027 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  4028                                      Register Rscratch) {
  4029   // Use stack pointer in temp stack pointer
  4030   mov(SP, Rtsp);
  4032   // Bang stack for total size given plus stack shadow page size.
  4033   // Bang one page at a time because a large size can overflow yellow and
  4034   // red zones (the bang will fail but stack overflow handling can't tell that
  4035   // it was a stack overflow bang vs a regular segv).
  4036   int offset = os::vm_page_size();
  4037   Register Roffset = Rscratch;
  4039   Label loop;
  4040   bind(loop);
  4041   set((-offset)+STACK_BIAS, Rscratch);
  4042   st(G0, Rtsp, Rscratch);
  4043   set(offset, Roffset);
  4044   sub(Rsize, Roffset, Rsize);
  4045   cmp(Rsize, G0);
  4046   br(Assembler::greater, false, Assembler::pn, loop);
  4047   delayed()->sub(Rtsp, Roffset, Rtsp);
  4049   // Bang down shadow pages too.
  4050   // The -1 because we already subtracted 1 page.
  4051   for (int i = 0; i< StackShadowPages-1; i++) {
  4052     set((-i*offset)+STACK_BIAS, Rscratch);
  4053     st(G0, Rtsp, Rscratch);
  4057 ///////////////////////////////////////////////////////////////////////////////////
  4058 #ifndef SERIALGC
  4060 static uint num_stores = 0;
  4061 static uint num_null_pre_stores = 0;
  4063 static void count_null_pre_vals(void* pre_val) {
  4064   num_stores++;
  4065   if (pre_val == NULL) num_null_pre_stores++;
  4066   if ((num_stores % 1000000) == 0) {
  4067     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
  4068                   num_stores, num_null_pre_stores,
  4069                   100.0*(float)num_null_pre_stores/(float)num_stores);
  4073 static address satb_log_enqueue_with_frame = 0;
  4074 static u_char* satb_log_enqueue_with_frame_end = 0;
  4076 static address satb_log_enqueue_frameless = 0;
  4077 static u_char* satb_log_enqueue_frameless_end = 0;
  4079 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  4081 // The calls to this don't work.  We'd need to do a fair amount of work to
  4082 // make it work.
  4083 static void check_index(int ind) {
  4084   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
  4085          "Invariants.")
  4088 static void generate_satb_log_enqueue(bool with_frame) {
  4089   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  4090   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
  4091   MacroAssembler masm(&buf);
  4092   address start = masm.pc();
  4093   Register pre_val;
  4095   Label refill, restart;
  4096   if (with_frame) {
  4097     masm.save_frame(0);
  4098     pre_val = I0;  // Was O0 before the save.
  4099   } else {
  4100     pre_val = O0;
  4102   int satb_q_index_byte_offset =
  4103     in_bytes(JavaThread::satb_mark_queue_offset() +
  4104              PtrQueue::byte_offset_of_index());
  4105   int satb_q_buf_byte_offset =
  4106     in_bytes(JavaThread::satb_mark_queue_offset() +
  4107              PtrQueue::byte_offset_of_buf());
  4108   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  4109          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  4110          "check sizes in assembly below");
  4112   masm.bind(restart);
  4113   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  4115   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
  4116   // If the branch is taken, no harm in executing this in the delay slot.
  4117   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  4118   masm.sub(L0, oopSize, L0);
  4120   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  4121   if (!with_frame) {
  4122     // Use return-from-leaf
  4123     masm.retl();
  4124     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4125   } else {
  4126     // Not delayed.
  4127     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4129   if (with_frame) {
  4130     masm.ret();
  4131     masm.delayed()->restore();
  4133   masm.bind(refill);
  4135   address handle_zero =
  4136     CAST_FROM_FN_PTR(address,
  4137                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  4138   // This should be rare enough that we can afford to save all the
  4139   // scratch registers that the calling context might be using.
  4140   masm.mov(G1_scratch, L0);
  4141   masm.mov(G3_scratch, L1);
  4142   masm.mov(G4, L2);
  4143   // We need the value of O0 above (for the write into the buffer), so we
  4144   // save and restore it.
  4145   masm.mov(O0, L3);
  4146   // Since the call will overwrite O7, we save and restore that, as well.
