src/cpu/sparc/vm/sparc.ad

Mon, 31 Mar 2008 16:22:52 -0700

author
never
date
Mon, 31 Mar 2008 16:22:52 -0700
changeset 516
dee7a3f3dc9d
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6636352: Unit tests for supplementary character support fail with -XX:+AggressiveOpts
Summary: incorrect encoding
Reviewed-by: kvn, rasbold, sgoldman, jrose

     1 //
     2 // Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning 'dont go here'.
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
   197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
   198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
   199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
   200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
   201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
   202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
   203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
   204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
   205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
   206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
   207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
   208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
   209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
   210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
   211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
   212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
   213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
   214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
   215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
   216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
   217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
   218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
   219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
   220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
   221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
   222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
   223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
   224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
   225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
   226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
   227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class o2_regL(R_O2H,R_O2);
   399 reg_class o7_regL(R_O7H,R_O7);
   401 // ----------------------------
   402 // Special Class for Condition Code Flags Register
   403 reg_class int_flags(CCR);
   404 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   405 reg_class float_flag0(FCC0);
   408 // ----------------------------
   409 // Float Point Register Classes
   410 // ----------------------------
   411 // Skip F30/F31, they are reserved for mem-mem copies
   412 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   414 // Paired floating point registers--they show up in the same order as the floats,
   415 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   416 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   417                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   418                    /* Use extra V9 double registers; this AD file does not support V8 */
   419                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   420                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   421                    );
   423 // Paired floating point registers--they show up in the same order as the floats,
   424 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   425 // This class is usable for mis-aligned loads as happen in I2C adapters.
   426 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   427                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   428 %}
   430 //----------DEFINITION BLOCK---------------------------------------------------
   431 // Define name --> value mappings to inform the ADLC of an integer valued name
   432 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   433 // Format:
   434 //        int_def  <name>         ( <int_value>, <expression>);
   435 // Generated Code in ad_<arch>.hpp
   436 //        #define  <name>   (<expression>)
   437 //        // value == <int_value>
   438 // Generated code in ad_<arch>.cpp adlc_verification()
   439 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   440 //
   441 definitions %{
   442 // The default cost (of an ALU instruction).
   443   int_def DEFAULT_COST      (    100,     100);
   444   int_def HUGE_COST         (1000000, 1000000);
   446 // Memory refs are twice as expensive as run-of-the-mill.
   447   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   449 // Branches are even more expensive.
   450   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   451   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   452 %}
   455 //----------SOURCE BLOCK-------------------------------------------------------
   456 // This is a block of C++ code which provides values, functions, and
   457 // definitions necessary in the rest of the architecture description
   458 source_hpp %{
   459 // Must be visible to the DFA in dfa_sparc.cpp
   460 extern bool can_branch_register( Node *bol, Node *cmp );
   462 // Macros to extract hi & lo halves from a long pair.
   463 // G0 is not part of any long pair, so assert on that.
   464 // Prevents accidently using G1 instead of G0.
   465 #define LONG_HI_REG(x) (x)
   466 #define LONG_LO_REG(x) (x)
   468 %}
   470 source %{
   471 #define __ _masm.
   473 // tertiary op of a LoadP or StoreP encoding
   474 #define REGP_OP true
   476 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   477 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   478 static Register reg_to_register_object(int register_encoding);
   480 // Used by the DFA in dfa_sparc.cpp.
   481 // Check for being able to use a V9 branch-on-register.  Requires a
   482 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   483 // extended.  Doesn't work following an integer ADD, for example, because of
   484 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   485 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   486 // replace them with zero, which could become sign-extension in a different OS
   487 // release.  There's no obvious reason why an interrupt will ever fill these
   488 // bits with non-zero junk (the registers are reloaded with standard LD
   489 // instructions which either zero-fill or sign-fill).
   490 bool can_branch_register( Node *bol, Node *cmp ) {
   491   if( !BranchOnRegister ) return false;
   492 #ifdef _LP64
   493   if( cmp->Opcode() == Op_CmpP )
   494     return true;  // No problems with pointer compares
   495 #endif
   496   if( cmp->Opcode() == Op_CmpL )
   497     return true;  // No problems with long compares
   499   if( !SparcV9RegsHiBitsZero ) return false;
   500   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   501       bol->as_Bool()->_test._test != BoolTest::eq )
   502      return false;
   504   // Check for comparing against a 'safe' value.  Any operation which
   505   // clears out the high word is safe.  Thus, loads and certain shifts
   506   // are safe, as are non-negative constants.  Any operation which
   507   // preserves zero bits in the high word is safe as long as each of its
   508   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   509   // inputs are safe.  At present, the only important case to recognize
   510   // seems to be loads.  Constants should fold away, and shifts &
   511   // logicals can use the 'cc' forms.
   512   Node *x = cmp->in(1);
   513   if( x->is_Load() ) return true;
   514   if( x->is_Phi() ) {
   515     for( uint i = 1; i < x->req(); i++ )
   516       if( !x->in(i)->is_Load() )
   517         return false;
   518     return true;
   519   }
   520   return false;
   521 }
   523 // ****************************************************************************
   525 // REQUIRED FUNCTIONALITY
   527 // !!!!! Special hack to get all type of calls to specify the byte offset
   528 //       from the start of the call to the point where the return address
   529 //       will point.
   530 //       The "return address" is the address of the call instruction, plus 8.
   532 int MachCallStaticJavaNode::ret_addr_offset() {
   533   return NativeCall::instruction_size;  // call; delay slot
   534 }
   536 int MachCallDynamicJavaNode::ret_addr_offset() {
   537   int vtable_index = this->_vtable_index;
   538   if (vtable_index < 0) {
   539     // must be invalid_vtable_index, not nonvirtual_vtable_index
   540     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   541     return (NativeMovConstReg::instruction_size +
   542            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   543   } else {
   544     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   545     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   546     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   547     if( Assembler::is_simm13(v_off) ) {
   548       return (3*BytesPerInstWord +           // ld_ptr, ld_ptr, ld_ptr
   549              NativeCall::instruction_size);  // call; delay slot
   550     } else {
   551       return (5*BytesPerInstWord +           // ld_ptr, set_hi, set, ld_ptr, ld_ptr
   552              NativeCall::instruction_size);  // call; delay slot
   553     }
   554   }
   555 }
   557 int MachCallRuntimeNode::ret_addr_offset() {
   558 #ifdef _LP64
   559   return NativeFarCall::instruction_size;  // farcall; delay slot
   560 #else
   561   return NativeCall::instruction_size;  // call; delay slot
   562 #endif
   563 }
   565 // Indicate if the safepoint node needs the polling page as an input.
   566 // Since Sparc does not have absolute addressing, it does.
   567 bool SafePointNode::needs_polling_address_input() {
   568   return true;
   569 }
   571 // emit an interrupt that is caught by the debugger (for debugging compiler)
   572 void emit_break(CodeBuffer &cbuf) {
   573   MacroAssembler _masm(&cbuf);
   574   __ breakpoint_trap();
   575 }
   577 #ifndef PRODUCT
   578 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   579   st->print("TA");
   580 }
   581 #endif
   583 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   584   emit_break(cbuf);
   585 }
   587 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   588   return MachNode::size(ra_);
   589 }
   591 // Traceable jump
   592 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   593   MacroAssembler _masm(&cbuf);
   594   Register rdest = reg_to_register_object(jump_target);
   595   __ JMP(rdest, 0);
   596   __ delayed()->nop();
   597 }
   599 // Traceable jump and set exception pc
   600 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   601   MacroAssembler _masm(&cbuf);
   602   Register rdest = reg_to_register_object(jump_target);
   603   __ JMP(rdest, 0);
   604   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   605 }
   607 void emit_nop(CodeBuffer &cbuf) {
   608   MacroAssembler _masm(&cbuf);
   609   __ nop();
   610 }
   612 void emit_illtrap(CodeBuffer &cbuf) {
   613   MacroAssembler _masm(&cbuf);
   614   __ illtrap(0);
   615 }
   618 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   619   assert(n->rule() != loadUB_rule, "");
   621   intptr_t offset = 0;
   622   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   623   const Node* addr = n->get_base_and_disp(offset, adr_type);
   624   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   625   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   626   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   627   atype = atype->add_offset(offset);
   628   assert(disp32 == offset, "wrong disp32");
   629   return atype->_offset;
   630 }
   633 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   634   assert(n->rule() != loadUB_rule, "");
   636   intptr_t offset = 0;
   637   Node* addr = n->in(2);
   638   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   639   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   640     Node* a = addr->in(2/*AddPNode::Address*/);
   641     Node* o = addr->in(3/*AddPNode::Offset*/);
   642     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   643     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   644     assert(atype->isa_oop_ptr(), "still an oop");
   645   }
   646   offset = atype->is_ptr()->_offset;
   647   if (offset != Type::OffsetBot)  offset += disp32;
   648   return offset;
   649 }
   651 // Standard Sparc opcode form2 field breakdown
   652 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   653   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   654   int op = (f30 << 30) |
   655            (f29 << 29) |
   656            (f25 << 25) |
   657            (f22 << 22) |
   658            (f20 << 20) |
   659            (f19 << 19) |
   660            (f0  <<  0);
   661   *((int*)(cbuf.code_end())) = op;
   662   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   663 }
   665 // Standard Sparc opcode form2 field breakdown
   666 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   667   f0 >>= 10;           // Drop 10 bits
   668   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   669   int op = (f30 << 30) |
   670            (f25 << 25) |
   671            (f22 << 22) |
   672            (f0  <<  0);
   673   *((int*)(cbuf.code_end())) = op;
   674   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   675 }
   677 // Standard Sparc opcode form3 field breakdown
   678 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   679   int op = (f30 << 30) |
   680            (f25 << 25) |
   681            (f19 << 19) |
   682            (f14 << 14) |
   683            (f5  <<  5) |
   684            (f0  <<  0);
   685   *((int*)(cbuf.code_end())) = op;
   686   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   687 }
   689 // Standard Sparc opcode form3 field breakdown
   690 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   691   simm13 &= (1<<13)-1; // Mask to 13 bits
   692   int op = (f30 << 30) |
   693            (f25 << 25) |
   694            (f19 << 19) |
   695            (f14 << 14) |
   696            (1   << 13) | // bit to indicate immediate-mode
   697            (simm13<<0);
   698   *((int*)(cbuf.code_end())) = op;
   699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   700 }
   702 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   703   simm10 &= (1<<10)-1; // Mask to 10 bits
   704   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   705 }
   707 #ifdef ASSERT
   708 // Helper function for VerifyOops in emit_form3_mem_reg
   709 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   710   warning("VerifyOops encountered unexpected instruction:");
   711   n->dump(2);
   712   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   713 }
   714 #endif
   717 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   718                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   720 #ifdef ASSERT
   721   // The following code implements the +VerifyOops feature.
   722   // It verifies oop values which are loaded into or stored out of
   723   // the current method activation.  +VerifyOops complements techniques
   724   // like ScavengeALot, because it eagerly inspects oops in transit,
   725   // as they enter or leave the stack, as opposed to ScavengeALot,
   726   // which inspects oops "at rest", in the stack or heap, at safepoints.
   727   // For this reason, +VerifyOops can sometimes detect bugs very close
   728   // to their point of creation.  It can also serve as a cross-check
   729   // on the validity of oop maps, when used toegether with ScavengeALot.
   731   // It would be good to verify oops at other points, especially
   732   // when an oop is used as a base pointer for a load or store.
   733   // This is presently difficult, because it is hard to know when
   734   // a base address is biased or not.  (If we had such information,
   735   // it would be easy and useful to make a two-argument version of
   736   // verify_oop which unbiases the base, and performs verification.)
   738   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   739   bool is_verified_oop_base  = false;
   740   bool is_verified_oop_load  = false;
   741   bool is_verified_oop_store = false;
   742   int tmp_enc = -1;
   743   if (VerifyOops && src1_enc != R_SP_enc) {
   744     // classify the op, mainly for an assert check
   745     int st_op = 0, ld_op = 0;
   746     switch (primary) {
   747     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   748     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   749     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   750     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   751     case Assembler::std_op3:  st_op = Op_StoreL; break;
   752     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   753     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   755     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   756     case Assembler::lduh_op3: ld_op = Op_LoadC; break;
   757     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   758     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   759     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   760     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   761     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   762     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   763     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   764     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   765     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   767     default: ShouldNotReachHere();
   768     }
   769     if (tertiary == REGP_OP) {
   770       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   771       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   772       else                          ShouldNotReachHere();
   773       if (st_op) {
   774         // a store
   775         // inputs are (0:control, 1:memory, 2:address, 3:value)
   776         Node* n2 = n->in(3);
   777         if (n2 != NULL) {
   778           const Type* t = n2->bottom_type();
   779           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   780         }
   781       } else {
   782         // a load
   783         const Type* t = n->bottom_type();
   784         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   785       }
   786     }
   788     if (ld_op) {
   789       // a Load
   790       // inputs are (0:control, 1:memory, 2:address)
   791       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   792           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   793           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   794           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   795           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   796           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   797           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   798           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   799           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   800           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   801           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   802           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   803           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   804           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   805           !(n->rule() == loadUB_rule)) {
   806         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   807       }
   808     } else if (st_op) {
   809       // a Store
   810       // inputs are (0:control, 1:memory, 2:address, 3:value)
   811       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   812           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   813           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   814           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   815           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   816           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   817         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   818       }
   819     }
   821     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   822       Node* addr = n->in(2);
   823       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   824         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   825         if (atype != NULL) {
   826           intptr_t offset = get_offset_from_base(n, atype, disp32);
   827           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   828           if (offset != offset_2) {
   829             get_offset_from_base(n, atype, disp32);
   830             get_offset_from_base_2(n, atype, disp32);
   831           }
   832           assert(offset == offset_2, "different offsets");
   833           if (offset == disp32) {
   834             // we now know that src1 is a true oop pointer
   835             is_verified_oop_base = true;
   836             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   837               if( primary == Assembler::ldd_op3 ) {
   838                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   839               } else {
   840                 tmp_enc = dst_enc;
   841                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   842                 assert(src1_enc != dst_enc, "");
   843               }
   844             }
   845           }
   846           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   847                        || offset == oopDesc::mark_offset_in_bytes())) {
   848                       // loading the mark should not be allowed either, but
   849                       // we don't check this since it conflicts with InlineObjectHash
   850                       // usage of LoadINode to get the mark. We could keep the
   851                       // check if we create a new LoadMarkNode
   852             // but do not verify the object before its header is initialized
   853             ShouldNotReachHere();
   854           }
   855         }
   856       }
   857     }
   858   }
   859 #endif
   861   uint instr;
   862   instr = (Assembler::ldst_op << 30)
   863         | (dst_enc        << 25)
   864         | (primary        << 19)
   865         | (src1_enc       << 14);
   867   uint index = src2_enc;
   868   int disp = disp32;
   870   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   871     disp += STACK_BIAS;
   873   // We should have a compiler bailout here rather than a guarantee.
   874   // Better yet would be some mechanism to handle variable-size matches correctly.
   875   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   877   if( disp == 0 ) {
   878     // use reg-reg form
   879     // bit 13 is already zero
   880     instr |= index;
   881   } else {
   882     // use reg-imm form
   883     instr |= 0x00002000;          // set bit 13 to one
   884     instr |= disp & 0x1FFF;
   885   }
   887   uint *code = (uint*)cbuf.code_end();
   888   *code = instr;
   889   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   891 #ifdef ASSERT
   892   {
   893     MacroAssembler _masm(&cbuf);
   894     if (is_verified_oop_base) {
   895       __ verify_oop(reg_to_register_object(src1_enc));
   896     }
   897     if (is_verified_oop_store) {
   898       __ verify_oop(reg_to_register_object(dst_enc));
   899     }
   900     if (tmp_enc != -1) {
   901       __ mov(O7, reg_to_register_object(tmp_enc));
   902     }
   903     if (is_verified_oop_load) {
   904       __ verify_oop(reg_to_register_object(dst_enc));
   905     }
   906   }
   907 #endif
   908 }
   910 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   911                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
   913   uint instr;
   914   instr = (Assembler::ldst_op << 30)
   915         | (dst_enc        << 25)
   916         | (primary        << 19)
   917         | (src1_enc       << 14);
   919   int disp = disp32;
   920   int index    = src2_enc;
   922   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   923     disp += STACK_BIAS;
   925   // We should have a compiler bailout here rather than a guarantee.
   926   // Better yet would be some mechanism to handle variable-size matches correctly.
   927   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   929   if( disp != 0 ) {
   930     // use reg-reg form
   931     // set src2=R_O7 contains offset
   932     index = R_O7_enc;
   933     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
   934   }
   935   instr |= (asi << 5);
   936   instr |= index;
   937   uint *code = (uint*)cbuf.code_end();
   938   *code = instr;
   939   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   940 }
   942 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   943   // The method which records debug information at every safepoint
   944   // expects the call to be the first instruction in the snippet as
   945   // it creates a PcDesc structure which tracks the offset of a call
   946   // from the start of the codeBlob. This offset is computed as
   947   // code_end() - code_begin() of the code which has been emitted
   948   // so far.
   949   // In this particular case we have skirted around the problem by
   950   // putting the "mov" instruction in the delay slot but the problem
   951   // may bite us again at some other point and a cleaner/generic
   952   // solution using relocations would be needed.
   953   MacroAssembler _masm(&cbuf);
   954   __ set_inst_mark();
   956   // We flush the current window just so that there is a valid stack copy
   957   // the fact that the current window becomes active again instantly is
   958   // not a problem there is nothing live in it.
   960 #ifdef ASSERT
   961   int startpos = __ offset();
   962 #endif /* ASSERT */
   964 #ifdef _LP64
   965   // Calls to the runtime or native may not be reachable from compiled code,
   966   // so we generate the far call sequence on 64 bit sparc.
   967   // This code sequence is relocatable to any address, even on LP64.
   968   if ( force_far_call ) {
   969     __ relocate(rtype);
   970     Address dest(O7, (address)entry_point);
   971     __ jumpl_to(dest, O7);
   972   }
   973   else
   974 #endif
   975   {
   976      __ call((address)entry_point, rtype);
   977   }
   979   if (preserve_g2)   __ delayed()->mov(G2, L7);
   980   else __ delayed()->nop();
   982   if (preserve_g2)   __ mov(L7, G2);
   984 #ifdef ASSERT
   985   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   986 #ifdef _LP64
   987     // Trash argument dump slots.
   988     __ set(0xb0b8ac0db0b8ac0d, G1);
   989     __ mov(G1, G5);
   990     __ stx(G1, SP, STACK_BIAS + 0x80);
   991     __ stx(G1, SP, STACK_BIAS + 0x88);
   992     __ stx(G1, SP, STACK_BIAS + 0x90);
   993     __ stx(G1, SP, STACK_BIAS + 0x98);
   994     __ stx(G1, SP, STACK_BIAS + 0xA0);
   995     __ stx(G1, SP, STACK_BIAS + 0xA8);
   996 #else // _LP64
   997     // this is also a native call, so smash the first 7 stack locations,
   998     // and the various registers
  1000     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1001     // while [SP+0x44..0x58] are the argument dump slots.
  1002     __ set((intptr_t)0xbaadf00d, G1);
  1003     __ mov(G1, G5);
  1004     __ sllx(G1, 32, G1);
  1005     __ or3(G1, G5, G1);
  1006     __ mov(G1, G5);
  1007     __ stx(G1, SP, 0x40);
  1008     __ stx(G1, SP, 0x48);
  1009     __ stx(G1, SP, 0x50);
  1010     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1011 #endif // _LP64
  1013 #endif /*ASSERT*/
  1016 //=============================================================================
  1017 // REQUIRED FUNCTIONALITY for encoding
  1018 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1019 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1021 void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
  1022   MacroAssembler _masm(&cbuf);
  1023   if (ForceRelocatable) {
  1024     Address addr(reg, (address)val);
  1025     __ sethi(addr, ForceRelocatable);
  1026     __ add(addr, reg);
  1027   } else {
  1028     __ set(val, reg);
  1033 //=============================================================================
  1035 #ifndef PRODUCT
  1036 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1037   Compile* C = ra_->C;
  1039   for (int i = 0; i < OptoPrologueNops; i++) {
  1040     st->print_cr("NOP"); st->print("\t");
  1043   if( VerifyThread ) {
  1044     st->print_cr("Verify_Thread"); st->print("\t");
  1047   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1049   // Calls to C2R adapters often do not accept exceptional returns.
  1050   // We require that their callers must bang for them.  But be careful, because
  1051   // some VM calls (such as call site linkage) can use several kilobytes of
  1052   // stack.  But the stack safety zone should account for that.
  1053   // See bugs 4446381, 4468289, 4497237.
  1054   if (C->need_stack_bang(framesize)) {
  1055     st->print_cr("! stack bang"); st->print("\t");
  1058   if (Assembler::is_simm13(-framesize)) {
  1059     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1060   } else {
  1061     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1062     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1063     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1067 #endif
  1069 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1070   Compile* C = ra_->C;
  1071   MacroAssembler _masm(&cbuf);
  1073   for (int i = 0; i < OptoPrologueNops; i++) {
  1074     __ nop();
  1077   __ verify_thread();
  1079   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1080   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1081   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1083   // Calls to C2R adapters often do not accept exceptional returns.
  1084   // We require that their callers must bang for them.  But be careful, because
  1085   // some VM calls (such as call site linkage) can use several kilobytes of
  1086   // stack.  But the stack safety zone should account for that.
  1087   // See bugs 4446381, 4468289, 4497237.
  1088   if (C->need_stack_bang(framesize)) {
  1089     __ generate_stack_overflow_check(framesize);
  1092   if (Assembler::is_simm13(-framesize)) {
  1093     __ save(SP, -framesize, SP);
  1094   } else {
  1095     __ sethi(-framesize & ~0x3ff, G3);
  1096     __ add(G3, -framesize & 0x3ff, G3);
  1097     __ save(SP, G3, SP);
  1099   C->set_frame_complete( __ offset() );
  1102 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1103   return MachNode::size(ra_);
  1106 int MachPrologNode::reloc() const {
  1107   return 10; // a large enough number
  1110 //=============================================================================
  1111 #ifndef PRODUCT
  1112 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1113   Compile* C = ra_->C;
  1115   if( do_polling() && ra_->C->is_method_compilation() ) {
  1116     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1117 #ifdef _LP64
  1118     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1119 #else
  1120     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1121 #endif
  1124   if( do_polling() )
  1125     st->print("RET\n\t");
  1127   st->print("RESTORE");
  1129 #endif
  1131 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1132   MacroAssembler _masm(&cbuf);
  1133   Compile* C = ra_->C;
  1135   __ verify_thread();
  1137   // If this does safepoint polling, then do it here
  1138   if( do_polling() && ra_->C->is_method_compilation() ) {
  1139     Address polling_page(L0, (address)os::get_polling_page());
  1140     __ sethi(polling_page, false);
  1141     __ relocate(relocInfo::poll_return_type);
  1142     __ ld_ptr( L0, 0, G0 );
  1145   // If this is a return, then stuff the restore in the delay slot
  1146   if( do_polling() ) {
  1147     __ ret();
  1148     __ delayed()->restore();
  1149   } else {
  1150     __ restore();
  1154 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1155   return MachNode::size(ra_);
  1158 int MachEpilogNode::reloc() const {
  1159   return 16; // a large enough number
  1162 const Pipeline * MachEpilogNode::pipeline() const {
  1163   return MachNode::pipeline_class();
  1166 int MachEpilogNode::safepoint_offset() const {
  1167   assert( do_polling(), "no return for this epilog node");
  1168   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1171 //=============================================================================
  1173 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1174 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1175 static enum RC rc_class( OptoReg::Name reg ) {
  1176   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1177   if (OptoReg::is_stack(reg)) return rc_stack;
  1178   VMReg r = OptoReg::as_VMReg(reg);
  1179   if (r->is_Register()) return rc_int;
  1180   assert(r->is_FloatRegister(), "must be");
  1181   return rc_float;
  1184 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1185   if( cbuf ) {
  1186     // Better yet would be some mechanism to handle variable-size matches correctly
  1187     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1188       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1189     } else {
  1190       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1193 #ifndef PRODUCT
  1194   else if( !do_size ) {
  1195     if( size != 0 ) st->print("\n\t");
  1196     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1197     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1199 #endif
  1200   return size+4;
  1203 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1204   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1205 #ifndef PRODUCT
  1206   else if( !do_size ) {
  1207     if( size != 0 ) st->print("\n\t");
  1208     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1210 #endif
  1211   return size+4;
  1214 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1215                                         PhaseRegAlloc *ra_,
  1216                                         bool do_size,
  1217                                         outputStream* st ) const {
  1218   // Get registers to move
  1219   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1220   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1221   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1222   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1224   enum RC src_second_rc = rc_class(src_second);
  1225   enum RC src_first_rc = rc_class(src_first);
  1226   enum RC dst_second_rc = rc_class(dst_second);
  1227   enum RC dst_first_rc = rc_class(dst_first);
  1229   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1231   // Generate spill code!
  1232   int size = 0;
  1234   if( src_first == dst_first && src_second == dst_second )
  1235     return size;            // Self copy, no move
  1237   // --------------------------------------
  1238   // Check for mem-mem move.  Load into unused float registers and fall into
  1239   // the float-store case.
  1240   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1241     int offset = ra_->reg2offset(src_first);
  1242     // Further check for aligned-adjacent pair, so we can use a double load
  1243     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1244       src_second    = OptoReg::Name(R_F31_num);
  1245       src_second_rc = rc_float;
  1246       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1247     } else {
  1248       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1250     src_first    = OptoReg::Name(R_F30_num);
  1251     src_first_rc = rc_float;
  1254   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1255     int offset = ra_->reg2offset(src_second);
  1256     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1257     src_second    = OptoReg::Name(R_F31_num);
  1258     src_second_rc = rc_float;
  1261   // --------------------------------------
  1262   // Check for float->int copy; requires a trip through memory
  1263   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1264     int offset = frame::register_save_words*wordSize;
  1265     if( cbuf ) {
  1266       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1267       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1268       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1269       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1271 #ifndef PRODUCT
  1272     else if( !do_size ) {
  1273       if( size != 0 ) st->print("\n\t");
  1274       st->print(  "SUB    R_SP,16,R_SP\n");
  1275       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1276       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1277       st->print("\tADD    R_SP,16,R_SP\n");
  1279 #endif
  1280     size += 16;
  1283   // --------------------------------------
  1284   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1285   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1286   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1287   // there.  Misaligned sources only come from native-long-returns (handled
  1288   // special below).
  1289 #ifndef _LP64
  1290   if( src_first_rc == rc_int &&     // source is already big-endian
  1291       src_second_rc != rc_bad &&    // 64-bit move
  1292       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1293     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1294     // Do the big-endian flop.
  1295     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1296     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1298 #endif
  1300   // --------------------------------------
  1301   // Check for integer reg-reg copy
  1302   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1303 #ifndef _LP64
  1304     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1305       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1306       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1307       //       operand contains the least significant word of the 64-bit value and vice versa.
  1308       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1309       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1310       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1311       if( cbuf ) {
  1312         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1313         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1314         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1315 #ifndef PRODUCT
  1316       } else if( !do_size ) {
  1317         if( size != 0 ) st->print("\n\t");
  1318         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1319         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1320         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1321 #endif
  1323       return size+12;
  1325     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1326       // returning a long value in I0/I1
  1327       // a SpillCopy must be able to target a return instruction's reg_class
  1328       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1329       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1330       //       operand contains the least significant word of the 64-bit value and vice versa.
  1331       OptoReg::Name tdest = dst_first;
  1333       if (src_first == dst_first) {
  1334         tdest = OptoReg::Name(R_O7_num);
  1335         size += 4;
  1338       if( cbuf ) {
  1339         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1340         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1341         // ShrL_reg_imm6
  1342         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1343         // ShrR_reg_imm6  src, 0, dst
  1344         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1345         if (tdest != dst_first) {
  1346           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1349 #ifndef PRODUCT
  1350       else if( !do_size ) {
  1351         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1352         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1353         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1354         if (tdest != dst_first) {
  1355           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1358 #endif // PRODUCT
  1359       return size+8;
  1361 #endif // !_LP64
  1362     // Else normal reg-reg copy
  1363     assert( src_second != dst_first, "smashed second before evacuating it" );
  1364     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1365     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1366     // This moves an aligned adjacent pair.
  1367     // See if we are done.
  1368     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1369       return size;
  1372   // Check for integer store
  1373   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1374     int offset = ra_->reg2offset(dst_first);
  1375     // Further check for aligned-adjacent pair, so we can use a double store
  1376     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1377       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1378     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1381   // Check for integer load
  1382   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1383     int offset = ra_->reg2offset(src_first);
  1384     // Further check for aligned-adjacent pair, so we can use a double load
  1385     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1386       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1387     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1390   // Check for float reg-reg copy
  1391   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1392     // Further check for aligned-adjacent pair, so we can use a double move
  1393     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1394       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1395     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1398   // Check for float store
  1399   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1400     int offset = ra_->reg2offset(dst_first);
  1401     // Further check for aligned-adjacent pair, so we can use a double store
  1402     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1403       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1404     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1407   // Check for float load
  1408   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1409     int offset = ra_->reg2offset(src_first);
  1410     // Further check for aligned-adjacent pair, so we can use a double load
  1411     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1412       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1413     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1416   // --------------------------------------------------------------------
  1417   // Check for hi bits still needing moving.  Only happens for misaligned
  1418   // arguments to native calls.
  1419   if( src_second == dst_second )
  1420     return size;               // Self copy; no move
  1421   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1423 #ifndef _LP64
  1424   // In the LP64 build, all registers can be moved as aligned/adjacent
  1425   // pairs, so there's never any need to move the high bits seperately.
  1426   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1427   // all sorts of silly alignment problems.
  1429   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1430   // 32-bits of a 64-bit register, but are needed in low bits of another
  1431   // register (else it's a hi-bits-to-hi-bits copy which should have
  1432   // happened already as part of a 64-bit move)
  1433   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1434     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1435     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1436     // Shift src_second down to dst_second's low bits.
  1437     if( cbuf ) {
  1438       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1439 #ifndef PRODUCT
  1440     } else if( !do_size ) {
  1441       if( size != 0 ) st->print("\n\t");
  1442       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1443 #endif
  1445     return size+4;
  1448   // Check for high word integer store.  Must down-shift the hi bits
  1449   // into a temp register, then fall into the case of storing int bits.
  1450   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1451     // Shift src_second down to dst_second's low bits.
