src/share/vm/opto/matcher.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 6680
78bbf4d43a14
child 7859
c1c199dde5c9
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/type.hpp"
    38 #include "opto/vectornode.hpp"
    39 #include "runtime/atomic.hpp"
    40 #include "runtime/os.hpp"
    41 #if defined AD_MD_HPP
    42 # include AD_MD_HPP
    43 #elif defined TARGET_ARCH_MODEL_x86_32
    44 # include "adfiles/ad_x86_32.hpp"
    45 #elif defined TARGET_ARCH_MODEL_x86_64
    46 # include "adfiles/ad_x86_64.hpp"
    47 #elif defined TARGET_ARCH_MODEL_sparc
    48 # include "adfiles/ad_sparc.hpp"
    49 #elif defined TARGET_ARCH_MODEL_zero
    50 # include "adfiles/ad_zero.hpp"
    51 #elif defined TARGET_ARCH_MODEL_ppc_64
    52 # include "adfiles/ad_ppc_64.hpp"
    53 #endif
    55 OptoReg::Name OptoReg::c_frame_pointer;
    57 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    58 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    59 RegMask Matcher::STACK_ONLY_mask;
    60 RegMask Matcher::c_frame_ptr_mask;
    61 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    62 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    64 //---------------------------Matcher-------------------------------------------
    65 Matcher::Matcher()
    66 : PhaseTransform( Phase::Ins_Select ),
    67 #ifdef ASSERT
    68   _old2new_map(C->comp_arena()),
    69   _new2old_map(C->comp_arena()),
    70 #endif
    71   _shared_nodes(C->comp_arena()),
    72   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    73   _swallowed(swallowed),
    74   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    75   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    76   _must_clone(must_clone),
    77   _register_save_policy(register_save_policy),
    78   _c_reg_save_policy(c_reg_save_policy),
    79   _register_save_type(register_save_type),
    80   _ruleName(ruleName),
    81   _allocation_started(false),
    82   _states_arena(Chunk::medium_size),
    83   _visited(&_states_arena),
    84   _shared(&_states_arena),
    85   _dontcare(&_states_arena) {
    86   C->set_matcher(this);
    88   idealreg2spillmask  [Op_RegI] = NULL;
    89   idealreg2spillmask  [Op_RegN] = NULL;
    90   idealreg2spillmask  [Op_RegL] = NULL;
    91   idealreg2spillmask  [Op_RegF] = NULL;
    92   idealreg2spillmask  [Op_RegD] = NULL;
    93   idealreg2spillmask  [Op_RegP] = NULL;
    94   idealreg2spillmask  [Op_VecS] = NULL;
    95   idealreg2spillmask  [Op_VecD] = NULL;
    96   idealreg2spillmask  [Op_VecX] = NULL;
    97   idealreg2spillmask  [Op_VecY] = NULL;
    99   idealreg2debugmask  [Op_RegI] = NULL;
   100   idealreg2debugmask  [Op_RegN] = NULL;
   101   idealreg2debugmask  [Op_RegL] = NULL;
   102   idealreg2debugmask  [Op_RegF] = NULL;
   103   idealreg2debugmask  [Op_RegD] = NULL;
   104   idealreg2debugmask  [Op_RegP] = NULL;
   105   idealreg2debugmask  [Op_VecS] = NULL;
   106   idealreg2debugmask  [Op_VecD] = NULL;
   107   idealreg2debugmask  [Op_VecX] = NULL;
   108   idealreg2debugmask  [Op_VecY] = NULL;
   110   idealreg2mhdebugmask[Op_RegI] = NULL;
   111   idealreg2mhdebugmask[Op_RegN] = NULL;
   112   idealreg2mhdebugmask[Op_RegL] = NULL;
   113   idealreg2mhdebugmask[Op_RegF] = NULL;
   114   idealreg2mhdebugmask[Op_RegD] = NULL;
   115   idealreg2mhdebugmask[Op_RegP] = NULL;
   116   idealreg2mhdebugmask[Op_VecS] = NULL;
   117   idealreg2mhdebugmask[Op_VecD] = NULL;
   118   idealreg2mhdebugmask[Op_VecX] = NULL;
   119   idealreg2mhdebugmask[Op_VecY] = NULL;
   121   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   122 }
   124 //------------------------------warp_incoming_stk_arg------------------------
   125 // This warps a VMReg into an OptoReg::Name
   126 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   127   OptoReg::Name warped;
   128   if( reg->is_stack() ) {  // Stack slot argument?
   129     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   130     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   131     if( warped >= _in_arg_limit )
   132       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   133     if (!RegMask::can_represent_arg(warped)) {
   134       // the compiler cannot represent this method's calling sequence
   135       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   136       return OptoReg::Bad;
   137     }
   138     return warped;
   139   }
   140   return OptoReg::as_OptoReg(reg);
   141 }
   143 //---------------------------compute_old_SP------------------------------------
   144 OptoReg::Name Compile::compute_old_SP() {
   145   int fixed    = fixed_slots();
   146   int preserve = in_preserve_stack_slots();
   147   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   148 }
   152 #ifdef ASSERT
   153 void Matcher::verify_new_nodes_only(Node* xroot) {
   154   // Make sure that the new graph only references new nodes
   155   ResourceMark rm;
   156   Unique_Node_List worklist;
   157   VectorSet visited(Thread::current()->resource_area());
   158   worklist.push(xroot);
   159   while (worklist.size() > 0) {
   160     Node* n = worklist.pop();
   161     visited <<= n->_idx;
   162     assert(C->node_arena()->contains(n), "dead node");
   163     for (uint j = 0; j < n->req(); j++) {
   164       Node* in = n->in(j);
   165       if (in != NULL) {
   166         assert(C->node_arena()->contains(in), "dead node");
   167         if (!visited.test(in->_idx)) {
   168           worklist.push(in);
   169         }
   170       }
   171     }
   172   }
   173 }
   174 #endif
   177 //---------------------------match---------------------------------------------
   178 void Matcher::match( ) {
   179   if( MaxLabelRootDepth < 100 ) { // Too small?
   180     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   181     MaxLabelRootDepth = 100;
   182   }
   183   // One-time initialization of some register masks.
   184   init_spill_mask( C->root()->in(1) );
   185   _return_addr_mask = return_addr();
   186 #ifdef _LP64
   187   // Pointers take 2 slots in 64-bit land
   188   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   189 #endif
   191   // Map a Java-signature return type into return register-value
   192   // machine registers for 0, 1 and 2 returned values.
   193   const TypeTuple *range = C->tf()->range();
   194   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   195     // Get ideal-register return type
   196     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
   197     // Get machine return register
   198     uint sop = C->start()->Opcode();
   199     OptoRegPair regs = return_value(ireg, false);
   201     // And mask for same
   202     _return_value_mask = RegMask(regs.first());
   203     if( OptoReg::is_valid(regs.second()) )
   204       _return_value_mask.Insert(regs.second());
   205   }
   207   // ---------------
   208   // Frame Layout
   210   // Need the method signature to determine the incoming argument types,
   211   // because the types determine which registers the incoming arguments are
   212   // in, and this affects the matched code.
   213   const TypeTuple *domain = C->tf()->domain();
   214   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   215   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   216   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   217   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   218   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   219   uint i;
   220   for( i = 0; i<argcnt; i++ ) {
   221     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   222   }
   224   // Pass array of ideal registers and length to USER code (from the AD file)
   225   // that will convert this to an array of register numbers.
   226   const StartNode *start = C->start();
   227   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   228 #ifdef ASSERT
   229   // Sanity check users' calling convention.  Real handy while trying to
   230   // get the initial port correct.
   231   { for (uint i = 0; i<argcnt; i++) {
   232       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   233         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   234         _parm_regs[i].set_bad();
   235         continue;
   236       }
   237       VMReg parm_reg = vm_parm_regs[i].first();
   238       assert(parm_reg->is_valid(), "invalid arg?");
   239       if (parm_reg->is_reg()) {
   240         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   241         assert(can_be_java_arg(opto_parm_reg) ||
   242                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   243                opto_parm_reg == inline_cache_reg(),
   244                "parameters in register must be preserved by runtime stubs");
   245       }
   246       for (uint j = 0; j < i; j++) {
   247         assert(parm_reg != vm_parm_regs[j].first(),
   248                "calling conv. must produce distinct regs");
   249       }
   250     }
   251   }
   252 #endif
   254   // Do some initial frame layout.
   256   // Compute the old incoming SP (may be called FP) as
   257   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   258   _old_SP = C->compute_old_SP();
   259   assert( is_even(_old_SP), "must be even" );
   261   // Compute highest incoming stack argument as
   262   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   263   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   264   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   265   for( i = 0; i < argcnt; i++ ) {
   266     // Permit args to have no register
   267     _calling_convention_mask[i].Clear();
   268     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   269       continue;
   270     }
   271     // calling_convention returns stack arguments as a count of
   272     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   273     // the allocators point of view, taking into account all the
   274     // preserve area, locks & pad2.
   276     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   277     if( OptoReg::is_valid(reg1))
   278       _calling_convention_mask[i].Insert(reg1);
   280     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   281     if( OptoReg::is_valid(reg2))
   282       _calling_convention_mask[i].Insert(reg2);
   284     // Saved biased stack-slot register number
   285     _parm_regs[i].set_pair(reg2, reg1);
   286   }
   288   // Finally, make sure the incoming arguments take up an even number of
   289   // words, in case the arguments or locals need to contain doubleword stack
   290   // slots.  The rest of the system assumes that stack slot pairs (in
   291   // particular, in the spill area) which look aligned will in fact be
   292   // aligned relative to the stack pointer in the target machine.  Double
   293   // stack slots will always be allocated aligned.
   294   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   296   // Compute highest outgoing stack argument as
   297   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   298   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   299   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   301   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
   302     // the compiler cannot represent this method's calling sequence
   303     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   304   }
   306   if (C->failing())  return;  // bailed out on incoming arg failure
   308   // ---------------
   309   // Collect roots of matcher trees.  Every node for which
   310   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   311   // can be a valid interior of some tree.
   312   find_shared( C->root() );
   313   find_shared( C->top() );
   315   C->print_method(PHASE_BEFORE_MATCHING);
   317   // Create new ideal node ConP #NULL even if it does exist in old space
   318   // to avoid false sharing if the corresponding mach node is not used.
   319   // The corresponding mach node is only used in rare cases for derived
   320   // pointers.
   321   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   323   // Swap out to old-space; emptying new-space
   324   Arena *old = C->node_arena()->move_contents(C->old_arena());
   326   // Save debug and profile information for nodes in old space:
   327   _old_node_note_array = C->node_note_array();
   328   if (_old_node_note_array != NULL) {
   329     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   330                            (C->comp_arena(), _old_node_note_array->length(),
   331                             0, NULL));
   332   }
   334   // Pre-size the new_node table to avoid the need for range checks.
