src/share/vm/opto/runtime.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7152
166d744df0de
child 7994
04ff2f6cd0eb
child 8307
daaf806995b3
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #if defined AD_MD_HPP
    72 # include AD_MD_HPP
    73 #elif defined TARGET_ARCH_MODEL_x86_32
    74 # include "adfiles/ad_x86_32.hpp"
    75 #elif defined TARGET_ARCH_MODEL_x86_64
    76 # include "adfiles/ad_x86_64.hpp"
    77 #elif defined TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #elif defined TARGET_ARCH_MODEL_zero
    80 # include "adfiles/ad_zero.hpp"
    81 #elif defined TARGET_ARCH_MODEL_ppc_64
    82 # include "adfiles/ad_ppc_64.hpp"
    83 #endif
    86 // For debugging purposes:
    87 //  To force FullGCALot inside a runtime function, add the following two lines
    88 //
    89 //  Universe::release_fullgc_alot_dummy();
    90 //  MarkSweep::invoke(0, "Debugging");
    91 //
    92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
    97 // Compiled code entry points
    98 address OptoRuntime::_new_instance_Java                           = NULL;
    99 address OptoRuntime::_new_array_Java                              = NULL;
   100 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   101 address OptoRuntime::_multianewarray2_Java                        = NULL;
   102 address OptoRuntime::_multianewarray3_Java                        = NULL;
   103 address OptoRuntime::_multianewarray4_Java                        = NULL;
   104 address OptoRuntime::_multianewarray5_Java                        = NULL;
   105 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   106 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   107 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   108 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   109 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   110 address OptoRuntime::_rethrow_Java                                = NULL;
   112 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   113 address OptoRuntime::_register_finalizer_Java                     = NULL;
   115 # ifdef ENABLE_ZAP_DEAD_LOCALS
   116 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   117 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   118 # endif
   120 ExceptionBlob* OptoRuntime::_exception_blob;
   122 // This should be called in an assertion at the start of OptoRuntime routines
   123 // which are entered from compiled code (all of them)
   124 #ifdef ASSERT
   125 static bool check_compiled_frame(JavaThread* thread) {
   126   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   127   RegisterMap map(thread, false);
   128   frame caller = thread->last_frame().sender(&map);
   129   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   130   return true;
   131 }
   132 #endif // ASSERT
   135 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   136   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   137   if (var == NULL) { return false; }
   139 bool OptoRuntime::generate(ciEnv* env) {
   141   generate_exception_blob();
   143   // Note: tls: Means fetching the return oop out of the thread-local storage
   144   //
   145   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   146   // -------------------------------------------------------------------------------------------------------------------------------
   147   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   148   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   149   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   150   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   151   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   152   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   153   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   154   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   155   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   156   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   157   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   158   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   160   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   161   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   163 # ifdef ENABLE_ZAP_DEAD_LOCALS
   164   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   165   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   166 # endif
   167   return true;
   168 }
   170 #undef gen
   173 // Helper method to do generation of RunTimeStub's
   174 address OptoRuntime::generate_stub( ciEnv* env,
   175                                     TypeFunc_generator gen, address C_function,
   176                                     const char *name, int is_fancy_jump,
   177                                     bool pass_tls,
   178                                     bool save_argument_registers,
   179                                     bool return_pc ) {
   180   ResourceMark rm;
   181   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   182   return  C.stub_entry_point();
   183 }
   185 const char* OptoRuntime::stub_name(address entry) {
   186 #ifndef PRODUCT
   187   CodeBlob* cb = CodeCache::find_blob(entry);
   188   RuntimeStub* rs =(RuntimeStub *)cb;
   189   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   190   return rs->name();
   191 #else
   192   // Fast implementation for product mode (maybe it should be inlined too)
   193   return "runtime stub";
   194 #endif
   195 }
   198 //=============================================================================
   199 // Opto compiler runtime routines
   200 //=============================================================================
   203 //=============================allocation======================================
   204 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   205 // and try allocation again.
   207 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   208   // After any safepoint, just before going back to compiled code,
   209   // we inform the GC that we will be doing initializing writes to
   210   // this object in the future without emitting card-marks, so
   211   // GC may take any compensating steps.
   212   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   214   oop new_obj = thread->vm_result();
   215   if (new_obj == NULL)  return;
   217   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   218          "compiler must check this first");
   219   // GC may decide to give back a safer copy of new_obj.
   220   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   221   thread->set_vm_result(new_obj);
   222 }
   224 // object allocation
   225 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   226   JRT_BLOCK;
   227 #ifndef PRODUCT
   228   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   229 #endif
   230   assert(check_compiled_frame(thread), "incorrect caller");
   232   // These checks are cheap to make and support reflective allocation.
   233   int lh = klass->layout_helper();
   234   if (Klass::layout_helper_needs_slow_path(lh)
   235       || !InstanceKlass::cast(klass)->is_initialized()) {
   236     KlassHandle kh(THREAD, klass);
   237     kh->check_valid_for_instantiation(false, THREAD);
   238     if (!HAS_PENDING_EXCEPTION) {
   239       InstanceKlass::cast(kh())->initialize(THREAD);
   240     }
   241     if (!HAS_PENDING_EXCEPTION) {
   242       klass = kh();
   243     } else {
   244       klass = NULL;
   245     }
   246   }
   248   if (klass != NULL) {
   249     // Scavenge and allocate an instance.