  1452     if( cbuf ) {
  1453       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1454 #ifndef PRODUCT
  1455     } else if( !do_size ) {
  1456       if( size != 0 ) st->print("\n\t");
  1457       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1458 #endif
  1460     size+=4;
  1461     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1464   // Check for high word integer load
  1465   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1466     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1468   // Check for high word integer store
  1469   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1470     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1472   // Check for high word float store
  1473   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1474     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1476 #endif // !_LP64
  1478   Unimplemented();
  1481 #ifndef PRODUCT
  1482 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1483   implementation( NULL, ra_, false, st );
  1485 #endif
  1487 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1488   implementation( &cbuf, ra_, false, NULL );
  1491 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1492   return implementation( NULL, ra_, true, NULL );
  1495 //=============================================================================
  1496 #ifndef PRODUCT
  1497 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1498   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1500 #endif
  1502 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1503   MacroAssembler _masm(&cbuf);
  1504   for(int i = 0; i < _count; i += 1) {
  1505     __ nop();
  1509 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1510   return 4 * _count;
  1514 //=============================================================================
  1515 #ifndef PRODUCT
  1516 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1517   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1518   int reg = ra_->get_reg_first(this);
  1519   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1521 #endif
  1523 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1524   MacroAssembler _masm(&cbuf);
  1525   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1526   int reg = ra_->get_encode(this);
  1528   if (Assembler::is_simm13(offset)) {
  1529      __ add(SP, offset, reg_to_register_object(reg));
  1530   } else {
  1531      __ set(offset, O7);
  1532      __ add(SP, O7, reg_to_register_object(reg));
  1536 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1537   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1538   assert(ra_ == ra_->C->regalloc(), "sanity");
  1539   return ra_->C->scratch_emit_size(this);
  1542 //=============================================================================
  1544 // emit call stub, compiled java to interpretor
  1545 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1547   // Stub is fixed up when the corresponding call is converted from calling
  1548   // compiled code to calling interpreted code.
  1549   // set (empty), G5
  1550   // jmp -1
  1552   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1554   MacroAssembler _masm(&cbuf);
  1556   address base =
  1557   __ start_a_stub(Compile::MAX_stubs_size);
  1558   if (base == NULL)  return;  // CodeBuffer::expand failed
  1560   // static stub relocation stores the instruction address of the call
  1561   __ relocate(static_stub_Relocation::spec(mark));
  1563   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1565   __ set_inst_mark();
  1566   Address a(G3, (address)-1);
  1567   __ JUMP(a, 0);
  1569   __ delayed()->nop();
  1571   // Update current stubs pointer and restore code_end.
  1572   __ end_a_stub();
  1575 // size of call stub, compiled java to interpretor
  1576 uint size_java_to_interp() {
  1577   // This doesn't need to be accurate but it must be larger or equal to
  1578   // the real size of the stub.
  1579   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1580           NativeJump::instruction_size + // sethi; jmp; nop
  1581           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1583 // relocation entries for call stub, compiled java to interpretor
  1584 uint reloc_java_to_interp() {
  1585   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1589 //=============================================================================
  1590 #ifndef PRODUCT
  1591 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1592   st->print_cr("\nUEP:");
  1593 #ifdef    _LP64
  1594   st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1595   st->print_cr("\tCMP    R_G5,R_G3" );
  1596   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1597 #else  // _LP64
  1598   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1599   st->print_cr("\tCMP    R_G5,R_G3" );
  1600   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1601 #endif // _LP64
  1603 #endif
  1605 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1606   MacroAssembler _masm(&cbuf);
  1607   Label L;
  1608   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1609   Register temp_reg   = G3;
  1610   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1612   // Load klass from reciever
  1613   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  1614   // Compare against expected klass
  1615   __ cmp(temp_reg, G5_ic_reg);
  1616   // Branch to miss code, checks xcc or icc depending
  1617   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1620 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1621   return MachNode::size(ra_);
  1625 //=============================================================================
  1627 uint size_exception_handler() {
  1628   if (TraceJumps) {
  1629     return (400); // just a guess
  1631   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1634 uint size_deopt_handler() {
  1635   if (TraceJumps) {
  1636     return (400); // just a guess
  1638   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1641 // Emit exception handler code.
  1642 int emit_exception_handler(CodeBuffer& cbuf) {
  1643   Register temp_reg = G3;
  1644   Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
  1645   MacroAssembler _masm(&cbuf);
  1647   address base =
  1648   __ start_a_stub(size_exception_handler());
  1649   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1651   int offset = __ offset();
  1653   __ JUMP(exception_blob, 0); // sethi;jmp
  1654   __ delayed()->nop();
  1656   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1658   __ end_a_stub();
  1660   return offset;
  1663 int emit_deopt_handler(CodeBuffer& cbuf) {
  1664   // Can't use any of the current frame's registers as we may have deopted
  1665   // at a poll and everything (including G3) can be live.
  1666   Register temp_reg = L0;
  1667   Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
  1668   MacroAssembler _masm(&cbuf);
  1670   address base =
  1671   __ start_a_stub(size_deopt_handler());
  1672   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1674   int offset = __ offset();
  1675   __ save_frame(0);
  1676   __ JUMP(deopt_blob, 0); // sethi;jmp
  1677   __ delayed()->restore();
  1679   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1681   __ end_a_stub();
  1682   return offset;
  1686 // Given a register encoding, produce a Integer Register object
  1687 static Register reg_to_register_object(int register_encoding) {
  1688   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1689   return as_Register(register_encoding);
  1692 // Given a register encoding, produce a single-precision Float Register object
  1693 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1694   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1695   return as_SingleFloatRegister(register_encoding);
  1698 // Given a register encoding, produce a double-precision Float Register object
  1699 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1700   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1701   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1702   return as_DoubleFloatRegister(register_encoding);
  1705 int Matcher::regnum_to_fpu_offset(int regnum) {
  1706   return regnum - 32; // The FP registers are in the second chunk
  1709 #ifdef ASSERT
  1710 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1711 #endif
  1713 // Vector width in bytes
  1714 const uint Matcher::vector_width_in_bytes(void) {
  1715   return 8;
  1718 // Vector ideal reg
  1719 const uint Matcher::vector_ideal_reg(void) {
  1720   return Op_RegD;
  1723 // USII supports fxtof through the whole range of number, USIII doesn't
  1724 const bool Matcher::convL2FSupported(void) {
  1725   return VM_Version::has_fast_fxtof();
  1728 // Is this branch offset short enough that a short branch can be used?
  1729 //
  1730 // NOTE: If the platform does not provide any short branch variants, then
  1731 //       this method should return false for offset 0.
  1732 bool Matcher::is_short_branch_offset(int offset) {
  1733   return false;
  1736 const bool Matcher::isSimpleConstant64(jlong value) {
  1737   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1738   // Depends on optimizations in MacroAssembler::setx.
  1739   int hi = (int)(value >> 32);
  1740   int lo = (int)(value & ~0);
  1741   return (hi == 0) || (hi == -1) || (lo == 0);
  1744 // No scaling for the parameter the ClearArray node.
  1745 const bool Matcher::init_array_count_is_in_bytes = true;
  1747 // Threshold size for cleararray.
  1748 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1750 // Should the Matcher clone shifts on addressing modes, expecting them to
  1751 // be subsumed into complex addressing expressions or compute them into
  1752 // registers?  True for Intel but false for most RISCs
  1753 const bool Matcher::clone_shift_expressions = false;
  1755 // Is it better to copy float constants, or load them directly from memory?
  1756 // Intel can load a float constant from a direct address, requiring no
  1757 // extra registers.  Most RISCs will have to materialize an address into a
  1758 // register first, so they would do better to copy the constant from stack.
  1759 const bool Matcher::rematerialize_float_constants = false;
  1761 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1762 // needed.  Else we split the double into 2 integer pieces and move it
  1763 // piece-by-piece.  Only happens when passing doubles into C code as the
  1764 // Java calling convention forces doubles to be aligned.
  1765 #ifdef _LP64
  1766 const bool Matcher::misaligned_doubles_ok = true;
  1767 #else
  1768 const bool Matcher::misaligned_doubles_ok = false;
  1769 #endif
  1771 // No-op on SPARC.
  1772 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1775 // Advertise here if the CPU requires explicit rounding operations
  1776 // to implement the UseStrictFP mode.
  1777 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1779 // Do floats take an entire double register or just half?
  1780 const bool Matcher::float_in_double = false;
  1782 // Do ints take an entire long register or just half?
  1783 // Note that we if-def off of _LP64.
  1784 // The relevant question is how the int is callee-saved.  In _LP64
  1785 // the whole long is written but de-opt'ing will have to extract
  1786 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1787 #ifdef _LP64
  1788 const bool Matcher::int_in_long = true;
  1789 #else
  1790 const bool Matcher::int_in_long = false;
  1791 #endif
  1793 // Return whether or not this register is ever used as an argument.  This
  1794 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1795 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1796 // arguments in those registers not be available to the callee.
  1797 bool Matcher::can_be_java_arg( int reg ) {
  1798   // Standard sparc 6 args in registers
  1799   if( reg == R_I0_num ||
  1800       reg == R_I1_num ||
  1801       reg == R_I2_num ||
  1802       reg == R_I3_num ||
  1803       reg == R_I4_num ||
  1804       reg == R_I5_num ) return true;
  1805 #ifdef _LP64
  1806   // 64-bit builds can pass 64-bit pointers and longs in
  1807   // the high I registers
  1808   if( reg == R_I0H_num ||
  1809       reg == R_I1H_num ||
  1810       reg == R_I2H_num ||
  1811       reg == R_I3H_num ||
  1812       reg == R_I4H_num ||
  1813       reg == R_I5H_num ) return true;
  1814 #else
  1815   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1816   // Longs cannot be passed in O regs, because O regs become I regs
  1817   // after a 'save' and I regs get their high bits chopped off on
  1818   // interrupt.
  1819   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1820   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1821 #endif
  1822   // A few float args in registers
  1823   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1825   return false;
  1828 bool Matcher::is_spillable_arg( int reg ) {
  1829   return can_be_java_arg(reg);
  1832 // Register for DIVI projection of divmodI
  1833 RegMask Matcher::divI_proj_mask() {
  1834   ShouldNotReachHere();
  1835   return RegMask();
  1838 // Register for MODI projection of divmodI
  1839 RegMask Matcher::modI_proj_mask() {
  1840   ShouldNotReachHere();
  1841   return RegMask();
  1844 // Register for DIVL projection of divmodL
  1845 RegMask Matcher::divL_proj_mask() {
  1846   ShouldNotReachHere();
  1847   return RegMask();
  1850 // Register for MODL projection of divmodL
  1851 RegMask Matcher::modL_proj_mask() {
  1852   ShouldNotReachHere();
  1853   return RegMask();
  1856 %}
  1859 // The intptr_t operand types, defined by textual substitution.
  1860 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1861 #ifdef _LP64
  1862 #define immX    immL
  1863 #define immX13  immL13
  1864 #define iRegX   iRegL
  1865 #define g1RegX  g1RegL
  1866 #else
  1867 #define immX    immI
  1868 #define immX13  immI13
  1869 #define iRegX   iRegI
  1870 #define g1RegX  g1RegI
  1871 #endif
  1873 //----------ENCODING BLOCK-----------------------------------------------------
  1874 // This block specifies the encoding classes used by the compiler to output
  1875 // byte streams.  Encoding classes are parameterized macros used by
  1876 // Machine Instruction Nodes in order to generate the bit encoding of the
  1877 // instruction.  Operands specify their base encoding interface with the
  1878 // interface keyword.  There are currently supported four interfaces,
  1879 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1880 // operand to generate a function which returns its register number when
  1881 // queried.   CONST_INTER causes an operand to generate a function which
  1882 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1883 // operand to generate four functions which return the Base Register, the
  1884 // Index Register, the Scale Value, and the Offset Value of the operand when
  1885 // queried.  COND_INTER causes an operand to generate six functions which
  1886 // return the encoding code (ie - encoding bits for the instruction)
  1887 // associated with each basic boolean condition for a conditional instruction.
  1888 //
  1889 // Instructions specify two basic values for encoding.  Again, a function
  1890 // is available to check if the constant displacement is an oop. They use the
  1891 // ins_encode keyword to specify their encoding classes (which must be
  1892 // a sequence of enc_class names, and their parameters, specified in
  1893 // the encoding block), and they use the
  1894 // opcode keyword to specify, in order, their primary, secondary, and
  1895 // tertiary opcode.  Only the opcode sections which a particular instruction
  1896 // needs for encoding need to be specified.
  1897 encode %{
  1898   enc_class enc_untested %{
  1899 #ifdef ASSERT
  1900     MacroAssembler _masm(&cbuf);
  1901     __ untested("encoding");
  1902 #endif
  1903   %}
  1905   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1906     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1907                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1908   %}
  1910   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
  1911     emit_form3_mem_reg_asi(cbuf, this, $primary, $tertiary,
  1912                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
  1913   %}
  1915   enc_class form3_mem_prefetch_read( memory mem ) %{
  1916     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1917                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1918   %}
  1920   enc_class form3_mem_prefetch_write( memory mem ) %{
  1921     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1922                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1923   %}
  1925   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1926     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1927     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1928     guarantee($mem$$index == R_G0_enc, "double index?");
  1929     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1930     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1931     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1932     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1933   %}
  1935   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1936     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1937     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1938     guarantee($mem$$index == R_G0_enc, "double index?");
  1939     // Load long with 2 instructions
  1940     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1941     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1942   %}
  1944   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1945   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1946     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1947     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1948   %}
  1950   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1951     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1952     if( $rs2$$reg != $rd$$reg )
  1953       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1954   %}
  1956   // Target lo half of long
  1957   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1958     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1959     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1960       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1961   %}
  1963   // Source lo half of long
  1964   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1965     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1966     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1967       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1968   %}
  1970   // Target hi half of long
  1971   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1972     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1973   %}
  1975   // Source lo half of long, and leave it sign extended.
  1976   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  1977     // Sign extend low half
  1978     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  1979   %}
  1981   // Source hi half of long, and leave it sign extended.
  1982   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  1983     // Shift high half to low half
  1984     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  1985   %}
  1987   // Source hi half of long
  1988   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  1989     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1990     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  1991       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  1992   %}
  1994   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  1995     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  1996   %}
  1998   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  1999     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2000     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2001   %}
  2003   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2004     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2005     // clear if nothing else is happening
  2006     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2007     // blt,a,pn done
  2008     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2009     // mov dst,-1 in delay slot
  2010     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2011   %}
  2013   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2014     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2015   %}
  2017   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2018     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2019   %}
  2021   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2022     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2023   %}
  2025   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2026     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2027   %}
  2029   enc_class move_return_pc_to_o1() %{
  2030     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2031   %}
  2033 #ifdef _LP64
  2034   /* %%% merge with enc_to_bool */
  2035   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2036     MacroAssembler _masm(&cbuf);
  2038     Register   src_reg = reg_to_register_object($src$$reg);
  2039     Register   dst_reg = reg_to_register_object($dst$$reg);
  2040     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2041   %}
  2042 #endif
  2044   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2045     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2046     MacroAssembler _masm(&cbuf);
  2048     Register   p_reg = reg_to_register_object($p$$reg);
  2049     Register   q_reg = reg_to_register_object($q$$reg);
  2050     Register   y_reg = reg_to_register_object($y$$reg);
  2051     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2053     __ subcc( p_reg, q_reg,   p_reg );
  2054     __ add  ( p_reg, y_reg, tmp_reg );
  2055     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2056   %}
  2058   enc_class form_d2i_helper(regD src, regF dst) %{
  2059     // fcmp %fcc0,$src,$src
  2060     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2061     // branch %fcc0 not-nan, predict taken
  2062     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2063     // fdtoi $src,$dst
  2064     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2065     // fitos $dst,$dst (if nan)
  2066     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2067     // clear $dst (if nan)
  2068     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2069     // carry on here...
  2070   %}
  2072   enc_class form_d2l_helper(regD src, regD dst) %{
  2073     // fcmp %fcc0,$src,$src  check for NAN
  2074     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2075     // branch %fcc0 not-nan, predict taken
  2076     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2077     // fdtox $src,$dst   convert in delay slot
  2078     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2079     // fxtod $dst,$dst  (if nan)
  2080     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2081     // clear $dst (if nan)
  2082     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2083     // carry on here...
  2084   %}
  2086   enc_class form_f2i_helper(regF src, regF dst) %{
  2087     // fcmps %fcc0,$src,$src
  2088     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2089     // branch %fcc0 not-nan, predict taken
  2090     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2091     // fstoi $src,$dst
  2092     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2093     // fitos $dst,$dst (if nan)
  2094     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2095     // clear $dst (if nan)
  2096     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2097     // carry on here...
  2098   %}
  2100   enc_class form_f2l_helper(regF src, regD dst) %{
  2101     // fcmps %fcc0,$src,$src
  2102     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2103     // branch %fcc0 not-nan, predict taken
  2104     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2105     // fstox $src,$dst
  2106     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2107     // fxtod $dst,$dst (if nan)
  2108     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2109     // clear $dst (if nan)
  2110     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2111     // carry on here...
  2112   %}
  2114   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2115   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2116   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2117   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2119   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2121   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2122   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2124   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2125     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2126   %}
  2128   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2129     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2130   %}
  2132   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2133     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2134   %}
  2136   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2137     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2138   %}
  2140   enc_class form3_convI2F(regF rs2, regF rd) %{
  2141     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2142   %}
  2144   // Encloding class for traceable jumps
  2145   enc_class form_jmpl(g3RegP dest) %{
  2146     emit_jmpl(cbuf, $dest$$reg);
  2147   %}
  2149   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2150     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2151   %}
  2153   enc_class form2_nop() %{
  2154     emit_nop(cbuf);
  2155   %}
  2157   enc_class form2_illtrap() %{
  2158     emit_illtrap(cbuf);
  2159   %}
  2162   // Compare longs and convert into -1, 0, 1.
  2163   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2164     // CMP $src1,$src2
  2165     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2166     // blt,a,pn done
  2167     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2168     // mov dst,-1 in delay slot
  2169     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2170     // bgt,a,pn done
  2171     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2172     // mov dst,1 in delay slot
  2173     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2174     // CLR    $dst
  2175     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2176   %}
  2178   enc_class enc_PartialSubtypeCheck() %{
  2179     MacroAssembler _masm(&cbuf);
  2180     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2181     __ delayed()->nop();
  2182   %}
  2184   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2185     MacroAssembler _masm(&cbuf);
  2186     Label &L = *($labl$$label);
  2187     Assembler::Predict predict_taken =
  2188       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2190     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2191     __ delayed()->nop();
  2192   %}
  2194   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2195     MacroAssembler _masm(&cbuf);
  2196     Label &L = *($labl$$label);
  2197     Assembler::Predict predict_taken =
  2198       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2200     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2201     __ delayed()->nop();
  2202   %}
  2204   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2205     MacroAssembler _masm(&cbuf);
  2206     Label &L = *($labl$$label);
  2207     Assembler::Predict predict_taken =
  2208       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2210     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2211     __ delayed()->nop();
  2212   %}
  2214   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2215     MacroAssembler _masm(&cbuf);
  2216     Label &L = *($labl$$label);
  2217     Assembler::Predict predict_taken =
  2218       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2220     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2221     __ delayed()->nop();
  2222   %}
  2224   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2225     MacroAssembler _masm(&cbuf);
  2227     Register switch_reg       = as_Register($switch_val$$reg);
  2228     Register table_reg        = O7;
  2230     address table_base = __ address_table_constant(_index2label);
  2231     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2233     // Load table address
  2234     Address the_pc(table_reg, table_base, rspec);
  2235     __ load_address(the_pc);
  2237     // Jump to base address + switch value
  2238     __ ld_ptr(table_reg, switch_reg, table_reg);
  2239     __ jmp(table_reg, G0);
  2240     __ delayed()->nop();
  2242   %}
  2244   enc_class enc_ba( Label labl ) %{
  2245     MacroAssembler _masm(&cbuf);
  2246     Label &L = *($labl$$label);
  2247     __ ba(false, L);
  2248     __ delayed()->nop();
  2249   %}
  2251   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2252     MacroAssembler _masm(&cbuf);
  2253     Label &L = *$labl$$label;
  2254     Assembler::Predict predict_taken =
  2255       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2257     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2258     __ delayed()->nop();
  2259   %}
  2261   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2262     int op = (Assembler::arith_op << 30) |
  2263              ($dst$$reg << 25) |
  2264              (Assembler::movcc_op3 << 19) |
  2265              (1 << 18) |                    // cc2 bit for 'icc'
  2266              ($cmp$$cmpcode << 14) |
  2267              (0 << 13) |                    // select register move
  2268              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2269              ($src$$reg << 0);
  2270     *((int*)(cbuf.code_end())) = op;
  2271     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2272   %}
  2274   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2275     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2276     int op = (Assembler::arith_op << 30) |
  2277              ($dst$$reg << 25) |
  2278              (Assembler::movcc_op3 << 19) |
  2279              (1 << 18) |                    // cc2 bit for 'icc'
  2280              ($cmp$$cmpcode << 14) |
  2281              (1 << 13) |                    // select immediate move
  2282              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2283              (simm11 << 0);
  2284     *((int*)(cbuf.code_end())) = op;
  2285     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2286   %}
  2288   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2289     int op = (Assembler::arith_op << 30) |
  2290              ($dst$$reg << 25) |
  2291              (Assembler::movcc_op3 << 19) |
  2292              (0 << 18) |                    // cc2 bit for 'fccX'
  2293              ($cmp$$cmpcode << 14) |
  2294              (0 << 13) |                    // select register move
  2295              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2296              ($src$$reg << 0);
  2297     *((int*)(cbuf.code_end())) = op;
  2298     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2299   %}
  2301   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2302     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2303     int op = (Assembler::arith_op << 30) |
  2304              ($dst$$reg << 25) |
  2305              (Assembler::movcc_op3 << 19) |
  2306              (0 << 18) |                    // cc2 bit for 'fccX'
  2307              ($cmp$$cmpcode << 14) |
  2308              (1 << 13) |                    // select immediate move
  2309              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2310              (simm11 << 0);
  2311     *((int*)(cbuf.code_end())) = op;
  2312     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2313   %}
  2315   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2316     int op = (Assembler::arith_op << 30) |
  2317              ($dst$$reg << 25) |
  2318              (Assembler::fpop2_op3 << 19) |
  2319              (0 << 18) |
  2320              ($cmp$$cmpcode << 14) |
  2321              (1 << 13) |                    // select register move
  2322              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2323              ($primary << 5) |              // select single, double or quad
  2324              ($src$$reg << 0);
  2325     *((int*)(cbuf.code_end())) = op;
  2326     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2327   %}
  2329   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2330     int op = (Assembler::arith_op << 30) |
  2331              ($dst$$reg << 25) |
  2332              (Assembler::fpop2_op3 << 19) |
  2333              (0 << 18) |
  2334              ($cmp$$cmpcode << 14) |
  2335              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2336              ($primary << 5) |              // select single, double or quad
  2337              ($src$$reg << 0);
  2338     *((int*)(cbuf.code_end())) = op;
  2339     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2340   %}
  2342   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2343   // the condition comes from opcode-field instead of an argument.
  2344   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2345     int op = (Assembler::arith_op << 30) |
  2346              ($dst$$reg << 25) |
  2347              (Assembler::movcc_op3 << 19) |
  2348              (1 << 18) |                    // cc2 bit for 'icc'
  2349              ($primary << 14) |
  2350              (0 << 13) |                    // select register move
  2351              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2352              ($src$$reg << 0);
  2353     *((int*)(cbuf.code_end())) = op;
  2354     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2355   %}
  2357   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2358     int op = (Assembler::arith_op << 30) |
  2359              ($dst$$reg << 25) |
  2360              (Assembler::movcc_op3 << 19) |
  2361              (6 << 16) |                    // cc2 bit for 'xcc'
  2362              ($primary << 14) |
  2363              (0 << 13) |                    // select register move
  2364              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2365              ($src$$reg << 0);
  2366     *((int*)(cbuf.code_end())) = op;
  2367     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2368   %}
  2370   // Utility encoding for loading a 64 bit Pointer into a register
  2371   // The 64 bit pointer is stored in the generated code stream
  2372   enc_class SetPtr( immP src, iRegP rd ) %{
  2373     Register dest = reg_to_register_object($rd$$reg);
  2374     // [RGV] This next line should be generated from ADLC
  2375     if ( _opnds[1]->constant_is_oop() ) {
  2376       intptr_t val = $src$$constant;
  2377       MacroAssembler _masm(&cbuf);
  2378       __ set_oop_constant((jobject)val, dest);
  2379     } else {          // non-oop pointers, e.g. card mark base, heap top
  2380       emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
  2382   %}
  2384   enc_class Set13( immI13 src, iRegI rd ) %{
  2385     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2386   %}
  2388   enc_class SetHi22( immI src, iRegI rd ) %{
  2389     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2390   %}
  2392   enc_class Set32( immI src, iRegI rd ) %{
  2393     MacroAssembler _masm(&cbuf);
  2394     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2395   %}
  2397   enc_class SetNull( iRegI rd ) %{
  2398     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2399   %}
  2401   enc_class call_epilog %{
  2402     if( VerifyStackAtCalls ) {
  2403       MacroAssembler _masm(&cbuf);
  2404       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2405       Register temp_reg = G3;
  2406       __ add(SP, framesize, temp_reg);
  2407       __ cmp(temp_reg, FP);
  2408       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2410   %}
  2412   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2413   // to G1 so the register allocator will not have to deal with the misaligned register
  2414   // pair.
  2415   enc_class adjust_long_from_native_call %{
  2416 #ifndef _LP64
  2417     if (returns_long()) {
  2418       //    sllx  O0,32,O0
  2419       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2420       //    srl   O1,0,O1
  2421       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2422       //    or    O0,O1,G1
  2423       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2425 #endif
  2426   %}
  2428   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2429     // CALL directly to the runtime
  2430     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2431     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2432                     /*preserve_g2=*/true, /*force far call*/true);
  2433   %}
  2435   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2436     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2437     // who we intended to call.
  2438     if ( !_method ) {
  2439       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2440     } else if (_optimized_virtual) {
  2441       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2442     } else {
  2443       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2445     if( _method ) {  // Emit stub for static call
  2446       emit_java_to_interp(cbuf);
  2448   %}
  2450   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2451     MacroAssembler _masm(&cbuf);
  2452     __ set_inst_mark();
  2453     int vtable_index = this->_vtable_index;
  2454     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2455     if (vtable_index < 0) {
  2456       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2457       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2458       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2459       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2460       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2461       // !!!!!
  2462       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2463       // emit_call_dynamic_prologue( cbuf );
  2464       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2466       address  virtual_call_oop_addr = __ inst_mark();
  2467       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2468       // who we intended to call.
  2469       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2470       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2471     } else {
  2472       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2473       // Just go thru the vtable
  2474       // get receiver klass (receiver already checked for non-null)
  2475       // If we end up going thru a c2i adapter interpreter expects method in G5
  2476       int off = __ offset();
  2477       __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
  2478       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2479       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2480       if( __ is_simm13(v_off) ) {
  2481         __ ld_ptr(G3, v_off, G5_method);
  2482       } else {
  2483         // Generate 2 instructions
  2484         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2485         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2486         // ld_ptr, set_hi, set
  2487         assert(__ offset() - off == 3*BytesPerInstWord, "Unexpected instruction size(s)");
  2488         __ ld_ptr(G3, G5_method, G5_method);
  2490       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2491       // However it may very well end up in handle_wrong_method if the
  2492       // method is abstract for the particular class.
  2493       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2494       // jump to target (either compiled code or c2iadapter)
  2495       __ jmpl(G3_scratch, G0, O7);
  2496       __ delayed()->nop();
  2498   %}
  2500   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2501     MacroAssembler _masm(&cbuf);
  2503     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2504     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2505                               // we might be calling a C2I adapter which needs it.
