src/os/solaris/vm/os_solaris.cpp

Wed, 10 Jul 2013 13:33:56 -0700

author
anoll
date
Wed, 10 Jul 2013 13:33:56 -0700
changeset 5384
dec841e0c9aa
parent 5272
1f4355cee9a2
child 5385
ec173c8f3739
permissions
-rw-r--r--

8016749: -XX:+UseISM fails an assert(obj->is_oop()) when running SPECjbb2005
Summary: Remove obsolete code that relates to ISM which was used only on Solaris 8.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_solaris.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_solaris.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_solaris.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/javaCalls.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/objectMonitor.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/perfMemory.hpp"
    53 #include "runtime/sharedRuntime.hpp"
    54 #include "runtime/statSampler.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/thread.inline.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/memTracker.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    68 // put OS-includes here
    69 # include <dlfcn.h>
    70 # include <errno.h>
    71 # include <exception>
    72 # include <link.h>
    73 # include <poll.h>
    74 # include <pthread.h>
    75 # include <pwd.h>
    76 # include <schedctl.h>
    77 # include <setjmp.h>
    78 # include <signal.h>
    79 # include <stdio.h>
    80 # include <alloca.h>
    81 # include <sys/filio.h>
    82 # include <sys/ipc.h>
    83 # include <sys/lwp.h>
    84 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    85 # include <sys/mman.h>
    86 # include <sys/processor.h>
    87 # include <sys/procset.h>
    88 # include <sys/pset.h>
    89 # include <sys/resource.h>
    90 # include <sys/shm.h>
    91 # include <sys/socket.h>
    92 # include <sys/stat.h>
    93 # include <sys/systeminfo.h>
    94 # include <sys/time.h>
    95 # include <sys/times.h>
    96 # include <sys/types.h>
    97 # include <sys/wait.h>
    98 # include <sys/utsname.h>
    99 # include <thread.h>
   100 # include <unistd.h>
   101 # include <sys/priocntl.h>
   102 # include <sys/rtpriocntl.h>
   103 # include <sys/tspriocntl.h>
   104 # include <sys/iapriocntl.h>
   105 # include <sys/fxpriocntl.h>
   106 # include <sys/loadavg.h>
   107 # include <string.h>
   108 # include <stdio.h>
   110 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   111 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   113 #define MAX_PATH (2 * K)
   115 // for timer info max values which include all bits
   116 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   119 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   120 // compile on older systems without this header file.
   122 #ifndef MADV_ACCESS_LWP
   123 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   124 #endif
   125 #ifndef MADV_ACCESS_MANY
   126 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   127 #endif
   129 #ifndef LGRP_RSRC_CPU
   130 # define LGRP_RSRC_CPU           0       /* CPU resources */
   131 #endif
   132 #ifndef LGRP_RSRC_MEM
   133 # define LGRP_RSRC_MEM           1       /* memory resources */
   134 #endif
   136 // see thr_setprio(3T) for the basis of these numbers
   137 #define MinimumPriority 0
   138 #define NormalPriority  64
   139 #define MaximumPriority 127
   141 // Values for ThreadPriorityPolicy == 1
   142 int prio_policy1[CriticalPriority+1] = {
   143   -99999,  0, 16,  32,  48,  64,
   144           80, 96, 112, 124, 127, 127 };
   146 // System parameters used internally
   147 static clock_t clock_tics_per_sec = 100;
   149 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   150 static bool enabled_extended_FILE_stdio = false;
   152 // For diagnostics to print a message once. see run_periodic_checks
   153 static bool check_addr0_done = false;
   154 static sigset_t check_signal_done;
   155 static bool check_signals = true;
   157 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   158 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   160 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   163 // "default" initializers for missing libc APIs
   164 extern "C" {
   165   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   166   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   168   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   169   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   170 }
   172 // "default" initializers for pthread-based synchronization
   173 extern "C" {
   174   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   175   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   176 }
   178 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   180 // Thread Local Storage
   181 // This is common to all Solaris platforms so it is defined here,
   182 // in this common file.
   183 // The declarations are in the os_cpu threadLS*.hpp files.
   184 //
   185 // Static member initialization for TLS
   186 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   188 #ifndef PRODUCT
   189 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   191 int ThreadLocalStorage::_tcacheHit = 0;
   192 int ThreadLocalStorage::_tcacheMiss = 0;
   194 void ThreadLocalStorage::print_statistics() {
   195   int total = _tcacheMiss+_tcacheHit;
   196   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   197                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   198 }
   199 #undef _PCT
   200 #endif // PRODUCT
   202 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   203                                                         int index) {
   204   Thread *thread = get_thread_slow();
   205   if (thread != NULL) {
   206     address sp = os::current_stack_pointer();
   207     guarantee(thread->_stack_base == NULL ||
   208               (sp <= thread->_stack_base &&
   209                  sp >= thread->_stack_base - thread->_stack_size) ||
   210                is_error_reported(),
   211               "sp must be inside of selected thread stack");
   213     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   214     _get_thread_cache[ index ] = thread;
   215   }
   216   return thread;
   217 }
   220 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   221 #define NO_CACHED_THREAD ((Thread*)all_zero)
   223 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   225   // Store the new value before updating the cache to prevent a race
   226   // between get_thread_via_cache_slowly() and this store operation.
   227   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   229   // Update thread cache with new thread if setting on thread create,
   230   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   231   uintptr_t raw = pd_raw_thread_id();
   232   int ix = pd_cache_index(raw);
   233   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   234 }
   236 void ThreadLocalStorage::pd_init() {
   237   for (int i = 0; i < _pd_cache_size; i++) {
   238     _get_thread_cache[i] = NO_CACHED_THREAD;
   239   }
   240 }
   242 // Invalidate all the caches (happens to be the same as pd_init).
   243 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   245 #undef NO_CACHED_THREAD
   247 // END Thread Local Storage
   249 static inline size_t adjust_stack_size(address base, size_t size) {
   250   if ((ssize_t)size < 0) {
   251     // 4759953: Compensate for ridiculous stack size.
   252     size = max_intx;
   253   }
   254   if (size > (size_t)base) {
   255     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   256     size = (size_t)base;
   257   }
   258   return size;
   259 }
   261 static inline stack_t get_stack_info() {
   262   stack_t st;
   263   int retval = thr_stksegment(&st);
   264   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   265   assert(retval == 0, "incorrect return value from thr_stksegment");
   266   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   267   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   268   return st;
   269 }
   271 address os::current_stack_base() {
   272   int r = thr_main() ;
   273   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   274   bool is_primordial_thread = r;
   276   // Workaround 4352906, avoid calls to thr_stksegment by
   277   // thr_main after the first one (it looks like we trash
   278   // some data, causing the value for ss_sp to be incorrect).
   279   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   280     stack_t st = get_stack_info();
   281     if (is_primordial_thread) {
   282       // cache initial value of stack base
   283       os::Solaris::_main_stack_base = (address)st.ss_sp;
   284     }
   285     return (address)st.ss_sp;
   286   } else {
   287     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   288     return os::Solaris::_main_stack_base;
   289   }
   290 }
   292 size_t os::current_stack_size() {
   293   size_t size;
   295   int r = thr_main() ;
   296   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   297   if(!r) {
   298     size = get_stack_info().ss_size;
   299   } else {
   300     struct rlimit limits;
   301     getrlimit(RLIMIT_STACK, &limits);
   302     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   303   }
   304   // base may not be page aligned
   305   address base = current_stack_base();
   306   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   307   return (size_t)(base - bottom);
   308 }
   310 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   311   return localtime_r(clock, res);
   312 }
   314 // interruptible infrastructure
   316 // setup_interruptible saves the thread state before going into an
   317 // interruptible system call.
   318 // The saved state is used to restore the thread to
   319 // its former state whether or not an interrupt is received.
   320 // Used by classloader os::read
   321 // os::restartable_read calls skip this layer and stay in _thread_in_native
   323 void os::Solaris::setup_interruptible(JavaThread* thread) {
   325   JavaThreadState thread_state = thread->thread_state();
   327   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   328   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   329   OSThread* osthread = thread->osthread();
   330   osthread->set_saved_interrupt_thread_state(thread_state);
   331   thread->frame_anchor()->make_walkable(thread);
   332   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   333 }
   335 // Version of setup_interruptible() for threads that are already in
   336 // _thread_blocked. Used by os_sleep().
   337 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   338   thread->frame_anchor()->make_walkable(thread);
   339 }
   341 JavaThread* os::Solaris::setup_interruptible() {
   342   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   343   setup_interruptible(thread);
   344   return thread;
   345 }
   347 void os::Solaris::try_enable_extended_io() {
   348   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   350   if (!UseExtendedFileIO) {
   351     return;
   352   }
   354   enable_extended_FILE_stdio_t enabler =
   355     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   356                                          "enable_extended_FILE_stdio");
   357   if (enabler) {
   358     enabler(-1, -1);
   359   }
   360 }
   363 #ifdef ASSERT
   365 JavaThread* os::Solaris::setup_interruptible_native() {
   366   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   367   JavaThreadState thread_state = thread->thread_state();
   368   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   369   return thread;
   370 }
   372 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   373   JavaThreadState thread_state = thread->thread_state();
   374   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   375 }
   376 #endif
   378 // cleanup_interruptible reverses the effects of setup_interruptible
   379 // setup_interruptible_already_blocked() does not need any cleanup.
   381 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   382   OSThread* osthread = thread->osthread();
   384   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   385 }
   387 // I/O interruption related counters called in _INTERRUPTIBLE
   389 void os::Solaris::bump_interrupted_before_count() {
   390   RuntimeService::record_interrupted_before_count();
   391 }
   393 void os::Solaris::bump_interrupted_during_count() {
   394   RuntimeService::record_interrupted_during_count();
   395 }
   397 static int _processors_online = 0;
   399          jint os::Solaris::_os_thread_limit = 0;
   400 volatile jint os::Solaris::_os_thread_count = 0;
   402 julong os::available_memory() {
   403   return Solaris::available_memory();
   404 }
   406 julong os::Solaris::available_memory() {
   407   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   408 }
   410 julong os::Solaris::_physical_memory = 0;
   412 julong os::physical_memory() {
   413    return Solaris::physical_memory();
   414 }
   416 static hrtime_t first_hrtime = 0;
   417 static const hrtime_t hrtime_hz = 1000*1000*1000;
   418 const int LOCK_BUSY = 1;
   419 const int LOCK_FREE = 0;
   420 const int LOCK_INVALID = -1;
   421 static volatile hrtime_t max_hrtime = 0;
   422 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   425 void os::Solaris::initialize_system_info() {
   426   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   427   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   428   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   429 }
   431 int os::active_processor_count() {
   432   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   433   pid_t pid = getpid();
   434   psetid_t pset = PS_NONE;
   435   // Are we running in a processor set or is there any processor set around?
   436   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   437     uint_t pset_cpus;
   438     // Query the number of cpus available to us.
   439     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   440       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   441       _processors_online = pset_cpus;
   442       return pset_cpus;
   443     }
   444   }
   445   // Otherwise return number of online cpus
   446   return online_cpus;
   447 }
   449 static bool find_processors_in_pset(psetid_t        pset,
   450                                     processorid_t** id_array,
   451                                     uint_t*         id_length) {
   452   bool result = false;
   453   // Find the number of processors in the processor set.
   454   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   455     // Make up an array to hold their ids.
   456     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   457     // Fill in the array with their processor ids.
   458     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   459       result = true;
   460     }
   461   }
   462   return result;
   463 }
   465 // Callers of find_processors_online() must tolerate imprecise results --
   466 // the system configuration can change asynchronously because of DR
   467 // or explicit psradm operations.
   468 //
   469 // We also need to take care that the loop (below) terminates as the
   470 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   471 // request and the loop that builds the list of processor ids.   Unfortunately
   472 // there's no reliable way to determine the maximum valid processor id,
   473 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   474 // man pages, which claim the processor id set is "sparse, but
   475 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   476 // exit the loop.
   477 //
   478 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   479 // not available on S8.0.
   481 static bool find_processors_online(processorid_t** id_array,
   482                                    uint*           id_length) {
   483   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   484   // Find the number of processors online.
   485   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   486   // Make up an array to hold their ids.
   487   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   488   // Processors need not be numbered consecutively.
   489   long found = 0;
   490   processorid_t next = 0;
   491   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   492     processor_info_t info;
   493     if (processor_info(next, &info) == 0) {
   494       // NB, PI_NOINTR processors are effectively online ...
   495       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   496         (*id_array)[found] = next;
   497         found += 1;
   498       }
   499     }
   500     next += 1;
   501   }
   502   if (found < *id_length) {
   503       // The loop above didn't identify the expected number of processors.
   504       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   505       // and re-running the loop, above, but there's no guarantee of progress
   506       // if the system configuration is in flux.  Instead, we just return what
   507       // we've got.  Note that in the worst case find_processors_online() could
   508       // return an empty set.  (As a fall-back in the case of the empty set we
   509       // could just return the ID of the current processor).
   510       *id_length = found ;
   511   }
   513   return true;
   514 }
   516 static bool assign_distribution(processorid_t* id_array,
   517                                 uint           id_length,
   518                                 uint*          distribution,
   519                                 uint           distribution_length) {
   520   // We assume we can assign processorid_t's to uint's.
   521   assert(sizeof(processorid_t) == sizeof(uint),
   522          "can't convert processorid_t to uint");
   523   // Quick check to see if we won't succeed.
   524   if (id_length < distribution_length) {
   525     return false;
   526   }
   527   // Assign processor ids to the distribution.
   528   // Try to shuffle processors to distribute work across boards,
   529   // assuming 4 processors per board.
   530   const uint processors_per_board = ProcessDistributionStride;
   531   // Find the maximum processor id.
   532   processorid_t max_id = 0;
   533   for (uint m = 0; m < id_length; m += 1) {
   534     max_id = MAX2(max_id, id_array[m]);
   535   }
   536   // The next id, to limit loops.
   537   const processorid_t limit_id = max_id + 1;
   538   // Make up markers for available processors.
   539   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
   540   for (uint c = 0; c < limit_id; c += 1) {
   541     available_id[c] = false;
   542   }
   543   for (uint a = 0; a < id_length; a += 1) {
   544     available_id[id_array[a]] = true;
   545   }
   546   // Step by "boards", then by "slot", copying to "assigned".
   547   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   548   //                remembering which processors have been assigned by
   549   //                previous calls, etc., so as to distribute several
   550   //                independent calls of this method.  What we'd like is
   551   //                It would be nice to have an API that let us ask
   552   //                how many processes are bound to a processor,
   553   //                but we don't have that, either.
   554   //                In the short term, "board" is static so that
   555   //                subsequent distributions don't all start at board 0.
   556   static uint board = 0;
   557   uint assigned = 0;
   558   // Until we've found enough processors ....
   559   while (assigned < distribution_length) {
   560     // ... find the next available processor in the board.
   561     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   562       uint try_id = board * processors_per_board + slot;
   563       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   564         distribution[assigned] = try_id;
   565         available_id[try_id] = false;
   566         assigned += 1;
   567         break;
   568       }
   569     }
   570     board += 1;
   571     if (board * processors_per_board + 0 >= limit_id) {
   572       board = 0;
   573     }
   574   }
   575   if (available_id != NULL) {
   576     FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
   577   }
   578   return true;
   579 }
   581 void os::set_native_thread_name(const char *name) {
   582   // Not yet implemented.
   583   return;
   584 }
   586 bool os::distribute_processes(uint length, uint* distribution) {
   587   bool result = false;
   588   // Find the processor id's of all the available CPUs.
   589   processorid_t* id_array  = NULL;
   590   uint           id_length = 0;
   591   // There are some races between querying information and using it,
   592   // since processor sets can change dynamically.
   593   psetid_t pset = PS_NONE;
   594   // Are we running in a processor set?
   595   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   596     result = find_processors_in_pset(pset, &id_array, &id_length);
   597   } else {
   598     result = find_processors_online(&id_array, &id_length);
   599   }
   600   if (result == true) {
   601     if (id_length >= length) {
   602       result = assign_distribution(id_array, id_length, distribution, length);
   603     } else {
   604       result = false;
   605     }
   606   }
   607   if (id_array != NULL) {
   608     FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
   609   }
   610   return result;
   611 }
   613 bool os::bind_to_processor(uint processor_id) {
   614   // We assume that a processorid_t can be stored in a uint.
   615   assert(sizeof(uint) == sizeof(processorid_t),
   616          "can't convert uint to processorid_t");
   617   int bind_result =
   618     processor_bind(P_LWPID,                       // bind LWP.
   619                    P_MYID,                        // bind current LWP.
   620                    (processorid_t) processor_id,  // id.
   621                    NULL);                         // don't return old binding.
   622   return (bind_result == 0);
   623 }
   625 bool os::getenv(const char* name, char* buffer, int len) {
   626   char* val = ::getenv( name );
   627   if ( val == NULL
   628   ||   strlen(val) + 1  >  len ) {
   629     if (len > 0)  buffer[0] = 0; // return a null string
   630     return false;
   631   }
   632   strcpy( buffer, val );
   633   return true;
   634 }
   637 // Return true if user is running as root.
   639 bool os::have_special_privileges() {
   640   static bool init = false;
   641   static bool privileges = false;
   642   if (!init) {
   643     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   644     init = true;
   645   }
   646   return privileges;
   647 }
   650 void os::init_system_properties_values() {
   651   char arch[12];
   652   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   654   // The next steps are taken in the product version:
   655   //
   656   // Obtain the JAVA_HOME value from the location of libjvm.so.
   657   // This library should be located at:
   658   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   659   //
   660   // If "/jre/lib/" appears at the right place in the path, then we
   661   // assume libjvm.so is installed in a JDK and we use this path.
   662   //
   663   // Otherwise exit with message: "Could not create the Java virtual machine."
   664   //
   665   // The following extra steps are taken in the debugging version:
   666   //
   667   // If "/jre/lib/" does NOT appear at the right place in the path
   668   // instead of exit check for $JAVA_HOME environment variable.
   669   //
   670   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   671   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   672   // it looks like libjvm.so is installed there
   673   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   674   //
   675   // Otherwise exit.
   676   //
   677   // Important note: if the location of libjvm.so changes this
   678   // code needs to be changed accordingly.
   680   // The next few definitions allow the code to be verbatim:
   681 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   682 #define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
   683 #define getenv(n) ::getenv(n)
   685 #define EXTENSIONS_DIR  "/lib/ext"
   686 #define ENDORSED_DIR    "/lib/endorsed"
   687 #define COMMON_DIR      "/usr/jdk/packages"
   689   {
   690     /* sysclasspath, java_home, dll_dir */
   691     {
   692         char *home_path;
   693         char *dll_path;
   694         char *pslash;
   695         char buf[MAXPATHLEN];
   696         os::jvm_path(buf, sizeof(buf));
   698         // Found the full path to libjvm.so.
   699         // Now cut the path to <java_home>/jre if we can.
   700         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   701         pslash = strrchr(buf, '/');
   702         if (pslash != NULL)
   703             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   704         dll_path = malloc(strlen(buf) + 1);
   705         if (dll_path == NULL)
   706             return;
   707         strcpy(dll_path, buf);
   708         Arguments::set_dll_dir(dll_path);
   710         if (pslash != NULL) {
   711             pslash = strrchr(buf, '/');
   712             if (pslash != NULL) {
   713                 *pslash = '\0';       /* get rid of /<arch> */
   714                 pslash = strrchr(buf, '/');
   715                 if (pslash != NULL)
   716                     *pslash = '\0';   /* get rid of /lib */
   717             }
   718         }
   720         home_path = malloc(strlen(buf) + 1);
   721         if (home_path == NULL)
   722             return;
   723         strcpy(home_path, buf);
   724         Arguments::set_java_home(home_path);
   726         if (!set_boot_path('/', ':'))
   727             return;
   728     }
   730     /*
   731      * Where to look for native libraries
   732      */
   733     {
   734       // Use dlinfo() to determine the correct java.library.path.
   735       //
   736       // If we're launched by the Java launcher, and the user
   737       // does not set java.library.path explicitly on the commandline,
   738       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   739       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   740       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   741       // /usr/lib), which is exactly what we want.
   742       //
   743       // If the user does set java.library.path, it completely
   744       // overwrites this setting, and always has.
   745       //
   746       // If we're not launched by the Java launcher, we may
   747       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   748       // settings.  Again, dlinfo does exactly what we want.
   750       Dl_serinfo     _info, *info = &_info;
   751       Dl_serpath     *path;
   752       char*          library_path;
   753       char           *common_path;
   754       int            i;
   756       // determine search path count and required buffer size
   757       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   758         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   759       }
   761       // allocate new buffer and initialize
   762       info = (Dl_serinfo*)malloc(_info.dls_size);
   763       if (info == NULL) {
   764         vm_exit_out_of_memory(_info.dls_size, OOM_MALLOC_ERROR,
   765                               "init_system_properties_values info");
   766       }
   767       info->dls_size = _info.dls_size;
   768       info->dls_cnt = _info.dls_cnt;
   770       // obtain search path information
   771       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   772         free(info);
   773         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   774       }
   776       path = &info->dls_serpath[0];
   778       // Note: Due to a legacy implementation, most of the library path
   779       // is set in the launcher.  This was to accomodate linking restrictions
   780       // on legacy Solaris implementations (which are no longer supported).
   781       // Eventually, all the library path setting will be done here.
   782       //
   783       // However, to prevent the proliferation of improperly built native
   784       // libraries, the new path component /usr/jdk/packages is added here.
   786       // Determine the actual CPU architecture.
   787       char cpu_arch[12];
   788       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   789 #ifdef _LP64
   790       // If we are a 64-bit vm, perform the following translations:
   791       //   sparc   -> sparcv9
   792       //   i386    -> amd64
   793       if (strcmp(cpu_arch, "sparc") == 0)
   794         strcat(cpu_arch, "v9");
   795       else if (strcmp(cpu_arch, "i386") == 0)
   796         strcpy(cpu_arch, "amd64");
   797 #endif
   799       // Construct the invariant part of ld_library_path. Note that the
   800       // space for the colon and the trailing null are provided by the
   801       // nulls included by the sizeof operator.
   802       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   803       common_path = malloc(bufsize);
   804       if (common_path == NULL) {
   805         free(info);
   806         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
   807                               "init_system_properties_values common_path");
   808       }
   809       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   811       // struct size is more than sufficient for the path components obtained
   812       // through the dlinfo() call, so only add additional space for the path
   813       // components explicitly added here.
   814       bufsize = info->dls_size + strlen(common_path);
   815       library_path = malloc(bufsize);
   816       if (library_path == NULL) {
   817         free(info);
   818         free(common_path);
   819         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
   820                               "init_system_properties_values library_path");
   821       }
   822       library_path[0] = '\0';
   824       // Construct the desired Java library path from the linker's library
   825       // search path.
   826       //
   827       // For compatibility, it is optimal that we insert the additional path
   828       // components specific to the Java VM after those components specified
   829       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   830       // infrastructure.
