src/share/vm/memory/space.hpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7131
d35872270666
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
    26 #define SHARE_VM_MEMORY_SPACE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/blockOffsetTable.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/iterator.hpp"
    32 #include "memory/memRegion.hpp"
    33 #include "memory/watermark.hpp"
    34 #include "oops/markOop.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "utilities/macros.hpp"
    37 #include "utilities/workgroup.hpp"
    39 // A space is an abstraction for the "storage units" backing
    40 // up the generation abstraction. It includes specific
    41 // implementations for keeping track of free and used space,
    42 // for iterating over objects and free blocks, etc.
    44 // Here's the Space hierarchy:
    45 //
    46 // - Space               -- an asbtract base class describing a heap area
    47 //   - CompactibleSpace  -- a space supporting compaction
    48 //     - CompactibleFreeListSpace -- (used for CMS generation)
    49 //     - ContiguousSpace -- a compactible space in which all free space
    50 //                          is contiguous
    51 //       - EdenSpace     -- contiguous space used as nursery
    52 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
    53 //       - OffsetTableContigSpace -- contiguous space with a block offset array
    54 //                          that allows "fast" block_start calls
    55 //         - TenuredSpace -- (used for TenuredGeneration)
    57 // Forward decls.
    58 class Space;
    59 class BlockOffsetArray;
    60 class BlockOffsetArrayContigSpace;
    61 class Generation;
    62 class CompactibleSpace;
    63 class BlockOffsetTable;
    64 class GenRemSet;
    65 class CardTableRS;
    66 class DirtyCardToOopClosure;
    68 // A Space describes a heap area. Class Space is an abstract
    69 // base class.
    70 //
    71 // Space supports allocation, size computation and GC support is provided.
    72 //
    73 // Invariant: bottom() and end() are on page_size boundaries and
    74 // bottom() <= top() <= end()
    75 // top() is inclusive and end() is exclusive.
    77 class Space: public CHeapObj<mtGC> {
    78   friend class VMStructs;
    79  protected:
    80   HeapWord* _bottom;
    81   HeapWord* _end;
    83   // Used in support of save_marks()
    84   HeapWord* _saved_mark_word;
    86   MemRegionClosure* _preconsumptionDirtyCardClosure;
    88   // A sequential tasks done structure. This supports
    89   // parallel GC, where we have threads dynamically
    90   // claiming sub-tasks from a larger parallel task.
    91   SequentialSubTasksDone _par_seq_tasks;
    93   Space():
    94     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
    96  public:
    97   // Accessors
    98   HeapWord* bottom() const         { return _bottom; }
    99   HeapWord* end() const            { return _end;    }
   100   virtual void set_bottom(HeapWord* value) { _bottom = value; }
   101   virtual void set_end(HeapWord* value)    { _end = value; }
   103   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
   105   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
   107   // Returns true if this object has been allocated since a
   108   // generation's "save_marks" call.
   109   virtual bool obj_allocated_since_save_marks(const oop obj) const {
   110     return (HeapWord*)obj >= saved_mark_word();
   111   }
   113   MemRegionClosure* preconsumptionDirtyCardClosure() const {
   114     return _preconsumptionDirtyCardClosure;
   115   }
   116   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
   117     _preconsumptionDirtyCardClosure = cl;
   118   }
   120   // Returns a subregion of the space containing only the allocated objects in
   121   // the space.
   122   virtual MemRegion used_region() const = 0;
   124   // Returns a region that is guaranteed to contain (at least) all objects
   125   // allocated at the time of the last call to "save_marks".  If the space
   126   // initializes its DirtyCardToOopClosure's specifying the "contig" option
   127   // (that is, if the space is contiguous), then this region must contain only
   128   // such objects: the memregion will be from the bottom of the region to the
   129   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
   130   // the space must distiguish between objects in the region allocated before
   131   // and after the call to save marks.
   132   MemRegion used_region_at_save_marks() const {
   133     return MemRegion(bottom(), saved_mark_word());
   134   }
   136   // Initialization.
