src/share/vm/memory/collectorPolicy.cpp

Wed, 11 Sep 2013 00:38:18 -0400

author
dholmes
date
Wed, 11 Sep 2013 00:38:18 -0400
changeset 5689
de88570fabfc
parent 5578
4c84d351cca9
child 5701
40136aa2cdb1
permissions
-rw-r--r--

8024256: Minimal VM build is broken with PCH disabled
Reviewed-by: coleenp, twisti

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 void CollectorPolicy::initialize_flags() {
    51   assert(max_alignment() >= min_alignment(),
    52       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
    53           max_alignment(), min_alignment()));
    54   assert(max_alignment() % min_alignment() == 0,
    55       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
    56           max_alignment(), min_alignment()));
    58   if (MaxHeapSize < InitialHeapSize) {
    59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
    60   }
    62   if (MetaspaceSize > MaxMetaspaceSize) {
    63     MaxMetaspaceSize = MetaspaceSize;
    64   }
    65   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
    66   // Don't increase Metaspace size limit above specified.
    67   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
    68   if (MetaspaceSize > MaxMetaspaceSize) {
    69     MetaspaceSize = MaxMetaspaceSize;
    70   }
    72   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
    73   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
    75   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    77   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
    78   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
    79   if (MetaspaceSize < 256*K) {
    80     vm_exit_during_initialization("Too small initial Metaspace size");
    81   }
    82 }
    84 void CollectorPolicy::initialize_size_info() {
    85   // User inputs from -mx and ms must be aligned
    86   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
    87   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
    88   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
    90   // Check heap parameter properties
    91   if (initial_heap_byte_size() < M) {
    92     vm_exit_during_initialization("Too small initial heap");
    93   }
    94   // Check heap parameter properties
    95   if (min_heap_byte_size() < M) {
    96     vm_exit_during_initialization("Too small minimum heap");
    97   }
    98   if (initial_heap_byte_size() <= NewSize) {
    99      // make sure there is at least some room in old space
   100     vm_exit_during_initialization("Too small initial heap for new size specified");
   101   }
   102   if (max_heap_byte_size() < min_heap_byte_size()) {
   103     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   104   }
   105   if (initial_heap_byte_size() < min_heap_byte_size()) {
   106     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   107   }
   108   if (max_heap_byte_size() < initial_heap_byte_size()) {
   109     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   110   }
   112   if (PrintGCDetails && Verbose) {
   113     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   114       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   115       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   116   }
   117 }
   119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   120   bool result = _should_clear_all_soft_refs;
   121   set_should_clear_all_soft_refs(false);
   122   return result;
   123 }
   125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   126                                            int max_covered_regions) {
   127   switch (rem_set_name()) {
   128   case GenRemSet::CardTable: {
   129     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   130     return res;
   131   }
   132   default:
   133     guarantee(false, "unrecognized GenRemSet::Name");
   134     return NULL;
   135   }
   136 }
   138 void CollectorPolicy::cleared_all_soft_refs() {
   139   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   140   // have been cleared in the last collection but if the gc overhear
   141   // limit continues to be near, SoftRefs should still be cleared.
   142   if (size_policy() != NULL) {
   143     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   144   }
   145   _all_soft_refs_clear = true;
   146 }
   149 // GenCollectorPolicy methods.
   151 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   152   size_t x = base_size / (NewRatio+1);
   153   size_t new_gen_size = x > min_alignment() ?
   154                      align_size_down(x, min_alignment()) :
   155                      min_alignment();
   156   return new_gen_size;
   157 }
   159 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   160                                                  size_t maximum_size) {
   161   size_t alignment = min_alignment();
   162   size_t max_minus = maximum_size - alignment;
   163   return desired_size < max_minus ? desired_size : max_minus;
   164 }
   167 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   168                                                 size_t init_promo_size,
   169                                                 size_t init_survivor_size) {
   170   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   171   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   172                                         init_promo_size,
   173                                         init_survivor_size,
   174                                         max_gc_pause_sec,
   175                                         GCTimeRatio);
   176 }
   178 size_t GenCollectorPolicy::compute_max_alignment() {
   179   // The card marking array and the offset arrays for old generations are
   180   // committed in os pages as well. Make sure they are entirely full (to
   181   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   182   // byte entry and the os page size is 4096, the maximum heap size should
   183   // be 512*4096 = 2MB aligned.