   831       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   832         strcpy(library_path, common_path);
   833       } else {
   834         int inserted = 0;
   835         for (i = 0; i < info->dls_cnt; i++, path++) {
   836           uint_t flags = path->dls_flags & LA_SER_MASK;
   837           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   838             strcat(library_path, common_path);
   839             strcat(library_path, os::path_separator());
   840             inserted = 1;
   841           }
   842           strcat(library_path, path->dls_name);
   843           strcat(library_path, os::path_separator());
   844         }
   845         // eliminate trailing path separator
   846         library_path[strlen(library_path)-1] = '\0';
   847       }
   849       // happens before argument parsing - can't use a trace flag
   850       // tty->print_raw("init_system_properties_values: native lib path: ");
   851       // tty->print_raw_cr(library_path);
   853       // callee copies into its own buffer
   854       Arguments::set_library_path(library_path);
   856       free(common_path);
   857       free(library_path);
   858       free(info);
   859     }
   861     /*
   862      * Extensions directories.
   863      *
   864      * Note that the space for the colon and the trailing null are provided
   865      * by the nulls included by the sizeof operator (so actually one byte more
   866      * than necessary is allocated).
   867      */
   868     {
   869         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   870             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   871             sizeof(EXTENSIONS_DIR));
   872         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   873             Arguments::get_java_home());
   874         Arguments::set_ext_dirs(buf);
   875     }
   877     /* Endorsed standards default directory. */
   878     {
   879         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   880         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   881         Arguments::set_endorsed_dirs(buf);
   882     }
   883   }
   885 #undef malloc
   886 #undef free
   887 #undef getenv
   888 #undef EXTENSIONS_DIR
   889 #undef ENDORSED_DIR
   890 #undef COMMON_DIR
   892 }
   894 void os::breakpoint() {
   895   BREAKPOINT;
   896 }
   898 bool os::obsolete_option(const JavaVMOption *option)
   899 {
   900   if (!strncmp(option->optionString, "-Xt", 3)) {
   901     return true;
   902   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   903     return true;
   904   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   905     return true;
   906   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   907     return true;
   908   }
   909   return false;
   910 }
   912 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   913   address  stackStart  = (address)thread->stack_base();
   914   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
   915   if (sp < stackStart && sp >= stackEnd ) return true;
   916   return false;
   917 }
   919 extern "C" void breakpoint() {
   920   // use debugger to set breakpoint here
   921 }
   923 static thread_t main_thread;
   925 // Thread start routine for all new Java threads
   926 extern "C" void* java_start(void* thread_addr) {
   927   // Try to randomize the cache line index of hot stack frames.
   928   // This helps when threads of the same stack traces evict each other's
   929   // cache lines. The threads can be either from the same JVM instance, or
   930   // from different JVM instances. The benefit is especially true for
   931   // processors with hyperthreading technology.
   932   static int counter = 0;
   933   int pid = os::current_process_id();
   934   alloca(((pid ^ counter++) & 7) * 128);
   936   int prio;
   937   Thread* thread = (Thread*)thread_addr;
   938   OSThread* osthr = thread->osthread();
   940   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
   941   thread->_schedctl = (void *) schedctl_init () ;
   943   if (UseNUMA) {
   944     int lgrp_id = os::numa_get_group_id();
   945     if (lgrp_id != -1) {
   946       thread->set_lgrp_id(lgrp_id);
   947     }
   948   }
   950   // If the creator called set priority before we started,
   951   // we need to call set_native_priority now that we have an lwp.
   952   // We used to get the priority from thr_getprio (we called
   953   // thr_setprio way back in create_thread) and pass it to
   954   // set_native_priority, but Solaris scales the priority
   955   // in java_to_os_priority, so when we read it back here,
   956   // we pass trash to set_native_priority instead of what's
   957   // in java_to_os_priority. So we save the native priority
   958   // in the osThread and recall it here.
   960   if ( osthr->thread_id() != -1 ) {
   961     if ( UseThreadPriorities ) {
   962       int prio = osthr->native_priority();
   963       if (ThreadPriorityVerbose) {
   964         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
   965                       INTPTR_FORMAT ", setting priority: %d\n",
   966                       osthr->thread_id(), osthr->lwp_id(), prio);
   967       }
   968       os::set_native_priority(thread, prio);
   969     }
   970   } else if (ThreadPriorityVerbose) {
   971     warning("Can't set priority in _start routine, thread id hasn't been set\n");
   972   }
   974   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   976   // initialize signal mask for this thread
   977   os::Solaris::hotspot_sigmask(thread);
   979   thread->run();
   981   // One less thread is executing
   982   // When the VMThread gets here, the main thread may have already exited
   983   // which frees the CodeHeap containing the Atomic::dec code
   984   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   985     Atomic::dec(&os::Solaris::_os_thread_count);
   986   }
   988   if (UseDetachedThreads) {
   989     thr_exit(NULL);
   990     ShouldNotReachHere();
   991   }
   992   return NULL;
   993 }
   995 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
   996   // Allocate the OSThread object
   997   OSThread* osthread = new OSThread(NULL, NULL);
   998   if (osthread == NULL) return NULL;
  1000   // Store info on the Solaris thread into the OSThread
  1001   osthread->set_thread_id(thread_id);
  1002   osthread->set_lwp_id(_lwp_self());
  1003   thread->_schedctl = (void *) schedctl_init () ;
  1005   if (UseNUMA) {
  1006     int lgrp_id = os::numa_get_group_id();
  1007     if (lgrp_id != -1) {
  1008       thread->set_lgrp_id(lgrp_id);
  1012   if ( ThreadPriorityVerbose ) {
  1013     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1014                   osthread->thread_id(), osthread->lwp_id() );
  1017   // Initial thread state is INITIALIZED, not SUSPENDED
  1018   osthread->set_state(INITIALIZED);
  1020   return osthread;
  1023 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1025   //Save caller's signal mask
  1026   sigset_t sigmask;
  1027   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1028   OSThread *osthread = thread->osthread();
  1029   osthread->set_caller_sigmask(sigmask);
  1031   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1032   if (!ReduceSignalUsage) {
  1033     if (thread->is_VM_thread()) {
  1034       // Only the VM thread handles BREAK_SIGNAL ...
  1035       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1036     } else {
  1037       // ... all other threads block BREAK_SIGNAL
  1038       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1039       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1044 bool os::create_attached_thread(JavaThread* thread) {
  1045 #ifdef ASSERT
  1046   thread->verify_not_published();
  1047 #endif
  1048   OSThread* osthread = create_os_thread(thread, thr_self());
  1049   if (osthread == NULL) {
  1050      return false;
  1053   // Initial thread state is RUNNABLE
  1054   osthread->set_state(RUNNABLE);
  1055   thread->set_osthread(osthread);
  1057   // initialize signal mask for this thread
  1058   // and save the caller's signal mask
  1059   os::Solaris::hotspot_sigmask(thread);
  1061   return true;
  1064 bool os::create_main_thread(JavaThread* thread) {
  1065 #ifdef ASSERT
  1066   thread->verify_not_published();
  1067 #endif
  1068   if (_starting_thread == NULL) {
  1069     _starting_thread = create_os_thread(thread, main_thread);
  1070      if (_starting_thread == NULL) {
  1071         return false;
  1075   // The primodial thread is runnable from the start
  1076   _starting_thread->set_state(RUNNABLE);
  1078   thread->set_osthread(_starting_thread);
  1080   // initialize signal mask for this thread
  1081   // and save the caller's signal mask
  1082   os::Solaris::hotspot_sigmask(thread);
  1084   return true;
  1087 // _T2_libthread is true if we believe we are running with the newer
  1088 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1089 bool os::Solaris::_T2_libthread = false;
  1091 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1092   // Allocate the OSThread object
  1093   OSThread* osthread = new OSThread(NULL, NULL);
  1094   if (osthread == NULL) {
  1095     return false;
  1098   if ( ThreadPriorityVerbose ) {
  1099     char *thrtyp;
  1100     switch ( thr_type ) {
  1101       case vm_thread:
  1102         thrtyp = (char *)"vm";
  1103         break;
  1104       case cgc_thread:
  1105         thrtyp = (char *)"cgc";
  1106         break;
  1107       case pgc_thread:
  1108         thrtyp = (char *)"pgc";
  1109         break;
  1110       case java_thread:
  1111         thrtyp = (char *)"java";
  1112         break;
  1113       case compiler_thread:
  1114         thrtyp = (char *)"compiler";
  1115         break;
  1116       case watcher_thread:
  1117         thrtyp = (char *)"watcher";
  1118         break;
  1119       default:
  1120         thrtyp = (char *)"unknown";
  1121         break;
  1123     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1126   // Calculate stack size if it's not specified by caller.
  1127   if (stack_size == 0) {
  1128     // The default stack size 1M (2M for LP64).
  1129     stack_size = (BytesPerWord >> 2) * K * K;
  1131     switch (thr_type) {
  1132     case os::java_thread:
  1133       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1134       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1135       break;
  1136     case os::compiler_thread:
  1137       if (CompilerThreadStackSize > 0) {
  1138         stack_size = (size_t)(CompilerThreadStackSize * K);
  1139         break;
  1140       } // else fall through:
  1141         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1142     case os::vm_thread:
  1143     case os::pgc_thread:
  1144     case os::cgc_thread:
  1145     case os::watcher_thread:
  1146       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1147       break;
  1150   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1152   // Initial state is ALLOCATED but not INITIALIZED
  1153   osthread->set_state(ALLOCATED);
  1155   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1156     // We got lots of threads. Check if we still have some address space left.
  1157     // Need to be at least 5Mb of unreserved address space. We do check by
  1158     // trying to reserve some.
  1159     const size_t VirtualMemoryBangSize = 20*K*K;
  1160     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1161     if (mem == NULL) {
  1162       delete osthread;
  1163       return false;
  1164     } else {
  1165       // Release the memory again
  1166       os::release_memory(mem, VirtualMemoryBangSize);
  1170   // Setup osthread because the child thread may need it.
  1171   thread->set_osthread(osthread);
  1173   // Create the Solaris thread
  1174   // explicit THR_BOUND for T2_libthread case in case
  1175   // that assumption is not accurate, but our alternate signal stack
  1176   // handling is based on it which must have bound threads
  1177   thread_t tid = 0;
  1178   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1179                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1180                        (thr_type == vm_thread) ||
  1181                        (thr_type == cgc_thread) ||
  1182                        (thr_type == pgc_thread) ||
  1183                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1184                       THR_BOUND : 0);
  1185   int      status;
  1187   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1188   //
  1189   // On multiprocessors systems, libthread sometimes under-provisions our
  1190   // process with LWPs.  On a 30-way systems, for instance, we could have
  1191   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1192   // to our process.  This can result in under utilization of PEs.
  1193   // I suspect the problem is related to libthread's LWP
  1194   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1195   // upcall policy.
  1196   //
  1197   // The following code is palliative -- it attempts to ensure that our
  1198   // process has sufficient LWPs to take advantage of multiple PEs.
  1199   // Proper long-term cures include using user-level threads bound to LWPs
  1200   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1201   // slight timing window with respect to sampling _os_thread_count, but
  1202   // the race is benign.  Also, we should periodically recompute
  1203   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1204   // the number of PEs in our partition.  You might be tempted to use
  1205   // THR_NEW_LWP here, but I'd recommend against it as that could
  1206   // result in undesirable growth of the libthread's LWP pool.
  1207   // The fix below isn't sufficient; for instance, it doesn't take into count
  1208   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1209   //
  1210   // Some pathologies this scheme doesn't handle:
  1211   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1212   //    When a large number of threads become ready again there aren't
  1213   //    enough LWPs available to service them.  This can occur when the
  1214   //    number of ready threads oscillates.
  1215   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1216   //
  1217   // Finally, we should call thr_setconcurrency() periodically to refresh
  1218   // the LWP pool and thwart the LWP age-out mechanism.
  1219   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1221   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1222     if (!(flags & THR_BOUND)) {
  1223       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1226   // Although this doesn't hurt, we should warn of undefined behavior
  1227   // when using unbound T1 threads with schedctl().  This should never
  1228   // happen, as the compiler and VM threads are always created bound
  1229   DEBUG_ONLY(
  1230       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1231           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1232           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1233            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1234          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1236   );
  1239   // Mark that we don't have an lwp or thread id yet.
  1240   // In case we attempt to set the priority before the thread starts.
  1241   osthread->set_lwp_id(-1);
  1242   osthread->set_thread_id(-1);
  1244   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1245   if (status != 0) {
  1246     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1247       perror("os::create_thread");
  1249     thread->set_osthread(NULL);
  1250     // Need to clean up stuff we've allocated so far
  1251     delete osthread;
  1252     return false;
  1255   Atomic::inc(&os::Solaris::_os_thread_count);
  1257   // Store info on the Solaris thread into the OSThread
  1258   osthread->set_thread_id(tid);
  1260   // Remember that we created this thread so we can set priority on it
  1261   osthread->set_vm_created();
  1263   // Set the default thread priority.  If using bound threads, setting
  1264   // lwp priority will be delayed until thread start.
  1265   set_native_priority(thread,
  1266                       DefaultThreadPriority == -1 ?
  1267                         java_to_os_priority[NormPriority] :
  1268                         DefaultThreadPriority);
  1270   // Initial thread state is INITIALIZED, not SUSPENDED
  1271   osthread->set_state(INITIALIZED);
  1273   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1274   return true;
  1277 /* defined for >= Solaris 10. This allows builds on earlier versions
  1278  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1279  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1280  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1281  */
  1282 #if !defined(SIGJVM1)
  1283 #define SIGJVM1 39
  1284 #define SIGJVM2 40
  1285 #endif
  1287 debug_only(static bool signal_sets_initialized = false);
  1288 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1289 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1290 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1292 bool os::Solaris::is_sig_ignored(int sig) {
  1293       struct sigaction oact;
  1294       sigaction(sig, (struct sigaction*)NULL, &oact);
  1295       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1296                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1297       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1298            return true;
  1299       else
  1300            return false;
  1303 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1304 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1305 static bool isJVM1available() {
  1306   return SIGJVM1 < SIGRTMIN;
  1309 void os::Solaris::signal_sets_init() {
  1310   // Should also have an assertion stating we are still single-threaded.
  1311   assert(!signal_sets_initialized, "Already initialized");
  1312   // Fill in signals that are necessarily unblocked for all threads in
  1313   // the VM. Currently, we unblock the following signals:
  1314   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1315   //                         by -Xrs (=ReduceSignalUsage));
  1316   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1317   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1318   // the dispositions or masks wrt these signals.
  1319   // Programs embedding the VM that want to use the above signals for their
  1320   // own purposes must, at this time, use the "-Xrs" option to prevent
  1321   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1322   // (See bug 4345157, and other related bugs).
  1323   // In reality, though, unblocking these signals is really a nop, since
  1324   // these signals are not blocked by default.
  1325   sigemptyset(&unblocked_sigs);
  1326   sigemptyset(&allowdebug_blocked_sigs);
  1327   sigaddset(&unblocked_sigs, SIGILL);
  1328   sigaddset(&unblocked_sigs, SIGSEGV);
  1329   sigaddset(&unblocked_sigs, SIGBUS);
  1330   sigaddset(&unblocked_sigs, SIGFPE);
  1332   if (isJVM1available) {
  1333     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1334     os::Solaris::set_SIGasync(SIGJVM2);
  1335   } else if (UseAltSigs) {
  1336     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1337     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1338   } else {
  1339     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1340     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1343   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1344   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1346   if (!ReduceSignalUsage) {
  1347    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1348       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1349       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1351    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1352       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1353       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1355    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1356       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1357       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1360   // Fill in signals that are blocked by all but the VM thread.
  1361   sigemptyset(&vm_sigs);
  1362   if (!ReduceSignalUsage)
  1363     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1364   debug_only(signal_sets_initialized = true);
  1366   // For diagnostics only used in run_periodic_checks
  1367   sigemptyset(&check_signal_done);
  1370 // These are signals that are unblocked while a thread is running Java.
  1371 // (For some reason, they get blocked by default.)
  1372 sigset_t* os::Solaris::unblocked_signals() {
  1373   assert(signal_sets_initialized, "Not initialized");
  1374   return &unblocked_sigs;
  1377 // These are the signals that are blocked while a (non-VM) thread is
  1378 // running Java. Only the VM thread handles these signals.
  1379 sigset_t* os::Solaris::vm_signals() {
  1380   assert(signal_sets_initialized, "Not initialized");
  1381   return &vm_sigs;
  1384 // These are signals that are blocked during cond_wait to allow debugger in
  1385 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1386   assert(signal_sets_initialized, "Not initialized");
  1387   return &allowdebug_blocked_sigs;
  1391 void _handle_uncaught_cxx_exception() {
  1392   VMError err("An uncaught C++ exception");
  1393   err.report_and_die();
  1397 // First crack at OS-specific initialization, from inside the new thread.
  1398 void os::initialize_thread(Thread* thr) {
  1399   int r = thr_main() ;
  1400   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1401   if (r) {
  1402     JavaThread* jt = (JavaThread *)thr;
  1403     assert(jt != NULL,"Sanity check");
  1404     size_t stack_size;
  1405     address base = jt->stack_base();
  1406     if (Arguments::created_by_java_launcher()) {
  1407       // Use 2MB to allow for Solaris 7 64 bit mode.
  1408       stack_size = JavaThread::stack_size_at_create() == 0
  1409         ? 2048*K : JavaThread::stack_size_at_create();
  1411       // There are rare cases when we may have already used more than
  1412       // the basic stack size allotment before this method is invoked.
  1413       // Attempt to allow for a normally sized java_stack.
  1414       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1415       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1416     } else {
  1417       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1418       // running embedded in a native application, treat the primordial thread
  1419       // as much like a native attached thread as possible.  This means using
  1420       // the current stack size from thr_stksegment(), unless it is too large
  1421       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1422       size_t current_size = current_stack_size();
  1423       // This should never happen, but just in case....
  1424       if (current_size == 0) current_size = 2 * K * K;
  1425       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1427     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1428     stack_size = (size_t)(base - bottom);
  1430     assert(stack_size > 0, "Stack size calculation problem");
  1432     if (stack_size > jt->stack_size()) {
  1433       NOT_PRODUCT(
  1434         struct rlimit limits;
  1435         getrlimit(RLIMIT_STACK, &limits);
  1436         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1437         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1439       tty->print_cr(
  1440         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1441         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1442         "See limit(1) to increase the stack size limit.",
  1443         stack_size / K, jt->stack_size() / K);
  1444       vm_exit(1);
  1446     assert(jt->stack_size() >= stack_size,
  1447           "Attempt to map more stack than was allocated");
  1448     jt->set_stack_size(stack_size);
  1451    // 5/22/01: Right now alternate signal stacks do not handle
  1452    // throwing stack overflow exceptions, see bug 4463178
  1453    // Until a fix is found for this, T2 will NOT imply alternate signal
  1454    // stacks.
  1455    // If using T2 libthread threads, install an alternate signal stack.
  1456    // Because alternate stacks associate with LWPs on Solaris,
  1457    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1458    // we prefer to explicitly stack bang.
  1459    // If not using T2 libthread, but using UseBoundThreads any threads
  1460    // (primordial thread, jni_attachCurrentThread) we do not create,
  1461    // probably are not bound, therefore they can not have an alternate
  1462    // signal stack. Since our stack banging code is generated and
  1463    // is shared across threads, all threads must be bound to allow
  1464    // using alternate signal stacks.  The alternative is to interpose
  1465    // on _lwp_create to associate an alt sig stack with each LWP,
  1466    // and this could be a problem when the JVM is embedded.
  1467    // We would prefer to use alternate signal stacks with T2
  1468    // Since there is currently no accurate way to detect T2
  1469    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1470    // on installing alternate signal stacks
  1473    // 05/09/03: removed alternate signal stack support for Solaris
  1474    // The alternate signal stack mechanism is no longer needed to
  1475    // handle stack overflow. This is now handled by allocating
  1476    // guard pages (red zone) and stackbanging.
  1477    // Initially the alternate signal stack mechanism was removed because
  1478    // it did not work with T1 llibthread. Alternate
  1479    // signal stacks MUST have all threads bound to lwps. Applications
  1480    // can create their own threads and attach them without their being
  1481    // bound under T1. This is frequently the case for the primordial thread.
  1482    // If we were ever to reenable this mechanism we would need to
  1483    // use the dynamic check for T2 libthread.
  1485   os::Solaris::init_thread_fpu_state();
  1486   std::set_terminate(_handle_uncaught_cxx_exception);
  1491 // Free Solaris resources related to the OSThread
  1492 void os::free_thread(OSThread* osthread) {
  1493   assert(osthread != NULL, "os::free_thread but osthread not set");
  1496   // We are told to free resources of the argument thread,
  1497   // but we can only really operate on the current thread.
  1498   // The main thread must take the VMThread down synchronously
  1499   // before the main thread exits and frees up CodeHeap
  1500   guarantee((Thread::current()->osthread() == osthread
  1501      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1502   if (Thread::current()->osthread() == osthread) {
  1503     // Restore caller's signal mask
  1504     sigset_t sigmask = osthread->caller_sigmask();
  1505     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1507   delete osthread;
  1510 void os::pd_start_thread(Thread* thread) {
  1511   int status = thr_continue(thread->osthread()->thread_id());
  1512   assert_status(status == 0, status, "thr_continue failed");
  1516 intx os::current_thread_id() {
  1517   return (intx)thr_self();
  1520 static pid_t _initial_pid = 0;
  1522 int os::current_process_id() {
  1523   return (int)(_initial_pid ? _initial_pid : getpid());
  1526 int os::allocate_thread_local_storage() {
  1527   // %%%       in Win32 this allocates a memory segment pointed to by a
  1528   //           register.  Dan Stein can implement a similar feature in
  1529   //           Solaris.  Alternatively, the VM can do the same thing
  1530   //           explicitly: malloc some storage and keep the pointer in a
  1531   //           register (which is part of the thread's context) (or keep it
  1532   //           in TLS).
  1533   // %%%       In current versions of Solaris, thr_self and TSD can
  1534   //           be accessed via short sequences of displaced indirections.
  1535   //           The value of thr_self is available as %g7(36).
  1536   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1537   //           assuming that the current thread already has a value bound to k.
  1538   //           It may be worth experimenting with such access patterns,
  1539   //           and later having the parameters formally exported from a Solaris
  1540   //           interface.  I think, however, that it will be faster to
  1541   //           maintain the invariant that %g2 always contains the
  1542   //           JavaThread in Java code, and have stubs simply
  1543   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1544   thread_key_t tk;
  1545   if (thr_keycreate( &tk, NULL ) )
  1546     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1547                   "(%s)", strerror(errno)));
  1548   return int(tk);
  1551 void os::free_thread_local_storage(int index) {
  1552   // %%% don't think we need anything here
  1553   // if ( pthread_key_delete((pthread_key_t) tk) )
  1554   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1557 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1558                       // small number - point is NO swap space available
  1559 void os::thread_local_storage_at_put(int index, void* value) {
  1560   // %%% this is used only in threadLocalStorage.cpp
  1561   if (thr_setspecific((thread_key_t)index, value)) {
  1562     if (errno == ENOMEM) {
  1563        vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
  1564                              "thr_setspecific: out of swap space");
  1565     } else {
  1566       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1567                     "(%s)", strerror(errno)));
  1569   } else {
  1570       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1574 // This function could be called before TLS is initialized, for example, when
  1575 // VM receives an async signal or when VM causes a fatal error during
  1576 // initialization. Return NULL if thr_getspecific() fails.