   250     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   251     thread->set_vm_result(result);
   253     // Pass oops back through thread local storage.  Our apparent type to Java
   254     // is that we return an oop, but we can block on exit from this routine and
   255     // a GC can trash the oop in C's return register.  The generated stub will
   256     // fetch the oop from TLS after any possible GC.
   257   }
   259   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   260   JRT_BLOCK_END;
   262   if (GraphKit::use_ReduceInitialCardMarks()) {
   263     // inform GC that we won't do card marks for initializing writes.
   264     new_store_pre_barrier(thread);
   265   }
   266 JRT_END
   269 // array allocation
   270 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   271   JRT_BLOCK;
   272 #ifndef PRODUCT
   273   SharedRuntime::_new_array_ctr++;            // new array requires GC
   274 #endif
   275   assert(check_compiled_frame(thread), "incorrect caller");
   277   // Scavenge and allocate an instance.
   278   oop result;
   280   if (array_type->oop_is_typeArray()) {
   281     // The oopFactory likes to work with the element type.
   282     // (We could bypass the oopFactory, since it doesn't add much value.)
   283     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   284     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   285   } else {
   286     // Although the oopFactory likes to work with the elem_type,
   287     // the compiler prefers the array_type, since it must already have
   288     // that latter value in hand for the fast path.
   289     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   290     result = oopFactory::new_objArray(elem_type, len, THREAD);
   291   }
   293   // Pass oops back through thread local storage.  Our apparent type to Java
   294   // is that we return an oop, but we can block on exit from this routine and
   295   // a GC can trash the oop in C's return register.  The generated stub will
   296   // fetch the oop from TLS after any possible GC.
   297   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   298   thread->set_vm_result(result);
   299   JRT_BLOCK_END;
   301   if (GraphKit::use_ReduceInitialCardMarks()) {
   302     // inform GC that we won't do card marks for initializing writes.
   303     new_store_pre_barrier(thread);
   304   }
   305 JRT_END
   307 // array allocation without zeroing
   308 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   309   JRT_BLOCK;
   310 #ifndef PRODUCT
   311   SharedRuntime::_new_array_ctr++;            // new array requires GC
   312 #endif
   313   assert(check_compiled_frame(thread), "incorrect caller");
   315   // Scavenge and allocate an instance.
   316   oop result;
   318   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   319   // The oopFactory likes to work with the element type.
   320   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   321   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   323   // Pass oops back through thread local storage.  Our apparent type to Java
   324   // is that we return an oop, but we can block on exit from this routine and
   325   // a GC can trash the oop in C's return register.  The generated stub will
   326   // fetch the oop from TLS after any possible GC.
   327   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   328   thread->set_vm_result(result);
   329   JRT_BLOCK_END;
   331   if (GraphKit::use_ReduceInitialCardMarks()) {
   332     // inform GC that we won't do card marks for initializing writes.
   333     new_store_pre_barrier(thread);
   334   }
   336   oop result = thread->vm_result();
   337   if ((len > 0) && (result != NULL) &&
   338       is_deoptimized_caller_frame(thread)) {
   339     // Zero array here if the caller is deoptimized.
   340     int size = ((typeArrayOop)result)->object_size();
   341     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   342     const size_t hs = arrayOopDesc::header_size(elem_type);
   343     // Align to next 8 bytes to avoid trashing arrays's length.
   344     const size_t aligned_hs = align_object_offset(hs);
   345     HeapWord* obj = (HeapWord*)result;
   346     if (aligned_hs > hs) {
   347       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   348     }
   349     // Optimized zeroing.