   184   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   186   // Parallel GC does its own alignment of the generations to avoid requiring a
   187   // large page (256M on some platforms) for the permanent generation.  The
   188   // other collectors should also be updated to do their own alignment and then
   189   // this use of lcm() should be removed.
   190   if (UseLargePages && !UseParallelGC) {
   191       // in presence of large pages we have to make sure that our
   192       // alignment is large page aware
   193       alignment = lcm(os::large_page_size(), alignment);
   194   }
   196   assert(alignment >= min_alignment(), "Must be");
   198   return alignment;
   199 }
   201 void GenCollectorPolicy::initialize_flags() {
   202   // All sizes must be multiples of the generation granularity.
   203   set_min_alignment((uintx) Generation::GenGrain);
   204   set_max_alignment(compute_max_alignment());
   206   CollectorPolicy::initialize_flags();
   208   // All generational heaps have a youngest gen; handle those flags here.
   210   // Adjust max size parameters
   211   if (NewSize > MaxNewSize) {
   212     MaxNewSize = NewSize;
   213   }
   214   NewSize = align_size_down(NewSize, min_alignment());
   215   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   217   // Check validity of heap flags
   218   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   219   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   221   if (NewSize < 3*min_alignment()) {
   222      // make sure there room for eden and two survivor spaces
   223     vm_exit_during_initialization("Too small new size specified");
   224   }
   225   if (SurvivorRatio < 1 || NewRatio < 1) {
   226     vm_exit_during_initialization("Invalid heap ratio specified");
   227   }
   228 }
   230 void TwoGenerationCollectorPolicy::initialize_flags() {
   231   GenCollectorPolicy::initialize_flags();
   233   OldSize = align_size_down(OldSize, min_alignment());
   235   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
   236     // NewRatio will be used later to set the young generation size so we use
   237     // it to calculate how big the heap should be based on the requested OldSize
   238     // and NewRatio.
   239     assert(NewRatio > 0, "NewRatio should have been set up earlier");
   240     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
   242     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
   243     MaxHeapSize = calculated_heapsize;
   244     InitialHeapSize = calculated_heapsize;
   245   }
   246   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   248   // adjust max heap size if necessary
   249   if (NewSize + OldSize > MaxHeapSize) {
   250     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   251       // somebody set a maximum heap size with the intention that we should not
   252       // exceed it. Adjust New/OldSize as necessary.
   253       uintx calculated_size = NewSize + OldSize;
   254       double shrink_factor = (double) MaxHeapSize / calculated_size;
   255       // align
   256       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
   257       // OldSize is already aligned because above we aligned MaxHeapSize to
   258       // max_alignment(), and we just made sure that NewSize is aligned to
   259       // min_alignment(). In initialize_flags() we verified that max_alignment()
   260       // is a multiple of min_alignment().
   261       OldSize = MaxHeapSize - NewSize;
   262     } else {
   263       MaxHeapSize = NewSize + OldSize;
   264     }
   265   }
   266   // need to do this again
   267   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   269   // adjust max heap size if necessary
   270   if (NewSize + OldSize > MaxHeapSize) {
   271     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   272       // somebody set a maximum heap size with the intention that we should not
   273       // exceed it. Adjust New/OldSize as necessary.
   274       uintx calculated_size = NewSize + OldSize;
   275       double shrink_factor = (double) MaxHeapSize / calculated_size;
   276       // align
   277       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
   278       // OldSize is already aligned because above we aligned MaxHeapSize to
   279       // max_alignment(), and we just made sure that NewSize is aligned to
   280       // min_alignment(). In initialize_flags() we verified that max_alignment()
   281       // is a multiple of min_alignment().
   282       OldSize = MaxHeapSize - NewSize;
   283     } else {
   284       MaxHeapSize = NewSize + OldSize;
   285     }
   286   }
   287   // need to do this again
   288   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   290   always_do_update_barrier = UseConcMarkSweepGC;
   292   // Check validity of heap flags
   293   assert(OldSize     % min_alignment() == 0, "old space alignment");
   294   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   295 }
   297 // Values set on the command line win over any ergonomically
   298 // set command line parameters.