  1577 void* os::thread_local_storage_at(int index) {
  1578   // %%% this is used only in threadLocalStorage.cpp
  1579   void* r = NULL;
  1580   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1584 // gethrtime can move backwards if read from one cpu and then a different cpu
  1585 // getTimeNanos is guaranteed to not move backward on Solaris
  1586 // local spinloop created as faster for a CAS on an int than
  1587 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1588 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1589 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1590 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1591 inline hrtime_t oldgetTimeNanos() {
  1592   int gotlock = LOCK_INVALID;
  1593   hrtime_t newtime = gethrtime();
  1595   for (;;) {
  1596 // grab lock for max_hrtime
  1597     int curlock = max_hrtime_lock;
  1598     if (curlock & LOCK_BUSY)  continue;
  1599     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1600     if (newtime > max_hrtime) {
  1601       max_hrtime = newtime;
  1602     } else {
  1603       newtime = max_hrtime;
  1605     // release lock
  1606     max_hrtime_lock = LOCK_FREE;
  1607     return newtime;
  1610 // gethrtime can move backwards if read from one cpu and then a different cpu
  1611 // getTimeNanos is guaranteed to not move backward on Solaris
  1612 inline hrtime_t getTimeNanos() {
  1613   if (VM_Version::supports_cx8()) {
  1614     const hrtime_t now = gethrtime();
  1615     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1616     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1617     if (now <= prev)  return prev;   // same or retrograde time;
  1618     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1619     assert(obsv >= prev, "invariant");   // Monotonicity
  1620     // If the CAS succeeded then we're done and return "now".
  1621     // If the CAS failed and the observed value "obs" is >= now then
  1622     // we should return "obs".  If the CAS failed and now > obs > prv then
  1623     // some other thread raced this thread and installed a new value, in which case
  1624     // we could either (a) retry the entire operation, (b) retry trying to install now
  1625     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1626     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1627     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1628     // to (a) or (b) -- and greatly reduces coherence traffic.
  1629     // We might also condition (c) on the magnitude of the delta between obs and now.
  1630     // Avoiding excessive CAS operations to hot RW locations is critical.
  1631     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1632     return (prev == obsv) ? now : obsv ;
  1633   } else {
  1634     return oldgetTimeNanos();
  1638 // Time since start-up in seconds to a fine granularity.
  1639 // Used by VMSelfDestructTimer and the MemProfiler.
  1640 double os::elapsedTime() {
  1641   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1644 jlong os::elapsed_counter() {
  1645   return (jlong)(getTimeNanos() - first_hrtime);
  1648 jlong os::elapsed_frequency() {
  1649    return hrtime_hz;
  1652 // Return the real, user, and system times in seconds from an
  1653 // arbitrary fixed point in the past.
  1654 bool os::getTimesSecs(double* process_real_time,
  1655                   double* process_user_time,
  1656                   double* process_system_time) {
  1657   struct tms ticks;
  1658   clock_t real_ticks = times(&ticks);
  1660   if (real_ticks == (clock_t) (-1)) {
  1661     return false;
  1662   } else {
  1663     double ticks_per_second = (double) clock_tics_per_sec;
  1664     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1665     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1666     // For consistency return the real time from getTimeNanos()
  1667     // converted to seconds.
  1668     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1670     return true;
  1674 bool os::supports_vtime() { return true; }
  1676 bool os::enable_vtime() {
  1677   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1678   if (fd == -1)
  1679     return false;
  1681   long cmd[] = { PCSET, PR_MSACCT };
  1682   int res = ::write(fd, cmd, sizeof(long) * 2);
  1683   ::close(fd);
  1684   if (res != sizeof(long) * 2)
  1685     return false;
  1687   return true;
  1690 bool os::vtime_enabled() {
  1691   int fd = ::open("/proc/self/status", O_RDONLY);
  1692   if (fd == -1)
  1693     return false;
  1695   pstatus_t status;
  1696   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1697   ::close(fd);
  1698   if (res != sizeof(pstatus_t))
  1699     return false;
  1701   return status.pr_flags & PR_MSACCT;
  1704 double os::elapsedVTime() {
  1705   return (double)gethrvtime() / (double)hrtime_hz;
  1708 // Used internally for comparisons only
  1709 // getTimeMillis guaranteed to not move backwards on Solaris
  1710 jlong getTimeMillis() {
  1711   jlong nanotime = getTimeNanos();
  1712   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
  1715 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1716 jlong os::javaTimeMillis() {
  1717   timeval t;
  1718   if (gettimeofday( &t, NULL) == -1)
  1719     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1720   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1723 jlong os::javaTimeNanos() {
  1724   return (jlong)getTimeNanos();
  1727 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1728   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1729   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1730   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1731   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1734 char * os::local_time_string(char *buf, size_t buflen) {
  1735   struct tm t;
  1736   time_t long_time;
  1737   time(&long_time);
  1738   localtime_r(&long_time, &t);
  1739   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1740                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1741                t.tm_hour, t.tm_min, t.tm_sec);
  1742   return buf;
  1745 // Note: os::shutdown() might be called very early during initialization, or
  1746 // called from signal handler. Before adding something to os::shutdown(), make
  1747 // sure it is async-safe and can handle partially initialized VM.
  1748 void os::shutdown() {
  1750   // allow PerfMemory to attempt cleanup of any persistent resources
  1751   perfMemory_exit();
  1753   // needs to remove object in file system
  1754   AttachListener::abort();
  1756   // flush buffered output, finish log files
  1757   ostream_abort();
  1759   // Check for abort hook
  1760   abort_hook_t abort_hook = Arguments::abort_hook();
  1761   if (abort_hook != NULL) {
  1762     abort_hook();
  1766 // Note: os::abort() might be called very early during initialization, or
  1767 // called from signal handler. Before adding something to os::abort(), make
  1768 // sure it is async-safe and can handle partially initialized VM.
  1769 void os::abort(bool dump_core) {
  1770   os::shutdown();
  1771   if (dump_core) {
  1772 #ifndef PRODUCT
  1773     fdStream out(defaultStream::output_fd());
  1774     out.print_raw("Current thread is ");
  1775     char buf[16];
  1776     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1777     out.print_raw_cr(buf);
  1778     out.print_raw_cr("Dumping core ...");
  1779 #endif
  1780     ::abort(); // dump core (for debugging)
  1783   ::exit(1);
  1786 // Die immediately, no exit hook, no abort hook, no cleanup.
  1787 void os::die() {
  1788   ::abort(); // dump core (for debugging)
  1791 // unused
  1792 void os::set_error_file(const char *logfile) {}
  1794 // DLL functions
  1796 const char* os::dll_file_extension() { return ".so"; }
  1798 // This must be hard coded because it's the system's temporary
  1799 // directory not the java application's temp directory, ala java.io.tmpdir.
  1800 const char* os::get_temp_directory() { return "/tmp"; }
  1802 static bool file_exists(const char* filename) {
  1803   struct stat statbuf;
  1804   if (filename == NULL || strlen(filename) == 0) {
  1805     return false;
  1807   return os::stat(filename, &statbuf) == 0;
  1810 bool os::dll_build_name(char* buffer, size_t buflen,
  1811                         const char* pname, const char* fname) {
  1812   bool retval = false;
  1813   const size_t pnamelen = pname ? strlen(pname) : 0;
  1815   // Return error on buffer overflow.
  1816   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1817     return retval;
  1820   if (pnamelen == 0) {
  1821     snprintf(buffer, buflen, "lib%s.so", fname);
  1822     retval = true;
  1823   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1824     int n;
  1825     char** pelements = split_path(pname, &n);
  1826     if (pelements == NULL) {
  1827       return false;
  1829     for (int i = 0 ; i < n ; i++) {
  1830       // really shouldn't be NULL but what the heck, check can't hurt
  1831       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1832         continue; // skip the empty path values
  1834       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1835       if (file_exists(buffer)) {
  1836         retval = true;
  1837         break;
  1840     // release the storage
  1841     for (int i = 0 ; i < n ; i++) {
  1842       if (pelements[i] != NULL) {
  1843         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1846     if (pelements != NULL) {
  1847       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1849   } else {
  1850     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1851     retval = true;
  1853   return retval;
  1856 // check if addr is inside libjvm.so
  1857 bool os::address_is_in_vm(address addr) {
  1858   static address libjvm_base_addr;
  1859   Dl_info dlinfo;
  1861   if (libjvm_base_addr == NULL) {
  1862     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1863     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1864     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1867   if (dladdr((void *)addr, &dlinfo)) {
  1868     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1871   return false;
  1874 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1875 static dladdr1_func_type dladdr1_func = NULL;
  1877 bool os::dll_address_to_function_name(address addr, char *buf,
  1878                                       int buflen, int * offset) {
  1879   Dl_info dlinfo;
  1881   // dladdr1_func was initialized in os::init()
  1882   if (dladdr1_func){
  1883       // yes, we have dladdr1
  1885       // Support for dladdr1 is checked at runtime; it may be
  1886       // available even if the vm is built on a machine that does
  1887       // not have dladdr1 support.  Make sure there is a value for
  1888       // RTLD_DL_SYMENT.
  1889       #ifndef RTLD_DL_SYMENT
  1890       #define RTLD_DL_SYMENT 1
  1891       #endif
  1892 #ifdef _LP64
  1893       Elf64_Sym * info;
  1894 #else
  1895       Elf32_Sym * info;
  1896 #endif
  1897       if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1898                        RTLD_DL_SYMENT)) {
  1899         if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1900           if (buf != NULL) {
  1901             if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  1902               jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1904             if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1905             return true;
  1908       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1909         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1910            buf, buflen, offset, dlinfo.dli_fname)) {
  1911           return true;
  1914       if (buf != NULL) buf[0] = '\0';
  1915       if (offset != NULL) *offset  = -1;
  1916       return false;
  1917   } else {
  1918       // no, only dladdr is available
  1919       if (dladdr((void *)addr, &dlinfo)) {
  1920         if (buf != NULL) {
  1921           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  1922             jio_snprintf(buf, buflen, dlinfo.dli_sname);
  1924         if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1925         return true;
  1926       } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1927         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1928           buf, buflen, offset, dlinfo.dli_fname)) {
  1929           return true;
  1932       if (buf != NULL) buf[0] = '\0';
  1933       if (offset != NULL) *offset  = -1;
  1934       return false;
  1938 bool os::dll_address_to_library_name(address addr, char* buf,
  1939                                      int buflen, int* offset) {
  1940   Dl_info dlinfo;
  1942   if (dladdr((void*)addr, &dlinfo)){
  1943      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1944      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1945      return true;
  1946   } else {
  1947      if (buf) buf[0] = '\0';
  1948      if (offset) *offset = -1;
  1949      return false;
  1953 // Prints the names and full paths of all opened dynamic libraries
  1954 // for current process
  1955 void os::print_dll_info(outputStream * st) {
  1956     Dl_info dli;
  1957     void *handle;
  1958     Link_map *map;
  1959     Link_map *p;
  1961     st->print_cr("Dynamic libraries:"); st->flush();
  1963     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  1964         st->print_cr("Error: Cannot print dynamic libraries.");
  1965         return;
  1967     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  1968     if (handle == NULL) {
  1969         st->print_cr("Error: Cannot print dynamic libraries.");
  1970         return;
  1972     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  1973     if (map == NULL) {
  1974         st->print_cr("Error: Cannot print dynamic libraries.");
  1975         return;
  1978     while (map->l_prev != NULL)
  1979         map = map->l_prev;
  1981     while (map != NULL) {
  1982         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  1983         map = map->l_next;
  1986     dlclose(handle);
  1989   // Loads .dll/.so and
  1990   // in case of error it checks if .dll/.so was built for the
  1991   // same architecture as Hotspot is running on
  1993 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1995   void * result= ::dlopen(filename, RTLD_LAZY);
  1996   if (result != NULL) {
  1997     // Successful loading
  1998     return result;
  2001   Elf32_Ehdr elf_head;
  2003   // Read system error message into ebuf
  2004   // It may or may not be overwritten below
  2005   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2006   ebuf[ebuflen-1]='\0';
  2007   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2008   char* diag_msg_buf=ebuf+strlen(ebuf);
  2010   if (diag_msg_max_length==0) {
  2011     // No more space in ebuf for additional diagnostics message
  2012     return NULL;
  2016   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2018   if (file_descriptor < 0) {
  2019     // Can't open library, report dlerror() message
  2020     return NULL;
  2023   bool failed_to_read_elf_head=
  2024     (sizeof(elf_head)!=
  2025         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2027   ::close(file_descriptor);
  2028   if (failed_to_read_elf_head) {
  2029     // file i/o error - report dlerror() msg
  2030     return NULL;
  2033   typedef struct {
  2034     Elf32_Half  code;         // Actual value as defined in elf.h
  2035     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2036     char        elf_class;    // 32 or 64 bit
  2037     char        endianess;    // MSB or LSB
  2038     char*       name;         // String representation
  2039   } arch_t;
  2041   static const arch_t arch_array[]={
  2042     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2043     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2044     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2045     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2046     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2047     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2048     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2049     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2050     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2051     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2052   };
  2054   #if  (defined IA32)
  2055     static  Elf32_Half running_arch_code=EM_386;
  2056   #elif   (defined AMD64)
  2057     static  Elf32_Half running_arch_code=EM_X86_64;
  2058   #elif  (defined IA64)
  2059     static  Elf32_Half running_arch_code=EM_IA_64;
  2060   #elif  (defined __sparc) && (defined _LP64)
  2061     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2062   #elif  (defined __sparc) && (!defined _LP64)
  2063     static  Elf32_Half running_arch_code=EM_SPARC;
  2064   #elif  (defined __powerpc64__)
  2065     static  Elf32_Half running_arch_code=EM_PPC64;
  2066   #elif  (defined __powerpc__)
  2067     static  Elf32_Half running_arch_code=EM_PPC;
  2068   #elif (defined ARM)
  2069     static  Elf32_Half running_arch_code=EM_ARM;
  2070   #else
  2071     #error Method os::dll_load requires that one of following is defined:\
  2072          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2073   #endif
  2075   // Identify compatability class for VM's architecture and library's architecture
  2076   // Obtain string descriptions for architectures
  2078   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2079   int running_arch_index=-1;
  2081   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2082     if (running_arch_code == arch_array[i].code) {
  2083       running_arch_index    = i;
  2085     if (lib_arch.code == arch_array[i].code) {
  2086       lib_arch.compat_class = arch_array[i].compat_class;
  2087       lib_arch.name         = arch_array[i].name;
  2091   assert(running_arch_index != -1,
  2092     "Didn't find running architecture code (running_arch_code) in arch_array");
  2093   if (running_arch_index == -1) {
  2094     // Even though running architecture detection failed
  2095     // we may still continue with reporting dlerror() message
  2096     return NULL;
  2099   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2100     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2101     return NULL;
  2104   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2105     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2106     return NULL;
  2109   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2110     if ( lib_arch.name!=NULL ) {
  2111       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2112         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2113         lib_arch.name, arch_array[running_arch_index].name);
  2114     } else {
  2115       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2116       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2117         lib_arch.code,
  2118         arch_array[running_arch_index].name);
  2122   return NULL;
  2125 void* os::dll_lookup(void* handle, const char* name) {
  2126   return dlsym(handle, name);
  2129 int os::stat(const char *path, struct stat *sbuf) {
  2130   char pathbuf[MAX_PATH];
  2131   if (strlen(path) > MAX_PATH - 1) {
  2132     errno = ENAMETOOLONG;
  2133     return -1;
  2135   os::native_path(strcpy(pathbuf, path));
  2136   return ::stat(pathbuf, sbuf);
  2139 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2140   int fd = ::open(filename, O_RDONLY);
  2141   if (fd == -1) {
  2142      return false;
  2145   char buf[32];
  2146   int bytes;
  2147   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2148     st->print_raw(buf, bytes);
  2151   ::close(fd);
  2153   return true;
  2156 void os::print_os_info_brief(outputStream* st) {
  2157   os::Solaris::print_distro_info(st);
  2159   os::Posix::print_uname_info(st);
  2161   os::Solaris::print_libversion_info(st);
  2164 void os::print_os_info(outputStream* st) {
  2165   st->print("OS:");
  2167   os::Solaris::print_distro_info(st);
  2169   os::Posix::print_uname_info(st);
  2171   os::Solaris::print_libversion_info(st);
  2173   os::Posix::print_rlimit_info(st);
  2175   os::Posix::print_load_average(st);
  2178 void os::Solaris::print_distro_info(outputStream* st) {
  2179   if (!_print_ascii_file("/etc/release", st)) {
  2180       st->print("Solaris");
  2182     st->cr();
  2185 void os::Solaris::print_libversion_info(outputStream* st) {
  2186   if (os::Solaris::T2_libthread()) {
  2187     st->print("  (T2 libthread)");
  2189   else {
  2190     st->print("  (T1 libthread)");
  2192   st->cr();
  2195 static bool check_addr0(outputStream* st) {
  2196   jboolean status = false;
  2197   int fd = ::open("/proc/self/map",O_RDONLY);
  2198   if (fd >= 0) {
  2199     prmap_t p;
  2200     while(::read(fd, &p, sizeof(p)) > 0) {
  2201       if (p.pr_vaddr == 0x0) {
  2202         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2203         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2204         st->print("Access:");
  2205         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2206         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2207         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2208         st->cr();
  2209         status = true;
  2211       ::close(fd);
  2214   return status;
  2217 void os::pd_print_cpu_info(outputStream* st) {
  2218   // Nothing to do for now.
  2221 void os::print_memory_info(outputStream* st) {
  2222   st->print("Memory:");
  2223   st->print(" %dk page", os::vm_page_size()>>10);
  2224   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2225   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2226   st->cr();
  2227   (void) check_addr0(st);
  2230 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
  2231 // but they're the same for all the solaris architectures that we support.
  2232 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2233                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2234                           "ILL_COPROC", "ILL_BADSTK" };
  2236 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2237                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2238                           "FPE_FLTINV", "FPE_FLTSUB" };
  2240 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2242 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2244 void os::print_siginfo(outputStream* st, void* siginfo) {
  2245   st->print("siginfo:");
  2247   const int buflen = 100;
  2248   char buf[buflen];
  2249   siginfo_t *si = (siginfo_t*)siginfo;
  2250   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2251   char *err = strerror(si->si_errno);
  2252   if (si->si_errno != 0 && err != NULL) {
  2253     st->print("si_errno=%s", err);
  2254   } else {
  2255     st->print("si_errno=%d", si->si_errno);
  2257   const int c = si->si_code;
  2258   assert(c > 0, "unexpected si_code");
  2259   switch (si->si_signo) {
  2260   case SIGILL:
  2261     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2262     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2263     break;
  2264   case SIGFPE:
  2265     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2266     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2267     break;
  2268   case SIGSEGV:
  2269     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2270     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2271     break;
  2272   case SIGBUS:
  2273     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2274     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2275     break;
  2276   default:
  2277     st->print(", si_code=%d", si->si_code);
  2278     // no si_addr
  2281   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2282       UseSharedSpaces) {
  2283     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2284     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2285       st->print("\n\nError accessing class data sharing archive."   \
  2286                 " Mapped file inaccessible during execution, "      \
  2287                 " possible disk/network problem.");
  2290   st->cr();
  2293 // Moved from whole group, because we need them here for diagnostic
  2294 // prints.
  2295 #define OLDMAXSIGNUM 32
  2296 static int Maxsignum = 0;
  2297 static int *ourSigFlags = NULL;
  2299 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2301 int os::Solaris::get_our_sigflags(int sig) {
  2302   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2303   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2304   return ourSigFlags[sig];
  2307 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2308   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2309   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2310   ourSigFlags[sig] = flags;
  2314 static const char* get_signal_handler_name(address handler,
  2315                                            char* buf, int buflen) {
  2316   int offset;
  2317   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2318   if (found) {
  2319     // skip directory names
  2320     const char *p1, *p2;
  2321     p1 = buf;
  2322     size_t len = strlen(os::file_separator());
  2323     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2324     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2325   } else {
  2326     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2328   return buf;
  2331 static void print_signal_handler(outputStream* st, int sig,
  2332                                   char* buf, size_t buflen) {
  2333   struct sigaction sa;
  2335   sigaction(sig, NULL, &sa);
  2337   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2339   address handler = (sa.sa_flags & SA_SIGINFO)
  2340                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2341                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2343   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2344     st->print("SIG_DFL");
  2345   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2346     st->print("SIG_IGN");
  2347   } else {
  2348     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2351   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  2353   address rh = VMError::get_resetted_sighandler(sig);
  2354   // May be, handler was resetted by VMError?
  2355   if(rh != NULL) {
  2356     handler = rh;
  2357     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2360   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  2362   // Check: is it our handler?
  2363   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2364      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2365     // It is our signal handler
  2366     // check for flags
  2367     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2368       st->print(
  2369         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2370         os::Solaris::get_our_sigflags(sig));
  2373   st->cr();
  2376 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2377   st->print_cr("Signal Handlers:");
  2378   print_signal_handler(st, SIGSEGV, buf, buflen);
  2379   print_signal_handler(st, SIGBUS , buf, buflen);
  2380   print_signal_handler(st, SIGFPE , buf, buflen);
  2381   print_signal_handler(st, SIGPIPE, buf, buflen);
  2382   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2383   print_signal_handler(st, SIGILL , buf, buflen);
  2384   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2385   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2386   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2387   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2388   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2389   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2390   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2391   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2394 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2396 // Find the full path to the current module, libjvm.so
  2397 void os::jvm_path(char *buf, jint buflen) {
  2398   // Error checking.
  2399   if (buflen < MAXPATHLEN) {
  2400     assert(false, "must use a large-enough buffer");
  2401     buf[0] = '\0';
  2402     return;
  2404   // Lazy resolve the path to current module.
  2405   if (saved_jvm_path[0] != 0) {
  2406     strcpy(buf, saved_jvm_path);
  2407     return;
  2410   Dl_info dlinfo;
  2411   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2412   assert(ret != 0, "cannot locate libjvm");
  2413   realpath((char *)dlinfo.dli_fname, buf);
  2415   if (Arguments::created_by_gamma_launcher()) {
  2416     // Support for the gamma launcher.  Typical value for buf is
  2417     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2418     // the right place in the string, then assume we are installed in a JDK and
  2419     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2420     // up the path so it looks like libjvm.so is installed there (append a
  2421     // fake suffix hotspot/libjvm.so).
  2422     const char *p = buf + strlen(buf) - 1;
  2423     for (int count = 0; p > buf && count < 5; ++count) {
  2424       for (--p; p > buf && *p != '/'; --p)
  2425         /* empty */ ;
  2428     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2429       // Look for JAVA_HOME in the environment.
  2430       char* java_home_var = ::getenv("JAVA_HOME");
  2431       if (java_home_var != NULL && java_home_var[0] != 0) {
  2432         char cpu_arch[12];
  2433         char* jrelib_p;
  2434         int   len;
  2435         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2436 #ifdef _LP64
  2437         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2438         if (strcmp(cpu_arch, "sparc") == 0) {
  2439           strcat(cpu_arch, "v9");
  2440         } else if (strcmp(cpu_arch, "i386") == 0) {
  2441           strcpy(cpu_arch, "amd64");
  2443 #endif
  2444         // Check the current module name "libjvm.so".