  4147   masm.mov(O7, L4);
  4148   masm.call_VM_leaf(L5, handle_zero, G2_thread);
  4149   masm.mov(L0, G1_scratch);
  4150   masm.mov(L1, G3_scratch);
  4151   masm.mov(L2, G4);
  4152   masm.mov(L3, O0);
  4153   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4154   masm.delayed()->mov(L4, O7);
  4156   if (with_frame) {
  4157     satb_log_enqueue_with_frame = start;
  4158     satb_log_enqueue_with_frame_end = masm.pc();
  4159   } else {
  4160     satb_log_enqueue_frameless = start;
  4161     satb_log_enqueue_frameless_end = masm.pc();
  4165 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  4166   if (with_frame) {
  4167     if (satb_log_enqueue_with_frame == 0) {
  4168       generate_satb_log_enqueue(with_frame);
  4169       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  4170       if (G1SATBPrintStubs) {
  4171         tty->print_cr("Generated with-frame satb enqueue:");
  4172         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  4173                              satb_log_enqueue_with_frame_end,
  4174                              tty);
  4177   } else {
  4178     if (satb_log_enqueue_frameless == 0) {
  4179       generate_satb_log_enqueue(with_frame);
  4180       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  4181       if (G1SATBPrintStubs) {
  4182         tty->print_cr("Generated frameless satb enqueue:");
  4183         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  4184                              satb_log_enqueue_frameless_end,
  4185                              tty);
  4191 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
  4192   assert(offset == 0 || index == noreg, "choose one");
  4194   if (G1DisablePreBarrier) return;
  4195   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
  4196   Label filtered;
  4197   // satb_log_barrier_work0(tmp, filtered);
  4198   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4199     ld(G2,
  4200        in_bytes(JavaThread::satb_mark_queue_offset() +
  4201                 PtrQueue::byte_offset_of_active()),
  4202        tmp);
  4203   } else {
  4204     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4205               "Assumption");
  4206     ldsb(G2,
  4207          in_bytes(JavaThread::satb_mark_queue_offset() +
  4208                   PtrQueue::byte_offset_of_active()),
  4209          tmp);
  4212   // Check on whether to annul.
  4213   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4214   delayed() -> nop();
  4216   // satb_log_barrier_work1(tmp, offset);
  4217   if (index == noreg) {
  4218     if (Assembler::is_simm13(offset)) {
  4219       load_heap_oop(obj, offset, tmp);
  4220     } else {
  4221       set(offset, tmp);
  4222       load_heap_oop(obj, tmp, tmp);
  4224   } else {
  4225     load_heap_oop(obj, index, tmp);
  4228   // satb_log_barrier_work2(obj, tmp, offset);
  4230   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
  4232   const Register pre_val = tmp;
  4234   if (G1SATBBarrierPrintNullPreVals) {
  4235     save_frame(0);
  4236     mov(pre_val, O0);
  4237     // Save G-regs that target may use.
  4238     mov(G1, L1);
  4239     mov(G2, L2);
  4240     mov(G3, L3);
  4241     mov(G4, L4);
  4242     mov(G5, L5);
  4243     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
  4244     delayed()->nop();
  4245     // Restore G-regs that target may have used.
  4246     mov(L1, G1);
  4247     mov(L2, G2);
  4248     mov(L3, G3);
  4249     mov(L4, G4);
  4250     mov(L5, G5);
  4251     restore(G0, G0, G0);
  4254   // Check on whether to annul.
  4255   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
  4256   delayed() -> nop();
  4258   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4259   // case, pre_val will be a scratch G-reg, but there's some cases in which
  4260   // it's an O-reg.  In the first case, do a normal call.  In the latter,
  4261   // do a save here and call the frameless version.
  4263   guarantee(pre_val->is_global() || pre_val->is_out(),
  4264             "Or we need to think harder.");
  4265   if (pre_val->is_global() && !preserve_o_regs) {
  4266     generate_satb_log_enqueue_if_necessary(true); // with frame.
  4267     call(satb_log_enqueue_with_frame);
  4268     delayed()->mov(pre_val, O0);
  4269   } else {
  4270     generate_satb_log_enqueue_if_necessary(false); // with frameless.
