src/share/vm/oops/methodDataOop.hpp

Thu, 23 Jun 2011 17:14:06 -0700

author
jrose
date
Thu, 23 Jun 2011 17:14:06 -0700
changeset 2982
ddd894528dbc
parent 2877
bad7ecd0b6ed
child 3105
c26de9aef2ed
permissions
-rw-r--r--

7056328: JSR 292 invocation sometimes fails in adapters for types not on boot class path
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/methodOop.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    36 // The MethodData object collects counts and other profile information
    37 // during zeroth-tier (interpretive) and first-tier execution.
    38 // The profile is used later by compilation heuristics.  Some heuristics
    39 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    40 // optimization often has a down-side, a corner case that it handles
    41 // poorly, but which is thought to be rare.  The profile provides
    42 // evidence of this rarity for a given method or even BCI.  It allows
    43 // the compiler to back out of the optimization at places where it
    44 // has historically been a poor choice.  Other heuristics try to use
    45 // specific information gathered about types observed at a given site.
    46 //
    47 // All data in the profile is approximate.  It is expected to be accurate
    48 // on the whole, but the system expects occasional inaccuraces, due to
    49 // counter overflow, multiprocessor races during data collection, space
    50 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    51 // optimization quality but will not affect correctness.  Also, each MDO
    52 // is marked with its birth-date ("creation_mileage") which can be used
    53 // to assess the quality ("maturity") of its data.
    54 //
    55 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    56 // state.  Also, certain recorded per-BCI events are given one-bit counters
    57 // which overflow to a saturated state which applied to all counters at
    58 // that BCI.  In other words, there is a small lattice which approximates
    59 // the ideal of an infinite-precision counter for each event at each BCI,
    60 // and the lattice quickly "bottoms out" in a state where all counters
    61 // are taken to be indefinitely large.
    62 //
    63 // The reader will find many data races in profile gathering code, starting
    64 // with invocation counter incrementation.  None of these races harm correct
    65 // execution of the compiled code.
    67 // forward decl
    68 class ProfileData;
    70 // DataLayout
    71 //
    72 // Overlay for generic profiling data.
    73 class DataLayout VALUE_OBJ_CLASS_SPEC {
    74 private:
    75   // Every data layout begins with a header.  This header
    76   // contains a tag, which is used to indicate the size/layout
    77   // of the data, 4 bits of flags, which can be used in any way,
    78   // 4 bits of trap history (none/one reason/many reasons),
    79   // and a bci, which is used to tie this piece of data to a
    80   // specific bci in the bytecodes.
    81   union {
    82     intptr_t _bits;
    83     struct {
    84       u1 _tag;
    85       u1 _flags;
    86       u2 _bci;
    87     } _struct;
    88   } _header;
    90   // The data layout has an arbitrary number of cells, each sized
    91   // to accomodate a pointer or an integer.
    92   intptr_t _cells[1];
    94   // Some types of data layouts need a length field.
    95   static bool needs_array_len(u1 tag);
    97 public:
    98   enum {
    99     counter_increment = 1
   100   };
   102   enum {
   103     cell_size = sizeof(intptr_t)
   104   };
   106   // Tag values
   107   enum {
   108     no_tag,
   109     bit_data_tag,
   110     counter_data_tag,
   111     jump_data_tag,
   112     receiver_type_data_tag,
   113     virtual_call_data_tag,
   114     ret_data_tag,
   115     branch_data_tag,
   116     multi_branch_data_tag,
   117     arg_info_data_tag
   118   };
   120   enum {
   121     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   122     // The trap state breaks down further as [recompile:1 | reason:3].
   123     // This further breakdown is defined in deoptimization.cpp.
   124     // See Deoptimization::trap_state_reason for an assert that
   125     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   126     //
   127     // The trap_state is collected only if ProfileTraps is true.
   128     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   129     trap_shift = BitsPerByte - trap_bits,
   130     trap_mask = right_n_bits(trap_bits),
   131     trap_mask_in_place = (trap_mask << trap_shift),
   132     flag_limit = trap_shift,
   133     flag_mask = right_n_bits(flag_limit),
   134     first_flag = 0
   135   };
   137   // Size computation
   138   static int header_size_in_bytes() {
   139     return cell_size;
   140   }
   141   static int header_size_in_cells() {
   142     return 1;
   143   }
   145   static int compute_size_in_bytes(int cell_count) {
   146     return header_size_in_bytes() + cell_count * cell_size;
   147   }
   149   // Initialization
   150   void initialize(u1 tag, u2 bci, int cell_count);
   152   // Accessors
   153   u1 tag() {
   154     return _header._struct._tag;
   155   }
   157   // Return a few bits of trap state.  Range is [0..trap_mask].
   158   // The state tells if traps with zero, one, or many reasons have occurred.
   159   // It also tells whether zero or many recompilations have occurred.
   160   // The associated trap histogram in the MDO itself tells whether
   161   // traps are common or not.  If a BCI shows that a trap X has
   162   // occurred, and the MDO shows N occurrences of X, we make the
   163   // simplifying assumption that all N occurrences can be blamed
   164   // on that BCI.