  2445         p = strrchr(buf, '/');
  2446         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2448         realpath(java_home_var, buf);
  2449         // determine if this is a legacy image or modules image
  2450         // modules image doesn't have "jre" subdirectory
  2451         len = strlen(buf);
  2452         jrelib_p = buf + len;
  2453         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2454         if (0 != access(buf, F_OK)) {
  2455           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2458         if (0 == access(buf, F_OK)) {
  2459           // Use current module name "libjvm.so"
  2460           len = strlen(buf);
  2461           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2462         } else {
  2463           // Go back to path of .so
  2464           realpath((char *)dlinfo.dli_fname, buf);
  2470   strcpy(saved_jvm_path, buf);
  2474 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2475   // no prefix required, not even "_"
  2479 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2480   // no suffix required
  2483 // This method is a copy of JDK's sysGetLastErrorString
  2484 // from src/solaris/hpi/src/system_md.c
  2486 size_t os::lasterror(char *buf, size_t len) {
  2488   if (errno == 0)  return 0;
  2490   const char *s = ::strerror(errno);
  2491   size_t n = ::strlen(s);
  2492   if (n >= len) {
  2493     n = len - 1;
  2495   ::strncpy(buf, s, n);
  2496   buf[n] = '\0';
  2497   return n;
  2501 // sun.misc.Signal
  2503 extern "C" {
  2504   static void UserHandler(int sig, void *siginfo, void *context) {
  2505     // Ctrl-C is pressed during error reporting, likely because the error
  2506     // handler fails to abort. Let VM die immediately.
  2507     if (sig == SIGINT && is_error_reported()) {
  2508        os::die();
  2511     os::signal_notify(sig);
  2512     // We do not need to reinstate the signal handler each time...
  2516 void* os::user_handler() {
  2517   return CAST_FROM_FN_PTR(void*, UserHandler);
  2520 class Semaphore : public StackObj {
  2521   public:
  2522     Semaphore();
  2523     ~Semaphore();
  2524     void signal();
  2525     void wait();
  2526     bool trywait();
  2527     bool timedwait(unsigned int sec, int nsec);
  2528   private:
  2529     sema_t _semaphore;
  2530 };
  2533 Semaphore::Semaphore() {
  2534   sema_init(&_semaphore, 0, NULL, NULL);
  2537 Semaphore::~Semaphore() {
  2538   sema_destroy(&_semaphore);
  2541 void Semaphore::signal() {
  2542   sema_post(&_semaphore);
  2545 void Semaphore::wait() {
  2546   sema_wait(&_semaphore);
  2549 bool Semaphore::trywait() {
  2550   return sema_trywait(&_semaphore) == 0;
  2553 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2554   struct timespec ts;
  2555   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  2557   while (1) {
  2558     int result = sema_timedwait(&_semaphore, &ts);
  2559     if (result == 0) {
  2560       return true;
  2561     } else if (errno == EINTR) {
  2562       continue;
  2563     } else if (errno == ETIME) {
  2564       return false;
  2565     } else {
  2566       return false;
  2571 extern "C" {
  2572   typedef void (*sa_handler_t)(int);
  2573   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2576 void* os::signal(int signal_number, void* handler) {
  2577   struct sigaction sigAct, oldSigAct;
  2578   sigfillset(&(sigAct.sa_mask));
  2579   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2580   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2582   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2583     // -1 means registration failed
  2584     return (void *)-1;
  2586   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2589 void os::signal_raise(int signal_number) {
  2590   raise(signal_number);
  2593 /*
  2594  * The following code is moved from os.cpp for making this
  2595  * code platform specific, which it is by its very nature.
  2596  */
  2598 // a counter for each possible signal value
  2599 static int Sigexit = 0;
  2600 static int Maxlibjsigsigs;
  2601 static jint *pending_signals = NULL;
  2602 static int *preinstalled_sigs = NULL;
  2603 static struct sigaction *chainedsigactions = NULL;
  2604 static sema_t sig_sem;
  2605 typedef int (*version_getting_t)();
  2606 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2607 static int libjsigversion = NULL;
  2609 int os::sigexitnum_pd() {
  2610   assert(Sigexit > 0, "signal memory not yet initialized");
  2611   return Sigexit;
  2614 void os::Solaris::init_signal_mem() {
  2615   // Initialize signal structures
  2616   Maxsignum = SIGRTMAX;
  2617   Sigexit = Maxsignum+1;
  2618   assert(Maxsignum >0, "Unable to obtain max signal number");
  2620   Maxlibjsigsigs = Maxsignum;
  2622   // pending_signals has one int per signal
  2623   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2624   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
  2625   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2627   if (UseSignalChaining) {
  2628      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2629        * (Maxsignum + 1), mtInternal);
  2630      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2631      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
  2632      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2634   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
  2635   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2638 void os::signal_init_pd() {
  2639   int ret;
  2641   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2642   assert(ret == 0, "sema_init() failed");
  2645 void os::signal_notify(int signal_number) {
  2646   int ret;
  2648   Atomic::inc(&pending_signals[signal_number]);
  2649   ret = ::sema_post(&sig_sem);
  2650   assert(ret == 0, "sema_post() failed");
  2653 static int check_pending_signals(bool wait_for_signal) {
  2654   int ret;
  2655   while (true) {
  2656     for (int i = 0; i < Sigexit + 1; i++) {
  2657       jint n = pending_signals[i];
  2658       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2659         return i;
  2662     if (!wait_for_signal) {
  2663       return -1;
  2665     JavaThread *thread = JavaThread::current();
  2666     ThreadBlockInVM tbivm(thread);
  2668     bool threadIsSuspended;
  2669     do {
  2670       thread->set_suspend_equivalent();
  2671       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2672       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2674       assert(ret == 0, "sema_wait() failed");
  2676       // were we externally suspended while we were waiting?
  2677       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2678       if (threadIsSuspended) {
  2679         //
  2680         // The semaphore has been incremented, but while we were waiting
  2681         // another thread suspended us. We don't want to continue running
  2682         // while suspended because that would surprise the thread that
  2683         // suspended us.
  2684         //
  2685         ret = ::sema_post(&sig_sem);
  2686         assert(ret == 0, "sema_post() failed");
  2688         thread->java_suspend_self();
  2690     } while (threadIsSuspended);
  2694 int os::signal_lookup() {
  2695   return check_pending_signals(false);
  2698 int os::signal_wait() {
  2699   return check_pending_signals(true);
  2702 ////////////////////////////////////////////////////////////////////////////////
  2703 // Virtual Memory
  2705 static int page_size = -1;
  2707 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2708 // clear this var if support is not available.
  2709 static bool has_map_align = true;
  2711 int os::vm_page_size() {
  2712   assert(page_size != -1, "must call os::init");
  2713   return page_size;
  2716 // Solaris allocates memory by pages.
  2717 int os::vm_allocation_granularity() {
  2718   assert(page_size != -1, "must call os::init");
  2719   return page_size;
  2722 static bool recoverable_mmap_error(int err) {
  2723   // See if the error is one we can let the caller handle. This
  2724   // list of errno values comes from the Solaris mmap(2) man page.
  2725   switch (err) {
  2726   case EBADF:
  2727   case EINVAL:
  2728   case ENOTSUP:
  2729     // let the caller deal with these errors
  2730     return true;
  2732   default:
  2733     // Any remaining errors on this OS can cause our reserved mapping
  2734     // to be lost. That can cause confusion where different data
  2735     // structures think they have the same memory mapped. The worst
  2736     // scenario is if both the VM and a library think they have the
  2737     // same memory mapped.
  2738     return false;
  2742 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
  2743                                     int err) {
  2744   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2745           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
  2746           strerror(err), err);
  2749 static void warn_fail_commit_memory(char* addr, size_t bytes,
  2750                                     size_t alignment_hint, bool exec,
  2751                                     int err) {
  2752   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2753           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
  2754           alignment_hint, exec, strerror(err), err);
  2757 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
  2758   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2759   size_t size = bytes;
  2760   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2761   if (res != NULL) {
  2762     if (UseNUMAInterleaving) {
  2763       numa_make_global(addr, bytes);
  2765     return 0;
  2768   int err = errno;  // save errno from mmap() call in mmap_chunk()
  2770   if (!recoverable_mmap_error(err)) {
  2771     warn_fail_commit_memory(addr, bytes, exec, err);
  2772     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
  2775   return err;
  2778 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  2779   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
  2782 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
  2783                                   const char* mesg) {
  2784   assert(mesg != NULL, "mesg must be specified");
  2785   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
  2786   if (err != 0) {
  2787     // the caller wants all commit errors to exit with the specified mesg:
  2788     warn_fail_commit_memory(addr, bytes, exec, err);
  2789     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
  2793 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
  2794                                     size_t alignment_hint, bool exec) {
  2795   int err = Solaris::commit_memory_impl(addr, bytes, exec);
  2796   if (err == 0) {
  2797     if (UseLargePages && (alignment_hint > (size_t)vm_page_size())) {
  2798       // If the large page size has been set and the VM
  2799       // is using large pages, use the large page size
  2800       // if it is smaller than the alignment hint. This is
  2801       // a case where the VM wants to use a larger alignment size
  2802       // for its own reasons but still want to use large pages
  2803       // (which is what matters to setting the mpss range.
  2804       size_t page_size = 0;
  2805       if (large_page_size() < alignment_hint) {
  2806         assert(UseLargePages, "Expected to be here for large page use only");
  2807         page_size = large_page_size();
  2808       } else {
  2809         // If the alignment hint is less than the large page
  2810         // size, the VM wants a particular alignment (thus the hint)
  2811         // for internal reasons.  Try to set the mpss range using
  2812         // the alignment_hint.
  2813         page_size = alignment_hint;
  2815       // Since this is a hint, ignore any failures.
  2816       (void)Solaris::setup_large_pages(addr, bytes, page_size);
  2819   return err;
  2822 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2823                           bool exec) {
  2824   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
  2827 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
  2828                                   size_t alignment_hint, bool exec,
  2829                                   const char* mesg) {
  2830   assert(mesg != NULL, "mesg must be specified");
  2831   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
  2832   if (err != 0) {
  2833     // the caller wants all commit errors to exit with the specified mesg:
  2834     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
  2835     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
  2839 // Uncommit the pages in a specified region.
  2840 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
  2841   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2842     debug_only(warning("MADV_FREE failed."));
  2843     return;
  2847 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2848   return os::commit_memory(addr, size, !ExecMem);
  2851 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2852   return os::uncommit_memory(addr, size);
  2855 // Change the page size in a given range.
  2856 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2857   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2858   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2859   if (UseLargePages) {
  2860     Solaris::setup_large_pages(addr, bytes, alignment_hint);
  2864 // Tell the OS to make the range local to the first-touching LWP
  2865 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2866   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2867   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2868     debug_only(warning("MADV_ACCESS_LWP failed."));
  2872 // Tell the OS that this range would be accessed from different LWPs.
  2873 void os::numa_make_global(char *addr, size_t bytes) {
  2874   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2875   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2876     debug_only(warning("MADV_ACCESS_MANY failed."));
  2880 // Get the number of the locality groups.
  2881 size_t os::numa_get_groups_num() {
  2882   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2883   return n != -1 ? n : 1;
  2886 // Get a list of leaf locality groups. A leaf lgroup is group that
  2887 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2888 // board. An LWP is assigned to one of these groups upon creation.
  2889 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2890    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2891      ids[0] = 0;
  2892      return 1;
  2894    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2895    for (int k = 0; k < size; k++) {
  2896      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2897                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2898      if (r == -1) {
  2899        ids[0] = 0;
  2900        return 1;
  2902      if (!r) {
  2903        // That's a leaf node.
  2904        assert (bottom <= cur, "Sanity check");
  2905        // Check if the node has memory
  2906        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2907                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2908          ids[bottom++] = ids[cur];
  2911      top += r;
  2912      cur++;
  2914    if (bottom == 0) {
  2915      // Handle a situation, when the OS reports no memory available.
  2916      // Assume UMA architecture.
  2917      ids[0] = 0;
  2918      return 1;
  2920    return bottom;
  2923 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2924 bool os::numa_topology_changed() {
  2925   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2926   if (is_stale != -1 && is_stale) {
  2927     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2928     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2929     assert(c != 0, "Failure to initialize LGRP API");
  2930     Solaris::set_lgrp_cookie(c);
  2931     return true;
  2933   return false;
  2936 // Get the group id of the current LWP.
  2937 int os::numa_get_group_id() {
  2938   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2939   if (lgrp_id == -1) {
  2940     return 0;
  2942   const int size = os::numa_get_groups_num();
  2943   int *ids = (int*)alloca(size * sizeof(int));
  2945   // Get the ids of all lgroups with memory; r is the count.
  2946   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2947                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2948   if (r <= 0) {
  2949     return 0;
  2951   return ids[os::random() % r];
  2954 // Request information about the page.
  2955 bool os::get_page_info(char *start, page_info* info) {
  2956   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2957   uint64_t addr = (uintptr_t)start;
  2958   uint64_t outdata[2];
  2959   uint_t validity = 0;
  2961   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2962     return false;
  2965   info->size = 0;
  2966   info->lgrp_id = -1;
  2968   if ((validity & 1) != 0) {
  2969     if ((validity & 2) != 0) {
  2970       info->lgrp_id = outdata[0];
  2972     if ((validity & 4) != 0) {
  2973       info->size = outdata[1];
  2975     return true;
  2977   return false;
  2980 // Scan the pages from start to end until a page different than
  2981 // the one described in the info parameter is encountered.
  2982 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2983   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2984   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  2985   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  2986   uint_t validity[MAX_MEMINFO_CNT];
  2988   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  2989   uint64_t p = (uint64_t)start;
  2990   while (p < (uint64_t)end) {
  2991     addrs[0] = p;
  2992     size_t addrs_count = 1;
  2993     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
  2994       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  2995       addrs_count++;
  2998     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  2999       return NULL;
  3002     size_t i = 0;
  3003     for (; i < addrs_count; i++) {
  3004       if ((validity[i] & 1) != 0) {
  3005         if ((validity[i] & 4) != 0) {
  3006           if (outdata[types * i + 1] != page_expected->size) {
  3007             break;
  3009         } else
  3010           if (page_expected->size != 0) {
  3011             break;
  3014         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  3015           if (outdata[types * i] != page_expected->lgrp_id) {
  3016             break;
  3019       } else {
  3020         return NULL;
  3024     if (i != addrs_count) {
  3025       if ((validity[i] & 2) != 0) {
  3026         page_found->lgrp_id = outdata[types * i];
  3027       } else {
  3028         page_found->lgrp_id = -1;
  3030       if ((validity[i] & 4) != 0) {
  3031         page_found->size = outdata[types * i + 1];
  3032       } else {
  3033         page_found->size = 0;
  3035       return (char*)addrs[i];
  3038     p = addrs[addrs_count - 1] + page_size;
  3040   return end;
  3043 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3044   size_t size = bytes;
  3045   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3046   // uncommitted page. Otherwise, the read/write might succeed if we
  3047   // have enough swap space to back the physical page.
  3048   return
  3049     NULL != Solaris::mmap_chunk(addr, size,
  3050                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3051                                 PROT_NONE);
  3054 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3055   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3057   if (b == MAP_FAILED) {
  3058     return NULL;
  3060   return b;
  3063 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3064   char* addr = requested_addr;
  3065   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3067   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3069   if (fixed) {
  3070     flags |= MAP_FIXED;
  3071   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3072     flags |= MAP_ALIGN;
  3073     addr = (char*) alignment_hint;
  3076   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3077   // uncommitted page. Otherwise, the read/write might succeed if we
  3078   // have enough swap space to back the physical page.
  3079   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3082 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3083   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3085   guarantee(requested_addr == NULL || requested_addr == addr,
  3086             "OS failed to return requested mmap address.");
  3087   return addr;
  3090 // Reserve memory at an arbitrary address, only if that area is
  3091 // available (and not reserved for something else).
  3093 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3094   const int max_tries = 10;
  3095   char* base[max_tries];
  3096   size_t size[max_tries];
  3098   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3099   // is dependent on the requested size and the MMU.  Our initial gap
  3100   // value here is just a guess and will be corrected later.
  3101   bool had_top_overlap = false;
  3102   bool have_adjusted_gap = false;
  3103   size_t gap = 0x400000;
  3105   // Assert only that the size is a multiple of the page size, since
  3106   // that's all that mmap requires, and since that's all we really know
  3107   // about at this low abstraction level.  If we need higher alignment,
  3108   // we can either pass an alignment to this method or verify alignment
  3109   // in one of the methods further up the call chain.  See bug 5044738.
  3110   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3112   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3113   // Give it a try, if the kernel honors the hint we can return immediately.
  3114   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3116   volatile int err = errno;
  3117   if (addr == requested_addr) {
  3118     return addr;
  3119   } else if (addr != NULL) {
  3120     pd_unmap_memory(addr, bytes);
  3123   if (PrintMiscellaneous && Verbose) {
  3124     char buf[256];
  3125     buf[0] = '\0';
  3126     if (addr == NULL) {
  3127       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3129     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
  3130             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3131             "%s", bytes, requested_addr, addr, buf);
  3134   // Address hint method didn't work.  Fall back to the old method.
  3135   // In theory, once SNV becomes our oldest supported platform, this
  3136   // code will no longer be needed.
  3137   //
  3138   // Repeatedly allocate blocks until the block is allocated at the
  3139   // right spot. Give up after max_tries.
  3140   int i;
  3141   for (i = 0; i < max_tries; ++i) {
  3142     base[i] = reserve_memory(bytes);
  3144     if (base[i] != NULL) {
  3145       // Is this the block we wanted?
  3146       if (base[i] == requested_addr) {
  3147         size[i] = bytes;
  3148         break;
  3151       // check that the gap value is right
  3152       if (had_top_overlap && !have_adjusted_gap) {
  3153         size_t actual_gap = base[i-1] - base[i] - bytes;
  3154         if (gap != actual_gap) {
  3155           // adjust the gap value and retry the last 2 allocations
  3156           assert(i > 0, "gap adjustment code problem");
  3157           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3158           gap = actual_gap;
  3159           if (PrintMiscellaneous && Verbose) {
  3160             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3162           unmap_memory(base[i], bytes);
  3163           unmap_memory(base[i-1], size[i-1]);
  3164           i-=2;
  3165           continue;
  3169       // Does this overlap the block we wanted? Give back the overlapped
  3170       // parts and try again.
  3171       //
  3172       // There is still a bug in this code: if top_overlap == bytes,
  3173       // the overlap is offset from requested region by the value of gap.
  3174       // In this case giving back the overlapped part will not work,
  3175       // because we'll give back the entire block at base[i] and
  3176       // therefore the subsequent allocation will not generate a new gap.
  3177       // This could be fixed with a new algorithm that used larger
  3178       // or variable size chunks to find the requested region -
  3179       // but such a change would introduce additional complications.
  3180       // It's rare enough that the planets align for this bug,
  3181       // so we'll just wait for a fix for 6204603/5003415 which
  3182       // will provide a mmap flag to allow us to avoid this business.
  3184       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3185       if (top_overlap >= 0 && top_overlap < bytes) {
  3186         had_top_overlap = true;
  3187         unmap_memory(base[i], top_overlap);
  3188         base[i] += top_overlap;
  3189         size[i] = bytes - top_overlap;
  3190       } else {
  3191         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3192         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3193           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3194             warning("attempt_reserve_memory_at: possible alignment bug");
  3196           unmap_memory(requested_addr, bottom_overlap);
  3197           size[i] = bytes - bottom_overlap;
  3198         } else {
  3199           size[i] = bytes;
  3205   // Give back the unused reserved pieces.
  3207   for (int j = 0; j < i; ++j) {
  3208     if (base[j] != NULL) {
  3209       unmap_memory(base[j], size[j]);
  3213   return (i < max_tries) ? requested_addr : NULL;
  3216 bool os::pd_release_memory(char* addr, size_t bytes) {
  3217   size_t size = bytes;
  3218   return munmap(addr, size) == 0;
  3221 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3222   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3223          "addr must be page aligned");
  3224   int retVal = mprotect(addr, bytes, prot);
  3225   return retVal == 0;
  3228 // Protect memory (Used to pass readonly pages through
  3229 // JNI GetArray<type>Elements with empty arrays.)
  3230 // Also, used for serialization page and for compressed oops null pointer
  3231 // checking.
  3232 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3233                         bool is_committed) {
  3234   unsigned int p = 0;
  3235   switch (prot) {
  3236   case MEM_PROT_NONE: p = PROT_NONE; break;
  3237   case MEM_PROT_READ: p = PROT_READ; break;
  3238   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3239   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3240   default:
  3241     ShouldNotReachHere();
  3243   // is_committed is unused.
  3244   return solaris_mprotect(addr, bytes, p);
  3247 // guard_memory and unguard_memory only happens within stack guard pages.
  3248 // Since ISM pertains only to the heap, guard and unguard memory should not
  3249 /// happen with an ISM region.
  3250 bool os::guard_memory(char* addr, size_t bytes) {
  3251   return solaris_mprotect(addr, bytes, PROT_NONE);
  3254 bool os::unguard_memory(char* addr, size_t bytes) {
  3255   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3258 // Large page support
  3259 static size_t _large_page_size = 0;
  3261 // Insertion sort for small arrays (descending order).
  3262 static void insertion_sort_descending(size_t* array, int len) {
  3263   for (int i = 0; i < len; i++) {
  3264     size_t val = array[i];
  3265     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3266       size_t tmp = array[key];
  3267       array[key] = array[key - 1];
  3268       array[key - 1] = tmp;
  3273 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
  3274   const unsigned int usable_count = VM_Version::page_size_count();
  3275   if (usable_count == 1) {
  3276     return false;
  3279   // Find the right getpagesizes interface.  When solaris 11 is the minimum
  3280   // build platform, getpagesizes() (without the '2') can be called directly.
  3281   typedef int (*gps_t)(size_t[], int);
  3282   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
  3283   if (gps_func == NULL) {
  3284     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3285     if (gps_func == NULL) {
  3286       if (warn) {
  3287         warning("MPSS is not supported by the operating system.");
  3289       return false;
  3293   // Fill the array of page sizes.
  3294   int n = (*gps_func)(_page_sizes, page_sizes_max);
  3295   assert(n > 0, "Solaris bug?");
  3297   if (n == page_sizes_max) {
  3298     // Add a sentinel value (necessary only if the array was completely filled
  3299     // since it is static (zeroed at initialization)).
  3300     _page_sizes[--n] = 0;
  3301     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3303   assert(_page_sizes[n] == 0, "missing sentinel");
  3304   trace_page_sizes("available page sizes", _page_sizes, n);
  3306   if (n == 1) return false;     // Only one page size available.
  3308   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3309   // select up to usable_count elements.  First sort the array, find the first
  3310   // acceptable value, then copy the usable sizes to the top of the array and
  3311   // trim the rest.  Make sure to include the default page size :-).
  3312   //
  3313   // A better policy could get rid of the 4M limit by taking the sizes of the
  3314   // important VM memory regions (java heap and possibly the code cache) into
  3315   // account.
  3316   insertion_sort_descending(_page_sizes, n);
  3317   const size_t size_limit =
  3318     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3319   int beg;
  3320   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3321   const int end = MIN2((int)usable_count, n) - 1;
  3322   for (int cur = 0; cur < end; ++cur, ++beg) {
  3323     _page_sizes[cur] = _page_sizes[beg];
  3325   _page_sizes[end] = vm_page_size();
  3326   _page_sizes[end + 1] = 0;
  3328   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3329     // Default page size is not the smallest; sort again.