   350     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   351   }
   353 JRT_END
   355 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   357 // multianewarray for 2 dimensions
   358 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   359 #ifndef PRODUCT
   360   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   361 #endif
   362   assert(check_compiled_frame(thread), "incorrect caller");
   363   assert(elem_type->is_klass(), "not a class");
   364   jint dims[2];
   365   dims[0] = len1;
   366   dims[1] = len2;
   367   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   368   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   369   thread->set_vm_result(obj);
   370 JRT_END
   372 // multianewarray for 3 dimensions
   373 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   374 #ifndef PRODUCT
   375   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   376 #endif
   377   assert(check_compiled_frame(thread), "incorrect caller");
   378   assert(elem_type->is_klass(), "not a class");
   379   jint dims[3];
   380   dims[0] = len1;
   381   dims[1] = len2;
   382   dims[2] = len3;
   383   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   384   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   385   thread->set_vm_result(obj);
   386 JRT_END
   388 // multianewarray for 4 dimensions
   389 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   390 #ifndef PRODUCT
   391   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   392 #endif
   393   assert(check_compiled_frame(thread), "incorrect caller");
   394   assert(elem_type->is_klass(), "not a class");
   395   jint dims[4];
   396   dims[0] = len1;
   397   dims[1] = len2;
   398   dims[2] = len3;
   399   dims[3] = len4;
   400   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   401   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   402   thread->set_vm_result(obj);
   403 JRT_END
   405 // multianewarray for 5 dimensions
   406 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   407 #ifndef PRODUCT
   408   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   409 #endif
   410   assert(check_compiled_frame(thread), "incorrect caller");
   411   assert(elem_type->is_klass(), "not a class");
   412   jint dims[5];
   413   dims[0] = len1;
   414   dims[1] = len2;
   415   dims[2] = len3;
   416   dims[3] = len4;
   417   dims[4] = len5;
   418   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   419   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   420   thread->set_vm_result(obj);
   421 JRT_END
   423 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   424   assert(check_compiled_frame(thread), "incorrect caller");
   425   assert(elem_type->is_klass(), "not a class");
   426   assert(oop(dims)->is_typeArray(), "not an array");
   428   ResourceMark rm;
   429   jint len = dims->length();
   430   assert(len > 0, "Dimensions array should contain data");
   431   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   432   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   433   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   435   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   436   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   437   thread->set_vm_result(obj);
   438 JRT_END
   441 const TypeFunc *OptoRuntime::new_instance_Type() {
   442   // create input type (domain)
   443   const Type **fields = TypeTuple::fields(1);
   444   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   445   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   447   // create result type (range)
   448   fields = TypeTuple::fields(1);
   449   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   451   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   453   return TypeFunc::make(domain, range);
   454 }
   457 const TypeFunc *OptoRuntime::athrow_Type() {
   458   // create input type (domain)
   459   const Type **fields = TypeTuple::fields(1);
   460   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   461   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   463   // create result type (range)
   464   fields = TypeTuple::fields(0);
   466   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   468   return TypeFunc::make(domain, range);
   469 }
   472 const TypeFunc *OptoRuntime::new_array_Type() {
   473   // create input type (domain)
   474   const Type **fields = TypeTuple::fields(2);
   475   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   476   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   477   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   479   // create result type (range)
   480   fields = TypeTuple::fields(1);
   481   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   483   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   485   return TypeFunc::make(domain, range);
   486 }
   488 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   489   // create input type (domain)
   490   const int nargs = ndim + 1;
   491   const Type **fields = TypeTuple::fields(nargs);
   492   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   493   for( int i = 1; i < nargs; i++ )
   494     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   495   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   497   // create result type (range)
   498   fields = TypeTuple::fields(1);
   499   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   502   return TypeFunc::make(domain, range);
   503 }
   505 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   506   return multianewarray_Type(2);
   507 }
   509 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   510   return multianewarray_Type(3);
   511 }
   513 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   514   return multianewarray_Type(4);
   515 }
   517 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   518   return multianewarray_Type(5);
   519 }
   521 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   522   // create input type (domain)
   523   const Type **fields = TypeTuple::fields(2);
   524   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   525   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   526   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   528   // create result type (range)
   529   fields = TypeTuple::fields(1);
   530   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   531   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   533   return TypeFunc::make(domain, range);
   534 }
   536 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   537   const Type **fields = TypeTuple::fields(2);
   538   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   539   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   540   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   542   // create result type (range)
   543   fields = TypeTuple::fields(0);
   544   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   546   return TypeFunc::make(domain, range);
   547 }
   549 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   551   const Type **fields = TypeTuple::fields(2);
   552   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   553   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   554   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   556   // create result type (range)
   557   fields = TypeTuple::fields(0);
   558   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   560   return TypeFunc::make(domain, range);
   561 }
   563 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   564   // create input type (domain)
   565   const Type **fields = TypeTuple::fields(1);
   566   // Symbol* name of class to be loaded
   567   fields[TypeFunc::Parms+0] = TypeInt::INT;
   568   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   570   // create result type (range)
   571   fields = TypeTuple::fields(0);
   572   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   574   return TypeFunc::make(domain, range);
   575 }
   577 # ifdef ENABLE_ZAP_DEAD_LOCALS
   578 // Type used for stub generation for zap_dead_locals.