   299 // Ergonomic choice of parameters are done before this
   300 // method is called.  Values for command line parameters such as NewSize
   301 // and MaxNewSize feed those ergonomic choices into this method.
   302 // This method makes the final generation sizings consistent with
   303 // themselves and with overall heap sizings.
   304 // In the absence of explicitly set command line flags, policies
   305 // such as the use of NewRatio are used to size the generation.
   306 void GenCollectorPolicy::initialize_size_info() {
   307   CollectorPolicy::initialize_size_info();
   309   // min_alignment() is used for alignment within a generation.
   310   // There is additional alignment done down stream for some
   311   // collectors that sometimes causes unwanted rounding up of
   312   // generations sizes.
   314   // Determine maximum size of gen0
   316   size_t max_new_size = 0;
   317   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   318     if (MaxNewSize < min_alignment()) {
   319       max_new_size = min_alignment();
   320     }
   321     if (MaxNewSize >= max_heap_byte_size()) {
   322       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   323                                      min_alignment());
   324       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   325         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   326         "new generation size of " SIZE_FORMAT "k will be used.",
   327         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   328     } else {
   329       max_new_size = align_size_down(MaxNewSize, min_alignment());
   330     }
   332   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   333   // specially at this point to just use an ergonomically set
   334   // MaxNewSize to set max_new_size.  For cases with small
   335   // heaps such a policy often did not work because the MaxNewSize
   336   // was larger than the entire heap.  The interpretation given
   337   // to ergonomically set flags is that the flags are set
   338   // by different collectors for their own special needs but
   339   // are not allowed to badly shape the heap.  This allows the
   340   // different collectors to decide what's best for themselves
   341   // without having to factor in the overall heap shape.  It
   342   // can be the case in the future that the collectors would
   343   // only make "wise" ergonomics choices and this policy could
   344   // just accept those choices.  The choices currently made are
   345   // not always "wise".
   346   } else {
   347     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   348     // Bound the maximum size by NewSize below (since it historically
   349     // would have been NewSize and because the NewRatio calculation could
   350     // yield a size that is too small) and bound it by MaxNewSize above.
   351     // Ergonomics plays here by previously calculating the desired
   352     // NewSize and MaxNewSize.
   353     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   354   }
   355   assert(max_new_size > 0, "All paths should set max_new_size");
   357   // Given the maximum gen0 size, determine the initial and
   358   // minimum gen0 sizes.
   360   if (max_heap_byte_size() == min_heap_byte_size()) {
   361     // The maximum and minimum heap sizes are the same so
   362     // the generations minimum and initial must be the
   363     // same as its maximum.
   364     set_min_gen0_size(max_new_size);
   365     set_initial_gen0_size(max_new_size);
   366     set_max_gen0_size(max_new_size);
   367   } else {
   368     size_t desired_new_size = 0;
   369     if (!FLAG_IS_DEFAULT(NewSize)) {
   370       // If NewSize is set ergonomically (for example by cms), it
   371       // would make sense to use it.  If it is used, also use it
   372       // to set the initial size.  Although there is no reason
   373       // the minimum size and the initial size have to be the same,
   374       // the current implementation gets into trouble during the calculation
   375       // of the tenured generation sizes if they are different.
   376       // Note that this makes the initial size and the minimum size
   377       // generally small compared to the NewRatio calculation.
   378       _min_gen0_size = NewSize;
   379       desired_new_size = NewSize;
   380       max_new_size = MAX2(max_new_size, NewSize);
   381     } else {
   382       // For the case where NewSize is the default, use NewRatio
   383       // to size the minimum and initial generation sizes.
   384       // Use the default NewSize as the floor for these values.  If
   385       // NewRatio is overly large, the resulting sizes can be too
   386       // small.
   387       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   388                           NewSize);
   389       desired_new_size =
   390         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   391              NewSize);
   392     }
   394     assert(_min_gen0_size > 0, "Sanity check");
   395     set_initial_gen0_size(desired_new_size);
   396     set_max_gen0_size(max_new_size);
   398     // At this point the desirable initial and minimum sizes have been
   399     // determined without regard to the maximum sizes.