  3330     insertion_sort_descending(_page_sizes, end + 1);
  3332   *page_size = _page_sizes[0];
  3334   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
  3335   return true;
  3338 void os::large_page_init() {
  3339   if (UseLargePages) {
  3340     // print a warning if any large page related flag is specified on command line
  3341     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3342                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3344     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3348 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
  3349   // Signal to OS that we want large pages for addresses
  3350   // from addr, addr + bytes
  3351   struct memcntl_mha mpss_struct;
  3352   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3353   mpss_struct.mha_pagesize = align;
  3354   mpss_struct.mha_flags = 0;
  3355   // Upon successful completion, memcntl() returns 0
  3356   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
  3357     debug_only(warning("Attempt to use MPSS failed."));
  3358     return false;
  3360   return true;
  3363 char* os::reserve_memory_special(size_t size, char* addr, bool exec) {
  3364   fatal("os::reserve_memory_special should not be called on Solaris.");
  3365   return NULL;
  3368 bool os::release_memory_special(char* base, size_t bytes) {
  3369   fatal("os::release_memory_special should not be called on Solaris.");
  3370   return false;
  3373 size_t os::large_page_size() {
  3374   return _large_page_size;
  3377 // MPSS allows application to commit large page memory on demand; with ISM
  3378 // the entire memory region must be allocated as shared memory.
  3379 bool os::can_commit_large_page_memory() {
  3380   return true;
  3383 bool os::can_execute_large_page_memory() {
  3384   return true;
  3387 static int os_sleep(jlong millis, bool interruptible) {
  3388   const jlong limit = INT_MAX;
  3389   jlong prevtime;
  3390   int res;
  3392   while (millis > limit) {
  3393     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3394       return res;
  3395     millis -= limit;
  3398   // Restart interrupted polls with new parameters until the proper delay
  3399   // has been completed.
  3401   prevtime = getTimeMillis();
  3403   while (millis > 0) {
  3404     jlong newtime;
  3406     if (!interruptible) {
  3407       // Following assert fails for os::yield_all:
  3408       // assert(!thread->is_Java_thread(), "must not be java thread");
  3409       res = poll(NULL, 0, millis);
  3410     } else {
  3411       JavaThread *jt = JavaThread::current();
  3413       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3414         os::Solaris::clear_interrupted);
  3417     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3418     // thread.Interrupt.
  3420     // See c/r 6751923. Poll can return 0 before time
  3421     // has elapsed if time is set via clock_settime (as NTP does).
  3422     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3423     // using the logic below checks that we really did
  3424     // sleep at least "millis" if not we'll sleep again.
  3425     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3426       newtime = getTimeMillis();
  3427       assert(newtime >= prevtime, "time moving backwards");
  3428     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3429        and trying to round up to avoid lost milliseconds can result in a
  3430        too-short delay. */
  3431       millis -= newtime - prevtime;
  3432       if(millis <= 0)
  3433         return OS_OK;
  3434       prevtime = newtime;
  3435     } else
  3436       return res;
  3439   return OS_OK;
  3442 // Read calls from inside the vm need to perform state transitions
  3443 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3444   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3447 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3448   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3451 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3452   assert(thread == Thread::current(),  "thread consistency check");
  3454   // TODO-FIXME: this should be removed.
  3455   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3456   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3457   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3458   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3459   // is fooled into believing that the system is making progress. In the code below we block the
  3460   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3461   // system is making progress.
  3462   if (!Solaris::T2_libthread() &&
  3463       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3464     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3465     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3466     Threads_lock->lock_without_safepoint_check();
  3467     Threads_lock->unlock();
  3470   if (thread->is_Java_thread()) {
  3471     // This is a JavaThread so we honor the _thread_blocked protocol
  3472     // even for sleeps of 0 milliseconds. This was originally done
  3473     // as a workaround for bug 4338139. However, now we also do it
  3474     // to honor the suspend-equivalent protocol.
  3476     JavaThread *jt = (JavaThread *) thread;
  3477     ThreadBlockInVM tbivm(jt);
  3479     jt->set_suspend_equivalent();
  3480     // cleared by handle_special_suspend_equivalent_condition() or
  3481     // java_suspend_self() via check_and_wait_while_suspended()
  3483     int ret_code;
  3484     if (millis <= 0) {
  3485       thr_yield();
  3486       ret_code = 0;
  3487     } else {
  3488       // The original sleep() implementation did not create an
  3489       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3490       // I'm preserving that decision for now.
  3491       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3493       ret_code = os_sleep(millis, interruptible);
  3496     // were we externally suspended while we were waiting?
  3497     jt->check_and_wait_while_suspended();
  3499     return ret_code;
  3502   // non-JavaThread from this point on:
  3504   if (millis <= 0) {
  3505     thr_yield();
  3506     return 0;
  3509   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3511   return os_sleep(millis, interruptible);
  3514 int os::naked_sleep() {
  3515   // %% make the sleep time an integer flag. for now use 1 millisec.
  3516   return os_sleep(1, false);
  3519 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3520 void os::infinite_sleep() {
  3521   while (true) {    // sleep forever ...
  3522     ::sleep(100);   // ... 100 seconds at a time
  3526 // Used to convert frequent JVM_Yield() to nops
  3527 bool os::dont_yield() {
  3528   if (DontYieldALot) {
  3529     static hrtime_t last_time = 0;
  3530     hrtime_t diff = getTimeNanos() - last_time;
  3532     if (diff < DontYieldALotInterval * 1000000)
  3533       return true;
  3535     last_time += diff;
  3537     return false;
  3539   else {
  3540     return false;
  3544 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3545 // the linux and win32 implementations do not.  This should be checked.
  3547 void os::yield() {
  3548   // Yields to all threads with same or greater priority
  3549   os::sleep(Thread::current(), 0, false);
  3552 // Note that yield semantics are defined by the scheduling class to which
  3553 // the thread currently belongs.  Typically, yield will _not yield to
  3554 // other equal or higher priority threads that reside on the dispatch queues
  3555 // of other CPUs.
  3557 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3560 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3561 // There have been cases where there is a thread ready to execute but it doesn't
  3562 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3563 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3564 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3565 // number of times yield_all is called in the one loop and increase the sleep
  3566 // time after 8 attempts. If this fails too we increase the concurrency level
  3567 // so that the starving thread would get an lwp
  3569 void os::yield_all(int attempts) {
  3570   // Yields to all threads, including threads with lower priorities
  3571   if (attempts == 0) {
  3572     os::sleep(Thread::current(), 1, false);
  3573   } else {
  3574     int iterations = attempts % 30;
  3575     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3576       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3577       int noofLWPS = thr_getconcurrency();
  3578       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3579         thr_setconcurrency(thr_getconcurrency() + 1);
  3581     } else if (iterations < 25) {
  3582       os::sleep(Thread::current(), 1, false);
  3583     } else {
  3584       os::sleep(Thread::current(), 10, false);
  3589 // Called from the tight loops to possibly influence time-sharing heuristics
  3590 void os::loop_breaker(int attempts) {
  3591   os::yield_all(attempts);
  3595 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3596 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3597 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3598 // function is meaningless in this mode so we must adjust the real lwp's priority
  3599 // The routines below implement the getting and setting of lwp priorities.
  3600 //
  3601 // Note: There are three priority scales used on Solaris.  Java priotities
  3602 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3603 //       from 0 to 127, and the current scheduling class of the process we
  3604 //       are running in.  This is typically from -60 to +60.
  3605 //       The setting of the lwp priorities in done after a call to thr_setprio
  3606 //       so Java priorities are mapped to libthread priorities and we map from
  3607 //       the latter to lwp priorities.  We don't keep priorities stored in
  3608 //       Java priorities since some of our worker threads want to set priorities
  3609 //       higher than all Java threads.
  3610 //
  3611 // For related information:
  3612 // (1)  man -s 2 priocntl
  3613 // (2)  man -s 4 priocntl
  3614 // (3)  man dispadmin
  3615 // =    librt.so
  3616 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3617 // =    ps -cL <pid> ... to validate priority.
  3618 // =    sched_get_priority_min and _max
  3619 //              pthread_create
  3620 //              sched_setparam
  3621 //              pthread_setschedparam
  3622 //
  3623 // Assumptions:
  3624 // +    We assume that all threads in the process belong to the same
  3625 //              scheduling class.   IE. an homogenous process.
  3626 // +    Must be root or in IA group to change change "interactive" attribute.
  3627 //              Priocntl() will fail silently.  The only indication of failure is when
  3628 //              we read-back the value and notice that it hasn't changed.
  3629 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3630 // +    For RT, change timeslice as well.  Invariant:
  3631 //              constant "priority integral"
  3632 //              Konst == TimeSlice * (60-Priority)
  3633 //              Given a priority, compute appropriate timeslice.
  3634 // +    Higher numerical values have higher priority.
  3636 // sched class attributes
  3637 typedef struct {
  3638         int   schedPolicy;              // classID
  3639         int   maxPrio;
  3640         int   minPrio;
  3641 } SchedInfo;
  3644 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
  3646 #ifdef ASSERT
  3647 static int  ReadBackValidate = 1;
  3648 #endif
  3649 static int  myClass     = 0;
  3650 static int  myMin       = 0;
  3651 static int  myMax       = 0;
  3652 static int  myCur       = 0;
  3653 static bool priocntl_enable = false;
  3655 static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
  3656 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
  3659 // lwp_priocntl_init
  3660 //
  3661 // Try to determine the priority scale for our process.
  3662 //
  3663 // Return errno or 0 if OK.
  3664 //
  3665 static int lwp_priocntl_init () {
  3666   int rslt;
  3667   pcinfo_t ClassInfo;
  3668   pcparms_t ParmInfo;
  3669   int i;
  3671   if (!UseThreadPriorities) return 0;
  3673   // We are using Bound threads, we need to determine our priority ranges
  3674   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3675     // If ThreadPriorityPolicy is 1, switch tables
  3676     if (ThreadPriorityPolicy == 1) {
  3677       for (i = 0 ; i < CriticalPriority+1; i++)
  3678         os::java_to_os_priority[i] = prio_policy1[i];
  3680     if (UseCriticalJavaThreadPriority) {
  3681       // MaxPriority always maps to the FX scheduling class and criticalPrio.
  3682       // See set_native_priority() and set_lwp_class_and_priority().
  3683       // Save original MaxPriority mapping in case attempt to
  3684       // use critical priority fails.
  3685       java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
  3686       // Set negative to distinguish from other priorities
  3687       os::java_to_os_priority[MaxPriority] = -criticalPrio;
  3690   // Not using Bound Threads, set to ThreadPolicy 1
  3691   else {
  3692     for ( i = 0 ; i < CriticalPriority+1; i++ ) {
  3693       os::java_to_os_priority[i] = prio_policy1[i];
  3695     return 0;
  3698   // Get IDs for a set of well-known scheduling classes.
  3699   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3700   // the system.  We should have a loop that iterates over the
  3701   // classID values, which are known to be "small" integers.
  3703   strcpy(ClassInfo.pc_clname, "TS");
  3704   ClassInfo.pc_cid = -1;
  3705   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3706   if (rslt < 0) return errno;
  3707   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3708   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3709   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3710   tsLimits.minPrio = -tsLimits.maxPrio;
  3712   strcpy(ClassInfo.pc_clname, "IA");
  3713   ClassInfo.pc_cid = -1;
  3714   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3715   if (rslt < 0) return errno;
  3716   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3717   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3718   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3719   iaLimits.minPrio = -iaLimits.maxPrio;
  3721   strcpy(ClassInfo.pc_clname, "RT");
  3722   ClassInfo.pc_cid = -1;
  3723   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3724   if (rslt < 0) return errno;
  3725   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3726   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3727   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3728   rtLimits.minPrio = 0;
  3730   strcpy(ClassInfo.pc_clname, "FX");
  3731   ClassInfo.pc_cid = -1;
  3732   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3733   if (rslt < 0) return errno;
  3734   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
  3735   fxLimits.schedPolicy = ClassInfo.pc_cid;
  3736   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
  3737   fxLimits.minPrio = 0;
  3739   // Query our "current" scheduling class.
  3740   // This will normally be IA, TS or, rarely, FX or RT.
  3741   memset(&ParmInfo, 0, sizeof(ParmInfo));
  3742   ParmInfo.pc_cid = PC_CLNULL;
  3743   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3744   if (rslt < 0) return errno;
  3745   myClass = ParmInfo.pc_cid;
  3747   // We now know our scheduling classId, get specific information
  3748   // about the class.
  3749   ClassInfo.pc_cid = myClass;
  3750   ClassInfo.pc_clname[0] = 0;
  3751   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
  3752   if (rslt < 0) return errno;
  3754   if (ThreadPriorityVerbose) {
  3755     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3758   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3759   ParmInfo.pc_cid = PC_CLNULL;
  3760   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3761   if (rslt < 0) return errno;
  3763   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3764     myMin = rtLimits.minPrio;
  3765     myMax = rtLimits.maxPrio;
  3766   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3767     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3768     myMin = iaLimits.minPrio;
  3769     myMax = iaLimits.maxPrio;
  3770     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3771   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3772     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3773     myMin = tsLimits.minPrio;
  3774     myMax = tsLimits.maxPrio;
  3775     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3776   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  3777     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
  3778     myMin = fxLimits.minPrio;
  3779     myMax = fxLimits.maxPrio;
  3780     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
  3781   } else {
  3782     // No clue - punt
  3783     if (ThreadPriorityVerbose)
  3784       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3785     return EINVAL;      // no clue, punt
  3788   if (ThreadPriorityVerbose) {
  3789     tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3792   priocntl_enable = true;  // Enable changing priorities
  3793   return 0;
  3796 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3797 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3798 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3799 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
  3802 // scale_to_lwp_priority
  3803 //
  3804 // Convert from the libthread "thr_setprio" scale to our current
  3805 // lwp scheduling class scale.
  3806 //
  3807 static
  3808 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3810   int v;
  3812   if (x == 127) return rMax;            // avoid round-down
  3813     v = (((x*(rMax-rMin)))/128)+rMin;
  3814   return v;
  3818 // set_lwp_class_and_priority
  3819 //
  3820 // Set the class and priority of the lwp.  This call should only
  3821 // be made when using bound threads (T2 threads are bound by default).
  3822 //
  3823 int set_lwp_class_and_priority(int ThreadID, int lwpid,
  3824                                int newPrio, int new_class, bool scale) {
  3825   int rslt;
  3826   int Actual, Expected, prv;
  3827   pcparms_t ParmInfo;                   // for GET-SET
  3828 #ifdef ASSERT
  3829   pcparms_t ReadBack;                   // for readback
  3830 #endif
  3832   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3833   // Query current values.
  3834   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3835   // Cache "pcparms_t" in global ParmCache.
  3836   // TODO: elide set-to-same-value
  3838   // If something went wrong on init, don't change priorities.
  3839   if ( !priocntl_enable ) {
  3840     if (ThreadPriorityVerbose)
  3841       tty->print_cr("Trying to set priority but init failed, ignoring");
  3842     return EINVAL;
  3845   // If lwp hasn't started yet, just return
  3846   // the _start routine will call us again.
  3847   if ( lwpid <= 0 ) {
  3848     if (ThreadPriorityVerbose) {
  3849       tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
  3850                      INTPTR_FORMAT " to %d, lwpid not set",
  3851                      ThreadID, newPrio);
  3853     return 0;
  3856   if (ThreadPriorityVerbose) {
  3857     tty->print_cr ("set_lwp_class_and_priority("
  3858                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3859                    ThreadID, lwpid, newPrio);
  3862   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3863   ParmInfo.pc_cid = PC_CLNULL;
  3864   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3865   if (rslt < 0) return errno;
  3867   int cur_class = ParmInfo.pc_cid;
  3868   ParmInfo.pc_cid = (id_t)new_class;
  3870   if (new_class == rtLimits.schedPolicy) {
  3871     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3872     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
  3873                                                        rtLimits.maxPrio, newPrio)
  3874                                : newPrio;
  3875     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3876     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3877     if (ThreadPriorityVerbose) {
  3878       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3880   } else if (new_class == iaLimits.schedPolicy) {
  3881     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3882     int maxClamped     = MIN2(iaLimits.maxPrio,
  3883                               cur_class == new_class
  3884                                 ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
  3885     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
  3886                                                        maxClamped, newPrio)
  3887                                : newPrio;
  3888     iaInfo->ia_uprilim = cur_class == new_class
  3889                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
  3890     iaInfo->ia_mode    = IA_NOCHANGE;
  3891     if (ThreadPriorityVerbose) {
  3892       tty->print_cr("IA: [%d...%d] %d->%d\n",
  3893                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3895   } else if (new_class == tsLimits.schedPolicy) {
  3896     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3897     int maxClamped     = MIN2(tsLimits.maxPrio,
  3898                               cur_class == new_class
  3899                                 ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
  3900     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
  3901                                                        maxClamped, newPrio)
  3902                                : newPrio;
  3903     tsInfo->ts_uprilim = cur_class == new_class
  3904                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
  3905     if (ThreadPriorityVerbose) {
  3906       tty->print_cr("TS: [%d...%d] %d->%d\n",
  3907                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3909   } else if (new_class == fxLimits.schedPolicy) {
  3910     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
  3911     int maxClamped     = MIN2(fxLimits.maxPrio,
  3912                               cur_class == new_class
  3913                                 ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
  3914     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
  3915                                                        maxClamped, newPrio)
  3916                                : newPrio;
  3917     fxInfo->fx_uprilim = cur_class == new_class
  3918                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
  3919     fxInfo->fx_tqsecs  = FX_NOCHANGE;
  3920     fxInfo->fx_tqnsecs = FX_NOCHANGE;
  3921     if (ThreadPriorityVerbose) {
  3922       tty->print_cr("FX: [%d...%d] %d->%d\n",
  3923                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
  3925   } else {
  3926     if (ThreadPriorityVerbose) {
  3927       tty->print_cr("Unknown new scheduling class %d\n", new_class);
  3929     return EINVAL;    // no clue, punt
  3932   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  3933   if (ThreadPriorityVerbose && rslt) {
  3934     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  3936   if (rslt < 0) return errno;
  3938 #ifdef ASSERT
  3939   // Sanity check: read back what we just attempted to set.
  3940   // In theory it could have changed in the interim ...
  3941   //
  3942   // The priocntl system call is tricky.
  3943   // Sometimes it'll validate the priority value argument and
  3944   // return EINVAL if unhappy.  At other times it fails silently.
  3945   // Readbacks are prudent.
  3947   if (!ReadBackValidate) return 0;
  3949   memset(&ReadBack, 0, sizeof(pcparms_t));
  3950   ReadBack.pc_cid = PC_CLNULL;
  3951   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  3952   assert(rslt >= 0, "priocntl failed");
  3953   Actual = Expected = 0xBAD;
  3954   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  3955   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3956     Actual   = RTPRI(ReadBack)->rt_pri;
  3957     Expected = RTPRI(ParmInfo)->rt_pri;
  3958   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3959     Actual   = IAPRI(ReadBack)->ia_upri;
  3960     Expected = IAPRI(ParmInfo)->ia_upri;
  3961   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3962     Actual   = TSPRI(ReadBack)->ts_upri;
  3963     Expected = TSPRI(ParmInfo)->ts_upri;
  3964   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  3965     Actual   = FXPRI(ReadBack)->fx_upri;
  3966     Expected = FXPRI(ParmInfo)->fx_upri;
  3967   } else {
  3968     if (ThreadPriorityVerbose) {
  3969       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
  3970                     ParmInfo.pc_cid);
  3974   if (Actual != Expected) {
  3975     if (ThreadPriorityVerbose) {
  3976       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  3977                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  3980 #endif
  3982   return 0;
  3985 // Solaris only gives access to 128 real priorities at a time,
  3986 // so we expand Java's ten to fill this range.  This would be better
  3987 // if we dynamically adjusted relative priorities.
  3988 //
  3989 // The ThreadPriorityPolicy option allows us to select 2 different
  3990 // priority scales.
  3991 //
  3992 // ThreadPriorityPolicy=0
  3993 // Since the Solaris' default priority is MaximumPriority, we do not
  3994 // set a priority lower than Max unless a priority lower than
  3995 // NormPriority is requested.
  3996 //
  3997 // ThreadPriorityPolicy=1
  3998 // This mode causes the priority table to get filled with
  3999 // linear values.  NormPriority get's mapped to 50% of the
  4000 // Maximum priority an so on.  This will cause VM threads
  4001 // to get unfair treatment against other Solaris processes
  4002 // which do not explicitly alter their thread priorities.
  4003 //
  4005 int os::java_to_os_priority[CriticalPriority + 1] = {
  4006   -99999,         // 0 Entry should never be used
  4008   0,              // 1 MinPriority
  4009   32,             // 2
  4010   64,             // 3
  4012   96,             // 4
  4013   127,            // 5 NormPriority
  4014   127,            // 6
  4016   127,            // 7
  4017   127,            // 8
  4018   127,            // 9 NearMaxPriority
  4020   127,            // 10 MaxPriority
  4022   -criticalPrio   // 11 CriticalPriority
  4023 };
  4025 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4026   OSThread* osthread = thread->osthread();
  4028   // Save requested priority in case the thread hasn't been started
  4029   osthread->set_native_priority(newpri);
  4031   // Check for critical priority request
  4032   bool fxcritical = false;
  4033   if (newpri == -criticalPrio) {
  4034     fxcritical = true;
  4035     newpri = criticalPrio;
  4038   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4039   if (!UseThreadPriorities) return OS_OK;
  4041   int status = 0;
  4043   if (!fxcritical) {
  4044     // Use thr_setprio only if we have a priority that thr_setprio understands
  4045     status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4048   if (os::Solaris::T2_libthread() ||
  4049       (UseBoundThreads && osthread->is_vm_created())) {
  4050     int lwp_status =
  4051       set_lwp_class_and_priority(osthread->thread_id(),
  4052                                  osthread->lwp_id(),
  4053                                  newpri,
  4054                                  fxcritical ? fxLimits.schedPolicy : myClass,
  4055                                  !fxcritical);
  4056     if (lwp_status != 0 && fxcritical) {
  4057       // Try again, this time without changing the scheduling class
  4058       newpri = java_MaxPriority_to_os_priority;
  4059       lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
  4060                                               osthread->lwp_id(),
  4061                                               newpri, myClass, false);
  4063     status |= lwp_status;
  4065   return (status == 0) ? OS_OK : OS_ERR;
  4069 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4070   int p;
  4071   if ( !UseThreadPriorities ) {
  4072     *priority_ptr = NormalPriority;
  4073     return OS_OK;
  4075   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4076   if (status != 0) {
  4077     return OS_ERR;
  4079   *priority_ptr = p;
  4080   return OS_OK;
  4084 // Hint to the underlying OS that a task switch would not be good.
  4085 // Void return because it's a hint and can fail.
  4086 void os::hint_no_preempt() {
  4087   schedctl_start(schedctl_init());
  4090 static void resume_clear_context(OSThread *osthread) {
  4091   osthread->set_ucontext(NULL);
  4094 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
  4095   osthread->set_ucontext(context);
  4098 static Semaphore sr_semaphore;
  4100 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
  4101   // Save and restore errno to avoid confusing native code with EINTR
  4102   // after sigsuspend.