  2507     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2508     // Load nmethod
  2509     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2511     // CALL to compiled java, indirect the contents of G3
  2512     __ set_inst_mark();
  2513     __ callr(temp_reg, G0);
  2514     __ delayed()->nop();
  2515   %}
  2517 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2518     MacroAssembler _masm(&cbuf);
  2519     Register Rdividend = reg_to_register_object($src1$$reg);
  2520     Register Rdivisor = reg_to_register_object($src2$$reg);
  2521     Register Rresult = reg_to_register_object($dst$$reg);
  2523     __ sra(Rdivisor, 0, Rdivisor);
  2524     __ sra(Rdividend, 0, Rdividend);
  2525     __ sdivx(Rdividend, Rdivisor, Rresult);
  2526 %}
  2528 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2529     MacroAssembler _masm(&cbuf);
  2531     Register Rdividend = reg_to_register_object($src1$$reg);
  2532     int divisor = $imm$$constant;
  2533     Register Rresult = reg_to_register_object($dst$$reg);
  2535     __ sra(Rdividend, 0, Rdividend);
  2536     __ sdivx(Rdividend, divisor, Rresult);
  2537 %}
  2539 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2540     MacroAssembler _masm(&cbuf);
  2541     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2542     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2543     Register Rdst  = reg_to_register_object($dst$$reg);
  2545     __ sra( Rsrc1, 0, Rsrc1 );
  2546     __ sra( Rsrc2, 0, Rsrc2 );
  2547     __ mulx( Rsrc1, Rsrc2, Rdst );
  2548     __ srlx( Rdst, 32, Rdst );
  2549 %}
  2551 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2552     MacroAssembler _masm(&cbuf);
  2553     Register Rdividend = reg_to_register_object($src1$$reg);
  2554     Register Rdivisor = reg_to_register_object($src2$$reg);
  2555     Register Rresult = reg_to_register_object($dst$$reg);
  2556     Register Rscratch = reg_to_register_object($scratch$$reg);
  2558     assert(Rdividend != Rscratch, "");
  2559     assert(Rdivisor  != Rscratch, "");
  2561     __ sra(Rdividend, 0, Rdividend);
  2562     __ sra(Rdivisor, 0, Rdivisor);
  2563     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2564     __ mulx(Rscratch, Rdivisor, Rscratch);
  2565     __ sub(Rdividend, Rscratch, Rresult);
  2566 %}
  2568 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2569     MacroAssembler _masm(&cbuf);
  2571     Register Rdividend = reg_to_register_object($src1$$reg);
  2572     int divisor = $imm$$constant;
  2573     Register Rresult = reg_to_register_object($dst$$reg);
  2574     Register Rscratch = reg_to_register_object($scratch$$reg);
  2576     assert(Rdividend != Rscratch, "");
  2578     __ sra(Rdividend, 0, Rdividend);
  2579     __ sdivx(Rdividend, divisor, Rscratch);
  2580     __ mulx(Rscratch, divisor, Rscratch);
  2581     __ sub(Rdividend, Rscratch, Rresult);
  2582 %}
  2584 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2585     MacroAssembler _masm(&cbuf);
  2587     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2588     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2590     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2591 %}
  2593 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2594     MacroAssembler _masm(&cbuf);
  2596     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2597     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2599     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2600 %}
  2602 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2603     MacroAssembler _masm(&cbuf);
  2605     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2606     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2608     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2609 %}
  2611 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2612     MacroAssembler _masm(&cbuf);
  2614     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2615     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2617     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2618 %}
  2620 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2621     MacroAssembler _masm(&cbuf);
  2623     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2624     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2626     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2627 %}
  2629 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2630     MacroAssembler _masm(&cbuf);
  2632     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2633     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2635     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2636 %}
  2638 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2639     MacroAssembler _masm(&cbuf);
  2641     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2642     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2644     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2645 %}
  2647 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2648     MacroAssembler _masm(&cbuf);
  2650     Register Roop  = reg_to_register_object($oop$$reg);
  2651     Register Rbox  = reg_to_register_object($box$$reg);
  2652     Register Rscratch = reg_to_register_object($scratch$$reg);
  2653     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2655     assert(Roop  != Rscratch, "");
  2656     assert(Roop  != Rmark, "");
  2657     assert(Rbox  != Rscratch, "");
  2658     assert(Rbox  != Rmark, "");
  2660     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters);
  2661 %}
  2663 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2664     MacroAssembler _masm(&cbuf);
  2666     Register Roop  = reg_to_register_object($oop$$reg);
  2667     Register Rbox  = reg_to_register_object($box$$reg);
  2668     Register Rscratch = reg_to_register_object($scratch$$reg);
  2669     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2671     assert(Roop  != Rscratch, "");
  2672     assert(Roop  != Rmark, "");
  2673     assert(Rbox  != Rscratch, "");
  2674     assert(Rbox  != Rmark, "");
  2676     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch);
  2677   %}
  2679   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2680     MacroAssembler _masm(&cbuf);
  2681     Register Rmem = reg_to_register_object($mem$$reg);
  2682     Register Rold = reg_to_register_object($old$$reg);
  2683     Register Rnew = reg_to_register_object($new$$reg);
  2685     // casx_under_lock picks 1 of 3 encodings:
  2686     // For 32-bit pointers you get a 32-bit CAS
  2687     // For 64-bit pointers you get a 64-bit CASX
  2688     __ casx_under_lock(Rmem, Rold, Rnew, // Swap(*Rmem,Rnew) if *Rmem == Rold
  2689                         (address) StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2690     __ cmp( Rold, Rnew );
  2691   %}
  2693   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2694     Register Rmem = reg_to_register_object($mem$$reg);
  2695     Register Rold = reg_to_register_object($old$$reg);
  2696     Register Rnew = reg_to_register_object($new$$reg);
  2698     MacroAssembler _masm(&cbuf);
  2699     __ mov(Rnew, O7);
  2700     __ casx(Rmem, Rold, O7);
  2701     __ cmp( Rold, O7 );
  2702   %}
  2704   // raw int cas, used for compareAndSwap
  2705   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2706     Register Rmem = reg_to_register_object($mem$$reg);
  2707     Register Rold = reg_to_register_object($old$$reg);
  2708     Register Rnew = reg_to_register_object($new$$reg);
  2710     MacroAssembler _masm(&cbuf);
  2711     __ mov(Rnew, O7);
  2712     __ cas(Rmem, Rold, O7);
  2713     __ cmp( Rold, O7 );
  2714   %}
  2716   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2717     Register Rres = reg_to_register_object($res$$reg);
  2719     MacroAssembler _masm(&cbuf);
  2720     __ mov(1, Rres);
  2721     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2722   %}
  2724   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2725     Register Rres = reg_to_register_object($res$$reg);
  2727     MacroAssembler _masm(&cbuf);
  2728     __ mov(1, Rres);
  2729     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2730   %}
  2732   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2733     MacroAssembler _masm(&cbuf);
  2734     Register Rdst = reg_to_register_object($dst$$reg);
  2735     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2736                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2737     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2738                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2740     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2741     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2742   %}
  2744   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2745     MacroAssembler _masm(&cbuf);
  2746     Register dest = reg_to_register_object($dst$$reg);
  2747     Register temp = reg_to_register_object($tmp$$reg);
  2748     __ set64( $src$$constant, dest, temp );
  2749   %}
  2751   enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
  2752     address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
  2753     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  2754 #ifdef _LP64
  2755     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2756     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2757     emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
  2758     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
  2759 #else  // _LP64
  2760     uint *code;
  2761     int tmp_reg = $tmp$$reg;
  2763     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2764     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
  2766     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2767     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
  2768 #endif // _LP64
  2769   %}
  2771   enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
  2772     address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
  2773     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2774 #ifdef _LP64
  2775     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2776     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2777     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2778     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2779 #else // _LP64
  2780     uint *code;
  2781     int tmp_reg = $tmp$$reg;
  2783     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2784     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2786     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2787     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2788 #endif // _LP64
  2789   %}
  2791   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2792     // Load a constant replicated "count" times with width "width"
  2793     int bit_width = $width$$constant * 8;
  2794     jlong elt_val = $src$$constant;
  2795     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2796     jlong val = elt_val;
  2797     for (int i = 0; i < $count$$constant - 1; i++) {
  2798         val <<= bit_width;
  2799         val |= elt_val;
  2801     jdouble dval = *(jdouble*)&val; // coerce to double type
  2802     address double_address = MacroAssembler(&cbuf).double_constant(dval);
  2803     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2804 #ifdef _LP64
  2805     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2806     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2807     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2808     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2809 #else // _LP64
  2810     uint *code;
  2811     int tmp_reg = $tmp$$reg;
  2813     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2814     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2816     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2817     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2818 #endif // _LP64
  2819   %}
  2822   enc_class ShouldNotEncodeThis ( ) %{
  2823     ShouldNotCallThis();
  2824   %}
  2826   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2827   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2828     MacroAssembler _masm(&cbuf);
  2829     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2830     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2831     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2833     Label loop;
  2834     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2836     // Loop and clear, walking backwards through the array.
  2837     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2838     __ bind(loop);
  2839     __ deccc(nof_bytes_tmp, 8);
  2840     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2841     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2842     // %%%% this mini-loop must not cross a cache boundary!
  2843   %}
  2846   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  2847     Label Ldone, Lloop;
  2848     MacroAssembler _masm(&cbuf);
  2850     Register   str1_reg = reg_to_register_object($str1$$reg);
  2851     Register   str2_reg = reg_to_register_object($str2$$reg);
  2852     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2853     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  2854     Register result_reg = reg_to_register_object($result$$reg);
  2856     // Get the first character position in both strings
  2857     //         [8] char array, [12] offset, [16] count
  2858     int  value_offset = java_lang_String:: value_offset_in_bytes();
  2859     int offset_offset = java_lang_String::offset_offset_in_bytes();
  2860     int  count_offset = java_lang_String:: count_offset_in_bytes();
  2862     // load str1 (jchar*) base address into tmp1_reg
  2863     __ ld_ptr(Address(str1_reg, 0,  value_offset), tmp1_reg);
  2864     __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  2865     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  2866     __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2867     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2868     __    ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2869     __ add(result_reg, tmp1_reg, tmp1_reg);
  2871     // load str2 (jchar*) base address into tmp2_reg
  2872     // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2873     __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  2874     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  2875     __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2876     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2877     __   subcc(str1_reg, str2_reg, O7); // hoisted
  2878     __ add(result_reg, tmp2_reg, tmp2_reg);
  2880     // Compute the minimum of the string lengths(str1_reg) and the
  2881     // difference of the string lengths (stack)
  2883     // discard string base pointers, after loading up the lengths
  2884     // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2885     // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2887     // See if the lengths are different, and calculate min in str1_reg.
  2888     // Stash diff in O7 in case we need it for a tie-breaker.
  2889     Label Lskip;
  2890     // __ subcc(str1_reg, str2_reg, O7); // hoisted
  2891     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2892     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2893     // str2 is shorter, so use its count:
  2894     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2895     __ bind(Lskip);
  2897     // reallocate str1_reg, str2_reg, result_reg
  2898     // Note:  limit_reg holds the string length pre-scaled by 2
  2899     Register limit_reg =   str1_reg;
  2900     Register  chr2_reg =   str2_reg;
  2901     Register  chr1_reg = result_reg;
  2902     // tmp{12} are the base pointers
  2904     // Is the minimum length zero?
  2905     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2906     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2907     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2909     // Load first characters
  2910     __ lduh(tmp1_reg, 0, chr1_reg);
  2911     __ lduh(tmp2_reg, 0, chr2_reg);
  2913     // Compare first characters
  2914     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2915     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2916     assert(chr1_reg == result_reg, "result must be pre-placed");
  2917     __ delayed()->nop();
  2920       // Check after comparing first character to see if strings are equivalent
  2921       Label LSkip2;
  2922       // Check if the strings start at same location
  2923       __ cmp(tmp1_reg, tmp2_reg);
  2924       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2925       __ delayed()->nop();
  2927       // Check if the length difference is zero (in O7)
  2928       __ cmp(G0, O7);
  2929       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2930       __ delayed()->mov(G0, result_reg);  // result is zero
  2932       // Strings might not be equal
  2933       __ bind(LSkip2);
  2936     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2937     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2938     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2940     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
  2941     __ add(tmp1_reg, limit_reg, tmp1_reg);
  2942     __ add(tmp2_reg, limit_reg, tmp2_reg);
  2943     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2945     // Compare the rest of the characters
  2946     __ lduh(tmp1_reg, limit_reg, chr1_reg);
  2947     __ bind(Lloop);
  2948     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2949     __ lduh(tmp2_reg, limit_reg, chr2_reg);
  2950     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2951     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2952     assert(chr1_reg == result_reg, "result must be pre-placed");
  2953     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2954     // annul LDUH if branch is not taken to prevent access past end of string
  2955     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2956     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2958     // If strings are equal up to min length, return the length difference.
  2959     __ mov(O7, result_reg);
  2961     // Otherwise, return the difference between the first mismatched chars.
  2962     __ bind(Ldone);
  2963   %}
  2965   enc_class enc_rethrow() %{
  2966     cbuf.set_inst_mark();
  2967     Register temp_reg = G3;
  2968     Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
  2969     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  2970     MacroAssembler _masm(&cbuf);
  2971 #ifdef ASSERT
  2972     __ save_frame(0);
  2973     Address last_rethrow_addr(L1, (address)&last_rethrow);
  2974     __ sethi(last_rethrow_addr);
  2975     __ get_pc(L2);
  2976     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  2977     __ st_ptr(L2, last_rethrow_addr);
  2978     __ restore();
  2979 #endif
  2980     __ JUMP(rethrow_stub, 0); // sethi;jmp
  2981     __ delayed()->nop();
  2982   %}
  2984   enc_class emit_mem_nop() %{
  2985     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  2986     unsigned int *code = (unsigned int*)cbuf.code_end();
  2987     *code = (unsigned int)0xc0839040;
  2988     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2989   %}
  2991   enc_class emit_fadd_nop() %{
  2992     // Generates the instruction FMOVS f31,f31
  2993     unsigned int *code = (unsigned int*)cbuf.code_end();
  2994     *code = (unsigned int)0xbfa0003f;
  2995     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2996   %}
  2998   enc_class emit_br_nop() %{
  2999     // Generates the instruction BPN,PN .
  3000     unsigned int *code = (unsigned int*)cbuf.code_end();
  3001     *code = (unsigned int)0x00400000;
  3002     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3003   %}
  3005   enc_class enc_membar_acquire %{
  3006     MacroAssembler _masm(&cbuf);
  3007     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3008   %}
  3010   enc_class enc_membar_release %{
  3011     MacroAssembler _masm(&cbuf);
  3012     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3013   %}
  3015   enc_class enc_membar_volatile %{
  3016     MacroAssembler _masm(&cbuf);
  3017     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3018   %}
  3019   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3020     MacroAssembler _masm(&cbuf);
  3021     Register src_reg = reg_to_register_object($src$$reg);
  3022     Register dst_reg = reg_to_register_object($dst$$reg);
  3023     __ sllx(src_reg, 56, dst_reg);
  3024     __ srlx(dst_reg,  8, O7);
  3025     __ or3 (dst_reg, O7, dst_reg);
  3026     __ srlx(dst_reg, 16, O7);
  3027     __ or3 (dst_reg, O7, dst_reg);
  3028     __ srlx(dst_reg, 32, O7);
  3029     __ or3 (dst_reg, O7, dst_reg);
  3030   %}
  3032   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3033     MacroAssembler _masm(&cbuf);
  3034     Register src_reg = reg_to_register_object($src$$reg);
  3035     Register dst_reg = reg_to_register_object($dst$$reg);
  3036     __ sll(src_reg, 24, dst_reg);
  3037     __ srl(dst_reg,  8, O7);
  3038     __ or3(dst_reg, O7, dst_reg);
  3039     __ srl(dst_reg, 16, O7);
  3040     __ or3(dst_reg, O7, dst_reg);
  3041   %}
  3043   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3044     MacroAssembler _masm(&cbuf);
  3045     Register src_reg = reg_to_register_object($src$$reg);
  3046     Register dst_reg = reg_to_register_object($dst$$reg);
  3047     __ sllx(src_reg, 48, dst_reg);
  3048     __ srlx(dst_reg, 16, O7);
  3049     __ or3 (dst_reg, O7, dst_reg);
  3050     __ srlx(dst_reg, 32, O7);
  3051     __ or3 (dst_reg, O7, dst_reg);
  3052   %}
  3054   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3055     MacroAssembler _masm(&cbuf);
  3056     Register src_reg = reg_to_register_object($src$$reg);
  3057     Register dst_reg = reg_to_register_object($dst$$reg);
  3058     __ sllx(src_reg, 32, dst_reg);
  3059     __ srlx(dst_reg, 32, O7);
  3060     __ or3 (dst_reg, O7, dst_reg);
  3061   %}
  3063 %}
  3065 //----------FRAME--------------------------------------------------------------
  3066 // Definition of frame structure and management information.
  3067 //
  3068 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3069 //                             |   (to get allocators register number
  3070 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3071 //  r   CALLER     |        |
  3072 //  o     |        +--------+      pad to even-align allocators stack-slot
  3073 //  w     V        |  pad0  |        numbers; owned by CALLER
  3074 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3075 //  h     ^        |   in   |  5
  3076 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3077 //  |     |        |        |  3
  3078 //  |     |        +--------+
  3079 //  V     |        | old out|      Empty on Intel, window on Sparc
  3080 //        |    old |preserve|      Must be even aligned.
  3081 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3082 //        |        |   in   |  3   area for Intel ret address
  3083 //     Owned by    |preserve|      Empty on Sparc.
  3084 //       SELF      +--------+
  3085 //        |        |  pad2  |  2   pad to align old SP
  3086 //        |        +--------+  1
  3087 //        |        | locks  |  0
  3088 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3089 //        |        |  pad1  | 11   pad to align new SP
  3090 //        |        +--------+
  3091 //        |        |        | 10
  3092 //        |        | spills |  9   spills
  3093 //        V        |        |  8   (pad0 slot for callee)
  3094 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3095 //        ^        |  out   |  7
  3096 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3097 //     Owned by    +--------+
  3098 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3099 //        |    new |preserve|      Must be even-aligned.
  3100 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3101 //        |        |        |
  3102 //
  3103 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3104 //         known from SELF's arguments and the Java calling convention.
  3105 //         Region 6-7 is determined per call site.
  3106 // Note 2: If the calling convention leaves holes in the incoming argument
  3107 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3108 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3109 //         incoming area, as the Java calling convention is completely under
  3110 //         the control of the AD file.  Doubles can be sorted and packed to
  3111 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3112 //         varargs C calling conventions.
  3113 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3114 //         even aligned with pad0 as needed.
  3115 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3116 //         region 6-11 is even aligned; it may be padded out more so that
  3117 //         the region from SP to FP meets the minimum stack alignment.
  3119 frame %{
  3120   // What direction does stack grow in (assumed to be same for native & Java)
  3121   stack_direction(TOWARDS_LOW);
  3123   // These two registers define part of the calling convention
  3124   // between compiled code and the interpreter.
  3125   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3126   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3128   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3129   cisc_spilling_operand_name(indOffset);
  3131   // Number of stack slots consumed by a Monitor enter
  3132 #ifdef _LP64
  3133   sync_stack_slots(2);
  3134 #else
  3135   sync_stack_slots(1);
  3136 #endif
  3138   // Compiled code's Frame Pointer
  3139   frame_pointer(R_SP);
  3141   // Stack alignment requirement
  3142   stack_alignment(StackAlignmentInBytes);
  3143   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3144   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3146   // Number of stack slots between incoming argument block and the start of
  3147   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3148   // EPILOG must remove this many slots.
  3149   in_preserve_stack_slots(0);
  3151   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3152   // for calls to C.  Supports the var-args backing area for register parms.
  3153   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3154 #ifdef _LP64
  3155   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3156   varargs_C_out_slots_killed(12);
  3157 #else
  3158   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3159   varargs_C_out_slots_killed( 7);
  3160 #endif
  3162   // The after-PROLOG location of the return address.  Location of
  3163   // return address specifies a type (REG or STACK) and a number
  3164   // representing the register number (i.e. - use a register name) or
  3165   // stack slot.
  3166   return_addr(REG R_I7);          // Ret Addr is in register I7
  3168   // Body of function which returns an OptoRegs array locating
  3169   // arguments either in registers or in stack slots for calling
  3170   // java
  3171   calling_convention %{
  3172     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3174   %}
  3176   // Body of function which returns an OptoRegs array locating
  3177   // arguments either in registers or in stack slots for callin
  3178   // C.
  3179   c_calling_convention %{
  3180     // This is obviously always outgoing
  3181     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3182   %}
  3184   // Location of native (C/C++) and interpreter return values.  This is specified to
  3185   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3186   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3187   // to and from the register pairs is done by the appropriate call and epilog
  3188   // opcodes.  This simplifies the register allocator.
  3189   c_return_value %{
  3190     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3191 #ifdef     _LP64
  3192     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3193     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3194     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3195     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3196 #else  // !_LP64
  3197     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3198     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3199     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3200     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3201 #endif
  3202     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3203                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3204   %}
  3206   // Location of compiled Java return values.  Same as C
  3207   return_value %{
  3208     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3209 #ifdef     _LP64
  3210     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3211     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3212     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3213     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3214 #else  // !_LP64
  3215     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3216     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3217     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3218     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3219 #endif
  3220     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3221                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3222   %}
  3224 %}
  3227 //----------ATTRIBUTES---------------------------------------------------------
  3228 //----------Operand Attributes-------------------------------------------------
  3229 op_attrib op_cost(1);          // Required cost attribute
  3231 //----------Instruction Attributes---------------------------------------------
  3232 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3233 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3234 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3235 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3236                                 // non-matching short branch variant of some
  3237                                                             // long branch?
  3239 //----------OPERANDS-----------------------------------------------------------
  3240 // Operand definitions must precede instruction definitions for correct parsing
  3241 // in the ADLC because operands constitute user defined types which are used in
  3242 // instruction definitions.
  3244 //----------Simple Operands----------------------------------------------------
  3245 // Immediate Operands
  3246 // Integer Immediate: 32-bit
  3247 operand immI() %{
  3248   match(ConI);
  3250   op_cost(0);
  3251   // formats are generated automatically for constants and base registers
  3252   format %{ %}
  3253   interface(CONST_INTER);
  3254 %}
  3256 // Integer Immediate: 13-bit
  3257 operand immI13() %{
  3258   predicate(Assembler::is_simm13(n->get_int()));
  3259   match(ConI);
  3260   op_cost(0);
  3262   format %{ %}
  3263   interface(CONST_INTER);
  3264 %}
  3266 // Unsigned (positive) Integer Immediate: 13-bit
  3267 operand immU13() %{
  3268   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3269   match(ConI);
  3270   op_cost(0);
  3272   format %{ %}
  3273   interface(CONST_INTER);
  3274 %}
  3276 // Integer Immediate: 6-bit
  3277 operand immU6() %{
  3278   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3279   match(ConI);
  3280   op_cost(0);
  3281   format %{ %}
  3282   interface(CONST_INTER);
  3283 %}
  3285 // Integer Immediate: 11-bit
  3286 operand immI11() %{
  3287   predicate(Assembler::is_simm(n->get_int(),11));
  3288   match(ConI);
  3289   op_cost(0);
  3290   format %{ %}
  3291   interface(CONST_INTER);
  3292 %}
  3294 // Integer Immediate: 0-bit
  3295 operand immI0() %{
  3296   predicate(n->get_int() == 0);
  3297   match(ConI);
  3298   op_cost(0);
  3300   format %{ %}
  3301   interface(CONST_INTER);
  3302 %}
  3304 // Integer Immediate: the value 10
  3305 operand immI10() %{
  3306   predicate(n->get_int() == 10);
  3307   match(ConI);
  3308   op_cost(0);
  3310   format %{ %}
  3311   interface(CONST_INTER);
  3312 %}
  3314 // Integer Immediate: the values 0-31
  3315 operand immU5() %{
  3316   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3317   match(ConI);
  3318   op_cost(0);
  3320   format %{ %}
  3321   interface(CONST_INTER);
  3322 %}
  3324 // Integer Immediate: the values 1-31
  3325 operand immI_1_31() %{
  3326   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3327   match(ConI);
  3328   op_cost(0);
  3330   format %{ %}
  3331   interface(CONST_INTER);
  3332 %}
  3334 // Integer Immediate: the values 32-63
  3335 operand immI_32_63() %{
  3336   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3337   match(ConI);
  3338   op_cost(0);
  3340   format %{ %}
  3341   interface(CONST_INTER);
  3342 %}
  3344 // Integer Immediate: the value 255
  3345 operand immI_255() %{
  3346   predicate( n->get_int() == 255 );
  3347   match(ConI);
  3348   op_cost(0);
  3350   format %{ %}
  3351   interface(CONST_INTER);
  3352 %}
  3354 // Long Immediate: the value FF
  3355 operand immL_FF() %{
  3356   predicate( n->get_long() == 0xFFL );
  3357   match(ConL);
  3358   op_cost(0);
  3360   format %{ %}
  3361   interface(CONST_INTER);
  3362 %}
  3364 // Long Immediate: the value FFFF
  3365 operand immL_FFFF() %{
  3366   predicate( n->get_long() == 0xFFFFL );
  3367   match(ConL);
  3368   op_cost(0);
  3370   format %{ %}
  3371   interface(CONST_INTER);
  3372 %}
  3374 // Pointer Immediate: 32 or 64-bit
  3375 operand immP() %{
  3376   match(ConP);
  3378   op_cost(5);
  3379   // formats are generated automatically for constants and base registers
  3380   format %{ %}
  3381   interface(CONST_INTER);
  3382 %}
  3384 operand immP13() %{
  3385   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3386   match(ConP);
  3387   op_cost(0);
  3389   format %{ %}
  3390   interface(CONST_INTER);
  3391 %}
  3393 operand immP0() %{
  3394   predicate(n->get_ptr() == 0);
  3395   match(ConP);
  3396   op_cost(0);
  3398   format %{ %}
  3399   interface(CONST_INTER);
  3400 %}
  3402 operand immP_poll() %{
  3403   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3404   match(ConP);
  3406   // formats are generated automatically for constants and base registers
  3407   format %{ %}
  3408   interface(CONST_INTER);
  3409 %}
  3411 operand immL() %{
  3412   match(ConL);
  3413   op_cost(40);
  3414   // formats are generated automatically for constants and base registers
  3415   format %{ %}
  3416   interface(CONST_INTER);
  3417 %}
  3419 operand immL0() %{
  3420   predicate(n->get_long() == 0L);
  3421   match(ConL);
  3422   op_cost(0);
  3423   // formats are generated automatically for constants and base registers
  3424   format %{ %}
  3425   interface(CONST_INTER);
  3426 %}
  3428 // Long Immediate: 13-bit
  3429 operand immL13() %{
  3430   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3431   match(ConL);
  3432   op_cost(0);
  3434   format %{ %}
  3435   interface(CONST_INTER);
  3436 %}
  3438 // Long Immediate: low 32-bit mask
  3439 operand immL_32bits() %{
  3440   predicate(n->get_long() == 0xFFFFFFFFL);
  3441   match(ConL);
  3442   op_cost(0);
  3444   format %{ %}
  3445   interface(CONST_INTER);
  3446 %}
  3448 // Double Immediate
  3449 operand immD() %{
  3450   match(ConD);
  3452   op_cost(40);
  3453   format %{ %}
  3454   interface(CONST_INTER);
  3455 %}
  3457 operand immD0() %{
  3458 #ifdef _LP64
  3459   // on 64-bit architectures this comparision is faster
  3460   predicate(jlong_cast(n->getd()) == 0);
  3461 #else
  3462   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3463 #endif
  3464   match(ConD);
  3466   op_cost(0);
  3467   format %{ %}
  3468   interface(CONST_INTER);
  3469 %}
  3471 // Float Immediate
  3472 operand immF() %{
  3473   match(ConF);
  3475   op_cost(20);
  3476   format %{ %}
  3477   interface(CONST_INTER);
  3478 %}
  3480 // Float Immediate: 0
  3481 operand immF0() %{
  3482   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3483   match(ConF);
  3485   op_cost(0);
  3486   format %{ %}
  3487   interface(CONST_INTER);
  3488 %}
  3490 // Integer Register Operands
  3491 // Integer Register
  3492 operand iRegI() %{
  3493   constraint(ALLOC_IN_RC(int_reg));
  3494   match(RegI);
  3496   match(notemp_iRegI);
  3497   match(g1RegI);
  3498   match(o0RegI);
  3499   match(iRegIsafe);
  3501   format %{ %}
  3502   interface(REG_INTER);
  3503 %}
  3505 operand notemp_iRegI() %{
  3506   constraint(ALLOC_IN_RC(notemp_int_reg));
  3507   match(RegI);
  3509   match(o0RegI);
  3511   format %{ %}
  3512   interface(REG_INTER);
  3513 %}
  3515 operand o0RegI() %{
  3516   constraint(ALLOC_IN_RC(o0_regI));
  3517   match(iRegI);
  3519   format %{ %}
  3520   interface(REG_INTER);
  3521 %}
  3523 // Pointer Register
  3524 operand iRegP() %{
  3525   constraint(ALLOC_IN_RC(ptr_reg));
  3526   match(RegP);
  3528   match(lock_ptr_RegP);
  3529   match(g1RegP);
  3530   match(g2RegP);
  3531   match(g3RegP);
  3532   match(g4RegP);
  3533   match(i0RegP);
  3534   match(o0RegP);
  3535   match(o1RegP);
  3536   match(l7RegP);
  3538   format %{ %}
  3539   interface(REG_INTER);
  3540 %}
  3542 operand sp_ptr_RegP() %{
  3543   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3544   match(RegP);
  3545   match(iRegP);
  3547   format %{ %}
  3548   interface(REG_INTER);
  3549 %}
  3551 operand lock_ptr_RegP() %{
  3552   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3553   match(RegP);
  3554   match(i0RegP);
  3555   match(o0RegP);
  3556   match(o1RegP);
  3557   match(l7RegP);
  3559   format %{ %}
  3560   interface(REG_INTER);
  3561 %}
  3563 operand g1RegP() %{
  3564   constraint(ALLOC_IN_RC(g1_regP));
  3565   match(iRegP);
  3567   format %{ %}
  3568   interface(REG_INTER);
  3569 %}
  3571 operand g2RegP() %{
  3572   constraint(ALLOC_IN_RC(g2_regP));
  3573   match(iRegP);
  3575   format %{ %}
  3576   interface(REG_INTER);
  3577 %}
  3579 operand g3RegP() %{
  3580   constraint(ALLOC_IN_RC(g3_regP));
  3581   match(iRegP);
  3583   format %{ %}
  3584   interface(REG_INTER);
  3585 %}
  3587 operand g1RegI() %{
  3588   constraint(ALLOC_IN_RC(g1_regI));
  3589   match(iRegI);
  3591   format %{ %}
  3592   interface(REG_INTER);
  3593 %}
  3595 operand g3RegI() %{
  3596   constraint(ALLOC_IN_RC(g3_regI));
  3597   match(iRegI);
  3599   format %{ %}
  3600   interface(REG_INTER);
  3601 %}
  3603 operand g4RegI() %{
  3604   constraint(ALLOC_IN_RC(g4_regI));
  3605   match(iRegI);
  3607   format %{ %}
  3608   interface(REG_INTER);
  3609 %}
  3611 operand g4RegP() %{
  3612   constraint(ALLOC_IN_RC(g4_regP));
  3613   match(iRegP);
  3615   format %{ %}
  3616   interface(REG_INTER);
  3617 %}
  3619 operand i0RegP() %{
  3620   constraint(ALLOC_IN_RC(i0_regP));
  3621   match(iRegP);
  3623   format %{ %}
  3624   interface(REG_INTER);
  3625 %}
  3627 operand o0RegP() %{
  3628   constraint(ALLOC_IN_RC(o0_regP));
  3629   match(iRegP);
  3631   format %{ %}
  3632   interface(REG_INTER);
  3633 %}
  3635 operand o1RegP() %{
  3636   constraint(ALLOC_IN_RC(o1_regP));
  3637   match(iRegP);
  3639   format %{ %}
  3640   interface(REG_INTER);
  3641 %}
  3643 operand o2RegP() %{
  3644   constraint(ALLOC_IN_RC(o2_regP));
  3645   match(iRegP);
  3647   format %{ %}
  3648   interface(REG_INTER);
  3649 %}
  3651 operand o7RegP() %{
  3652   constraint(ALLOC_IN_RC(o7_regP));
  3653   match(iRegP);
  3655   format %{ %}
  3656   interface(REG_INTER);
  3657 %}
  3659 operand l7RegP() %{
  3660   constraint(ALLOC_IN_RC(l7_regP));
  3661   match(iRegP);
  3663   format %{ %}
  3664   interface(REG_INTER);
  3665 %}
  3667 operand o7RegI() %{
  3668   constraint(ALLOC_IN_RC(o7_regI));
  3669   match(iRegI);
  3671   format %{ %}
  3672   interface(REG_INTER);
  3673 %}
  3675 // Long Register
  3676 operand iRegL() %{
  3677   constraint(ALLOC_IN_RC(long_reg));
  3678   match(RegL);
  3680   format %{ %}
  3681   interface(REG_INTER);
  3682 %}
  3684 operand o2RegL() %{
  3685   constraint(ALLOC_IN_RC(o2_regL));
  3686   match(iRegL);
  3688   format %{ %}
  3689   interface(REG_INTER);
  3690 %}
  3692 operand o7RegL() %{
  3693   constraint(ALLOC_IN_RC(o7_regL));
  3694   match(iRegL);
  3696   format %{ %}
  3697   interface(REG_INTER);
  3698 %}
  3700 operand g1RegL() %{
  3701   constraint(ALLOC_IN_RC(g1_regL));
  3702   match(iRegL);
  3704   format %{ %}
  3705   interface(REG_INTER);
  3706 %}
  3708 // Int Register safe
  3709 // This is 64bit safe
  3710 operand iRegIsafe() %{
  3711   constraint(ALLOC_IN_RC(long_reg));
  3713   match(iRegI);
  3715   format %{ %}
  3716   interface(REG_INTER);
  3717 %}
  3719 // Condition Code Flag Register
  3720 operand flagsReg() %{
  3721   constraint(ALLOC_IN_RC(int_flags));
  3722   match(RegFlags);
  3724   format %{ "ccr" %} // both ICC and XCC
  3725   interface(REG_INTER);
  3726 %}
  3728 // Condition Code Register, unsigned comparisons.
  3729 operand flagsRegU() %{
  3730   constraint(ALLOC_IN_RC(int_flags));
  3731   match(RegFlags);
  3733   format %{ "icc_U" %}
  3734   interface(REG_INTER);
  3735 %}
  3737 // Condition Code Register, pointer comparisons.