   165   int trap_state() {
   166     return ((_header._struct._flags >> trap_shift) & trap_mask);
   167   }
   169   void set_trap_state(int new_state) {
   170     assert(ProfileTraps, "used only under +ProfileTraps");
   171     uint old_flags = (_header._struct._flags & flag_mask);
   172     _header._struct._flags = (new_state << trap_shift) | old_flags;
   173   }
   175   u1 flags() {
   176     return _header._struct._flags;
   177   }
   179   u2 bci() {
   180     return _header._struct._bci;
   181   }
   183   void set_header(intptr_t value) {
   184     _header._bits = value;
   185   }
   186   void release_set_header(intptr_t value) {
   187     OrderAccess::release_store_ptr(&_header._bits, value);
   188   }
   189   intptr_t header() {
   190     return _header._bits;
   191   }
   192   void set_cell_at(int index, intptr_t value) {
   193     _cells[index] = value;
   194   }
   195   void release_set_cell_at(int index, intptr_t value) {
   196     OrderAccess::release_store_ptr(&_cells[index], value);
   197   }
   198   intptr_t cell_at(int index) {
   199     return _cells[index];
   200   }
   201   intptr_t* adr_cell_at(int index) {
   202     return &_cells[index];
   203   }
   204   oop* adr_oop_at(int index) {
   205     return (oop*)&(_cells[index]);
   206   }
   208   void set_flag_at(int flag_number) {
   209     assert(flag_number < flag_limit, "oob");
   210     _header._struct._flags |= (0x1 << flag_number);
   211   }
   212   bool flag_at(int flag_number) {
   213     assert(flag_number < flag_limit, "oob");
   214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   215   }
   217   // Low-level support for code generation.
   218   static ByteSize header_offset() {
   219     return byte_offset_of(DataLayout, _header);
   220   }
   221   static ByteSize tag_offset() {
   222     return byte_offset_of(DataLayout, _header._struct._tag);
   223   }
   224   static ByteSize flags_offset() {
   225     return byte_offset_of(DataLayout, _header._struct._flags);
   226   }
   227   static ByteSize bci_offset() {
   228     return byte_offset_of(DataLayout, _header._struct._bci);
   229   }
   230   static ByteSize cell_offset(int index) {
   231     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   232   }
   233   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   234   static int flag_number_to_byte_constant(int flag_number) {
   235     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   236     DataLayout temp; temp.set_header(0);
   237     temp.set_flag_at(flag_number);
   238     return temp._header._struct._flags;
   239   }
   240   // Return a value which, when or-ed as a word into _header, sets the flag.
   241   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   242     DataLayout temp; temp.set_header(0);
   243     temp._header._struct._flags = byte_constant;
   244     return temp._header._bits;
   245   }
   247   // GC support
   248   ProfileData* data_in();
   249   void follow_weak_refs(BoolObjectClosure* cl);
   250 };
   253 // ProfileData class hierarchy
   254 class ProfileData;
   255 class   BitData;
   256 class     CounterData;
   257 class       ReceiverTypeData;
   258 class         VirtualCallData;
   259 class       RetData;
   260 class   JumpData;
   261 class     BranchData;
   262 class   ArrayData;
   263 class     MultiBranchData;
   264 class     ArgInfoData;
   267 // ProfileData
   268 //
   269 // A ProfileData object is created to refer to a section of profiling
   270 // data in a structured way.
   271 class ProfileData : public ResourceObj {
   272 private:
   273 #ifndef PRODUCT
   274   enum {
   275     tab_width_one = 16,
   276     tab_width_two = 36
   277   };
   278 #endif // !PRODUCT
   280   // This is a pointer to a section of profiling data.
   281   DataLayout* _data;
   283 protected:
   284   DataLayout* data() { return _data; }
   286   enum {
   287     cell_size = DataLayout::cell_size
   288   };
   290 public:
   291   // How many cells are in this?
   292   virtual int cell_count() {
   293     ShouldNotReachHere();
   294     return -1;
   295   }
   297   // Return the size of this data.
   298   int size_in_bytes() {
   299     return DataLayout::compute_size_in_bytes(cell_count());
   300   }
   302 protected:
   303   // Low-level accessors for underlying data
   304   void set_intptr_at(int index, intptr_t value) {
   305     assert(0 <= index && index < cell_count(), "oob");
   306     data()->set_cell_at(index, value);
   307   }
   308   void release_set_intptr_at(int index, intptr_t value) {
   309     assert(0 <= index && index < cell_count(), "oob");
   310     data()->release_set_cell_at(index, value);
   311   }
   312   intptr_t intptr_at(int index) {
   313     assert(0 <= index && index < cell_count(), "oob");
   314     return data()->cell_at(index);
   315   }
   316   void set_uint_at(int index, uint value) {
   317     set_intptr_at(index, (intptr_t) value);
   318   }
   319   void release_set_uint_at(int index, uint value) {
   320     release_set_intptr_at(index, (intptr_t) value);
   321   }
   322   uint uint_at(int index) {
   323     return (uint)intptr_at(index);
   324   }
   325   void set_int_at(int index, int value) {
   326     set_intptr_at(index, (intptr_t) value);
   327   }
   328   void release_set_int_at(int index, int value) {
   329     release_set_intptr_at(index, (intptr_t) value);
   330   }
   331   int int_at(int index) {
   332     return (int)intptr_at(index);
   333   }
   334   int int_at_unchecked(int index) {
   335     return (int)data()->cell_at(index);
   336   }
   337   void set_oop_at(int index, oop value) {
   338     set_intptr_at(index, (intptr_t) value);
   339   }
   340   oop oop_at(int index) {
   341     return (oop)intptr_at(index);
   342   }
   343   oop* adr_oop_at(int index) {
   344     assert(0 <= index && index < cell_count(), "oob");
   345     return data()->adr_oop_at(index);
   346   }
   348   void set_flag_at(int flag_number) {
   349     data()->set_flag_at(flag_number);
   350   }
   351   bool flag_at(int flag_number) {
   352     return data()->flag_at(flag_number);
   353   }
   355   // two convenient imports for use by subclasses:
   356   static ByteSize cell_offset(int index) {
   357     return DataLayout::cell_offset(index);
   358   }
   359   static int flag_number_to_byte_constant(int flag_number) {
   360     return DataLayout::flag_number_to_byte_constant(flag_number);
   361   }
   363   ProfileData(DataLayout* data) {
   364     _data = data;
   365   }
   367 public:
   368   // Constructor for invalid ProfileData.