   137   // "initialize" should be called once on a space, before it is used for
   138   // any purpose.  The "mr" arguments gives the bounds of the space, and
   139   // the "clear_space" argument should be true unless the memory in "mr" is
   140   // known to be zeroed.
   141   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   143   // The "clear" method must be called on a region that may have
   144   // had allocation performed in it, but is now to be considered empty.
   145   virtual void clear(bool mangle_space);
   147   // For detecting GC bugs.  Should only be called at GC boundaries, since
   148   // some unused space may be used as scratch space during GC's.
   149   // Default implementation does nothing. We also call this when expanding
   150   // a space to satisfy an allocation request. See bug #4668531
   151   virtual void mangle_unused_area() {}
   152   virtual void mangle_unused_area_complete() {}
   153   virtual void mangle_region(MemRegion mr) {}
   155   // Testers
   156   bool is_empty() const              { return used() == 0; }
   157   bool not_empty() const             { return used() > 0; }
   159   // Returns true iff the given the space contains the
   160   // given address as part of an allocated object. For
   161   // ceratin kinds of spaces, this might be a potentially
   162   // expensive operation. To prevent performance problems
   163   // on account of its inadvertent use in product jvm's,
   164   // we restrict its use to assertion checks only.
   165   bool is_in(const void* p) const {
   166     return used_region().contains(p);
   167   }
   169   // Returns true iff the given reserved memory of the space contains the
   170   // given address.
   171   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
   173   // Returns true iff the given block is not allocated.
   174   virtual bool is_free_block(const HeapWord* p) const = 0;
   176   // Test whether p is double-aligned
   177   static bool is_aligned(void* p) {
   178     return ((intptr_t)p & (sizeof(double)-1)) == 0;
   179   }
   181   // Size computations.  Sizes are in bytes.
   182   size_t capacity()     const { return byte_size(bottom(), end()); }
   183   virtual size_t used() const = 0;
   184   virtual size_t free() const = 0;
   186   // Iterate over all the ref-containing fields of all objects in the
   187   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
   188   // applications of the closure are not included in the iteration.
   189   virtual void oop_iterate(ExtendedOopClosure* cl);
   191   // Iterate over all objects in the space, calling "cl.do_object" on
   192   // each.  Objects allocated by applications of the closure are not
   193   // included in the iteration.
   194   virtual void object_iterate(ObjectClosure* blk) = 0;
   195   // Similar to object_iterate() except only iterates over
   196   // objects whose internal references point to objects in the space.
   197   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
   199   // Create and return a new dirty card to oop closure. Can be
   200   // overriden to return the appropriate type of closure
   201   // depending on the type of space in which the closure will
   202   // operate. ResourceArea allocated.
   203   virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
   204                                              CardTableModRefBS::PrecisionStyle precision,
   205                                              HeapWord* boundary = NULL);
   207   // If "p" is in the space, returns the address of the start of the
   208   // "block" that contains "p".  We say "block" instead of "object" since
   209   // some heaps may not pack objects densely; a chunk may either be an
   210   // object or a non-object.  If "p" is not in the space, return NULL.
   211   virtual HeapWord* block_start_const(const void* p) const = 0;
   213   // The non-const version may have benevolent side effects on the data
   214   // structure supporting these calls, possibly speeding up future calls.
   215   // The default implementation, however, is simply to call the const
   216   // version.
   217   inline virtual HeapWord* block_start(const void* p);
   219   // Requires "addr" to be the start of a chunk, and returns its size.
   220   // "addr + size" is required to be the start of a new chunk, or the end
   221   // of the active area of the heap.
   222   virtual size_t block_size(const HeapWord* addr) const = 0;
   224   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   225   // the block is an object.
   226   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   228   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   229   // the block is an object and the object is alive.
   230   virtual bool obj_is_alive(const HeapWord* addr) const;
   232   // Allocation (return NULL if full).  Assumes the caller has established
   233   // mutually exclusive access to the space.