   401     // Bound the sizes by the corresponding overall heap sizes.
   402     set_min_gen0_size(
   403       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   404     set_initial_gen0_size(
   405       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   406     set_max_gen0_size(
   407       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   409     // At this point all three sizes have been checked against the
   410     // maximum sizes but have not been checked for consistency
   411     // among the three.
   413     // Final check min <= initial <= max
   414     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   415     set_initial_gen0_size(
   416       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   417     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   418   }
   420   if (PrintGCDetails && Verbose) {
   421     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   422       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   423       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   424   }
   425 }
   427 // Call this method during the sizing of the gen1 to make
   428 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   429 // the most freedom in sizing because it is done before the
   430 // policy for gen1 is applied.  Once gen1 policies have been applied,
   431 // there may be conflicts in the shape of the heap and this method
   432 // is used to make the needed adjustments.  The application of the
   433 // policies could be more sophisticated (iterative for example) but
   434 // keeping it simple also seems a worthwhile goal.
   435 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   436                                                      size_t* gen1_size_ptr,
   437                                                      const size_t heap_size,
   438                                                      const size_t min_gen1_size) {
   439   bool result = false;
   441   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   442     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
   443         (heap_size >= min_gen1_size + min_alignment())) {
   444       // Adjust gen0 down to accommodate min_gen1_size
   445       *gen0_size_ptr = heap_size - min_gen1_size;
   446       *gen0_size_ptr =
   447         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   448              min_alignment());
   449       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   450       result = true;
   451     } else {
   452       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   453       *gen1_size_ptr =
   454         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   455                        min_alignment());
   456     }
   457   }
   458   return result;
   459 }
   461 // Minimum sizes of the generations may be different than
   462 // the initial sizes.  An inconsistently is permitted here
   463 // in the total size that can be specified explicitly by
   464 // command line specification of OldSize and NewSize and
   465 // also a command line specification of -Xms.  Issue a warning
   466 // but allow the values to pass.
   468 void TwoGenerationCollectorPolicy::initialize_size_info() {
   469   GenCollectorPolicy::initialize_size_info();
   471   // At this point the minimum, initial and maximum sizes
   472   // of the overall heap and of gen0 have been determined.
   473   // The maximum gen1 size can be determined from the maximum gen0
   474   // and maximum heap size since no explicit flags exits
   475   // for setting the gen1 maximum.
   476   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   477   _max_gen1_size =
   478     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   479          min_alignment());
   480   // If no explicit command line flag has been set for the
   481   // gen1 size, use what is left for gen1.
   482   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   483     // The user has not specified any value or ergonomics
   484     // has chosen a value (which may or may not be consistent
   485     // with the overall heap size).  In either case make
   486     // the minimum, maximum and initial sizes consistent
   487     // with the gen0 sizes and the overall heap sizes.
   488     assert(min_heap_byte_size() > _min_gen0_size,
   489       "gen0 has an unexpected minimum size");
   490     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   491     set_min_gen1_size(
   492       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   493            min_alignment()));
   494     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   495     set_initial_gen1_size(
   496       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   497            min_alignment()));
   499   } else {
   500     // It's been explicitly set on the command line.  Use the
   501     // OldSize and then determine the consequences.
   502     set_min_gen1_size(OldSize);
   503     set_initial_gen1_size(OldSize);
   505     // If the user has explicitly set an OldSize that is inconsistent
   506     // with other command line flags, issue a warning.
   507     // The generation minimums and the overall heap mimimum should
   508     // be within one heap alignment.
   509     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   510            min_heap_byte_size()) {
   511       warning("Inconsistency between minimum heap size and minimum "
   512           "generation sizes: using minimum heap = " SIZE_FORMAT,
   513           min_heap_byte_size());
   514     }
   515     if ((OldSize > _max_gen1_size)) {
   516       warning("Inconsistency between maximum heap size and maximum "
   517           "generation sizes: using maximum heap = " SIZE_FORMAT
   518           " -XX:OldSize flag is being ignored",
   519           max_heap_byte_size());
   520     }
   521     // If there is an inconsistency between the OldSize and the minimum and/or
   522     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   523     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   524                           min_heap_byte_size(), OldSize)) {
   525       if (PrintGCDetails && Verbose) {
   526         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   527               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   528               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   529       }
   530     }
   531     // Initial size
   532     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   533                          initial_heap_byte_size(), OldSize)) {
   534       if (PrintGCDetails && Verbose) {
   535         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   536           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   537           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   538       }
   539     }
   540   }
   541   // Enforce the maximum gen1 size.