   369   ProfileData();
   371   u2 bci() {
   372     return data()->bci();
   373   }
   375   address dp() {
   376     return (address)_data;
   377   }
   379   int trap_state() {
   380     return data()->trap_state();
   381   }
   382   void set_trap_state(int new_state) {
   383     data()->set_trap_state(new_state);
   384   }
   386   // Type checking
   387   virtual bool is_BitData()         { return false; }
   388   virtual bool is_CounterData()     { return false; }
   389   virtual bool is_JumpData()        { return false; }
   390   virtual bool is_ReceiverTypeData(){ return false; }
   391   virtual bool is_VirtualCallData() { return false; }
   392   virtual bool is_RetData()         { return false; }
   393   virtual bool is_BranchData()      { return false; }
   394   virtual bool is_ArrayData()       { return false; }
   395   virtual bool is_MultiBranchData() { return false; }
   396   virtual bool is_ArgInfoData()     { return false; }
   399   BitData* as_BitData() {
   400     assert(is_BitData(), "wrong type");
   401     return is_BitData()         ? (BitData*)        this : NULL;
   402   }
   403   CounterData* as_CounterData() {
   404     assert(is_CounterData(), "wrong type");
   405     return is_CounterData()     ? (CounterData*)    this : NULL;
   406   }
   407   JumpData* as_JumpData() {
   408     assert(is_JumpData(), "wrong type");
   409     return is_JumpData()        ? (JumpData*)       this : NULL;
   410   }
   411   ReceiverTypeData* as_ReceiverTypeData() {
   412     assert(is_ReceiverTypeData(), "wrong type");
   413     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   414   }
   415   VirtualCallData* as_VirtualCallData() {
   416     assert(is_VirtualCallData(), "wrong type");
   417     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   418   }
   419   RetData* as_RetData() {
   420     assert(is_RetData(), "wrong type");
   421     return is_RetData()         ? (RetData*)        this : NULL;
   422   }
   423   BranchData* as_BranchData() {
   424     assert(is_BranchData(), "wrong type");
   425     return is_BranchData()      ? (BranchData*)     this : NULL;
   426   }
   427   ArrayData* as_ArrayData() {
   428     assert(is_ArrayData(), "wrong type");
   429     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   430   }
   431   MultiBranchData* as_MultiBranchData() {
   432     assert(is_MultiBranchData(), "wrong type");
   433     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   434   }
   435   ArgInfoData* as_ArgInfoData() {
   436     assert(is_ArgInfoData(), "wrong type");
   437     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   438   }
   441   // Subclass specific initialization
   442   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
   444   // GC support
   445   virtual void follow_contents() {}
   446   virtual void oop_iterate(OopClosure* blk) {}
   447   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
   448   virtual void adjust_pointers() {}
   449   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
   451 #ifndef SERIALGC
   452   // Parallel old support
   453   virtual void follow_contents(ParCompactionManager* cm) {}
   454   virtual void update_pointers() {}
   455 #endif // SERIALGC
   457   // CI translation: ProfileData can represent both MethodDataOop data
   458   // as well as CIMethodData data. This function is provided for translating
   459   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   460   // most ProfileData don't require any translation, so we provide the null
   461   // translation here, and the required translators are in the ci subclasses.
   462   virtual void translate_from(ProfileData* data) {}
   464   virtual void print_data_on(outputStream* st) {
   465     ShouldNotReachHere();
   466   }
   468 #ifndef PRODUCT
   469   void print_shared(outputStream* st, const char* name);
   470   void tab(outputStream* st);
   471 #endif
   472 };
   474 // BitData
   475 //
   476 // A BitData holds a flag or two in its header.
   477 class BitData : public ProfileData {
   478 protected:
   479   enum {
   480     // null_seen:
   481     //  saw a null operand (cast/aastore/instanceof)
   482     null_seen_flag              = DataLayout::first_flag + 0
   483   };
   484   enum { bit_cell_count = 0 };  // no additional data fields needed.
   485 public:
   486   BitData(DataLayout* layout) : ProfileData(layout) {
   487   }
   489   virtual bool is_BitData() { return true; }
   491   static int static_cell_count() {
   492     return bit_cell_count;
   493   }
   495   virtual int cell_count() {
   496     return static_cell_count();
   497   }
   499   // Accessor
   501   // The null_seen flag bit is specially known to the interpreter.
   502   // Consulting it allows the compiler to avoid setting up null_check traps.
   503   bool null_seen()     { return flag_at(null_seen_flag); }
   504   void set_null_seen()    { set_flag_at(null_seen_flag); }
   507   // Code generation support
   508   static int null_seen_byte_constant() {
   509     return flag_number_to_byte_constant(null_seen_flag);
   510   }
   512   static ByteSize bit_data_size() {
   513     return cell_offset(bit_cell_count);
   514   }
   516 #ifndef PRODUCT
   517   void print_data_on(outputStream* st);
   518 #endif
   519 };
   521 // CounterData
   522 //
   523 // A CounterData corresponds to a simple counter.
   524 class CounterData : public BitData {
   525 protected:
   526   enum {
   527     count_off,
   528     counter_cell_count
   529   };
   530 public:
   531   CounterData(DataLayout* layout) : BitData(layout) {}
   533   virtual bool is_CounterData() { return true; }
   535   static int static_cell_count() {
   536     return counter_cell_count;
   537   }
   539   virtual int cell_count() {
   540     return static_cell_count();
   541   }
   543   // Direct accessor
   544   uint count() {
   545     return uint_at(count_off);
   546   }
   548   // Code generation support
   549   static ByteSize count_offset() {
   550     return cell_offset(count_off);
   551   }
   552   static ByteSize counter_data_size() {
   553     return cell_offset(counter_cell_count);
   554   }
   556   void set_count(uint count) {
   557     set_uint_at(count_off, count);
   558   }
   560 #ifndef PRODUCT
   561   void print_data_on(outputStream* st);
   562 #endif
   563 };
   565 // JumpData
   566 //
   567 // A JumpData is used to access profiling information for a direct
   568 // branch.  It is a counter, used for counting the number of branches,
   569 // plus a data displacement, used for realigning the data pointer to
   570 // the corresponding target bci.