   335   grow_new_node_array(C->unique());
   337   // Reset node counter so MachNodes start with _idx at 0
   338   int nodes = C->unique(); // save value
   339   C->set_unique(0);
   340   C->reset_dead_node_list();
   342   // Recursively match trees from old space into new space.
   343   // Correct leaves of new-space Nodes; they point to old-space.
   344   _visited.Clear();             // Clear visit bits for xform call
   345   C->set_cached_top_node(xform( C->top(), nodes ));
   346   if (!C->failing()) {
   347     Node* xroot =        xform( C->root(), 1 );
   348     if (xroot == NULL) {
   349       Matcher::soft_match_failure();  // recursive matching process failed
   350       C->record_method_not_compilable("instruction match failed");
   351     } else {
   352       // During matching shared constants were attached to C->root()
   353       // because xroot wasn't available yet, so transfer the uses to
   354       // the xroot.
   355       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   356         Node* n = C->root()->fast_out(j);
   357         if (C->node_arena()->contains(n)) {
   358           assert(n->in(0) == C->root(), "should be control user");
   359           n->set_req(0, xroot);
   360           --j;
   361           --jmax;
   362         }
   363       }
   365       // Generate new mach node for ConP #NULL
   366       assert(new_ideal_null != NULL, "sanity");
   367       _mach_null = match_tree(new_ideal_null);
   368       // Don't set control, it will confuse GCM since there are no uses.
   369       // The control will be set when this node is used first time
   370       // in find_base_for_derived().
   371       assert(_mach_null != NULL, "");
   373       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   375 #ifdef ASSERT
   376       verify_new_nodes_only(xroot);
   377 #endif
   378     }
   379   }
   380   if (C->top() == NULL || C->root() == NULL) {
   381     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   382   }
   383   if (C->failing()) {
   384     // delete old;
   385     old->destruct_contents();
   386     return;
   387   }
   388   assert( C->top(), "" );
   389   assert( C->root(), "" );
   390   validate_null_checks();
   392   // Now smoke old-space
   393   NOT_DEBUG( old->destruct_contents() );
   395   // ------------------------
   396   // Set up save-on-entry registers
   397   Fixup_Save_On_Entry( );
   398 }
   401 //------------------------------Fixup_Save_On_Entry----------------------------
   402 // The stated purpose of this routine is to take care of save-on-entry
   403 // registers.  However, the overall goal of the Match phase is to convert into
   404 // machine-specific instructions which have RegMasks to guide allocation.
   405 // So what this procedure really does is put a valid RegMask on each input
   406 // to the machine-specific variations of all Return, TailCall and Halt
   407 // instructions.  It also adds edgs to define the save-on-entry values (and of
   408 // course gives them a mask).
   410 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   411   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   412   // Do all the pre-defined register masks
   413   rms[TypeFunc::Control  ] = RegMask::Empty;
   414   rms[TypeFunc::I_O      ] = RegMask::Empty;
   415   rms[TypeFunc::Memory   ] = RegMask::Empty;
   416   rms[TypeFunc::ReturnAdr] = ret_adr;
   417   rms[TypeFunc::FramePtr ] = fp;
   418   return rms;
   419 }
   421 //---------------------------init_first_stack_mask-----------------------------
   422 // Create the initial stack mask used by values spilling to the stack.
   423 // Disallow any debug info in outgoing argument areas by setting the
   424 // initial mask accordingly.
   425 void Matcher::init_first_stack_mask() {
   427   // Allocate storage for spill masks as masks for the appropriate load type.
   428   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
   430   idealreg2spillmask  [Op_RegN] = &rms[0];
   431   idealreg2spillmask  [Op_RegI] = &rms[1];
   432   idealreg2spillmask  [Op_RegL] = &rms[2];
   433   idealreg2spillmask  [Op_RegF] = &rms[3];
   434   idealreg2spillmask  [Op_RegD] = &rms[4];
   435   idealreg2spillmask  [Op_RegP] = &rms[5];
   437   idealreg2debugmask  [Op_RegN] = &rms[6];
   438   idealreg2debugmask  [Op_RegI] = &rms[7];
   439   idealreg2debugmask  [Op_RegL] = &rms[8];
   440   idealreg2debugmask  [Op_RegF] = &rms[9];
   441   idealreg2debugmask  [Op_RegD] = &rms[10];
   442   idealreg2debugmask  [Op_RegP] = &rms[11];
   444   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   445   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   446   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   447   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   448   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   449   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   451   idealreg2spillmask  [Op_VecS] = &rms[18];
   452   idealreg2spillmask  [Op_VecD] = &rms[19];
   453   idealreg2spillmask  [Op_VecX] = &rms[20];
   454   idealreg2spillmask  [Op_VecY] = &rms[21];
   456   OptoReg::Name i;
   458   // At first, start with the empty mask
   459   C->FIRST_STACK_mask().Clear();
   461   // Add in the incoming argument area
   462   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   463   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
   464     C->FIRST_STACK_mask().Insert(i);
   465   }
   466   // Add in all bits past the outgoing argument area
   467   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
   468             "must be able to represent all call arguments in reg mask");
   469   OptoReg::Name init = _out_arg_limit;
   470   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
   471     C->FIRST_STACK_mask().Insert(i);
   472   }
   473   // Finally, set the "infinite stack" bit.
   474   C->FIRST_STACK_mask().set_AllStack();
   476   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   477   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
   478   // Keep spill masks aligned.
   479   aligned_stack_mask.clear_to_pairs();
   480   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   482   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   483 #ifdef _LP64
   484   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   485    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   486    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
   487 #else
   488    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   489 #endif
   490   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   491    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   492   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   493    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
   494   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   495    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   496   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   497    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
   499   if (Matcher::vector_size_supported(T_BYTE,4)) {
   500     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
   501      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
   502   }
   503   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   504     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
   505     // RA guarantees such alignment since it is needed for Double and Long values.
   506     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
   507      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
   508   }
   509   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   510     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
   511     //
   512     // RA can use input arguments stack slots for spills but until RA
   513     // we don't know frame size and offset of input arg stack slots.
   514     //
   515     // Exclude last input arg stack slots to avoid spilling vectors there
   516     // otherwise vector spills could stomp over stack slots in caller frame.
   517     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   518     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
   519       aligned_stack_mask.Remove(in);
   520       in = OptoReg::add(in, -1);
   521     }
   522      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
   523      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   524     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
   525      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
   526   }
   527   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   528     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
   529     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   530     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
   531       aligned_stack_mask.Remove(in);
   532       in = OptoReg::add(in, -1);
   533     }
   534      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
   535      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   536     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
   537      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
   538   }
   539    if (UseFPUForSpilling) {
   540      // This mask logic assumes that the spill operations are
   541      // symmetric and that the registers involved are the same size.
   542      // On sparc for instance we may have to use 64 bit moves will
   543      // kill 2 registers when used with F0-F31.
   544      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   545      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   546 #ifdef _LP64
   547      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   548      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   549      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   550      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   551 #else
   552      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   553 #ifdef ARM
   554      // ARM has support for moving 64bit values between a pair of
   555      // integer registers and a double register
   556      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   557      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   558 #endif
   559 #endif
   560    }
   562   // Make up debug masks.  Any spill slot plus callee-save registers.
   563   // Caller-save registers are assumed to be trashable by the various
   564   // inline-cache fixup routines.
   565   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   566   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   567   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   568   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   569   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   570   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   572   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   573   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   574   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   575   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   576   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   577   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   579   // Prevent stub compilations from attempting to reference
   580   // callee-saved registers from debug info
   581   bool exclude_soe = !Compile::current()->is_method_compilation();
   583   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   584     // registers the caller has to save do not work
   585     if( _register_save_policy[i] == 'C' ||
   586         _register_save_policy[i] == 'A' ||
   587         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   588       idealreg2debugmask  [Op_RegN]->Remove(i);
   589       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   590       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   591       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   592       idealreg2debugmask  [Op_RegD]->Remove(i);
   593       idealreg2debugmask  [Op_RegP]->Remove(i);
   595       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   596       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   597       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   598       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   599       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   600       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   601     }
   602   }
   604   // Subtract the register we use to save the SP for MethodHandle
   605   // invokes to from the debug mask.
   606   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   607   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   608   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   609   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   610   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   611   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   612   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   613 }
   615 //---------------------------is_save_on_entry----------------------------------
   616 bool Matcher::is_save_on_entry( int reg ) {
   617   return
   618     _register_save_policy[reg] == 'E' ||
   619     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   620     // Also save argument registers in the trampolining stubs
   621     (C->save_argument_registers() && is_spillable_arg(reg));
   622 }
   624 //---------------------------Fixup_Save_On_Entry-------------------------------
   625 void Matcher::Fixup_Save_On_Entry( ) {
   626   init_first_stack_mask();
   628   Node *root = C->root();       // Short name for root
   629   // Count number of save-on-entry registers.
   630   uint soe_cnt = number_of_saved_registers();
   631   uint i;
   633   // Find the procedure Start Node
   634   StartNode *start = C->start();
   635   assert( start, "Expect a start node" );
   637   // Save argument registers in the trampolining stubs
   638   if( C->save_argument_registers() )
   639     for( i = 0; i < _last_Mach_Reg; i++ )
   640       if( is_spillable_arg(i) )
   641         soe_cnt++;
   643   // Input RegMask array shared by all Returns.
   644   // The type for doubles and longs has a count of 2, but
   645   // there is only 1 returned value
   646   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   647   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   648   // Returns have 0 or 1 returned values depending on call signature.
   649   // Return register is specified by return_value in the AD file.
   650   if (ret_edge_cnt > TypeFunc::Parms)
   651     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   653   // Input RegMask array shared by all Rethrows.
   654   uint reth_edge_cnt = TypeFunc::Parms+1;
   655   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   656   // Rethrow takes exception oop only, but in the argument 0 slot.
   657   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   658 #ifdef _LP64
   659   // Need two slots for ptrs in 64-bit land
   660   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   661 #endif
   663   // Input RegMask array shared by all TailCalls
   664   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   665   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   667   // Input RegMask array shared by all TailJumps
   668   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   669   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   671   // TailCalls have 2 returned values (target & moop), whose masks come
   672   // from the usual MachNode/MachOper mechanism.  Find a sample
   673   // TailCall to extract these masks and put the correct masks into
   674   // the tail_call_rms array.
   675   for( i=1; i < root->req(); i++ ) {
   676     MachReturnNode *m = root->in(i)->as_MachReturn();
   677     if( m->ideal_Opcode() == Op_TailCall ) {
   678       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   679       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   680       break;
   681     }
   682   }
   684   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   685   // from the usual MachNode/MachOper mechanism.  Find a sample
   686   // TailJump to extract these masks and put the correct masks into
   687   // the tail_jump_rms array.