  3738 operand flagsRegP() %{
  3739   constraint(ALLOC_IN_RC(int_flags));
  3740   match(RegFlags);
  3742 #ifdef _LP64
  3743   format %{ "xcc_P" %}
  3744 #else
  3745   format %{ "icc_P" %}
  3746 #endif
  3747   interface(REG_INTER);
  3748 %}
  3750 // Condition Code Register, long comparisons.
  3751 operand flagsRegL() %{
  3752   constraint(ALLOC_IN_RC(int_flags));
  3753   match(RegFlags);
  3755   format %{ "xcc_L" %}
  3756   interface(REG_INTER);
  3757 %}
  3759 // Condition Code Register, floating comparisons, unordered same as "less".
  3760 operand flagsRegF() %{
  3761   constraint(ALLOC_IN_RC(float_flags));
  3762   match(RegFlags);
  3763   match(flagsRegF0);
  3765   format %{ %}
  3766   interface(REG_INTER);
  3767 %}
  3769 operand flagsRegF0() %{
  3770   constraint(ALLOC_IN_RC(float_flag0));
  3771   match(RegFlags);
  3773   format %{ %}
  3774   interface(REG_INTER);
  3775 %}
  3778 // Condition Code Flag Register used by long compare
  3779 operand flagsReg_long_LTGE() %{
  3780   constraint(ALLOC_IN_RC(int_flags));
  3781   match(RegFlags);
  3782   format %{ "icc_LTGE" %}
  3783   interface(REG_INTER);
  3784 %}
  3785 operand flagsReg_long_EQNE() %{
  3786   constraint(ALLOC_IN_RC(int_flags));
  3787   match(RegFlags);
  3788   format %{ "icc_EQNE" %}
  3789   interface(REG_INTER);
  3790 %}
  3791 operand flagsReg_long_LEGT() %{
  3792   constraint(ALLOC_IN_RC(int_flags));
  3793   match(RegFlags);
  3794   format %{ "icc_LEGT" %}
  3795   interface(REG_INTER);
  3796 %}
  3799 operand regD() %{
  3800   constraint(ALLOC_IN_RC(dflt_reg));
  3801   match(RegD);
  3803   format %{ %}
  3804   interface(REG_INTER);
  3805 %}
  3807 operand regF() %{
  3808   constraint(ALLOC_IN_RC(sflt_reg));
  3809   match(RegF);
  3811   format %{ %}
  3812   interface(REG_INTER);
  3813 %}
  3815 operand regD_low() %{
  3816   constraint(ALLOC_IN_RC(dflt_low_reg));
  3817   match(RegD);
  3819   format %{ %}
  3820   interface(REG_INTER);
  3821 %}
  3823 // Special Registers
  3825 // Method Register
  3826 operand inline_cache_regP(iRegP reg) %{
  3827   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  3828   match(reg);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand interpreter_method_oop_regP(iRegP reg) %{
  3834   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  3835   match(reg);
  3836   format %{ %}
  3837   interface(REG_INTER);
  3838 %}
  3841 //----------Complex Operands---------------------------------------------------
  3842 // Indirect Memory Reference
  3843 operand indirect(sp_ptr_RegP reg) %{
  3844   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3845   match(reg);
  3847   op_cost(100);
  3848   format %{ "[$reg]" %}
  3849   interface(MEMORY_INTER) %{
  3850     base($reg);
  3851     index(0x0);
  3852     scale(0x0);
  3853     disp(0x0);
  3854   %}
  3855 %}
  3857 // Indirect with Offset
  3858 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  3859   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3860   match(AddP reg offset);
  3862   op_cost(100);
  3863   format %{ "[$reg + $offset]" %}
  3864   interface(MEMORY_INTER) %{
  3865     base($reg);
  3866     index(0x0);
  3867     scale(0x0);
  3868     disp($offset);
  3869   %}
  3870 %}
  3872 // Note:  Intel has a swapped version also, like this:
  3873 //operand indOffsetX(iRegI reg, immP offset) %{
  3874 //  constraint(ALLOC_IN_RC(int_reg));
  3875 //  match(AddP offset reg);
  3876 //
  3877 //  op_cost(100);
  3878 //  format %{ "[$reg + $offset]" %}
  3879 //  interface(MEMORY_INTER) %{
  3880 //    base($reg);
  3881 //    index(0x0);
  3882 //    scale(0x0);
  3883 //    disp($offset);
  3884 //  %}
  3885 //%}
  3886 //// However, it doesn't make sense for SPARC, since
  3887 // we have no particularly good way to embed oops in
  3888 // single instructions.
  3890 // Indirect with Register Index
  3891 operand indIndex(iRegP addr, iRegX index) %{
  3892   constraint(ALLOC_IN_RC(ptr_reg));
  3893   match(AddP addr index);
  3895   op_cost(100);
  3896   format %{ "[$addr + $index]" %}
  3897   interface(MEMORY_INTER) %{
  3898     base($addr);
  3899     index($index);
  3900     scale(0x0);
  3901     disp(0x0);
  3902   %}
  3903 %}
  3905 //----------Special Memory Operands--------------------------------------------
  3906 // Stack Slot Operand - This operand is used for loading and storing temporary
  3907 //                      values on the stack where a match requires a value to
  3908 //                      flow through memory.
  3909 operand stackSlotI(sRegI reg) %{
  3910   constraint(ALLOC_IN_RC(stack_slots));
  3911   op_cost(100);
  3912   //match(RegI);
  3913   format %{ "[$reg]" %}
  3914   interface(MEMORY_INTER) %{
  3915     base(0xE);   // R_SP
  3916     index(0x0);
  3917     scale(0x0);
  3918     disp($reg);  // Stack Offset
  3919   %}
  3920 %}
  3922 operand stackSlotP(sRegP reg) %{
  3923   constraint(ALLOC_IN_RC(stack_slots));
  3924   op_cost(100);
  3925   //match(RegP);
  3926   format %{ "[$reg]" %}
  3927   interface(MEMORY_INTER) %{
  3928     base(0xE);   // R_SP
  3929     index(0x0);
  3930     scale(0x0);
  3931     disp($reg);  // Stack Offset
  3932   %}
  3933 %}
  3935 operand stackSlotF(sRegF reg) %{
  3936   constraint(ALLOC_IN_RC(stack_slots));
  3937   op_cost(100);
  3938   //match(RegF);
  3939   format %{ "[$reg]" %}
  3940   interface(MEMORY_INTER) %{
  3941     base(0xE);   // R_SP
  3942     index(0x0);
  3943     scale(0x0);
  3944     disp($reg);  // Stack Offset
  3945   %}
  3946 %}
  3947 operand stackSlotD(sRegD reg) %{
  3948   constraint(ALLOC_IN_RC(stack_slots));
  3949   op_cost(100);
  3950   //match(RegD);
  3951   format %{ "[$reg]" %}
  3952   interface(MEMORY_INTER) %{
  3953     base(0xE);   // R_SP
  3954     index(0x0);
  3955     scale(0x0);
  3956     disp($reg);  // Stack Offset
  3957   %}
  3958 %}
  3959 operand stackSlotL(sRegL reg) %{
  3960   constraint(ALLOC_IN_RC(stack_slots));
  3961   op_cost(100);
  3962   //match(RegL);
  3963   format %{ "[$reg]" %}
  3964   interface(MEMORY_INTER) %{
  3965     base(0xE);   // R_SP
  3966     index(0x0);
  3967     scale(0x0);
  3968     disp($reg);  // Stack Offset
  3969   %}
  3970 %}
  3972 // Operands for expressing Control Flow
  3973 // NOTE:  Label is a predefined operand which should not be redefined in
  3974 //        the AD file.  It is generically handled within the ADLC.
  3976 //----------Conditional Branch Operands----------------------------------------
  3977 // Comparison Op  - This is the operation of the comparison, and is limited to
  3978 //                  the following set of codes:
  3979 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  3980 //
  3981 // Other attributes of the comparison, such as unsignedness, are specified
  3982 // by the comparison instruction that sets a condition code flags register.
  3983 // That result is represented by a flags operand whose subtype is appropriate
  3984 // to the unsignedness (etc.) of the comparison.
  3985 //
  3986 // Later, the instruction which matches both the Comparison Op (a Bool) and
  3987 // the flags (produced by the Cmp) specifies the coding of the comparison op
  3988 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  3990 operand cmpOp() %{
  3991   match(Bool);
  3993   format %{ "" %}
  3994   interface(COND_INTER) %{
  3995     equal(0x1);
  3996     not_equal(0x9);
  3997     less(0x3);
  3998     greater_equal(0xB);
  3999     less_equal(0x2);
  4000     greater(0xA);
  4001   %}
  4002 %}
  4004 // Comparison Op, unsigned
  4005 operand cmpOpU() %{
  4006   match(Bool);
  4008   format %{ "u" %}
  4009   interface(COND_INTER) %{
  4010     equal(0x1);
  4011     not_equal(0x9);
  4012     less(0x5);
  4013     greater_equal(0xD);
  4014     less_equal(0x4);
  4015     greater(0xC);
  4016   %}
  4017 %}
  4019 // Comparison Op, pointer (same as unsigned)
  4020 operand cmpOpP() %{
  4021   match(Bool);
  4023   format %{ "p" %}
  4024   interface(COND_INTER) %{
  4025     equal(0x1);
  4026     not_equal(0x9);
  4027     less(0x5);
  4028     greater_equal(0xD);
  4029     less_equal(0x4);
  4030     greater(0xC);
  4031   %}
  4032 %}
  4034 // Comparison Op, branch-register encoding
  4035 operand cmpOp_reg() %{
  4036   match(Bool);
  4038   format %{ "" %}
  4039   interface(COND_INTER) %{
  4040     equal        (0x1);
  4041     not_equal    (0x5);
  4042     less         (0x3);
  4043     greater_equal(0x7);
  4044     less_equal   (0x2);
  4045     greater      (0x6);
  4046   %}
  4047 %}
  4049 // Comparison Code, floating, unordered same as less
  4050 operand cmpOpF() %{
  4051   match(Bool);
  4053   format %{ "fl" %}
  4054   interface(COND_INTER) %{
  4055     equal(0x9);
  4056     not_equal(0x1);
  4057     less(0x3);
  4058     greater_equal(0xB);
  4059     less_equal(0xE);
  4060     greater(0x6);
  4061   %}
  4062 %}
  4064 // Used by long compare
  4065 operand cmpOp_commute() %{
  4066   match(Bool);
  4068   format %{ "" %}
  4069   interface(COND_INTER) %{
  4070     equal(0x1);
  4071     not_equal(0x9);
  4072     less(0xA);
  4073     greater_equal(0x2);
  4074     less_equal(0xB);
  4075     greater(0x3);
  4076   %}
  4077 %}
  4079 //----------OPERAND CLASSES----------------------------------------------------
  4080 // Operand Classes are groups of operands that are used to simplify
  4081 // instruction definitions by not requiring the AD writer to specify seperate
  4082 // instructions for every form of operand when the instruction accepts
  4083 // multiple operand types with the same basic encoding and format.  The classic
  4084 // case of this is memory operands.
  4085 // Indirect is not included since its use is limited to Compare & Swap
  4086 opclass memory( indirect, indOffset13, indIndex );
  4088 //----------PIPELINE-----------------------------------------------------------
  4089 pipeline %{
  4091 //----------ATTRIBUTES---------------------------------------------------------
  4092 attributes %{
  4093   fixed_size_instructions;           // Fixed size instructions
  4094   branch_has_delay_slot;             // Branch has delay slot following
  4095   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4096   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4097   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4098   instruction_fetch_units = 1;       // of 16 bytes
  4100   // List of nop instructions
  4101   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4102 %}
  4104 //----------RESOURCES----------------------------------------------------------
  4105 // Resources are the functional units available to the machine
  4106 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4108 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4109 // Pipeline Description specifies the stages in the machine's pipeline
  4111 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4113 //----------PIPELINE CLASSES---------------------------------------------------
  4114 // Pipeline Classes describe the stages in which input and output are
  4115 // referenced by the hardware pipeline.
  4117 // Integer ALU reg-reg operation
  4118 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4119     single_instruction;
  4120     dst   : E(write);
  4121     src1  : R(read);
  4122     src2  : R(read);
  4123     IALU  : R;
  4124 %}
  4126 // Integer ALU reg-reg long operation
  4127 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4128     instruction_count(2);
  4129     dst   : E(write);
  4130     src1  : R(read);
  4131     src2  : R(read);
  4132     IALU  : R;
  4133     IALU  : R;
  4134 %}
  4136 // Integer ALU reg-reg long dependent operation
  4137 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4138     instruction_count(1); multiple_bundles;
  4139     dst   : E(write);
  4140     src1  : R(read);
  4141     src2  : R(read);
  4142     cr    : E(write);
  4143     IALU  : R(2);
  4144 %}
  4146 // Integer ALU reg-imm operaion
  4147 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4148     single_instruction;
  4149     dst   : E(write);
  4150     src1  : R(read);
  4151     IALU  : R;
  4152 %}
  4154 // Integer ALU reg-reg operation with condition code
  4155 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4156     single_instruction;
  4157     dst   : E(write);
  4158     cr    : E(write);
  4159     src1  : R(read);
  4160     src2  : R(read);
  4161     IALU  : R;
  4162 %}
  4164 // Integer ALU reg-imm operation with condition code
  4165 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4166     single_instruction;
  4167     dst   : E(write);
  4168     cr    : E(write);
  4169     src1  : R(read);
  4170     IALU  : R;
  4171 %}
  4173 // Integer ALU zero-reg operation
  4174 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4175     single_instruction;
  4176     dst   : E(write);
  4177     src2  : R(read);
  4178     IALU  : R;
  4179 %}
  4181 // Integer ALU zero-reg operation with condition code only
  4182 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4183     single_instruction;
  4184     cr    : E(write);
  4185     src   : R(read);
  4186     IALU  : R;
  4187 %}
  4189 // Integer ALU reg-reg operation with condition code only
  4190 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4191     single_instruction;
  4192     cr    : E(write);
  4193     src1  : R(read);
  4194     src2  : R(read);
  4195     IALU  : R;
  4196 %}
  4198 // Integer ALU reg-imm operation with condition code only
  4199 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4200     single_instruction;
  4201     cr    : E(write);
  4202     src1  : R(read);
  4203     IALU  : R;
  4204 %}
  4206 // Integer ALU reg-reg-zero operation with condition code only
  4207 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4208     single_instruction;
  4209     cr    : E(write);
  4210     src1  : R(read);
  4211     src2  : R(read);
  4212     IALU  : R;
  4213 %}
  4215 // Integer ALU reg-imm-zero operation with condition code only
  4216 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4217     single_instruction;
  4218     cr    : E(write);
  4219     src1  : R(read);
  4220     IALU  : R;
  4221 %}
  4223 // Integer ALU reg-reg operation with condition code, src1 modified
  4224 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4225     single_instruction;
  4226     cr    : E(write);
  4227     src1  : E(write);
  4228     src1  : R(read);
  4229     src2  : R(read);
  4230     IALU  : R;
  4231 %}
  4233 // Integer ALU reg-imm operation with condition code, src1 modified
  4234 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4235     single_instruction;
  4236     cr    : E(write);
  4237     src1  : E(write);
  4238     src1  : R(read);
  4239     IALU  : R;
  4240 %}
  4242 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4243     multiple_bundles;
  4244     dst   : E(write)+4;
  4245     cr    : E(write);
  4246     src1  : R(read);
  4247     src2  : R(read);
  4248     IALU  : R(3);
  4249     BR    : R(2);
  4250 %}
  4252 // Integer ALU operation
  4253 pipe_class ialu_none(iRegI dst) %{
  4254     single_instruction;
  4255     dst   : E(write);
  4256     IALU  : R;
  4257 %}
  4259 // Integer ALU reg operation
  4260 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4261     single_instruction; may_have_no_code;
  4262     dst   : E(write);
  4263     src   : R(read);
  4264     IALU  : R;
  4265 %}
  4267 // Integer ALU reg conditional operation
  4268 // This instruction has a 1 cycle stall, and cannot execute
  4269 // in the same cycle as the instruction setting the condition
  4270 // code. We kludge this by pretending to read the condition code
  4271 // 1 cycle earlier, and by marking the functional units as busy
  4272 // for 2 cycles with the result available 1 cycle later than
  4273 // is really the case.
  4274 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4275     single_instruction;
  4276     op2_out : C(write);
  4277     op1     : R(read);
  4278     cr      : R(read);       // This is really E, with a 1 cycle stall
  4279     BR      : R(2);
  4280     MS      : R(2);
  4281 %}
  4283 #ifdef _LP64
  4284 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4285     instruction_count(1); multiple_bundles;
  4286     dst     : C(write)+1;
  4287     src     : R(read)+1;
  4288     IALU    : R(1);
  4289     BR      : E(2);
  4290     MS      : E(2);
  4291 %}
  4292 #endif
  4294 // Integer ALU reg operation
  4295 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4296     single_instruction; may_have_no_code;
  4297     dst   : E(write);
  4298     src   : R(read);
  4299     IALU  : R;
  4300 %}
  4301 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4302     single_instruction; may_have_no_code;
  4303     dst   : E(write);
  4304     src   : R(read);
  4305     IALU  : R;
  4306 %}
  4308 // Two integer ALU reg operations
  4309 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4310     instruction_count(2);
  4311     dst   : E(write);
  4312     src   : R(read);
  4313     A0    : R;
  4314     A1    : R;
  4315 %}
  4317 // Two integer ALU reg operations
  4318 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4319     instruction_count(2); may_have_no_code;
  4320     dst   : E(write);
  4321     src   : R(read);
  4322     A0    : R;
  4323     A1    : R;
  4324 %}
  4326 // Integer ALU imm operation
  4327 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4328     single_instruction;
  4329     dst   : E(write);
  4330     IALU  : R;
  4331 %}
  4333 // Integer ALU reg-reg with carry operation
  4334 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4335     single_instruction;
  4336     dst   : E(write);
  4337     src1  : R(read);
  4338     src2  : R(read);
  4339     IALU  : R;
  4340 %}
  4342 // Integer ALU cc operation
  4343 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4344     single_instruction;
  4345     dst   : E(write);
  4346     cc    : R(read);
  4347     IALU  : R;
  4348 %}
  4350 // Integer ALU cc / second IALU operation
  4351 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4352     instruction_count(1); multiple_bundles;
  4353     dst   : E(write)+1;
  4354     src   : R(read);
  4355     IALU  : R;
  4356 %}
  4358 // Integer ALU cc / second IALU operation
  4359 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4360     instruction_count(1); multiple_bundles;
  4361     dst   : E(write)+1;
  4362     p     : R(read);
  4363     q     : R(read);
  4364     IALU  : R;
  4365 %}
  4367 // Integer ALU hi-lo-reg operation
  4368 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4369     instruction_count(1); multiple_bundles;
  4370     dst   : E(write)+1;
  4371     IALU  : R(2);
  4372 %}
  4374 // Float ALU hi-lo-reg operation (with temp)
  4375 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4376     instruction_count(1); multiple_bundles;
  4377     dst   : E(write)+1;
  4378     IALU  : R(2);
  4379 %}
  4381 // Long Constant
  4382 pipe_class loadConL( iRegL dst, immL src ) %{
  4383     instruction_count(2); multiple_bundles;
  4384     dst   : E(write)+1;
  4385     IALU  : R(2);
  4386     IALU  : R(2);
  4387 %}
  4389 // Pointer Constant
  4390 pipe_class loadConP( iRegP dst, immP src ) %{
  4391     instruction_count(0); multiple_bundles;
  4392     fixed_latency(6);
  4393 %}
  4395 // Polling Address
  4396 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4397 #ifdef _LP64
  4398     instruction_count(0); multiple_bundles;
  4399     fixed_latency(6);
  4400 #else
  4401     dst   : E(write);
  4402     IALU  : R;
  4403 #endif
  4404 %}
  4406 // Long Constant small
  4407 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4408     instruction_count(2);
  4409     dst   : E(write);
  4410     IALU  : R;
  4411     IALU  : R;
  4412 %}
  4414 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4415 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4416     instruction_count(1); multiple_bundles;
  4417     src   : R(read);
  4418     dst   : M(write)+1;
  4419     IALU  : R;
  4420     MS    : E;
  4421 %}
  4423 // Integer ALU nop operation
  4424 pipe_class ialu_nop() %{
  4425     single_instruction;
  4426     IALU  : R;
  4427 %}
  4429 // Integer ALU nop operation
  4430 pipe_class ialu_nop_A0() %{
  4431     single_instruction;
  4432     A0    : R;
  4433 %}
  4435 // Integer ALU nop operation
  4436 pipe_class ialu_nop_A1() %{
  4437     single_instruction;
  4438     A1    : R;
  4439 %}
  4441 // Integer Multiply reg-reg operation
  4442 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4443     single_instruction;
  4444     dst   : E(write);
  4445     src1  : R(read);
  4446     src2  : R(read);
  4447     MS    : R(5);
  4448 %}
  4450 // Integer Multiply reg-imm operation
  4451 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4452     single_instruction;
  4453     dst   : E(write);
  4454     src1  : R(read);
  4455     MS    : R(5);
  4456 %}
  4458 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4459     single_instruction;
  4460     dst   : E(write)+4;
  4461     src1  : R(read);
  4462     src2  : R(read);
  4463     MS    : R(6);
  4464 %}
  4466 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4467     single_instruction;
  4468     dst   : E(write)+4;
  4469     src1  : R(read);
  4470     MS    : R(6);
  4471 %}
  4473 // Integer Divide reg-reg
  4474 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4475     instruction_count(1); multiple_bundles;
  4476     dst   : E(write);
  4477     temp  : E(write);
  4478     src1  : R(read);
  4479     src2  : R(read);
  4480     temp  : R(read);
  4481     MS    : R(38);
  4482 %}
  4484 // Integer Divide reg-imm
  4485 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4486     instruction_count(1); multiple_bundles;
  4487     dst   : E(write);
  4488     temp  : E(write);
  4489     src1  : R(read);
  4490     temp  : R(read);
  4491     MS    : R(38);
  4492 %}
  4494 // Long Divide
  4495 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4496     dst  : E(write)+71;
  4497     src1 : R(read);
  4498     src2 : R(read)+1;
  4499     MS   : R(70);
  4500 %}
  4502 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4503     dst  : E(write)+71;
  4504     src1 : R(read);
  4505     MS   : R(70);
  4506 %}
  4508 // Floating Point Add Float
  4509 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4510     single_instruction;
  4511     dst   : X(write);
  4512     src1  : E(read);
  4513     src2  : E(read);
  4514     FA    : R;
  4515 %}
  4517 // Floating Point Add Double
  4518 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4519     single_instruction;
  4520     dst   : X(write);
  4521     src1  : E(read);
  4522     src2  : E(read);
  4523     FA    : R;
  4524 %}
  4526 // Floating Point Conditional Move based on integer flags
  4527 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4528     single_instruction;
  4529     dst   : X(write);
  4530     src   : E(read);
  4531     cr    : R(read);
  4532     FA    : R(2);
  4533     BR    : R(2);
  4534 %}
  4536 // Floating Point Conditional Move based on integer flags
  4537 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4538     single_instruction;
  4539     dst   : X(write);
  4540     src   : E(read);
  4541     cr    : R(read);
  4542     FA    : R(2);
  4543     BR    : R(2);
  4544 %}
  4546 // Floating Point Multiply Float
  4547 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4548     single_instruction;
  4549     dst   : X(write);
  4550     src1  : E(read);
  4551     src2  : E(read);
  4552     FM    : R;
  4553 %}
  4555 // Floating Point Multiply Double
  4556 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4557     single_instruction;
  4558     dst   : X(write);
  4559     src1  : E(read);
  4560     src2  : E(read);
  4561     FM    : R;
  4562 %}
  4564 // Floating Point Divide Float
  4565 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4566     single_instruction;
  4567     dst   : X(write);
  4568     src1  : E(read);
  4569     src2  : E(read);
  4570     FM    : R;
  4571     FDIV  : C(14);
  4572 %}
  4574 // Floating Point Divide Double
  4575 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4576     single_instruction;
  4577     dst   : X(write);
  4578     src1  : E(read);
  4579     src2  : E(read);
  4580     FM    : R;
  4581     FDIV  : C(17);
  4582 %}
  4584 // Floating Point Move/Negate/Abs Float
  4585 pipe_class faddF_reg(regF dst, regF src) %{
  4586     single_instruction;
  4587     dst   : W(write);
  4588     src   : E(read);
  4589     FA    : R(1);
  4590 %}
  4592 // Floating Point Move/Negate/Abs Double
  4593 pipe_class faddD_reg(regD dst, regD src) %{
  4594     single_instruction;
  4595     dst   : W(write);
  4596     src   : E(read);
  4597     FA    : R;
  4598 %}
  4600 // Floating Point Convert F->D
  4601 pipe_class fcvtF2D(regD dst, regF src) %{
  4602     single_instruction;
  4603     dst   : X(write);
  4604     src   : E(read);
  4605     FA    : R;
  4606 %}
  4608 // Floating Point Convert I->D
  4609 pipe_class fcvtI2D(regD dst, regF src) %{
  4610     single_instruction;
  4611     dst   : X(write);
  4612     src   : E(read);
  4613     FA    : R;
  4614 %}
  4616 // Floating Point Convert LHi->D
  4617 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4618     single_instruction;
  4619     dst   : X(write);
  4620     src   : E(read);
  4621     FA    : R;
  4622 %}
  4624 // Floating Point Convert L->D
  4625 pipe_class fcvtL2D(regD dst, regF src) %{
  4626     single_instruction;
  4627     dst   : X(write);
  4628     src   : E(read);
  4629     FA    : R;
  4630 %}
  4632 // Floating Point Convert L->F
  4633 pipe_class fcvtL2F(regD dst, regF src) %{
  4634     single_instruction;
  4635     dst   : X(write);
  4636     src   : E(read);
  4637     FA    : R;
  4638 %}
  4640 // Floating Point Convert D->F
  4641 pipe_class fcvtD2F(regD dst, regF src) %{
  4642     single_instruction;
  4643     dst   : X(write);
  4644     src   : E(read);
  4645     FA    : R;
  4646 %}
  4648 // Floating Point Convert I->L
  4649 pipe_class fcvtI2L(regD dst, regF src) %{
  4650     single_instruction;
  4651     dst   : X(write);
  4652     src   : E(read);
  4653     FA    : R;
  4654 %}
  4656 // Floating Point Convert D->F
  4657 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4658     instruction_count(1); multiple_bundles;
  4659     dst   : X(write)+6;
  4660     src   : E(read);
  4661     FA    : R;
  4662 %}
  4664 // Floating Point Convert D->L
  4665 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4666     instruction_count(1); multiple_bundles;
  4667     dst   : X(write)+6;
  4668     src   : E(read);
  4669     FA    : R;
  4670 %}
  4672 // Floating Point Convert F->I
  4673 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4674     instruction_count(1); multiple_bundles;
  4675     dst   : X(write)+6;
  4676     src   : E(read);
  4677     FA    : R;
  4678 %}
  4680 // Floating Point Convert F->L
  4681 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4682     instruction_count(1); multiple_bundles;
  4683     dst   : X(write)+6;
  4684     src   : E(read);
  4685     FA    : R;
  4686 %}
  4688 // Floating Point Convert I->F
  4689 pipe_class fcvtI2F(regF dst, regF src) %{
  4690     single_instruction;
  4691     dst   : X(write);
  4692     src   : E(read);
  4693     FA    : R;
  4694 %}
  4696 // Floating Point Compare
  4697 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4698     single_instruction;
  4699     cr    : X(write);
  4700     src1  : E(read);
  4701     src2  : E(read);
  4702     FA    : R;
  4703 %}
  4705 // Floating Point Compare
  4706 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4707     single_instruction;
  4708     cr    : X(write);
  4709     src1  : E(read);
  4710     src2  : E(read);
  4711     FA    : R;
  4712 %}
  4714 // Floating Add Nop
  4715 pipe_class fadd_nop() %{
  4716     single_instruction;
  4717     FA  : R;
  4718 %}
  4720 // Integer Store to Memory
  4721 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4722     single_instruction;
  4723     mem   : R(read);
  4724     src   : C(read);
  4725     MS    : R;
  4726 %}
  4728 // Integer Store to Memory
  4729 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4730     single_instruction;
  4731     mem   : R(read);
  4732     src   : C(read);
  4733     MS    : R;
  4734 %}
  4736 // Integer Store Zero to Memory
  4737 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4738     single_instruction;
  4739     mem   : R(read);
  4740     MS    : R;
  4741 %}
  4743 // Special Stack Slot Store
  4744 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4745     single_instruction;
  4746     stkSlot : R(read);
  4747     src     : C(read);
  4748     MS      : R;
  4749 %}
  4751 // Special Stack Slot Store
  4752 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4753     instruction_count(2); multiple_bundles;
  4754     stkSlot : R(read);
  4755     src     : C(read);
  4756     MS      : R(2);
  4757 %}
  4759 // Float Store
  4760 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4761     single_instruction;
  4762     mem : R(read);
  4763     src : C(read);
  4764     MS  : R;
  4765 %}
  4767 // Float Store
  4768 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4769     single_instruction;
  4770     mem : R(read);
  4771     MS  : R;
  4772 %}
  4774 // Double Store
  4775 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4776     instruction_count(1);
  4777     mem : R(read);
  4778     src : C(read);
  4779     MS  : R;
  4780 %}
  4782 // Double Store
  4783 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4784     single_instruction;
  4785     mem : R(read);
  4786     MS  : R;
  4787 %}
  4789 // Special Stack Slot Float Store
  4790 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4791     single_instruction;
  4792     stkSlot : R(read);
  4793     src     : C(read);
  4794     MS      : R;
  4795 %}
  4797 // Special Stack Slot Double Store
  4798 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  4799     single_instruction;
  4800     stkSlot : R(read);
  4801     src     : C(read);
  4802     MS      : R;
  4803 %}
  4805 // Integer Load (when sign bit propagation not needed)
  4806 pipe_class iload_mem(iRegI dst, memory mem) %{
  4807     single_instruction;
  4808     mem : R(read);
  4809     dst : C(write);
  4810     MS  : R;
  4811 %}
  4813 // Integer Load from stack operand
  4814 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  4815     single_instruction;
  4816     mem : R(read);
  4817     dst : C(write);
  4818     MS  : R;
  4819 %}
  4821 // Integer Load (when sign bit propagation or masking is needed)
  4822 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  4823     single_instruction;
  4824     mem : R(read);
  4825     dst : M(write);
  4826     MS  : R;
  4827 %}
  4829 // Float Load
  4830 pipe_class floadF_mem(regF dst, memory mem) %{
  4831     single_instruction;
  4832     mem : R(read);
  4833     dst : M(write);
  4834     MS  : R;
  4835 %}
  4837 // Float Load
  4838 pipe_class floadD_mem(regD dst, memory mem) %{
  4839     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  4840     mem : R(read);
  4841     dst : M(write);
  4842     MS  : R;
  4843 %}
  4845 // Float Load
  4846 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  4847     single_instruction;
  4848     stkSlot : R(read);
  4849     dst : M(write);
  4850     MS  : R;
  4851 %}
  4853 // Float Load
  4854 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  4855     single_instruction;
  4856     stkSlot : R(read);
  4857     dst : M(write);
  4858     MS  : R;
  4859 %}
  4861 // Memory Nop
  4862 pipe_class mem_nop() %{
  4863     single_instruction;
  4864     MS  : R;
  4865 %}
  4867 pipe_class sethi(iRegP dst, immI src) %{
  4868     single_instruction;
  4869     dst  : E(write);
  4870     IALU : R;
  4871 %}
  4873 pipe_class loadPollP(iRegP poll) %{
  4874     single_instruction;
  4875     poll : R(read);
  4876     MS   : R;
  4877 %}
  4879 pipe_class br(Universe br, label labl) %{
  4880     single_instruction_with_delay_slot;
  4881     BR  : R;
  4882 %}
  4884 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  4885     single_instruction_with_delay_slot;
  4886     cr    : E(read);
  4887     BR    : R;
  4888 %}
  4890 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  4891     single_instruction_with_delay_slot;
  4892     op1 : E(read);
  4893     BR  : R;
  4894     MS  : R;
  4895 %}
  4897 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  4898     single_instruction_with_delay_slot;
  4899     cr    : E(read);
  4900     BR    : R;
  4901 %}
  4903 pipe_class br_nop() %{
  4904     single_instruction;
  4905     BR  : R;
  4906 %}
  4908 pipe_class simple_call(method meth) %{
  4909     instruction_count(2); multiple_bundles; force_serialization;
  4910     fixed_latency(100);
  4911     BR  : R(1);
  4912     MS  : R(1);
  4913     A0  : R(1);
  4914 %}
  4916 pipe_class compiled_call(method meth) %{
  4917     instruction_count(1); multiple_bundles; force_serialization;
  4918     fixed_latency(100);
  4919     MS  : R(1);
  4920 %}
  4922 pipe_class call(method meth) %{
  4923     instruction_count(0); multiple_bundles; force_serialization;
  4924     fixed_latency(100);
  4925 %}
  4927 pipe_class tail_call(Universe ignore, label labl) %{
  4928     single_instruction; has_delay_slot;
  4929     fixed_latency(100);
  4930     BR  : R(1);
  4931     MS  : R(1);
  4932 %}
  4934 pipe_class ret(Universe ignore) %{
  4935     single_instruction; has_delay_slot;
  4936     BR  : R(1);
  4937     MS  : R(1);
  4938 %}
  4940 pipe_class ret_poll(g3RegP poll) %{
  4941     instruction_count(3); has_delay_slot;
  4942     poll : E(read);
  4943     MS   : R;
  4944 %}
  4946 // The real do-nothing guy
  4947 pipe_class empty( ) %{
  4948     instruction_count(0);
  4949 %}
  4951 pipe_class long_memory_op() %{
  4952     instruction_count(0); multiple_bundles; force_serialization;
  4953     fixed_latency(25);
  4954     MS  : R(1);
  4955 %}
  4957 // Check-cast
  4958 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  4959     array : R(read);
  4960     match  : R(read);
  4961     IALU   : R(2);
  4962     BR     : R(2);
  4963     MS     : R;
  4964 %}
  4966 // Convert FPU flags into +1,0,-1
  4967 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  4968     src1  : E(read);
  4969     src2  : E(read);
  4970     dst   : E(write);
  4971     FA    : R;
  4972     MS    : R(2);
  4973     BR    : R(2);
  4974 %}
  4976 // Compare for p < q, and conditionally add y
  4977 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  4978     p     : E(read);
  4979     q     : E(read);
  4980     y     : E(read);
  4981     IALU  : R(3)
  4982 %}
  4984 // Perform a compare, then move conditionally in a branch delay slot.