   571 class JumpData : public ProfileData {
   572 protected:
   573   enum {
   574     taken_off_set,
   575     displacement_off_set,
   576     jump_cell_count
   577   };
   579   void set_displacement(int displacement) {
   580     set_int_at(displacement_off_set, displacement);
   581   }
   583 public:
   584   JumpData(DataLayout* layout) : ProfileData(layout) {
   585     assert(layout->tag() == DataLayout::jump_data_tag ||
   586       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   587   }
   589   virtual bool is_JumpData() { return true; }
   591   static int static_cell_count() {
   592     return jump_cell_count;
   593   }
   595   virtual int cell_count() {
   596     return static_cell_count();
   597   }
   599   // Direct accessor
   600   uint taken() {
   601     return uint_at(taken_off_set);
   602   }
   603   // Saturating counter
   604   uint inc_taken() {
   605     uint cnt = taken() + 1;
   606     // Did we wrap? Will compiler screw us??
   607     if (cnt == 0) cnt--;
   608     set_uint_at(taken_off_set, cnt);
   609     return cnt;
   610   }
   612   int displacement() {
   613     return int_at(displacement_off_set);
   614   }
   616   // Code generation support
   617   static ByteSize taken_offset() {
   618     return cell_offset(taken_off_set);
   619   }
   621   static ByteSize displacement_offset() {
   622     return cell_offset(displacement_off_set);
   623   }
   625   // Specific initialization.
   626   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   628 #ifndef PRODUCT
   629   void print_data_on(outputStream* st);
   630 #endif
   631 };
   633 // ReceiverTypeData
   634 //
   635 // A ReceiverTypeData is used to access profiling information about a
   636 // dynamic type check.  It consists of a counter which counts the total times
   637 // that the check is reached, and a series of (klassOop, count) pairs
   638 // which are used to store a type profile for the receiver of the check.
   639 class ReceiverTypeData : public CounterData {
   640 protected:
   641   enum {
   642     receiver0_offset = counter_cell_count,
   643     count0_offset,
   644     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   645   };
   647 public:
   648   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   649     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   650            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   651   }
   653   virtual bool is_ReceiverTypeData() { return true; }
   655   static int static_cell_count() {
   656     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   657   }
   659   virtual int cell_count() {
   660     return static_cell_count();
   661   }
   663   // Direct accessors
   664   static uint row_limit() {
   665     return TypeProfileWidth;
   666   }
   667   static int receiver_cell_index(uint row) {
   668     return receiver0_offset + row * receiver_type_row_cell_count;
   669   }
   670   static int receiver_count_cell_index(uint row) {
   671     return count0_offset + row * receiver_type_row_cell_count;
   672   }
   674   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
   675   // gc; it does not assert the receiver is a klass.  During compaction of the
   676   // perm gen, the klass may already have moved, so the is_klass() predicate
   677   // would fail.  The 'normal' version should be used whenever possible.
   678   klassOop receiver_unchecked(uint row) {
   679     assert(row < row_limit(), "oob");
   680     oop recv = oop_at(receiver_cell_index(row));
   681     return (klassOop)recv;
   682   }
   684   klassOop receiver(uint row) {
   685     klassOop recv = receiver_unchecked(row);
   686     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
   687     return recv;
   688   }
   690   void set_receiver(uint row, oop p) {
   691     assert((uint)row < row_limit(), "oob");
   692     set_oop_at(receiver_cell_index(row), p);
   693   }
   695   uint receiver_count(uint row) {
   696     assert(row < row_limit(), "oob");
   697     return uint_at(receiver_count_cell_index(row));
   698   }
   700   void set_receiver_count(uint row, uint count) {
   701     assert(row < row_limit(), "oob");
   702     set_uint_at(receiver_count_cell_index(row), count);
   703   }
   705   void clear_row(uint row) {
   706     assert(row < row_limit(), "oob");
   707     // Clear total count - indicator of polymorphic call site.
   708     // The site may look like as monomorphic after that but
   709     // it allow to have more accurate profiling information because
   710     // there was execution phase change since klasses were unloaded.
   711     // If the site is still polymorphic then MDO will be updated
   712     // to reflect it. But it could be the case that the site becomes
   713     // only bimorphic. Then keeping total count not 0 will be wrong.
   714     // Even if we use monomorphic (when it is not) for compilation
   715     // we will only have trap, deoptimization and recompile again
   716     // with updated MDO after executing method in Interpreter.
   717     // An additional receiver will be recorded in the cleaned row
   718     // during next call execution.
   719     //
   720     // Note: our profiling logic works with empty rows in any slot.
   721     // We do sorting a profiling info (ciCallProfile) for compilation.