   688   for( i=1; i < root->req(); i++ ) {
   689     MachReturnNode *m = root->in(i)->as_MachReturn();
   690     if( m->ideal_Opcode() == Op_TailJump ) {
   691       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   692       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   693       break;
   694     }
   695   }
   697   // Input RegMask array shared by all Halts
   698   uint halt_edge_cnt = TypeFunc::Parms;
   699   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   701   // Capture the return input masks into each exit flavor
   702   for( i=1; i < root->req(); i++ ) {
   703     MachReturnNode *exit = root->in(i)->as_MachReturn();
   704     switch( exit->ideal_Opcode() ) {
   705       case Op_Return   : exit->_in_rms = ret_rms;  break;
   706       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   707       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   708       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   709       case Op_Halt     : exit->_in_rms = halt_rms; break;
   710       default          : ShouldNotReachHere();
   711     }
   712   }
   714   // Next unused projection number from Start.
   715   int proj_cnt = C->tf()->domain()->cnt();
   717   // Do all the save-on-entry registers.  Make projections from Start for
   718   // them, and give them a use at the exit points.  To the allocator, they
   719   // look like incoming register arguments.
   720   for( i = 0; i < _last_Mach_Reg; i++ ) {
   721     if( is_save_on_entry(i) ) {
   723       // Add the save-on-entry to the mask array
   724       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   725       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   726       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   727       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   728       // Halts need the SOE registers, but only in the stack as debug info.
   729       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   730       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   732       Node *mproj;
   734       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   735       // into a single RegD.
   736       if( (i&1) == 0 &&
   737           _register_save_type[i  ] == Op_RegF &&
   738           _register_save_type[i+1] == Op_RegF &&
   739           is_save_on_entry(i+1) ) {
   740         // Add other bit for double
   741         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   742         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   743         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   744         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   745         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   746         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   747         proj_cnt += 2;          // Skip 2 for doubles
   748       }
   749       else if( (i&1) == 1 &&    // Else check for high half of double
   750                _register_save_type[i-1] == Op_RegF &&
   751                _register_save_type[i  ] == Op_RegF &&
   752                is_save_on_entry(i-1) ) {
   753         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   754         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   755         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   756         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   757         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   758         mproj = C->top();
   759       }
   760       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   761       // into a single RegL.
   762       else if( (i&1) == 0 &&
   763           _register_save_type[i  ] == Op_RegI &&
   764           _register_save_type[i+1] == Op_RegI &&
   765         is_save_on_entry(i+1) ) {
   766         // Add other bit for long
   767         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   768         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   769         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   770         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   771         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   772         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   773         proj_cnt += 2;          // Skip 2 for longs
   774       }
   775       else if( (i&1) == 1 &&    // Else check for high half of long
   776                _register_save_type[i-1] == Op_RegI &&
   777                _register_save_type[i  ] == Op_RegI &&
   778                is_save_on_entry(i-1) ) {
   779         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   780         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   781         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   782         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   783         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   784         mproj = C->top();
   785       } else {
   786         // Make a projection for it off the Start
   787         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   788       }
   790       ret_edge_cnt ++;
   791       reth_edge_cnt ++;
   792       tail_call_edge_cnt ++;
   793       tail_jump_edge_cnt ++;
   794       halt_edge_cnt ++;
   796       // Add a use of the SOE register to all exit paths
   797       for( uint j=1; j < root->req(); j++ )
   798         root->in(j)->add_req(mproj);
   799     } // End of if a save-on-entry register
   800   } // End of for all machine registers
   801 }
   803 //------------------------------init_spill_mask--------------------------------
   804 void Matcher::init_spill_mask( Node *ret ) {
   805   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   807   OptoReg::c_frame_pointer = c_frame_pointer();
   808   c_frame_ptr_mask = c_frame_pointer();
   809 #ifdef _LP64
   810   // pointers are twice as big
   811   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   812 #endif
   814   // Start at OptoReg::stack0()
   815   STACK_ONLY_mask.Clear();
   816   OptoReg::Name init = OptoReg::stack2reg(0);
   817   // STACK_ONLY_mask is all stack bits
   818   OptoReg::Name i;
   819   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   820     STACK_ONLY_mask.Insert(i);
   821   // Also set the "infinite stack" bit.
   822   STACK_ONLY_mask.set_AllStack();
   824   // Copy the register names over into the shared world
   825   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   826     // SharedInfo::regName[i] = regName[i];
   827     // Handy RegMasks per machine register
   828     mreg2regmask[i].Insert(i);
   829   }
   831   // Grab the Frame Pointer
   832   Node *fp  = ret->in(TypeFunc::FramePtr);
   833   Node *mem = ret->in(TypeFunc::Memory);
   834   const TypePtr* atp = TypePtr::BOTTOM;
   835   // Share frame pointer while making spill ops
   836   set_shared(fp);
   838   // Compute generic short-offset Loads
   839 #ifdef _LP64
   840   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
   841 #endif
   842   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
   843   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered,false));
   844   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
   845   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
   846   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
   847   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   848          spillD != NULL && spillP != NULL, "");
   849   // Get the ADLC notion of the right regmask, for each basic type.
   850 #ifdef _LP64
   851   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   852 #endif
   853   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   854   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   855   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   856   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   857   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   859   // Vector regmasks.
   860   if (Matcher::vector_size_supported(T_BYTE,4)) {
   861     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
   862     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
   863     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
   864   }
   865   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   866     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
   867     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
   868   }
   869   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   870     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
   871     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
   872   }
   873   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   874     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
   875     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
   876   }
   877 }
   879 #ifdef ASSERT
   880 static void match_alias_type(Compile* C, Node* n, Node* m) {
   881   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   882   const TypePtr* nat = n->adr_type();
   883   const TypePtr* mat = m->adr_type();
   884   int nidx = C->get_alias_index(nat);
   885   int midx = C->get_alias_index(mat);
   886   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   887   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   888     for (uint i = 1; i < n->req(); i++) {
   889       Node* n1 = n->in(i);
   890       const TypePtr* n1at = n1->adr_type();
   891       if (n1at != NULL) {
   892         nat = n1at;
   893         nidx = C->get_alias_index(n1at);
   894       }
   895     }
   896   }
   897   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   898   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   899     switch (n->Opcode()) {
   900     case Op_PrefetchRead:
   901     case Op_PrefetchWrite:
   902     case Op_PrefetchAllocation:
   903       nidx = Compile::AliasIdxRaw;
   904       nat = TypeRawPtr::BOTTOM;
   905       break;
   906     }
   907   }
   908   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   909     switch (n->Opcode()) {
   910     case Op_ClearArray:
   911       midx = Compile::AliasIdxRaw;
   912       mat = TypeRawPtr::BOTTOM;
   913       break;
   914     }
   915   }
   916   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   917     switch (n->Opcode()) {
   918     case Op_Return:
   919     case Op_Rethrow:
   920     case Op_Halt:
   921     case Op_TailCall:
   922     case Op_TailJump:
   923       nidx = Compile::AliasIdxBot;
   924       nat = TypePtr::BOTTOM;
   925       break;
   926     }
   927   }
   928   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   929     switch (n->Opcode()) {
   930     case Op_StrComp:
   931     case Op_StrEquals:
   932     case Op_StrIndexOf:
   933     case Op_AryEq:
   934     case Op_MemBarVolatile:
   935     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   936     case Op_EncodeISOArray:
   937       nidx = Compile::AliasIdxTop;
   938       nat = NULL;
   939       break;
   940     }
   941   }
   942   if (nidx != midx) {
   943     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   944       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   945       n->dump();
   946       m->dump();
   947     }
   948     assert(C->subsume_loads() && C->must_alias(nat, midx),
   949            "must not lose alias info when matching");
   950   }
   951 }
   952 #endif
   955 //------------------------------MStack-----------------------------------------
   956 // State and MStack class used in xform() and find_shared() iterative methods.
   957 enum Node_State { Pre_Visit,  // node has to be pre-visited
   958                       Visit,  // visit node
   959                  Post_Visit,  // post-visit node
   960              Alt_Post_Visit   // alternative post-visit path
   961                 };
   963 class MStack: public Node_Stack {
   964   public:
   965     MStack(int size) : Node_Stack(size) { }
   967     void push(Node *n, Node_State ns) {
   968       Node_Stack::push(n, (uint)ns);
   969     }
   970     void push(Node *n, Node_State ns, Node *parent, int indx) {
   971       ++_inode_top;
   972       if ((_inode_top + 1) >= _inode_max) grow();
   973       _inode_top->node = parent;
   974       _inode_top->indx = (uint)indx;
   975       ++_inode_top;
   976       _inode_top->node = n;
   977       _inode_top->indx = (uint)ns;
   978     }
   979     Node *parent() {
   980       pop();
   981       return node();
   982     }
   983     Node_State state() const {
   984       return (Node_State)index();
   985     }
   986     void set_state(Node_State ns) {
   987       set_index((uint)ns);
   988     }
   989 };
   992 //------------------------------xform------------------------------------------
   993 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   994 // Node in new-space.  Given a new-space Node, recursively walk his children.
   995 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   996 Node *Matcher::xform( Node *n, int max_stack ) {
   997   // Use one stack to keep both: child's node/state and parent's node/index
   998   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   999   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
  1001   while (mstack.is_nonempty()) {
  1002     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
  1003     if (C->failing()) return NULL;
  1004     n = mstack.node();          // Leave node on stack
  1005     Node_State nstate = mstack.state();
  1006     if (nstate == Visit) {
  1007       mstack.set_state(Post_Visit);
  1008       Node *oldn = n;
  1009       // Old-space or new-space check
  1010       if (!C->node_arena()->contains(n)) {
  1011         // Old space!
  1012         Node* m;
  1013         if (has_new_node(n)) {  // Not yet Label/Reduced
  1014           m = new_node(n);
  1015         } else {
  1016           if (!is_dontcare(n)) { // Matcher can match this guy
  1017             // Calls match special.  They match alone with no children.
  1018             // Their children, the incoming arguments, match normally.
  1019             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
  1020             if (C->failing())  return NULL;
  1021             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
  1022           } else {                  // Nothing the matcher cares about
  1023             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
  1024               // Convert to machine-dependent projection
  1025               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
  1026 #ifdef ASSERT
  1027               _new2old_map.map(m->_idx, n);
  1028 #endif
  1029               if (m->in(0) != NULL) // m might be top
  1030                 collect_null_checks(m, n);
  1031             } else {                // Else just a regular 'ol guy
  1032               m = n->clone();       // So just clone into new-space
  1033 #ifdef ASSERT
  1034               _new2old_map.map(m->_idx, n);
  1035 #endif
  1036               // Def-Use edges will be added incrementally as Uses
  1037               // of this node are matched.