   234   virtual HeapWord* allocate(size_t word_size) = 0;
   236   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
   237   virtual HeapWord* par_allocate(size_t word_size) = 0;
   239   // Mark-sweep-compact support: all spaces can update pointers to objects
   240   // moving as a part of compaction.
   241   virtual void adjust_pointers();
   243   // PrintHeapAtGC support
   244   virtual void print() const;
   245   virtual void print_on(outputStream* st) const;
   246   virtual void print_short() const;
   247   virtual void print_short_on(outputStream* st) const;
   250   // Accessor for parallel sequential tasks.
   251   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
   253   // IF "this" is a ContiguousSpace, return it, else return NULL.
   254   virtual ContiguousSpace* toContiguousSpace() {
   255     return NULL;
   256   }
   258   // Debugging
   259   virtual void verify() const = 0;
   260 };
   262 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
   263 // OopClosure to (the addresses of) all the ref-containing fields that could
   264 // be modified by virtue of the given MemRegion being dirty. (Note that
   265 // because of the imprecise nature of the write barrier, this may iterate
   266 // over oops beyond the region.)
   267 // This base type for dirty card to oop closures handles memory regions
   268 // in non-contiguous spaces with no boundaries, and should be sub-classed
   269 // to support other space types. See ContiguousDCTOC for a sub-class
   270 // that works with ContiguousSpaces.
   272 class DirtyCardToOopClosure: public MemRegionClosureRO {
   273 protected:
   274   ExtendedOopClosure* _cl;
   275   Space* _sp;
   276   CardTableModRefBS::PrecisionStyle _precision;
   277   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
   278                                 // pointing below boundary.
   279   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
   280                                 // a downwards traversal; this is the
   281                                 // lowest location already done (or,
   282                                 // alternatively, the lowest address that
   283                                 // shouldn't be done again.  NULL means infinity.)
   284   NOT_PRODUCT(HeapWord* _last_bottom;)
   285   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
   287   // Get the actual top of the area on which the closure will
   288   // operate, given where the top is assumed to be (the end of the
   289   // memory region passed to do_MemRegion) and where the object
   290   // at the top is assumed to start. For example, an object may
   291   // start at the top but actually extend past the assumed top,
   292   // in which case the top becomes the end of the object.
   293   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   295   // Walk the given memory region from bottom to (actual) top
   296   // looking for objects and applying the oop closure (_cl) to
   297   // them. The base implementation of this treats the area as
   298   // blocks, where a block may or may not be an object. Sub-
   299   // classes should override this to provide more accurate
   300   // or possibly more efficient walking.
   301   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
   303 public:
   304   DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
   305                         CardTableModRefBS::PrecisionStyle precision,
   306                         HeapWord* boundary) :
   307     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
   308     _min_done(NULL) {
   309     NOT_PRODUCT(_last_bottom = NULL);
   310     NOT_PRODUCT(_last_explicit_min_done = NULL);
   311   }
   313   void do_MemRegion(MemRegion mr);
   315   void set_min_done(HeapWord* min_done) {
   316     _min_done = min_done;
   317     NOT_PRODUCT(_last_explicit_min_done = _min_done);
   318   }
   319 #ifndef PRODUCT
   320   void set_last_bottom(HeapWord* last_bottom) {
   321     _last_bottom = last_bottom;
   322   }
   323 #endif
   324 };
   326 // A structure to represent a point at which objects are being copied
   327 // during compaction.
   328 class CompactPoint : public StackObj {
   329 public:
   330   Generation* gen;
   331   CompactibleSpace* space;
   332   HeapWord* threshold;
   334   CompactPoint(Generation* g = NULL) :
   335     gen(g), space(NULL), threshold(0) {}
   336 };
   338 // A space that supports compaction operations.  This is usually, but not
   339 // necessarily, a space that is normally contiguous.  But, for example, a
   340 // free-list-based space whose normal collection is a mark-sweep without
   341 // compaction could still support compaction in full GC's.