   579 // No inputs or outputs
   580 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   581   // create input type (domain)
   582   const Type **fields = TypeTuple::fields(0);
   583   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   585   // create result type (range)
   586   fields = TypeTuple::fields(0);
   587   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   589   return TypeFunc::make(domain,range);
   590 }
   591 # endif
   594 //-----------------------------------------------------------------------------
   595 // Monitor Handling
   596 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   597   // create input type (domain)
   598   const Type **fields = TypeTuple::fields(2);
   599   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   600   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   601   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   603   // create result type (range)
   604   fields = TypeTuple::fields(0);
   606   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   608   return TypeFunc::make(domain,range);
   609 }
   612 //-----------------------------------------------------------------------------
   613 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   614   // create input type (domain)
   615   const Type **fields = TypeTuple::fields(2);
   616   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   617   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   620   // create result type (range)
   621   fields = TypeTuple::fields(0);
   623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   625   return TypeFunc::make(domain,range);
   626 }
   628 const TypeFunc* OptoRuntime::flush_windows_Type() {
   629   // create input type (domain)
   630   const Type** fields = TypeTuple::fields(1);
   631   fields[TypeFunc::Parms+0] = NULL; // void
   632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   634   // create result type
   635   fields = TypeTuple::fields(1);
   636   fields[TypeFunc::Parms+0] = NULL; // void
   637   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   639   return TypeFunc::make(domain, range);
   640 }
   642 const TypeFunc* OptoRuntime::l2f_Type() {
   643   // create input type (domain)
   644   const Type **fields = TypeTuple::fields(2);
   645   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   646   fields[TypeFunc::Parms+1] = Type::HALF;
   647   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   649   // create result type (range)
   650   fields = TypeTuple::fields(1);
   651   fields[TypeFunc::Parms+0] = Type::FLOAT;
   652   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   654   return TypeFunc::make(domain, range);
   655 }
   657 const TypeFunc* OptoRuntime::modf_Type() {
   658   const Type **fields = TypeTuple::fields(2);
   659   fields[TypeFunc::Parms+0] = Type::FLOAT;
   660   fields[TypeFunc::Parms+1] = Type::FLOAT;
   661   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   663   // create result type (range)
   664   fields = TypeTuple::fields(1);
   665   fields[TypeFunc::Parms+0] = Type::FLOAT;
   667   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   669   return TypeFunc::make(domain, range);
   670 }
   672 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   673   // create input type (domain)
   674   const Type **fields = TypeTuple::fields(2);
   675   // Symbol* name of class to be loaded
   676   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   677   fields[TypeFunc::Parms+1] = Type::HALF;
   678   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   680   // create result type (range)
   681   fields = TypeTuple::fields(2);
   682   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   683   fields[TypeFunc::Parms+1] = Type::HALF;
   684   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   686   return TypeFunc::make(domain, range);
   687 }
   689 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   690   const Type **fields = TypeTuple::fields(4);
   691   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   692   fields[TypeFunc::Parms+1] = Type::HALF;
   693   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   694   fields[TypeFunc::Parms+3] = Type::HALF;
   695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   697   // create result type (range)
   698   fields = TypeTuple::fields(2);
   699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   700   fields[TypeFunc::Parms+1] = Type::HALF;
   701   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   703   return TypeFunc::make(domain, range);
   704 }
   706 //-------------- currentTimeMillis, currentTimeNanos, etc
   708 const TypeFunc* OptoRuntime::void_long_Type() {
   709   // create input type (domain)
   710   const Type **fields = TypeTuple::fields(0);
   711   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   713   // create result type (range)
   714   fields = TypeTuple::fields(2);
   715   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   716   fields[TypeFunc::Parms+1] = Type::HALF;
   717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   719   return TypeFunc::make(domain, range);
   720 }
   722 // arraycopy stub variations:
   723 enum ArrayCopyType {
   724   ac_fast,                      // void(ptr, ptr, size_t)
   725   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   726   ac_slow,                      // void(ptr, int, ptr, int, int)
   727   ac_generic                    //  int(ptr, int, ptr, int, int)
   728 };
   730 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   731   // create input type (domain)
   732   int num_args      = (act == ac_fast ? 3 : 5);
   733   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   734   int argcnt = num_args;
   735   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   736   const Type** fields = TypeTuple::fields(argcnt);
   737   int argp = TypeFunc::Parms;
   738   fields[argp++] = TypePtr::NOTNULL;    // src
   739   if (num_size_args == 0) {
   740     fields[argp++] = TypeInt::INT;      // src_pos
   741   }
   742   fields[argp++] = TypePtr::NOTNULL;    // dest
   743   if (num_size_args == 0) {
   744     fields[argp++] = TypeInt::INT;      // dest_pos
   745     fields[argp++] = TypeInt::INT;      // length
   746   }
   747   while (num_size_args-- > 0) {
   748     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   749     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   750   }
   751   if (act == ac_checkcast) {
   752     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   753   }
   754   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   755   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   757   // create result type if needed
   758   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   759   fields = TypeTuple::fields(1);
   760   if (retcnt == 0)
   761     fields[TypeFunc::Parms+0] = NULL; // void
   762   else
   763     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   764   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   765   return TypeFunc::make(domain, range);
   766 }
   768 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   769   // This signature is simple:  Two base pointers and a size_t.
   770   return make_arraycopy_Type(ac_fast);
   771 }
   773 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   774   // An extension of fast_arraycopy_Type which adds type checking.
   775   return make_arraycopy_Type(ac_checkcast);
   776 }
   778 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   779   // This signature is exactly the same as System.arraycopy.
   780   // There are no intptr_t (int/long) arguments.
   781   return make_arraycopy_Type(ac_slow);
   782 }
   784 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   785   // This signature is like System.arraycopy, except that it returns status.
