src/share/vm/memory/binaryTreeDictionary.cpp

Wed, 11 Sep 2013 00:38:18 -0400

author
dholmes
date
Wed, 11 Sep 2013 00:38:18 -0400
changeset 5689
de88570fabfc
parent 4544
3c9bc17b9403
child 5941
bdfbb1fb19ca
permissions
-rw-r--r--

8024256: Minimal VM build is broken with PCH disabled
Reviewed-by: coleenp, twisti

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "utilities/macros.hpp"
    27 #include "gc_implementation/shared/allocationStats.hpp"
    28 #include "memory/binaryTreeDictionary.hpp"
    29 #include "memory/freeList.hpp"
    30 #include "memory/freeBlockDictionary.hpp"
    31 #include "memory/metablock.hpp"
    32 #include "memory/metachunk.hpp"
    33 #include "runtime/globals.hpp"
    34 #include "utilities/ostream.hpp"
    35 #include "utilities/macros.hpp"
    36 #include "gc_implementation/shared/spaceDecorator.hpp"
    37 #if INCLUDE_ALL_GCS
    38 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
    39 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    40 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    41 #endif // INCLUDE_ALL_GCS
    43 ////////////////////////////////////////////////////////////////////////////////
    44 // A binary tree based search structure for free blocks.
    45 // This is currently used in the Concurrent Mark&Sweep implementation.
    46 ////////////////////////////////////////////////////////////////////////////////
    48 template <class Chunk_t, template <class> class FreeList_t>
    49 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
    51 template <class Chunk_t, template <class> class FreeList_t>
    52 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
    53   // Do some assertion checking here.
    54   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
    55 }
    57 template <class Chunk_t, template <class> class FreeList_t>
    58 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
    59   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
    60   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    61     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    62               embedded_list()->right()  == NULL, "should be clear");
    63   }
    64   if (nextTC != NULL) {
    65     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    66     guarantee(nextTC->size() == size(), "wrong size");
    67     nextTC->verify_tree_chunk_list();
    68   }
    69 }
    71 template <class Chunk_t, template <class> class FreeList_t>
    72 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
    73   _left(NULL), _right(NULL) {}
    75 template <class Chunk_t, template <class> class FreeList_t>
    76 TreeList<Chunk_t, FreeList_t>*
    77 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
    78   // This first free chunk in the list will be the tree list.
    79   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
    80     "Chunk is too small for a TreeChunk");
    81   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
    82   tl->initialize();
    83   tc->set_list(tl);
    84   tl->set_size(tc->size());
    85   tl->link_head(tc);
    86   tl->link_tail(tc);
    87   tl->set_count(1);
    88   assert(tl->parent() == NULL, "Should be clear");
    89   return tl;
    90 }
    93 template <class Chunk_t, template <class> class FreeList_t>
    94 TreeList<Chunk_t, FreeList_t>*
    95 get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
    96   FreeBlockDictionary<Chunk_t>::verify_par_locked();
    97   Chunk_t* res = get_chunk_from_tree(size, dither);
    98   assert(res == NULL || res->is_free(),
    99          "Should be returning a free chunk");
   100   assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
   101          res->size() == size, "Not correct size");
   102   return res;
   103 }
   105 template <class Chunk_t, template <class> class FreeList_t>
   106 TreeList<Chunk_t, FreeList_t>*
   107 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
   108   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
   109   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
   110     "Chunk is too small for a TreeChunk");
   111   // The space will have been mangled initially but
   112   // is not remangled when a Chunk_t is returned to the free list
   113   // (since it is used to maintain the chunk on the free list).
   114   tc->assert_is_mangled();
   115   tc->set_size(size);
   116   tc->link_prev(NULL);
   117   tc->link_next(NULL);
   118   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   119   return tl;
   120 }
   123 #if INCLUDE_ALL_GCS
   124 // Specialize for AdaptiveFreeList which tries to avoid
   125 // splitting a chunk of a size that is under populated in favor of
   126 // an over populated size.  The general get_better_list() just returns
   127 // the current list.
   128 template <>
   129 TreeList<FreeChunk, AdaptiveFreeList>*
   130 TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
   131   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
   132   // A candidate chunk has been found.  If it is already under
   133   // populated, get a chunk associated with the hint for this
   134   // chunk.
   136   TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
   137   if (surplus() <= 0) {
   138     /* Use the hint to find a size with a surplus, and reset the hint. */
   139     TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
   140     while (hintTL->hint() != 0) {
   141       assert(hintTL->hint() > hintTL->size(),
   142         "hint points in the wrong direction");
   143       hintTL = dictionary->find_list(hintTL->hint());
   144       assert(curTL != hintTL, "Infinite loop");
   145       if (hintTL == NULL ||
   146           hintTL == curTL /* Should not happen but protect against it */ ) {
   147         // No useful hint.  Set the hint to NULL and go on.
   148         curTL->set_hint(0);
   149         break;
   150       }
   151       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
   152       if (hintTL->surplus() > 0) {
   153         // The hint led to a list that has a surplus.  Use it.
   154         // Set the hint for the candidate to an overpopulated
   155         // size.
   156         curTL->set_hint(hintTL->size());
   157         // Change the candidate.
   158         curTL = hintTL;
   159         break;
   160       }
   161     }
   162   }
   163   return curTL;
   164 }
   165 #endif // INCLUDE_ALL_GCS
   167 template <class Chunk_t, template <class> class FreeList_t>
   168 TreeList<Chunk_t, FreeList_t>*
   169 TreeList<Chunk_t, FreeList_t>::get_better_list(
   170   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
   171   return this;
   172 }
   174 template <class Chunk_t, template <class> class FreeList_t>
   175 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
   177   TreeList<Chunk_t, FreeList_t>* retTL = this;
   178   Chunk_t* list = head();
   179   assert(!list || list != list->next(), "Chunk on list twice");
   180   assert(tc != NULL, "Chunk being removed is NULL");
   181   assert(parent() == NULL || this == parent()->left() ||
   182     this == parent()->right(), "list is inconsistent");
   183   assert(tc->is_free(), "Header is not marked correctly");
   184   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   185   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   187   Chunk_t* prevFC = tc->prev();
   188   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
   189   assert(list != NULL, "should have at least the target chunk");
   191   // Is this the first item on the list?