  1038               assert(m->outcnt() == 0, "no Uses of this clone yet");
  1042           set_new_node(n, m);       // Map old to new
  1043           if (_old_node_note_array != NULL) {
  1044             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
  1045                                                   n->_idx);
  1046             C->set_node_notes_at(m->_idx, nn);
  1048           debug_only(match_alias_type(C, n, m));
  1050         n = m;    // n is now a new-space node
  1051         mstack.set_node(n);
  1054       // New space!
  1055       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
  1057       int i;
  1058       // Put precedence edges on stack first (match them last).
  1059       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
  1060         Node *m = oldn->in(i);
  1061         if (m == NULL) break;
  1062         // set -1 to call add_prec() instead of set_req() during Step1
  1063         mstack.push(m, Visit, n, -1);
  1066       // For constant debug info, I'd rather have unmatched constants.
  1067       int cnt = n->req();
  1068       JVMState* jvms = n->jvms();
  1069       int debug_cnt = jvms ? jvms->debug_start() : cnt;
  1071       // Now do only debug info.  Clone constants rather than matching.
  1072       // Constants are represented directly in the debug info without
  1073       // the need for executable machine instructions.
  1074       // Monitor boxes are also represented directly.
  1075       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
  1076         Node *m = n->in(i);          // Get input
  1077         int op = m->Opcode();
  1078         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
  1079         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
  1080             op == Op_ConF || op == Op_ConD || op == Op_ConL
  1081             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1082             ) {
  1083           m = m->clone();
  1084 #ifdef ASSERT
  1085           _new2old_map.map(m->_idx, n);
  1086 #endif
  1087           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1088           mstack.push(m->in(0), Visit, m, 0);
  1089         } else {
  1090           mstack.push(m, Visit, n, i);
  1094       // And now walk his children, and convert his inputs to new-space.
  1095       for( ; i >= 0; --i ) { // For all normal inputs do
  1096         Node *m = n->in(i);  // Get input
  1097         if(m != NULL)
  1098           mstack.push(m, Visit, n, i);
  1102     else if (nstate == Post_Visit) {
  1103       // Set xformed input
  1104       Node *p = mstack.parent();
  1105       if (p != NULL) { // root doesn't have parent
  1106         int i = (int)mstack.index();
  1107         if (i >= 0)
  1108           p->set_req(i, n); // required input
  1109         else if (i == -1)
  1110           p->add_prec(n);   // precedence input
  1111         else
  1112           ShouldNotReachHere();
  1114       mstack.pop(); // remove processed node from stack
  1116     else {
  1117       ShouldNotReachHere();
  1119   } // while (mstack.is_nonempty())
  1120   return n; // Return new-space Node
  1123 //------------------------------warp_outgoing_stk_arg------------------------
  1124 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1125   // Convert outgoing argument location to a pre-biased stack offset
  1126   if (reg->is_stack()) {
  1127     OptoReg::Name warped = reg->reg2stack();
  1128     // Adjust the stack slot offset to be the register number used
  1129     // by the allocator.
  1130     warped = OptoReg::add(begin_out_arg_area, warped);
  1131     // Keep track of the largest numbered stack slot used for an arg.
  1132     // Largest used slot per call-site indicates the amount of stack
  1133     // that is killed by the call.
  1134     if( warped >= out_arg_limit_per_call )
  1135       out_arg_limit_per_call = OptoReg::add(warped,1);
  1136     if (!RegMask::can_represent_arg(warped)) {
  1137       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1138       return OptoReg::Bad;
  1140     return warped;
  1142   return OptoReg::as_OptoReg(reg);
  1146 //------------------------------match_sfpt-------------------------------------
  1147 // Helper function to match call instructions.  Calls match special.
  1148 // They match alone with no children.  Their children, the incoming
  1149 // arguments, match normally.
  1150 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1151   MachSafePointNode *msfpt = NULL;
  1152   MachCallNode      *mcall = NULL;
  1153   uint               cnt;
  1154   // Split out case for SafePoint vs Call
  1155   CallNode *call;
  1156   const TypeTuple *domain;
  1157   ciMethod*        method = NULL;
  1158   bool             is_method_handle_invoke = false;  // for special kill effects
  1159   if( sfpt->is_Call() ) {
  1160     call = sfpt->as_Call();
  1161     domain = call->tf()->domain();
  1162     cnt = domain->cnt();
  1164     // Match just the call, nothing else
  1165     MachNode *m = match_tree(call);
  1166     if (C->failing())  return NULL;
  1167     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1169     // Copy data from the Ideal SafePoint to the machine version
  1170     mcall = m->as_MachCall();
  1172     mcall->set_tf(         call->tf());
  1173     mcall->set_entry_point(call->entry_point());
  1174     mcall->set_cnt(        call->cnt());
  1176     if( mcall->is_MachCallJava() ) {
  1177       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1178       const CallJavaNode *call_java =  call->as_CallJava();
  1179       method = call_java->method();
  1180       mcall_java->_method = method;
  1181       mcall_java->_bci = call_java->_bci;
  1182       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1183       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1184       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1185       if (is_method_handle_invoke) {
  1186         C->set_has_method_handle_invokes(true);
  1188       if( mcall_java->is_MachCallStaticJava() )
  1189         mcall_java->as_MachCallStaticJava()->_name =
  1190          call_java->as_CallStaticJava()->_name;
  1191       if( mcall_java->is_MachCallDynamicJava() )
  1192         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1193          call_java->as_CallDynamicJava()->_vtable_index;
  1195     else if( mcall->is_MachCallRuntime() ) {
  1196       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1198     msfpt = mcall;
  1200   // This is a non-call safepoint
  1201   else {
  1202     call = NULL;
  1203     domain = NULL;
  1204     MachNode *mn = match_tree(sfpt);
  1205     if (C->failing())  return NULL;
  1206     msfpt = mn->as_MachSafePoint();
  1207     cnt = TypeFunc::Parms;
  1210   // Advertise the correct memory effects (for anti-dependence computation).
  1211   msfpt->set_adr_type(sfpt->adr_type());
  1213   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1214   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1215   // Empty them all.
  1216   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1218   // Do all the pre-defined non-Empty register masks
  1219   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1220   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1222   // Place first outgoing argument can possibly be put.
  1223   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1224   assert( is_even(begin_out_arg_area), "" );
  1225   // Compute max outgoing register number per call site.
  1226   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1227   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1228   // These are usually backing store for register arguments for varargs.
  1229   if( call != NULL && call->is_CallRuntime() )
  1230     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1233   // Do the normal argument list (parameters) register masks
  1234   int argcnt = cnt - TypeFunc::Parms;
  1235   if( argcnt > 0 ) {          // Skip it all if we have no args
  1236     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1237     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1238     int i;
  1239     for( i = 0; i < argcnt; i++ ) {
  1240       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1242     // V-call to pick proper calling convention
  1243     call->calling_convention( sig_bt, parm_regs, argcnt );
  1245 #ifdef ASSERT
  1246     // Sanity check users' calling convention.  Really handy during
  1247     // the initial porting effort.  Fairly expensive otherwise.
  1248     { for (int i = 0; i<argcnt; i++) {
  1249       if( !parm_regs[i].first()->is_valid() &&
  1250           !parm_regs[i].second()->is_valid() ) continue;
  1251       VMReg reg1 = parm_regs[i].first();
  1252       VMReg reg2 = parm_regs[i].second();
  1253       for (int j = 0; j < i; j++) {
  1254         if( !parm_regs[j].first()->is_valid() &&
  1255             !parm_regs[j].second()->is_valid() ) continue;
  1256         VMReg reg3 = parm_regs[j].first();
  1257         VMReg reg4 = parm_regs[j].second();
  1258         if( !reg1->is_valid() ) {
  1259           assert( !reg2->is_valid(), "valid halvsies" );
  1260         } else if( !reg3->is_valid() ) {
  1261           assert( !reg4->is_valid(), "valid halvsies" );
  1262         } else {
  1263           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1264           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1265           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1266           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1267           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1268           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1273 #endif
  1275     // Visit each argument.  Compute its outgoing register mask.
  1276     // Return results now can have 2 bits returned.
  1277     // Compute max over all outgoing arguments both per call-site
  1278     // and over the entire method.
  1279     for( i = 0; i < argcnt; i++ ) {
  1280       // Address of incoming argument mask to fill in
  1281       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1282       if( !parm_regs[i].first()->is_valid() &&
  1283           !parm_regs[i].second()->is_valid() ) {
  1284         continue;               // Avoid Halves
  1286       // Grab first register, adjust stack slots and insert in mask.
  1287       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1288       if (OptoReg::is_valid(reg1))
  1289         rm->Insert( reg1 );
  1290       // Grab second register (if any), adjust stack slots and insert in mask.
  1291       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1292       if (OptoReg::is_valid(reg2))
  1293         rm->Insert( reg2 );
  1294     } // End of for all arguments
  1296     // Compute number of stack slots needed to restore stack in case of
  1297     // Pascal-style argument popping.
  1298     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1301   // Compute the max stack slot killed by any call.  These will not be
  1302   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1303   // after all call sites have been visited.
  1304   if( _out_arg_limit < out_arg_limit_per_call)
  1305     _out_arg_limit = out_arg_limit_per_call;
  1307   if (mcall) {
  1308     // Kill the outgoing argument area, including any non-argument holes and
  1309     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1310     // Since the max-per-method covers the max-per-call-site and debug info
  1311     // is excluded on the max-per-method basis, debug info cannot land in
  1312     // this killed area.
  1313     uint r_cnt = mcall->tf()->range()->cnt();
  1314     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1315     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
  1316       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1317     } else {
  1318       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1319         proj->_rout.Insert(OptoReg::Name(i));
  1321     if (proj->_rout.is_NotEmpty()) {
  1322       push_projection(proj);
  1325   // Transfer the safepoint information from the call to the mcall
  1326   // Move the JVMState list
  1327   msfpt->set_jvms(sfpt->jvms());
  1328   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1329     jvms->set_map(sfpt);
  1332   // Debug inputs begin just after the last incoming parameter
  1333   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
  1334          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
  1336   // Move the OopMap
  1337   msfpt->_oop_map = sfpt->_oop_map;
  1339   // Add additional edges.
  1340   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
  1341     // For these calls we can not add MachConstantBase in expand(), as the
  1342     // ins are not complete then.
  1343     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
  1344     if (msfpt->jvms() &&
  1345         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
  1346       // We added an edge before jvms, so we must adapt the position of the ins.
  1347       msfpt->jvms()->adapt_position(+1);
  1351   // Registers killed by the call are set in the local scheduling pass
  1352   // of Global Code Motion.