   786   return make_arraycopy_Type(ac_generic);
   787 }
   790 const TypeFunc* OptoRuntime::array_fill_Type() {
   791   const Type** fields;
   792   int argp = TypeFunc::Parms;
   793   if (CCallingConventionRequiresIntsAsLongs) {
   794   // create input type (domain): pointer, int, size_t
   795     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
   796     fields[argp++] = TypePtr::NOTNULL;
   797     fields[argp++] = TypeLong::LONG;
   798     fields[argp++] = Type::HALF;
   799   } else {
   800     // create input type (domain): pointer, int, size_t
   801     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   802     fields[argp++] = TypePtr::NOTNULL;
   803     fields[argp++] = TypeInt::INT;
   804   }
   805   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   806   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   807   const TypeTuple *domain = TypeTuple::make(argp, fields);
   809   // create result type
   810   fields = TypeTuple::fields(1);
   811   fields[TypeFunc::Parms+0] = NULL; // void
   812   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   814   return TypeFunc::make(domain, range);
   815 }
   817 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   818 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   819   // create input type (domain)
   820   int num_args      = 3;
   821   if (Matcher::pass_original_key_for_aes()) {
   822     num_args = 4;
   823   }
   824   int argcnt = num_args;
   825   const Type** fields = TypeTuple::fields(argcnt);
   826   int argp = TypeFunc::Parms;
   827   fields[argp++] = TypePtr::NOTNULL;    // src
   828   fields[argp++] = TypePtr::NOTNULL;    // dest
   829   fields[argp++] = TypePtr::NOTNULL;    // k array
   830   if (Matcher::pass_original_key_for_aes()) {
   831     fields[argp++] = TypePtr::NOTNULL;    // original k array
   832   }
   833   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   834   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   836   // no result type needed
   837   fields = TypeTuple::fields(1);
   838   fields[TypeFunc::Parms+0] = NULL; // void
   839   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   840   return TypeFunc::make(domain, range);
   841 }
   843 /**
   844  * int updateBytesCRC32(int crc, byte* b, int len)
   845  */
   846 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   847   // create input type (domain)
   848   int num_args      = 3;
   849   int argcnt = num_args;
   850   const Type** fields = TypeTuple::fields(argcnt);
   851   int argp = TypeFunc::Parms;
   852   fields[argp++] = TypeInt::INT;        // crc
   853   fields[argp++] = TypePtr::NOTNULL;    // src
   854   fields[argp++] = TypeInt::INT;        // len
   855   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   856   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   858   // result type needed
   859   fields = TypeTuple::fields(1);
   860   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   861   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   862   return TypeFunc::make(domain, range);
   863 }
   865 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
   866 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   867   // create input type (domain)
   868   int num_args      = 5;
   869   if (Matcher::pass_original_key_for_aes()) {
   870     num_args = 6;
   871   }
   872   int argcnt = num_args;
   873   const Type** fields = TypeTuple::fields(argcnt);
   874   int argp = TypeFunc::Parms;
   875   fields[argp++] = TypePtr::NOTNULL;    // src
   876   fields[argp++] = TypePtr::NOTNULL;    // dest
   877   fields[argp++] = TypePtr::NOTNULL;    // k array
   878   fields[argp++] = TypePtr::NOTNULL;    // r array
   879   fields[argp++] = TypeInt::INT;        // src len
   880   if (Matcher::pass_original_key_for_aes()) {
   881     fields[argp++] = TypePtr::NOTNULL;    // original k array
   882   }
   883   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   884   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   886   // returning cipher len (int)
   887   fields = TypeTuple::fields(1);
   888   fields[TypeFunc::Parms+0] = TypeInt::INT;
   889   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   890   return TypeFunc::make(domain, range);
   891 }
   893 /*
   894  * void implCompress(byte[] buf, int ofs)
   895  */
   896 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
   897   // create input type (domain)
   898   int num_args = 2;
   899   int argcnt = num_args;
   900   const Type** fields = TypeTuple::fields(argcnt);
   901   int argp = TypeFunc::Parms;
   902   fields[argp++] = TypePtr::NOTNULL; // buf
   903   fields[argp++] = TypePtr::NOTNULL; // state
   904   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   905   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   907   // no result type needed
   908   fields = TypeTuple::fields(1);
   909   fields[TypeFunc::Parms+0] = NULL; // void
   910   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   911   return TypeFunc::make(domain, range);
   912 }
   914 /*
   915  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
   916  */
   917 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
   918   // create input type (domain)
   919   int num_args = 4;
   920   int argcnt = num_args;
   921   const Type** fields = TypeTuple::fields(argcnt);
   922   int argp = TypeFunc::Parms;
   923   fields[argp++] = TypePtr::NOTNULL; // buf
   924   fields[argp++] = TypePtr::NOTNULL; // state
   925   fields[argp++] = TypeInt::INT;     // ofs
   926   fields[argp++] = TypeInt::INT;     // limit
   927   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   928   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   930   // returning ofs (int)
   931   fields = TypeTuple::fields(1);
   932   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
   933   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   934   return TypeFunc::make(domain, range);
   935 }
   937 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
   938   // create input type (domain)
   939   int num_args      = 6;
   940   int argcnt = num_args;
   941   const Type** fields = TypeTuple::fields(argcnt);
   942   int argp = TypeFunc::Parms;
   943   fields[argp++] = TypePtr::NOTNULL;    // x
   944   fields[argp++] = TypeInt::INT;        // xlen
   945   fields[argp++] = TypePtr::NOTNULL;    // y
   946   fields[argp++] = TypeInt::INT;        // ylen
   947   fields[argp++] = TypePtr::NOTNULL;    // z
   948   fields[argp++] = TypeInt::INT;        // zlen
   949   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   950   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   952   // no result type needed
   953   fields = TypeTuple::fields(1);
   954   fields[TypeFunc::Parms+0] = NULL;