   192   if (tc == list) {
   193     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
   194     // first chunk in the list unless it is the last chunk in the list
   195     // because the first chunk is also acting as the tree node.
   196     // When coalescing happens, however, the first chunk in the a tree
   197     // list can be the start of a free range.  Free ranges are removed
   198     // from the free lists so that they are not available to be
   199     // allocated when the sweeper yields (giving up the free list lock)
   200     // to allow mutator activity.  If this chunk is the first in the
   201     // list and is not the last in the list, do the work to copy the
   202     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
   203     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
   204     if (nextTC == NULL) {
   205       assert(prevFC == NULL, "Not last chunk in the list");
   206       set_tail(NULL);
   207       set_head(NULL);
   208     } else {
   209       // copy embedded list.
   210       nextTC->set_embedded_list(tc->embedded_list());
   211       retTL = nextTC->embedded_list();
   212       // Fix the pointer to the list in each chunk in the list.
   213       // This can be slow for a long list.  Consider having
   214       // an option that does not allow the first chunk on the
   215       // list to be coalesced.
   216       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
   217           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
   218         curTC->set_list(retTL);
   219       }
   220       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
   221       if (retTL->parent() != NULL) {
   222         if (this == retTL->parent()->left()) {
   223           retTL->parent()->set_left(retTL);
   224         } else {
   225           assert(this == retTL->parent()->right(), "Parent is incorrect");
   226           retTL->parent()->set_right(retTL);
   227         }
   228       }
   229       // Fix the children's parent pointers to point to the
   230       // new list.
   231       assert(right() == retTL->right(), "Should have been copied");
   232       if (retTL->right() != NULL) {
   233         retTL->right()->set_parent(retTL);
   234       }
   235       assert(left() == retTL->left(), "Should have been copied");
   236       if (retTL->left() != NULL) {
   237         retTL->left()->set_parent(retTL);
   238       }
   239       retTL->link_head(nextTC);
   240       assert(nextTC->is_free(), "Should be a free chunk");
   241     }
   242   } else {
   243     if (nextTC == NULL) {
   244       // Removing chunk at tail of list
   245       this->link_tail(prevFC);
   246     }
   247     // Chunk is interior to the list
   248     prevFC->link_after(nextTC);
   249   }
   251   // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
   252   // tree node may have changed. Don't use "this"
   253   // TreeList<Chunk_t, FreeList_t>*.
   254   // chunk should still be a free chunk (bit set in _prev)
   255   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   256     "Wrong sized chunk in list");
   257   debug_only(
   258     tc->link_prev(NULL);
   259     tc->link_next(NULL);
   260     tc->set_list(NULL);
   261     bool prev_found = false;
   262     bool next_found = false;
   263     for (Chunk_t* curFC = retTL->head();
   264          curFC != NULL; curFC = curFC->next()) {
   265       assert(curFC != tc, "Chunk is still in list");
   266       if (curFC == prevFC) {
   267         prev_found = true;
   268       }
   269       if (curFC == nextTC) {
   270         next_found = true;
   271       }
   272     }
   273     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   274     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   275     assert(retTL->parent() == NULL ||
   276            retTL == retTL->parent()->left() ||
   277            retTL == retTL->parent()->right(),
   278            "list is inconsistent");
   279   )
   280   retTL->decrement_count();
   282   assert(tc->is_free(), "Should still be a free chunk");
   283   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   284     "list invariant");
   285   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   286     "list invariant");
   287   return retTL;
   288 }
   290 template <class Chunk_t, template <class> class FreeList_t>
   291 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   292   assert(chunk != NULL, "returning NULL chunk");
   293   assert(chunk->list() == this, "list should be set for chunk");
   294   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   295   // which means that the list can never be empty.
   296   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   297   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   298   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   300   Chunk_t* fc = tail();
   301   fc->link_after(chunk);
   302   this->link_tail(chunk);
   304   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   305   FreeList_t<Chunk_t>::increment_count();
   306   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   307   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   308   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   309 }
   311 // Add this chunk at the head of the list.  "At the head of the list"
   312 // is defined to be after the chunk pointer to by head().  This is
   313 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
   314 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
   315 template <class Chunk_t, template <class> class FreeList_t>
   316 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   317   assert(chunk->list() == this, "list should be set for chunk");
   318   assert(head() != NULL, "The tree list is embedded in the first chunk");
   319   assert(chunk != NULL, "returning NULL chunk");
   320   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   321   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   322   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   324   Chunk_t* fc = head()->next();
   325   if (fc != NULL) {
   326     chunk->link_after(fc);
   327   } else {
   328     assert(tail() == NULL, "List is inconsistent");
   329     this->link_tail(chunk);
   330   }
   331   head()->link_after(chunk);
   332   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   333   FreeList_t<Chunk_t>::increment_count();
   334   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   335   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   336   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   337 }
   339 template <class Chunk_t, template <class> class FreeList_t>
   340 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
   341   assert((ZapUnusedHeapArea &&
   342           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
   343           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
   344           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
   345           (size() == 0 && prev() == NULL && next() == NULL),
   346     "Space should be clear or mangled");
   347 }
   349 template <class Chunk_t, template <class> class FreeList_t>
   350 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
   351   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
   352     "Wrong type of chunk?");
   353   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
   354 }
   356 template <class Chunk_t, template <class> class FreeList_t>
   357 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
   358   assert(head() != NULL, "The head of the list cannot be NULL");
   359   Chunk_t* fc = head()->next();
   360   TreeChunk<Chunk_t, FreeList_t>* retTC;
   361   if (fc == NULL) {
   362     retTC = head_as_TreeChunk();
   363   } else {
   364     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   365   }
   366   assert(retTC->list() == this, "Wrong type of chunk.");
   367   return retTC;
   368 }
   370 // Returns the block with the largest heap address amongst
   371 // those in the list for this size; potentially slow and expensive,
   372 // use with caution!