  1353   return msfpt;
  1356 //---------------------------match_tree----------------------------------------
  1357 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1358 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1359 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1360 // a Load's result RegMask for memoization in idealreg2regmask[]
  1361 MachNode *Matcher::match_tree( const Node *n ) {
  1362   assert( n->Opcode() != Op_Phi, "cannot match" );
  1363   assert( !n->is_block_start(), "cannot match" );
  1364   // Set the mark for all locally allocated State objects.
  1365   // When this call returns, the _states_arena arena will be reset
  1366   // freeing all State objects.
  1367   ResourceMark rm( &_states_arena );
  1369   LabelRootDepth = 0;
  1371   // StoreNodes require their Memory input to match any LoadNodes
  1372   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1373 #ifdef ASSERT
  1374   Node* save_mem_node = _mem_node;
  1375   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1376 #endif
  1377   // State object for root node of match tree
  1378   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1379   State *s = new (&_states_arena) State;
  1380   s->_kids[0] = NULL;
  1381   s->_kids[1] = NULL;
  1382   s->_leaf = (Node*)n;
  1383   // Label the input tree, allocating labels from top-level arena
  1384   Label_Root( n, s, n->in(0), mem );
  1385   if (C->failing())  return NULL;
  1387   // The minimum cost match for the whole tree is found at the root State
  1388   uint mincost = max_juint;
  1389   uint cost = max_juint;
  1390   uint i;
  1391   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1392     if( s->valid(i) &&                // valid entry and
  1393         s->_cost[i] < cost &&         // low cost and
  1394         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1395       cost = s->_cost[mincost=i];
  1397   if (mincost == max_juint) {
  1398 #ifndef PRODUCT
  1399     tty->print("No matching rule for:");
  1400     s->dump();
  1401 #endif
  1402     Matcher::soft_match_failure();
  1403     return NULL;
  1405   // Reduce input tree based upon the state labels to machine Nodes
  1406   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1407 #ifdef ASSERT
  1408   _old2new_map.map(n->_idx, m);
  1409   _new2old_map.map(m->_idx, (Node*)n);
  1410 #endif
  1412   // Add any Matcher-ignored edges
  1413   uint cnt = n->req();
  1414   uint start = 1;
  1415   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1416   if( n->is_AddP() ) {
  1417     assert( mem == (Node*)1, "" );
  1418     start = AddPNode::Base+1;
  1420   for( i = start; i < cnt; i++ ) {
  1421     if( !n->match_edge(i) ) {
  1422       if( i < m->req() )
  1423         m->ins_req( i, n->in(i) );
  1424       else
  1425         m->add_req( n->in(i) );
  1429   debug_only( _mem_node = save_mem_node; )
  1430   return m;
  1434 //------------------------------match_into_reg---------------------------------
  1435 // Choose to either match this Node in a register or part of the current
  1436 // match tree.  Return true for requiring a register and false for matching
  1437 // as part of the current match tree.
  1438 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1440   const Type *t = m->bottom_type();
  1442   if (t->singleton()) {
  1443     // Never force constants into registers.  Allow them to match as
  1444     // constants or registers.  Copies of the same value will share
  1445     // the same register.  See find_shared_node.
  1446     return false;
  1447   } else {                      // Not a constant
  1448     // Stop recursion if they have different Controls.
  1449     Node* m_control = m->in(0);
  1450     // Control of load's memory can post-dominates load's control.
  1451     // So use it since load can't float above its memory.
  1452     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
  1453     if (control && m_control && control != m_control && control != mem_control) {
  1455       // Actually, we can live with the most conservative control we
  1456       // find, if it post-dominates the others.  This allows us to
  1457       // pick up load/op/store trees where the load can float a little
  1458       // above the store.
  1459       Node *x = control;
  1460       const uint max_scan = 6;  // Arbitrary scan cutoff
  1461       uint j;
  1462       for (j=0; j<max_scan; j++) {
  1463         if (x->is_Region())     // Bail out at merge points
  1464           return true;
  1465         x = x->in(0);
  1466         if (x == m_control)     // Does 'control' post-dominate
  1467           break;                // m->in(0)?  If so, we can use it
  1468         if (x == mem_control)   // Does 'control' post-dominate
  1469           break;                // mem_control?  If so, we can use it
  1471       if (j == max_scan)        // No post-domination before scan end?
  1472         return true;            // Then break the match tree up
  1474     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
  1475         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
  1476       // These are commonly used in address expressions and can
  1477       // efficiently fold into them on X64 in some cases.
  1478       return false;
  1482   // Not forceable cloning.  If shared, put it into a register.
  1483   return shared;
  1487 //------------------------------Instruction Selection--------------------------
  1488 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1489 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1490 // things the Matcher does not match (e.g., Memory), and things with different
  1491 // Controls (hence forced into different blocks).  We pass in the Control
  1492 // selected for this entire State tree.
  1494 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1495 // Store and the Load must have identical Memories (as well as identical
  1496 // pointers).  Since the Matcher does not have anything for Memory (and
  1497 // does not handle DAGs), I have to match the Memory input myself.  If the
  1498 // Tree root is a Store, I require all Loads to have the identical memory.
  1499 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1500   // Since Label_Root is a recursive function, its possible that we might run
  1501   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1502   LabelRootDepth++;
  1503   if (LabelRootDepth > MaxLabelRootDepth) {
  1504     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1505     return NULL;
  1507   uint care = 0;                // Edges matcher cares about
  1508   uint cnt = n->req();
  1509   uint i = 0;
  1511   // Examine children for memory state
  1512   // Can only subsume a child into your match-tree if that child's memory state
  1513   // is not modified along the path to another input.
  1514   // It is unsafe even if the other inputs are separate roots.
  1515   Node *input_mem = NULL;
  1516   for( i = 1; i < cnt; i++ ) {
  1517     if( !n->match_edge(i) ) continue;
  1518     Node *m = n->in(i);         // Get ith input
  1519     assert( m, "expect non-null children" );
  1520     if( m->is_Load() ) {
  1521       if( input_mem == NULL ) {
  1522         input_mem = m->in(MemNode::Memory);
  1523       } else if( input_mem != m->in(MemNode::Memory) ) {
  1524         input_mem = NodeSentinel;
  1529   for( i = 1; i < cnt; i++ ){// For my children
  1530     if( !n->match_edge(i) ) continue;
  1531     Node *m = n->in(i);         // Get ith input
  1532     // Allocate states out of a private arena
  1533     State *s = new (&_states_arena) State;
  1534     svec->_kids[care++] = s;
  1535     assert( care <= 2, "binary only for now" );
  1537     // Recursively label the State tree.
  1538     s->_kids[0] = NULL;
  1539     s->_kids[1] = NULL;
  1540     s->_leaf = m;
  1542     // Check for leaves of the State Tree; things that cannot be a part of
  1543     // the current tree.  If it finds any, that value is matched as a
  1544     // register operand.  If not, then the normal matching is used.
  1545     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1546         //
  1547         // Stop recursion if this is LoadNode and the root of this tree is a
  1548         // StoreNode and the load & store have different memories.
  1549         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1550         // Can NOT include the match of a subtree when its memory state
  1551         // is used by any of the other subtrees
  1552         (input_mem == NodeSentinel) ) {
  1553 #ifndef PRODUCT
  1554       // Print when we exclude matching due to different memory states at input-loads
  1555       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1556         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1557         tty->print_cr("invalid input_mem");
  1559 #endif
  1560       // Switch to a register-only opcode; this value must be in a register
  1561       // and cannot be subsumed as part of a larger instruction.
  1562       s->DFA( m->ideal_reg(), m );
  1564     } else {
  1565       // If match tree has no control and we do, adopt it for entire tree
  1566       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1567         control = m->in(0);         // Pick up control
  1568       // Else match as a normal part of the match tree.
  1569       control = Label_Root(m,s,control,mem);
  1570       if (C->failing()) return NULL;
  1575   // Call DFA to match this node, and return
  1576   svec->DFA( n->Opcode(), n );
  1578 #ifdef ASSERT
  1579   uint x;
  1580   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1581     if( svec->valid(x) )
  1582       break;
  1584   if (x >= _LAST_MACH_OPER) {
  1585     n->dump();
  1586     svec->dump();
  1587     assert( false, "bad AD file" );
  1589 #endif
  1590   return control;
  1594 // Con nodes reduced using the same rule can share their MachNode
  1595 // which reduces the number of copies of a constant in the final
  1596 // program.  The register allocator is free to split uses later to
  1597 // split live ranges.
  1598 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1599   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
  1601   // See if this Con has already been reduced using this rule.
  1602   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1603   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1604   if (last != NULL && rule == last->rule()) {
  1605     // Don't expect control change for DecodeN
  1606     if (leaf->is_DecodeNarrowPtr())
  1607       return last;
  1608     // Get the new space root.
  1609     Node* xroot = new_node(C->root());
  1610     if (xroot == NULL) {
  1611       // This shouldn't happen give the order of matching.
  1612       return NULL;
  1615     // Shared constants need to have their control be root so they
  1616     // can be scheduled properly.
  1617     Node* control = last->in(0);
  1618     if (control != xroot) {
  1619       if (control == NULL || control == C->root()) {
  1620         last->set_req(0, xroot);
  1621       } else {
  1622         assert(false, "unexpected control");
  1623         return NULL;
  1626     return last;
  1628   return NULL;
  1632 //------------------------------ReduceInst-------------------------------------
  1633 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1634 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1635 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1636 // Each MachNode has a number of complicated MachOper operands; each
  1637 // MachOper also covers a further tree of Ideal Nodes.
  1639 // The root of the Ideal match tree is always an instruction, so we enter
  1640 // the recursion here.  After building the MachNode, we need to recurse
  1641 // the tree checking for these cases:
  1642 // (1) Child is an instruction -
  1643 //     Build the instruction (recursively), add it as an edge.
  1644 //     Build a simple operand (register) to hold the result of the instruction.
  1645 // (2) Child is an interior part of an instruction -
  1646 //     Skip over it (do nothing)
  1647 // (3) Child is the start of a operand -
  1648 //     Build the operand, place it inside the instruction
  1649 //     Call ReduceOper.