  4985 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  4986     src2   : E(read);
  4987     srcdst : E(read);
  4988     IALU   : R;
  4989     BR     : R;
  4990 %}
  4992 // Define the class for the Nop node
  4993 define %{
  4994    MachNop = ialu_nop;
  4995 %}
  4997 %}
  4999 //----------INSTRUCTIONS-------------------------------------------------------
  5001 //------------Special Stack Slot instructions - no match rules-----------------
  5002 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5003   // No match rule to avoid chain rule match.
  5004   effect(DEF dst, USE src);
  5005   ins_cost(MEMORY_REF_COST);
  5006   size(4);
  5007   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5008   opcode(Assembler::ldf_op3);
  5009   ins_encode(form3_mem_reg(src, dst));
  5010   ins_pipe(floadF_stk);
  5011 %}
  5013 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5014   // No match rule to avoid chain rule match.
  5015   effect(DEF dst, USE src);
  5016   ins_cost(MEMORY_REF_COST);
  5017   size(4);
  5018   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5019   opcode(Assembler::lddf_op3);
  5020   ins_encode(form3_mem_reg(src, dst));
  5021   ins_pipe(floadD_stk);
  5022 %}
  5024 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5025   // No match rule to avoid chain rule match.
  5026   effect(DEF dst, USE src);
  5027   ins_cost(MEMORY_REF_COST);
  5028   size(4);
  5029   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5030   opcode(Assembler::stf_op3);
  5031   ins_encode(form3_mem_reg(dst, src));
  5032   ins_pipe(fstoreF_stk_reg);
  5033 %}
  5035 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5036   // No match rule to avoid chain rule match.
  5037   effect(DEF dst, USE src);
  5038   ins_cost(MEMORY_REF_COST);
  5039   size(4);
  5040   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5041   opcode(Assembler::stdf_op3);
  5042   ins_encode(form3_mem_reg(dst, src));
  5043   ins_pipe(fstoreD_stk_reg);
  5044 %}
  5046 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5047   effect(DEF dst, USE src);
  5048   ins_cost(MEMORY_REF_COST*2);
  5049   size(8);
  5050   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5051             "STW    R_G0,$dst.lo" %}
  5052   opcode(Assembler::stw_op3);
  5053   ins_encode(form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5054   ins_pipe(lstoreI_stk_reg);
  5055 %}
  5057 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5058   // No match rule to avoid chain rule match.
  5059   effect(DEF dst, USE src);
  5060   ins_cost(MEMORY_REF_COST);
  5061   size(4);
  5062   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5063   opcode(Assembler::stx_op3);
  5064   ins_encode( form3_mem_reg( dst, src ) );
  5065   ins_pipe(istore_stk_reg);
  5066 %}
  5068 //---------- Chain stack slots between similar types --------
  5070 // Load integer from stack slot
  5071 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5072   match(Set dst src);
  5073   ins_cost(MEMORY_REF_COST);
  5075   size(4);
  5076   format %{ "LDUW   $src,$dst\t!stk" %}
  5077   opcode(Assembler::lduw_op3);
  5078   ins_encode( form3_mem_reg( src, dst ) );
  5079   ins_pipe(iload_mem);
  5080 %}
  5082 // Store integer to stack slot
  5083 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5084   match(Set dst src);
  5085   ins_cost(MEMORY_REF_COST);
  5087   size(4);
  5088   format %{ "STW    $src,$dst\t!stk" %}
  5089   opcode(Assembler::stw_op3);
  5090   ins_encode( form3_mem_reg( dst, src ) );
  5091   ins_pipe(istore_mem_reg);
  5092 %}
  5094 // Load long from stack slot
  5095 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5096   match(Set dst src);
  5098   ins_cost(MEMORY_REF_COST);
  5099   size(4);
  5100   format %{ "LDX    $src,$dst\t! long" %}
  5101   opcode(Assembler::ldx_op3);
  5102   ins_encode( form3_mem_reg( src, dst ) );
  5103   ins_pipe(iload_mem);
  5104 %}
  5106 // Store long to stack slot
  5107 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5108   match(Set dst src);
  5110   ins_cost(MEMORY_REF_COST);
  5111   size(4);
  5112   format %{ "STX    $src,$dst\t! long" %}
  5113   opcode(Assembler::stx_op3);
  5114   ins_encode( form3_mem_reg( dst, src ) );
  5115   ins_pipe(istore_mem_reg);
  5116 %}
  5118 #ifdef _LP64
  5119 // Load pointer from stack slot, 64-bit encoding
  5120 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5121   match(Set dst src);
  5122   ins_cost(MEMORY_REF_COST);
  5123   size(4);
  5124   format %{ "LDX    $src,$dst\t!ptr" %}
  5125   opcode(Assembler::ldx_op3);
  5126   ins_encode( form3_mem_reg( src, dst ) );
  5127   ins_pipe(iload_mem);
  5128 %}
  5130 // Store pointer to stack slot
  5131 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5132   match(Set dst src);
  5133   ins_cost(MEMORY_REF_COST);
  5134   size(4);
  5135   format %{ "STX    $src,$dst\t!ptr" %}
  5136   opcode(Assembler::stx_op3);
  5137   ins_encode( form3_mem_reg( dst, src ) );
  5138   ins_pipe(istore_mem_reg);
  5139 %}
  5140 #else // _LP64
  5141 // Load pointer from stack slot, 32-bit encoding
  5142 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5143   match(Set dst src);
  5144   ins_cost(MEMORY_REF_COST);
  5145   format %{ "LDUW   $src,$dst\t!ptr" %}
  5146   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5147   ins_encode( form3_mem_reg( src, dst ) );
  5148   ins_pipe(iload_mem);
  5149 %}
  5151 // Store pointer to stack slot
  5152 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5153   match(Set dst src);
  5154   ins_cost(MEMORY_REF_COST);
  5155   format %{ "STW    $src,$dst\t!ptr" %}
  5156   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5157   ins_encode( form3_mem_reg( dst, src ) );
  5158   ins_pipe(istore_mem_reg);
  5159 %}
  5160 #endif // _LP64
  5162 //------------Special Nop instructions for bundling - no match rules-----------
  5163 // Nop using the A0 functional unit
  5164 instruct Nop_A0() %{
  5165   ins_cost(0);
  5167   format %{ "NOP    ! Alu Pipeline" %}
  5168   opcode(Assembler::or_op3, Assembler::arith_op);
  5169   ins_encode( form2_nop() );
  5170   ins_pipe(ialu_nop_A0);
  5171 %}
  5173 // Nop using the A1 functional unit
  5174 instruct Nop_A1( ) %{
  5175   ins_cost(0);
  5177   format %{ "NOP    ! Alu Pipeline" %}
  5178   opcode(Assembler::or_op3, Assembler::arith_op);
  5179   ins_encode( form2_nop() );
  5180   ins_pipe(ialu_nop_A1);
  5181 %}
  5183 // Nop using the memory functional unit
  5184 instruct Nop_MS( ) %{
  5185   ins_cost(0);
  5187   format %{ "NOP    ! Memory Pipeline" %}
  5188   ins_encode( emit_mem_nop );
  5189   ins_pipe(mem_nop);
  5190 %}
  5192 // Nop using the floating add functional unit
  5193 instruct Nop_FA( ) %{
  5194   ins_cost(0);
  5196   format %{ "NOP    ! Floating Add Pipeline" %}
  5197   ins_encode( emit_fadd_nop );
  5198   ins_pipe(fadd_nop);
  5199 %}
  5201 // Nop using the branch functional unit
  5202 instruct Nop_BR( ) %{
  5203   ins_cost(0);
  5205   format %{ "NOP    ! Branch Pipeline" %}
  5206   ins_encode( emit_br_nop );
  5207   ins_pipe(br_nop);
  5208 %}
  5210 //----------Load/Store/Move Instructions---------------------------------------
  5211 //----------Load Instructions--------------------------------------------------
  5212 // Load Byte (8bit signed)
  5213 instruct loadB(iRegI dst, memory mem) %{
  5214   match(Set dst (LoadB mem));
  5215   ins_cost(MEMORY_REF_COST);
  5217   size(4);
  5218   format %{ "LDSB   $mem,$dst" %}
  5219   opcode(Assembler::ldsb_op3);
  5220   ins_encode( form3_mem_reg( mem, dst ) );
  5221   ins_pipe(iload_mask_mem);
  5222 %}
  5224 // Load Byte (8bit UNsigned) into an int reg
  5225 instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{
  5226   match(Set dst (AndI (LoadB mem) bytemask));
  5227   ins_cost(MEMORY_REF_COST);
  5229   size(4);
  5230   format %{ "LDUB   $mem,$dst" %}
  5231   opcode(Assembler::ldub_op3);
  5232   ins_encode( form3_mem_reg( mem, dst ) );
  5233   ins_pipe(iload_mask_mem);
  5234 %}
  5236 // Load Byte (8bit UNsigned) into a Long Register
  5237 instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
  5238   match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask));
  5239   ins_cost(MEMORY_REF_COST);
  5241   size(4);
  5242   format %{ "LDUB   $mem,$dst" %}
  5243   opcode(Assembler::ldub_op3);
  5244   ins_encode( form3_mem_reg( mem, dst ) );
  5245   ins_pipe(iload_mask_mem);
  5246 %}
  5248 // Load Char (16bit UNsigned) into a Long Register
  5249 instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
  5250   match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask));
  5251   ins_cost(MEMORY_REF_COST);
  5253   size(4);
  5254   format %{ "LDUH   $mem,$dst" %}
  5255   opcode(Assembler::lduh_op3);
  5256   ins_encode( form3_mem_reg( mem, dst ) );
  5257   ins_pipe(iload_mask_mem);
  5258 %}
  5260 // Load Char (16bit unsigned)
  5261 instruct loadC(iRegI dst, memory mem) %{
  5262   match(Set dst (LoadC mem));
  5263   ins_cost(MEMORY_REF_COST);
  5265   size(4);
  5266   format %{ "LDUH   $mem,$dst" %}
  5267   opcode(Assembler::lduh_op3);
  5268   ins_encode( form3_mem_reg( mem, dst ) );
  5269   ins_pipe(iload_mask_mem);
  5270 %}
  5272 // Load Integer
  5273 instruct loadI(iRegI dst, memory mem) %{
  5274   match(Set dst (LoadI mem));
  5275   ins_cost(MEMORY_REF_COST);
  5276   size(4);
  5278   format %{ "LDUW   $mem,$dst" %}
  5279   opcode(Assembler::lduw_op3);
  5280   ins_encode( form3_mem_reg( mem, dst ) );
  5281   ins_pipe(iload_mem);
  5282 %}
  5284 // Load Long - aligned
  5285 instruct loadL(iRegL dst, memory mem ) %{
  5286   match(Set dst (LoadL mem));
  5287   ins_cost(MEMORY_REF_COST);
  5288   size(4);
  5289   format %{ "LDX    $mem,$dst\t! long" %}
  5290   opcode(Assembler::ldx_op3);
  5291   ins_encode( form3_mem_reg( mem, dst ) );
  5292   ins_pipe(iload_mem);
  5293 %}
  5295 // Load Long - UNaligned
  5296 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5297   match(Set dst (LoadL_unaligned mem));
  5298   effect(KILL tmp);
  5299   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5300   size(16);
  5301   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5302           "\tLDUW   $mem  ,$dst\n"
  5303           "\tSLLX   #32, $dst, $dst\n"
  5304           "\tOR     $dst, R_O7, $dst" %}
  5305   opcode(Assembler::lduw_op3);
  5306   ins_encode( form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5307   ins_pipe(iload_mem);
  5308 %}
  5310 // Load Aligned Packed Byte into a Double Register
  5311 instruct loadA8B(regD dst, memory mem) %{
  5312   match(Set dst (Load8B mem));
  5313   ins_cost(MEMORY_REF_COST);
  5314   size(4);
  5315   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5316   opcode(Assembler::lddf_op3);
  5317   ins_encode( form3_mem_reg( mem, dst ) );
  5318   ins_pipe(floadD_mem);
  5319 %}
  5321 // Load Aligned Packed Char into a Double Register
  5322 instruct loadA4C(regD dst, memory mem) %{
  5323   match(Set dst (Load4C mem));
  5324   ins_cost(MEMORY_REF_COST);
  5325   size(4);
  5326   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5327   opcode(Assembler::lddf_op3);
  5328   ins_encode( form3_mem_reg( mem, dst ) );
  5329   ins_pipe(floadD_mem);
  5330 %}
  5332 // Load Aligned Packed Short into a Double Register
  5333 instruct loadA4S(regD dst, memory mem) %{
  5334   match(Set dst (Load4S mem));
  5335   ins_cost(MEMORY_REF_COST);
  5336   size(4);
  5337   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5338   opcode(Assembler::lddf_op3);
  5339   ins_encode( form3_mem_reg( mem, dst ) );
  5340   ins_pipe(floadD_mem);
  5341 %}
  5343 // Load Aligned Packed Int into a Double Register
  5344 instruct loadA2I(regD dst, memory mem) %{
  5345   match(Set dst (Load2I mem));
  5346   ins_cost(MEMORY_REF_COST);
  5347   size(4);
  5348   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5349   opcode(Assembler::lddf_op3);
  5350   ins_encode( form3_mem_reg( mem, dst ) );
  5351   ins_pipe(floadD_mem);
  5352 %}
  5354 // Load Range
  5355 instruct loadRange(iRegI dst, memory mem) %{
  5356   match(Set dst (LoadRange mem));
  5357   ins_cost(MEMORY_REF_COST);
  5359   size(4);
  5360   format %{ "LDUW   $mem,$dst\t! range" %}
  5361   opcode(Assembler::lduw_op3);
  5362   ins_encode( form3_mem_reg( mem, dst ) );
  5363   ins_pipe(iload_mem);
  5364 %}
  5366 // Load Integer into %f register (for fitos/fitod)
  5367 instruct loadI_freg(regF dst, memory mem) %{
  5368   match(Set dst (LoadI mem));
  5369   ins_cost(MEMORY_REF_COST);
  5370   size(4);
  5372   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5373   opcode(Assembler::ldf_op3);
  5374   ins_encode( form3_mem_reg( mem, dst ) );
  5375   ins_pipe(floadF_mem);
  5376 %}
  5378 // Load Pointer
  5379 instruct loadP(iRegP dst, memory mem) %{
  5380   match(Set dst (LoadP mem));
  5381   ins_cost(MEMORY_REF_COST);
  5382   size(4);
  5384 #ifndef _LP64
  5385   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5386   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5387 #else
  5388   format %{ "LDX    $mem,$dst\t! ptr" %}
  5389   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5390 #endif
  5391   ins_encode( form3_mem_reg( mem, dst ) );
  5392   ins_pipe(iload_mem);
  5393 %}
  5395 // Load Klass Pointer
  5396 instruct loadKlass(iRegP dst, memory mem) %{
  5397   match(Set dst (LoadKlass mem));
  5398   ins_cost(MEMORY_REF_COST);
  5399   size(4);
  5401 #ifndef _LP64
  5402   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5403   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5404 #else
  5405   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5406   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5407 #endif
  5408   ins_encode( form3_mem_reg( mem, dst ) );
  5409   ins_pipe(iload_mem);
  5410 %}
  5412 // Load Short (16bit signed)
  5413 instruct loadS(iRegI dst, memory mem) %{
  5414   match(Set dst (LoadS mem));
  5415   ins_cost(MEMORY_REF_COST);
  5417   size(4);
  5418   format %{ "LDSH   $mem,$dst" %}
  5419   opcode(Assembler::ldsh_op3);
  5420   ins_encode( form3_mem_reg( mem, dst ) );
  5421   ins_pipe(iload_mask_mem);
  5422 %}
  5424 // Load Double
  5425 instruct loadD(regD dst, memory mem) %{
  5426   match(Set dst (LoadD mem));
  5427   ins_cost(MEMORY_REF_COST);
  5429   size(4);
  5430   format %{ "LDDF   $mem,$dst" %}
  5431   opcode(Assembler::lddf_op3);
  5432   ins_encode( form3_mem_reg( mem, dst ) );
  5433   ins_pipe(floadD_mem);
  5434 %}
  5436 // Load Double - UNaligned
  5437 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5438   match(Set dst (LoadD_unaligned mem));
  5439   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5440   size(8);
  5441   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5442           "\tLDF    $mem+4,$dst.lo\t!" %}
  5443   opcode(Assembler::ldf_op3);
  5444   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5445   ins_pipe(iload_mem);
  5446 %}
  5448 // Load Float
  5449 instruct loadF(regF dst, memory mem) %{
  5450   match(Set dst (LoadF mem));
  5451   ins_cost(MEMORY_REF_COST);
  5453   size(4);
  5454   format %{ "LDF    $mem,$dst" %}
  5455   opcode(Assembler::ldf_op3);
  5456   ins_encode( form3_mem_reg( mem, dst ) );
  5457   ins_pipe(floadF_mem);
  5458 %}
  5460 // Load Constant
  5461 instruct loadConI( iRegI dst, immI src ) %{
  5462   match(Set dst src);
  5463   ins_cost(DEFAULT_COST * 3/2);
  5464   format %{ "SET    $src,$dst" %}
  5465   ins_encode( Set32(src, dst) );
  5466   ins_pipe(ialu_hi_lo_reg);
  5467 %}
  5469 instruct loadConI13( iRegI dst, immI13 src ) %{
  5470   match(Set dst src);
  5472   size(4);
  5473   format %{ "MOV    $src,$dst" %}
  5474   ins_encode( Set13( src, dst ) );
  5475   ins_pipe(ialu_imm);
  5476 %}
  5478 instruct loadConP(iRegP dst, immP src) %{
  5479   match(Set dst src);
  5480   ins_cost(DEFAULT_COST * 3/2);
  5481   format %{ "SET    $src,$dst\t!ptr" %}
  5482   // This rule does not use "expand" unlike loadConI because then
  5483   // the result type is not known to be an Oop.  An ADLC
  5484   // enhancement will be needed to make that work - not worth it!
  5486   ins_encode( SetPtr( src, dst ) );
  5487   ins_pipe(loadConP);
  5489 %}
  5491 instruct loadConP0(iRegP dst, immP0 src) %{
  5492   match(Set dst src);
  5494   size(4);
  5495   format %{ "CLR    $dst\t!ptr" %}
  5496   ins_encode( SetNull( dst ) );
  5497   ins_pipe(ialu_imm);
  5498 %}
  5500 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  5501   match(Set dst src);
  5502   ins_cost(DEFAULT_COST);
  5503   format %{ "SET    $src,$dst\t!ptr" %}
  5504   ins_encode %{
  5505     Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
  5506     __ sethi(polling_page, false );
  5507   %}
  5508   ins_pipe(loadConP_poll);
  5509 %}
  5511 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  5512   // %%% maybe this should work like loadConD
  5513   match(Set dst src);
  5514   effect(KILL tmp);
  5515   ins_cost(DEFAULT_COST * 4);
  5516   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  5517   ins_encode( LdImmL(src, dst, tmp) );
  5518   ins_pipe(loadConL);
  5519 %}
  5521 instruct loadConL0( iRegL dst, immL0 src ) %{
  5522   match(Set dst src);
  5523   ins_cost(DEFAULT_COST);
  5524   size(4);
  5525   format %{ "CLR    $dst\t! long" %}
  5526   ins_encode( Set13( src, dst ) );
  5527   ins_pipe(ialu_imm);
  5528 %}
  5530 instruct loadConL13( iRegL dst, immL13 src ) %{
  5531   match(Set dst src);
  5532   ins_cost(DEFAULT_COST * 2);
  5534   size(4);
  5535   format %{ "MOV    $src,$dst\t! long" %}
  5536   ins_encode( Set13( src, dst ) );
  5537   ins_pipe(ialu_imm);
  5538 %}
  5540 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  5541   match(Set dst src);
  5542   effect(KILL tmp);
  5544 #ifdef _LP64
  5545   size(36);
  5546 #else
  5547   size(8);
  5548 #endif
  5550   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  5551             "LDF    [$tmp+lo(&$src)],$dst" %}
  5552   ins_encode( LdImmF(src, dst, tmp) );
  5553   ins_pipe(loadConFD);
  5554 %}
  5556 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  5557   match(Set dst src);
  5558   effect(KILL tmp);
  5560 #ifdef _LP64
  5561   size(36);
  5562 #else
  5563   size(8);
  5564 #endif
  5566   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  5567             "LDDF   [$tmp+lo(&$src)],$dst" %}
  5568   ins_encode( LdImmD(src, dst, tmp) );
  5569   ins_pipe(loadConFD);
  5570 %}
  5572 // Prefetch instructions.
  5573 // Must be safe to execute with invalid address (cannot fault).