   542   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   544   // Check that min gen1 <= initial gen1 <= max gen1
   545   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   546   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   548   if (PrintGCDetails && Verbose) {
   549     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   550       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   551       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   552   }
   553 }
   555 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   556                                         bool is_tlab,
   557                                         bool* gc_overhead_limit_was_exceeded) {
   558   GenCollectedHeap *gch = GenCollectedHeap::heap();
   560   debug_only(gch->check_for_valid_allocation_state());
   561   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   563   // In general gc_overhead_limit_was_exceeded should be false so
   564   // set it so here and reset it to true only if the gc time
   565   // limit is being exceeded as checked below.
   566   *gc_overhead_limit_was_exceeded = false;
   568   HeapWord* result = NULL;
   570   // Loop until the allocation is satisified,
   571   // or unsatisfied after GC.
   572   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
   573     HandleMark hm; // discard any handles allocated in each iteration
   575     // First allocation attempt is lock-free.
   576     Generation *gen0 = gch->get_gen(0);
   577     assert(gen0->supports_inline_contig_alloc(),
   578       "Otherwise, must do alloc within heap lock");
   579     if (gen0->should_allocate(size, is_tlab)) {
   580       result = gen0->par_allocate(size, is_tlab);
   581       if (result != NULL) {
   582         assert(gch->is_in_reserved(result), "result not in heap");
   583         return result;
   584       }
   585     }
   586     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   587     {
   588       MutexLocker ml(Heap_lock);
   589       if (PrintGC && Verbose) {
   590         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   591                       " attempting locked slow path allocation");
   592       }
   593       // Note that only large objects get a shot at being
   594       // allocated in later generations.
   595       bool first_only = ! should_try_older_generation_allocation(size);
   597       result = gch->attempt_allocation(size, is_tlab, first_only);
   598       if (result != NULL) {
   599         assert(gch->is_in_reserved(result), "result not in heap");
   600         return result;
   601       }
   603       if (GC_locker::is_active_and_needs_gc()) {
   604         if (is_tlab) {
   605           return NULL;  // Caller will retry allocating individual object
   606         }
   607         if (!gch->is_maximal_no_gc()) {
   608           // Try and expand heap to satisfy request
   609           result = expand_heap_and_allocate(size, is_tlab);
   610           // result could be null if we are out of space
   611           if (result != NULL) {
   612             return result;
   613           }
   614         }
   616         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
   617           return NULL; // we didn't get to do a GC and we didn't get any memory
   618         }
   620         // If this thread is not in a jni critical section, we stall
   621         // the requestor until the critical section has cleared and
   622         // GC allowed. When the critical section clears, a GC is
   623         // initiated by the last thread exiting the critical section; so
   624         // we retry the allocation sequence from the beginning of the loop,
   625         // rather than causing more, now probably unnecessary, GC attempts.
   626         JavaThread* jthr = JavaThread::current();
   627         if (!jthr->in_critical()) {
   628           MutexUnlocker mul(Heap_lock);
   629           // Wait for JNI critical section to be exited
   630           GC_locker::stall_until_clear();
   631           gclocker_stalled_count += 1;
   632           continue;
   633         } else {
   634           if (CheckJNICalls) {
   635             fatal("Possible deadlock due to allocating while"
   636                   " in jni critical section");
   637           }
   638           return NULL;
   639         }
   640       }
   642       // Read the gc count while the heap lock is held.
   643       gc_count_before = Universe::heap()->total_collections();
   644     }
   646     VM_GenCollectForAllocation op(size,
   647                                   is_tlab,
   648                                   gc_count_before);
   649     VMThread::execute(&op);
   650     if (op.prologue_succeeded()) {
   651       result = op.result();
   652       if (op.gc_locked()) {
   653          assert(result == NULL, "must be NULL if gc_locked() is true");
   654          continue;  // retry and/or stall as necessary
   655       }
   657       // Allocation has failed and a collection
   658       // has been done.  If the gc time limit was exceeded the
   659       // this time, return NULL so that an out-of-memory
   660       // will be thrown.  Clear gc_overhead_limit_exceeded
   661       // so that the overhead exceeded does not persist.