  4103   int old_errno = errno;
  4105   OSThread* osthread = thread->osthread();
  4106   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4108   os::SuspendResume::State current = osthread->sr.state();
  4109   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4110     suspend_save_context(osthread, uc);
  4112     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4113     os::SuspendResume::State state = osthread->sr.suspended();
  4114     if (state == os::SuspendResume::SR_SUSPENDED) {
  4115       sigset_t suspend_set;  // signals for sigsuspend()
  4117       // get current set of blocked signals and unblock resume signal
  4118       thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
  4119       sigdelset(&suspend_set, os::Solaris::SIGasync());
  4121       sr_semaphore.signal();
  4122       // wait here until we are resumed
  4123       while (1) {
  4124         sigsuspend(&suspend_set);
  4126         os::SuspendResume::State result = osthread->sr.running();
  4127         if (result == os::SuspendResume::SR_RUNNING) {
  4128           sr_semaphore.signal();
  4129           break;
  4133     } else if (state == os::SuspendResume::SR_RUNNING) {
  4134       // request was cancelled, continue
  4135     } else {
  4136       ShouldNotReachHere();
  4139     resume_clear_context(osthread);
  4140   } else if (current == os::SuspendResume::SR_RUNNING) {
  4141     // request was cancelled, continue
  4142   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4143     // ignore
  4144   } else {
  4145     // ignore
  4148   errno = old_errno;
  4152 void os::interrupt(Thread* thread) {
  4153   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4155   OSThread* osthread = thread->osthread();
  4157   int isInterrupted = osthread->interrupted();
  4158   if (!isInterrupted) {
  4159       osthread->set_interrupted(true);
  4160       OrderAccess::fence();
  4161       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4162       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4163       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4164       ParkEvent * const slp = thread->_SleepEvent ;
  4165       if (slp != NULL) slp->unpark() ;
  4168   // For JSR166:  unpark after setting status but before thr_kill -dl
  4169   if (thread->is_Java_thread()) {
  4170     ((JavaThread*)thread)->parker()->unpark();
  4173   // Handle interruptible wait() ...
  4174   ParkEvent * const ev = thread->_ParkEvent ;
  4175   if (ev != NULL) ev->unpark() ;
  4177   // When events are used everywhere for os::sleep, then this thr_kill
  4178   // will only be needed if UseVMInterruptibleIO is true.
  4180   if (!isInterrupted) {
  4181     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4182     assert_status(status == 0, status, "thr_kill");
  4184     // Bump thread interruption counter
  4185     RuntimeService::record_thread_interrupt_signaled_count();
  4190 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4191   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4193   OSThread* osthread = thread->osthread();
  4195   bool res = osthread->interrupted();
  4197   // NOTE that since there is no "lock" around these two operations,
  4198   // there is the possibility that the interrupted flag will be
  4199   // "false" but that the interrupt event will be set. This is
  4200   // intentional. The effect of this is that Object.wait() will appear
  4201   // to have a spurious wakeup, which is not harmful, and the
  4202   // possibility is so rare that it is not worth the added complexity
  4203   // to add yet another lock. It has also been recommended not to put
  4204   // the interrupted flag into the os::Solaris::Event structure,
  4205   // because it hides the issue.
  4206   if (res && clear_interrupted) {
  4207     osthread->set_interrupted(false);
  4209   return res;
  4213 void os::print_statistics() {
  4216 int os::message_box(const char* title, const char* message) {
  4217   int i;
  4218   fdStream err(defaultStream::error_fd());
  4219   for (i = 0; i < 78; i++) err.print_raw("=");
  4220   err.cr();
  4221   err.print_raw_cr(title);
  4222   for (i = 0; i < 78; i++) err.print_raw("-");
  4223   err.cr();
  4224   err.print_raw_cr(message);
  4225   for (i = 0; i < 78; i++) err.print_raw("=");
  4226   err.cr();
  4228   char buf[16];
  4229   // Prevent process from exiting upon "read error" without consuming all CPU
  4230   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4232   return buf[0] == 'y' || buf[0] == 'Y';
  4235 static int sr_notify(OSThread* osthread) {
  4236   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
  4237   assert_status(status == 0, status, "thr_kill");
  4238   return status;
  4241 // "Randomly" selected value for how long we want to spin
  4242 // before bailing out on suspending a thread, also how often
  4243 // we send a signal to a thread we want to resume
  4244 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4245 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4247 static bool do_suspend(OSThread* osthread) {
  4248   assert(osthread->sr.is_running(), "thread should be running");
  4249   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4251   // mark as suspended and send signal
  4252   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4253     // failed to switch, state wasn't running?
  4254     ShouldNotReachHere();
  4255     return false;
  4258   if (sr_notify(osthread) != 0) {
  4259     ShouldNotReachHere();
  4262   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4263   while (true) {
  4264     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
  4265       break;
  4266     } else {
  4267       // timeout
  4268       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4269       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4270         return false;
  4271       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4272         // make sure that we consume the signal on the semaphore as well
  4273         sr_semaphore.wait();
  4274         break;
  4275       } else {
  4276         ShouldNotReachHere();
  4277         return false;
  4282   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4283   return true;
  4286 static void do_resume(OSThread* osthread) {
  4287   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4288   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4290   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4291     // failed to switch to WAKEUP_REQUEST
  4292     ShouldNotReachHere();
  4293     return;
  4296   while (true) {
  4297     if (sr_notify(osthread) == 0) {
  4298       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4299         if (osthread->sr.is_running()) {
  4300           return;
  4303     } else {
  4304       ShouldNotReachHere();
  4308   guarantee(osthread->sr.is_running(), "Must be running!");
  4311 void os::SuspendedThreadTask::internal_do_task() {
  4312   if (do_suspend(_thread->osthread())) {
  4313     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4314     do_task(context);
  4315     do_resume(_thread->osthread());
  4319 class PcFetcher : public os::SuspendedThreadTask {
  4320 public:
  4321   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4322   ExtendedPC result();
  4323 protected:
  4324   void do_task(const os::SuspendedThreadTaskContext& context);
  4325 private:
  4326   ExtendedPC _epc;
  4327 };
  4329 ExtendedPC PcFetcher::result() {
  4330   guarantee(is_done(), "task is not done yet.");
  4331   return _epc;
  4334 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  4335   Thread* thread = context.thread();
  4336   OSThread* osthread = thread->osthread();
  4337   if (osthread->ucontext() != NULL) {
  4338     _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
  4339   } else {
  4340     // NULL context is unexpected, double-check this is the VMThread
  4341     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4345 // A lightweight implementation that does not suspend the target thread and
  4346 // thus returns only a hint. Used for profiling only!
  4347 ExtendedPC os::get_thread_pc(Thread* thread) {
  4348   // Make sure that it is called by the watcher and the Threads lock is owned.
  4349   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4350   // For now, is only used to profile the VM Thread
  4351   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4352   PcFetcher fetcher(thread);
  4353   fetcher.run();
  4354   return fetcher.result();
  4358 // This does not do anything on Solaris. This is basically a hook for being
  4359 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4360 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4361   f(value, method, args, thread);
  4364 // This routine may be used by user applications as a "hook" to catch signals.
  4365 // The user-defined signal handler must pass unrecognized signals to this
  4366 // routine, and if it returns true (non-zero), then the signal handler must
  4367 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4368 // routine will never retun false (zero), but instead will execute a VM panic
  4369 // routine kill the process.
  4370 //
  4371 // If this routine returns false, it is OK to call it again.  This allows
  4372 // the user-defined signal handler to perform checks either before or after
  4373 // the VM performs its own checks.  Naturally, the user code would be making
  4374 // a serious error if it tried to handle an exception (such as a null check
  4375 // or breakpoint) that the VM was generating for its own correct operation.
  4376 //
  4377 // This routine may recognize any of the following kinds of signals:
  4378 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4379 // os::Solaris::SIGasync
  4380 // It should be consulted by handlers for any of those signals.
  4381 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4382 //
  4383 // The caller of this routine must pass in the three arguments supplied
  4384 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4385 // field of the structure passed to sigaction().  This routine assumes that
  4386 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4387 //
  4388 // Note that the VM will print warnings if it detects conflicting signal
  4389 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4390 //
  4391 extern "C" JNIEXPORT int
  4392 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
  4393                           int abort_if_unrecognized);
  4396 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4397   int orig_errno = errno;  // Preserve errno value over signal handler.
  4398   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4399   errno = orig_errno;
  4402 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4403    is needed to provoke threads blocked on IO to return an EINTR
  4404    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4405    does NOT participate in signal chaining due to requirement for
  4406    NOT setting SA_RESTART to make EINTR work. */
  4407 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4408    if (UseSignalChaining) {
  4409       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4410       if (actp && actp->sa_handler) {
  4411         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4416 // This boolean allows users to forward their own non-matching signals
  4417 // to JVM_handle_solaris_signal, harmlessly.
  4418 bool os::Solaris::signal_handlers_are_installed = false;
  4420 // For signal-chaining
  4421 bool os::Solaris::libjsig_is_loaded = false;
  4422 typedef struct sigaction *(*get_signal_t)(int);
  4423 get_signal_t os::Solaris::get_signal_action = NULL;
  4425 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4426   struct sigaction *actp = NULL;
  4428   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4429     // Retrieve the old signal handler from libjsig
  4430     actp = (*get_signal_action)(sig);
  4432   if (actp == NULL) {
  4433     // Retrieve the preinstalled signal handler from jvm
  4434     actp = get_preinstalled_handler(sig);
  4437   return actp;
  4440 static bool call_chained_handler(struct sigaction *actp, int sig,
  4441                                  siginfo_t *siginfo, void *context) {
  4442   // Call the old signal handler
  4443   if (actp->sa_handler == SIG_DFL) {
  4444     // It's more reasonable to let jvm treat it as an unexpected exception
  4445     // instead of taking the default action.
  4446     return false;
  4447   } else if (actp->sa_handler != SIG_IGN) {
  4448     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4449       // automaticlly block the signal
  4450       sigaddset(&(actp->sa_mask), sig);
  4453     sa_handler_t hand;
  4454     sa_sigaction_t sa;
  4455     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4456     // retrieve the chained handler
  4457     if (siginfo_flag_set) {
  4458       sa = actp->sa_sigaction;
  4459     } else {
  4460       hand = actp->sa_handler;
  4463     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4464       actp->sa_handler = SIG_DFL;
  4467     // try to honor the signal mask
  4468     sigset_t oset;
  4469     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4471     // call into the chained handler
  4472     if (siginfo_flag_set) {
  4473       (*sa)(sig, siginfo, context);
  4474     } else {
  4475       (*hand)(sig);
  4478     // restore the signal mask
  4479     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4481   // Tell jvm's signal handler the signal is taken care of.
  4482   return true;
  4485 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4486   bool chained = false;
  4487   // signal-chaining
  4488   if (UseSignalChaining) {
  4489     struct sigaction *actp = get_chained_signal_action(sig);
  4490     if (actp != NULL) {
  4491       chained = call_chained_handler(actp, sig, siginfo, context);
  4494   return chained;
  4497 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4498   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4499   if (preinstalled_sigs[sig] != 0) {
  4500     return &chainedsigactions[sig];
  4502   return NULL;
  4505 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4507   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4508   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4509   chainedsigactions[sig] = oldAct;
  4510   preinstalled_sigs[sig] = 1;
  4513 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4514   // Check for overwrite.
  4515   struct sigaction oldAct;
  4516   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4517   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4518                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4519   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4520       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4521       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4522     if (AllowUserSignalHandlers || !set_installed) {
  4523       // Do not overwrite; user takes responsibility to forward to us.
  4524       return;
  4525     } else if (UseSignalChaining) {
  4526       if (oktochain) {
  4527         // save the old handler in jvm
  4528         save_preinstalled_handler(sig, oldAct);
  4529       } else {
  4530         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4532       // libjsig also interposes the sigaction() call below and saves the
  4533       // old sigaction on it own.
  4534     } else {
  4535       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4536                     "%#lx for signal %d.", (long)oldhand, sig));
  4540   struct sigaction sigAct;
  4541   sigfillset(&(sigAct.sa_mask));
  4542   sigAct.sa_handler = SIG_DFL;
  4544   sigAct.sa_sigaction = signalHandler;
  4545   // Handle SIGSEGV on alternate signal stack if
  4546   // not using stack banging
  4547   if (!UseStackBanging && sig == SIGSEGV) {
  4548     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4549   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4550   // is returned instead of restarting system calls
  4551   } else if (sig == os::Solaris::SIGinterrupt()) {
  4552     sigemptyset(&sigAct.sa_mask);
  4553     sigAct.sa_handler = NULL;
  4554     sigAct.sa_flags = SA_SIGINFO;
  4555     sigAct.sa_sigaction = sigINTRHandler;
  4556   } else {
  4557     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4559   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4561   sigaction(sig, &sigAct, &oldAct);
  4563   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4564                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4565   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4569 #define DO_SIGNAL_CHECK(sig) \
  4570   if (!sigismember(&check_signal_done, sig)) \
  4571     os::Solaris::check_signal_handler(sig)
  4573 // This method is a periodic task to check for misbehaving JNI applications
  4574 // under CheckJNI, we can add any periodic checks here
  4576 void os::run_periodic_checks() {
  4577   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4578   // thereby preventing a NULL checks.
  4579   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4581   if (check_signals == false) return;
  4583   // SEGV and BUS if overridden could potentially prevent
  4584   // generation of hs*.log in the event of a crash, debugging
  4585   // such a case can be very challenging, so we absolutely
  4586   // check for the following for a good measure:
  4587   DO_SIGNAL_CHECK(SIGSEGV);
  4588   DO_SIGNAL_CHECK(SIGILL);
  4589   DO_SIGNAL_CHECK(SIGFPE);
  4590   DO_SIGNAL_CHECK(SIGBUS);
  4591   DO_SIGNAL_CHECK(SIGPIPE);
  4592   DO_SIGNAL_CHECK(SIGXFSZ);
  4594   // ReduceSignalUsage allows the user to override these handlers
  4595   // see comments at the very top and jvm_solaris.h
  4596   if (!ReduceSignalUsage) {
  4597     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4598     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4599     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4600     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4603   // See comments above for using JVM1/JVM2 and UseAltSigs
  4604   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4605   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4609 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4611 static os_sigaction_t os_sigaction = NULL;
  4613 void os::Solaris::check_signal_handler(int sig) {
  4614   char buf[O_BUFLEN];
  4615   address jvmHandler = NULL;
  4617   struct sigaction act;
  4618   if (os_sigaction == NULL) {
  4619     // only trust the default sigaction, in case it has been interposed
  4620     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4621     if (os_sigaction == NULL) return;
  4624   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4626   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4627     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4628     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4631   switch(sig) {
  4632     case SIGSEGV:
  4633     case SIGBUS:
  4634     case SIGFPE:
  4635     case SIGPIPE:
  4636     case SIGXFSZ:
  4637     case SIGILL:
  4638       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4639       break;
  4641     case SHUTDOWN1_SIGNAL:
  4642     case SHUTDOWN2_SIGNAL:
  4643     case SHUTDOWN3_SIGNAL:
  4644     case BREAK_SIGNAL:
  4645       jvmHandler = (address)user_handler();
  4646       break;
  4648     default:
  4649       int intrsig = os::Solaris::SIGinterrupt();
  4650       int asynsig = os::Solaris::SIGasync();
  4652       if (sig == intrsig) {
  4653         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4654       } else if (sig == asynsig) {
  4655         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4656       } else {
  4657         return;
  4659       break;
  4663   if (thisHandler != jvmHandler) {
  4664     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4665     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4666     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4667     // No need to check this sig any longer
  4668     sigaddset(&check_signal_done, sig);
  4669   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4670     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4671     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4672     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4673     // No need to check this sig any longer
  4674     sigaddset(&check_signal_done, sig);
  4677   // Print all the signal handler state
  4678   if (sigismember(&check_signal_done, sig)) {
  4679     print_signal_handlers(tty, buf, O_BUFLEN);
  4684 void os::Solaris::install_signal_handlers() {
  4685   bool libjsigdone = false;
  4686   signal_handlers_are_installed = true;
  4688   // signal-chaining
  4689   typedef void (*signal_setting_t)();
  4690   signal_setting_t begin_signal_setting = NULL;
  4691   signal_setting_t end_signal_setting = NULL;
  4692   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4693                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4694   if (begin_signal_setting != NULL) {
  4695     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4696                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4697     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4698                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4699     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4700                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4701     libjsig_is_loaded = true;
  4702     if (os::Solaris::get_libjsig_version != NULL) {
  4703       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4705     assert(UseSignalChaining, "should enable signal-chaining");
  4707   if (libjsig_is_loaded) {
  4708     // Tell libjsig jvm is setting signal handlers
  4709     (*begin_signal_setting)();
  4712   set_signal_handler(SIGSEGV, true, true);
  4713   set_signal_handler(SIGPIPE, true, true);
  4714   set_signal_handler(SIGXFSZ, true, true);
  4715   set_signal_handler(SIGBUS, true, true);
  4716   set_signal_handler(SIGILL, true, true);
  4717   set_signal_handler(SIGFPE, true, true);
  4720   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4722     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4723     // can not register overridable signals which might be > 32
  4724     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4725     // Tell libjsig jvm has finished setting signal handlers
  4726       (*end_signal_setting)();
  4727       libjsigdone = true;
  4731   // Never ok to chain our SIGinterrupt
  4732   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4733   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4735   if (libjsig_is_loaded && !libjsigdone) {
  4736     // Tell libjsig jvm finishes setting signal handlers
  4737     (*end_signal_setting)();
  4740   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4741   // and if UserSignalHandler is installed all bets are off.
  4742   // Log that signal checking is off only if -verbose:jni is specified.
  4743   if (CheckJNICalls) {
  4744     if (libjsig_is_loaded) {
  4745       if (PrintJNIResolving) {
  4746         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4748       check_signals = false;
  4750     if (AllowUserSignalHandlers) {
  4751       if (PrintJNIResolving) {
  4752         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4754       check_signals = false;
  4760 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4762 const char * signames[] = {
  4763   "SIG0",
  4764   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4765   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4766   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4767   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4768   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4769   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4770   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4771   "SIGCANCEL", "SIGLOST"
  4772 };
  4774 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4775   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4776     // signal
  4777     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4778        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4779     } else {
  4780        jio_snprintf(buf, size, "SIG%d", exception_code);
  4782     return buf;
  4783   } else {
  4784     return NULL;
  4788 // (Static) wrappers for the new libthread API
  4789 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4790 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4791 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4792 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4793 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4795 // (Static) wrapper for getisax(2) call.
  4796 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4798 // (Static) wrappers for the liblgrp API
  4799 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4800 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4801 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4802 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4803 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4804 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4805 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4806 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4807 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4809 // (Static) wrapper for meminfo() call.
  4810 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4812 static address resolve_symbol_lazy(const char* name) {
  4813   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4814   if(addr == NULL) {
  4815     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4816     addr = (address) dlsym(RTLD_NEXT, name);
  4818   return addr;
  4821 static address resolve_symbol(const char* name) {
  4822   address addr = resolve_symbol_lazy(name);
  4823   if(addr == NULL) {
  4824     fatal(dlerror());
  4826   return addr;
  4831 // isT2_libthread()
  4832 //
  4833 // Routine to determine if we are currently using the new T2 libthread.
  4834 //
  4835 // We determine if we are using T2 by reading /proc/self/lstatus and
  4836 // looking for a thread with the ASLWP bit set.  If we find this status
  4837 // bit set, we must assume that we are NOT using T2.  The T2 team
  4838 // has approved this algorithm.
  4839 //
  4840 // We need to determine if we are running with the new T2 libthread
  4841 // since setting native thread priorities is handled differently
  4842 // when using this library.  All threads created using T2 are bound
  4843 // threads. Calling thr_setprio is meaningless in this case.
  4844 //
  4845 bool isT2_libthread() {
  4846   static prheader_t * lwpArray = NULL;
  4847   static int lwpSize = 0;
  4848   static int lwpFile = -1;
  4849   lwpstatus_t * that;
  4850   char lwpName [128];
  4851   bool isT2 = false;
  4853 #define ADR(x)  ((uintptr_t)(x))
  4854 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4856   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4857   if (lwpFile < 0) {
  4858       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4859       return false;
  4861   lwpSize = 16*1024;
  4862   for (;;) {
  4863     ::lseek64 (lwpFile, 0, SEEK_SET);
  4864     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
  4865     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4866       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4867       break;
  4869     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4870        // We got a good snapshot - now iterate over the list.
  4871       int aslwpcount = 0;
  4872       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4873         that = LWPINDEX(lwpArray,i);
  4874         if (that->pr_flags & PR_ASLWP) {
  4875           aslwpcount++;
  4878       if (aslwpcount == 0) isT2 = true;
  4879       break;
  4881     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4882     FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
  4885   FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
  4886   ::close (lwpFile);
  4887   if (ThreadPriorityVerbose) {
  4888     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4889     else tty->print_cr("We are not running with a T2 libthread\n");
  4891   return isT2;
  4895 void os::Solaris::libthread_init() {
  4896   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4898   // Determine if we are running with the new T2 libthread
  4899   os::Solaris::set_T2_libthread(isT2_libthread());
  4901   lwp_priocntl_init();
  4903   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4904   if(func == NULL) {
  4905     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4906     // Guarantee that this VM is running on an new enough OS (5.6 or
  4907     // later) that it will have a new enough libthread.so.
  4908     guarantee(func != NULL, "libthread.so is too old.");
  4911   // Initialize the new libthread getstate API wrappers
  4912   func = resolve_symbol("thr_getstate");
  4913   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4915   func = resolve_symbol("thr_setstate");
  4916   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4918   func = resolve_symbol("thr_setmutator");
  4919   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4921   func = resolve_symbol("thr_suspend_mutator");
  4922   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4924   func = resolve_symbol("thr_continue_mutator");
  4925   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4927   int size;
  4928   void (*handler_info_func)(address *, int *);
  4929   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4930   handler_info_func(&handler_start, &size);
  4931   handler_end = handler_start + size;
  4935 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4936 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4937 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4938 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4939 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4940 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4942 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4943 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4944 int_fnP_cond_tP os::Solaris::_cond_signal;
  4945 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4946 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4947 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4948 int os::Solaris::_cond_scope = USYNC_THREAD;
  4950 void os::Solaris::synchronization_init() {
  4951   if(UseLWPSynchronization) {
  4952     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4953     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4954     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4955     os::Solaris::set_mutex_init(lwp_mutex_init);
  4956     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4957     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4959     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4960     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4961     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4962     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4963     os::Solaris::set_cond_init(lwp_cond_init);
  4964     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4965     os::Solaris::set_cond_scope(USYNC_THREAD);
  4967   else {
  4968     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4969     os::Solaris::set_cond_scope(USYNC_THREAD);
  4971     if(UsePthreads) {
  4972       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4973       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4974       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  4975       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  4976       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  4978       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  4979       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  4980       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  4981       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  4982       os::Solaris::set_cond_init(pthread_cond_default_init);
  4983       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  4985     else {
  4986       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  4987       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  4988       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  4989       os::Solaris::set_mutex_init(::mutex_init);
  4990       os::Solaris::set_mutex_destroy(::mutex_destroy);
  4992       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  4993       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  4994       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  4995       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  4996       os::Solaris::set_cond_init(::cond_init);
  4997       os::Solaris::set_cond_destroy(::cond_destroy);
  5002 bool os::Solaris::liblgrp_init() {
  5003   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  5004   if (handle != NULL) {
  5005     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  5006     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  5007     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  5008     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  5009     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  5010     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  5011     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  5012     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  5013                                        dlsym(handle, "lgrp_cookie_stale")));
  5015     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  5016     set_lgrp_cookie(c);
  5017     return true;
  5019   return false;
  5022 void os::Solaris::misc_sym_init() {
  5023   address func;
  5025   // getisax
  5026   func = resolve_symbol_lazy("getisax");
  5027   if (func != NULL) {
  5028     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  5031   // meminfo
  5032   func = resolve_symbol_lazy("meminfo");
  5033   if (func != NULL) {
  5034     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  5038 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  5039   assert(_getisax != NULL, "_getisax not set");
  5040   return _getisax(array, n);
  5043 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  5044 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  5045 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  5047 void init_pset_getloadavg_ptr(void) {
  5048   pset_getloadavg_ptr =
  5049     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  5050   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  5051     warning("pset_getloadavg function not found");
  5055 int os::Solaris::_dev_zero_fd = -1;
  5057 // this is called _before_ the global arguments have been parsed
  5058 void os::init(void) {
  5059   _initial_pid = getpid();
  5061   max_hrtime = first_hrtime = gethrtime();
  5063   init_random(1234567);
  5065   page_size = sysconf(_SC_PAGESIZE);
  5066   if (page_size == -1)
  5067     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  5068                   strerror(errno)));
  5069   init_page_sizes((size_t) page_size);
  5071   Solaris::initialize_system_info();
  5073   // Initialize misc. symbols as soon as possible, so we can use them
  5074   // if we need them.