   373 template <class Chunk_t, template <class> class FreeList_t>
   374 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
   375   assert(head() != NULL, "The head of the list cannot be NULL");
   376   Chunk_t* fc = head()->next();
   377   TreeChunk<Chunk_t, FreeList_t>* retTC;
   378   if (fc == NULL) {
   379     retTC = head_as_TreeChunk();
   380   } else {
   381     // walk down the list and return the one with the highest
   382     // heap address among chunks of this size.
   383     Chunk_t* last = fc;
   384     while (fc->next() != NULL) {
   385       if ((HeapWord*)last < (HeapWord*)fc) {
   386         last = fc;
   387       }
   388       fc = fc->next();
   389     }
   390     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
   391   }
   392   assert(retTC->list() == this, "Wrong type of chunk.");
   393   return retTC;
   394 }
   396 template <class Chunk_t, template <class> class FreeList_t>
   397 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
   398   assert((mr.byte_size() > min_size()), "minimum chunk size");
   400   reset(mr);
   401   assert(root()->left() == NULL, "reset check failed");
   402   assert(root()->right() == NULL, "reset check failed");
   403   assert(root()->head()->next() == NULL, "reset check failed");
   404   assert(root()->head()->prev() == NULL, "reset check failed");
   405   assert(total_size() == root()->size(), "reset check failed");
   406   assert(total_free_blocks() == 1, "reset check failed");
   407 }
   409 template <class Chunk_t, template <class> class FreeList_t>
   410 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
   411   _total_size = _total_size + inc;
   412 }
   414 template <class Chunk_t, template <class> class FreeList_t>
   415 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
   416   _total_size = _total_size - dec;
   417 }
   419 template <class Chunk_t, template <class> class FreeList_t>
   420 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
   421   assert((mr.byte_size() > min_size()), "minimum chunk size");
   422   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
   423   set_total_size(mr.word_size());
   424   set_total_free_blocks(1);
   425 }
   427 template <class Chunk_t, template <class> class FreeList_t>
   428 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
   429   MemRegion mr(addr, heap_word_size(byte_size));
   430   reset(mr);
   431 }
   433 template <class Chunk_t, template <class> class FreeList_t>
   434 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
   435   set_root(NULL);
   436   set_total_size(0);
   437   set_total_free_blocks(0);
   438 }
   440 // Get a free block of size at least size from tree, or NULL.
   441 template <class Chunk_t, template <class> class FreeList_t>
   442 TreeChunk<Chunk_t, FreeList_t>*
   443 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
   444                               size_t size,
   445                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
   446 {
   447   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   448   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
   450   assert((size >= min_size()), "minimum chunk size");
   451   if (FLSVerifyDictionary) {
   452     verify_tree();
   453   }
   454   // starting at the root, work downwards trying to find match.
   455   // Remember the last node of size too great or too small.
   456   for (prevTL = curTL = root(); curTL != NULL;) {
   457     if (curTL->size() == size) {        // exact match
   458       break;
   459     }
   460     prevTL = curTL;
   461     if (curTL->size() < size) {        // proceed to right sub-tree
   462       curTL = curTL->right();
   463     } else {                           // proceed to left sub-tree
   464       assert(curTL->size() > size, "size inconsistency");
   465       curTL = curTL->left();
   466     }
   467   }
   468   if (curTL == NULL) { // couldn't find exact match
   470     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
   472     // try and find the next larger size by walking back up the search path
   473     for (curTL = prevTL; curTL != NULL;) {
   474       if (curTL->size() >= size) break;
   475       else curTL = curTL->parent();
   476     }
   477     assert(curTL == NULL || curTL->count() > 0,
   478       "An empty list should not be in the tree");
   479   }
   480   if (curTL != NULL) {
   481     assert(curTL->size() >= size, "size inconsistency");
   483     curTL = curTL->get_better_list(this);
   485     retTC = curTL->first_available();
   486     assert((retTC != NULL) && (curTL->count() > 0),
   487       "A list in the binary tree should not be NULL");
   488     assert(retTC->size() >= size,
   489       "A chunk of the wrong size was found");
   490     remove_chunk_from_tree(retTC);
   491     assert(retTC->is_free(), "Header is not marked correctly");
   492   }
   494   if (FLSVerifyDictionary) {
   495     verify();
   496   }
   497   return retTC;
   498 }
   500 template <class Chunk_t, template <class> class FreeList_t>
   501 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
   502   TreeList<Chunk_t, FreeList_t>* curTL;
   503   for (curTL = root(); curTL != NULL;) {
   504     if (curTL->size() == size) {        // exact match
   505       break;
   506     }
   508     if (curTL->size() < size) {        // proceed to right sub-tree
   509       curTL = curTL->right();
   510     } else {                           // proceed to left sub-tree
   511       assert(curTL->size() > size, "size inconsistency");
   512       curTL = curTL->left();
   513     }
   514   }
   515   return curTL;
   516 }
   519 template <class Chunk_t, template <class> class FreeList_t>
   520 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
   521   size_t size = tc->size();
   522   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
   523   if (tl == NULL) {
   524     return false;
   525   } else {
   526     return tl->verify_chunk_in_free_list(tc);
   527   }
   528 }
   530 template <class Chunk_t, template <class> class FreeList_t>
   531 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
   532   TreeList<Chunk_t, FreeList_t> *curTL = root();
   533   if (curTL != NULL) {
   534     while(curTL->right() != NULL) curTL = curTL->right();
   535     return curTL->largest_address();
   536   } else {
   537     return NULL;
   538   }
   539 }
   541 // Remove the current chunk from the tree.  If it is not the last
   542 // chunk in a list on a tree node, just unlink it.