  1650 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1651   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1653   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1654   if (shared_node != NULL) {
  1655     return shared_node;
  1658   // Build the object to represent this state & prepare for recursive calls
  1659   MachNode *mach = s->MachNodeGenerator( rule, C );
  1660   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1661   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1662   Node *leaf = s->_leaf;
  1663   // Check for instruction or instruction chain rule
  1664   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1665     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1666            "duplicating node that's already been matched");
  1667     // Instruction
  1668     mach->add_req( leaf->in(0) ); // Set initial control
  1669     // Reduce interior of complex instruction
  1670     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1671   } else {
  1672     // Instruction chain rules are data-dependent on their inputs
  1673     mach->add_req(0);             // Set initial control to none
  1674     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1677   // If a Memory was used, insert a Memory edge
  1678   if( mem != (Node*)1 ) {
  1679     mach->ins_req(MemNode::Memory,mem);
  1680 #ifdef ASSERT
  1681     // Verify adr type after matching memory operation
  1682     const MachOper* oper = mach->memory_operand();
  1683     if (oper != NULL && oper != (MachOper*)-1) {
  1684       // It has a unique memory operand.  Find corresponding ideal mem node.
  1685       Node* m = NULL;
  1686       if (leaf->is_Mem()) {
  1687         m = leaf;
  1688       } else {
  1689         m = _mem_node;
  1690         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1692       const Type* mach_at = mach->adr_type();
  1693       // DecodeN node consumed by an address may have different type
  1694       // then its input. Don't compare types for such case.
  1695       if (m->adr_type() != mach_at &&
  1696           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
  1697            m->in(MemNode::Address)->is_AddP() &&
  1698            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
  1699            m->in(MemNode::Address)->is_AddP() &&
  1700            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1701            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
  1702         mach_at = m->adr_type();
  1704       if (m->adr_type() != mach_at) {
  1705         m->dump();
  1706         tty->print_cr("mach:");
  1707         mach->dump(1);
  1709       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1711 #endif
  1714   // If the _leaf is an AddP, insert the base edge
  1715   if (leaf->is_AddP()) {
  1716     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1719   uint number_of_projections_prior = number_of_projections();
  1721   // Perform any 1-to-many expansions required
  1722   MachNode *ex = mach->Expand(s, _projection_list, mem);
  1723   if (ex != mach) {
  1724     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1725     if( ex->in(1)->is_Con() )
  1726       ex->in(1)->set_req(0, C->root());
  1727     // Remove old node from the graph
  1728     for( uint i=0; i<mach->req(); i++ ) {
  1729       mach->set_req(i,NULL);
  1731 #ifdef ASSERT
  1732     _new2old_map.map(ex->_idx, s->_leaf);
  1733 #endif
  1736   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1737   // via the matcher.  By the time, nodes have been wired into the CFG,
  1738   // and any further nodes generated by expand rules will be left hanging
  1739   // in space, and will not get emitted as output code.  Catch this.
  1740   // Also, catch any new register allocation constraints ("projections")
  1741   // generated belatedly during spill code generation.
  1742   if (_allocation_started) {
  1743     guarantee(ex == mach, "no expand rules during spill generation");
  1744     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
  1747   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
  1748     // Record the con for sharing
  1749     _shared_nodes.map(leaf->_idx, ex);
  1752   return ex;
  1755 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1756   // 'op' is what I am expecting to receive
  1757   int op = _leftOp[rule];
  1758   // Operand type to catch childs result
  1759   // This is what my child will give me.
  1760   int opnd_class_instance = s->_rule[op];
  1761   // Choose between operand class or not.
  1762   // This is what I will receive.
  1763   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1764   // New rule for child.  Chase operand classes to get the actual rule.
  1765   int newrule = s->_rule[catch_op];
  1767   if( newrule < NUM_OPERANDS ) {
  1768     // Chain from operand or operand class, may be output of shared node
  1769     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1770             "Bad AD file: Instruction chain rule must chain from operand");
  1771     // Insert operand into array of operands for this instruction
  1772     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1774     ReduceOper( s, newrule, mem, mach );
  1775   } else {
  1776     // Chain from the result of an instruction
  1777     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1778     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1779     Node *mem1 = (Node*)1;
  1780     debug_only(Node *save_mem_node = _mem_node;)
  1781     mach->add_req( ReduceInst(s, newrule, mem1) );
  1782     debug_only(_mem_node = save_mem_node;)
  1784   return;
  1788 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1789   if( s->_leaf->is_Load() ) {
  1790     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1791     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1792     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1793     mem = mem2;
  1795   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1796     if( mach->in(0) == NULL )
  1797       mach->set_req(0, s->_leaf->in(0));
  1800   // Now recursively walk the state tree & add operand list.
  1801   for( uint i=0; i<2; i++ ) {   // binary tree
  1802     State *newstate = s->_kids[i];
  1803     if( newstate == NULL ) break;      // Might only have 1 child
  1804     // 'op' is what I am expecting to receive
  1805     int op;
  1806     if( i == 0 ) {
  1807       op = _leftOp[rule];
  1808     } else {
  1809       op = _rightOp[rule];
  1811     // Operand type to catch childs result
  1812     // This is what my child will give me.
  1813     int opnd_class_instance = newstate->_rule[op];
  1814     // Choose between operand class or not.
  1815     // This is what I will receive.
  1816     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1817     // New rule for child.  Chase operand classes to get the actual rule.
  1818     int newrule = newstate->_rule[catch_op];
  1820     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1821       // Operand/operandClass
  1822       // Insert operand into array of operands for this instruction
  1823       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1824       ReduceOper( newstate, newrule, mem, mach );
  1826     } else {                    // Child is internal operand or new instruction
  1827       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1828         // internal operand --> call ReduceInst_Interior
  1829         // Interior of complex instruction.  Do nothing but recurse.
  1830         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1831       } else {
  1832         // instruction --> call build operand(  ) to catch result
  1833         //             --> ReduceInst( newrule )
  1834         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1835         Node *mem1 = (Node*)1;
  1836         debug_only(Node *save_mem_node = _mem_node;)
  1837         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1838         debug_only(_mem_node = save_mem_node;)
  1841     assert( mach->_opnds[num_opnds-1], "" );
  1843   return num_opnds;
  1846 // This routine walks the interior of possible complex operands.
  1847 // At each point we check our children in the match tree:
  1848 // (1) No children -
  1849 //     We are a leaf; add _leaf field as an input to the MachNode
  1850 // (2) Child is an internal operand -
  1851 //     Skip over it ( do nothing )
  1852 // (3) Child is an instruction -
  1853 //     Call ReduceInst recursively and
  1854 //     and instruction as an input to the MachNode
  1855 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1856   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1857   State *kid = s->_kids[0];
  1858   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1860   // Leaf?  And not subsumed?
  1861   if( kid == NULL && !_swallowed[rule] ) {
  1862     mach->add_req( s->_leaf );  // Add leaf pointer
  1863     return;                     // Bail out
  1866   if( s->_leaf->is_Load() ) {
  1867     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1868     mem = s->_leaf->in(MemNode::Memory);
  1869     debug_only(_mem_node = s->_leaf;)
  1871   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1872     if( !mach->in(0) )
  1873       mach->set_req(0,s->_leaf->in(0));
  1874     else {
  1875       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1879   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1880     int newrule;
  1881     if( i == 0)
  1882       newrule = kid->_rule[_leftOp[rule]];
  1883     else
  1884       newrule = kid->_rule[_rightOp[rule]];
  1886     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1887       // Internal operand; recurse but do nothing else
  1888       ReduceOper( kid, newrule, mem, mach );
  1890     } else {                    // Child is a new instruction
  1891       // Reduce the instruction, and add a direct pointer from this
  1892       // machine instruction to the newly reduced one.
  1893       Node *mem1 = (Node*)1;
  1894       debug_only(Node *save_mem_node = _mem_node;)
  1895       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1896       debug_only(_mem_node = save_mem_node;)
  1902 // -------------------------------------------------------------------------
  1903 // Java-Java calling convention
  1904 // (what you use when Java calls Java)
  1906 //------------------------------find_receiver----------------------------------
  1907 // For a given signature, return the OptoReg for parameter 0.
  1908 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1909   VMRegPair regs;
  1910   BasicType sig_bt = T_OBJECT;
  1911   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1912   // Return argument 0 register.  In the LP64 build pointers
  1913   // take 2 registers, but the VM wants only the 'main' name.
  1914   return OptoReg::as_OptoReg(regs.first());
  1917 // This function identifies sub-graphs in which a 'load' node is
  1918 // input to two different nodes, and such that it can be matched
  1919 // with BMI instructions like blsi, blsr, etc.
  1920 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
  1921 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
  1922 // refers to the same node.
  1923 #ifdef X86
  1924 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
  1925 // This is a temporary solution until we make DAGs expressible in ADL.
  1926 template<typename ConType>
  1927 class FusedPatternMatcher {
  1928   Node* _op1_node;
  1929   Node* _mop_node;
  1930   int _con_op;
  1932   static int match_next(Node* n, int next_op, int next_op_idx) {
  1933     if (n->in(1) == NULL || n->in(2) == NULL) {
  1934       return -1;
  1937     if (next_op_idx == -1) { // n is commutative, try rotations
  1938       if (n->in(1)->Opcode() == next_op) {
  1939         return 1;
  1940       } else if (n->in(2)->Opcode() == next_op) {
  1941         return 2;
  1943     } else {
  1944       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
  1945       if (n->in(next_op_idx)->Opcode() == next_op) {
  1946         return next_op_idx;
  1949     return -1;
  1951 public:
  1952   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
  1953     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
  1955   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
  1956              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
  1957              typename ConType::NativeType con_value) {
  1958     if (_op1_node->Opcode() != op1) {
  1959       return false;
  1961     if (_mop_node->outcnt() > 2) {
  1962       return false;
  1964     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
  1965     if (op1_op2_idx == -1) {
  1966       return false;
  1968     // Memory operation must be the other edge
  1969     int op1_mop_idx = (op1_op2_idx & 1) + 1;
  1971     // Check that the mop node is really what we want
  1972     if (_op1_node->in(op1_mop_idx) == _mop_node) {
  1973       Node *op2_node = _op1_node->in(op1_op2_idx);
  1974       if (op2_node->outcnt() > 1) {
  1975         return false;
  1977       assert(op2_node->Opcode() == op2, "Should be");
  1978       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
  1979       if (op2_con_idx == -1) {
  1980         return false;
  1982       // Memory operation must be the other edge
  1983       int op2_mop_idx = (op2_con_idx & 1) + 1;
  1984       // Check that the memory operation is the same node
  1985       if (op2_node->in(op2_mop_idx) == _mop_node) {
  1986         // Now check the constant
  1987         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
  1988         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
  1989           return true;
  1993     return false;
  1995 };
  1998 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
  1999   if (n != NULL && m != NULL) {
  2000     if (m->Opcode() == Op_LoadI) {
  2001       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
  2002       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
  2003              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
  2004              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
  2005     } else if (m->Opcode() == Op_LoadL) {
  2006       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
  2007       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
  2008              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
  2009              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
  2012   return false;
  2014 #endif // X86
  2016 // A method-klass-holder may be passed in the inline_cache_reg
  2017 // and then expanded into the inline_cache_reg and a method_oop register
  2018 //   defined in ad_<arch>.cpp
  2021 //------------------------------find_shared------------------------------------
  2022 // Set bits if Node is shared or otherwise a root
  2023 void Matcher::find_shared( Node *n ) {
  2024   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  2025   MStack mstack(C->unique() * 2);
  2026   // Mark nodes as address_visited if they are inputs to an address expression
  2027   VectorSet address_visited(Thread::current()->resource_area());
  2028   mstack.push(n, Visit);     // Don't need to pre-visit root node
  2029   while (mstack.is_nonempty()) {
  2030     n = mstack.node();       // Leave node on stack
  2031     Node_State nstate = mstack.state();
  2032     uint nop = n->Opcode();
  2033     if (nstate == Pre_Visit) {
  2034       if (address_visited.test(n->_idx)) { // Visited in address already?