   343 class CompactibleSpace: public Space {
   344   friend class VMStructs;
   345   friend class CompactibleFreeListSpace;
   346 private:
   347   HeapWord* _compaction_top;
   348   CompactibleSpace* _next_compaction_space;
   350 public:
   351   CompactibleSpace() :
   352    _compaction_top(NULL), _next_compaction_space(NULL) {}
   354   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   355   virtual void clear(bool mangle_space);
   357   // Used temporarily during a compaction phase to hold the value
   358   // top should have when compaction is complete.
   359   HeapWord* compaction_top() const { return _compaction_top;    }
   361   void set_compaction_top(HeapWord* value) {
   362     assert(value == NULL || (value >= bottom() && value <= end()),
   363       "should point inside space");
   364     _compaction_top = value;
   365   }
   367   // Perform operations on the space needed after a compaction
   368   // has been performed.
   369   virtual void reset_after_compaction() = 0;
   371   // Returns the next space (in the current generation) to be compacted in
   372   // the global compaction order.  Also is used to select the next
   373   // space into which to compact.
   375   virtual CompactibleSpace* next_compaction_space() const {
   376     return _next_compaction_space;
   377   }
   379   void set_next_compaction_space(CompactibleSpace* csp) {
   380     _next_compaction_space = csp;
   381   }
   383   // MarkSweep support phase2
   385   // Start the process of compaction of the current space: compute
   386   // post-compaction addresses, and insert forwarding pointers.  The fields
   387   // "cp->gen" and "cp->compaction_space" are the generation and space into
   388   // which we are currently compacting.  This call updates "cp" as necessary,
   389   // and leaves the "compaction_top" of the final value of
   390   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
   391   // this phase as if the final copy had occurred; if so, "cp->threshold"
   392   // indicates when the next such action should be taken.
   393   virtual void prepare_for_compaction(CompactPoint* cp);
   394   // MarkSweep support phase3
   395   virtual void adjust_pointers();
   396   // MarkSweep support phase4
   397   virtual void compact();
   399   // The maximum percentage of objects that can be dead in the compacted
   400   // live part of a compacted space ("deadwood" support.)
   401   virtual size_t allowed_dead_ratio() const { return 0; };
   403   // Some contiguous spaces may maintain some data structures that should
   404   // be updated whenever an allocation crosses a boundary.  This function
   405   // returns the first such boundary.
   406   // (The default implementation returns the end of the space, so the
   407   // boundary is never crossed.)
   408   virtual HeapWord* initialize_threshold() { return end(); }
   410   // "q" is an object of the given "size" that should be forwarded;
   411   // "cp" names the generation ("gen") and containing "this" (which must
   412   // also equal "cp->space").  "compact_top" is where in "this" the
   413   // next object should be forwarded to.  If there is room in "this" for
   414   // the object, insert an appropriate forwarding pointer in "q".
   415   // If not, go to the next compaction space (there must
   416   // be one, since compaction must succeed -- we go to the first space of
   417   // the previous generation if necessary, updating "cp"), reset compact_top
   418   // and then forward.  In either case, returns the new value of "compact_top".
   419   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
   420   // function of the then-current compaction space, and updates "cp->threshold
   421   // accordingly".
   422   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
   423                     HeapWord* compact_top);
   425   // Return a size with adjusments as required of the space.
   426   virtual size_t adjust_object_size_v(size_t size) const { return size; }
   428 protected:
   429   // Used during compaction.
   430   HeapWord* _first_dead;
   431   HeapWord* _end_of_live;
   433   // Minimum size of a free block.
   434   virtual size_t minimum_free_block_size() const { return 0; }
   436   // This the function is invoked when an allocation of an object covering
   437   // "start" to "end occurs crosses the threshold; returns the next
   438   // threshold.  (The default implementation does nothing.)
   439   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
   440     return end();
   441   }
   443   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
   444   // free block of the given "word_len", and that "q", were it an object,
   445   // would not move if forwared.  If the size allows, fill the free
   446   // block with an object, to prevent excessive compaction.  Returns "true"
   447   // iff the free region was made deadspace, and modifies
   448   // "allowed_deadspace_words" to reflect the number of available deadspace
   449   // words remaining after this operation.
   450   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
   451                         size_t word_len);
   452 };
   454 class GenSpaceMangler;
   456 // A space in which the free area is contiguous.  It therefore supports
   457 // faster allocation, and compaction.
   458 class ContiguousSpace: public CompactibleSpace {
   459   friend class OneContigSpaceCardGeneration;
   460   friend class VMStructs;
   461  protected:
   462   HeapWord* _top;
   463   HeapWord* _concurrent_iteration_safe_limit;
   464   // A helper for mangling the unused area of the space in debug builds.
   465   GenSpaceMangler* _mangler;
   467   GenSpaceMangler* mangler() { return _mangler; }
   469   // Allocation helpers (return NULL if full).
   470   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   471   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   473  public:
   474   ContiguousSpace();
   475   ~ContiguousSpace();
   477   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   478   virtual void clear(bool mangle_space);
   480   // Accessors
   481   HeapWord* top() const            { return _top;    }
   482   void set_top(HeapWord* value)    { _top = value; }
   484   void set_saved_mark()            { _saved_mark_word = top();    }
   485   void reset_saved_mark()          { _saved_mark_word = bottom(); }
   487   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
   488   WaterMark top_mark()        { return WaterMark(this, top()); }
   489   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
   490   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
   492   // In debug mode mangle (write it with a particular bit
   493   // pattern) the unused part of a space.
   495   // Used to save the an address in a space for later use during mangling.
   496   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
   497   // Used to save the space's current top for later use during mangling.
   498   void set_top_for_allocations() PRODUCT_RETURN;
   500   // Mangle regions in the space from the current top up to the
   501   // previously mangled part of the space.
   502   void mangle_unused_area() PRODUCT_RETURN;
   503   // Mangle [top, end)
   504   void mangle_unused_area_complete() PRODUCT_RETURN;
   505   // Mangle the given MemRegion.
   506   void mangle_region(MemRegion mr) PRODUCT_RETURN;
   508   // Do some sparse checking on the area that should have been mangled.
   509   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
   510   // Check the complete area that should have been mangled.
   511   // This code may be NULL depending on the macro DEBUG_MANGLING.
   512   void check_mangled_unused_area_complete() PRODUCT_RETURN;
   514   // Size computations: sizes in bytes.
   515   size_t capacity() const        { return byte_size(bottom(), end()); }
   516   size_t used() const            { return byte_size(bottom(), top()); }
   517   size_t free() const            { return byte_size(top(),    end()); }
   519   virtual bool is_free_block(const HeapWord* p) const;
   521   // In a contiguous space we have a more obvious bound on what parts
   522   // contain objects.
   523   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   525   // Allocation (return NULL if full)
   526   virtual HeapWord* allocate(size_t word_size);
   527   virtual HeapWord* par_allocate(size_t word_size);
   528   HeapWord* allocate_aligned(size_t word_size);
   530   // Iteration
   531   void oop_iterate(ExtendedOopClosure* cl);
   532   void object_iterate(ObjectClosure* blk);
   533   // For contiguous spaces this method will iterate safely over objects
   534   // in the space (i.e., between bottom and top) when at a safepoint.
   535   void safe_object_iterate(ObjectClosure* blk);
   537   // Iterate over as many initialized objects in the space as possible,
   538   // calling "cl.do_object_careful" on each. Return NULL if all objects
   539   // in the space (at the start of the iteration) were iterated over.
   540   // Return an address indicating the extent of the iteration in the
   541   // event that the iteration had to return because of finding an
   542   // uninitialized object in the space, or if the closure "cl"
   543   // signaled early termination.
   544   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   545   HeapWord* concurrent_iteration_safe_limit() {
   546     assert(_concurrent_iteration_safe_limit <= top(),
   547            "_concurrent_iteration_safe_limit update missed");
   548     return _concurrent_iteration_safe_limit;
   549   }
   550   // changes the safe limit, all objects from bottom() to the new
   551   // limit should be properly initialized
   552   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
   553     assert(new_limit <= top(), "uninitialized objects in the safe range");
   554     _concurrent_iteration_safe_limit = new_limit;
   555   }
   558 #if INCLUDE_ALL_GCS
   559   // In support of parallel oop_iterate.
   560   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
   561     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
   563     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
   564   #undef ContigSpace_PAR_OOP_ITERATE_DECL
   565 #endif // INCLUDE_ALL_GCS
   567   // Compaction support
   568   virtual void reset_after_compaction() {
   569     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
   570     set_top(compaction_top());
   571     // set new iteration safe limit
   572     set_concurrent_iteration_safe_limit(compaction_top());
   573   }
   575   // Override.
   576   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
   577                                      CardTableModRefBS::PrecisionStyle precision,
   578                                      HeapWord* boundary = NULL);
   580   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   581   // starting with the _saved_mark_word, which was noted during a generation's
   582   // save_marks and is required to denote the head of an object.
   583   // Fields in objects allocated by applications of the closure
   584   // *are* included in the iteration.
   585   // Updates _saved_mark_word to point to just after the last object
   586   // iterated over.
   587 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   588   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   590   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
   591 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
   593   // Same as object_iterate, but starting from "mark", which is required
   594   // to denote the start of an object.  Objects allocated by
   595   // applications of the closure *are* included in the iteration.
   596   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
   598   // Very inefficient implementation.
   599   virtual HeapWord* block_start_const(const void* p) const;
   600   size_t block_size(const HeapWord* p) const;
   601   // If a block is in the allocated area, it is an object.
   602   bool block_is_obj(const HeapWord* p) const { return p < top(); }
   604   // Addresses for inlined allocation
   605   HeapWord** top_addr() { return &_top; }
   606   HeapWord** end_addr() { return &_end; }
   608   // Overrides for more efficient compaction support.
   609   void prepare_for_compaction(CompactPoint* cp);
   611   // PrintHeapAtGC support.
   612   virtual void print_on(outputStream* st) const;
   614   // Checked dynamic downcasts.
   615   virtual ContiguousSpace* toContiguousSpace() {
   616     return this;
   617   }
   619   // Debugging
   620   virtual void verify() const;
   622   // Used to increase collection frequency.  "factor" of 0 means entire
   623   // space.
   624   void allocate_temporary_filler(int factor);
   626 };
   629 // A dirty card to oop closure that does filtering.
   630 // It knows how to filter out objects that are outside of the _boundary.
   631 class Filtering_DCTOC : public DirtyCardToOopClosure {
   632 protected:
   633   // Override.
   634   void walk_mem_region(MemRegion mr,
   635                        HeapWord* bottom, HeapWord* top);
   637   // Walk the given memory region, from bottom to top, applying
   638   // the given oop closure to (possibly) all objects found. The
   639   // given oop closure may or may not be the same as the oop
   640   // closure with which this closure was created, as it may
   641   // be a filtering closure which makes use of the _boundary.
   642   // We offer two signatures, so the FilteringClosure static type is
   643   // apparent.
   644   virtual void walk_mem_region_with_cl(MemRegion mr,
   645                                        HeapWord* bottom, HeapWord* top,
   646                                        ExtendedOopClosure* cl) = 0;
   647   virtual void walk_mem_region_with_cl(MemRegion mr,
   648                                        HeapWord* bottom, HeapWord* top,
   649                                        FilteringClosure* cl) = 0;
   651 public:
   652   Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
   653                   CardTableModRefBS::PrecisionStyle precision,
   654                   HeapWord* boundary) :
   655     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
   656 };
   658 // A dirty card to oop closure for contiguous spaces
   659 // (ContiguousSpace and sub-classes).
   660 // It is a FilteringClosure, as defined above, and it knows:
   661 //
   662 // 1. That the actual top of any area in a memory region
   663 //    contained by the space is bounded by the end of the contiguous
   664 //    region of the space.
   665 // 2. That the space is really made up of objects and not just
   666 //    blocks.
   668 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
   669 protected:
   670   // Overrides.
   671   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   673   virtual void walk_mem_region_with_cl(MemRegion mr,
   674                                        HeapWord* bottom, HeapWord* top,
   675                                        ExtendedOopClosure* cl);
   676   virtual void walk_mem_region_with_cl(MemRegion mr,
   677                                        HeapWord* bottom, HeapWord* top,
   678                                        FilteringClosure* cl);
   680 public:
   681   ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
   682                        CardTableModRefBS::PrecisionStyle precision,
   683                        HeapWord* boundary) :
   684     Filtering_DCTOC(sp, cl, precision, boundary)
   685   {}
   686 };
   689 // Class EdenSpace describes eden-space in new generation.
   691 class DefNewGeneration;
   693 class EdenSpace : public ContiguousSpace {
   694   friend class VMStructs;
   695  private:
   696   DefNewGeneration* _gen;
   698   // _soft_end is used as a soft limit on allocation.  As soft limits are
   699   // reached, the slow-path allocation code can invoke other actions and then
   700   // adjust _soft_end up to a new soft limit or to end().
   701   HeapWord* _soft_end;
   703  public:
   704   EdenSpace(DefNewGeneration* gen) :
   705    _gen(gen), _soft_end(NULL) {}
   707   // Get/set just the 'soft' limit.
   708   HeapWord* soft_end()               { return _soft_end; }
   709   HeapWord** soft_end_addr()         { return &_soft_end; }
   710   void set_soft_end(HeapWord* value) { _soft_end = value; }
   712   // Override.
   713   void clear(bool mangle_space);
   715   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
   716   void set_end(HeapWord* value) {
   717     set_soft_end(value);
   718     ContiguousSpace::set_end(value);
   719   }
   721   // Allocation (return NULL if full)
   722   HeapWord* allocate(size_t word_size);
   723   HeapWord* par_allocate(size_t word_size);
   724 };
   726 // Class ConcEdenSpace extends EdenSpace for the sake of safe
   727 // allocation while soft-end is being modified concurrently
   729 class ConcEdenSpace : public EdenSpace {
   730  public:
   731   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
   733   // Allocation (return NULL if full)
   734   HeapWord* par_allocate(size_t word_size);
   735 };
   738 // A ContigSpace that Supports an efficient "block_start" operation via
   739 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
   740 // other spaces.)  This is the abstract base class for old generation
   741 // (tenured) spaces.
   743 class OffsetTableContigSpace: public ContiguousSpace {
   744   friend class VMStructs;
   745  protected:
   746   BlockOffsetArrayContigSpace _offsets;
   747   Mutex _par_alloc_lock;
   749  public:
   750   // Constructor
   751   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   752                          MemRegion mr);
   754   void set_bottom(HeapWord* value);
   755   void set_end(HeapWord* value);
   757   void clear(bool mangle_space);
   759   inline HeapWord* block_start_const(const void* p) const;
   761   // Add offset table update.
   762   virtual inline HeapWord* allocate(size_t word_size);
   763   inline HeapWord* par_allocate(size_t word_size);
   765   // MarkSweep support phase3
   766   virtual HeapWord* initialize_threshold();
   767   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   769   virtual void print_on(outputStream* st) const;
   771   // Debugging
   772   void verify() const;
   773 };
   776 // Class TenuredSpace is used by TenuredGeneration
   778 class TenuredSpace: public OffsetTableContigSpace {
   779   friend class VMStructs;
   780  protected:
   781   // Mark sweep support
   782   size_t allowed_dead_ratio() const;
   783  public:
   784   // Constructor
   785   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
   786                MemRegion mr) :
   787     OffsetTableContigSpace(sharedOffsetArray, mr) {}
   788 };
   789 #endif // SHARE_VM_MEMORY_SPACE_HPP

mercurial