   543 // If it is the last chunk in the list (the next link is NULL),
   544 // remove the node and repair the tree.
   545 template <class Chunk_t, template <class> class FreeList_t>
   546 TreeChunk<Chunk_t, FreeList_t>*
   547 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
   548   assert(tc != NULL, "Should not call with a NULL chunk");
   549   assert(tc->is_free(), "Header is not marked correctly");
   551   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
   552   TreeChunk<Chunk_t, FreeList_t>* retTC;
   553   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
   554   debug_only(
   555     bool removing_only_chunk = false;
   556     if (tl == _root) {
   557       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   558         if (_root->count() == 1) {
   559           assert(_root->head() == tc, "Should only be this one chunk");
   560           removing_only_chunk = true;
   561         }
   562       }
   563     }
   564   )
   565   assert(tl != NULL, "List should be set");
   566   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   567          tl == tl->parent()->right(), "list is inconsistent");
   569   bool complicated_splice = false;
   571   retTC = tc;
   572   // Removing this chunk can have the side effect of changing the node
   573   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
   574   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
   575   assert(tc->is_free(), "Chunk should still be free");
   576   assert(replacementTL->parent() == NULL ||
   577          replacementTL == replacementTL->parent()->left() ||
   578          replacementTL == replacementTL->parent()->right(),
   579          "list is inconsistent");
   580   if (tl == root()) {
   581     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   582     set_root(replacementTL);
   583   }
   584 #ifdef ASSERT
   585     if (tl != replacementTL) {
   586       assert(replacementTL->head() != NULL,
   587         "If the tree list was replaced, it should not be a NULL list");
   588       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
   589       TreeList<Chunk_t, FreeList_t>* rtl =
   590         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
   591       assert(rhl == replacementTL, "Broken head");
   592       assert(rtl == replacementTL, "Broken tail");
   593       assert(replacementTL->size() == tc->size(),  "Broken size");
   594     }
   595 #endif
   597   // Does the tree need to be repaired?
   598   if (replacementTL->count() == 0) {
   599     assert(replacementTL->head() == NULL &&
   600            replacementTL->tail() == NULL, "list count is incorrect");
   601     // Find the replacement node for the (soon to be empty) node being removed.
   602     // if we have a single (or no) child, splice child in our stead
   603     if (replacementTL->left() == NULL) {
   604       // left is NULL so pick right.  right may also be NULL.
   605       newTL = replacementTL->right();
   606       debug_only(replacementTL->clear_right();)
   607     } else if (replacementTL->right() == NULL) {
   608       // right is NULL
   609       newTL = replacementTL->left();
   610       debug_only(replacementTL->clear_left();)
   611     } else {  // we have both children, so, by patriarchal convention,
   612               // my replacement is least node in right sub-tree
   613       complicated_splice = true;
   614       newTL = remove_tree_minimum(replacementTL->right());
   615       assert(newTL != NULL && newTL->left() == NULL &&
   616              newTL->right() == NULL, "sub-tree minimum exists");
   617     }
   618     // newTL is the replacement for the (soon to be empty) node.
   619     // newTL may be NULL.
   620     // should verify; we just cleanly excised our replacement
   621     if (FLSVerifyDictionary) {
   622       verify_tree();
   623     }
   624     // first make newTL my parent's child
   625     if ((parentTL = replacementTL->parent()) == NULL) {
   626       // newTL should be root
   627       assert(tl == root(), "Incorrectly replacing root");
   628       set_root(newTL);
   629       if (newTL != NULL) {
   630         newTL->clear_parent();
   631       }
   632     } else if (parentTL->right() == replacementTL) {
   633       // replacementTL is a right child
   634       parentTL->set_right(newTL);
   635     } else {                                // replacementTL is a left child
   636       assert(parentTL->left() == replacementTL, "should be left child");
   637       parentTL->set_left(newTL);
   638     }
   639     debug_only(replacementTL->clear_parent();)
   640     if (complicated_splice) {  // we need newTL to get replacementTL's
   641                               // two children
   642       assert(newTL != NULL &&
   643              newTL->left() == NULL && newTL->right() == NULL,
   644             "newTL should not have encumbrances from the past");
   645       // we'd like to assert as below:
   646       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   647       //       "else !complicated_splice");
   648       // ... however, the above assertion is too strong because we aren't
   649       // guaranteed that replacementTL->right() is still NULL.
   650       // Recall that we removed
   651       // the right sub-tree minimum from replacementTL.
   652       // That may well have been its right
   653       // child! So we'll just assert half of the above:
   654       assert(replacementTL->left() != NULL, "else !complicated_splice");
   655       newTL->set_left(replacementTL->left());
   656       newTL->set_right(replacementTL->right());
   657       debug_only(
   658         replacementTL->clear_right();
   659         replacementTL->clear_left();
   660       )
   661     }
   662     assert(replacementTL->right() == NULL &&
   663            replacementTL->left() == NULL &&
   664            replacementTL->parent() == NULL,
   665         "delete without encumbrances");
   666   }
   668   assert(total_size() >= retTC->size(), "Incorrect total size");
   669   dec_total_size(retTC->size());     // size book-keeping
   670   assert(total_free_blocks() > 0, "Incorrect total count");
   671   set_total_free_blocks(total_free_blocks() - 1);
   673   assert(retTC != NULL, "null chunk?");
   674   assert(retTC->prev() == NULL && retTC->next() == NULL,
   675          "should return without encumbrances");
   676   if (FLSVerifyDictionary) {
   677     verify_tree();
   678   }
   679   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   680   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
   681 }
   683 // Remove the leftmost node (lm) in the tree and return it.
   684 // If lm has a right child, link it to the left node of
   685 // the parent of lm.
   686 template <class Chunk_t, template <class> class FreeList_t>
   687 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
   688   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   689   // locate the subtree minimum by walking down left branches
   690   TreeList<Chunk_t, FreeList_t>* curTL = tl;
   691   for (; curTL->left() != NULL; curTL = curTL->left());
   692   // obviously curTL now has at most one child, a right child
   693   if (curTL != root()) {  // Should this test just be removed?
   694     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
   695     if (parentTL->left() == curTL) { // curTL is a left child
   696       parentTL->set_left(curTL->right());
   697     } else {
   698       // If the list tl has no left child, then curTL may be
   699       // the right child of parentTL.
   700       assert(parentTL->right() == curTL, "should be a right child");
   701       parentTL->set_right(curTL->right());
   702     }
   703   } else {
   704     // The only use of this method would not pass the root of the
   705     // tree (as indicated by the assertion above that the tree list
   706     // has a parent) but the specification does not explicitly exclude the
   707     // passing of the root so accomodate it.
   708     set_root(NULL);
   709   }
   710   debug_only(
   711     curTL->clear_parent();  // Test if this needs to be cleared
   712     curTL->clear_right();    // recall, above, left child is already null
   713   )
   714   // we just excised a (non-root) node, we should still verify all tree invariants
   715   if (FLSVerifyDictionary) {
   716     verify_tree();
   717   }
   718   return curTL;
   719 }
   721 template <class Chunk_t, template <class> class FreeList_t>
   722 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
   723   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   724   size_t size = fc->size();
   726   assert((size >= min_size()),
   727     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
   728       size, min_size()));
   729   if (FLSVerifyDictionary) {
   730     verify_tree();
   731   }
   733   fc->clear_next();
   734   fc->link_prev(NULL);
   736   // work down from the _root, looking for insertion point
   737   for (prevTL = curTL = root(); curTL != NULL;) {
   738     if (curTL->size() == size)  // exact match
   739       break;
   740     prevTL = curTL;
   741     if (curTL->size() > size) { // follow left branch
   742       curTL = curTL->left();
   743     } else {                    // follow right branch
   744       assert(curTL->size() < size, "size inconsistency");
   745       curTL = curTL->right();
   746     }
   747   }
   748   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   749   // This chunk is being returned to the binary tree.  Its embedded
   750   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
   751   tc->initialize();
   752   if (curTL != NULL) {          // exact match
   753     tc->set_list(curTL);
   754     curTL->return_chunk_at_tail(tc);
   755   } else {                     // need a new node in tree
   756     tc->clear_next();
   757     tc->link_prev(NULL);
   758     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   759     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
   760       "List was not initialized correctly");
   761     if (prevTL == NULL) {      // we are the only tree node
   762       assert(root() == NULL, "control point invariant");
   763       set_root(newTL);
   764     } else {                   // insert under prevTL ...
   765       if (prevTL->size() < size) {   // am right child
   766         assert(prevTL->right() == NULL, "control point invariant");
   767         prevTL->set_right(newTL);
   768       } else {                       // am left child
   769         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   770         prevTL->set_left(newTL);
   771       }
   772     }
   773   }
   774   assert(tc->list() != NULL, "Tree list should be set");
   776   inc_total_size(size);
   777   // Method 'total_size_in_tree' walks through the every block in the
   778   // tree, so it can cause significant performance loss if there are
   779   // many blocks in the tree
   780   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
   781   set_total_free_blocks(total_free_blocks() + 1);
   782   if (FLSVerifyDictionary) {
   783     verify_tree();
   784   }
   785 }
   787 template <class Chunk_t, template <class> class FreeList_t>
   788 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
   789   FreeBlockDictionary<Chunk_t>::verify_par_locked();
   790   TreeList<Chunk_t, FreeList_t>* tc = root();
   791   if (tc == NULL) return 0;
   792   for (; tc->right() != NULL; tc = tc->right());
   793   return tc->size();
   794 }
   796 template <class Chunk_t, template <class> class FreeList_t>
   797 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
   798   size_t res;
   799   res = tl->count();
   800 #ifdef ASSERT
   801   size_t cnt;
   802   Chunk_t* tc = tl->head();
   803   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   804   assert(res == cnt, "The count is not being maintained correctly");
   805 #endif
   806   return res;
   807 }
   809 template <class Chunk_t, template <class> class FreeList_t>
   810 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   811   if (tl == NULL)
   812     return 0;
   813   return (tl->size() * total_list_length(tl)) +
   814          total_size_in_tree(tl->left())    +
   815          total_size_in_tree(tl->right());
   816 }
   818 template <class Chunk_t, template <class> class FreeList_t>
   819 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
   820   if (tl == NULL) {
   821     return 0.0;
   822   }
   823   double size = (double)(tl->size());
   824   double curr = size * size * total_list_length(tl);
   825   curr += sum_of_squared_block_sizes(tl->left());
   826   curr += sum_of_squared_block_sizes(tl->right());
   827   return curr;
   828 }
   830 template <class Chunk_t, template <class> class FreeList_t>
   831 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   832   if (tl == NULL)
   833     return 0;
   834   return total_list_length(tl) +
   835          total_free_blocks_in_tree(tl->left()) +
   836          total_free_blocks_in_tree(tl->right());
   837 }
   839 template <class Chunk_t, template <class> class FreeList_t>
   840 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
   841   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
   842          "_total_free_blocks inconsistency");
   843   return total_free_blocks();
   844 }
   846 template <class Chunk_t, template <class> class FreeList_t>
   847 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   848   if (tl == NULL)
   849     return 0;
   850   return 1 + MAX2(tree_height_helper(tl->left()),
   851                   tree_height_helper(tl->right()));
   852 }
   854 template <class Chunk_t, template <class> class FreeList_t>
   855 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
   856   return tree_height_helper(root());
   857 }
   859 template <class Chunk_t, template <class> class FreeList_t>
   860 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   861   if (tl == NULL) {
   862     return 0;
   863   }
   864   return 1 + total_nodes_helper(tl->left()) +
   865     total_nodes_helper(tl->right());
   866 }
   868 template <class Chunk_t, template <class> class FreeList_t>
   869 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   870   return total_nodes_helper(root());
   871 }
   873 template <class Chunk_t, template <class> class FreeList_t>
   874 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
   876 #if INCLUDE_ALL_GCS
   877 template <>
   878 void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth){
   879   TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
   880   if (nd) {
   881     if (split) {
   882       if (birth) {
   883         nd->increment_split_births();
   884         nd->increment_surplus();
   885       }  else {
   886         nd->increment_split_deaths();
   887         nd->decrement_surplus();
   888       }
   889     } else {
   890       if (birth) {
   891         nd->increment_coal_births();
   892         nd->increment_surplus();
   893       } else {
   894         nd->increment_coal_deaths();
   895         nd->decrement_surplus();
   896       }
   897     }
   898   }
   899   // A list for this size may not be found (nd == 0) if
   900   //   This is a death where the appropriate list is now
   901   //     empty and has been removed from the list.
   902   //   This is a birth associated with a LinAB.  The chunk
   903   //     for the LinAB is not in the dictionary.
   904 }
   905 #endif // INCLUDE_ALL_GCS
   907 template <class Chunk_t, template <class> class FreeList_t>
   908 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
   909   // For the general type of freelists, encourage coalescing by
   910   // returning true.
   911   return true;
   912 }
   914 #if INCLUDE_ALL_GCS
   915 template <>
   916 bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
   917   if (FLSAlwaysCoalesceLarge) return true;
   919   TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
   920   // None of requested size implies overpopulated.
   921   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
   922          list_of_size->count() > list_of_size->coal_desired();
   923 }
   924 #endif // INCLUDE_ALL_GCS
   926 // Closures for walking the binary tree.
   927 //   do_list() walks the free list in a node applying the closure
   928 //     to each free chunk in the list
   929 //   do_tree() walks the nodes in the binary tree applying do_list()
   930 //     to each list at each node.
   932 template <class Chunk_t, template <class> class FreeList_t>
   933 class TreeCensusClosure : public StackObj {
   934  protected:
   935   virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
   936  public:
   937   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
   938 };
   940 template <class Chunk_t, template <class> class FreeList_t>
   941 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   942  public:
   943   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   944     if (tl != NULL) {
   945       do_tree(tl->left());
   946       this->do_list(tl);
   947       do_tree(tl->right());
   948     }
   949   }
   950 };
   952 template <class Chunk_t, template <class> class FreeList_t>
   953 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   954  public:
   955   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   956     if (tl != NULL) {
   957       do_tree(tl->right());
   958       this->do_list(tl);
   959       do_tree(tl->left());
   960     }
   961   }
   962 };
   964 // For each list in the tree, calculate the desired, desired
   965 // coalesce, count before sweep, and surplus before sweep.
   966 template <class Chunk_t, template <class> class FreeList_t>
   967 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   968   double _percentage;
   969   float _inter_sweep_current;
   970   float _inter_sweep_estimate;
   971   float _intra_sweep_estimate;
   973  public:
   974   BeginSweepClosure(double p, float inter_sweep_current,
   975                               float inter_sweep_estimate,
   976                               float intra_sweep_estimate) :
   977    _percentage(p),
   978    _inter_sweep_current(inter_sweep_current),
   979    _inter_sweep_estimate(inter_sweep_estimate),
   980    _intra_sweep_estimate(intra_sweep_estimate) { }
   982   void do_list(FreeList<Chunk_t>* fl) {}
   984 #if INCLUDE_ALL_GCS
   985   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
   986     double coalSurplusPercent = _percentage;
   987     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
   988     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   989     fl->set_before_sweep(fl->count());
   990     fl->set_bfr_surp(fl->surplus());
   991   }
   992 #endif // INCLUDE_ALL_GCS
   993 };
   995 // Used to search the tree until a condition is met.
   996 // Similar to TreeCensusClosure but searches the
   997 // tree and returns promptly when found.
   999 template <class Chunk_t, template <class> class FreeList_t>
  1000 class TreeSearchClosure : public StackObj {
  1001  protected:
  1002   virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
  1003  public:
  1004   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
  1005 };
  1007 #if 0 //  Don't need this yet but here for symmetry.
  1008 template <class Chunk_t, template <class> class FreeList_t>
  1009 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
  1010  public:
  1011   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1012     if (tl != NULL) {
  1013       if (do_tree(tl->left())) return true;
  1014       if (do_list(tl)) return true;
  1015       if (do_tree(tl->right())) return true;
  1017     return false;
  1019 };
  1020 #endif
  1022 template <class Chunk_t, template <class> class FreeList_t>
  1023 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
  1024  public:
  1025   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1026     if (tl != NULL) {
  1027       if (do_tree(tl->right())) return true;
  1028       if (this->do_list(tl)) return true;
  1029       if (do_tree(tl->left())) return true;
  1031     return false;
  1033 };
  1035 // Searches the tree for a chunk that ends at the
  1036 // specified address.
  1037 template <class Chunk_t, template <class> class FreeList_t>
  1038 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
  1039   HeapWord* _target;
  1040   Chunk_t* _found;
  1042  public:
  1043   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  1044   bool do_list(FreeList_t<Chunk_t>* fl) {
  1045     Chunk_t* item = fl->head();
  1046     while (item != NULL) {
  1047       if (item->end() == (uintptr_t*) _target) {
  1048         _found = item;
  1049         return true;
  1051       item = item->next();
  1053     return false;
  1055   Chunk_t* found() { return _found; }
  1056 };
  1058 template <class Chunk_t, template <class> class FreeList_t>
  1059 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
  1060   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
  1061   bool found_target = etsc.do_tree(root());
  1062   assert(found_target || etsc.found() == NULL, "Consistency check");
  1063   assert(!found_target || etsc.found() != NULL, "Consistency check");
  1064   return etsc.found();
  1067 template <class Chunk_t, template <class> class FreeList_t>
  1068 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
  1069   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  1070   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
  1071                                             inter_sweep_estimate,
  1072                                             intra_sweep_estimate);
  1073   bsc.do_tree(root());
  1076 // Closures and methods for calculating total bytes returned to the
  1077 // free lists in the tree.
  1078 #ifndef PRODUCT
  1079 template <class Chunk_t, template <class> class FreeList_t>
  1080 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1081    public:
  1082   void do_list(FreeList_t<Chunk_t>* fl) {
  1083     fl->set_returned_bytes(0);
  1085 };
  1087 template <class Chunk_t, template <class> class FreeList_t>
  1088 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
  1089   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
  1090   idrb.do_tree(root());
  1093 template <class Chunk_t, template <class> class FreeList_t>
  1094 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1095   size_t _dict_returned_bytes;
  1096  public:
  1097   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
  1098   void do_list(FreeList_t<Chunk_t>* fl) {
  1099     _dict_returned_bytes += fl->returned_bytes();
  1101   size_t dict_returned_bytes() { return _dict_returned_bytes; }
  1102 };
  1104 template <class Chunk_t, template <class> class FreeList_t>
  1105 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
  1106   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
  1107   rbc.do_tree(root());
  1109   return rbc.dict_returned_bytes();
  1112 // Count the number of entries in the tree.
  1113 template <class Chunk_t, template <class> class FreeList_t>
  1114 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1115  public:
  1116   uint count;
  1117   treeCountClosure(uint c) { count = c; }
  1118   void do_list(FreeList_t<Chunk_t>* fl) {
  1119     count++;
  1121 };
  1123 template <class Chunk_t, template <class> class FreeList_t>
  1124 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
  1125   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
  1126   ctc.do_tree(root());
  1127   return ctc.count;
  1129 #endif // PRODUCT
  1131 // Calculate surpluses for the lists in the tree.
  1132 template <class Chunk_t, template <class> class FreeList_t>
  1133 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1134   double percentage;
  1135  public:
  1136   setTreeSurplusClosure(double v) { percentage = v; }
  1137   void do_list(FreeList<Chunk_t>* fl) {}
  1139 #if INCLUDE_ALL_GCS
  1140   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1141     double splitSurplusPercent = percentage;
  1142     fl->set_surplus(fl->count() -
  1143                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1145 #endif // INCLUDE_ALL_GCS
  1146 };
  1148 template <class Chunk_t, template <class> class FreeList_t>
  1149 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
  1150   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
  1151   sts.do_tree(root());
  1154 // Set hints for the lists in the tree.
  1155 template <class Chunk_t, template <class> class FreeList_t>
  1156 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1157   size_t hint;
  1158  public:
  1159   setTreeHintsClosure(size_t v) { hint = v; }
  1160   void do_list(FreeList<Chunk_t>* fl) {}
  1162 #if INCLUDE_ALL_GCS
  1163   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1164     fl->set_hint(hint);
  1165     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1166       "Current hint is inconsistent");
  1167     if (fl->surplus() > 0) {
  1168       hint = fl->size();
  1171 #endif // INCLUDE_ALL_GCS
  1172 };
  1174 template <class Chunk_t, template <class> class FreeList_t>
  1175 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
  1176   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
  1177   sth.do_tree(root());
  1180 // Save count before previous sweep and splits and coalesces.
  1181 template <class Chunk_t, template <class> class FreeList_t>
  1182 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1183   void do_list(FreeList<Chunk_t>* fl) {}
  1185 #if INCLUDE_ALL_GCS
  1186   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1187     fl->set_prev_sweep(fl->count());
  1188     fl->set_coal_births(0);
  1189     fl->set_coal_deaths(0);
  1190     fl->set_split_births(0);
  1191     fl->set_split_deaths(0);
  1193 #endif // INCLUDE_ALL_GCS
  1194 };
  1196 template <class Chunk_t, template <class> class FreeList_t>
  1197 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
  1198   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
  1199   ctc.do_tree(root());
  1202 // Do reporting and post sweep clean up.
  1203 template <class Chunk_t, template <class> class FreeList_t>
  1204 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
  1205   // Does walking the tree 3 times hurt?
  1206   set_tree_surplus(splitSurplusPercent);
  1207   set_tree_hints();
  1208   if (PrintGC && Verbose) {
  1209     report_statistics();
  1211   clear_tree_census();
  1214 // Print summary statistics
  1215 template <class Chunk_t, template <class> class FreeList_t>
  1216 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
  1217   FreeBlockDictionary<Chunk_t>::verify_par_locked();
  1218   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1219          "------------------------------------\n");
  1220   size_t total_size = total_chunk_size(debug_only(NULL));
  1221   size_t    free_blocks = num_free_blocks();
  1222   gclog_or_tty->print("Total Free Space: %d\n", total_size);
  1223   gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
  1224   gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
  1225   if (free_blocks > 0) {
  1226     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
  1228   gclog_or_tty->print("Tree      Height: %d\n", tree_height());
  1231 // Print census information - counts, births, deaths, etc.
  1232 // for each list in the tree.  Also print some summary
  1233 // information.
  1234 template <class Chunk_t, template <class> class FreeList_t>
  1235 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1236   int _print_line;
  1237   size_t _total_free;
  1238   FreeList_t<Chunk_t> _total;
  1240  public:
  1241   PrintTreeCensusClosure() {
  1242     _print_line = 0;
  1243     _total_free = 0;
  1245   FreeList_t<Chunk_t>* total() { return &_total; }
  1246   size_t total_free() { return _total_free; }
  1247   void do_list(FreeList<Chunk_t>* fl) {
  1248     if (++_print_line >= 40) {
  1249       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1250       _print_line = 0;
  1252     fl->print_on(gclog_or_tty);
  1253     _total_free +=            fl->count()            * fl->size()        ;
  1254     total()->set_count(      total()->count()       + fl->count()      );
  1257 #if INCLUDE_ALL_GCS
  1258   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1259     if (++_print_line >= 40) {
  1260       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1261       _print_line = 0;
  1263     fl->print_on(gclog_or_tty);
  1264     _total_free +=           fl->count()             * fl->size()        ;
  1265     total()->set_count(      total()->count()        + fl->count()      );
  1266     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
  1267     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
  1268     total()->set_desired(    total()->desired()      + fl->desired()    );
  1269     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
  1270     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
  1271     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
  1272     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
  1273     total()->set_split_births(total()->split_births() + fl->split_births());
  1274     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
  1276 #endif // INCLUDE_ALL_GCS
  1277 };
  1279 template <class Chunk_t, template <class> class FreeList_t>
  1280 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
  1282   gclog_or_tty->print("\nBinaryTree\n");
  1283   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1284   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
  1285   ptc.do_tree(root());
  1287   FreeList_t<Chunk_t>* total = ptc.total();
  1288   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
  1291 #if INCLUDE_ALL_GCS
  1292 template <>
  1293 void AFLBinaryTreeDictionary::print_dict_census(void) const {
  1295   gclog_or_tty->print("\nBinaryTree\n");
  1296   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
  1297   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
  1298   ptc.do_tree(root());
  1300   AdaptiveFreeList<FreeChunk>* total = ptc.total();
  1301   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
  1302   total->print_on(gclog_or_tty, "TOTAL\t");
  1303   gclog_or_tty->print(
  1304               "total_free(words): " SIZE_FORMAT_W(16)
  1305               " growth: %8.5f  deficit: %8.5f\n",
  1306               ptc.total_free(),
  1307               (double)(total->split_births() + total->coal_births()
  1308                      - total->split_deaths() - total->coal_deaths())
  1309               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
  1310              (double)(total->desired() - total->count())
  1311              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1313 #endif // INCLUDE_ALL_GCS
  1315 template <class Chunk_t, template <class> class FreeList_t>
  1316 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1317   outputStream* _st;
  1318   int _print_line;
  1320  public:
  1321   PrintFreeListsClosure(outputStream* st) {
  1322     _st = st;
  1323     _print_line = 0;
  1325   void do_list(FreeList_t<Chunk_t>* fl) {
  1326     if (++_print_line >= 40) {
  1327       FreeList_t<Chunk_t>::print_labels_on(_st, "size");
  1328       _print_line = 0;
  1330     fl->print_on(gclog_or_tty);
  1331     size_t sz = fl->size();
  1332     for (Chunk_t* fc = fl->head(); fc != NULL;
  1333          fc = fc->next()) {
  1334       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
  1335                     fc, (HeapWord*)fc + sz,
  1336                     fc->cantCoalesce() ? "\t CC" : "");
  1339 };
  1341 template <class Chunk_t, template <class> class FreeList_t>
  1342 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
  1344   FreeList_t<Chunk_t>::print_labels_on(st, "size");
  1345   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
  1346   pflc.do_tree(root());
  1349 // Verify the following tree invariants:
  1350 // . _root has no parent
  1351 // . parent and child point to each other
  1352 // . each node's key correctly related to that of its child(ren)
  1353 template <class Chunk_t, template <class> class FreeList_t>
  1354 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
  1355   guarantee(root() == NULL || total_free_blocks() == 0 ||
  1356     total_size() != 0, "_total_size should't be 0?");
  1357   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1358   verify_tree_helper(root());
  1361 template <class Chunk_t, template <class> class FreeList_t>
  1362 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
  1363   size_t ct = 0;
  1364   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1365     ct++;
  1366     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
  1367       "Chunk should be free");
  1369   return ct;
  1372 // Note: this helper is recursive rather than iterative, so use with
  1373 // caution on very deep trees; and watch out for stack overflow errors;
  1374 // In general, to be used only for debugging.
  1375 template <class Chunk_t, template <class> class FreeList_t>
  1376 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  1377   if (tl == NULL)
  1378     return;
  1379   guarantee(tl->size() != 0, "A list must has a size");
  1380   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1381          "parent<-/->left");
  1382   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1383          "parent<-/->right");;
  1384   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1385          "parent !> left");
  1386   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1387          "parent !< left");
  1388   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
  1389   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1390     "list inconsistency");
  1391   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1392     "list count is inconsistent");
  1393   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1394     "list is incorrectly constructed");
  1395   size_t count = verify_prev_free_ptrs(tl);
  1396   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1397   if (tl->head() != NULL) {
  1398     tl->head_as_TreeChunk()->verify_tree_chunk_list();
  1400   verify_tree_helper(tl->left());
  1401   verify_tree_helper(tl->right());
  1404 template <class Chunk_t, template <class> class FreeList_t>
  1405 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
  1406   verify_tree();
  1407   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
  1410 template class TreeList<Metablock, FreeList>;
  1411 template class BinaryTreeDictionary<Metablock, FreeList>;
  1412 template class TreeChunk<Metablock, FreeList>;
  1414 template class TreeList<Metachunk, FreeList>;
  1415 template class BinaryTreeDictionary<Metachunk, FreeList>;
  1416 template class TreeChunk<Metachunk, FreeList>;
  1419 #if INCLUDE_ALL_GCS
  1420 // Explicitly instantiate these types for FreeChunk.
  1421 template class TreeList<FreeChunk, AdaptiveFreeList>;
  1422 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
  1423 template class TreeChunk<FreeChunk, AdaptiveFreeList>;
  1425 #endif // INCLUDE_ALL_GCS

mercurial