   955   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   956   return TypeFunc::make(domain, range);
   957 }
   961 //------------- Interpreter state access for on stack replacement
   962 const TypeFunc* OptoRuntime::osr_end_Type() {
   963   // create input type (domain)
   964   const Type **fields = TypeTuple::fields(1);
   965   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   966   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   968   // create result type
   969   fields = TypeTuple::fields(1);
   970   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   971   fields[TypeFunc::Parms+0] = NULL; // void
   972   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   973   return TypeFunc::make(domain, range);
   974 }
   976 //-------------- methodData update helpers
   978 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   979   // create input type (domain)
   980   const Type **fields = TypeTuple::fields(2);
   981   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   982   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   983   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   985   // create result type
   986   fields = TypeTuple::fields(1);
   987   fields[TypeFunc::Parms+0] = NULL; // void
   988   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   989   return TypeFunc::make(domain,range);
   990 }
   992 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   993   if (receiver == NULL) return;
   994   Klass* receiver_klass = receiver->klass();
   996   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   997   int empty_row = -1;           // free row, if any is encountered
   999   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
  1000   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
  1001     // if (vc->receiver(row) == receiver_klass)
  1002     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
  1003     intptr_t row_recv = *(mdp + receiver_off);
  1004     if (row_recv == (intptr_t) receiver_klass) {
  1005       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
  1006       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
  1007       *(mdp + count_off) += DataLayout::counter_increment;
  1008       return;
  1009     } else if (row_recv == 0) {
  1010       // else if (vc->receiver(row) == NULL)
  1011       empty_row = (int) row;
  1015   if (empty_row != -1) {
  1016     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
  1017     // vc->set_receiver(empty_row, receiver_klass);
  1018     *(mdp + receiver_off) = (intptr_t) receiver_klass;
  1019     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
  1020     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
  1021     *(mdp + count_off) = DataLayout::counter_increment;
  1022   } else {
  1023     // Receiver did not match any saved receiver and there is no empty row for it.
  1024     // Increment total counter to indicate polymorphic case.
  1025     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
  1026     *count_p += DataLayout::counter_increment;
  1028 JRT_END
  1030 //-------------------------------------------------------------------------------------
  1031 // register policy
  1033 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
  1034   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
  1035   switch (register_save_policy[reg]) {
  1036     case 'C': return false; //SOC
  1037     case 'E': return true ; //SOE
  1038     case 'N': return false; //NS
  1039     case 'A': return false; //AS
  1041   ShouldNotReachHere();
  1042   return false;
  1045 //-----------------------------------------------------------------------
  1046 // Exceptions
  1047 //
  1049 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
  1051 // The method is an entry that is always called by a C++ method not
  1052 // directly from compiled code. Compiled code will call the C++ method following.
  1053 // We can't allow async exception to be installed during  exception processing.
  1054 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
  1056   // Do not confuse exception_oop with pending_exception. The exception_oop
  1057   // is only used to pass arguments into the method. Not for general
  1058   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  1059   // the runtime stubs checks this on exit.
  1060   assert(thread->exception_oop() != NULL, "exception oop is found");
  1061   address handler_address = NULL;
  1063   Handle exception(thread, thread->exception_oop());
  1064   address pc = thread->exception_pc();
  1066   // Clear out the exception oop and pc since looking up an
  1067   // exception handler can cause class loading, which might throw an
  1068   // exception and those fields are expected to be clear during
  1069   // normal bytecode execution.
  1070   thread->clear_exception_oop_and_pc();
  1072   if (TraceExceptions) {
  1073     trace_exception(exception(), pc, "");
  1076   // for AbortVMOnException flag
  1077   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1079 #ifdef ASSERT
  1080   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1081     // should throw an exception here
  1082     ShouldNotReachHere();
  1084 #endif
  1086   // new exception handling: this method is entered only from adapters
  1087   // exceptions from compiled java methods are handled in compiled code
  1088   // using rethrow node
  1090   nm = CodeCache::find_nmethod(pc);
  1091   assert(nm != NULL, "No NMethod found");
  1092   if (nm->is_native_method()) {
  1093     fatal("Native method should not have path to exception handling");
  1094   } else {
  1095     // we are switching to old paradigm: search for exception handler in caller_frame
  1096     // instead in exception handler of caller_frame.sender()
  1098     if (JvmtiExport::can_post_on_exceptions()) {
  1099       // "Full-speed catching" is not necessary here,
  1100       // since we're notifying the VM on every catch.
  1101       // Force deoptimization and the rest of the lookup
  1102       // will be fine.
  1103       deoptimize_caller_frame(thread);
  1106     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1107     // otherwise, forcibly unwind the frame.
  1108     //
  1109     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1110     bool force_unwind = !thread->reguard_stack();
  1111     bool deopting = false;
  1112     if (nm->is_deopt_pc(pc)) {
  1113       deopting = true;
  1114       RegisterMap map(thread, false);
  1115       frame deoptee = thread->last_frame().sender(&map);
  1116       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1117       // Adjust the pc back to the original throwing pc
  1118       pc = deoptee.pc();
  1121     // If we are forcing an unwind because of stack overflow then deopt is
  1122     // irrelevant since we are throwing the frame away anyway.