  2035         // Flag as visited and shared now.
  2036         set_visited(n);
  2038       if (is_visited(n)) {   // Visited already?
  2039         // Node is shared and has no reason to clone.  Flag it as shared.
  2040         // This causes it to match into a register for the sharing.
  2041         set_shared(n);       // Flag as shared and
  2042         mstack.pop();        // remove node from stack
  2043         continue;
  2045       nstate = Visit; // Not already visited; so visit now
  2047     if (nstate == Visit) {
  2048       mstack.set_state(Post_Visit);
  2049       set_visited(n);   // Flag as visited now
  2050       bool mem_op = false;
  2052       switch( nop ) {  // Handle some opcodes special
  2053       case Op_Phi:             // Treat Phis as shared roots
  2054       case Op_Parm:
  2055       case Op_Proj:            // All handled specially during matching
  2056       case Op_SafePointScalarObject:
  2057         set_shared(n);
  2058         set_dontcare(n);
  2059         break;
  2060       case Op_If:
  2061       case Op_CountedLoopEnd:
  2062         mstack.set_state(Alt_Post_Visit); // Alternative way
  2063         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  2064         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  2065         // Bool and CmpX side-by-side, because it can only get at constants
  2066         // that are at the leaves of Match trees, and the Bool's condition acts
  2067         // as a constant here.
  2068         mstack.push(n->in(1), Visit);         // Clone the Bool
  2069         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  2070         continue; // while (mstack.is_nonempty())
  2071       case Op_ConvI2D:         // These forms efficiently match with a prior
  2072       case Op_ConvI2F:         //   Load but not a following Store
  2073         if( n->in(1)->is_Load() &&        // Prior load
  2074             n->outcnt() == 1 &&           // Not already shared
  2075             n->unique_out()->is_Store() ) // Following store
  2076           set_shared(n);       // Force it to be a root
  2077         break;
  2078       case Op_ReverseBytesI:
  2079       case Op_ReverseBytesL:
  2080         if( n->in(1)->is_Load() &&        // Prior load
  2081             n->outcnt() == 1 )            // Not already shared
  2082           set_shared(n);                  // Force it to be a root
  2083         break;
  2084       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  2085       case Op_IfFalse:
  2086       case Op_IfTrue:
  2087       case Op_MachProj:
  2088       case Op_MergeMem:
  2089       case Op_Catch:
  2090       case Op_CatchProj:
  2091       case Op_CProj:
  2092       case Op_JumpProj:
  2093       case Op_JProj:
  2094       case Op_NeverBranch:
  2095         set_dontcare(n);
  2096         break;
  2097       case Op_Jump:
  2098         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
  2099         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  2100         continue;                             // while (mstack.is_nonempty())
  2101       case Op_StrComp:
  2102       case Op_StrEquals:
  2103       case Op_StrIndexOf:
  2104       case Op_AryEq:
  2105       case Op_EncodeISOArray:
  2106         set_shared(n); // Force result into register (it will be anyways)
  2107         break;
  2108       case Op_ConP: {  // Convert pointers above the centerline to NUL
  2109         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2110         const TypePtr* tp = tn->type()->is_ptr();
  2111         if (tp->_ptr == TypePtr::AnyNull) {
  2112           tn->set_type(TypePtr::NULL_PTR);
  2114         break;
  2116       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  2117         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2118         const TypePtr* tp = tn->type()->make_ptr();
  2119         if (tp && tp->_ptr == TypePtr::AnyNull) {
  2120           tn->set_type(TypeNarrowOop::NULL_PTR);
  2122         break;
  2124       case Op_Binary:         // These are introduced in the Post_Visit state.
  2125         ShouldNotReachHere();
  2126         break;
  2127       case Op_ClearArray:
  2128       case Op_SafePoint:
  2129         mem_op = true;
  2130         break;
  2131       default:
  2132         if( n->is_Store() ) {
  2133           // Do match stores, despite no ideal reg
  2134           mem_op = true;
  2135           break;
  2137         if( n->is_Mem() ) { // Loads and LoadStores
  2138           mem_op = true;
  2139           // Loads must be root of match tree due to prior load conflict
  2140           if( C->subsume_loads() == false )
  2141             set_shared(n);
  2143         // Fall into default case
  2144         if( !n->ideal_reg() )
  2145           set_dontcare(n);  // Unmatchable Nodes
  2146       } // end_switch
  2148       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  2149         Node *m = n->in(i); // Get ith input
  2150         if (m == NULL) continue;  // Ignore NULLs
  2151         uint mop = m->Opcode();
  2153         // Must clone all producers of flags, or we will not match correctly.
  2154         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  2155         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  2156         // are also there, so we may match a float-branch to int-flags and
  2157         // expect the allocator to haul the flags from the int-side to the
  2158         // fp-side.  No can do.
  2159         if( _must_clone[mop] ) {
  2160           mstack.push(m, Visit);
  2161           continue; // for(int i = ...)
  2164         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
  2165           // Bases used in addresses must be shared but since
  2166           // they are shared through a DecodeN they may appear
  2167           // to have a single use so force sharing here.
  2168           set_shared(m->in(AddPNode::Base)->in(1));
  2171         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
  2172 #ifdef X86
  2173         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
  2174           mstack.push(m, Visit);
  2175           continue;
  2177 #endif
  2179         // Clone addressing expressions as they are "free" in memory access instructions
  2180         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  2181           // Some inputs for address expression are not put on stack
  2182           // to avoid marking them as shared and forcing them into register
  2183           // if they are used only in address expressions.
  2184           // But they should be marked as shared if there are other uses
  2185           // besides address expressions.
  2187           Node *off = m->in(AddPNode::Offset);
  2188           if( off->is_Con() &&
  2189               // When there are other uses besides address expressions
  2190               // put it on stack and mark as shared.
  2191               !is_visited(m) ) {
  2192             address_visited.test_set(m->_idx); // Flag as address_visited
  2193             Node *adr = m->in(AddPNode::Address);
  2195             // Intel, ARM and friends can handle 2 adds in addressing mode
  2196             if( clone_shift_expressions && adr->is_AddP() &&
  2197                 // AtomicAdd is not an addressing expression.
  2198                 // Cheap to find it by looking for screwy base.
  2199                 !adr->in(AddPNode::Base)->is_top() &&
  2200                 // Are there other uses besides address expressions?
  2201                 !is_visited(adr) ) {
  2202               address_visited.set(adr->_idx); // Flag as address_visited
  2203               Node *shift = adr->in(AddPNode::Offset);
  2204               // Check for shift by small constant as well
  2205               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2206                   shift->in(2)->get_int() <= 3 &&
  2207                   // Are there other uses besides address expressions?
  2208                   !is_visited(shift) ) {
  2209                 address_visited.set(shift->_idx); // Flag as address_visited
  2210                 mstack.push(shift->in(2), Visit);
  2211                 Node *conv = shift->in(1);
  2212 #ifdef _LP64
  2213                 // Allow Matcher to match the rule which bypass
  2214                 // ConvI2L operation for an array index on LP64
  2215                 // if the index value is positive.
  2216                 if( conv->Opcode() == Op_ConvI2L &&
  2217                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2218                     // Are there other uses besides address expressions?
  2219                     !is_visited(conv) ) {
  2220                   address_visited.set(conv->_idx); // Flag as address_visited
  2221                   mstack.push(conv->in(1), Pre_Visit);
  2222                 } else
  2223 #endif
  2224                 mstack.push(conv, Pre_Visit);
  2225               } else {
  2226                 mstack.push(shift, Pre_Visit);
  2228               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2229               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2230             } else {  // Sparc, Alpha, PPC and friends
  2231               mstack.push(adr, Pre_Visit);
  2234             // Clone X+offset as it also folds into most addressing expressions
  2235             mstack.push(off, Visit);
  2236             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2237             continue; // for(int i = ...)
  2238           } // if( off->is_Con() )
  2239         }   // if( mem_op &&
  2240         mstack.push(m, Pre_Visit);
  2241       }     // for(int i = ...)
  2243     else if (nstate == Alt_Post_Visit) {
  2244       mstack.pop(); // Remove node from stack
  2245       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2246       // shared and all users of the Bool need to move the Cmp in parallel.
  2247       // This leaves both the Bool and the If pointing at the Cmp.  To
  2248       // prevent the Matcher from trying to Match the Cmp along both paths
  2249       // BoolNode::match_edge always returns a zero.
  2251       // We reorder the Op_If in a pre-order manner, so we can visit without
  2252       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2253       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2255     else if (nstate == Post_Visit) {
  2256       mstack.pop(); // Remove node from stack
  2258       // Now hack a few special opcodes
  2259       switch( n->Opcode() ) {       // Handle some opcodes special
  2260       case Op_StorePConditional:
  2261       case Op_StoreIConditional:
  2262       case Op_StoreLConditional:
  2263       case Op_CompareAndSwapI:
  2264       case Op_CompareAndSwapL:
  2265       case Op_CompareAndSwapP:
  2266       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2267         Node *newval = n->in(MemNode::ValueIn );
  2268         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
  2269         Node *pair = new (C) BinaryNode( oldval, newval );
  2270         n->set_req(MemNode::ValueIn,pair);
  2271         n->del_req(LoadStoreConditionalNode::ExpectedIn);
  2272         break;
  2274       case Op_CMoveD:              // Convert trinary to binary-tree
  2275       case Op_CMoveF:
  2276       case Op_CMoveI:
  2277       case Op_CMoveL:
  2278       case Op_CMoveN:
  2279       case Op_CMoveP: {
  2280         // Restructure into a binary tree for Matching.  It's possible that
  2281         // we could move this code up next to the graph reshaping for IfNodes
  2282         // or vice-versa, but I do not want to debug this for Ladybird.
  2283         // 10/2/2000 CNC.