   722     //
   723     set_count(0);
   724     set_receiver(row, NULL);
   725     set_receiver_count(row, 0);
   726   }
   728   // Code generation support
   729   static ByteSize receiver_offset(uint row) {
   730     return cell_offset(receiver_cell_index(row));
   731   }
   732   static ByteSize receiver_count_offset(uint row) {
   733     return cell_offset(receiver_count_cell_index(row));
   734   }
   735   static ByteSize receiver_type_data_size() {
   736     return cell_offset(static_cell_count());
   737   }
   739   // GC support
   740   virtual void follow_contents();
   741   virtual void oop_iterate(OopClosure* blk);
   742   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
   743   virtual void adjust_pointers();
   744   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
   746 #ifndef SERIALGC
   747   // Parallel old support
   748   virtual void follow_contents(ParCompactionManager* cm);
   749   virtual void update_pointers();
   750 #endif // SERIALGC
   752   oop* adr_receiver(uint row) {
   753     return adr_oop_at(receiver_cell_index(row));
   754   }
   756 #ifndef PRODUCT
   757   void print_receiver_data_on(outputStream* st);
   758   void print_data_on(outputStream* st);
   759 #endif
   760 };
   762 // VirtualCallData
   763 //
   764 // A VirtualCallData is used to access profiling information about a
   765 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   766 class VirtualCallData : public ReceiverTypeData {
   767 public:
   768   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   769     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   770   }
   772   virtual bool is_VirtualCallData() { return true; }
   774   static int static_cell_count() {
   775     // At this point we could add more profile state, e.g., for arguments.
   776     // But for now it's the same size as the base record type.
   777     return ReceiverTypeData::static_cell_count();
   778   }
   780   virtual int cell_count() {
   781     return static_cell_count();
   782   }
   784   // Direct accessors
   785   static ByteSize virtual_call_data_size() {
   786     return cell_offset(static_cell_count());
   787   }
   789 #ifndef PRODUCT
   790   void print_data_on(outputStream* st);
   791 #endif
   792 };
   794 // RetData
   795 //
   796 // A RetData is used to access profiling information for a ret bytecode.
   797 // It is composed of a count of the number of times that the ret has
   798 // been executed, followed by a series of triples of the form
   799 // (bci, count, di) which count the number of times that some bci was the
   800 // target of the ret and cache a corresponding data displacement.
   801 class RetData : public CounterData {
   802 protected:
   803   enum {
   804     bci0_offset = counter_cell_count,
   805     count0_offset,
   806     displacement0_offset,
   807     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   808   };
   810   void set_bci(uint row, int bci) {
   811     assert((uint)row < row_limit(), "oob");
   812     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   813   }
   814   void release_set_bci(uint row, int bci) {
   815     assert((uint)row < row_limit(), "oob");
   816     // 'release' when setting the bci acts as a valid flag for other
   817     // threads wrt bci_count and bci_displacement.
   818     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   819   }
   820   void set_bci_count(uint row, uint count) {
   821     assert((uint)row < row_limit(), "oob");
   822     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   823   }
   824   void set_bci_displacement(uint row, int disp) {
   825     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   826   }
   828 public:
   829   RetData(DataLayout* layout) : CounterData(layout) {
   830     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   831   }
   833   virtual bool is_RetData() { return true; }
   835   enum {
   836     no_bci = -1 // value of bci when bci1/2 are not in use.
   837   };
   839   static int static_cell_count() {
   840     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   841   }
   843   virtual int cell_count() {
   844     return static_cell_count();
   845   }
   847   static uint row_limit() {
   848     return BciProfileWidth;
   849   }
   850   static int bci_cell_index(uint row) {
   851     return bci0_offset + row * ret_row_cell_count;
   852   }
   853   static int bci_count_cell_index(uint row) {
   854     return count0_offset + row * ret_row_cell_count;
   855   }
   856   static int bci_displacement_cell_index(uint row) {
   857     return displacement0_offset + row * ret_row_cell_count;
   858   }
   860   // Direct accessors
   861   int bci(uint row) {
   862     return int_at(bci_cell_index(row));
   863   }
   864   uint bci_count(uint row) {
   865     return uint_at(bci_count_cell_index(row));
   866   }
   867   int bci_displacement(uint row) {
   868     return int_at(bci_displacement_cell_index(row));
   869   }
   871   // Interpreter Runtime support
   872   address fixup_ret(int return_bci, methodDataHandle mdo);
   874   // Code generation support
   875   static ByteSize bci_offset(uint row) {
   876     return cell_offset(bci_cell_index(row));
   877   }
   878   static ByteSize bci_count_offset(uint row) {
   879     return cell_offset(bci_count_cell_index(row));
   880   }
   881   static ByteSize bci_displacement_offset(uint row) {
   882     return cell_offset(bci_displacement_cell_index(row));
   883   }
   885   // Specific initialization.
   886   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   888 #ifndef PRODUCT
   889   void print_data_on(outputStream* st);
   890 #endif
   891 };
   893 // BranchData
   894 //
   895 // A BranchData is used to access profiling data for a two-way branch.
   896 // It consists of taken and not_taken counts as well as a data displacement
   897 // for the taken case.
   898 class BranchData : public JumpData {
   899 protected:
   900   enum {
   901     not_taken_off_set = jump_cell_count,
   902     branch_cell_count
   903   };
   905   void set_displacement(int displacement) {
   906     set_int_at(displacement_off_set, displacement);
   907   }
   909 public:
   910   BranchData(DataLayout* layout) : JumpData(layout) {
   911     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   912   }
   914   virtual bool is_BranchData() { return true; }
   916   static int static_cell_count() {
   917     return branch_cell_count;
   918   }
   920   virtual int cell_count() {
   921     return static_cell_count();
   922   }
   924   // Direct accessor
   925   uint not_taken() {
   926     return uint_at(not_taken_off_set);
   927   }
   929   uint inc_not_taken() {
   930     uint cnt = not_taken() + 1;
   931     // Did we wrap? Will compiler screw us??
   932     if (cnt == 0) cnt--;
   933     set_uint_at(not_taken_off_set, cnt);
   934     return cnt;
   935   }
   937   // Code generation support
   938   static ByteSize not_taken_offset() {
   939     return cell_offset(not_taken_off_set);
   940   }
   941   static ByteSize branch_data_size() {
   942     return cell_offset(branch_cell_count);
   943   }
   945   // Specific initialization.