  5575 instruct prefetchr( memory mem ) %{
  5576   match( PrefetchRead mem );
  5577   ins_cost(MEMORY_REF_COST);
  5579   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  5580   opcode(Assembler::prefetch_op3);
  5581   ins_encode( form3_mem_prefetch_read( mem ) );
  5582   ins_pipe(iload_mem);
  5583 %}
  5585 instruct prefetchw( memory mem ) %{
  5586   match( PrefetchWrite mem );
  5587   ins_cost(MEMORY_REF_COST);
  5589   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  5590   opcode(Assembler::prefetch_op3);
  5591   ins_encode( form3_mem_prefetch_write( mem ) );
  5592   ins_pipe(iload_mem);
  5593 %}
  5596 //----------Store Instructions-------------------------------------------------
  5597 // Store Byte
  5598 instruct storeB(memory mem, iRegI src) %{
  5599   match(Set mem (StoreB mem src));
  5600   ins_cost(MEMORY_REF_COST);
  5602   size(4);
  5603   format %{ "STB    $src,$mem\t! byte" %}
  5604   opcode(Assembler::stb_op3);
  5605   ins_encode( form3_mem_reg( mem, src ) );
  5606   ins_pipe(istore_mem_reg);
  5607 %}
  5609 instruct storeB0(memory mem, immI0 src) %{
  5610   match(Set mem (StoreB mem src));
  5611   ins_cost(MEMORY_REF_COST);
  5613   size(4);
  5614   format %{ "STB    $src,$mem\t! byte" %}
  5615   opcode(Assembler::stb_op3);
  5616   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5617   ins_pipe(istore_mem_zero);
  5618 %}
  5620 instruct storeCM0(memory mem, immI0 src) %{
  5621   match(Set mem (StoreCM mem src));
  5622   ins_cost(MEMORY_REF_COST);
  5624   size(4);
  5625   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  5626   opcode(Assembler::stb_op3);
  5627   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5628   ins_pipe(istore_mem_zero);
  5629 %}
  5631 // Store Char/Short
  5632 instruct storeC(memory mem, iRegI src) %{
  5633   match(Set mem (StoreC mem src));
  5634   ins_cost(MEMORY_REF_COST);
  5636   size(4);
  5637   format %{ "STH    $src,$mem\t! short" %}
  5638   opcode(Assembler::sth_op3);
  5639   ins_encode( form3_mem_reg( mem, src ) );
  5640   ins_pipe(istore_mem_reg);
  5641 %}
  5643 instruct storeC0(memory mem, immI0 src) %{
  5644   match(Set mem (StoreC mem src));
  5645   ins_cost(MEMORY_REF_COST);
  5647   size(4);
  5648   format %{ "STH    $src,$mem\t! short" %}
  5649   opcode(Assembler::sth_op3);
  5650   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5651   ins_pipe(istore_mem_zero);
  5652 %}
  5654 // Store Integer
  5655 instruct storeI(memory mem, iRegI src) %{
  5656   match(Set mem (StoreI mem src));
  5657   ins_cost(MEMORY_REF_COST);
  5659   size(4);
  5660   format %{ "STW    $src,$mem" %}
  5661   opcode(Assembler::stw_op3);
  5662   ins_encode( form3_mem_reg( mem, src ) );
  5663   ins_pipe(istore_mem_reg);
  5664 %}
  5666 // Store Long
  5667 instruct storeL(memory mem, iRegL src) %{
  5668   match(Set mem (StoreL mem src));
  5669   ins_cost(MEMORY_REF_COST);
  5670   size(4);
  5671   format %{ "STX    $src,$mem\t! long" %}
  5672   opcode(Assembler::stx_op3);
  5673   ins_encode( form3_mem_reg( mem, src ) );
  5674   ins_pipe(istore_mem_reg);
  5675 %}
  5677 instruct storeI0(memory mem, immI0 src) %{
  5678   match(Set mem (StoreI mem src));
  5679   ins_cost(MEMORY_REF_COST);
  5681   size(4);
  5682   format %{ "STW    $src,$mem" %}
  5683   opcode(Assembler::stw_op3);
  5684   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5685   ins_pipe(istore_mem_zero);
  5686 %}
  5688 instruct storeL0(memory mem, immL0 src) %{
  5689   match(Set mem (StoreL mem src));
  5690   ins_cost(MEMORY_REF_COST);
  5692   size(4);
  5693   format %{ "STX    $src,$mem" %}
  5694   opcode(Assembler::stx_op3);
  5695   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5696   ins_pipe(istore_mem_zero);
  5697 %}
  5699 // Store Integer from float register (used after fstoi)
  5700 instruct storeI_Freg(memory mem, regF src) %{
  5701   match(Set mem (StoreI mem src));
  5702   ins_cost(MEMORY_REF_COST);
  5704   size(4);
  5705   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  5706   opcode(Assembler::stf_op3);
  5707   ins_encode( form3_mem_reg( mem, src ) );
  5708   ins_pipe(fstoreF_mem_reg);
  5709 %}
  5711 // Store Pointer
  5712 instruct storeP(memory dst, sp_ptr_RegP src) %{
  5713   match(Set dst (StoreP dst src));
  5714   ins_cost(MEMORY_REF_COST);
  5715   size(4);
  5717 #ifndef _LP64
  5718   format %{ "STW    $src,$dst\t! ptr" %}
  5719   opcode(Assembler::stw_op3, 0, REGP_OP);
  5720 #else
  5721   format %{ "STX    $src,$dst\t! ptr" %}
  5722   opcode(Assembler::stx_op3, 0, REGP_OP);
  5723 #endif
  5724   ins_encode( form3_mem_reg( dst, src ) );
  5725   ins_pipe(istore_mem_spORreg);
  5726 %}
  5728 instruct storeP0(memory dst, immP0 src) %{
  5729   match(Set dst (StoreP dst src));
  5730   ins_cost(MEMORY_REF_COST);
  5731   size(4);
  5733 #ifndef _LP64
  5734   format %{ "STW    $src,$dst\t! ptr" %}
  5735   opcode(Assembler::stw_op3, 0, REGP_OP);
  5736 #else
  5737   format %{ "STX    $src,$dst\t! ptr" %}
  5738   opcode(Assembler::stx_op3, 0, REGP_OP);
  5739 #endif
  5740   ins_encode( form3_mem_reg( dst, R_G0 ) );
  5741   ins_pipe(istore_mem_zero);
  5742 %}
  5744 // Store Double
  5745 instruct storeD( memory mem, regD src) %{
  5746   match(Set mem (StoreD mem src));
  5747   ins_cost(MEMORY_REF_COST);
  5749   size(4);
  5750   format %{ "STDF   $src,$mem" %}
  5751   opcode(Assembler::stdf_op3);
  5752   ins_encode( form3_mem_reg( mem, src ) );
  5753   ins_pipe(fstoreD_mem_reg);
  5754 %}
  5756 instruct storeD0( memory mem, immD0 src) %{
  5757   match(Set mem (StoreD mem src));
  5758   ins_cost(MEMORY_REF_COST);
  5760   size(4);
  5761   format %{ "STX    $src,$mem" %}
  5762   opcode(Assembler::stx_op3);
  5763   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5764   ins_pipe(fstoreD_mem_zero);
  5765 %}
  5767 // Store Float
  5768 instruct storeF( memory mem, regF src) %{
  5769   match(Set mem (StoreF mem src));
  5770   ins_cost(MEMORY_REF_COST);
  5772   size(4);
  5773   format %{ "STF    $src,$mem" %}
  5774   opcode(Assembler::stf_op3);
  5775   ins_encode( form3_mem_reg( mem, src ) );
  5776   ins_pipe(fstoreF_mem_reg);
  5777 %}
  5779 instruct storeF0( memory mem, immF0 src) %{
  5780   match(Set mem (StoreF mem src));
  5781   ins_cost(MEMORY_REF_COST);
  5783   size(4);
  5784   format %{ "STW    $src,$mem\t! storeF0" %}
  5785   opcode(Assembler::stw_op3);
  5786   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5787   ins_pipe(fstoreF_mem_zero);
  5788 %}
  5790 // Store Aligned Packed Bytes in Double register to memory
  5791 instruct storeA8B(memory mem, regD src) %{
  5792   match(Set mem (Store8B mem src));
  5793   ins_cost(MEMORY_REF_COST);
  5794   size(4);
  5795   format %{ "STDF   $src,$mem\t! packed8B" %}
  5796   opcode(Assembler::stdf_op3);
  5797   ins_encode( form3_mem_reg( mem, src ) );
  5798   ins_pipe(fstoreD_mem_reg);
  5799 %}
  5801 // Store Zero into Aligned Packed Bytes
  5802 instruct storeA8B0(memory mem, immI0 zero) %{
  5803   match(Set mem (Store8B mem zero));
  5804   ins_cost(MEMORY_REF_COST);
  5805   size(4);
  5806   format %{ "STX    $zero,$mem\t! packed8B" %}
  5807   opcode(Assembler::stx_op3);
  5808   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5809   ins_pipe(fstoreD_mem_zero);
  5810 %}
  5812 // Store Aligned Packed Chars/Shorts in Double register to memory
  5813 instruct storeA4C(memory mem, regD src) %{
  5814   match(Set mem (Store4C mem src));
  5815   ins_cost(MEMORY_REF_COST);
  5816   size(4);
  5817   format %{ "STDF   $src,$mem\t! packed4C" %}
  5818   opcode(Assembler::stdf_op3);
  5819   ins_encode( form3_mem_reg( mem, src ) );
  5820   ins_pipe(fstoreD_mem_reg);
  5821 %}
  5823 // Store Zero into Aligned Packed Chars/Shorts
  5824 instruct storeA4C0(memory mem, immI0 zero) %{
  5825   match(Set mem (Store4C mem (Replicate4C zero)));
  5826   ins_cost(MEMORY_REF_COST);
  5827   size(4);
  5828   format %{ "STX    $zero,$mem\t! packed4C" %}
  5829   opcode(Assembler::stx_op3);
  5830   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5831   ins_pipe(fstoreD_mem_zero);
  5832 %}
  5834 // Store Aligned Packed Ints in Double register to memory
  5835 instruct storeA2I(memory mem, regD src) %{
  5836   match(Set mem (Store2I mem src));
  5837   ins_cost(MEMORY_REF_COST);
  5838   size(4);
  5839   format %{ "STDF   $src,$mem\t! packed2I" %}
  5840   opcode(Assembler::stdf_op3);
  5841   ins_encode( form3_mem_reg( mem, src ) );
  5842   ins_pipe(fstoreD_mem_reg);
  5843 %}
  5845 // Store Zero into Aligned Packed Ints
  5846 instruct storeA2I0(memory mem, immI0 zero) %{
  5847   match(Set mem (Store2I mem zero));
  5848   ins_cost(MEMORY_REF_COST);
  5849   size(4);
  5850   format %{ "STX    $zero,$mem\t! packed2I" %}
  5851   opcode(Assembler::stx_op3);
  5852   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5853   ins_pipe(fstoreD_mem_zero);
  5854 %}
  5857 //----------MemBar Instructions-----------------------------------------------
  5858 // Memory barrier flavors
  5860 instruct membar_acquire() %{
  5861   match(MemBarAcquire);
  5862   ins_cost(4*MEMORY_REF_COST);
  5864   size(0);
  5865   format %{ "MEMBAR-acquire" %}
  5866   ins_encode( enc_membar_acquire );
  5867   ins_pipe(long_memory_op);
  5868 %}
  5870 instruct membar_acquire_lock() %{
  5871   match(MemBarAcquire);
  5872   predicate(Matcher::prior_fast_lock(n));
  5873   ins_cost(0);
  5875   size(0);
  5876   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  5877   ins_encode( );
  5878   ins_pipe(empty);
  5879 %}
  5881 instruct membar_release() %{
  5882   match(MemBarRelease);
  5883   ins_cost(4*MEMORY_REF_COST);
  5885   size(0);
  5886   format %{ "MEMBAR-release" %}
  5887   ins_encode( enc_membar_release );
  5888   ins_pipe(long_memory_op);
  5889 %}
  5891 instruct membar_release_lock() %{
  5892   match(MemBarRelease);
  5893   predicate(Matcher::post_fast_unlock(n));
  5894   ins_cost(0);
  5896   size(0);
  5897   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  5898   ins_encode( );
  5899   ins_pipe(empty);
  5900 %}
  5902 instruct membar_volatile() %{
  5903   match(MemBarVolatile);
  5904   ins_cost(4*MEMORY_REF_COST);
  5906   size(4);
  5907   format %{ "MEMBAR-volatile" %}
  5908   ins_encode( enc_membar_volatile );
  5909   ins_pipe(long_memory_op);
  5910 %}
  5912 instruct unnecessary_membar_volatile() %{
  5913   match(MemBarVolatile);
  5914   predicate(Matcher::post_store_load_barrier(n));
  5915   ins_cost(0);
  5917   size(0);
  5918   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  5919   ins_encode( );
  5920   ins_pipe(empty);
  5921 %}
  5923 //----------Register Move Instructions-----------------------------------------
  5924 instruct roundDouble_nop(regD dst) %{
  5925   match(Set dst (RoundDouble dst));
  5926   ins_cost(0);
  5927   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  5928   ins_encode( );
  5929   ins_pipe(empty);
  5930 %}
  5933 instruct roundFloat_nop(regF dst) %{
  5934   match(Set dst (RoundFloat dst));
  5935   ins_cost(0);
  5936   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  5937   ins_encode( );
  5938   ins_pipe(empty);
  5939 %}
  5942 // Cast Index to Pointer for unsafe natives
  5943 instruct castX2P(iRegX src, iRegP dst) %{
  5944   match(Set dst (CastX2P src));
  5946   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  5947   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  5948   ins_pipe(ialu_reg);
  5949 %}
  5951 // Cast Pointer to Index for unsafe natives
  5952 instruct castP2X(iRegP src, iRegX dst) %{
  5953   match(Set dst (CastP2X src));
  5955   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  5956   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  5957   ins_pipe(ialu_reg);
  5958 %}
  5960 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  5961   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  5962   match(Set stkSlot src);   // chain rule
  5963   ins_cost(MEMORY_REF_COST);
  5964   format %{ "STDF   $src,$stkSlot\t!stk" %}
  5965   opcode(Assembler::stdf_op3);
  5966   ins_encode(form3_mem_reg(stkSlot, src));
  5967   ins_pipe(fstoreD_stk_reg);
  5968 %}
  5970 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  5971   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  5972   match(Set dst stkSlot);   // chain rule
  5973   ins_cost(MEMORY_REF_COST);
  5974   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  5975   opcode(Assembler::lddf_op3);
  5976   ins_encode(form3_mem_reg(stkSlot, dst));
  5977   ins_pipe(floadD_stk);
  5978 %}
  5980 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  5981   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  5982   match(Set stkSlot src);   // chain rule
  5983   ins_cost(MEMORY_REF_COST);
  5984   format %{ "STF   $src,$stkSlot\t!stk" %}
  5985   opcode(Assembler::stf_op3);
  5986   ins_encode(form3_mem_reg(stkSlot, src));
  5987   ins_pipe(fstoreF_stk_reg);
  5988 %}
  5990 //----------Conditional Move---------------------------------------------------
  5991 // Conditional move
  5992 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  5993   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  5994   ins_cost(150);
  5995   format %{ "MOV$cmp $pcc,$src,$dst" %}
  5996   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  5997   ins_pipe(ialu_reg);
  5998 %}
  6000 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6001   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6002   ins_cost(140);
  6003   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6004   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6005   ins_pipe(ialu_imm);
  6006 %}
  6008 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6009   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6010   ins_cost(150);
  6011   size(4);
  6012   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6013   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6014   ins_pipe(ialu_reg);
  6015 %}
  6017 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6018   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6019   ins_cost(140);
  6020   size(4);
  6021   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6022   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6023   ins_pipe(ialu_imm);
  6024 %}
  6026 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6027   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6028   ins_cost(150);
  6029   size(4);
  6030   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6031   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6032   ins_pipe(ialu_reg);
  6033 %}
  6035 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6036   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6037   ins_cost(140);
  6038   size(4);
  6039   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6040   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6041   ins_pipe(ialu_imm);
  6042 %}
  6044 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6045   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6046   ins_cost(150);
  6047   size(4);
  6048   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6049   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6050   ins_pipe(ialu_reg);
  6051 %}
  6053 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6054   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6055   ins_cost(140);
  6056   size(4);
  6057   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6058   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6059   ins_pipe(ialu_imm);
  6060 %}
  6062 // Conditional move
  6063 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6064   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6065   ins_cost(150);
  6066   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6067   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6068   ins_pipe(ialu_reg);
  6069 %}
  6071 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6072   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6073   ins_cost(140);
  6074   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6075   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6076   ins_pipe(ialu_imm);
  6077 %}
  6079 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6080   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6081   ins_cost(150);
  6083   size(4);
  6084   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6085   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6086   ins_pipe(ialu_reg);
  6087 %}
  6089 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6090   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6091   ins_cost(140);
  6093   size(4);
  6094   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6095   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6096   ins_pipe(ialu_imm);
  6097 %}
  6099 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6100   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6101   ins_cost(150);
  6102   size(4);
  6103   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6104   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6105   ins_pipe(ialu_imm);
  6106 %}
  6108 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6109   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6110   ins_cost(140);
  6111   size(4);
  6112   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6113   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6114   ins_pipe(ialu_imm);
  6115 %}
  6117 // Conditional move
  6118 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6119   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6120   ins_cost(150);
  6121   opcode(0x101);
  6122   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6123   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6124   ins_pipe(int_conditional_float_move);
  6125 %}
  6127 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6128   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6129   ins_cost(150);
  6131   size(4);
  6132   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6133   opcode(0x101);
  6134   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6135   ins_pipe(int_conditional_float_move);
  6136 %}
  6138 // Conditional move,
  6139 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6140   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6141   ins_cost(150);
  6142   size(4);
  6143   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6144   opcode(0x1);
  6145   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6146   ins_pipe(int_conditional_double_move);
  6147 %}
  6149 // Conditional move
  6150 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6151   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6152   ins_cost(150);
  6153   size(4);
  6154   opcode(0x102);
  6155   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6156   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6157   ins_pipe(int_conditional_double_move);
  6158 %}
  6160 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6161   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6162   ins_cost(150);
  6164   size(4);
  6165   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6166   opcode(0x102);
  6167   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6168   ins_pipe(int_conditional_double_move);
  6169 %}
  6171 // Conditional move,
  6172 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6173   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6174   ins_cost(150);
  6175   size(4);
  6176   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6177   opcode(0x2);
  6178   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6179   ins_pipe(int_conditional_double_move);
  6180 %}
  6182 // Conditional move
  6183 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6184   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6185   ins_cost(150);
  6186   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6187   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6188   ins_pipe(ialu_reg);
  6189 %}
  6191 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6192   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6193   ins_cost(140);
  6194   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6195   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6196   ins_pipe(ialu_imm);
  6197 %}
  6199 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6200   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6201   ins_cost(150);
  6203   size(4);
  6204   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6205   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6206   ins_pipe(ialu_reg);
  6207 %}
  6210 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6211   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6212   ins_cost(150);
  6214   size(4);
  6215   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6216   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6217   ins_pipe(ialu_reg);
  6218 %}
  6222 //----------OS and Locking Instructions----------------------------------------
  6224 // This name is KNOWN by the ADLC and cannot be changed.
  6225 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6226 // for this guy.
  6227 instruct tlsLoadP(g2RegP dst) %{
  6228   match(Set dst (ThreadLocal));
  6230   size(0);
  6231   ins_cost(0);
  6232   format %{ "# TLS is in G2" %}
  6233   ins_encode( /*empty encoding*/ );
  6234   ins_pipe(ialu_none);
  6235 %}
  6237 instruct checkCastPP( iRegP dst ) %{
  6238   match(Set dst (CheckCastPP dst));
  6240   size(0);
  6241   format %{ "# checkcastPP of $dst" %}
  6242   ins_encode( /*empty encoding*/ );
  6243   ins_pipe(empty);
  6244 %}
  6247 instruct castPP( iRegP dst ) %{
  6248   match(Set dst (CastPP dst));
  6249   format %{ "# castPP of $dst" %}
  6250   ins_encode( /*empty encoding*/ );
  6251   ins_pipe(empty);
  6252 %}
  6254 instruct castII( iRegI dst ) %{
  6255   match(Set dst (CastII dst));
  6256   format %{ "# castII of $dst" %}
  6257   ins_encode( /*empty encoding*/ );
  6258   ins_cost(0);
  6259   ins_pipe(empty);
  6260 %}
  6262 //----------Arithmetic Instructions--------------------------------------------
  6263 // Addition Instructions
  6264 // Register Addition
  6265 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6266   match(Set dst (AddI src1 src2));
  6268   size(4);
  6269   format %{ "ADD    $src1,$src2,$dst" %}
  6270   ins_encode %{
  6271     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  6272   %}
  6273   ins_pipe(ialu_reg_reg);
  6274 %}
  6276 // Immediate Addition
  6277 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6278   match(Set dst (AddI src1 src2));
  6280   size(4);
  6281   format %{ "ADD    $src1,$src2,$dst" %}
  6282   opcode(Assembler::add_op3, Assembler::arith_op);
  6283   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6284   ins_pipe(ialu_reg_imm);
  6285 %}
  6287 // Pointer Register Addition
  6288 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  6289   match(Set dst (AddP src1 src2));
  6291   size(4);
  6292   format %{ "ADD    $src1,$src2,$dst" %}
  6293   opcode(Assembler::add_op3, Assembler::arith_op);
  6294   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6295   ins_pipe(ialu_reg_reg);
  6296 %}
  6298 // Pointer Immediate Addition
  6299 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  6300   match(Set dst (AddP src1 src2));
  6302   size(4);
  6303   format %{ "ADD    $src1,$src2,$dst" %}
  6304   opcode(Assembler::add_op3, Assembler::arith_op);
  6305   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6306   ins_pipe(ialu_reg_imm);
  6307 %}
  6309 // Long Addition
  6310 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6311   match(Set dst (AddL src1 src2));
  6313   size(4);
  6314   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  6315   opcode(Assembler::add_op3, Assembler::arith_op);
  6316   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6317   ins_pipe(ialu_reg_reg);
  6318 %}
  6320 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6321   match(Set dst (AddL src1 con));
  6323   size(4);
  6324   format %{ "ADD    $src1,$con,$dst" %}
  6325   opcode(Assembler::add_op3, Assembler::arith_op);
  6326   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6327   ins_pipe(ialu_reg_imm);
  6328 %}
  6330 //----------Conditional_store--------------------------------------------------
  6331 // Conditional-store of the updated heap-top.
  6332 // Used during allocation of the shared heap.
  6333 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  6335 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  6336 instruct loadPLocked(iRegP dst, memory mem) %{
  6337   match(Set dst (LoadPLocked mem));
  6338   ins_cost(MEMORY_REF_COST);
  6340 #ifndef _LP64
  6341   size(4);
  6342   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6343   opcode(Assembler::lduw_op3, 0, REGP_OP);
  6344 #else
  6345   format %{ "LDX    $mem,$dst\t! ptr" %}
  6346   opcode(Assembler::ldx_op3, 0, REGP_OP);
  6347 #endif
  6348   ins_encode( form3_mem_reg( mem, dst ) );
  6349   ins_pipe(iload_mem);
  6350 %}
  6352 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  6353 instruct loadLLocked(iRegL dst, memory mem) %{
  6354   match(Set dst (LoadLLocked mem));
  6355   ins_cost(MEMORY_REF_COST);
  6356   size(4);
  6357   format %{ "LDX    $mem,$dst\t! long" %}
  6358   opcode(Assembler::ldx_op3);
  6359   ins_encode( form3_mem_reg( mem, dst ) );
  6360   ins_pipe(iload_mem);
  6361 %}
  6363 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  6364   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  6365   effect( KILL newval );
  6366   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  6367             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  6368   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  6369   ins_pipe( long_memory_op );
  6370 %}
  6372 instruct storeLConditional_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6373   match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
  6374   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6375   // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  6376   format %{
  6377             "MOV    $newval,R_O7\n\t"
  6378             "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  6379             "CMP    $oldval,R_O7\t\t! See if we made progress\n\t"
  6380             "MOV    1,$res\n\t"
  6381             "MOVne  xcc,R_G0,$res"
  6382   %}
  6383   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6384               enc_lflags_ne_to_boolean(res) );
  6385   ins_pipe( long_memory_op );
  6386 %}
  6388 instruct storeLConditional_flags(iRegP mem_ptr, iRegL oldval, iRegL newval, flagsRegL xcc, o7RegI tmp1, immI0 zero) %{
  6389   match(Set xcc (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
  6390   effect( USE mem_ptr, KILL tmp1);
  6391   // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  6392   format %{
  6393             "MOV    $newval,R_O7\n\t"
  6394             "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  6395             "CMP    $oldval,R_O7\t\t! See if we made progress"
  6396   %}
  6397   ins_encode( enc_casx(mem_ptr, oldval, newval));
  6398   ins_pipe( long_memory_op );
  6399 %}
  6401 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  6403 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6404   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  6405   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6406   format %{
  6407             "MOV    $newval,O7\n\t"
  6408             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6409             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6410             "MOV    1,$res\n\t"
  6411             "MOVne  xcc,R_G0,$res"
  6412   %}
  6413   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6414               enc_lflags_ne_to_boolean(res) );
  6415   ins_pipe( long_memory_op );
  6416 %}
  6419 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6420   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  6421   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6422   format %{
  6423             "MOV    $newval,O7\n\t"
  6424             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6425             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6426             "MOV    1,$res\n\t"
  6427             "MOVne  icc,R_G0,$res"
  6428   %}
  6429   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6430               enc_iflags_ne_to_boolean(res) );
  6431   ins_pipe( long_memory_op );
  6432 %}
  6434 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6435   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  6436   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6437 #ifdef _LP64
  6438   format %{
  6439             "MOV    $newval,O7\n\t"
  6440             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6441             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6442             "MOV    1,$res\n\t"
  6443             "MOVne  xcc,R_G0,$res"
  6444   %}
  6445   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6446               enc_lflags_ne_to_boolean(res) );
  6447 #else
  6448   format %{
  6449             "MOV    $newval,O7\n\t"
  6450             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6451             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6452             "MOV    1,$res\n\t"
  6453             "MOVne  icc,R_G0,$res"
  6454   %}
  6455   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6456               enc_iflags_ne_to_boolean(res) );
  6457 #endif
  6458   ins_pipe( long_memory_op );
  6459 %}
  6461 //---------------------
  6462 // Subtraction Instructions
  6463 // Register Subtraction
  6464 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6465   match(Set dst (SubI src1 src2));
  6467   size(4);
  6468   format %{ "SUB    $src1,$src2,$dst" %}
  6469   opcode(Assembler::sub_op3, Assembler::arith_op);
  6470   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6471   ins_pipe(ialu_reg_reg);
  6472 %}
  6474 // Immediate Subtraction
  6475 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6476   match(Set dst (SubI src1 src2));
  6478   size(4);
  6479   format %{ "SUB    $src1,$src2,$dst" %}
  6480   opcode(Assembler::sub_op3, Assembler::arith_op);
  6481   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6482   ins_pipe(ialu_reg_imm);
  6483 %}
  6485 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  6486   match(Set dst (SubI zero src2));
  6488   size(4);
  6489   format %{ "NEG    $src2,$dst" %}
  6490   opcode(Assembler::sub_op3, Assembler::arith_op);
  6491   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6492   ins_pipe(ialu_zero_reg);
  6493 %}
  6495 // Long subtraction
  6496 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6497   match(Set dst (SubL src1 src2));
  6499   size(4);
  6500   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6501   opcode(Assembler::sub_op3, Assembler::arith_op);
  6502   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6503   ins_pipe(ialu_reg_reg);
  6504 %}
  6506 // Immediate Subtraction
  6507 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6508   match(Set dst (SubL src1 con));
  6510   size(4);
  6511   format %{ "SUB    $src1,$con,$dst\t! long" %}
  6512   opcode(Assembler::sub_op3, Assembler::arith_op);
  6513   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6514   ins_pipe(ialu_reg_imm);
  6515 %}
  6517 // Long negation
  6518 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  6519   match(Set dst (SubL zero src2));
  6521   size(4);
  6522   format %{ "NEG    $src2,$dst\t! long" %}
  6523   opcode(Assembler::sub_op3, Assembler::arith_op);
  6524   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6525   ins_pipe(ialu_zero_reg);
  6526 %}
  6528 // Multiplication Instructions
  6529 // Integer Multiplication
  6530 // Register Multiplication
  6531 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6532   match(Set dst (MulI src1 src2));
  6534   size(4);
  6535   format %{ "MULX   $src1,$src2,$dst" %}
  6536   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6537   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6538   ins_pipe(imul_reg_reg);
  6539 %}
  6541 // Immediate Multiplication
  6542 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6543   match(Set dst (MulI src1 src2));
  6545   size(4);
  6546   format %{ "MULX   $src1,$src2,$dst" %}
  6547   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6548   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6549   ins_pipe(imul_reg_imm);
  6550 %}
  6552 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6553   match(Set dst (MulL src1 src2));
  6554   ins_cost(DEFAULT_COST * 5);
  6555   size(4);
  6556   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6557   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6558   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6559   ins_pipe(mulL_reg_reg);
  6560 %}
  6562 // Immediate Multiplication
  6563 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6564   match(Set dst (MulL src1 src2));
  6565   ins_cost(DEFAULT_COST * 5);
  6566   size(4);
  6567   format %{ "MULX   $src1,$src2,$dst" %}
  6568   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6569   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6570   ins_pipe(mulL_reg_imm);
  6571 %}
  6573 // Integer Division
  6574 // Register Division
  6575 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  6576   match(Set dst (DivI src1 src2));
  6577   ins_cost((2+71)*DEFAULT_COST);
  6579   format %{ "SRA     $src2,0,$src2\n\t"
  6580             "SRA     $src1,0,$src1\n\t"
  6581             "SDIVX   $src1,$src2,$dst" %}
  6582   ins_encode( idiv_reg( src1, src2, dst ) );
  6583   ins_pipe(sdiv_reg_reg);
  6584 %}
  6586 // Immediate Division
  6587 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  6588   match(Set dst (DivI src1 src2));
  6589   ins_cost((2+71)*DEFAULT_COST);
  6591   format %{ "SRA     $src1,0,$src1\n\t"
  6592             "SDIVX   $src1,$src2,$dst" %}
  6593   ins_encode( idiv_imm( src1, src2, dst ) );
  6594   ins_pipe(sdiv_reg_imm);
  6595 %}
  6597 //----------Div-By-10-Expansion------------------------------------------------
  6598 // Extract hi bits of a 32x32->64 bit multiply.