  1124     if (deopting && !force_unwind) {
  1125       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1126     } else {
  1128       handler_address =
  1129         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1131       if (handler_address == NULL) {
  1132         Handle original_exception(thread, exception());
  1133         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1134         assert (handler_address != NULL, "must have compiled handler");
  1135         // Update the exception cache only when the unwind was not forced
  1136         // and there didn't happen another exception during the computation of the
  1137         // compiled exception handler.
  1138         if (!force_unwind && original_exception() == exception()) {
  1139           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1141       } else {
  1142         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1146     thread->set_exception_pc(pc);
  1147     thread->set_exception_handler_pc(handler_address);
  1149     // Check if the exception PC is a MethodHandle call site.
  1150     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1153   // Restore correct return pc.  Was saved above.
  1154   thread->set_exception_oop(exception());
  1155   return handler_address;
  1157 JRT_END
  1159 // We are entering here from exception_blob
  1160 // If there is a compiled exception handler in this method, we will continue there;
  1161 // otherwise we will unwind the stack and continue at the caller of top frame method
  1162 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1163 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1164 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1165 // we must not use the handler and instead return the deopt blob.
  1166 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1167 //
  1168 // We are in Java not VM and in debug mode we have a NoHandleMark
  1169 //
  1170 #ifndef PRODUCT
  1171   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1172 #endif
  1173   debug_only(NoHandleMark __hm;)
  1174   nmethod* nm = NULL;
  1175   address handler_address = NULL;
  1177     // Enter the VM
  1179     ResetNoHandleMark rnhm;
  1180     handler_address = handle_exception_C_helper(thread, nm);
  1183   // Back in java: Use no oops, DON'T safepoint
  1185   // Now check to see if the handler we are returning is in a now
  1186   // deoptimized frame
  1188   if (nm != NULL) {
  1189     RegisterMap map(thread, false);
  1190     frame caller = thread->last_frame().sender(&map);
  1191 #ifdef ASSERT
  1192     assert(caller.is_compiled_frame(), "must be");
  1193 #endif // ASSERT
  1194     if (caller.is_deoptimized_frame()) {
  1195       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1198   return handler_address;
  1201 //------------------------------rethrow----------------------------------------
  1202 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1203 // is either throwing or rethrowing an exception.  The callee-save registers
  1204 // have been restored, synchronized objects have been unlocked and the callee
  1205 // stack frame has been removed.  The return address was passed in.
  1206 // Exception oop is passed as the 1st argument.  This routine is then called
  1207 // from the stub.  On exit, we know where to jump in the caller's code.
  1208 // After this C code exits, the stub will pop his frame and end in a jump
  1209 // (instead of a return).  We enter the caller's default handler.
  1210 //
  1211 // This must be JRT_LEAF:
  1212 //     - caller will not change its state as we cannot block on exit,
  1213 //       therefore raw_exception_handler_for_return_address is all it takes
  1214 //       to handle deoptimized blobs
  1215 //
  1216 // However, there needs to be a safepoint check in the middle!  So compiled
  1217 // safepoints are completely watertight.
  1218 //
  1219 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1220 //
  1221 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1222 //
  1223 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1224 #ifndef PRODUCT
  1225   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1226 #endif
  1227   assert (exception != NULL, "should have thrown a NULLPointerException");
  1228 #ifdef ASSERT
  1229   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1230     // should throw an exception here
  1231     ShouldNotReachHere();
  1233 #endif
  1235   thread->set_vm_result(exception);
  1236   // Frame not compiled (handles deoptimization blob)
  1237   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1241 const TypeFunc *OptoRuntime::rethrow_Type() {
  1242   // create input type (domain)
  1243   const Type **fields = TypeTuple::fields(1);
  1244   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1245   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1247   // create result type (range)
  1248   fields = TypeTuple::fields(1);
  1249   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1250   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1252   return TypeFunc::make(domain, range);
  1256 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1257   // Deoptimize the caller before continuing, as the compiled
  1258   // exception handler table may not be valid.
  1259   if (!StressCompiledExceptionHandlers && doit) {
  1260     deoptimize_caller_frame(thread);
  1264 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1265   // Called from within the owner thread, so no need for safepoint
  1266   RegisterMap reg_map(thread);
  1267   frame stub_frame = thread->last_frame();
  1268   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1269   frame caller_frame = stub_frame.sender(&reg_map);
  1271   // Deoptimize the caller frame.
  1272   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1276 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1277   // Called from within the owner thread, so no need for safepoint
  1278   RegisterMap reg_map(thread);
  1279   frame stub_frame = thread->last_frame();
  1280   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1281   frame caller_frame = stub_frame.sender(&reg_map);
  1282   return caller_frame.is_deoptimized_frame();
  1286 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1287   // create input type (domain)
  1288   const Type **fields = TypeTuple::fields(1);
  1289   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1290   // // The JavaThread* is passed to each routine as the last argument
  1291   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1292   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1294   // create result type (range)
  1295   fields = TypeTuple::fields(0);
  1297   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1299   return TypeFunc::make(domain,range);
  1303 //-----------------------------------------------------------------------------
  1304 // Dtrace support.  entry and exit probes have the same signature
  1305 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1306   // create input type (domain)
  1307   const Type **fields = TypeTuple::fields(2);
  1308   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1309   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1310   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1312   // create result type (range)
  1313   fields = TypeTuple::fields(0);
  1315   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1317   return TypeFunc::make(domain,range);
  1320 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1321   // create input type (domain)
  1322   const Type **fields = TypeTuple::fields(2);
  1323   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1324   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1326   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1328   // create result type (range)
  1329   fields = TypeTuple::fields(0);
  1331   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1333   return TypeFunc::make(domain,range);
  1337 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1338   assert(obj->is_oop(), "must be a valid oop");
  1339   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1340   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1341 JRT_END
  1343 //-----------------------------------------------------------------------------
  1345 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1347 //
  1348 // dump the collected NamedCounters.