   946   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   948 #ifndef PRODUCT
   949   void print_data_on(outputStream* st);
   950 #endif
   951 };
   953 // ArrayData
   954 //
   955 // A ArrayData is a base class for accessing profiling data which does
   956 // not have a statically known size.  It consists of an array length
   957 // and an array start.
   958 class ArrayData : public ProfileData {
   959 protected:
   960   friend class DataLayout;
   962   enum {
   963     array_len_off_set,
   964     array_start_off_set
   965   };
   967   uint array_uint_at(int index) {
   968     int aindex = index + array_start_off_set;
   969     return uint_at(aindex);
   970   }
   971   int array_int_at(int index) {
   972     int aindex = index + array_start_off_set;
   973     return int_at(aindex);
   974   }
   975   oop array_oop_at(int index) {
   976     int aindex = index + array_start_off_set;
   977     return oop_at(aindex);
   978   }
   979   void array_set_int_at(int index, int value) {
   980     int aindex = index + array_start_off_set;
   981     set_int_at(aindex, value);
   982   }
   984   // Code generation support for subclasses.
   985   static ByteSize array_element_offset(int index) {
   986     return cell_offset(array_start_off_set + index);
   987   }
   989 public:
   990   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   992   virtual bool is_ArrayData() { return true; }
   994   static int static_cell_count() {
   995     return -1;
   996   }
   998   int array_len() {
   999     return int_at_unchecked(array_len_off_set);
  1002   virtual int cell_count() {
  1003     return array_len() + 1;
  1006   // Code generation support
  1007   static ByteSize array_len_offset() {
  1008     return cell_offset(array_len_off_set);
  1010   static ByteSize array_start_offset() {
  1011     return cell_offset(array_start_off_set);
  1013 };
  1015 // MultiBranchData
  1016 //
  1017 // A MultiBranchData is used to access profiling information for
  1018 // a multi-way branch (*switch bytecodes).  It consists of a series
  1019 // of (count, displacement) pairs, which count the number of times each
  1020 // case was taken and specify the data displacment for each branch target.
  1021 class MultiBranchData : public ArrayData {
  1022 protected:
  1023   enum {
  1024     default_count_off_set,
  1025     default_disaplacement_off_set,
  1026     case_array_start
  1027   };
  1028   enum {
  1029     relative_count_off_set,
  1030     relative_displacement_off_set,
  1031     per_case_cell_count
  1032   };
  1034   void set_default_displacement(int displacement) {
  1035     array_set_int_at(default_disaplacement_off_set, displacement);
  1037   void set_displacement_at(int index, int displacement) {
  1038     array_set_int_at(case_array_start +
  1039                      index * per_case_cell_count +
  1040                      relative_displacement_off_set,
  1041                      displacement);
  1044 public:
  1045   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1046     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1049   virtual bool is_MultiBranchData() { return true; }
  1051   static int compute_cell_count(BytecodeStream* stream);
  1053   int number_of_cases() {
  1054     int alen = array_len() - 2; // get rid of default case here.
  1055     assert(alen % per_case_cell_count == 0, "must be even");
  1056     return (alen / per_case_cell_count);
  1059   uint default_count() {
  1060     return array_uint_at(default_count_off_set);
  1062   int default_displacement() {
  1063     return array_int_at(default_disaplacement_off_set);
  1066   uint count_at(int index) {
  1067     return array_uint_at(case_array_start +
  1068                          index * per_case_cell_count +
  1069                          relative_count_off_set);
  1071   int displacement_at(int index) {
  1072     return array_int_at(case_array_start +
  1073                         index * per_case_cell_count +
  1074                         relative_displacement_off_set);
  1077   // Code generation support
  1078   static ByteSize default_count_offset() {
  1079     return array_element_offset(default_count_off_set);
  1081   static ByteSize default_displacement_offset() {
  1082     return array_element_offset(default_disaplacement_off_set);
  1084   static ByteSize case_count_offset(int index) {
  1085     return case_array_offset() +
  1086            (per_case_size() * index) +
  1087            relative_count_offset();
  1089   static ByteSize case_array_offset() {
  1090     return array_element_offset(case_array_start);
  1092   static ByteSize per_case_size() {
  1093     return in_ByteSize(per_case_cell_count) * cell_size;
  1095   static ByteSize relative_count_offset() {
  1096     return in_ByteSize(relative_count_off_set) * cell_size;
  1098   static ByteSize relative_displacement_offset() {
  1099     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1102   // Specific initialization.
  1103   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
  1105 #ifndef PRODUCT
  1106   void print_data_on(outputStream* st);
  1107 #endif
  1108 };
  1110 class ArgInfoData : public ArrayData {
  1112 public:
  1113   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1114     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1117   virtual bool is_ArgInfoData() { return true; }
  1120   int number_of_args() {
  1121     return array_len();
  1124   uint arg_modified(int arg) {
  1125     return array_uint_at(arg);
  1128   void set_arg_modified(int arg, uint val) {
  1129     array_set_int_at(arg, val);
  1132 #ifndef PRODUCT
  1133   void print_data_on(outputStream* st);
  1134 #endif
  1135 };
  1137 // methodDataOop
  1138 //
  1139 // A methodDataOop holds information which has been collected about
  1140 // a method.  Its layout looks like this:
  1141 //
  1142 // -----------------------------
  1143 // | header                    |
  1144 // | klass                     |
  1145 // -----------------------------
  1146 // | method                    |
  1147 // | size of the methodDataOop |
  1148 // -----------------------------
  1149 // | Data entries...           |
  1150 // |   (variable size)         |
  1151 // |                           |
  1152 // .                           .
  1153 // .                           .
  1154 // .                           .
  1155 // |                           |
  1156 // -----------------------------
  1157 //
  1158 // The data entry area is a heterogeneous array of DataLayouts. Each
  1159 // DataLayout in the array corresponds to a specific bytecode in the
  1160 // method.  The entries in the array are sorted by the corresponding
  1161 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1162 // which point to the underlying blocks of DataLayout structures.