  6599 // Expand rule only, not matched
  6600 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  6601   effect( DEF dst, USE src1, USE src2 );
  6602   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  6603             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  6604   ins_encode( enc_mul_hi(dst,src1,src2));
  6605   ins_pipe(sdiv_reg_reg);
  6606 %}
  6608 // Magic constant, reciprical of 10
  6609 instruct loadConI_x66666667(iRegIsafe dst) %{
  6610   effect( DEF dst );
  6612   size(8);
  6613   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  6614   ins_encode( Set32(0x66666667, dst) );
  6615   ins_pipe(ialu_hi_lo_reg);
  6616 %}
  6618 // Register Shift Right Arithmatic Long by 32-63
  6619 instruct sra_31( iRegI dst, iRegI src ) %{
  6620   effect( DEF dst, USE src );
  6621   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  6622   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  6623   ins_pipe(ialu_reg_reg);
  6624 %}
  6626 // Arithmetic Shift Right by 8-bit immediate
  6627 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  6628   effect( DEF dst, USE src );
  6629   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  6630   opcode(Assembler::sra_op3, Assembler::arith_op);
  6631   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  6632   ins_pipe(ialu_reg_imm);
  6633 %}
  6635 // Integer DIV with 10
  6636 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  6637   match(Set dst (DivI src div));
  6638   ins_cost((6+6)*DEFAULT_COST);
  6639   expand %{
  6640     iRegIsafe tmp1;               // Killed temps;
  6641     iRegIsafe tmp2;               // Killed temps;
  6642     iRegI tmp3;                   // Killed temps;
  6643     iRegI tmp4;                   // Killed temps;
  6644     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  6645     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  6646     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  6647     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  6648     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  6649   %}
  6650 %}
  6652 // Register Long Division
  6653 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6654   match(Set dst (DivL src1 src2));
  6655   ins_cost(DEFAULT_COST*71);
  6656   size(4);
  6657   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6658   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6659   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6660   ins_pipe(divL_reg_reg);
  6661 %}
  6663 // Register Long Division
  6664 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6665   match(Set dst (DivL src1 src2));
  6666   ins_cost(DEFAULT_COST*71);
  6667   size(4);
  6668   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6669   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6670   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6671   ins_pipe(divL_reg_imm);
  6672 %}
  6674 // Integer Remainder
  6675 // Register Remainder
  6676 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  6677   match(Set dst (ModI src1 src2));
  6678   effect( KILL ccr, KILL temp);
  6680   format %{ "SREM   $src1,$src2,$dst" %}
  6681   ins_encode( irem_reg(src1, src2, dst, temp) );
  6682   ins_pipe(sdiv_reg_reg);
  6683 %}
  6685 // Immediate Remainder
  6686 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  6687   match(Set dst (ModI src1 src2));
  6688   effect( KILL ccr, KILL temp);
  6690   format %{ "SREM   $src1,$src2,$dst" %}
  6691   ins_encode( irem_imm(src1, src2, dst, temp) );
  6692   ins_pipe(sdiv_reg_imm);
  6693 %}
  6695 // Register Long Remainder
  6696 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6697   effect(DEF dst, USE src1, USE src2);
  6698   size(4);
  6699   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6700   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6701   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6702   ins_pipe(divL_reg_reg);
  6703 %}
  6705 // Register Long Division
  6706 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6707   effect(DEF dst, USE src1, USE src2);
  6708   size(4);
  6709   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6710   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6711   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6712   ins_pipe(divL_reg_imm);
  6713 %}
  6715 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6716   effect(DEF dst, USE src1, USE src2);
  6717   size(4);
  6718   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6719   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6720   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6721   ins_pipe(mulL_reg_reg);
  6722 %}
  6724 // Immediate Multiplication
  6725 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6726   effect(DEF dst, USE src1, USE src2);
  6727   size(4);
  6728   format %{ "MULX   $src1,$src2,$dst" %}
  6729   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6730   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6731   ins_pipe(mulL_reg_imm);
  6732 %}
  6734 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6735   effect(DEF dst, USE src1, USE src2);
  6736   size(4);
  6737   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6738   opcode(Assembler::sub_op3, Assembler::arith_op);
  6739   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6740   ins_pipe(ialu_reg_reg);
  6741 %}
  6743 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  6744   effect(DEF dst, USE src1, USE src2);
  6745   size(4);
  6746   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6747   opcode(Assembler::sub_op3, Assembler::arith_op);
  6748   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6749   ins_pipe(ialu_reg_reg);
  6750 %}
  6752 // Register Long Remainder
  6753 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6754   match(Set dst (ModL src1 src2));
  6755   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  6756   expand %{
  6757     iRegL tmp1;
  6758     iRegL tmp2;
  6759     divL_reg_reg_1(tmp1, src1, src2);
  6760     mulL_reg_reg_1(tmp2, tmp1, src2);
  6761     subL_reg_reg_1(dst,  src1, tmp2);
  6762   %}
  6763 %}
  6765 // Register Long Remainder
  6766 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6767   match(Set dst (ModL src1 src2));
  6768   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  6769   expand %{
  6770     iRegL tmp1;
  6771     iRegL tmp2;
  6772     divL_reg_imm13_1(tmp1, src1, src2);
  6773     mulL_reg_imm13_1(tmp2, tmp1, src2);
  6774     subL_reg_reg_2  (dst,  src1, tmp2);
  6775   %}
  6776 %}
  6778 // Integer Shift Instructions
  6779 // Register Shift Left
  6780 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6781   match(Set dst (LShiftI src1 src2));
  6783   size(4);
  6784   format %{ "SLL    $src1,$src2,$dst" %}
  6785   opcode(Assembler::sll_op3, Assembler::arith_op);
  6786   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6787   ins_pipe(ialu_reg_reg);
  6788 %}
  6790 // Register Shift Left Immediate
  6791 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  6792   match(Set dst (LShiftI src1 src2));
  6794   size(4);
  6795   format %{ "SLL    $src1,$src2,$dst" %}
  6796   opcode(Assembler::sll_op3, Assembler::arith_op);
  6797   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  6798   ins_pipe(ialu_reg_imm);
  6799 %}
  6801 // Register Shift Left
  6802 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  6803   match(Set dst (LShiftL src1 src2));
  6805   size(4);
  6806   format %{ "SLLX   $src1,$src2,$dst" %}
  6807   opcode(Assembler::sllx_op3, Assembler::arith_op);
  6808   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  6809   ins_pipe(ialu_reg_reg);
  6810 %}
  6812 // Register Shift Left Immediate
  6813 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  6814   match(Set dst (LShiftL src1 src2));
  6816   size(4);
  6817   format %{ "SLLX   $src1,$src2,$dst" %}
  6818   opcode(Assembler::sllx_op3, Assembler::arith_op);
  6819   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  6820   ins_pipe(ialu_reg_imm);
  6821 %}
  6823 // Register Arithmetic Shift Right
  6824 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6825   match(Set dst (RShiftI src1 src2));
  6826   size(4);
  6827   format %{ "SRA    $src1,$src2,$dst" %}
  6828   opcode(Assembler::sra_op3, Assembler::arith_op);
  6829   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6830   ins_pipe(ialu_reg_reg);
  6831 %}
  6833 // Register Arithmetic Shift Right Immediate
  6834 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  6835   match(Set dst (RShiftI src1 src2));
  6837   size(4);
  6838   format %{ "SRA    $src1,$src2,$dst" %}
  6839   opcode(Assembler::sra_op3, Assembler::arith_op);
  6840   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  6841   ins_pipe(ialu_reg_imm);
  6842 %}
  6844 // Register Shift Right Arithmatic Long
  6845 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  6846   match(Set dst (RShiftL src1 src2));
  6848   size(4);
  6849   format %{ "SRAX   $src1,$src2,$dst" %}
  6850   opcode(Assembler::srax_op3, Assembler::arith_op);
  6851   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  6852   ins_pipe(ialu_reg_reg);
  6853 %}
  6855 // Register Shift Left Immediate
  6856 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  6857   match(Set dst (RShiftL src1 src2));
  6859   size(4);
  6860   format %{ "SRAX   $src1,$src2,$dst" %}
  6861   opcode(Assembler::srax_op3, Assembler::arith_op);
  6862   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  6863   ins_pipe(ialu_reg_imm);
  6864 %}
  6866 // Register Shift Right
  6867 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6868   match(Set dst (URShiftI src1 src2));
  6870   size(4);
  6871   format %{ "SRL    $src1,$src2,$dst" %}
  6872   opcode(Assembler::srl_op3, Assembler::arith_op);
  6873   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6874   ins_pipe(ialu_reg_reg);
  6875 %}
  6877 // Register Shift Right Immediate
  6878 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  6879   match(Set dst (URShiftI src1 src2));
  6881   size(4);
  6882   format %{ "SRL    $src1,$src2,$dst" %}
  6883   opcode(Assembler::srl_op3, Assembler::arith_op);
  6884   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  6885   ins_pipe(ialu_reg_imm);
  6886 %}
  6888 // Register Shift Right
  6889 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  6890   match(Set dst (URShiftL src1 src2));
  6892   size(4);
  6893   format %{ "SRLX   $src1,$src2,$dst" %}
  6894   opcode(Assembler::srlx_op3, Assembler::arith_op);
  6895   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  6896   ins_pipe(ialu_reg_reg);
  6897 %}
  6899 // Register Shift Right Immediate
  6900 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  6901   match(Set dst (URShiftL src1 src2));
  6903   size(4);
  6904   format %{ "SRLX   $src1,$src2,$dst" %}
  6905   opcode(Assembler::srlx_op3, Assembler::arith_op);
  6906   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  6907   ins_pipe(ialu_reg_imm);
  6908 %}
  6910 // Register Shift Right Immediate with a CastP2X
  6911 #ifdef _LP64
  6912 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  6913   match(Set dst (URShiftL (CastP2X src1) src2));
  6914   size(4);
  6915   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  6916   opcode(Assembler::srlx_op3, Assembler::arith_op);
  6917   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  6918   ins_pipe(ialu_reg_imm);
  6919 %}
  6920 #else
  6921 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  6922   match(Set dst (URShiftI (CastP2X src1) src2));
  6923   size(4);
  6924   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  6925   opcode(Assembler::srl_op3, Assembler::arith_op);
  6926   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  6927   ins_pipe(ialu_reg_imm);
  6928 %}
  6929 #endif
  6932 //----------Floating Point Arithmetic Instructions-----------------------------
  6934 //  Add float single precision
  6935 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  6936   match(Set dst (AddF src1 src2));
  6938   size(4);
  6939   format %{ "FADDS  $src1,$src2,$dst" %}
  6940   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  6941   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  6942   ins_pipe(faddF_reg_reg);
  6943 %}
  6945 //  Add float double precision
  6946 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  6947   match(Set dst (AddD src1 src2));
  6949   size(4);
  6950   format %{ "FADDD  $src1,$src2,$dst" %}
  6951   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  6952   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  6953   ins_pipe(faddD_reg_reg);
  6954 %}
  6956 //  Sub float single precision
  6957 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  6958   match(Set dst (SubF src1 src2));
  6960   size(4);
  6961   format %{ "FSUBS  $src1,$src2,$dst" %}
  6962   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  6963   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  6964   ins_pipe(faddF_reg_reg);
  6965 %}
  6967 //  Sub float double precision
  6968 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  6969   match(Set dst (SubD src1 src2));
  6971   size(4);
  6972   format %{ "FSUBD  $src1,$src2,$dst" %}
  6973   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  6974   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  6975   ins_pipe(faddD_reg_reg);
  6976 %}
  6978 //  Mul float single precision
  6979 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  6980   match(Set dst (MulF src1 src2));
  6982   size(4);
  6983   format %{ "FMULS  $src1,$src2,$dst" %}
  6984   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  6985   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  6986   ins_pipe(fmulF_reg_reg);
  6987 %}
  6989 //  Mul float double precision
  6990 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  6991   match(Set dst (MulD src1 src2));
  6993   size(4);
  6994   format %{ "FMULD  $src1,$src2,$dst" %}
  6995   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  6996   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  6997   ins_pipe(fmulD_reg_reg);
  6998 %}
  7000 //  Div float single precision
  7001 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7002   match(Set dst (DivF src1 src2));
  7004   size(4);
  7005   format %{ "FDIVS  $src1,$src2,$dst" %}
  7006   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7007   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7008   ins_pipe(fdivF_reg_reg);
  7009 %}
  7011 //  Div float double precision
  7012 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7013   match(Set dst (DivD src1 src2));
  7015   size(4);
  7016   format %{ "FDIVD  $src1,$src2,$dst" %}
  7017   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7018   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7019   ins_pipe(fdivD_reg_reg);
  7020 %}
  7022 //  Absolute float double precision
  7023 instruct absD_reg(regD dst, regD src) %{
  7024   match(Set dst (AbsD src));
  7026   format %{ "FABSd  $src,$dst" %}
  7027   ins_encode(fabsd(dst, src));
  7028   ins_pipe(faddD_reg);
  7029 %}
  7031 //  Absolute float single precision
  7032 instruct absF_reg(regF dst, regF src) %{
  7033   match(Set dst (AbsF src));
  7035   format %{ "FABSs  $src,$dst" %}
  7036   ins_encode(fabss(dst, src));
  7037   ins_pipe(faddF_reg);
  7038 %}
  7040 instruct negF_reg(regF dst, regF src) %{
  7041   match(Set dst (NegF src));
  7043   size(4);
  7044   format %{ "FNEGs  $src,$dst" %}
  7045   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7046   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7047   ins_pipe(faddF_reg);
  7048 %}
  7050 instruct negD_reg(regD dst, regD src) %{
  7051   match(Set dst (NegD src));
  7053   format %{ "FNEGd  $src,$dst" %}
  7054   ins_encode(fnegd(dst, src));
  7055   ins_pipe(faddD_reg);
  7056 %}
  7058 //  Sqrt float double precision
  7059 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7060   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7062   size(4);
  7063   format %{ "FSQRTS $src,$dst" %}
  7064   ins_encode(fsqrts(dst, src));
  7065   ins_pipe(fdivF_reg_reg);
  7066 %}
  7068 //  Sqrt float double precision
  7069 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7070   match(Set dst (SqrtD src));
  7072   size(4);
  7073   format %{ "FSQRTD $src,$dst" %}
  7074   ins_encode(fsqrtd(dst, src));
  7075   ins_pipe(fdivD_reg_reg);
  7076 %}
  7078 //----------Logical Instructions-----------------------------------------------
  7079 // And Instructions
  7080 // Register And
  7081 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7082   match(Set dst (AndI src1 src2));
  7084   size(4);
  7085   format %{ "AND    $src1,$src2,$dst" %}
  7086   opcode(Assembler::and_op3, Assembler::arith_op);
  7087   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7088   ins_pipe(ialu_reg_reg);
  7089 %}
  7091 // Immediate And
  7092 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7093   match(Set dst (AndI src1 src2));
  7095   size(4);
  7096   format %{ "AND    $src1,$src2,$dst" %}
  7097   opcode(Assembler::and_op3, Assembler::arith_op);
  7098   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7099   ins_pipe(ialu_reg_imm);
  7100 %}
  7102 // Register And Long
  7103 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7104   match(Set dst (AndL src1 src2));
  7106   ins_cost(DEFAULT_COST);
  7107   size(4);
  7108   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7109   opcode(Assembler::and_op3, Assembler::arith_op);
  7110   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7111   ins_pipe(ialu_reg_reg);
  7112 %}
  7114 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7115   match(Set dst (AndL src1 con));
  7117   ins_cost(DEFAULT_COST);
  7118   size(4);
  7119   format %{ "AND    $src1,$con,$dst\t! long" %}
  7120   opcode(Assembler::and_op3, Assembler::arith_op);
  7121   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7122   ins_pipe(ialu_reg_imm);
  7123 %}
  7125 // Or Instructions
  7126 // Register Or
  7127 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7128   match(Set dst (OrI src1 src2));
  7130   size(4);
  7131   format %{ "OR     $src1,$src2,$dst" %}
  7132   opcode(Assembler::or_op3, Assembler::arith_op);
  7133   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7134   ins_pipe(ialu_reg_reg);
  7135 %}
  7137 // Immediate Or
  7138 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7139   match(Set dst (OrI src1 src2));
  7141   size(4);
  7142   format %{ "OR     $src1,$src2,$dst" %}
  7143   opcode(Assembler::or_op3, Assembler::arith_op);
  7144   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7145   ins_pipe(ialu_reg_imm);
  7146 %}
  7148 // Register Or Long
  7149 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7150   match(Set dst (OrL src1 src2));
  7152   ins_cost(DEFAULT_COST);
  7153   size(4);
  7154   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7155   opcode(Assembler::or_op3, Assembler::arith_op);
  7156   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7157   ins_pipe(ialu_reg_reg);
  7158 %}
  7160 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7161   match(Set dst (OrL src1 con));
  7162   ins_cost(DEFAULT_COST*2);
  7164   ins_cost(DEFAULT_COST);
  7165   size(4);
  7166   format %{ "OR     $src1,$con,$dst\t! long" %}
  7167   opcode(Assembler::or_op3, Assembler::arith_op);
  7168   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7169   ins_pipe(ialu_reg_imm);
  7170 %}
  7172 // Xor Instructions
  7173 // Register Xor
  7174 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7175   match(Set dst (XorI src1 src2));
  7177   size(4);
  7178   format %{ "XOR    $src1,$src2,$dst" %}
  7179   opcode(Assembler::xor_op3, Assembler::arith_op);
  7180   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7181   ins_pipe(ialu_reg_reg);
  7182 %}
  7184 // Immediate Xor
  7185 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7186   match(Set dst (XorI src1 src2));
  7188   size(4);
  7189   format %{ "XOR    $src1,$src2,$dst" %}
  7190   opcode(Assembler::xor_op3, Assembler::arith_op);
  7191   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7192   ins_pipe(ialu_reg_imm);
  7193 %}
  7195 // Register Xor Long
  7196 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7197   match(Set dst (XorL src1 src2));
  7199   ins_cost(DEFAULT_COST);
  7200   size(4);
  7201   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7202   opcode(Assembler::xor_op3, Assembler::arith_op);
  7203   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7204   ins_pipe(ialu_reg_reg);
  7205 %}
  7207 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7208   match(Set dst (XorL src1 con));
  7210   ins_cost(DEFAULT_COST);
  7211   size(4);
  7212   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7213   opcode(Assembler::xor_op3, Assembler::arith_op);
  7214   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7215   ins_pipe(ialu_reg_imm);
  7216 %}
  7218 //----------Convert to Boolean-------------------------------------------------
  7219 // Nice hack for 32-bit tests but doesn't work for
  7220 // 64-bit pointers.
  7221 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7222   match(Set dst (Conv2B src));
  7223   effect( KILL ccr );
  7224   ins_cost(DEFAULT_COST*2);
  7225   format %{ "CMP    R_G0,$src\n\t"
  7226             "ADDX   R_G0,0,$dst" %}
  7227   ins_encode( enc_to_bool( src, dst ) );
  7228   ins_pipe(ialu_reg_ialu);
  7229 %}
  7231 #ifndef _LP64
  7232 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7233   match(Set dst (Conv2B src));
  7234   effect( KILL ccr );
  7235   ins_cost(DEFAULT_COST*2);
  7236   format %{ "CMP    R_G0,$src\n\t"
  7237             "ADDX   R_G0,0,$dst" %}
  7238   ins_encode( enc_to_bool( src, dst ) );
  7239   ins_pipe(ialu_reg_ialu);
  7240 %}
  7241 #else
  7242 instruct convP2B( iRegI dst, iRegP src ) %{
  7243   match(Set dst (Conv2B src));
  7244   ins_cost(DEFAULT_COST*2);
  7245   format %{ "MOV    $src,$dst\n\t"
  7246             "MOVRNZ $src,1,$dst" %}
  7247   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  7248   ins_pipe(ialu_clr_and_mover);
  7249 %}
  7250 #endif
  7252 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  7253   match(Set dst (CmpLTMask p q));
  7254   effect( KILL ccr );
  7255   ins_cost(DEFAULT_COST*4);
  7256   format %{ "CMP    $p,$q\n\t"
  7257             "MOV    #0,$dst\n\t"
  7258             "BLT,a  .+8\n\t"
  7259             "MOV    #-1,$dst" %}
  7260   ins_encode( enc_ltmask(p,q,dst) );
  7261   ins_pipe(ialu_reg_reg_ialu);
  7262 %}
  7264 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7265   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  7266   effect(KILL ccr, TEMP tmp);
  7267   ins_cost(DEFAULT_COST*3);
  7269   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7270             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7271             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7272   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7273   ins_pipe( cadd_cmpltmask );
  7274 %}
  7276 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7277   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  7278   effect( KILL ccr, TEMP tmp);
  7279   ins_cost(DEFAULT_COST*3);
  7281   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7282             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7283             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7284   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7285   ins_pipe( cadd_cmpltmask );
  7286 %}
  7288 //----------Arithmetic Conversion Instructions---------------------------------
  7289 // The conversions operations are all Alpha sorted.  Please keep it that way!
  7291 instruct convD2F_reg(regF dst, regD src) %{
  7292   match(Set dst (ConvD2F src));
  7293   size(4);
  7294   format %{ "FDTOS  $src,$dst" %}
  7295   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  7296   ins_encode(form3_opf_rs2D_rdF(src, dst));
  7297   ins_pipe(fcvtD2F);
  7298 %}
  7301 // Convert a double to an int in a float register.
  7302 // If the double is a NAN, stuff a zero in instead.
  7303 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  7304   effect(DEF dst, USE src, KILL fcc0);
  7305   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7306             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7307             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  7308             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7309             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7310       "skip:" %}
  7311   ins_encode(form_d2i_helper(src,dst));
  7312   ins_pipe(fcvtD2I);
  7313 %}
  7315 instruct convD2I_reg(stackSlotI dst, regD src) %{
  7316   match(Set dst (ConvD2I src));
  7317   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7318   expand %{
  7319     regF tmp;
  7320     convD2I_helper(tmp, src);
  7321     regF_to_stkI(dst, tmp);
  7322   %}
  7323 %}
  7325 // Convert a double to a long in a double register.
  7326 // If the double is a NAN, stuff a zero in instead.
  7327 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  7328   effect(DEF dst, USE src, KILL fcc0);
  7329   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7330             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7331             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  7332             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7333             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7334       "skip:" %}
  7335   ins_encode(form_d2l_helper(src,dst));
  7336   ins_pipe(fcvtD2L);
  7337 %}
  7340 // Double to Long conversion
  7341 instruct convD2L_reg(stackSlotL dst, regD src) %{
  7342   match(Set dst (ConvD2L src));
  7343   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7344   expand %{
  7345     regD tmp;
  7346     convD2L_helper(tmp, src);
  7347     regD_to_stkL(dst, tmp);
  7348   %}
  7349 %}
  7352 instruct convF2D_reg(regD dst, regF src) %{
  7353   match(Set dst (ConvF2D src));
  7354   format %{ "FSTOD  $src,$dst" %}
  7355   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  7356   ins_encode(form3_opf_rs2F_rdD(src, dst));
  7357   ins_pipe(fcvtF2D);
  7358 %}
  7361 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  7362   effect(DEF dst, USE src, KILL fcc0);
  7363   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7364             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7365             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  7366             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7367             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7368       "skip:" %}
  7369   ins_encode(form_f2i_helper(src,dst));
  7370   ins_pipe(fcvtF2I);
  7371 %}
  7373 instruct convF2I_reg(stackSlotI dst, regF src) %{
  7374   match(Set dst (ConvF2I src));
  7375   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7376   expand %{
  7377     regF tmp;
  7378     convF2I_helper(tmp, src);
  7379     regF_to_stkI(dst, tmp);
  7380   %}
  7381 %}
  7384 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  7385   effect(DEF dst, USE src, KILL fcc0);
  7386   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7387             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7388             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  7389             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7390             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7391       "skip:" %}
  7392   ins_encode(form_f2l_helper(src,dst));
  7393   ins_pipe(fcvtF2L);
  7394 %}
  7396 // Float to Long conversion
  7397 instruct convF2L_reg(stackSlotL dst, regF src) %{
  7398   match(Set dst (ConvF2L src));
  7399   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7400   expand %{
  7401     regD tmp;
  7402     convF2L_helper(tmp, src);
  7403     regD_to_stkL(dst, tmp);
  7404   %}
  7405 %}
  7408 instruct convI2D_helper(regD dst, regF tmp) %{
  7409   effect(USE tmp, DEF dst);
  7410   format %{ "FITOD  $tmp,$dst" %}
  7411   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7412   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  7413   ins_pipe(fcvtI2D);
  7414 %}
  7416 instruct convI2D_reg(stackSlotI src, regD dst) %{
  7417   match(Set dst (ConvI2D src));
  7418   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7419   expand %{
  7420     regF tmp;
  7421     stkI_to_regF( tmp, src);
  7422     convI2D_helper( dst, tmp);
  7423   %}
  7424 %}
  7426 instruct convI2D_mem( regD_low dst, memory mem ) %{
  7427   match(Set dst (ConvI2D (LoadI mem)));
  7428   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7429   size(8);
  7430   format %{ "LDF    $mem,$dst\n\t"
  7431             "FITOD  $dst,$dst" %}
  7432   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  7433   ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7434   ins_pipe(floadF_mem);
  7435 %}
  7438 instruct convI2F_helper(regF dst, regF tmp) %{
  7439   effect(DEF dst, USE tmp);
  7440   format %{ "FITOS  $tmp,$dst" %}
  7441   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  7442   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  7443   ins_pipe(fcvtI2F);
  7444 %}
  7446 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  7447   match(Set dst (ConvI2F src));
  7448   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7449   expand %{
  7450     regF tmp;
  7451     stkI_to_regF(tmp,src);
  7452     convI2F_helper(dst, tmp);
  7453   %}
  7454 %}
  7456 instruct convI2F_mem( regF dst, memory mem ) %{
  7457   match(Set dst (ConvI2F (LoadI mem)));
  7458   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7459   size(8);
  7460   format %{ "LDF    $mem,$dst\n\t"
  7461             "FITOS  $dst,$dst" %}
  7462   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  7463   ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7464   ins_pipe(floadF_mem);
  7465 %}
  7468 instruct convI2L_reg(iRegL dst, iRegI src) %{
  7469   match(Set dst (ConvI2L src));
  7470   size(4);
  7471   format %{ "SRA    $src,0,$dst\t! int->long" %}
  7472   opcode(Assembler::sra_op3, Assembler::arith_op);
  7473   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7474   ins_pipe(ialu_reg_reg);
  7475 %}
  7477 // Zero-extend convert int to long
  7478 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  7479   match(Set dst (AndL (ConvI2L src) mask) );
  7480   size(4);
  7481   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  7482   opcode(Assembler::srl_op3, Assembler::arith_op);
  7483   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7484   ins_pipe(ialu_reg_reg);
  7485 %}
  7487 // Zero-extend long
  7488 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  7489   match(Set dst (AndL src mask) );
  7490   size(4);
  7491   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  7492   opcode(Assembler::srl_op3, Assembler::arith_op);
  7493   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7494   ins_pipe(ialu_reg_reg);
  7495 %}
  7497 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  7498   match(Set dst (MoveF2I src));
  7499   effect(DEF dst, USE src);
  7500   ins_cost(MEMORY_REF_COST);
  7502   size(4);
  7503   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  7504   opcode(Assembler::lduw_op3);
  7505   ins_encode( form3_mem_reg( src, dst ) );
  7506   ins_pipe(iload_mem);
  7507 %}
  7509 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  7510   match(Set dst (MoveI2F src));
  7511   effect(DEF dst, USE src);
  7512   ins_cost(MEMORY_REF_COST);
  7514   size(4);
  7515   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  7516   opcode(Assembler::ldf_op3);
  7517   ins_encode(form3_mem_reg(src, dst));
  7518   ins_pipe(floadF_stk);
  7519 %}
  7521 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  7522   match(Set dst (MoveD2L src));
  7523   effect(DEF dst, USE src);
  7524   ins_cost(MEMORY_REF_COST);
  7526   size(4);
  7527   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  7528   opcode(Assembler::ldx_op3);
  7529   ins_encode( form3_mem_reg( src, dst ) );
  7530   ins_pipe(iload_mem);
  7531 %}
  7533 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  7534   match(Set dst (MoveL2D src));
  7535   effect(DEF dst, USE src);
  7536   ins_cost(MEMORY_REF_COST);
  7538   size(4);
  7539   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  7540   opcode(Assembler::lddf_op3);
  7541   ins_encode(form3_mem_reg(src, dst));
  7542   ins_pipe(floadD_stk);
  7543 %}
  7545 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  7546   match(Set dst (MoveF2I src));
  7547   effect(DEF dst, USE src);
  7548   ins_cost(MEMORY_REF_COST);
  7550   size(4);
  7551   format %{ "STF   $src,$dst\t!MoveF2I" %}
  7552   opcode(Assembler::stf_op3);
  7553   ins_encode(form3_mem_reg(dst, src));
  7554   ins_pipe(fstoreF_stk_reg);
  7555 %}
  7557 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  7558   match(Set dst (MoveI2F src));
  7559   effect(DEF dst, USE src);
  7560   ins_cost(MEMORY_REF_COST);
  7562   size(4);
  7563   format %{ "STW    $src,$dst\t!MoveI2F" %}
  7564   opcode(Assembler::stw_op3);
  7565   ins_encode( form3_mem_reg( dst, src ) );
  7566   ins_pipe(istore_mem_reg);
  7567 %}
  7569 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  7570   match(Set dst (MoveD2L src));
  7571   effect(DEF dst, USE src);
  7572   ins_cost(MEMORY_REF_COST);
  7574   size(4);
  7575   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  7576   opcode(Assembler::stdf_op3);
  7577   ins_encode(form3_mem_reg(dst, src));
  7578   ins_pipe(fstoreD_stk_reg);
  7579 %}
  7581 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  7582   match(Set dst (MoveL2D src));
  7583   effect(DEF dst, USE src);
  7584   ins_cost(MEMORY_REF_COST);
  7586   size(4);
  7587   format %{ "STX    $src,$dst\t!MoveL2D" %}
  7588   opcode(Assembler::stx_op3);
  7589   ins_encode( form3_mem_reg( dst, src ) );
  7590   ins_pipe(istore_mem_reg);
  7591 %}
  7594 //-----------
  7595 // Long to Double conversion using V8 opcodes.
  7596 // Still useful because cheetah traps and becomes
  7597 // amazingly slow for some common numbers.
  7599 // Magic constant, 0x43300000
  7600 instruct loadConI_x43300000(iRegI dst) %{
  7601   effect(DEF dst);
  7602   size(4);
  7603   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  7604   ins_encode(SetHi22(0x43300000, dst));
  7605   ins_pipe(ialu_none);
  7606 %}
  7608 // Magic constant, 0x41f00000
  7609 instruct loadConI_x41f00000(iRegI dst) %{
  7610   effect(DEF dst);
  7611   size(4);
  7612   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  7613   ins_encode(SetHi22(0x41f00000, dst));
  7614   ins_pipe(ialu_none);
  7615 %}
  7617 // Construct a double from two float halves
  7618 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  7619   effect(DEF dst, USE src1, USE src2);
  7620   size(8);
  7621   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  7622             "FMOVS  $src2.lo,$dst.lo" %}
  7623   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  7624   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  7625   ins_pipe(faddD_reg_reg);
  7626 %}
  7628 // Convert integer in high half of a double register (in the lower half of
  7629 // the double register file) to double
  7630 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  7631   effect(DEF dst, USE src);
  7632   size(4);
  7633   format %{ "FITOD  $src,$dst" %}
  7634   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7635   ins_encode(form3_opf_rs2D_rdD(src, dst));
  7636   ins_pipe(fcvtLHi2D);
  7637 %}
  7639 // Add float double precision
  7640 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  7641   effect(DEF dst, USE src1, USE src2);
  7642   size(4);
  7643   format %{ "FADDD  $src1,$src2,$dst" %}
  7644   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7645   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7646   ins_pipe(faddD_reg_reg);
  7647 %}
  7649 // Sub float double precision
  7650 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  7651   effect(DEF dst, USE src1, USE src2);
  7652   size(4);
  7653   format %{ "FSUBD  $src1,$src2,$dst" %}
  7654   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7655   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7656   ins_pipe(faddD_reg_reg);
  7657 %}
  7659 // Mul float double precision
  7660 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  7661   effect(DEF dst, USE src1, USE src2);
  7662   size(4);
  7663   format %{ "FMULD  $src1,$src2,$dst" %}
  7664   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7665   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7666   ins_pipe(fmulD_reg_reg);
  7667 %}
  7669 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  7670   match(Set dst (ConvL2D src));
  7671   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  7673   expand %{
  7674     regD_low   tmpsrc;
  7675     iRegI      ix43300000;
  7676     iRegI      ix41f00000;
  7677     stackSlotL lx43300000;
  7678     stackSlotL lx41f00000;
  7679     regD_low   dx43300000;
  7680     regD       dx41f00000;
  7681     regD       tmp1;
  7682     regD_low   tmp2;
  7683     regD       tmp3;
  7684     regD       tmp4;
  7686     stkL_to_regD(tmpsrc, src);
  7688     loadConI_x43300000(ix43300000);
  7689     loadConI_x41f00000(ix41f00000);
  7690     regI_to_stkLHi(lx43300000, ix43300000);
  7691     regI_to_stkLHi(lx41f00000, ix41f00000);
  7692     stkL_to_regD(dx43300000, lx43300000);
  7693     stkL_to_regD(dx41f00000, lx41f00000);
  7695     convI2D_regDHi_regD(tmp1, tmpsrc);
  7696     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  7697     subD_regD_regD(tmp3, tmp2, dx43300000);
  7698     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  7699     addD_regD_regD(dst, tmp3, tmp4);
  7700   %}
  7701 %}
  7703 // Long to Double conversion using fast fxtof
  7704 instruct convL2D_helper(regD dst, regD tmp) %{
  7705   effect(DEF dst, USE tmp);
  7706   size(4);
  7707   format %{ "FXTOD  $tmp,$dst" %}
  7708   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  7709   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  7710   ins_pipe(fcvtL2D);
  7711 %}
  7713 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  7714   predicate(VM_Version::has_fast_fxtof());
  7715   match(Set dst (ConvL2D src));
  7716   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  7717   expand %{
  7718     regD tmp;
  7719     stkL_to_regD(tmp, src);
  7720     convL2D_helper(dst, tmp);
  7721   %}
  7722 %}
  7724 //-----------
  7725 // Long to Float conversion using V8 opcodes.
  7726 // Still useful because cheetah traps and becomes
  7727 // amazingly slow for some common numbers.
  7729 // Long to Float conversion using fast fxtof
  7730 instruct convL2F_helper(regF dst, regD tmp) %{
  7731   effect(DEF dst, USE tmp);
  7732   size(4);
  7733   format %{ "FXTOS  $tmp,$dst" %}
  7734   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  7735   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  7736   ins_pipe(fcvtL2F);
  7737 %}
  7739 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  7740   match(Set dst (ConvL2F src));
  7741   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7742   expand %{
  7743     regD tmp;
  7744     stkL_to_regD(tmp, src);
  7745     convL2F_helper(dst, tmp);
  7746   %}
  7747 %}
  7748 //-----------
  7750 instruct convL2I_reg(iRegI dst, iRegL src) %{
  7751   match(Set dst (ConvL2I src));
  7752 #ifndef _LP64
  7753   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  7754   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  7755   ins_pipe(ialu_move_reg_I_to_L);
  7756 #else
  7757   size(4);
  7758   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  7759   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  7760   ins_pipe(ialu_reg);
  7761 #endif
  7762 %}
  7764 // Register Shift Right Immediate
  7765 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  7766   match(Set dst (ConvL2I (RShiftL src cnt)));
  7768   size(4);
  7769   format %{ "SRAX   $src,$cnt,$dst" %}
  7770   opcode(Assembler::srax_op3, Assembler::arith_op);
  7771   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  7772   ins_pipe(ialu_reg_imm);
  7773 %}
  7775 // Replicate scalar to packed byte values in Double register
  7776 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  7777   effect(DEF dst, USE src);
  7778   format %{ "SLLX  $src,56,$dst\n\t"
  7779             "SRLX  $dst, 8,O7\n\t"
  7780             "OR    $dst,O7,$dst\n\t"
  7781             "SRLX  $dst,16,O7\n\t"
  7782             "OR    $dst,O7,$dst\n\t"
  7783             "SRLX  $dst,32,O7\n\t"
  7784             "OR    $dst,O7,$dst\t! replicate8B" %}
  7785   ins_encode( enc_repl8b(src, dst));
  7786   ins_pipe(ialu_reg);
  7787 %}
  7789 // Replicate scalar to packed byte values in Double register
  7790 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  7791   match(Set dst (Replicate8B src));
  7792   expand %{
  7793     iRegL tmp;
  7794     Repl8B_reg_helper(tmp, src);
  7795     regL_to_stkD(dst, tmp);
  7796   %}
  7797 %}
  7799 // Replicate scalar constant to packed byte values in Double register
  7800 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  7801   match(Set dst (Replicate8B src));
  7802 #ifdef _LP64
  7803   size(36);
  7804 #else
  7805   size(8);
  7806 #endif
  7807   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  7808             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  7809   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  7810   ins_pipe(loadConFD);
  7811 %}
  7813 // Replicate scalar to packed char values into stack slot
  7814 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  7815   effect(DEF dst, USE src);
  7816   format %{ "SLLX  $src,48,$dst\n\t"
  7817             "SRLX  $dst,16,O7\n\t"
  7818             "OR    $dst,O7,$dst\n\t"
  7819             "SRLX  $dst,32,O7\n\t"
  7820             "OR    $dst,O7,$dst\t! replicate4C" %}
  7821   ins_encode( enc_repl4s(src, dst) );
  7822   ins_pipe(ialu_reg);
  7823 %}
  7825 // Replicate scalar to packed char values into stack slot
  7826 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  7827   match(Set dst (Replicate4C src));
  7828   expand %{
  7829     iRegL tmp;
  7830     Repl4C_reg_helper(tmp, src);
  7831     regL_to_stkD(dst, tmp);
  7832   %}
  7833 %}
  7835 // Replicate scalar constant to packed char values in Double register
  7836 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  7837   match(Set dst (Replicate4C src));
  7838 #ifdef _LP64
  7839   size(36);
  7840 #else
  7841   size(8);
  7842 #endif
  7843   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  7844             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  7845   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  7846   ins_pipe(loadConFD);
  7847 %}
  7849 // Replicate scalar to packed short values into stack slot
  7850 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  7851   effect(DEF dst, USE src);
  7852   format %{ "SLLX  $src,48,$dst\n\t"
  7853             "SRLX  $dst,16,O7\n\t"
  7854             "OR    $dst,O7,$dst\n\t"
  7855             "SRLX  $dst,32,O7\n\t"
  7856             "OR    $dst,O7,$dst\t! replicate4S" %}
  7857   ins_encode( enc_repl4s(src, dst) );
  7858   ins_pipe(ialu_reg);
  7859 %}
  7861 // Replicate scalar to packed short values into stack slot
  7862 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  7863   match(Set dst (Replicate4S src));
  7864   expand %{
  7865     iRegL tmp;
  7866     Repl4S_reg_helper(tmp, src);
  7867     regL_to_stkD(dst, tmp);
  7868   %}
  7869 %}
  7871 // Replicate scalar constant to packed short values in Double register
  7872 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  7873   match(Set dst (Replicate4S src));
  7874 #ifdef _LP64
  7875   size(36);
  7876 #else
  7877   size(8);
  7878 #endif
  7879   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  7880             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  7881   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  7882   ins_pipe(loadConFD);
  7883 %}
  7885 // Replicate scalar to packed int values in Double register
  7886 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  7887   effect(DEF dst, USE src);
  7888   format %{ "SLLX  $src,32,$dst\n\t"
  7889             "SRLX  $dst,32,O7\n\t"
  7890             "OR    $dst,O7,$dst\t! replicate2I" %}
  7891   ins_encode( enc_repl2i(src, dst));
  7892   ins_pipe(ialu_reg);
  7893 %}
  7895 // Replicate scalar to packed int values in Double register
  7896 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  7897   match(Set dst (Replicate2I src));
  7898   expand %{
  7899     iRegL tmp;
  7900     Repl2I_reg_helper(tmp, src);
  7901     regL_to_stkD(dst, tmp);
  7902   %}
  7903 %}
  7905 // Replicate scalar zero constant to packed int values in Double register
  7906 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  7907   match(Set dst (Replicate2I src));
  7908 #ifdef _LP64
  7909   size(36);
  7910 #else
  7911   size(8);
  7912 #endif
  7913   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  7914             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  7915   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  7916   ins_pipe(loadConFD);
  7917 %}
  7919 //----------Control Flow Instructions------------------------------------------
  7920 // Compare Instructions
  7921 // Compare Integers
  7922 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  7923   match(Set icc (CmpI op1 op2));
  7924   effect( DEF icc, USE op1, USE op2 );
  7926   size(4);
  7927   format %{ "CMP    $op1,$op2" %}
  7928   opcode(Assembler::subcc_op3, Assembler::arith_op);
  7929   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  7930   ins_pipe(ialu_cconly_reg_reg);
  7931 %}
  7933 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  7934   match(Set icc (CmpU op1 op2));
  7936   size(4);
  7937   format %{ "CMP    $op1,$op2\t! unsigned" %}
  7938   opcode(Assembler::subcc_op3, Assembler::arith_op);
  7939   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  7940   ins_pipe(ialu_cconly_reg_reg);
  7941 %}
  7943 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  7944   match(Set icc (CmpI op1 op2));
  7945   effect( DEF icc, USE op1 );
  7947   size(4);
  7948   format %{ "CMP    $op1,$op2" %}
  7949   opcode(Assembler::subcc_op3, Assembler::arith_op);
  7950   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  7951   ins_pipe(ialu_cconly_reg_imm);
  7952 %}
  7954 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  7955   match(Set icc (CmpI (AndI op1 op2) zero));
  7957   size(4);
  7958   format %{ "BTST   $op2,$op1" %}
  7959   opcode(Assembler::andcc_op3, Assembler::arith_op);
  7960   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  7961   ins_pipe(ialu_cconly_reg_reg_zero);
  7962 %}
  7964 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  7965   match(Set icc (CmpI (AndI op1 op2) zero));
  7967   size(4);
  7968   format %{ "BTST   $op2,$op1" %}
  7969   opcode(Assembler::andcc_op3, Assembler::arith_op);
  7970   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  7971   ins_pipe(ialu_cconly_reg_imm_zero);
  7972 %}
  7974 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  7975   match(Set xcc (CmpL op1 op2));
  7976   effect( DEF xcc, USE op1, USE op2 );
  7978   size(4);
  7979   format %{ "CMP    $op1,$op2\t\t! long" %}
  7980   opcode(Assembler::subcc_op3, Assembler::arith_op);
  7981   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  7982   ins_pipe(ialu_cconly_reg_reg);
  7983 %}
  7985 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  7986   match(Set xcc (CmpL op1 con));
  7987   effect( DEF xcc, USE op1, USE con );
  7989   size(4);
  7990   format %{ "CMP    $op1,$con\t\t! long" %}
  7991   opcode(Assembler::subcc_op3, Assembler::arith_op);
  7992   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  7993   ins_pipe(ialu_cconly_reg_reg);
  7994 %}
  7996 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  7997   match(Set xcc (CmpL (AndL op1 op2) zero));
  7998   effect( DEF xcc, USE op1, USE op2 );
  8000   size(4);
  8001   format %{ "BTST   $op1,$op2\t\t! long" %}
  8002   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8003   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8004   ins_pipe(ialu_cconly_reg_reg);
  8005 %}
  8007 // useful for checking the alignment of a pointer:
  8008 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8009   match(Set xcc (CmpL (AndL op1 con) zero));
  8010   effect( DEF xcc, USE op1, USE con );
  8012   size(4);
  8013   format %{ "BTST   $op1,$con\t\t! long" %}
  8014   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8015   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8016   ins_pipe(ialu_cconly_reg_reg);
  8017 %}
  8019 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8020   match(Set icc (CmpU op1 op2));
  8022   size(4);
  8023   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8024   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8025   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8026   ins_pipe(ialu_cconly_reg_imm);
  8027 %}
  8029 // Compare Pointers
  8030 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8031   match(Set pcc (CmpP op1 op2));
  8033   size(4);
  8034   format %{ "CMP    $op1,$op2\t! ptr" %}
  8035   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8036   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8037   ins_pipe(ialu_cconly_reg_reg);
  8038 %}
  8040 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8041   match(Set pcc (CmpP op1 op2));
  8043   size(4);
  8044   format %{ "CMP    $op1,$op2\t! ptr" %}
  8045   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8046   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8047   ins_pipe(ialu_cconly_reg_imm);
  8048 %}
  8050 //----------Max and Min--------------------------------------------------------
  8051 // Min Instructions
  8052 // Conditional move for min
  8053 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8054   effect( USE_DEF op2, USE op1, USE icc );
  8056   size(4);
  8057   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8058   opcode(Assembler::less);
  8059   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8060   ins_pipe(ialu_reg_flags);
  8061 %}
  8063 // Min Register with Register.
  8064 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8065   match(Set op2 (MinI op1 op2));
  8066   ins_cost(DEFAULT_COST*2);
  8067   expand %{
  8068     flagsReg icc;
  8069     compI_iReg(icc,op1,op2);
  8070     cmovI_reg_lt(op2,op1,icc);
  8071   %}
  8072 %}
  8074 // Max Instructions
  8075 // Conditional move for max
  8076 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8077   effect( USE_DEF op2, USE op1, USE icc );
  8078   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8079   opcode(Assembler::greater);
  8080   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8081   ins_pipe(ialu_reg_flags);
  8082 %}
  8084 // Max Register with Register
  8085 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8086   match(Set op2 (MaxI op1 op2));
  8087   ins_cost(DEFAULT_COST*2);
  8088   expand %{
  8089     flagsReg icc;
  8090     compI_iReg(icc,op1,op2);
  8091     cmovI_reg_gt(op2,op1,icc);
  8092   %}
  8093 %}
  8096 //----------Float Compares----------------------------------------------------
  8097 // Compare floating, generate condition code
  8098 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8099   match(Set fcc (CmpF src1 src2));
  8101   size(4);
  8102   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8103   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8104   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8105   ins_pipe(faddF_fcc_reg_reg_zero);
  8106 %}
  8108 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8109   match(Set fcc (CmpD src1 src2));
  8111   size(4);
  8112   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8113   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8114   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8115   ins_pipe(faddD_fcc_reg_reg_zero);
  8116 %}
  8119 // Compare floating, generate -1,0,1
  8120 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8121   match(Set dst (CmpF3 src1 src2));
  8122   effect(KILL fcc0);
  8123   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8124   format %{ "fcmpl  $dst,$src1,$src2" %}
  8125   // Primary = float
  8126   opcode( true );
  8127   ins_encode( floating_cmp( dst, src1, src2 ) );
  8128   ins_pipe( floating_cmp );
  8129 %}
  8131 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8132   match(Set dst (CmpD3 src1 src2));
  8133   effect(KILL fcc0);
  8134   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8135   format %{ "dcmpl  $dst,$src1,$src2" %}
  8136   // Primary = double (not float)
  8137   opcode( false );
  8138   ins_encode( floating_cmp( dst, src1, src2 ) );
  8139   ins_pipe( floating_cmp );
  8140 %}
  8142 //----------Branches---------------------------------------------------------
  8143 // Jump
  8144 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8145 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8146   match(Jump switch_val);
  8148   ins_cost(350);
  8150   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8151              "ADD    O7, lo(table_base), O7\n\t"
  8152              "LD     [O7+$switch_val], O7\n\t"
  8153              "JUMP   O7"
  8154          %}
  8155   ins_encode( jump_enc( switch_val, table) );
  8156   ins_pc_relative(1);
  8157   ins_pipe(ialu_reg_reg);
  8158 %}
  8160 // Direct Branch.  Use V8 version with longer range.
  8161 instruct branch(label labl) %{
  8162   match(Goto);
  8163   effect(USE labl);
  8165   size(8);
  8166   ins_cost(BRANCH_COST);
  8167   format %{ "BA     $labl" %}
  8168   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8169   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8170   ins_encode( enc_ba( labl ) );
  8171   ins_pc_relative(1);
  8172   ins_pipe(br);
  8173 %}
  8175 // Conditional Direct Branch
  8176 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8177   match(If cmp icc);
  8178   effect(USE labl);
  8180   size(8);
  8181   ins_cost(BRANCH_COST);
  8182   format %{ "BP$cmp   $icc,$labl" %}
  8183   // Prim = bits 24-22, Secnd = bits 31-30
  8184   ins_encode( enc_bp( labl, cmp, icc ) );
  8185   ins_pc_relative(1);
  8186   ins_pipe(br_cc);
  8187 %}
  8189 // Branch-on-register tests all 64 bits.  We assume that values
  8190 // in 64-bit registers always remains zero or sign extended
  8191 // unless our code munges the high bits.  Interrupts can chop
  8192 // the high order bits to zero or sign at any time.
  8193 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8194   match(If cmp (CmpI op1 zero));
  8195   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8196   effect(USE labl);
  8198   size(8);
  8199   ins_cost(BRANCH_COST);
  8200   format %{ "BR$cmp   $op1,$labl" %}
  8201   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8202   ins_pc_relative(1);
  8203   ins_pipe(br_reg);
  8204 %}
  8206 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8207   match(If cmp (CmpP op1 null));
  8208   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8209   effect(USE labl);
  8211   size(8);
  8212   ins_cost(BRANCH_COST);
  8213   format %{ "BR$cmp   $op1,$labl" %}
  8214   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8215   ins_pc_relative(1);
  8216   ins_pipe(br_reg);
  8217 %}
  8219 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8220   match(If cmp (CmpL op1 zero));
  8221   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8222   effect(USE labl);
  8224   size(8);
  8225   ins_cost(BRANCH_COST);
  8226   format %{ "BR$cmp   $op1,$labl" %}
  8227   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8228   ins_pc_relative(1);
  8229   ins_pipe(br_reg);
  8230 %}
  8232 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8233   match(If cmp icc);
  8234   effect(USE labl);
  8236   format %{ "BP$cmp  $icc,$labl" %}
  8237   // Prim = bits 24-22, Secnd = bits 31-30
  8238   ins_encode( enc_bp( labl, cmp, icc ) );
  8239   ins_pc_relative(1);
  8240   ins_pipe(br_cc);
  8241 %}
  8243 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  8244   match(If cmp pcc);
  8245   effect(USE labl);
  8247   size(8);
  8248   ins_cost(BRANCH_COST);
  8249   format %{ "BP$cmp  $pcc,$labl" %}
  8250   // Prim = bits 24-22, Secnd = bits 31-30
  8251   ins_encode( enc_bpx( labl, cmp, pcc ) );
  8252   ins_pc_relative(1);
  8253   ins_pipe(br_cc);
  8254 %}
  8256 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  8257   match(If cmp fcc);
  8258   effect(USE labl);
  8260   size(8);
  8261   ins_cost(BRANCH_COST);
  8262   format %{ "FBP$cmp $fcc,$labl" %}
  8263   // Prim = bits 24-22, Secnd = bits 31-30
  8264   ins_encode( enc_fbp( labl, cmp, fcc ) );
  8265   ins_pc_relative(1);
  8266   ins_pipe(br_fcc);
  8267 %}
  8269 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  8270   match(CountedLoopEnd cmp icc);
  8271   effect(USE labl);
  8273   size(8);
  8274   ins_cost(BRANCH_COST);
  8275   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  8276   // Prim = bits 24-22, Secnd = bits 31-30
  8277   ins_encode( enc_bp( labl, cmp, icc ) );
  8278   ins_pc_relative(1);
  8279   ins_pipe(br_cc);
  8280 %}
  8282 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8283   match(CountedLoopEnd cmp icc);
  8284   effect(USE labl);
  8286   size(8);
  8287   ins_cost(BRANCH_COST);
  8288   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  8289   // Prim = bits 24-22, Secnd = bits 31-30
  8290   ins_encode( enc_bp( labl, cmp, icc ) );
  8291   ins_pc_relative(1);
  8292   ins_pipe(br_cc);
  8293 %}
  8295 // ============================================================================
  8296 // Long Compare
  8297 //
  8298 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  8299 // is tricky.  The flavor of compare used depends on whether we are testing
  8300 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  8301 // The GE test is the negated LT test.  The LE test can be had by commuting
  8302 // the operands (yielding a GE test) and then negating; negate again for the
  8303 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  8304 // NE test is negated from that.
  8306 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  8307 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  8308 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  8309 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  8310 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  8311 // foo match ends up with the wrong leaf.  One fix is to not match both
  8312 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  8313 // both forms beat the trinary form of long-compare and both are very useful
  8314 // on Intel which has so few registers.
  8316 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  8317   match(If cmp xcc);
  8318   effect(USE labl);
  8320   size(8);
  8321   ins_cost(BRANCH_COST);
  8322   format %{ "BP$cmp   $xcc,$labl" %}
  8323   // Prim = bits 24-22, Secnd = bits 31-30
  8324   ins_encode( enc_bpl( labl, cmp, xcc ) );
  8325   ins_pc_relative(1);
  8326   ins_pipe(br_cc);
  8327 %}
  8329 // Manifest a CmpL3 result in an integer register.  Very painful.
  8330 // This is the test to avoid.
  8331 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  8332   match(Set dst (CmpL3 src1 src2) );
  8333   effect( KILL ccr );
  8334   ins_cost(6*DEFAULT_COST);
  8335   size(24);
  8336   format %{ "CMP    $src1,$src2\t\t! long\n"
  8337           "\tBLT,a,pn done\n"
  8338           "\tMOV    -1,$dst\t! delay slot\n"
  8339           "\tBGT,a,pn done\n"
  8340           "\tMOV    1,$dst\t! delay slot\n"
  8341           "\tCLR    $dst\n"
  8342     "done:"     %}
  8343   ins_encode( cmpl_flag(src1,src2,dst) );
  8344   ins_pipe(cmpL_reg);
  8345 %}
  8347 // Conditional move
  8348 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  8349   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8350   ins_cost(150);
  8351   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8352   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8353   ins_pipe(ialu_reg);
  8354 %}
  8356 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  8357   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8358   ins_cost(140);
  8359   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8360   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8361   ins_pipe(ialu_imm);
  8362 %}
  8364 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  8365   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8366   ins_cost(150);
  8367   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8368   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8369   ins_pipe(ialu_reg);
  8370 %}
  8372 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  8373   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8374   ins_cost(140);
  8375   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8376   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8377   ins_pipe(ialu_imm);
  8378 %}
  8380 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  8381   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8382   ins_cost(150);
  8383   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8384   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8385   ins_pipe(ialu_reg);
  8386 %}
  8388 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  8389   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8390   ins_cost(140);
  8391   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8392   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8393   ins_pipe(ialu_imm);
  8394 %}
  8396 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  8397   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  8398   ins_cost(150);
  8399   opcode(0x101);
  8400   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  8401   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8402   ins_pipe(int_conditional_float_move);
  8403 %}
  8405 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  8406   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  8407   ins_cost(150);
  8408   opcode(0x102);
  8409   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  8410   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8411   ins_pipe(int_conditional_float_move);
  8412 %}
  8414 // ============================================================================
  8415 // Safepoint Instruction
  8416 instruct safePoint_poll(iRegP poll) %{
  8417   match(SafePoint poll);
  8418   effect(USE poll);
  8420   size(4);
  8421 #ifdef _LP64
  8422   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  8423 #else
  8424   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  8425 #endif
  8426   ins_encode %{
  8427     __ relocate(relocInfo::poll_type);
  8428     __ ld_ptr($poll$$Register, 0, G0);
  8429   %}
  8430   ins_pipe(loadPollP);
  8431 %}
  8433 // ============================================================================
  8434 // Call Instructions
  8435 // Call Java Static Instruction
  8436 instruct CallStaticJavaDirect( method meth ) %{
  8437   match(CallStaticJava);
  8438   effect(USE meth);
  8440   size(8);
  8441   ins_cost(CALL_COST);
  8442   format %{ "CALL,static  ; NOP ==> " %}
  8443   ins_encode( Java_Static_Call( meth ), call_epilog );
  8444   ins_pc_relative(1);
  8445   ins_pipe(simple_call);
  8446 %}
  8448 // Call Java Dynamic Instruction
  8449 instruct CallDynamicJavaDirect( method meth ) %{
  8450   match(CallDynamicJava);
  8451   effect(USE meth);
  8453   ins_cost(CALL_COST);
  8454   format %{ "SET    (empty),R_G5\n\t"
  8455             "CALL,dynamic  ; NOP ==> " %}
  8456   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  8457   ins_pc_relative(1);
  8458   ins_pipe(call);
  8459 %}
  8461 // Call Runtime Instruction
  8462 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  8463   match(CallRuntime);
  8464   effect(USE meth, KILL l7);
  8465   ins_cost(CALL_COST);
  8466   format %{ "CALL,runtime" %}
  8467   ins_encode( Java_To_Runtime( meth ),
  8468               call_epilog, adjust_long_from_native_call );
  8469   ins_pc_relative(1);
  8470   ins_pipe(simple_call);
  8471 %}
  8473 // Call runtime without safepoint - same as CallRuntime
  8474 instruct CallLeafDirect(method meth, l7RegP l7) %{
  8475   match(CallLeaf);
  8476   effect(USE meth, KILL l7);
  8477   ins_cost(CALL_COST);
  8478   format %{ "CALL,runtime leaf" %}
  8479   ins_encode( Java_To_Runtime( meth ),
  8480               call_epilog,
  8481               adjust_long_from_native_call );
  8482   ins_pc_relative(1);
  8483   ins_pipe(simple_call);
  8484 %}
  8486 // Call runtime without safepoint - same as CallLeaf
  8487 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  8488   match(CallLeafNoFP);
  8489   effect(USE meth, KILL l7);
  8490   ins_cost(CALL_COST);
  8491   format %{ "CALL,runtime leaf nofp" %}
  8492   ins_encode( Java_To_Runtime( meth ),
  8493               call_epilog,
  8494               adjust_long_from_native_call );
  8495   ins_pc_relative(1);
  8496   ins_pipe(simple_call);
  8497 %}
  8499 // Tail Call; Jump from runtime stub to Java code.
  8500 // Also known as an 'interprocedural jump'.
  8501 // Target of jump will eventually return to caller.
  8502 // TailJump below removes the return address.
  8503 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  8504   match(TailCall jump_target method_oop );
  8506   ins_cost(CALL_COST);
  8507   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  8508   ins_encode(form_jmpl(jump_target));
  8509   ins_pipe(tail_call);
  8510 %}
  8513 // Return Instruction
  8514 instruct Ret() %{
  8515   match(Return);
  8517   // The epilogue node did the ret already.
  8518   size(0);
  8519   format %{ "! return" %}
  8520   ins_encode();
  8521   ins_pipe(empty);
  8522 %}
  8525 // Tail Jump; remove the return address; jump to target.
  8526 // TailCall above leaves the return address around.
  8527 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  8528 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  8529 // "restore" before this instruction (in Epilogue), we need to materialize it
  8530 // in %i0.
  8531 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  8532   match( TailJump jump_target ex_oop );
  8533   ins_cost(CALL_COST);
  8534   format %{ "! discard R_O7\n\t"
  8535             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  8536   ins_encode(form_jmpl_set_exception_pc(jump_target));
  8537   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  8538   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  8539   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  8540   ins_pipe(tail_call);
  8541 %}
  8543 // Create exception oop: created by stack-crawling runtime code.
  8544 // Created exception is now available to this handler, and is setup
  8545 // just prior to jumping to this handler.  No code emitted.
  8546 instruct CreateException( o0RegP ex_oop )
  8547 %{
  8548   match(Set ex_oop (CreateEx));
  8549   ins_cost(0);
  8551   size(0);
  8552   // use the following format syntax
  8553   format %{ "! exception oop is in R_O0; no code emitted" %}
  8554   ins_encode();
  8555   ins_pipe(empty);
  8556 %}
  8559 // Rethrow exception:
  8560 // The exception oop will come in the first argument position.
  8561 // Then JUMP (not call) to the rethrow stub code.
  8562 instruct RethrowException()
  8563 %{
  8564   match(Rethrow);
  8565   ins_cost(CALL_COST);
  8567   // use the following format syntax
  8568   format %{ "Jmp    rethrow_stub" %}
  8569   ins_encode(enc_rethrow);
  8570   ins_pipe(tail_call);
  8571 %}
  8574 // Die now
  8575 instruct ShouldNotReachHere( )
  8576 %{
  8577   match(Halt);
  8578   ins_cost(CALL_COST);
  8580   size(4);
  8581   // Use the following format syntax
  8582   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  8583   ins_encode( form2_illtrap() );
  8584   ins_pipe(tail_call);
  8585 %}
  8587 // ============================================================================
  8588 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  8589 // array for an instance of the superklass.  Set a hidden internal cache on a
  8590 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  8591 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  8592 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  8593   match(Set index (PartialSubtypeCheck sub super));
  8594   effect( KILL pcc, KILL o7 );
  8595   ins_cost(DEFAULT_COST*10);
  8596   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  8597   ins_encode( enc_PartialSubtypeCheck() );
  8598   ins_pipe(partial_subtype_check_pipe);
  8599 %}
  8601 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  8602   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  8603   effect( KILL idx, KILL o7 );
  8604   ins_cost(DEFAULT_COST*10);
  8605   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  8606   ins_encode( enc_PartialSubtypeCheck() );
  8607   ins_pipe(partial_subtype_check_pipe);
  8608 %}
  8610 // ============================================================================
  8611 // inlined locking and unlocking
  8613 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8614   match(Set pcc (FastLock object box));
  8616   effect(KILL scratch, TEMP scratch2);
  8617   ins_cost(100);
  8619   size(4*112);       // conservative overestimation ...
  8620   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8621   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  8622   ins_pipe(long_memory_op);
  8623 %}
  8626 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8627   match(Set pcc (FastUnlock object box));
  8628   effect(KILL scratch, TEMP scratch2);
  8629   ins_cost(100);
  8631   size(4*120);       // conservative overestimation ...
  8632   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8633   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  8634   ins_pipe(long_memory_op);
  8635 %}
  8637 // Count and Base registers are fixed because the allocator cannot
  8638 // kill unknown registers.  The encodings are generic.
  8639 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  8640   match(Set dummy (ClearArray cnt base));
  8641   effect(TEMP temp, KILL ccr);
  8642   ins_cost(300);
  8643   format %{ "MOV    $cnt,$temp\n"
  8644     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  8645     "        BRge   loop\t\t! Clearing loop\n"
  8646     "        STX    G0,[$base+$temp]\t! delay slot" %}
  8647   ins_encode( enc_Clear_Array(cnt, base, temp) );
  8648   ins_pipe(long_memory_op);
  8649 %}
  8651 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result, flagsReg ccr) %{
  8652   match(Set result (StrComp str1 str2));
  8653   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr);
  8654   ins_cost(300);
  8655   format %{ "String Compare $str1,$str2 -> $result" %}
  8656   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
  8657   ins_pipe(long_memory_op);
  8658 %}
  8660 // ============================================================================
  8661 //------------Bytes reverse--------------------------------------------------
  8663 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  8664   match(Set dst (ReverseBytesI src));
  8665   effect(DEF dst, USE src);
  8667   // Op cost is artificially doubled to make sure that load or store
  8668   // instructions are preferred over this one which requires a spill
  8669   // onto a stack slot.
  8670   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8671   size(8);
  8672   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  8673   opcode(Assembler::lduwa_op3);
  8674   ins_encode( form3_mem_reg_little(src, dst) );
  8675   ins_pipe( iload_mem );
  8676 %}
  8678 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  8679   match(Set dst (ReverseBytesL src));
  8680   effect(DEF dst, USE src);
  8682   // Op cost is artificially doubled to make sure that load or store
  8683   // instructions are preferred over this one which requires a spill
  8684   // onto a stack slot.
  8685   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8686   size(8);
  8687   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  8689   opcode(Assembler::ldxa_op3);
  8690   ins_encode( form3_mem_reg_little(src, dst) );
  8691   ins_pipe( iload_mem );
  8692 %}
  8694 // Load Integer reversed byte order
  8695 instruct loadI_reversed(iRegI dst, memory src) %{
  8696   match(Set dst (ReverseBytesI (LoadI src)));
  8698   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8699   size(8);
  8700   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  8702   opcode(Assembler::lduwa_op3);
  8703   ins_encode( form3_mem_reg_little( src, dst) );
  8704   ins_pipe(iload_mem);
  8705 %}
  8707 // Load Long - aligned and reversed
  8708 instruct loadL_reversed(iRegL dst, memory src) %{
  8709   match(Set dst (ReverseBytesL (LoadL src)));
  8711   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8712   size(8);
  8713   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  8715   opcode(Assembler::ldxa_op3);
  8716   ins_encode( form3_mem_reg_little( src, dst ) );
  8717   ins_pipe(iload_mem);
  8718 %}
  8720 // Store Integer reversed byte order
  8721 instruct storeI_reversed(memory dst, iRegI src) %{
  8722   match(Set dst (StoreI dst (ReverseBytesI src)));
  8724   ins_cost(MEMORY_REF_COST);
  8725   size(8);
  8726   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  8728   opcode(Assembler::stwa_op3);
  8729   ins_encode( form3_mem_reg_little( dst, src) );
  8730   ins_pipe(istore_mem_reg);
  8731 %}
  8733 // Store Long reversed byte order
  8734 instruct storeL_reversed(memory dst, iRegL src) %{
  8735   match(Set dst (StoreL dst (ReverseBytesL src)));
  8737   ins_cost(MEMORY_REF_COST);
  8738   size(8);
  8739   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  8741   opcode(Assembler::stxa_op3);
  8742   ins_encode( form3_mem_reg_little( dst, src) );
  8743   ins_pipe(istore_mem_reg);
  8744 %}
  8746 //----------PEEPHOLE RULES-----------------------------------------------------
  8747 // These must follow all instruction definitions as they use the names
  8748 // defined in the instructions definitions.
  8749 //
  8750 // peepmatch ( root_instr_name [preceeding_instruction]* );
  8751 //
  8752 // peepconstraint %{
  8753 // (instruction_number.operand_name relational_op instruction_number.operand_name
  8754 //  [, ...] );
  8755 // // instruction numbers are zero-based using left to right order in peepmatch
  8756 //
  8757 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  8758 // // provide an instruction_number.operand_name for each operand that appears
  8759 // // in the replacement instruction's match rule
  8760 //
  8761 // ---------VM FLAGS---------------------------------------------------------
  8762 //
  8763 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  8764 //
  8765 // Each peephole rule is given an identifying number starting with zero and
  8766 // increasing by one in the order seen by the parser.  An individual peephole
  8767 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  8768 // on the command-line.
  8769 //
  8770 // ---------CURRENT LIMITATIONS----------------------------------------------
  8771 //
  8772 // Only match adjacent instructions in same basic block
  8773 // Only equality constraints
  8774 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  8775 // Only one replacement instruction
  8776 //
  8777 // ---------EXAMPLE----------------------------------------------------------
  8778 //
  8779 // // pertinent parts of existing instructions in architecture description
  8780 // instruct movI(eRegI dst, eRegI src) %{
  8781 //   match(Set dst (CopyI src));
  8782 // %}
  8783 //
  8784 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8785 //   match(Set dst (AddI dst src));
  8786 //   effect(KILL cr);
  8787 // %}
  8788 //
  8789 // // Change (inc mov) to lea
  8790 // peephole %{
  8791 //   // increment preceeded by register-register move
  8792 //   peepmatch ( incI_eReg movI );
  8793 //   // require that the destination register of the increment
  8794 //   // match the destination register of the move
  8795 //   peepconstraint ( 0.dst == 1.dst );
  8796 //   // construct a replacement instruction that sets
  8797 //   // the destination to ( move's source register + one )
  8798 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  8799 // %}
  8800 //
  8802 // // Change load of spilled value to only a spill
  8803 // instruct storeI(memory mem, eRegI src) %{
  8804 //   match(Set mem (StoreI mem src));
  8805 // %}
  8806 //
  8807 // instruct loadI(eRegI dst, memory mem) %{
  8808 //   match(Set dst (LoadI mem));
  8809 // %}
  8810 //
  8811 // peephole %{
  8812 //   peepmatch ( loadI storeI );
  8813 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  8814 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  8815 // %}
  8817 //----------SMARTSPILL RULES---------------------------------------------------
  8818 // These must follow all instruction definitions as they use the names
  8819 // defined in the instructions definitions.
  8820 //
  8821 // SPARC will probably not have any of these rules due to RISC instruction set.
  8823 //----------PIPELINE-----------------------------------------------------------
  8824 // Rules which define the behavior of the target architectures pipeline.

mercurial