  5075   Solaris::misc_sym_init();
  5077   int fd = ::open("/dev/zero", O_RDWR);
  5078   if (fd < 0) {
  5079     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  5080   } else {
  5081     Solaris::set_dev_zero_fd(fd);
  5083     // Close on exec, child won't inherit.
  5084     fcntl(fd, F_SETFD, FD_CLOEXEC);
  5087   clock_tics_per_sec = CLK_TCK;
  5089   // check if dladdr1() exists; dladdr1 can provide more information than
  5090   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  5091   // and is available on linker patches for 5.7 and 5.8.
  5092   // libdl.so must have been loaded, this call is just an entry lookup
  5093   void * hdl = dlopen("libdl.so", RTLD_NOW);
  5094   if (hdl)
  5095     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  5097   // (Solaris only) this switches to calls that actually do locking.
  5098   ThreadCritical::initialize();
  5100   main_thread = thr_self();
  5102   // Constant minimum stack size allowed. It must be at least
  5103   // the minimum of what the OS supports (thr_min_stack()), and
  5104   // enough to allow the thread to get to user bytecode execution.
  5105   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  5106   // If the pagesize of the VM is greater than 8K determine the appropriate
  5107   // number of initial guard pages.  The user can change this with the
  5108   // command line arguments, if needed.
  5109   if (vm_page_size() > 8*K) {
  5110     StackYellowPages = 1;
  5111     StackRedPages = 1;
  5112     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  5116 // To install functions for atexit system call
  5117 extern "C" {
  5118   static void perfMemory_exit_helper() {
  5119     perfMemory_exit();
  5123 // this is called _after_ the global arguments have been parsed
  5124 jint os::init_2(void) {
  5125   // try to enable extended file IO ASAP, see 6431278
  5126   os::Solaris::try_enable_extended_io();
  5128   // Allocate a single page and mark it as readable for safepoint polling.  Also
  5129   // use this first mmap call to check support for MAP_ALIGN.
  5130   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  5131                                                       page_size,
  5132                                                       MAP_PRIVATE | MAP_ALIGN,
  5133                                                       PROT_READ);
  5134   if (polling_page == NULL) {
  5135     has_map_align = false;
  5136     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  5137                                                 PROT_READ);
  5140   os::set_polling_page(polling_page);
  5142 #ifndef PRODUCT
  5143   if( Verbose && PrintMiscellaneous )
  5144     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5145 #endif
  5147   if (!UseMembar) {
  5148     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  5149     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  5150     os::set_memory_serialize_page( mem_serialize_page );
  5152 #ifndef PRODUCT
  5153     if(Verbose && PrintMiscellaneous)
  5154       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5155 #endif
  5158   os::large_page_init();
  5160   // Check minimum allowable stack size for thread creation and to initialize
  5161   // the java system classes, including StackOverflowError - depends on page
  5162   // size.  Add a page for compiler2 recursion in main thread.
  5163   // Add in 2*BytesPerWord times page size to account for VM stack during
  5164   // class initialization depending on 32 or 64 bit VM.
  5165   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  5166             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  5167                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  5169   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5170   if (threadStackSizeInBytes != 0 &&
  5171     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5172     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5173                   os::Solaris::min_stack_allowed/K);
  5174     return JNI_ERR;
  5177   // For 64kbps there will be a 64kb page size, which makes
  5178   // the usable default stack size quite a bit less.  Increase the
  5179   // stack for 64kb (or any > than 8kb) pages, this increases
  5180   // virtual memory fragmentation (since we're not creating the
  5181   // stack on a power of 2 boundary.  The real fix for this
  5182   // should be to fix the guard page mechanism.
  5184   if (vm_page_size() > 8*K) {
  5185       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5186          ? threadStackSizeInBytes +
  5187            ((StackYellowPages + StackRedPages) * vm_page_size())
  5188          : 0;
  5189       ThreadStackSize = threadStackSizeInBytes/K;
  5192   // Make the stack size a multiple of the page size so that
  5193   // the yellow/red zones can be guarded.
  5194   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5195         vm_page_size()));
  5197   Solaris::libthread_init();
  5199   if (UseNUMA) {
  5200     if (!Solaris::liblgrp_init()) {
  5201       UseNUMA = false;
  5202     } else {
  5203       size_t lgrp_limit = os::numa_get_groups_num();
  5204       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
  5205       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5206       FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
  5207       if (lgrp_num < 2) {
  5208         // There's only one locality group, disable NUMA.
  5209         UseNUMA = false;
  5212     if (!UseNUMA && ForceNUMA) {
  5213       UseNUMA = true;
  5217   Solaris::signal_sets_init();
  5218   Solaris::init_signal_mem();
  5219   Solaris::install_signal_handlers();
  5221   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5222     Maxlibjsigsigs = OLDMAXSIGNUM;
  5225   // initialize synchronization primitives to use either thread or
  5226   // lwp synchronization (controlled by UseLWPSynchronization)
  5227   Solaris::synchronization_init();
  5229   if (MaxFDLimit) {
  5230     // set the number of file descriptors to max. print out error
  5231     // if getrlimit/setrlimit fails but continue regardless.
  5232     struct rlimit nbr_files;
  5233     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5234     if (status != 0) {
  5235       if (PrintMiscellaneous && (Verbose || WizardMode))
  5236         perror("os::init_2 getrlimit failed");
  5237     } else {
  5238       nbr_files.rlim_cur = nbr_files.rlim_max;
  5239       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5240       if (status != 0) {
  5241         if (PrintMiscellaneous && (Verbose || WizardMode))
  5242           perror("os::init_2 setrlimit failed");
  5247   // Calculate theoretical max. size of Threads to guard gainst
  5248   // artifical out-of-memory situations, where all available address-
  5249   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5250   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5251     JavaThread::stack_size_at_create() : (1*K*K);
  5252   assert(pre_thread_stack_size != 0, "Must have a stack");
  5253   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5254   // we should start doing Virtual Memory banging. Currently when the threads will
  5255   // have used all but 200Mb of space.
  5256   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5257   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5259   // at-exit methods are called in the reverse order of their registration.
  5260   // In Solaris 7 and earlier, atexit functions are called on return from
  5261   // main or as a result of a call to exit(3C). There can be only 32 of
  5262   // these functions registered and atexit() does not set errno. In Solaris
  5263   // 8 and later, there is no limit to the number of functions registered
  5264   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5265   // functions are called upon dlclose(3DL) in addition to return from main
  5266   // and exit(3C).
  5268   if (PerfAllowAtExitRegistration) {
  5269     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5270     // atexit functions can be delayed until process exit time, which
  5271     // can be problematic for embedded VM situations. Embedded VMs should
  5272     // call DestroyJavaVM() to assure that VM resources are released.
  5274     // note: perfMemory_exit_helper atexit function may be removed in
  5275     // the future if the appropriate cleanup code can be added to the
  5276     // VM_Exit VMOperation's doit method.
  5277     if (atexit(perfMemory_exit_helper) != 0) {
  5278       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5282   // Init pset_loadavg function pointer
  5283   init_pset_getloadavg_ptr();
  5285   return JNI_OK;
  5288 void os::init_3(void) {
  5289   return;
  5292 // Mark the polling page as unreadable
  5293 void os::make_polling_page_unreadable(void) {
  5294   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5295     fatal("Could not disable polling page");
  5296 };
  5298 // Mark the polling page as readable
  5299 void os::make_polling_page_readable(void) {
  5300   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5301     fatal("Could not enable polling page");
  5302 };
  5304 // OS interface.
  5306 bool os::check_heap(bool force) { return true; }
  5308 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5309 static vsnprintf_t sol_vsnprintf = NULL;
  5311 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5312   if (!sol_vsnprintf) {
  5313     //search  for the named symbol in the objects that were loaded after libjvm
  5314     void* where = RTLD_NEXT;
  5315     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5316         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5317     if (!sol_vsnprintf){
  5318       //search  for the named symbol in the objects that were loaded before libjvm
  5319       where = RTLD_DEFAULT;
  5320       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5321         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5322       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5325   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5329 // Is a (classpath) directory empty?
  5330 bool os::dir_is_empty(const char* path) {
  5331   DIR *dir = NULL;
  5332   struct dirent *ptr;
  5334   dir = opendir(path);
  5335   if (dir == NULL) return true;
  5337   /* Scan the directory */
  5338   bool result = true;
  5339   char buf[sizeof(struct dirent) + MAX_PATH];
  5340   struct dirent *dbuf = (struct dirent *) buf;
  5341   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5342     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5343       result = false;
  5346   closedir(dir);
  5347   return result;
  5350 // This code originates from JDK's sysOpen and open64_w
  5351 // from src/solaris/hpi/src/system_md.c
  5353 #ifndef O_DELETE
  5354 #define O_DELETE 0x10000
  5355 #endif
  5357 // Open a file. Unlink the file immediately after open returns
  5358 // if the specified oflag has the O_DELETE flag set.
  5359 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5361 int os::open(const char *path, int oflag, int mode) {
  5362   if (strlen(path) > MAX_PATH - 1) {
  5363     errno = ENAMETOOLONG;
  5364     return -1;
  5366   int fd;
  5367   int o_delete = (oflag & O_DELETE);
  5368   oflag = oflag & ~O_DELETE;
  5370   fd = ::open64(path, oflag, mode);
  5371   if (fd == -1) return -1;
  5373   //If the open succeeded, the file might still be a directory
  5375     struct stat64 buf64;
  5376     int ret = ::fstat64(fd, &buf64);
  5377     int st_mode = buf64.st_mode;
  5379     if (ret != -1) {
  5380       if ((st_mode & S_IFMT) == S_IFDIR) {
  5381         errno = EISDIR;
  5382         ::close(fd);
  5383         return -1;
  5385     } else {
  5386       ::close(fd);
  5387       return -1;
  5390     /*
  5391      * 32-bit Solaris systems suffer from:
  5393      * - an historical default soft limit of 256 per-process file
  5394      *   descriptors that is too low for many Java programs.
  5396      * - a design flaw where file descriptors created using stdio
  5397      *   fopen must be less than 256, _even_ when the first limit above
  5398      *   has been raised.  This can cause calls to fopen (but not calls to
  5399      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5400      *   native code (although the JDK itself uses fopen).  One can hardly
  5401      *   criticize them for using this most standard of all functions.
  5403      * We attempt to make everything work anyways by:
  5405      * - raising the soft limit on per-process file descriptors beyond
  5406      *   256
  5408      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5409      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5410      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5412      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5413      *   workaround the bug by remapping non-stdio file descriptors below
  5414      *   256 to ones beyond 256, which is done below.
  5416      * See:
  5417      * 1085341: 32-bit stdio routines should support file descriptors >255
  5418      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5419      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5420      *          enable_extended_FILE_stdio() in VM initialisation
  5421      * Giri Mandalika's blog
  5422      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5423      */
  5424 #ifndef  _LP64
  5425      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5426          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5427          if (newfd != -1) {
  5428              ::close(fd);
  5429              fd = newfd;
  5432 #endif // 32-bit Solaris
  5433     /*
  5434      * All file descriptors that are opened in the JVM and not
  5435      * specifically destined for a subprocess should have the
  5436      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5437      * party native code might fork and exec without closing all
  5438      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5439      * UNIXProcess.c), and this in turn might:
  5441      * - cause end-of-file to fail to be detected on some file
  5442      *   descriptors, resulting in mysterious hangs, or
  5444      * - might cause an fopen in the subprocess to fail on a system
  5445      *   suffering from bug 1085341.
  5447      * (Yes, the default setting of the close-on-exec flag is a Unix
  5448      * design flaw)
  5450      * See:
  5451      * 1085341: 32-bit stdio routines should support file descriptors >255
  5452      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5453      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5454      */
  5455 #ifdef FD_CLOEXEC
  5457         int flags = ::fcntl(fd, F_GETFD);
  5458         if (flags != -1)
  5459             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5461 #endif
  5463   if (o_delete != 0) {
  5464     ::unlink(path);
  5466   return fd;
  5469 // create binary file, rewriting existing file if required
  5470 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5471   int oflags = O_WRONLY | O_CREAT;
  5472   if (!rewrite_existing) {
  5473     oflags |= O_EXCL;
  5475   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5478 // return current position of file pointer
  5479 jlong os::current_file_offset(int fd) {
  5480   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5483 // move file pointer to the specified offset
  5484 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5485   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5488 jlong os::lseek(int fd, jlong offset, int whence) {
  5489   return (jlong) ::lseek64(fd, offset, whence);
  5492 char * os::native_path(char *path) {
  5493   return path;
  5496 int os::ftruncate(int fd, jlong length) {
  5497   return ::ftruncate64(fd, length);
  5500 int os::fsync(int fd)  {
  5501   RESTARTABLE_RETURN_INT(::fsync(fd));
  5504 int os::available(int fd, jlong *bytes) {
  5505   jlong cur, end;
  5506   int mode;
  5507   struct stat64 buf64;
  5509   if (::fstat64(fd, &buf64) >= 0) {
  5510     mode = buf64.st_mode;
  5511     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5512       /*
  5513       * XXX: is the following call interruptible? If so, this might
  5514       * need to go through the INTERRUPT_IO() wrapper as for other
  5515       * blocking, interruptible calls in this file.
  5516       */
  5517       int n,ioctl_return;
  5519       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5520       if (ioctl_return>= 0) {
  5521           *bytes = n;
  5522         return 1;
  5526   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5527     return 0;
  5528   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5529     return 0;
  5530   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5531     return 0;
  5533   *bytes = end - cur;
  5534   return 1;
  5537 // Map a block of memory.
  5538 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5539                      char *addr, size_t bytes, bool read_only,
  5540                      bool allow_exec) {
  5541   int prot;
  5542   int flags;
  5544   if (read_only) {
  5545     prot = PROT_READ;
  5546     flags = MAP_SHARED;
  5547   } else {
  5548     prot = PROT_READ | PROT_WRITE;
  5549     flags = MAP_PRIVATE;
  5552   if (allow_exec) {
  5553     prot |= PROT_EXEC;
  5556   if (addr != NULL) {
  5557     flags |= MAP_FIXED;
  5560   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5561                                      fd, file_offset);
  5562   if (mapped_address == MAP_FAILED) {
  5563     return NULL;
  5565   return mapped_address;
  5569 // Remap a block of memory.
  5570 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5571                        char *addr, size_t bytes, bool read_only,
  5572                        bool allow_exec) {
  5573   // same as map_memory() on this OS
  5574   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5575                         allow_exec);
  5579 // Unmap a block of memory.
  5580 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5581   return munmap(addr, bytes) == 0;
  5584 void os::pause() {
  5585   char filename[MAX_PATH];
  5586   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5587     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5588   } else {
  5589     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5592   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5593   if (fd != -1) {
  5594     struct stat buf;
  5595     ::close(fd);
  5596     while (::stat(filename, &buf) == 0) {
  5597       (void)::poll(NULL, 0, 100);
  5599   } else {
  5600     jio_fprintf(stderr,
  5601       "Could not open pause file '%s', continuing immediately.\n", filename);
  5605 #ifndef PRODUCT
  5606 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5607 // Turn this on if you need to trace synch operations.
  5608 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5609 // and call record_synch_enable and record_synch_disable
  5610 // around the computation of interest.
  5612 void record_synch(char* name, bool returning);  // defined below
  5614 class RecordSynch {
  5615   char* _name;
  5616  public:
  5617   RecordSynch(char* name) :_name(name)
  5618                  { record_synch(_name, false); }
  5619   ~RecordSynch() { record_synch(_name,   true);  }
  5620 };
  5622 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5623 extern "C" ret name params {                                    \
  5624   typedef ret name##_t params;                                  \
  5625   static name##_t* implem = NULL;                               \
  5626   static int callcount = 0;                                     \
  5627   if (implem == NULL) {                                         \
  5628     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5629     if (implem == NULL)  fatal(dlerror());                      \
  5630   }                                                             \
  5631   ++callcount;                                                  \
  5632   RecordSynch _rs(#name);                                       \
  5633   inner;                                                        \
  5634   return implem args;                                           \
  5636 // in dbx, examine callcounts this way:
  5637 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5639 #define CHECK_POINTER_OK(p) \
  5640   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
  5641 #define CHECK_MU \
  5642   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5643 #define CHECK_CV \
  5644   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5645 #define CHECK_P(p) \
  5646   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5648 #define CHECK_MUTEX(mutex_op) \
  5649 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5651 CHECK_MUTEX(   mutex_lock)
  5652 CHECK_MUTEX(  _mutex_lock)
  5653 CHECK_MUTEX( mutex_unlock)
  5654 CHECK_MUTEX(_mutex_unlock)
  5655 CHECK_MUTEX( mutex_trylock)
  5656 CHECK_MUTEX(_mutex_trylock)
  5658 #define CHECK_COND(cond_op) \
  5659 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5661 CHECK_COND( cond_wait);
  5662 CHECK_COND(_cond_wait);
  5663 CHECK_COND(_cond_wait_cancel);
  5665 #define CHECK_COND2(cond_op) \
  5666 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5668 CHECK_COND2( cond_timedwait);
  5669 CHECK_COND2(_cond_timedwait);
  5670 CHECK_COND2(_cond_timedwait_cancel);
  5672 // do the _lwp_* versions too
  5673 #define mutex_t lwp_mutex_t
  5674 #define cond_t  lwp_cond_t
  5675 CHECK_MUTEX(  _lwp_mutex_lock)
  5676 CHECK_MUTEX(  _lwp_mutex_unlock)
  5677 CHECK_MUTEX(  _lwp_mutex_trylock)
  5678 CHECK_MUTEX( __lwp_mutex_lock)
  5679 CHECK_MUTEX( __lwp_mutex_unlock)
  5680 CHECK_MUTEX( __lwp_mutex_trylock)
  5681 CHECK_MUTEX(___lwp_mutex_lock)
  5682 CHECK_MUTEX(___lwp_mutex_unlock)
  5684 CHECK_COND(  _lwp_cond_wait);
  5685 CHECK_COND( __lwp_cond_wait);
  5686 CHECK_COND(___lwp_cond_wait);
  5688 CHECK_COND2(  _lwp_cond_timedwait);
  5689 CHECK_COND2( __lwp_cond_timedwait);
  5690 #undef mutex_t
  5691 #undef cond_t
  5693 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5694 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5695 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5696 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5697 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5698 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5699 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5700 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5703 // recording machinery:
  5705 enum { RECORD_SYNCH_LIMIT = 200 };
  5706 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5707 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5708 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5709 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5710 int record_synch_count = 0;
  5711 bool record_synch_enabled = false;
  5713 // in dbx, examine recorded data this way:
  5714 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5716 void record_synch(char* name, bool returning) {
  5717   if (record_synch_enabled) {
  5718     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5719       record_synch_name[record_synch_count] = name;
  5720       record_synch_returning[record_synch_count] = returning;
  5721       record_synch_thread[record_synch_count] = thr_self();
  5722       record_synch_arg0ptr[record_synch_count] = &name;
  5723       record_synch_count++;
  5725     // put more checking code here:
  5726     // ...
  5730 void record_synch_enable() {
  5731   // start collecting trace data, if not already doing so
  5732   if (!record_synch_enabled)  record_synch_count = 0;
  5733   record_synch_enabled = true;
  5736 void record_synch_disable() {
  5737   // stop collecting trace data
  5738   record_synch_enabled = false;
  5741 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5742 #endif // PRODUCT
  5744 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5745 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5746                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5749 // JVMTI & JVM monitoring and management support
  5750 // The thread_cpu_time() and current_thread_cpu_time() are only
  5751 // supported if is_thread_cpu_time_supported() returns true.
  5752 // They are not supported on Solaris T1.
  5754 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5755 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5756 // of a thread.
  5757 //
  5758 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5759 // returns the fast estimate available on the platform.
  5761 // hrtime_t gethrvtime() return value includes
  5762 // user time but does not include system time
  5763 jlong os::current_thread_cpu_time() {
  5764   return (jlong) gethrvtime();
  5767 jlong os::thread_cpu_time(Thread *thread) {
  5768   // return user level CPU time only to be consistent with
  5769   // what current_thread_cpu_time returns.
  5770   // thread_cpu_time_info() must be changed if this changes
  5771   return os::thread_cpu_time(thread, false /* user time only */);
  5774 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5775   if (user_sys_cpu_time) {
  5776     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5777   } else {
  5778     return os::current_thread_cpu_time();
  5782 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5783   char proc_name[64];
  5784   int count;
  5785   prusage_t prusage;
  5786   jlong lwp_time;
  5787   int fd;
  5789   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5790                      getpid(),
  5791                      thread->osthread()->lwp_id());
  5792   fd = ::open(proc_name, O_RDONLY);
  5793   if ( fd == -1 ) return -1;
  5795   do {
  5796     count = ::pread(fd,
  5797                   (void *)&prusage.pr_utime,
  5798                   thr_time_size,
  5799                   thr_time_off);
  5800   } while (count < 0 && errno == EINTR);
  5801   ::close(fd);
  5802   if ( count < 0 ) return -1;
  5804   if (user_sys_cpu_time) {
  5805     // user + system CPU time
  5806     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5807                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5808                  (jlong)prusage.pr_stime.tv_nsec +
  5809                  (jlong)prusage.pr_utime.tv_nsec;
  5810   } else {
  5811     // user level CPU time only
  5812     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5813                 (jlong)prusage.pr_utime.tv_nsec;
  5816   return(lwp_time);
  5819 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5820   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5821   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5822   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5823   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5826 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5827   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5828   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5829   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5830   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5833 bool os::is_thread_cpu_time_supported() {
  5834   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5835     return true;
  5836   } else {
  5837     return false;
  5841 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5842 // Return the load average for our processor set if the primitive exists
  5843 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5844 int os::loadavg(double loadavg[], int nelem) {
  5845   if (pset_getloadavg_ptr != NULL) {
  5846     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5847   } else {
  5848     return ::getloadavg(loadavg, nelem);
  5852 //---------------------------------------------------------------------------------
  5854 bool os::find(address addr, outputStream* st) {
  5855   Dl_info dlinfo;
  5856   memset(&dlinfo, 0, sizeof(dlinfo));
  5857   if (dladdr(addr, &dlinfo)) {
  5858 #ifdef _LP64
  5859     st->print("0x%016lx: ", addr);
  5860 #else
  5861     st->print("0x%08x: ", addr);
  5862 #endif
  5863     if (dlinfo.dli_sname != NULL)
  5864       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5865     else if (dlinfo.dli_fname)
  5866       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5867     else
  5868       st->print("<absolute address>");
  5869     if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
  5870 #ifdef _LP64
  5871     if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
  5872 #else
  5873     if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
  5874 #endif
  5875     st->cr();
  5877     if (Verbose) {
  5878       // decode some bytes around the PC
  5879       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5880       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5881       address       lowest = (address) dlinfo.dli_sname;
  5882       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5883       if (begin < lowest)  begin = lowest;
  5884       Dl_info dlinfo2;
  5885       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5886           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5887         end = (address) dlinfo2.dli_saddr;
  5888       Disassembler::decode(begin, end, st);
  5890     return true;
  5892   return false;
  5895 // Following function has been added to support HotSparc's libjvm.so running
  5896 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5897 // src/solaris/hpi/native_threads in the EVM codebase.