   663       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   664       const bool softrefs_clear = all_soft_refs_clear();
   666       if (limit_exceeded && softrefs_clear) {
   667         *gc_overhead_limit_was_exceeded = true;
   668         size_policy()->set_gc_overhead_limit_exceeded(false);
   669         if (op.result() != NULL) {
   670           CollectedHeap::fill_with_object(op.result(), size);
   671         }
   672         return NULL;
   673       }
   674       assert(result == NULL || gch->is_in_reserved(result),
   675              "result not in heap");
   676       return result;
   677     }
   679     // Give a warning if we seem to be looping forever.
   680     if ((QueuedAllocationWarningCount > 0) &&
   681         (try_count % QueuedAllocationWarningCount == 0)) {
   682           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   683                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   684     }
   685   }
   686 }
   688 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   689                                                        bool   is_tlab) {
   690   GenCollectedHeap *gch = GenCollectedHeap::heap();
   691   HeapWord* result = NULL;
   692   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   693     Generation *gen = gch->get_gen(i);
   694     if (gen->should_allocate(size, is_tlab)) {
   695       result = gen->expand_and_allocate(size, is_tlab);
   696     }
   697   }
   698   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   699   return result;
   700 }
   702 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   703                                                         bool   is_tlab) {
   704   GenCollectedHeap *gch = GenCollectedHeap::heap();
   705   GCCauseSetter x(gch, GCCause::_allocation_failure);
   706   HeapWord* result = NULL;
   708   assert(size != 0, "Precondition violated");
   709   if (GC_locker::is_active_and_needs_gc()) {
   710     // GC locker is active; instead of a collection we will attempt
   711     // to expand the heap, if there's room for expansion.
   712     if (!gch->is_maximal_no_gc()) {
   713       result = expand_heap_and_allocate(size, is_tlab);
   714     }
   715     return result;   // could be null if we are out of space
   716   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   717     // Do an incremental collection.
   718     gch->do_collection(false            /* full */,
   719                        false            /* clear_all_soft_refs */,
   720                        size             /* size */,
   721                        is_tlab          /* is_tlab */,
   722                        number_of_generations() - 1 /* max_level */);
   723   } else {
   724     if (Verbose && PrintGCDetails) {
   725       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   726     }
   727     // Try a full collection; see delta for bug id 6266275
   728     // for the original code and why this has been simplified
   729     // with from-space allocation criteria modified and
   730     // such allocation moved out of the safepoint path.
   731     gch->do_collection(true             /* full */,
   732                        false            /* clear_all_soft_refs */,
   733                        size             /* size */,
   734                        is_tlab          /* is_tlab */,
   735                        number_of_generations() - 1 /* max_level */);
   736   }
   738   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   740   if (result != NULL) {
   741     assert(gch->is_in_reserved(result), "result not in heap");
   742     return result;
   743   }
   745   // OK, collection failed, try expansion.
   746   result = expand_heap_and_allocate(size, is_tlab);
   747   if (result != NULL) {
   748     return result;
   749   }
   751   // If we reach this point, we're really out of memory. Try every trick
   752   // we can to reclaim memory. Force collection of soft references. Force
   753   // a complete compaction of the heap. Any additional methods for finding
   754   // free memory should be here, especially if they are expensive. If this
   755   // attempt fails, an OOM exception will be thrown.
   756   {
   757     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   759     gch->do_collection(true             /* full */,
   760                        true             /* clear_all_soft_refs */,
   761                        size             /* size */,
   762                        is_tlab          /* is_tlab */,
   763                        number_of_generations() - 1 /* max_level */);
   764   }
   766   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   767   if (result != NULL) {
   768     assert(gch->is_in_reserved(result), "result not in heap");
   769     return result;
   770   }
   772   assert(!should_clear_all_soft_refs(),
   773     "Flag should have been handled and cleared prior to this point");
   775   // What else?  We might try synchronous finalization later.  If the total
   776   // space available is large enough for the allocation, then a more
   777   // complete compaction phase than we've tried so far might be
   778   // appropriate.