  4271     save_frame(0);
  4272     call(satb_log_enqueue_frameless);
  4273     delayed()->mov(pre_val->after_save(), O0);
  4274     restore();
  4277   bind(filtered);
  4280 static jint num_ct_writes = 0;
  4281 static jint num_ct_writes_filtered_in_hr = 0;
  4282 static jint num_ct_writes_filtered_null = 0;
  4283 static G1CollectedHeap* g1 = NULL;
  4285 static Thread* count_ct_writes(void* filter_val, void* new_val) {
  4286   Atomic::inc(&num_ct_writes);
  4287   if (filter_val == NULL) {
  4288     Atomic::inc(&num_ct_writes_filtered_in_hr);
  4289   } else if (new_val == NULL) {
  4290     Atomic::inc(&num_ct_writes_filtered_null);
  4291   } else {
  4292     if (g1 == NULL) {
  4293       g1 = G1CollectedHeap::heap();
  4296   if ((num_ct_writes % 1000000) == 0) {
  4297     jint num_ct_writes_filtered =
  4298       num_ct_writes_filtered_in_hr +
  4299       num_ct_writes_filtered_null;
  4301     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
  4302                   "   (%5.2f%% intra-HR, %5.2f%% null).",
  4303                   num_ct_writes,
  4304                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
  4305                   100.0*(float)num_ct_writes_filtered_in_hr/
  4306                   (float)num_ct_writes,
  4307                   100.0*(float)num_ct_writes_filtered_null/
  4308                   (float)num_ct_writes);
  4310   return Thread::current();
  4313 static address dirty_card_log_enqueue = 0;
  4314 static u_char* dirty_card_log_enqueue_end = 0;
  4316 // This gets to assume that o0 contains the object address.
  4317 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4318   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4319   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
  4320   MacroAssembler masm(&buf);
  4321   address start = masm.pc();
  4323   Label not_already_dirty, restart, refill;
  4325 #ifdef _LP64
  4326   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
  4327 #else
  4328   masm.srl(O0, CardTableModRefBS::card_shift, O0);
  4329 #endif
  4330   AddressLiteral addrlit(byte_map_base);
  4331   masm.set(addrlit, O1); // O1 := <card table base>
  4332   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
  4334   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
  4335                       O2, not_already_dirty);
  4336   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
  4337   // case, harmless if not.
  4338   masm.delayed()->add(O0, O1, O3);
  4340   // We didn't take the branch, so we're already dirty: return.
  4341   // Use return-from-leaf
  4342   masm.retl();
  4343   masm.delayed()->nop();
  4345   // Not dirty.
  4346   masm.bind(not_already_dirty);
  4347   // First, dirty it.
  4348   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4349   int dirty_card_q_index_byte_offset =
  4350     in_bytes(JavaThread::dirty_card_queue_offset() +
  4351              PtrQueue::byte_offset_of_index());
  4352   int dirty_card_q_buf_byte_offset =
  4353     in_bytes(JavaThread::dirty_card_queue_offset() +
  4354              PtrQueue::byte_offset_of_buf());
  4355   masm.bind(restart);
  4356   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4358   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
  4359                       L0, refill);
  4360   // If the branch is taken, no harm in executing this in the delay slot.
  4361   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4362   masm.sub(L0, oopSize, L0);
  4364   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4365   // Use return-from-leaf
  4366   masm.retl();
  4367   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4369   masm.bind(refill);
  4370   address handle_zero =
  4371     CAST_FROM_FN_PTR(address,
  4372                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4373   // This should be rare enough that we can afford to save all the
  4374   // scratch registers that the calling context might be using.
  4375   masm.mov(G1_scratch, L3);
  4376   masm.mov(G3_scratch, L5);
  4377   // We need the value of O3 above (for the write into the buffer), so we
  4378   // save and restore it.
  4379   masm.mov(O3, L6);
  4380   // Since the call will overwrite O7, we save and restore that, as well.
  4381   masm.mov(O7, L4);
  4383   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4384   masm.mov(L3, G1_scratch);
  4385   masm.mov(L5, G3_scratch);
  4386   masm.mov(L6, O3);
  4387   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4388   masm.delayed()->mov(L4, O7);
  4390   dirty_card_log_enqueue = start;
  4391   dirty_card_log_enqueue_end = masm.pc();
  4392   // XXX Should have a guarantee here about not going off the end!
  4393   // Does it already do so?  Do an experiment...
  4396 static inline void
  4397 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4398   if (dirty_card_log_enqueue == 0) {
  4399     generate_dirty_card_log_enqueue(byte_map_base);
  4400     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4401     if (G1SATBPrintStubs) {
  4402       tty->print_cr("Generated dirty_card enqueue:");
  4403       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4404                            dirty_card_log_enqueue_end,
  4405                            tty);
  4411 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4413   Label filtered;
  4414   MacroAssembler* post_filter_masm = this;
  4416   if (new_val == G0) return;
  4417   if (G1DisablePostBarrier) return;
  4419   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4420   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4421          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4422   if (G1RSBarrierRegionFilter) {
  4423     xor3(store_addr, new_val, tmp);
  4424 #ifdef _LP64
  4425     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4426 #else
  4427     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4428 #endif
  4429     if (G1PrintCTFilterStats) {
  4430       guarantee(tmp->is_global(), "Or stats won't work...");
  4431       // This is a sleazy hack: I'm temporarily hijacking G2, which I
  4432       // promise to restore.
  4433       mov(new_val, G2);
  4434       save_frame(0);
  4435       mov(tmp, O0);
  4436       mov(G2, O1);
  4437       // Save G-regs that target may use.
  4438       mov(G1, L1);
  4439       mov(G2, L2);
  4440       mov(G3, L3);
  4441       mov(G4, L4);
  4442       mov(G5, L5);
  4443       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
  4444       delayed()->nop();
  4445       mov(O0, G2);
  4446       // Restore G-regs that target may have used.
  4447       mov(L1, G1);
  4448       mov(L3, G3);
  4449       mov(L4, G4);
  4450       mov(L5, G5);
  4451       restore(G0, G0, G0);
  4453     // XXX Should I predict this taken or not?  Does it mattern?
  4454     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4455     delayed()->nop();
  4458   // If the "store_addr" register is an "in" or "local" register, move it to
  4459   // a scratch reg so we can pass it as an argument.
  4460   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4461   // Pick a scratch register different from "tmp".
  4462   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4463   // Make sure we use up the delay slot!
  4464   if (use_scr) {
  4465     post_filter_masm->mov(store_addr, scr);
  4466   } else {
  4467     post_filter_masm->nop();
  4469   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4470   save_frame(0);
  4471   call(dirty_card_log_enqueue);
  4472   if (use_scr) {
  4473     delayed()->mov(scr, O0);
  4474   } else {
  4475     delayed()->mov(store_addr->after_save(), O0);
  4477   restore();
  4479   bind(filtered);
  4483 #endif  // SERIALGC
  4484 ///////////////////////////////////////////////////////////////////////////////////
  4486 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4487   // If we're writing constant NULL, we can skip the write barrier.
  4488   if (new_val == G0) return;
  4489   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4490   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4491          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4492   card_table_write(bs->byte_map_base, tmp, store_addr);
  4495 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4496   // The number of bytes in this code is used by
  4497   // MachCallDynamicJavaNode::ret_addr_offset()
  4498   // if this changes, change that.
  4499   if (UseCompressedOops) {
  4500     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4501     decode_heap_oop_not_null(klass);
  4502   } else {
  4503     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4507 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4508   if (UseCompressedOops) {
  4509     assert(dst_oop != klass, "not enough registers");
  4510     encode_heap_oop_not_null(klass);
  4511     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4512   } else {
  4513     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4517 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4518   if (UseCompressedOops) {
  4519     assert(s != d, "not enough registers");
  4520     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4524 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4525   if (UseCompressedOops) {
  4526     lduw(s, d);
  4527     decode_heap_oop(d);
  4528   } else {
  4529     ld_ptr(s, d);
  4533 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4534    if (UseCompressedOops) {
  4535     lduw(s1, s2, d);
  4536     decode_heap_oop(d, d);
  4537   } else {
  4538     ld_ptr(s1, s2, d);
  4542 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4543    if (UseCompressedOops) {
  4544     lduw(s1, simm13a, d);
  4545     decode_heap_oop(d, d);
  4546   } else {
  4547     ld_ptr(s1, simm13a, d);
  4551 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4552   if (UseCompressedOops) {
  4553     assert(s1 != d && s2 != d, "not enough registers");
  4554     encode_heap_oop(d);
  4555     st(d, s1, s2);
  4556   } else {
  4557     st_ptr(d, s1, s2);
  4561 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4562   if (UseCompressedOops) {
  4563     assert(s1 != d, "not enough registers");
  4564     encode_heap_oop(d);
  4565     st(d, s1, simm13a);
  4566   } else {
  4567     st_ptr(d, s1, simm13a);
  4571 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4572   if (UseCompressedOops) {
  4573     assert(a.base() != d, "not enough registers");
  4574     encode_heap_oop(d);
  4575     st(d, a, offset);
  4576   } else {
  4577     st_ptr(d, a, offset);
  4582 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4583   assert (UseCompressedOops, "must be compressed");
  4584   assert (Universe::heap() != NULL, "java heap should be initialized");
  4585   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4586   verify_oop(src);
  4587   if (Universe::narrow_oop_base() == NULL) {
  4588     srlx(src, LogMinObjAlignmentInBytes, dst);
  4589     return;
  4591   Label done;
  4592   if (src == dst) {
  4593     // optimize for frequent case src == dst
  4594     bpr(rc_nz, true, Assembler::pt, src, done);
  4595     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4596     bind(done);
  4597     srlx(src, LogMinObjAlignmentInBytes, dst);
  4598   } else {
  4599     bpr(rc_z, false, Assembler::pn, src, done);
  4600     delayed() -> mov(G0, dst);
  4601     // could be moved before branch, and annulate delay,
  4602     // but may add some unneeded work decoding null
  4603     sub(src, G6_heapbase, dst);
  4604     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4605     bind(done);
  4610 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4611   assert (UseCompressedOops, "must be compressed");
  4612   assert (Universe::heap() != NULL, "java heap should be initialized");
  4613   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4614   verify_oop(r);
  4615   if (Universe::narrow_oop_base() != NULL)
  4616     sub(r, G6_heapbase, r);
  4617   srlx(r, LogMinObjAlignmentInBytes, r);
  4620 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4621   assert (UseCompressedOops, "must be compressed");
  4622   assert (Universe::heap() != NULL, "java heap should be initialized");
  4623   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4624   verify_oop(src);
  4625   if (Universe::narrow_oop_base() == NULL) {
  4626     srlx(src, LogMinObjAlignmentInBytes, dst);
  4627   } else {
  4628     sub(src, G6_heapbase, dst);
  4629     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4633 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4634 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4635   assert (UseCompressedOops, "must be compressed");
  4636   assert (Universe::heap() != NULL, "java heap should be initialized");
  4637   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4638   sllx(src, LogMinObjAlignmentInBytes, dst);
  4639   if (Universe::narrow_oop_base() != NULL) {
  4640     Label done;
  4641     bpr(rc_nz, true, Assembler::pt, dst, done);
  4642     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4643     bind(done);
  4645   verify_oop(dst);
  4648 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4649   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4650   // pd_code_size_limit.
  4651   // Also do not verify_oop as this is called by verify_oop.
  4652   assert (UseCompressedOops, "must be compressed");
  4653   assert (Universe::heap() != NULL, "java heap should be initialized");
  4654   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4655   sllx(r, LogMinObjAlignmentInBytes, r);
  4656   if (Universe::narrow_oop_base() != NULL)
  4657     add(r, G6_heapbase, r);
  4660 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4661   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4662   // pd_code_size_limit.
  4663   // Also do not verify_oop as this is called by verify_oop.
  4664   assert (UseCompressedOops, "must be compressed");
  4665   assert (Universe::heap() != NULL, "java heap should be initialized");
  4666   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4667   sllx(src, LogMinObjAlignmentInBytes, dst);
  4668   if (Universe::narrow_oop_base() != NULL)
  4669     add(dst, G6_heapbase, dst);
  4672 void MacroAssembler::reinit_heapbase() {
  4673   if (UseCompressedOops) {
  4674     // call indirectly to solve generation ordering problem
  4675     AddressLiteral base(Universe::narrow_oop_base_addr());
  4676     load_ptr_contents(base, G6_heapbase);

mercurial