  1349 //
  1350 void OptoRuntime::print_named_counters() {
  1351   int total_lock_count = 0;
  1352   int eliminated_lock_count = 0;
  1354   NamedCounter* c = _named_counters;
  1355   while (c) {
  1356     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1357       int count = c->count();
  1358       if (count > 0) {
  1359         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1360         if (Verbose) {
  1361           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1363         total_lock_count += count;
  1364         if (eliminated) {
  1365           eliminated_lock_count += count;
  1368     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1369       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1370       if (blc->nonzero()) {
  1371         tty->print_cr("%s", c->name());
  1372         blc->print_on(tty);
  1374 #if INCLUDE_RTM_OPT
  1375     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
  1376       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
  1377       if (rlc->nonzero()) {
  1378         tty->print_cr("%s", c->name());
  1379         rlc->print_on(tty);
  1381 #endif
  1383     c = c->next();
  1385   if (total_lock_count > 0) {
  1386     tty->print_cr("dynamic locks: %d", total_lock_count);
  1387     if (eliminated_lock_count) {
  1388       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1389                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1394 //
  1395 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1396 //  name which consists of method@line for the inlining tree.
  1397 //
  1399 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1400   int max_depth = youngest_jvms->depth();
  1402   // Visit scopes from youngest to oldest.
  1403   bool first = true;
  1404   stringStream st;
  1405   for (int depth = max_depth; depth >= 1; depth--) {
  1406     JVMState* jvms = youngest_jvms->of_depth(depth);
  1407     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1408     if (!first) {
  1409       st.print(" ");
  1410     } else {
  1411       first = false;
  1413     int bci = jvms->bci();
  1414     if (bci < 0) bci = 0;
  1415     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1416     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1418   NamedCounter* c;
  1419   if (tag == NamedCounter::BiasedLockingCounter) {
  1420     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1421   } else if (tag == NamedCounter::RTMLockingCounter) {
  1422     c = new RTMLockingNamedCounter(strdup(st.as_string()));
  1423   } else {
  1424     c = new NamedCounter(strdup(st.as_string()), tag);
  1427   // atomically add the new counter to the head of the list.  We only
  1428   // add counters so this is safe.
  1429   NamedCounter* head;
  1430   do {
  1431     c->set_next(NULL);
  1432     head = _named_counters;
  1433     c->set_next(head);
  1434   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1435   return c;
  1438 //-----------------------------------------------------------------------------
  1439 // Non-product code
  1440 #ifndef PRODUCT
  1442 int trace_exception_counter = 0;
  1443 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1444   ttyLocker ttyl;
  1445   trace_exception_counter++;
  1446   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1447   exception_oop->print_value();
  1448   tty->print(" in ");
  1449   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1450   if (blob->is_nmethod()) {
  1451     nmethod* nm = blob->as_nmethod_or_null();
  1452     nm->method()->print_value();
  1453   } else if (blob->is_runtime_stub()) {
  1454     tty->print("<runtime-stub>");
  1455   } else {
  1456     tty->print("<unknown>");
  1458   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
  1459   tty->print_cr("]");
  1462 #endif  // PRODUCT
  1465 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1466 // Called from call sites in compiled code with oop maps (actually safepoints)
  1467 // Zaps dead locals in first java frame.
  1468 // Is entry because may need to lock to generate oop maps
  1469 // Currently, only used for compiler frames, but someday may be used
  1470 // for interpreter frames, too.
  1472 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1474 // avoid pointers to member funcs with these helpers
  1475 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1476 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1479 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1480                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1481   assert(JavaThread::current() == thread, "is this needed?");
  1483   if ( !ZapDeadCompiledLocals )  return;
  1485   bool skip = false;
  1487        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1488   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1489   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1490     warning("starting zapping after skipping");
  1492        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1493   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1494   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1495     warning("about to zap last zap");
  1497   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1499   if ( skip )  return;
  1501   // find java frame and zap it
  1503   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1504     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1505       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1506       return;
  1509   warning("no frame found to zap in zap_dead_Java_locals_C");
  1512 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1513   zap_dead_java_or_native_locals(thread, is_java_frame);
  1514 JRT_END
  1516 // The following does not work because for one thing, the
  1517 // thread state is wrong; it expects java, but it is native.
  1518 // Also, the invariants in a native stub are different and
  1519 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1520 // in there.
  1521 // So for now, we do not zap in native stubs.
  1523 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1524   zap_dead_java_or_native_locals(thread, is_native_frame);
  1525 JRT_END
  1527 # endif

mercurial