   779   return NULL;
   780 }
   782 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   783                                                  ClassLoaderData* loader_data,
   784                                                  size_t word_size,
   785                                                  Metaspace::MetadataType mdtype) {
   786   uint loop_count = 0;
   787   uint gc_count = 0;
   788   uint full_gc_count = 0;
   790   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   792   do {
   793     MetaWord* result = NULL;
   794     if (GC_locker::is_active_and_needs_gc()) {
   795       // If the GC_locker is active, just expand and allocate.
   796       // If that does not succeed, wait if this thread is not
   797       // in a critical section itself.
   798       result =
   799         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   800                                                                mdtype);
   801       if (result != NULL) {
   802         return result;
   803       }
   804       JavaThread* jthr = JavaThread::current();
   805       if (!jthr->in_critical()) {
   806         // Wait for JNI critical section to be exited
   807         GC_locker::stall_until_clear();
   808         // The GC invoked by the last thread leaving the critical
   809         // section will be a young collection and a full collection
   810         // is (currently) needed for unloading classes so continue
   811         // to the next iteration to get a full GC.
   812         continue;
   813       } else {
   814         if (CheckJNICalls) {
   815           fatal("Possible deadlock due to allocating while"
   816                 " in jni critical section");
   817         }
   818         return NULL;
   819       }
   820     }
   822     {  // Need lock to get self consistent gc_count's
   823       MutexLocker ml(Heap_lock);
   824       gc_count      = Universe::heap()->total_collections();
   825       full_gc_count = Universe::heap()->total_full_collections();
   826     }
   828     // Generate a VM operation
   829     VM_CollectForMetadataAllocation op(loader_data,
   830                                        word_size,
   831                                        mdtype,
   832                                        gc_count,
   833                                        full_gc_count,
   834                                        GCCause::_metadata_GC_threshold);
   835     VMThread::execute(&op);
   837     // If GC was locked out, try again.  Check
   838     // before checking success because the prologue
   839     // could have succeeded and the GC still have
   840     // been locked out.
   841     if (op.gc_locked()) {
   842       continue;
   843     }
   845     if (op.prologue_succeeded()) {
   846       return op.result();
   847     }
   848     loop_count++;
   849     if ((QueuedAllocationWarningCount > 0) &&
   850         (loop_count % QueuedAllocationWarningCount == 0)) {
   851       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   852               " size=%d", loop_count, word_size);
   853     }
   854   } while (true);  // Until a GC is done
   855 }
   857 // Return true if any of the following is true:
   858 // . the allocation won't fit into the current young gen heap
   859 // . gc locker is occupied (jni critical section)
   860 // . heap memory is tight -- the most recent previous collection
   861 //   was a full collection because a partial collection (would
   862 //   have) failed and is likely to fail again
   863 bool GenCollectorPolicy::should_try_older_generation_allocation(
   864         size_t word_size) const {
   865   GenCollectedHeap* gch = GenCollectedHeap::heap();
   866   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   867   return    (word_size > heap_word_size(gen0_capacity))
   868          || GC_locker::is_active_and_needs_gc()
   869          || gch->incremental_collection_failed();
   870 }
   873 //
   874 // MarkSweepPolicy methods
   875 //
   877 MarkSweepPolicy::MarkSweepPolicy() {
   878   initialize_all();
   879 }
   881 void MarkSweepPolicy::initialize_generations() {
   882   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
   883   if (_generations == NULL)
   884     vm_exit_during_initialization("Unable to allocate gen spec");
   886   if (UseParNewGC) {
   887     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   888   } else {
   889     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   890   }
   891   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   893   if (_generations[0] == NULL || _generations[1] == NULL)
   894     vm_exit_during_initialization("Unable to allocate gen spec");
   895 }
   897 void MarkSweepPolicy::initialize_gc_policy_counters() {
   898   // initialize the policy counters - 2 collectors, 3 generations
   899   if (UseParNewGC) {
   900     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   901   } else {
   902     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   903   }
   904 }

mercurial