  1163 //
  1164 // During interpretation, if profiling in enabled, the interpreter
  1165 // maintains a method data pointer (mdp), which points at the entry
  1166 // in the array corresponding to the current bci.  In the course of
  1167 // intepretation, when a bytecode is encountered that has profile data
  1168 // associated with it, the entry pointed to by mdp is updated, then the
  1169 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1170 // is NULL to begin with, the interpreter assumes that the current method
  1171 // is not (yet) being profiled.
  1172 //
  1173 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
  1174 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1175 // from the base of the data entry array.  A "displacement" is the byte offset
  1176 // in certain ProfileData objects that indicate the amount the mdp must be
  1177 // adjusted in the event of a change in control flow.
  1178 //
  1180 class methodDataOopDesc : public oopDesc {
  1181   friend class VMStructs;
  1182 private:
  1183   friend class ProfileData;
  1185   // Back pointer to the methodOop
  1186   methodOop _method;
  1188   // Size of this oop in bytes
  1189   int _size;
  1191   // Cached hint for bci_to_dp and bci_to_data
  1192   int _hint_di;
  1194   // Whole-method sticky bits and flags
  1195 public:
  1196   enum {
  1197     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1198     _trap_hist_mask     = max_jubyte,
  1199     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1200   }; // Public flag values
  1201 private:
  1202   uint _nof_decompiles;             // count of all nmethod removals
  1203   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1204   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1205   union {
  1206     intptr_t _align;
  1207     u1 _array[_trap_hist_limit];
  1208   } _trap_hist;
  1210   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1211   intx              _eflags;          // flags on escape information
  1212   intx              _arg_local;       // bit set of non-escaping arguments
  1213   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1214   intx              _arg_returned;    // bit set of returned arguments
  1216   int _creation_mileage;              // method mileage at MDO creation
  1218   // How many invocations has this MDO seen?
  1219   // These counters are used to determine the exact age of MDO.
  1220   // We need those because in tiered a method can be concurrently
  1221   // executed at different levels.
  1222   InvocationCounter _invocation_counter;
  1223   // Same for backedges.
  1224   InvocationCounter _backedge_counter;
  1225   // Counter values at the time profiling started.
  1226   int               _invocation_counter_start;
  1227   int               _backedge_counter_start;
  1228   // Number of loops and blocks is computed when compiling the first
  1229   // time with C1. It is used to determine if method is trivial.
  1230   short             _num_loops;
  1231   short             _num_blocks;
  1232   // Highest compile level this method has ever seen.
  1233   u1                _highest_comp_level;
  1234   // Same for OSR level
  1235   u1                _highest_osr_comp_level;
  1236   // Does this method contain anything worth profiling?
  1237   bool              _would_profile;
  1239   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1240   int _data_size;
  1242   // Beginning of the data entries
  1243   intptr_t _data[1];
  1245   // Helper for size computation
  1246   static int compute_data_size(BytecodeStream* stream);
  1247   static int bytecode_cell_count(Bytecodes::Code code);
  1248   enum { no_profile_data = -1, variable_cell_count = -2 };
  1250   // Helper for initialization
  1251   DataLayout* data_layout_at(int data_index) {
  1252     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1253     return (DataLayout*) (((address)_data) + data_index);
  1256   // Initialize an individual data segment.  Returns the size of
  1257   // the segment in bytes.
  1258   int initialize_data(BytecodeStream* stream, int data_index);
  1260   // Helper for data_at
  1261   DataLayout* limit_data_position() {
  1262     return (DataLayout*)((address)data_base() + _data_size);
  1264   bool out_of_bounds(int data_index) {
  1265     return data_index >= data_size();
  1268   // Give each of the data entries a chance to perform specific
  1269   // data initialization.
  1270   void post_initialize(BytecodeStream* stream);
  1272   // hint accessors
  1273   int      hint_di() const  { return _hint_di; }
  1274   void set_hint_di(int di)  {
  1275     assert(!out_of_bounds(di), "hint_di out of bounds");
  1276     _hint_di = di;
  1278   ProfileData* data_before(int bci) {
  1279     // avoid SEGV on this edge case
  1280     if (data_size() == 0)
  1281       return NULL;
  1282     int hint = hint_di();
  1283     if (data_layout_at(hint)->bci() <= bci)
  1284       return data_at(hint);
  1285     return first_data();
  1288   // What is the index of the first data entry?
  1289   int first_di() { return 0; }
  1291   // Find or create an extra ProfileData:
  1292   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1294   // return the argument info cell
  1295   ArgInfoData *arg_info();
  1297 public:
  1298   static int header_size() {
  1299     return sizeof(methodDataOopDesc)/wordSize;
  1302   // Compute the size of a methodDataOop before it is created.
  1303   static int compute_allocation_size_in_bytes(methodHandle method);
  1304   static int compute_allocation_size_in_words(methodHandle method);
  1305   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1307   // Determine if a given bytecode can have profile information.