  5898 //
  5899 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5900 // libraries and should thus be removed. We will leave it behind for a while
  5901 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5902 // JDK. See 4341971.
  5904 #define STACK_SLACK 0x800
  5906 extern "C" {
  5907   intptr_t sysThreadAvailableStackWithSlack() {
  5908     stack_t st;
  5909     intptr_t retval, stack_top;
  5910     retval = thr_stksegment(&st);
  5911     assert(retval == 0, "incorrect return value from thr_stksegment");
  5912     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5913     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5914     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5915     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5919 // ObjectMonitor park-unpark infrastructure ...
  5920 //
  5921 // We implement Solaris and Linux PlatformEvents with the
  5922 // obvious condvar-mutex-flag triple.
  5923 // Another alternative that works quite well is pipes:
  5924 // Each PlatformEvent consists of a pipe-pair.
  5925 // The thread associated with the PlatformEvent
  5926 // calls park(), which reads from the input end of the pipe.
  5927 // Unpark() writes into the other end of the pipe.
  5928 // The write-side of the pipe must be set NDELAY.
  5929 // Unfortunately pipes consume a large # of handles.
  5930 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5931 // Using pipes for the 1st few threads might be workable, however.
  5932 //
  5933 // park() is permitted to return spuriously.
  5934 // Callers of park() should wrap the call to park() in
  5935 // an appropriate loop.  A litmus test for the correct
  5936 // usage of park is the following: if park() were modified
  5937 // to immediately return 0 your code should still work,
  5938 // albeit degenerating to a spin loop.
  5939 //
  5940 // An interesting optimization for park() is to use a trylock()
  5941 // to attempt to acquire the mutex.  If the trylock() fails
  5942 // then we know that a concurrent unpark() operation is in-progress.
  5943 // in that case the park() code could simply set _count to 0
  5944 // and return immediately.  The subsequent park() operation *might*
  5945 // return immediately.  That's harmless as the caller of park() is
  5946 // expected to loop.  By using trylock() we will have avoided a
  5947 // avoided a context switch caused by contention on the per-thread mutex.
  5948 //
  5949 // TODO-FIXME:
  5950 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5951 //     objectmonitor implementation.
  5952 // 2.  Collapse the JSR166 parker event, and the
  5953 //     objectmonitor ParkEvent into a single "Event" construct.
  5954 // 3.  In park() and unpark() add:
  5955 //     assert (Thread::current() == AssociatedWith).
  5956 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5957 //     1-out-of-N park() operations will return immediately.
  5958 //
  5959 // _Event transitions in park()
  5960 //   -1 => -1 : illegal
  5961 //    1 =>  0 : pass - return immediately
  5962 //    0 => -1 : block
  5963 //
  5964 // _Event serves as a restricted-range semaphore.
  5965 //
  5966 // Another possible encoding of _Event would be with
  5967 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5968 //
  5969 // TODO-FIXME: add DTRACE probes for:
  5970 // 1.   Tx parks
  5971 // 2.   Ty unparks Tx
  5972 // 3.   Tx resumes from park
  5975 // value determined through experimentation
  5976 #define ROUNDINGFIX 11
  5978 // utility to compute the abstime argument to timedwait.
  5979 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  5981 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  5982   // millis is the relative timeout time
  5983   // abstime will be the absolute timeout time
  5984   if (millis < 0)  millis = 0;
  5985   struct timeval now;
  5986   int status = gettimeofday(&now, NULL);
  5987   assert(status == 0, "gettimeofday");
  5988   jlong seconds = millis / 1000;
  5989   jlong max_wait_period;
  5991   if (UseLWPSynchronization) {
  5992     // forward port of fix for 4275818 (not sleeping long enough)
  5993     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  5994     // _lwp_cond_timedwait() used a round_down algorithm rather
  5995     // than a round_up. For millis less than our roundfactor
  5996     // it rounded down to 0 which doesn't meet the spec.
  5997     // For millis > roundfactor we may return a bit sooner, but
  5998     // since we can not accurately identify the patch level and
  5999     // this has already been fixed in Solaris 9 and 8 we will
  6000     // leave it alone rather than always rounding down.
  6002     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  6003        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  6004            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  6005            max_wait_period = 21000000;
  6006   } else {
  6007     max_wait_period = 50000000;
  6009   millis %= 1000;
  6010   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  6011      seconds = max_wait_period;
  6013   abstime->tv_sec = now.tv_sec  + seconds;
  6014   long       usec = now.tv_usec + millis * 1000;
  6015   if (usec >= 1000000) {
  6016     abstime->tv_sec += 1;
  6017     usec -= 1000000;
  6019   abstime->tv_nsec = usec * 1000;
  6020   return abstime;
  6023 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  6024 // Conceptually TryPark() should be equivalent to park(0).
  6026 int os::PlatformEvent::TryPark() {
  6027   for (;;) {
  6028     const int v = _Event ;
  6029     guarantee ((v == 0) || (v == 1), "invariant") ;
  6030     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  6034 void os::PlatformEvent::park() {           // AKA: down()
  6035   // Invariant: Only the thread associated with the Event/PlatformEvent
  6036   // may call park().
  6037   int v ;
  6038   for (;;) {
  6039       v = _Event ;
  6040       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6042   guarantee (v >= 0, "invariant") ;
  6043   if (v == 0) {
  6044      // Do this the hard way by blocking ...
  6045      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6046      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6047      // Only for SPARC >= V8PlusA
  6048 #if defined(__sparc) && defined(COMPILER2)
  6049      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6050 #endif
  6051      int status = os::Solaris::mutex_lock(_mutex);
  6052      assert_status(status == 0, status,  "mutex_lock");
  6053      guarantee (_nParked == 0, "invariant") ;
  6054      ++ _nParked ;
  6055      while (_Event < 0) {
  6056         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  6057         // Treat this the same as if the wait was interrupted
  6058         // With usr/lib/lwp going to kernel, always handle ETIME
  6059         status = os::Solaris::cond_wait(_cond, _mutex);
  6060         if (status == ETIME) status = EINTR ;
  6061         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  6063      -- _nParked ;
  6064      _Event = 0 ;
  6065      status = os::Solaris::mutex_unlock(_mutex);
  6066      assert_status(status == 0, status, "mutex_unlock");
  6067     // Paranoia to ensure our locked and lock-free paths interact
  6068     // correctly with each other.
  6069     OrderAccess::fence();
  6073 int os::PlatformEvent::park(jlong millis) {
  6074   guarantee (_nParked == 0, "invariant") ;
  6075   int v ;
  6076   for (;;) {
  6077       v = _Event ;
  6078       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6080   guarantee (v >= 0, "invariant") ;
  6081   if (v != 0) return OS_OK ;
  6083   int ret = OS_TIMEOUT;
  6084   timestruc_t abst;
  6085   compute_abstime (&abst, millis);
  6087   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6088   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  6089   // Only for SPARC >= V8PlusA
  6090 #if defined(__sparc) && defined(COMPILER2)
  6091  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6092 #endif
  6093   int status = os::Solaris::mutex_lock(_mutex);
  6094   assert_status(status == 0, status, "mutex_lock");
  6095   guarantee (_nParked == 0, "invariant") ;
  6096   ++ _nParked ;
  6097   while (_Event < 0) {
  6098      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  6099      assert_status(status == 0 || status == EINTR ||
  6100                    status == ETIME || status == ETIMEDOUT,
  6101                    status, "cond_timedwait");
  6102      if (!FilterSpuriousWakeups) break ;                // previous semantics
  6103      if (status == ETIME || status == ETIMEDOUT) break ;
  6104      // We consume and ignore EINTR and spurious wakeups.
  6106   -- _nParked ;
  6107   if (_Event >= 0) ret = OS_OK ;
  6108   _Event = 0 ;
  6109   status = os::Solaris::mutex_unlock(_mutex);
  6110   assert_status(status == 0, status, "mutex_unlock");
  6111   // Paranoia to ensure our locked and lock-free paths interact
  6112   // correctly with each other.
  6113   OrderAccess::fence();
  6114   return ret;
  6117 void os::PlatformEvent::unpark() {
  6118   // Transitions for _Event:
  6119   //    0 :=> 1
  6120   //    1 :=> 1
  6121   //   -1 :=> either 0 or 1; must signal target thread
  6122   //          That is, we can safely transition _Event from -1 to either
  6123   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6124   //          unpark() calls.
  6125   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6126   //
  6127   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6128   // that it will take two back-to-back park() calls for the owning
  6129   // thread to block. This has the benefit of forcing a spurious return
  6130   // from the first park() call after an unpark() call which will help
  6131   // shake out uses of park() and unpark() without condition variables.
  6133   if (Atomic::xchg(1, &_Event) >= 0) return;
  6135   // If the thread associated with the event was parked, wake it.
  6136   // Wait for the thread assoc with the PlatformEvent to vacate.
  6137   int status = os::Solaris::mutex_lock(_mutex);
  6138   assert_status(status == 0, status, "mutex_lock");
  6139   int AnyWaiters = _nParked;
  6140   status = os::Solaris::mutex_unlock(_mutex);
  6141   assert_status(status == 0, status, "mutex_unlock");
  6142   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6143   if (AnyWaiters != 0) {
  6144     // We intentional signal *after* dropping the lock
  6145     // to avoid a common class of futile wakeups.
  6146     status = os::Solaris::cond_signal(_cond);
  6147     assert_status(status == 0, status, "cond_signal");
  6151 // JSR166
  6152 // -------------------------------------------------------
  6154 /*
  6155  * The solaris and linux implementations of park/unpark are fairly
  6156  * conservative for now, but can be improved. They currently use a
  6157  * mutex/condvar pair, plus _counter.
  6158  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6159  * sets count to 1 and signals condvar.  Only one thread ever waits
  6160  * on the condvar. Contention seen when trying to park implies that someone
  6161  * is unparking you, so don't wait. And spurious returns are fine, so there
  6162  * is no need to track notifications.
  6163  */
  6165 #define MAX_SECS 100000000
  6166 /*
  6167  * This code is common to linux and solaris and will be moved to a
  6168  * common place in dolphin.
  6170  * The passed in time value is either a relative time in nanoseconds
  6171  * or an absolute time in milliseconds. Either way it has to be unpacked
  6172  * into suitable seconds and nanoseconds components and stored in the
  6173  * given timespec structure.
  6174  * Given time is a 64-bit value and the time_t used in the timespec is only
  6175  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6176  * overflow if times way in the future are given. Further on Solaris versions
  6177  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6178  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6179  * As it will be 28 years before "now + 100000000" will overflow we can
  6180  * ignore overflow and just impose a hard-limit on seconds using the value
  6181  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6182  * years from "now".
  6183  */
  6184 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6185   assert (time > 0, "convertTime");
  6187   struct timeval now;
  6188   int status = gettimeofday(&now, NULL);
  6189   assert(status == 0, "gettimeofday");
  6191   time_t max_secs = now.tv_sec + MAX_SECS;
  6193   if (isAbsolute) {
  6194     jlong secs = time / 1000;
  6195     if (secs > max_secs) {
  6196       absTime->tv_sec = max_secs;
  6198     else {
  6199       absTime->tv_sec = secs;
  6201     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6203   else {
  6204     jlong secs = time / NANOSECS_PER_SEC;
  6205     if (secs >= MAX_SECS) {
  6206       absTime->tv_sec = max_secs;
  6207       absTime->tv_nsec = 0;
  6209     else {
  6210       absTime->tv_sec = now.tv_sec + secs;
  6211       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6212       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6213         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6214         ++absTime->tv_sec; // note: this must be <= max_secs
  6218   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6219   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6220   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6221   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6224 void Parker::park(bool isAbsolute, jlong time) {
  6225   // Ideally we'd do something useful while spinning, such
  6226   // as calling unpackTime().
  6228   // Optional fast-path check:
  6229   // Return immediately if a permit is available.
  6230   // We depend on Atomic::xchg() having full barrier semantics
  6231   // since we are doing a lock-free update to _counter.
  6232   if (Atomic::xchg(0, &_counter) > 0) return;
  6234   // Optional fast-exit: Check interrupt before trying to wait
  6235   Thread* thread = Thread::current();
  6236   assert(thread->is_Java_thread(), "Must be JavaThread");
  6237   JavaThread *jt = (JavaThread *)thread;
  6238   if (Thread::is_interrupted(thread, false)) {
  6239     return;
  6242   // First, demultiplex/decode time arguments
  6243   timespec absTime;
  6244   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6245     return;
  6247   if (time > 0) {
  6248     // Warning: this code might be exposed to the old Solaris time
  6249     // round-down bugs.  Grep "roundingFix" for details.
  6250     unpackTime(&absTime, isAbsolute, time);
  6253   // Enter safepoint region
  6254   // Beware of deadlocks such as 6317397.
  6255   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6256   // In particular a thread must never block on the Threads_lock while
  6257   // holding the Parker:: mutex.  If safepoints are pending both the
  6258   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6259   ThreadBlockInVM tbivm(jt);
  6261   // Don't wait if cannot get lock since interference arises from
  6262   // unblocking.  Also. check interrupt before trying wait
  6263   if (Thread::is_interrupted(thread, false) ||
  6264       os::Solaris::mutex_trylock(_mutex) != 0) {
  6265     return;
  6268   int status ;
  6270   if (_counter > 0)  { // no wait needed
  6271     _counter = 0;
  6272     status = os::Solaris::mutex_unlock(_mutex);
  6273     assert (status == 0, "invariant") ;
  6274     // Paranoia to ensure our locked and lock-free paths interact
  6275     // correctly with each other and Java-level accesses.
  6276     OrderAccess::fence();
  6277     return;
  6280 #ifdef ASSERT
  6281   // Don't catch signals while blocked; let the running threads have the signals.
  6282   // (This allows a debugger to break into the running thread.)
  6283   sigset_t oldsigs;
  6284   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6285   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6286 #endif
  6288   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6289   jt->set_suspend_equivalent();
  6290   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6292   // Do this the hard way by blocking ...
  6293   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6294   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6295   // Only for SPARC >= V8PlusA
  6296 #if defined(__sparc) && defined(COMPILER2)
  6297   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6298 #endif
  6300   if (time == 0) {
  6301     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6302   } else {
  6303     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6305   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6306   // versions of the Solaris.
  6307   assert_status(status == 0 || status == EINTR ||
  6308                 status == ETIME || status == ETIMEDOUT,
  6309                 status, "cond_timedwait");
  6311 #ifdef ASSERT
  6312   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6313 #endif
  6314   _counter = 0 ;
  6315   status = os::Solaris::mutex_unlock(_mutex);
  6316   assert_status(status == 0, status, "mutex_unlock") ;
  6317   // Paranoia to ensure our locked and lock-free paths interact
  6318   // correctly with each other and Java-level accesses.
  6319   OrderAccess::fence();
  6321   // If externally suspended while waiting, re-suspend
  6322   if (jt->handle_special_suspend_equivalent_condition()) {
  6323     jt->java_suspend_self();
  6327 void Parker::unpark() {
  6328   int s, status ;
  6329   status = os::Solaris::mutex_lock (_mutex) ;
  6330   assert (status == 0, "invariant") ;
  6331   s = _counter;
  6332   _counter = 1;
  6333   status = os::Solaris::mutex_unlock (_mutex) ;
  6334   assert (status == 0, "invariant") ;
  6336   if (s < 1) {
  6337     status = os::Solaris::cond_signal (_cond) ;
  6338     assert (status == 0, "invariant") ;
  6342 extern char** environ;
  6344 // Run the specified command in a separate process. Return its exit value,
  6345 // or -1 on failure (e.g. can't fork a new process).
  6346 // Unlike system(), this function can be called from signal handler. It
  6347 // doesn't block SIGINT et al.
  6348 int os::fork_and_exec(char* cmd) {
  6349   char * argv[4];
  6350   argv[0] = (char *)"sh";
  6351   argv[1] = (char *)"-c";
  6352   argv[2] = cmd;
  6353   argv[3] = NULL;
  6355   // fork is async-safe, fork1 is not so can't use in signal handler
  6356   pid_t pid;
  6357   Thread* t = ThreadLocalStorage::get_thread_slow();
  6358   if (t != NULL && t->is_inside_signal_handler()) {
  6359     pid = fork();
  6360   } else {
  6361     pid = fork1();
  6364   if (pid < 0) {
  6365     // fork failed
  6366     warning("fork failed: %s", strerror(errno));
  6367     return -1;
  6369   } else if (pid == 0) {
  6370     // child process
  6372     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6373     execve("/usr/bin/sh", argv, environ);
  6375     // execve failed
  6376     _exit(-1);
  6378   } else  {
  6379     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6380     // care about the actual exit code, for now.
  6382     int status;
  6384     // Wait for the child process to exit.  This returns immediately if
  6385     // the child has already exited. */
  6386     while (waitpid(pid, &status, 0) < 0) {
  6387         switch (errno) {
  6388         case ECHILD: return 0;
  6389         case EINTR: break;
  6390         default: return -1;
  6394     if (WIFEXITED(status)) {
  6395        // The child exited normally; get its exit code.
  6396        return WEXITSTATUS(status);
  6397     } else if (WIFSIGNALED(status)) {
  6398        // The child exited because of a signal
  6399        // The best value to return is 0x80 + signal number,
  6400        // because that is what all Unix shells do, and because
  6401        // it allows callers to distinguish between process exit and
  6402        // process death by signal.
  6403        return 0x80 + WTERMSIG(status);
  6404     } else {
  6405        // Unknown exit code; pass it through
  6406        return status;
  6411 // is_headless_jre()
  6412 //
  6413 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6414 // in order to report if we are running in a headless jre
  6415 //
  6416 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6417 // as libawt.so, and renamed libawt_xawt.so
  6418 //
  6419 bool os::is_headless_jre() {
  6420     struct stat statbuf;
  6421     char buf[MAXPATHLEN];
  6422     char libmawtpath[MAXPATHLEN];
  6423     const char *xawtstr  = "/xawt/libmawt.so";
  6424     const char *new_xawtstr = "/libawt_xawt.so";
  6425     char *p;
  6427     // Get path to libjvm.so
  6428     os::jvm_path(buf, sizeof(buf));
  6430     // Get rid of libjvm.so
  6431     p = strrchr(buf, '/');
  6432     if (p == NULL) return false;
  6433     else *p = '\0';
  6435     // Get rid of client or server
  6436     p = strrchr(buf, '/');
  6437     if (p == NULL) return false;
  6438     else *p = '\0';
  6440     // check xawt/libmawt.so
  6441     strcpy(libmawtpath, buf);
  6442     strcat(libmawtpath, xawtstr);
  6443     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6445     // check libawt_xawt.so
  6446     strcpy(libmawtpath, buf);
  6447     strcat(libmawtpath, new_xawtstr);
  6448     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6450     return true;
  6453 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6454   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6457 int os::close(int fd) {
  6458   return ::close(fd);
  6461 int os::socket_close(int fd) {
  6462   return ::close(fd);
  6465 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  6466   INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6469 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  6470   INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6473 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  6474   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
  6477 // As both poll and select can be interrupted by signals, we have to be
  6478 // prepared to restart the system call after updating the timeout, unless
  6479 // a poll() is done with timeout == -1, in which case we repeat with this
  6480 // "wait forever" value.
  6482 int os::timeout(int fd, long timeout) {
  6483   int res;
  6484   struct timeval t;
  6485   julong prevtime, newtime;
  6486   static const char* aNull = 0;
  6487   struct pollfd pfd;
  6488   pfd.fd = fd;
  6489   pfd.events = POLLIN;
  6491   gettimeofday(&t, &aNull);
  6492   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6494   for(;;) {
  6495     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6496     if(res == OS_ERR && errno == EINTR) {
  6497         if(timeout != -1) {
  6498           gettimeofday(&t, &aNull);
  6499           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6500           timeout -= newtime - prevtime;
  6501           if(timeout <= 0)
  6502             return OS_OK;
  6503           prevtime = newtime;
  6505     } else return res;
  6509 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
  6510   int _result;
  6511   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
  6512                           os::Solaris::clear_interrupted);
  6514   // Depending on when thread interruption is reset, _result could be
  6515   // one of two values when errno == EINTR
  6517   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6518       && (errno == EINTR)) {
  6519      /* restarting a connect() changes its errno semantics */
  6520      INTERRUPTIBLE(::connect(fd, him, len), _result,\
  6521                    os::Solaris::clear_interrupted);
  6522      /* undo these changes */
  6523      if (_result == OS_ERR) {
  6524        if (errno == EALREADY) {
  6525          errno = EINPROGRESS; /* fall through */
  6526        } else if (errno == EISCONN) {
  6527          errno = 0;
  6528          return OS_OK;
  6532    return _result;
  6535 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  6536   if (fd < 0) {
  6537     return OS_ERR;
  6539   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
  6540                            os::Solaris::clear_interrupted);
  6543 int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
  6544                  sockaddr* from, socklen_t* fromlen) {
  6545   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
  6546                            os::Solaris::clear_interrupted);
  6549 int os::sendto(int fd, char* buf, size_t len, uint flags,
  6550                struct sockaddr* to, socklen_t tolen) {
  6551   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
  6552                            os::Solaris::clear_interrupted);
  6555 int os::socket_available(int fd, jint *pbytes) {
  6556   if (fd < 0) {
  6557     return OS_OK;
  6559   int ret;
  6560   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6561   // note: ioctl can return 0 when successful, JVM_SocketAvailable
  6562   // is expected to return 0 on failure and 1 on success to the jdk.
  6563   return (ret == OS_ERR) ? 0 : 1;
  6566 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  6567    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6568                                       os::Solaris::clear_interrupted);
  6571 // Get the default path to the core file
  6572 // Returns the length of the string
  6573 int os::get_core_path(char* buffer, size_t bufferSize) {
  6574   const char* p = get_current_directory(buffer, bufferSize);
  6576   if (p == NULL) {
  6577     assert(p != NULL, "failed to get current directory");
  6578     return 0;
  6581   return strlen(buffer);

mercurial