  2284         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
  2285         n->set_req(1,pair1);
  2286         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
  2287         n->set_req(2,pair2);
  2288         n->del_req(3);
  2289         break;
  2291       case Op_LoopLimit: {
  2292         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
  2293         n->set_req(1,pair1);
  2294         n->set_req(2,n->in(3));
  2295         n->del_req(3);
  2296         break;
  2298       case Op_StrEquals: {
  2299         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2300         n->set_req(2,pair1);
  2301         n->set_req(3,n->in(4));
  2302         n->del_req(4);
  2303         break;
  2305       case Op_StrComp:
  2306       case Op_StrIndexOf: {
  2307         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2308         n->set_req(2,pair1);
  2309         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
  2310         n->set_req(3,pair2);
  2311         n->del_req(5);
  2312         n->del_req(4);
  2313         break;
  2315       case Op_EncodeISOArray: {
  2316         // Restructure into a binary tree for Matching.
  2317         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
  2318         n->set_req(3, pair);
  2319         n->del_req(4);
  2320         break;
  2322       default:
  2323         break;
  2326     else {
  2327       ShouldNotReachHere();
  2329   } // end of while (mstack.is_nonempty())
  2332 #ifdef ASSERT
  2333 // machine-independent root to machine-dependent root
  2334 void Matcher::dump_old2new_map() {
  2335   _old2new_map.dump();
  2337 #endif
  2339 //---------------------------collect_null_checks-------------------------------
  2340 // Find null checks in the ideal graph; write a machine-specific node for
  2341 // it.  Used by later implicit-null-check handling.  Actually collects
  2342 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2343 // value being tested.
  2344 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2345   Node *iff = proj->in(0);
  2346   if( iff->Opcode() == Op_If ) {
  2347     // During matching If's have Bool & Cmp side-by-side
  2348     BoolNode *b = iff->in(1)->as_Bool();
  2349     Node *cmp = iff->in(2);
  2350     int opc = cmp->Opcode();
  2351     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2353     const Type* ct = cmp->in(2)->bottom_type();
  2354     if (ct == TypePtr::NULL_PTR ||
  2355         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2357       bool push_it = false;
  2358       if( proj->Opcode() == Op_IfTrue ) {
  2359         extern int all_null_checks_found;
  2360         all_null_checks_found++;
  2361         if( b->_test._test == BoolTest::ne ) {
  2362           push_it = true;
  2364       } else {
  2365         assert( proj->Opcode() == Op_IfFalse, "" );
  2366         if( b->_test._test == BoolTest::eq ) {
  2367           push_it = true;
  2370       if( push_it ) {
  2371         _null_check_tests.push(proj);
  2372         Node* val = cmp->in(1);
  2373 #ifdef _LP64
  2374         if (val->bottom_type()->isa_narrowoop() &&
  2375             !Matcher::narrow_oop_use_complex_address()) {
  2376           //
  2377           // Look for DecodeN node which should be pinned to orig_proj.
  2378           // On platforms (Sparc) which can not handle 2 adds
  2379           // in addressing mode we have to keep a DecodeN node and
  2380           // use it to do implicit NULL check in address.
  2381           //
  2382           // DecodeN node was pinned to non-null path (orig_proj) during
  2383           // CastPP transformation in final_graph_reshaping_impl().
  2384           //
  2385           uint cnt = orig_proj->outcnt();
  2386           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2387             Node* d = orig_proj->raw_out(i);
  2388             if (d->is_DecodeN() && d->in(1) == val) {
  2389               val = d;
  2390               val->set_req(0, NULL); // Unpin now.
  2391               // Mark this as special case to distinguish from
  2392               // a regular case: CmpP(DecodeN, NULL).
  2393               val = (Node*)(((intptr_t)val) | 1);
  2394               break;
  2398 #endif
  2399         _null_check_tests.push(val);
  2405 //---------------------------validate_null_checks------------------------------
  2406 // Its possible that the value being NULL checked is not the root of a match
  2407 // tree.  If so, I cannot use the value in an implicit null check.
  2408 void Matcher::validate_null_checks( ) {
  2409   uint cnt = _null_check_tests.size();
  2410   for( uint i=0; i < cnt; i+=2 ) {
  2411     Node *test = _null_check_tests[i];
  2412     Node *val = _null_check_tests[i+1];
  2413     bool is_decoden = ((intptr_t)val) & 1;
  2414     val = (Node*)(((intptr_t)val) & ~1);
  2415     if (has_new_node(val)) {
  2416       Node* new_val = new_node(val);
  2417       if (is_decoden) {
  2418         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
  2419         // Note: new_val may have a control edge if
  2420         // the original ideal node DecodeN was matched before
  2421         // it was unpinned in Matcher::collect_null_checks().
  2422         // Unpin the mach node and mark it.
  2423         new_val->set_req(0, NULL);
  2424         new_val = (Node*)(((intptr_t)new_val) | 1);
  2426       // Is a match-tree root, so replace with the matched value
  2427       _null_check_tests.map(i+1, new_val);
  2428     } else {
  2429       // Yank from candidate list
  2430       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2431       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2432       _null_check_tests.pop();
  2433       _null_check_tests.pop();
  2434       i-=2;
  2439 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2440 // atomic instruction acting as a store_load barrier without any
  2441 // intervening volatile load, and thus we don't need a barrier here.
  2442 // We retain the Node to act as a compiler ordering barrier.
  2443 bool Matcher::post_store_load_barrier(const Node* vmb) {
  2444   Compile* C = Compile::current();
  2445   assert(vmb->is_MemBar(), "");
  2446   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
  2447   const MemBarNode* membar = vmb->as_MemBar();
  2449   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
  2450   Node* ctrl = NULL;
  2451   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
  2452     Node* p = membar->fast_out(i);
  2453     assert(p->is_Proj(), "only projections here");
  2454     if ((p->as_Proj()->_con == TypeFunc::Control) &&
  2455         !C->node_arena()->contains(p)) { // Unmatched old-space only
  2456       ctrl = p;
  2457       break;
  2460   assert((ctrl != NULL), "missing control projection");
  2462   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
  2463     Node *x = ctrl->fast_out(j);
  2464     int xop = x->Opcode();
  2466     // We don't need current barrier if we see another or a lock
  2467     // before seeing volatile load.
  2468     //
  2469     // Op_Fastunlock previously appeared in the Op_* list below.
  2470     // With the advent of 1-0 lock operations we're no longer guaranteed
  2471     // that a monitor exit operation contains a serializing instruction.
  2473     if (xop == Op_MemBarVolatile ||
  2474         xop == Op_CompareAndSwapL ||
  2475         xop == Op_CompareAndSwapP ||
  2476         xop == Op_CompareAndSwapN ||
  2477         xop == Op_CompareAndSwapI) {
  2478       return true;
  2481     // Op_FastLock previously appeared in the Op_* list above.
  2482     // With biased locking we're no longer guaranteed that a monitor
  2483     // enter operation contains a serializing instruction.
  2484     if ((xop == Op_FastLock) && !UseBiasedLocking) {
  2485       return true;
  2488     if (x->is_MemBar()) {
  2489       // We must retain this membar if there is an upcoming volatile
  2490       // load, which will be followed by acquire membar.
  2491       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
  2492         return false;
  2493       } else {
  2494         // For other kinds of barriers, check by pretending we
  2495         // are them, and seeing if we can be removed.
  2496         return post_store_load_barrier(x->as_MemBar());
  2500     // probably not necessary to check for these
  2501     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
  2502       return false;
  2505   return false;
  2508 // Check whether node n is a branch to an uncommon trap that we could
  2509 // optimize as test with very high branch costs in case of going to
  2510 // the uncommon trap. The code must be able to be recompiled to use
  2511 // a cheaper test.
  2512 bool Matcher::branches_to_uncommon_trap(const Node *n) {
  2513   // Don't do it for natives, adapters, or runtime stubs
  2514   Compile *C = Compile::current();
  2515   if (!C->is_method_compilation()) return false;
  2517   assert(n->is_If(), "You should only call this on if nodes.");
  2518   IfNode *ifn = n->as_If();
  2520   Node *ifFalse = NULL;
  2521   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
  2522     if (ifn->fast_out(i)->is_IfFalse()) {
  2523       ifFalse = ifn->fast_out(i);
  2524       break;
  2527   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
  2529   Node *reg = ifFalse;
  2530   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
  2531                // Alternatively use visited set?  Seems too expensive.
  2532   while (reg != NULL && cnt > 0) {
  2533     CallNode *call = NULL;
  2534     RegionNode *nxt_reg = NULL;
  2535     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
  2536       Node *o = reg->fast_out(i);
  2537       if (o->is_Call()) {
  2538         call = o->as_Call();
  2540       if (o->is_Region()) {
  2541         nxt_reg = o->as_Region();
  2545     if (call &&
  2546         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
  2547       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
  2548       if (trtype->isa_int() && trtype->is_int()->is_con()) {
  2549         jint tr_con = trtype->is_int()->get_con();
  2550         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
  2551         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
  2552         assert((int)reason < (int)BitsPerInt, "recode bit map");
  2554         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
  2555             && action != Deoptimization::Action_none) {
  2556           // This uncommon trap is sure to recompile, eventually.
  2557           // When that happens, C->too_many_traps will prevent
  2558           // this transformation from happening again.
  2559           return true;
  2564     reg = nxt_reg;
  2565     cnt--;
  2568   return false;
  2571 //=============================================================================
  2572 //---------------------------State---------------------------------------------
  2573 State::State(void) {
  2574 #ifdef ASSERT
  2575   _id = 0;
  2576   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2577   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2578   //memset(_cost, -1, sizeof(_cost));
  2579   //memset(_rule, -1, sizeof(_rule));
  2580 #endif
  2581   memset(_valid, 0, sizeof(_valid));
  2584 #ifdef ASSERT
  2585 State::~State() {
  2586   _id = 99;
  2587   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2588   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2589   memset(_cost, -3, sizeof(_cost));
  2590   memset(_rule, -3, sizeof(_rule));
  2592 #endif
  2594 #ifndef PRODUCT
  2595 //---------------------------dump----------------------------------------------
  2596 void State::dump() {
  2597   tty->print("\n");
  2598   dump(0);
  2601 void State::dump(int depth) {
  2602   for( int j = 0; j < depth; j++ )
  2603     tty->print("   ");
  2604   tty->print("--N: ");
  2605   _leaf->dump();
  2606   uint i;
  2607   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2608     // Check for valid entry
  2609     if( valid(i) ) {
  2610       for( int j = 0; j < depth; j++ )
  2611         tty->print("   ");
  2612         assert(_cost[i] != max_juint, "cost must be a valid value");
  2613         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2614         tty->print_cr("%s  %d  %s",
  2615                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2617   tty->cr();
  2619   for( i=0; i<2; i++ )
  2620     if( _kids[i] )
  2621       _kids[i]->dump(depth+1);
  2623 #endif

mercurial