  1308   static bool bytecode_has_profile(Bytecodes::Code code) {
  1309     return bytecode_cell_count(code) != no_profile_data;
  1312   // Perform initialization of a new methodDataOop
  1313   void initialize(methodHandle method);
  1315   // My size
  1316   int object_size_in_bytes() { return _size; }
  1317   int object_size() {
  1318     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
  1321   int      creation_mileage() const  { return _creation_mileage; }
  1322   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1324   int invocation_count() {
  1325     if (invocation_counter()->carry()) {
  1326       return InvocationCounter::count_limit;
  1328     return invocation_counter()->count();
  1330   int backedge_count() {
  1331     if (backedge_counter()->carry()) {
  1332       return InvocationCounter::count_limit;
  1334     return backedge_counter()->count();
  1337   int invocation_count_start() {
  1338     if (invocation_counter()->carry()) {
  1339       return 0;
  1341     return _invocation_counter_start;
  1344   int backedge_count_start() {
  1345     if (backedge_counter()->carry()) {
  1346       return 0;
  1348     return _backedge_counter_start;
  1351   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1352   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1354   void reset_start_counters() {
  1355     _invocation_counter_start = invocation_count();
  1356     _backedge_counter_start = backedge_count();
  1359   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1360   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1362   void set_would_profile(bool p)              { _would_profile = p;    }
  1363   bool would_profile() const                  { return _would_profile; }
  1365   int highest_comp_level()                    { return _highest_comp_level;      }
  1366   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1367   int highest_osr_comp_level()                { return _highest_osr_comp_level;  }
  1368   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  1370   int num_loops() const                       { return _num_loops;  }
  1371   void set_num_loops(int n)                   { _num_loops = n;     }
  1372   int num_blocks() const                      { return _num_blocks; }
  1373   void set_num_blocks(int n)                  { _num_blocks = n;    }
  1375   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1376   static int mileage_of(methodOop m);
  1378   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1379   enum EscapeFlag {
  1380     estimated    = 1 << 0,
  1381     return_local = 1 << 1,
  1382     return_allocated = 1 << 2,
  1383     allocated_escapes = 1 << 3,
  1384     unknown_modified = 1 << 4
  1385   };
  1387   intx eflags()                                  { return _eflags; }
  1388   intx arg_local()                               { return _arg_local; }
  1389   intx arg_stack()                               { return _arg_stack; }
  1390   intx arg_returned()                            { return _arg_returned; }
  1391   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1392                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1393                                                    return aid->arg_modified(a); }
  1395   void set_eflags(intx v)                        { _eflags = v; }
  1396   void set_arg_local(intx v)                     { _arg_local = v; }
  1397   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1398   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1399   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1400                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1402                                                    aid->set_arg_modified(a, v); }
  1404   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1406   // Location and size of data area
  1407   address data_base() const {
  1408     return (address) _data;
  1410   int data_size() {
  1411     return _data_size;
  1414   // Accessors
  1415   methodOop method() { return _method; }
  1417   // Get the data at an arbitrary (sort of) data index.
  1418   ProfileData* data_at(int data_index);
  1420   // Walk through the data in order.
  1421   ProfileData* first_data() { return data_at(first_di()); }
  1422   ProfileData* next_data(ProfileData* current);
  1423   bool is_valid(ProfileData* current) { return current != NULL; }
  1425   // Convert a dp (data pointer) to a di (data index).
  1426   int dp_to_di(address dp) {
  1427     return dp - ((address)_data);
  1430   address di_to_dp(int di) {
  1431     return (address)data_layout_at(di);
  1434   // bci to di/dp conversion.
  1435   address bci_to_dp(int bci);
  1436   int bci_to_di(int bci) {
  1437     return dp_to_di(bci_to_dp(bci));
  1440   // Get the data at an arbitrary bci, or NULL if there is none.
  1441   ProfileData* bci_to_data(int bci);
  1443   // Same, but try to create an extra_data record if one is needed:
  1444   ProfileData* allocate_bci_to_data(int bci) {
  1445     ProfileData* data = bci_to_data(bci);
  1446     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1449   // Add a handful of extra data records, for trap tracking.
  1450   DataLayout* extra_data_base() { return limit_data_position(); }
  1451   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
  1452   int extra_data_size() { return (address)extra_data_limit()
  1453                                - (address)extra_data_base(); }
  1454   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1456   // Return (uint)-1 for overflow.
  1457   uint trap_count(int reason) const {
  1458     assert((uint)reason < _trap_hist_limit, "oob");
  1459     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1461   // For loops:
  1462   static uint trap_reason_limit() { return _trap_hist_limit; }
  1463   static uint trap_count_limit()  { return _trap_hist_mask; }
  1464   uint inc_trap_count(int reason) {
  1465     // Count another trap, anywhere in this method.
  1466     assert(reason >= 0, "must be single trap");
  1467     if ((uint)reason < _trap_hist_limit) {
  1468       uint cnt1 = 1 + _trap_hist._array[reason];
  1469       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1470         _trap_hist._array[reason] = cnt1;
  1471         return cnt1;
  1472       } else {
  1473         return _trap_hist_mask + (++_nof_overflow_traps);
  1475     } else {
  1476       // Could not represent the count in the histogram.
  1477       return (++_nof_overflow_traps);
  1481   uint overflow_trap_count() const {
  1482     return _nof_overflow_traps;
  1484   uint overflow_recompile_count() const {
  1485     return _nof_overflow_recompiles;
  1487   void inc_overflow_recompile_count() {
  1488     _nof_overflow_recompiles += 1;
  1490   uint decompile_count() const {
  1491     return _nof_decompiles;
  1493   void inc_decompile_count() {
  1494     _nof_decompiles += 1;
  1495     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  1496       method()->set_not_compilable(CompLevel_full_optimization);
  1500   // Support for code generation
  1501   static ByteSize data_offset() {
  1502     return byte_offset_of(methodDataOopDesc, _data[0]);
  1505   static ByteSize invocation_counter_offset() {
  1506     return byte_offset_of(methodDataOopDesc, _invocation_counter);
  1508   static ByteSize backedge_counter_offset() {
  1509     return byte_offset_of(methodDataOopDesc, _backedge_counter);
  1512   // GC support
  1513   oop* adr_method() const { return (oop*)&_method; }
  1514   bool object_is_parsable() const { return _size != 0; }
  1515   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1517 #ifndef PRODUCT
  1518   // printing support for method data
  1519   void print_data_on(outputStream* st);
  1520 #endif
  1522   // verification
  1523   void verify_data_on(outputStream* st);
  1524 };
  1526 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial