src/share/vm/memory/referenceProcessor.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7476
c2844108a708
child 7535
7ae4e26cb1e0
child 7741
35c7330b68e2
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_implementation/shared/gcTimer.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_interface/collectedHeap.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/referencePolicy.hpp"
    33 #include "memory/referenceProcessor.hpp"
    34 #include "oops/oop.inline.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/jniHandles.hpp"
    38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    40 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    41 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    42 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    45 void referenceProcessor_init() {
    46   ReferenceProcessor::init_statics();
    47 }
    49 void ReferenceProcessor::init_statics() {
    50   // We need a monotonically non-deccreasing time in ms but
    51   // os::javaTimeMillis() does not guarantee monotonicity.
    52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    54   // Initialize the soft ref timestamp clock.
    55   _soft_ref_timestamp_clock = now;
    56   // Also update the soft ref clock in j.l.r.SoftReference
    57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    60   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    61                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    62   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    63     vm_exit_during_initialization("Could not allocate reference policy object");
    64   }
    65   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    66             RefDiscoveryPolicy == ReferentBasedDiscovery,
    67             "Unrecongnized RefDiscoveryPolicy");
    68   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    69 }
    71 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    72 #ifdef ASSERT
    73   // Verify that we're not currently discovering refs
    74   assert(!verify_disabled || !_discovering_refs, "nested call?");
    76   if (check_no_refs) {
    77     // Verify that the discovered lists are empty
    78     verify_no_references_recorded();
    79   }
    80 #endif // ASSERT
    82   // Someone could have modified the value of the static
    83   // field in the j.l.r.SoftReference class that holds the
    84   // soft reference timestamp clock using reflection or
    85   // Unsafe between GCs. Unconditionally update the static
    86   // field in ReferenceProcessor here so that we use the new
    87   // value during reference discovery.
    89   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    90   _discovering_refs = true;
    91 }
    93 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    94                                        bool      mt_processing,
    95                                        uint      mt_processing_degree,
    96                                        bool      mt_discovery,
    97                                        uint      mt_discovery_degree,
    98                                        bool      atomic_discovery,
    99                                        BoolObjectClosure* is_alive_non_header)  :
   100   _discovering_refs(false),
   101   _enqueuing_is_done(false),
   102   _is_alive_non_header(is_alive_non_header),
   103   _processing_is_mt(mt_processing),
   104   _next_id(0)
   105 {
   106   _span = span;
   107   _discovery_is_atomic = atomic_discovery;
   108   _discovery_is_mt     = mt_discovery;
   109   _num_q               = MAX2(1U, mt_processing_degree);
   110   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   111   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   112             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   114   if (_discovered_refs == NULL) {
   115     vm_exit_during_initialization("Could not allocated RefProc Array");
   116   }
   117   _discoveredSoftRefs    = &_discovered_refs[0];
   118   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   119   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   120   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   121   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
   123   // Initialize all entries to NULL
   124   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   125     _discovered_refs[i].set_head(NULL);
   126     _discovered_refs[i].set_length(0);
   127   }
   129   setup_policy(false /* default soft ref policy */);
   130 }
   132 #ifndef PRODUCT
   133 void ReferenceProcessor::verify_no_references_recorded() {
   134   guarantee(!_discovering_refs, "Discovering refs?");
   135   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   136     guarantee(_discovered_refs[i].is_empty(),
   137               "Found non-empty discovered list");
   138   }
   139 }
   140 #endif
   142 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   143   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   144     if (UseCompressedOops) {
   145       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   146     } else {
   147       f->do_oop((oop*)_discovered_refs[i].adr_head());
   148     }
   149   }
   150 }
   152 void ReferenceProcessor::update_soft_ref_master_clock() {
   153   // Update (advance) the soft ref master clock field. This must be done
   154   // after processing the soft ref list.
   156   // We need a monotonically non-deccreasing time in ms but
   157   // os::javaTimeMillis() does not guarantee monotonicity.
   158   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   159   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   160   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   162   NOT_PRODUCT(
   163   if (now < _soft_ref_timestamp_clock) {
   164     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   165             _soft_ref_timestamp_clock, now);
   166   }
   167   )
   168   // The values of now and _soft_ref_timestamp_clock are set using
   169   // javaTimeNanos(), which is guaranteed to be monotonically
   170   // non-decreasing provided the underlying platform provides such
   171   // a time source (and it is bug free).
   172   // In product mode, however, protect ourselves from non-monotonicty.
   173   if (now > _soft_ref_timestamp_clock) {
   174     _soft_ref_timestamp_clock = now;
   175     java_lang_ref_SoftReference::set_clock(now);
   176   }
   177   // Else leave clock stalled at its old value until time progresses
   178   // past clock value.
   179 }
   181 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
   182   size_t total = 0;
   183   for (uint i = 0; i < _max_num_q; ++i) {
   184     total += lists[i].length();
   185   }
   186   return total;
   187 }
   189 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
   190   BoolObjectClosure*           is_alive,
   191   OopClosure*                  keep_alive,
   192   VoidClosure*                 complete_gc,
   193   AbstractRefProcTaskExecutor* task_executor,
   194   GCTimer*                     gc_timer,
   195   GCId                         gc_id) {
   196   NOT_PRODUCT(verify_ok_to_handle_reflists());
   198   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   199   // Stop treating discovered references specially.
   200   disable_discovery();
   202   // If discovery was concurrent, someone could have modified
   203   // the value of the static field in the j.l.r.SoftReference
   204   // class that holds the soft reference timestamp clock using
   205   // reflection or Unsafe between when discovery was enabled and
   206   // now. Unconditionally update the static field in ReferenceProcessor
   207   // here so that we use the new value during processing of the
   208   // discovered soft refs.
   210   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   212   bool trace_time = PrintGCDetails && PrintReferenceGC;
   214   // Soft references
   215   size_t soft_count = 0;
   216   {
   217     GCTraceTime tt("SoftReference", trace_time, false, gc_timer, gc_id);
   218     soft_count =
   219       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   220                                  is_alive, keep_alive, complete_gc, task_executor);
   221   }
   223   update_soft_ref_master_clock();
   225   // Weak references
   226   size_t weak_count = 0;
   227   {
   228     GCTraceTime tt("WeakReference", trace_time, false, gc_timer, gc_id);
   229     weak_count =
   230       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   231                                  is_alive, keep_alive, complete_gc, task_executor);
   232   }
   234   // Final references
   235   size_t final_count = 0;
   236   {
   237     GCTraceTime tt("FinalReference", trace_time, false, gc_timer, gc_id);
   238     final_count =
   239       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   240                                  is_alive, keep_alive, complete_gc, task_executor);
   241   }
   243   // Phantom references
   244   size_t phantom_count = 0;
   245   {
   246     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer, gc_id);
   247     phantom_count =
   248       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   249                                  is_alive, keep_alive, complete_gc, task_executor);
   251     // Process cleaners, but include them in phantom statistics.  We expect
   252     // Cleaner references to be temporary, and don't want to deal with
   253     // possible incompatibilities arising from making it more visible.
   254     phantom_count +=
   255       process_discovered_reflist(_discoveredCleanerRefs, NULL, false,
   256                                  is_alive, keep_alive, complete_gc, task_executor);
   257   }
   259   // Weak global JNI references. It would make more sense (semantically) to
   260   // traverse these simultaneously with the regular weak references above, but
   261   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   262   // thus use JNI weak references to circumvent the phantom references and
   263   // resurrect a "post-mortem" object.
   264   {
   265     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer, gc_id);
   266     if (task_executor != NULL) {
   267       task_executor->set_single_threaded_mode();
   268     }
   269     process_phaseJNI(is_alive, keep_alive, complete_gc);
   270   }
   272   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
   273 }
   275 #ifndef PRODUCT
   276 // Calculate the number of jni handles.
   277 uint ReferenceProcessor::count_jni_refs() {
   278   class AlwaysAliveClosure: public BoolObjectClosure {
   279   public:
   280     virtual bool do_object_b(oop obj) { return true; }
   281   };
   283   class CountHandleClosure: public OopClosure {
   284   private:
   285     int _count;
   286   public:
   287     CountHandleClosure(): _count(0) {}
   288     void do_oop(oop* unused)       { _count++; }
   289     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   290     int count() { return _count; }
   291   };
   292   CountHandleClosure global_handle_count;
   293   AlwaysAliveClosure always_alive;
   294   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   295   return global_handle_count.count();
   296 }
   297 #endif
   299 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   300                                           OopClosure*        keep_alive,
   301                                           VoidClosure*       complete_gc) {
   302 #ifndef PRODUCT
   303   if (PrintGCDetails && PrintReferenceGC) {
   304     unsigned int count = count_jni_refs();
   305     gclog_or_tty->print(", %u refs", count);
   306   }
   307 #endif
   308   JNIHandles::weak_oops_do(is_alive, keep_alive);
   309   complete_gc->do_void();
   310 }
   313 template <class T>
   314 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   315                                    AbstractRefProcTaskExecutor* task_executor) {
   317   // Remember old value of pending references list
   318   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   319   T old_pending_list_value = *pending_list_addr;
   321   // Enqueue references that are not made active again, and
   322   // clear the decks for the next collection (cycle).
   323   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   324   // Do the post-barrier on pending_list_addr missed in
   325   // enqueue_discovered_reflist.
   326   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   328   // Stop treating discovered references specially.
   329   ref->disable_discovery();
   331   // Return true if new pending references were added
   332   return old_pending_list_value != *pending_list_addr;
   333 }
   335 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   336   NOT_PRODUCT(verify_ok_to_handle_reflists());
   337   if (UseCompressedOops) {
   338     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   339   } else {
   340     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   341   }
   342 }
   344 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   345                                                     HeapWord* pending_list_addr) {
   346   // Given a list of refs linked through the "discovered" field
   347   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   348   // thus distinguishing them from active References, then
   349   // prepend them to the pending list.
   350   //
   351   // The Java threads will see the Reference objects linked together through
   352   // the discovered field. Instead of trying to do the write barrier updates
   353   // in all places in the reference processor where we manipulate the discovered
   354   // field we make sure to do the barrier here where we anyway iterate through
   355   // all linked Reference objects. Note that it is important to not dirty any
   356   // cards during reference processing since this will cause card table
   357   // verification to fail for G1.
   358   //
   359   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   360   // the "next" field is used to chain the pending list, not the discovered
   361   // field.
   362   if (TraceReferenceGC && PrintGCDetails) {
   363     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   364                            INTPTR_FORMAT, (address)refs_list.head());
   365   }
   367   oop obj = NULL;
   368   oop next_d = refs_list.head();
   369   if (pending_list_uses_discovered_field()) { // New behavior
   370     // Walk down the list, self-looping the next field
   371     // so that the References are not considered active.
   372     while (obj != next_d) {
   373       obj = next_d;
   374       assert(obj->is_instanceRef(), "should be reference object");
   375       next_d = java_lang_ref_Reference::discovered(obj);
   376       if (TraceReferenceGC && PrintGCDetails) {
   377         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   378                                (void *)obj, (void *)next_d);
   379       }
   380       assert(java_lang_ref_Reference::next(obj) == NULL,
   381              "Reference not active; should not be discovered");
   382       // Self-loop next, so as to make Ref not active.
   383       java_lang_ref_Reference::set_next_raw(obj, obj);
   384       if (next_d != obj) {
   385         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
   386       } else {
   387         // This is the last object.
   388         // Swap refs_list into pending_list_addr and
   389         // set obj's discovered to what we read from pending_list_addr.
   390         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   391         // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
   392         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
   393         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
   394       }
   395     }
   396   } else { // Old behaviour
   397     // Walk down the list, copying the discovered field into
   398     // the next field and clearing the discovered field.
   399     while (obj != next_d) {
   400       obj = next_d;
   401       assert(obj->is_instanceRef(), "should be reference object");
   402       next_d = java_lang_ref_Reference::discovered(obj);
   403       if (TraceReferenceGC && PrintGCDetails) {
   404         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   405                                (void *)obj, (void *)next_d);
   406       }
   407       assert(java_lang_ref_Reference::next(obj) == NULL,
   408              "The reference should not be enqueued");
   409       if (next_d == obj) {  // obj is last
   410         // Swap refs_list into pendling_list_addr and
   411         // set obj's next to what we read from pending_list_addr.
   412         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   413         // Need oop_check on pending_list_addr above;
   414         // see special oop-check code at the end of
   415         // enqueue_discovered_reflists() further below.
   416         if (old == NULL) {
   417           // obj should be made to point to itself, since
   418           // pending list was empty.
   419           java_lang_ref_Reference::set_next(obj, obj);
   420         } else {
   421           java_lang_ref_Reference::set_next(obj, old);
   422         }
   423       } else {
   424         java_lang_ref_Reference::set_next(obj, next_d);
   425       }
   426       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   427     }
   428   }
   429 }
   431 // Parallel enqueue task
   432 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   433 public:
   434   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   435                      DiscoveredList      discovered_refs[],
   436                      HeapWord*           pending_list_addr,
   437                      int                 n_queues)
   438     : EnqueueTask(ref_processor, discovered_refs,
   439                   pending_list_addr, n_queues)
   440   { }
   442   virtual void work(unsigned int work_id) {
   443     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   444     // Simplest first cut: static partitioning.
   445     int index = work_id;
   446     // The increment on "index" must correspond to the maximum number of queues
   447     // (n_queues) with which that ReferenceProcessor was created.  That
   448     // is because of the "clever" way the discovered references lists were
   449     // allocated and are indexed into.
   450     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   451     for (int j = 0;
   452          j < ReferenceProcessor::number_of_subclasses_of_ref();
   453          j++, index += _n_queues) {
   454       _ref_processor.enqueue_discovered_reflist(
   455         _refs_lists[index], _pending_list_addr);
   456       _refs_lists[index].set_head(NULL);
   457       _refs_lists[index].set_length(0);
   458     }
   459   }
   460 };
   462 // Enqueue references that are not made active again
   463 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   464   AbstractRefProcTaskExecutor* task_executor) {
   465   if (_processing_is_mt && task_executor != NULL) {
   466     // Parallel code
   467     RefProcEnqueueTask tsk(*this, _discovered_refs,
   468                            pending_list_addr, _max_num_q);
   469     task_executor->execute(tsk);
   470   } else {
   471     // Serial code: call the parent class's implementation
   472     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   473       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   474       _discovered_refs[i].set_head(NULL);
   475       _discovered_refs[i].set_length(0);
   476     }
   477   }
   478 }
   480 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   481   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   482   oop discovered = java_lang_ref_Reference::discovered(_ref);
   483   assert(_discovered_addr && discovered->is_oop_or_null(),
   484          "discovered field is bad");
   485   _next = discovered;
   486   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   487   _referent = java_lang_ref_Reference::referent(_ref);
   488   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   489          "Wrong oop found in java.lang.Reference object");
   490   assert(allow_null_referent ?
   491              _referent->is_oop_or_null()
   492            : _referent->is_oop(),
   493          "bad referent");
   494 }
   496 void DiscoveredListIterator::remove() {
   497   assert(_ref->is_oop(), "Dropping a bad reference");
   498   oop_store_raw(_discovered_addr, NULL);
   500   // First _prev_next ref actually points into DiscoveredList (gross).
   501   oop new_next;
   502   if (_next == _ref) {
   503     // At the end of the list, we should make _prev point to itself.
   504     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   505     // and _prev will be NULL.
   506     new_next = _prev;
   507   } else {
   508     new_next = _next;
   509   }
   510   // Remove Reference object from discovered list. Note that G1 does not need a
   511   // pre-barrier here because we know the Reference has already been found/marked,
   512   // that's how it ended up in the discovered list in the first place.
   513   oop_store_raw(_prev_next, new_next);
   514   NOT_PRODUCT(_removed++);
   515   _refs_list.dec_length(1);
   516 }
   518 // Make the Reference object active again.
   519 void DiscoveredListIterator::make_active() {
   520   // The pre barrier for G1 is probably just needed for the old
   521   // reference processing behavior. Should we guard this with
   522   // ReferenceProcessor::pending_list_uses_discovered_field() ?
   523   if (UseG1GC) {
   524     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   525     if (UseCompressedOops) {
   526       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
   527     } else {
   528       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
   529     }
   530   }
   531   java_lang_ref_Reference::set_next_raw(_ref, NULL);
   532 }
   534 void DiscoveredListIterator::clear_referent() {
   535   oop_store_raw(_referent_addr, NULL);
   536 }
   538 // NOTE: process_phase*() are largely similar, and at a high level
   539 // merely iterate over the extant list applying a predicate to
   540 // each of its elements and possibly removing that element from the
   541 // list and applying some further closures to that element.
   542 // We should consider the possibility of replacing these
   543 // process_phase*() methods by abstracting them into
   544 // a single general iterator invocation that receives appropriate
   545 // closures that accomplish this work.
   547 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   548 // referents are not alive, but that should be kept alive for policy reasons.
   549 // Keep alive the transitive closure of all such referents.
   550 void
   551 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   552                                    ReferencePolicy*   policy,
   553                                    BoolObjectClosure* is_alive,
   554                                    OopClosure*        keep_alive,
   555                                    VoidClosure*       complete_gc) {
   556   assert(policy != NULL, "Must have a non-NULL policy");
   557   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   558   // Decide which softly reachable refs should be kept alive.
   559   while (iter.has_next()) {
   560     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   561     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   562     if (referent_is_dead &&
   563         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   564       if (TraceReferenceGC) {
   565         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   566                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   567       }
   568       // Remove Reference object from list
   569       iter.remove();
   570       // Make the Reference object active again
   571       iter.make_active();
   572       // keep the referent around
   573       iter.make_referent_alive();
   574       iter.move_to_next();
   575     } else {
   576       iter.next();
   577     }
   578   }
   579   // Close the reachable set
   580   complete_gc->do_void();
   581   NOT_PRODUCT(
   582     if (PrintGCDetails && TraceReferenceGC) {
   583       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   584         "discovered Refs by policy, from list " INTPTR_FORMAT,
   585         iter.removed(), iter.processed(), (address)refs_list.head());
   586     }
   587   )
   588 }
   590 // Traverse the list and remove any Refs that are not active, or
   591 // whose referents are either alive or NULL.
   592 void
   593 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   594                              BoolObjectClosure* is_alive,
   595                              OopClosure*        keep_alive) {
   596   assert(discovery_is_atomic(), "Error");
   597   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   598   while (iter.has_next()) {
   599     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   600     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   601     assert(next == NULL, "Should not discover inactive Reference");
   602     if (iter.is_referent_alive()) {
   603       if (TraceReferenceGC) {
   604         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   605                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   606       }
   607       // The referent is reachable after all.
   608       // Remove Reference object from list.
   609       iter.remove();
   610       // Update the referent pointer as necessary: Note that this
   611       // should not entail any recursive marking because the
   612       // referent must already have been traversed.
   613       iter.make_referent_alive();
   614       iter.move_to_next();
   615     } else {
   616       iter.next();
   617     }
   618   }
   619   NOT_PRODUCT(
   620     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   621       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   622         "Refs in discovered list " INTPTR_FORMAT,
   623         iter.removed(), iter.processed(), (address)refs_list.head());
   624     }
   625   )
   626 }
   628 void
   629 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   630                                                   BoolObjectClosure* is_alive,
   631                                                   OopClosure*        keep_alive,
   632                                                   VoidClosure*       complete_gc) {
   633   assert(!discovery_is_atomic(), "Error");
   634   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   635   while (iter.has_next()) {
   636     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   637     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   638     oop next = java_lang_ref_Reference::next(iter.obj());
   639     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   640          next != NULL)) {
   641       assert(next->is_oop_or_null(), "bad next field");
   642       // Remove Reference object from list
   643       iter.remove();
   644       // Trace the cohorts
   645       iter.make_referent_alive();
   646       if (UseCompressedOops) {
   647         keep_alive->do_oop((narrowOop*)next_addr);
   648       } else {
   649         keep_alive->do_oop((oop*)next_addr);
   650       }
   651       iter.move_to_next();
   652     } else {
   653       iter.next();
   654     }
   655   }
   656   // Now close the newly reachable set
   657   complete_gc->do_void();
   658   NOT_PRODUCT(
   659     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   660       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   661         "Refs in discovered list " INTPTR_FORMAT,
   662         iter.removed(), iter.processed(), (address)refs_list.head());
   663     }
   664   )
   665 }
   667 // Traverse the list and process the referents, by either
   668 // clearing them or keeping them (and their reachable
   669 // closure) alive.
   670 void
   671 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   672                                    bool               clear_referent,
   673                                    BoolObjectClosure* is_alive,
   674                                    OopClosure*        keep_alive,
   675                                    VoidClosure*       complete_gc) {
   676   ResourceMark rm;
   677   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   678   while (iter.has_next()) {
   679     iter.update_discovered();
   680     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   681     if (clear_referent) {
   682       // NULL out referent pointer
   683       iter.clear_referent();
   684     } else {
   685       // keep the referent around
   686       iter.make_referent_alive();
   687     }
   688     if (TraceReferenceGC) {
   689       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   690                              clear_referent ? "cleared " : "",
   691                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
   692     }
   693     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   694     iter.next();
   695   }
   696   // Remember to update the next pointer of the last ref.
   697   iter.update_discovered();
   698   // Close the reachable set
   699   complete_gc->do_void();
   700 }
   702 void
   703 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   704   oop obj = NULL;
   705   oop next = refs_list.head();
   706   while (next != obj) {
   707     obj = next;
   708     next = java_lang_ref_Reference::discovered(obj);
   709     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   710   }
   711   refs_list.set_head(NULL);
   712   refs_list.set_length(0);
   713 }
   715 void
   716 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   717   clear_discovered_references(refs_list);
   718 }
   720 void ReferenceProcessor::abandon_partial_discovery() {
   721   // loop over the lists
   722   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   723     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   724       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   725     }
   726     abandon_partial_discovered_list(_discovered_refs[i]);
   727   }
   728 }
   730 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   731 public:
   732   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   733                     DiscoveredList      refs_lists[],
   734                     ReferencePolicy*    policy,
   735                     bool                marks_oops_alive)
   736     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   737       _policy(policy)
   738   { }
   739   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   740                     OopClosure& keep_alive,
   741                     VoidClosure& complete_gc)
   742   {
   743     Thread* thr = Thread::current();
   744     int refs_list_index = ((WorkerThread*)thr)->id();
   745     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   746                                   &is_alive, &keep_alive, &complete_gc);
   747   }
   748 private:
   749   ReferencePolicy* _policy;
   750 };
   752 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   753 public:
   754   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   755                     DiscoveredList      refs_lists[],
   756                     bool                marks_oops_alive)
   757     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   758   { }
   759   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   760                     OopClosure& keep_alive,
   761                     VoidClosure& complete_gc)
   762   {
   763     _ref_processor.process_phase2(_refs_lists[i],
   764                                   &is_alive, &keep_alive, &complete_gc);
   765   }
   766 };
   768 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   769 public:
   770   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   771                     DiscoveredList      refs_lists[],
   772                     bool                clear_referent,
   773                     bool                marks_oops_alive)
   774     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   775       _clear_referent(clear_referent)
   776   { }
   777   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   778                     OopClosure& keep_alive,
   779                     VoidClosure& complete_gc)
   780   {
   781     // Don't use "refs_list_index" calculated in this way because
   782     // balance_queues() has moved the Ref's into the first n queues.
   783     // Thread* thr = Thread::current();
   784     // int refs_list_index = ((WorkerThread*)thr)->id();
   785     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   786     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   787                                   &is_alive, &keep_alive, &complete_gc);
   788   }
   789 private:
   790   bool _clear_referent;
   791 };
   793 // Balances reference queues.
   794 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   795 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   796 // corresponding to the active workers will be processed.
   797 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   798 {
   799   // calculate total length
   800   size_t total_refs = 0;
   801   if (TraceReferenceGC && PrintGCDetails) {
   802     gclog_or_tty->print_cr("\nBalance ref_lists ");
   803   }
   805   for (uint i = 0; i < _max_num_q; ++i) {
   806     total_refs += ref_lists[i].length();
   807     if (TraceReferenceGC && PrintGCDetails) {
   808       gclog_or_tty->print("%d ", ref_lists[i].length());
   809     }
   810   }
   811   if (TraceReferenceGC && PrintGCDetails) {
   812     gclog_or_tty->print_cr(" = %d", total_refs);
   813   }
   814   size_t avg_refs = total_refs / _num_q + 1;
   815   uint to_idx = 0;
   816   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   817     bool move_all = false;
   818     if (from_idx >= _num_q) {
   819       move_all = ref_lists[from_idx].length() > 0;
   820     }
   821     while ((ref_lists[from_idx].length() > avg_refs) ||
   822            move_all) {
   823       assert(to_idx < _num_q, "Sanity Check!");
   824       if (ref_lists[to_idx].length() < avg_refs) {
   825         // move superfluous refs
   826         size_t refs_to_move;
   827         // Move all the Ref's if the from queue will not be processed.
   828         if (move_all) {
   829           refs_to_move = MIN2(ref_lists[from_idx].length(),
   830                               avg_refs - ref_lists[to_idx].length());
   831         } else {
   832           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   833                               avg_refs - ref_lists[to_idx].length());
   834         }
   836         assert(refs_to_move > 0, "otherwise the code below will fail");
   838         oop move_head = ref_lists[from_idx].head();
   839         oop move_tail = move_head;
   840         oop new_head  = move_head;
   841         // find an element to split the list on
   842         for (size_t j = 0; j < refs_to_move; ++j) {
   843           move_tail = new_head;
   844           new_head = java_lang_ref_Reference::discovered(new_head);
   845         }
   847         // Add the chain to the to list.
   848         if (ref_lists[to_idx].head() == NULL) {
   849           // to list is empty. Make a loop at the end.
   850           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
   851         } else {
   852           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
   853         }
   854         ref_lists[to_idx].set_head(move_head);
   855         ref_lists[to_idx].inc_length(refs_to_move);
   857         // Remove the chain from the from list.
   858         if (move_tail == new_head) {
   859           // We found the end of the from list.
   860           ref_lists[from_idx].set_head(NULL);
   861         } else {
   862           ref_lists[from_idx].set_head(new_head);
   863         }
   864         ref_lists[from_idx].dec_length(refs_to_move);
   865         if (ref_lists[from_idx].length() == 0) {
   866           break;
   867         }
   868       } else {
   869         to_idx = (to_idx + 1) % _num_q;
   870       }
   871     }
   872   }
   873 #ifdef ASSERT
   874   size_t balanced_total_refs = 0;
   875   for (uint i = 0; i < _max_num_q; ++i) {
   876     balanced_total_refs += ref_lists[i].length();
   877     if (TraceReferenceGC && PrintGCDetails) {
   878       gclog_or_tty->print("%d ", ref_lists[i].length());
   879     }
   880   }
   881   if (TraceReferenceGC && PrintGCDetails) {
   882     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   883     gclog_or_tty->flush();
   884   }
   885   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   886 #endif
   887 }
   889 void ReferenceProcessor::balance_all_queues() {
   890   balance_queues(_discoveredSoftRefs);
   891   balance_queues(_discoveredWeakRefs);
   892   balance_queues(_discoveredFinalRefs);
   893   balance_queues(_discoveredPhantomRefs);
   894   balance_queues(_discoveredCleanerRefs);
   895 }
   897 size_t
   898 ReferenceProcessor::process_discovered_reflist(
   899   DiscoveredList               refs_lists[],
   900   ReferencePolicy*             policy,
   901   bool                         clear_referent,
   902   BoolObjectClosure*           is_alive,
   903   OopClosure*                  keep_alive,
   904   VoidClosure*                 complete_gc,
   905   AbstractRefProcTaskExecutor* task_executor)
   906 {
   907   bool mt_processing = task_executor != NULL && _processing_is_mt;
   908   // If discovery used MT and a dynamic number of GC threads, then
   909   // the queues must be balanced for correctness if fewer than the
   910   // maximum number of queues were used.  The number of queue used
   911   // during discovery may be different than the number to be used
   912   // for processing so don't depend of _num_q < _max_num_q as part
   913   // of the test.
   914   bool must_balance = _discovery_is_mt;
   916   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   917       must_balance) {
   918     balance_queues(refs_lists);
   919   }
   921   size_t total_list_count = total_count(refs_lists);
   923   if (PrintReferenceGC && PrintGCDetails) {
   924     gclog_or_tty->print(", %u refs", total_list_count);
   925   }
   927   // Phase 1 (soft refs only):
   928   // . Traverse the list and remove any SoftReferences whose
   929   //   referents are not alive, but that should be kept alive for
   930   //   policy reasons. Keep alive the transitive closure of all
   931   //   such referents.
   932   if (policy != NULL) {
   933     if (mt_processing) {
   934       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   935       task_executor->execute(phase1);
   936     } else {
   937       for (uint i = 0; i < _max_num_q; i++) {
   938         process_phase1(refs_lists[i], policy,
   939                        is_alive, keep_alive, complete_gc);
   940       }
   941     }
   942   } else { // policy == NULL
   943     assert(refs_lists != _discoveredSoftRefs,
   944            "Policy must be specified for soft references.");
   945   }
   947   // Phase 2:
   948   // . Traverse the list and remove any refs whose referents are alive.
   949   if (mt_processing) {
   950     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   951     task_executor->execute(phase2);
   952   } else {
   953     for (uint i = 0; i < _max_num_q; i++) {
   954       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   955     }
   956   }
   958   // Phase 3:
   959   // . Traverse the list and process referents as appropriate.
   960   if (mt_processing) {
   961     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   962     task_executor->execute(phase3);
   963   } else {
   964     for (uint i = 0; i < _max_num_q; i++) {
   965       process_phase3(refs_lists[i], clear_referent,
   966                      is_alive, keep_alive, complete_gc);
   967     }
   968   }
   970   return total_list_count;
   971 }
   973 void ReferenceProcessor::clean_up_discovered_references() {
   974   // loop over the lists
   975   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   976     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   977       gclog_or_tty->print_cr(
   978         "\nScrubbing %s discovered list of Null referents",
   979         list_name(i));
   980     }
   981     clean_up_discovered_reflist(_discovered_refs[i]);
   982   }
   983 }
   985 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   986   assert(!discovery_is_atomic(), "Else why call this method?");
   987   DiscoveredListIterator iter(refs_list, NULL, NULL);
   988   while (iter.has_next()) {
   989     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   990     oop next = java_lang_ref_Reference::next(iter.obj());
   991     assert(next->is_oop_or_null(), "bad next field");
   992     // If referent has been cleared or Reference is not active,
   993     // drop it.
   994     if (iter.referent() == NULL || next != NULL) {
   995       debug_only(
   996         if (PrintGCDetails && TraceReferenceGC) {
   997           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   998             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   999             " and referent: " INTPTR_FORMAT,
  1000             (void *)iter.obj(), (void *)next, (void *)iter.referent());
  1003       // Remove Reference object from list
  1004       iter.remove();
  1005       iter.move_to_next();
  1006     } else {
  1007       iter.next();
  1010   NOT_PRODUCT(
  1011     if (PrintGCDetails && TraceReferenceGC) {
  1012       gclog_or_tty->print(
  1013         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1014         iter.removed(), iter.processed());
  1019 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1020   uint id = 0;
  1021   // Determine the queue index to use for this object.
  1022   if (_discovery_is_mt) {
  1023     // During a multi-threaded discovery phase,
  1024     // each thread saves to its "own" list.
  1025     Thread* thr = Thread::current();
  1026     id = thr->as_Worker_thread()->id();
  1027   } else {
  1028     // single-threaded discovery, we save in round-robin
  1029     // fashion to each of the lists.
  1030     if (_processing_is_mt) {
  1031       id = next_id();
  1034   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1036   // Get the discovered queue to which we will add
  1037   DiscoveredList* list = NULL;
  1038   switch (rt) {
  1039     case REF_OTHER:
  1040       // Unknown reference type, no special treatment
  1041       break;
  1042     case REF_SOFT:
  1043       list = &_discoveredSoftRefs[id];
  1044       break;
  1045     case REF_WEAK:
  1046       list = &_discoveredWeakRefs[id];
  1047       break;
  1048     case REF_FINAL:
  1049       list = &_discoveredFinalRefs[id];
  1050       break;
  1051     case REF_PHANTOM:
  1052       list = &_discoveredPhantomRefs[id];
  1053       break;
  1054     case REF_CLEANER:
  1055       list = &_discoveredCleanerRefs[id];
  1056       break;
  1057     case REF_NONE:
  1058       // we should not reach here if we are an InstanceRefKlass
  1059     default:
  1060       ShouldNotReachHere();
  1062   if (TraceReferenceGC && PrintGCDetails) {
  1063     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1065   return list;
  1068 inline void
  1069 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1070                                               oop             obj,
  1071                                               HeapWord*       discovered_addr) {
  1072   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1073   // First we must make sure this object is only enqueued once. CAS in a non null
  1074   // discovered_addr.
  1075   oop current_head = refs_list.head();
  1076   // The last ref must have its discovered field pointing to itself.
  1077   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1079   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1080                                                     NULL);
  1081   if (retest == NULL) {
  1082     // This thread just won the right to enqueue the object.
  1083     // We have separate lists for enqueueing, so no synchronization
  1084     // is necessary.
  1085     refs_list.set_head(obj);
  1086     refs_list.inc_length(1);
  1088     if (TraceReferenceGC) {
  1089       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1090                              (void *)obj, obj->klass()->internal_name());
  1092   } else {
  1093     // If retest was non NULL, another thread beat us to it:
  1094     // The reference has already been discovered...
  1095     if (TraceReferenceGC) {
  1096       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1097                              (void *)obj, obj->klass()->internal_name());
  1102 #ifndef PRODUCT
  1103 // Non-atomic (i.e. concurrent) discovery might allow us
  1104 // to observe j.l.References with NULL referents, being those
  1105 // cleared concurrently by mutators during (or after) discovery.
  1106 void ReferenceProcessor::verify_referent(oop obj) {
  1107   bool da = discovery_is_atomic();
  1108   oop referent = java_lang_ref_Reference::referent(obj);
  1109   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1110          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1111                  INTPTR_FORMAT " during %satomic discovery ",
  1112                  (void *)referent, (void *)obj, da ? "" : "non-"));
  1114 #endif
  1116 // We mention two of several possible choices here:
  1117 // #0: if the reference object is not in the "originating generation"
  1118 //     (or part of the heap being collected, indicated by our "span"
  1119 //     we don't treat it specially (i.e. we scan it as we would
  1120 //     a normal oop, treating its references as strong references).
  1121 //     This means that references can't be discovered unless their
  1122 //     referent is also in the same span. This is the simplest,
  1123 //     most "local" and most conservative approach, albeit one
  1124 //     that may cause weak references to be enqueued least promptly.
  1125 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1126 // #1: the reference object may be in any generation (span), but if
  1127 //     the referent is in the generation (span) being currently collected
  1128 //     then we can discover the reference object, provided
  1129 //     the object has not already been discovered by
  1130 //     a different concurrently running collector (as may be the
  1131 //     case, for instance, if the reference object is in CMS and
  1132 //     the referent in DefNewGeneration), and provided the processing
  1133 //     of this reference object by the current collector will
  1134 //     appear atomic to every other collector in the system.
  1135 //     (Thus, for instance, a concurrent collector may not
  1136 //     discover references in other generations even if the
  1137 //     referent is in its own generation). This policy may,
  1138 //     in certain cases, enqueue references somewhat sooner than
  1139 //     might Policy #0 above, but at marginally increased cost
  1140 //     and complexity in processing these references.
  1141 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1142 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1143   // Make sure we are discovering refs (rather than processing discovered refs).
  1144   if (!_discovering_refs || !RegisterReferences) {
  1145     return false;
  1147   // We only discover active references.
  1148   oop next = java_lang_ref_Reference::next(obj);
  1149   if (next != NULL) {   // Ref is no longer active
  1150     return false;
  1153   HeapWord* obj_addr = (HeapWord*)obj;
  1154   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1155       !_span.contains(obj_addr)) {
  1156     // Reference is not in the originating generation;
  1157     // don't treat it specially (i.e. we want to scan it as a normal
  1158     // object with strong references).
  1159     return false;
  1162   // We only discover references whose referents are not (yet)
  1163   // known to be strongly reachable.
  1164   if (is_alive_non_header() != NULL) {
  1165     verify_referent(obj);
  1166     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1167       return false;  // referent is reachable
  1170   if (rt == REF_SOFT) {
  1171     // For soft refs we can decide now if these are not
  1172     // current candidates for clearing, in which case we
  1173     // can mark through them now, rather than delaying that
  1174     // to the reference-processing phase. Since all current
  1175     // time-stamp policies advance the soft-ref clock only
  1176     // at a major collection cycle, this is always currently
  1177     // accurate.
  1178     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1179       return false;
  1183   ResourceMark rm;      // Needed for tracing.
  1185   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1186   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1187   assert(discovered->is_oop_or_null(), "bad discovered field");
  1188   if (discovered != NULL) {
  1189     // The reference has already been discovered...
  1190     if (TraceReferenceGC) {
  1191       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1192                              (void *)obj, obj->klass()->internal_name());
  1194     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1195       // assumes that an object is not processed twice;
  1196       // if it's been already discovered it must be on another
  1197       // generation's discovered list; so we won't discover it.
  1198       return false;
  1199     } else {
  1200       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1201              "Unrecognized policy");
  1202       // Check assumption that an object is not potentially
  1203       // discovered twice except by concurrent collectors that potentially
  1204       // trace the same Reference object twice.
  1205       assert(UseConcMarkSweepGC || UseG1GC,
  1206              "Only possible with a concurrent marking collector");
  1207       return true;
  1211   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1212     verify_referent(obj);
  1213     // Discover if and only if EITHER:
  1214     // .. reference is in our span, OR
  1215     // .. we are an atomic collector and referent is in our span
  1216     if (_span.contains(obj_addr) ||
  1217         (discovery_is_atomic() &&
  1218          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1219       // should_enqueue = true;
  1220     } else {
  1221       return false;
  1223   } else {
  1224     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1225            _span.contains(obj_addr), "code inconsistency");
  1228   // Get the right type of discovered queue head.
  1229   DiscoveredList* list = get_discovered_list(rt);
  1230   if (list == NULL) {
  1231     return false;   // nothing special needs to be done
  1234   if (_discovery_is_mt) {
  1235     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1236   } else {
  1237     // We do a raw store here: the field will be visited later when processing
  1238     // the discovered references.
  1239     oop current_head = list->head();
  1240     // The last ref must have its discovered field pointing to itself.
  1241     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1243     assert(discovered == NULL, "control point invariant");
  1244     oop_store_raw(discovered_addr, next_discovered);
  1245     list->set_head(obj);
  1246     list->inc_length(1);
  1248     if (TraceReferenceGC) {
  1249       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1250                                 (void *)obj, obj->klass()->internal_name());
  1253   assert(obj->is_oop(), "Discovered a bad reference");
  1254   verify_referent(obj);
  1255   return true;
  1258 // Preclean the discovered references by removing those
  1259 // whose referents are alive, and by marking from those that
  1260 // are not active. These lists can be handled here
  1261 // in any order and, indeed, concurrently.
  1262 void ReferenceProcessor::preclean_discovered_references(
  1263   BoolObjectClosure* is_alive,
  1264   OopClosure* keep_alive,
  1265   VoidClosure* complete_gc,
  1266   YieldClosure* yield,
  1267   GCTimer* gc_timer,
  1268   GCId     gc_id) {
  1270   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1272   // Soft references
  1274     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1275               false, gc_timer, gc_id);
  1276     for (uint i = 0; i < _max_num_q; i++) {
  1277       if (yield->should_return()) {
  1278         return;
  1280       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1281                                   keep_alive, complete_gc, yield);
  1285   // Weak references
  1287     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1288               false, gc_timer, gc_id);
  1289     for (uint i = 0; i < _max_num_q; i++) {
  1290       if (yield->should_return()) {
  1291         return;
  1293       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1294                                   keep_alive, complete_gc, yield);
  1298   // Final references
  1300     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1301               false, gc_timer, gc_id);
  1302     for (uint i = 0; i < _max_num_q; i++) {
  1303       if (yield->should_return()) {
  1304         return;
  1306       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1307                                   keep_alive, complete_gc, yield);
  1311   // Phantom references
  1313     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1314               false, gc_timer, gc_id);
  1315     for (uint i = 0; i < _max_num_q; i++) {
  1316       if (yield->should_return()) {
  1317         return;
  1319       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1320                                   keep_alive, complete_gc, yield);
  1323     // Cleaner references.  Included in timing for phantom references.  We
  1324     // expect Cleaner references to be temporary, and don't want to deal with
  1325     // possible incompatibilities arising from making it more visible.
  1326     for (uint i = 0; i < _max_num_q; i++) {
  1327       if (yield->should_return()) {
  1328         return;
  1330       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
  1331                                   keep_alive, complete_gc, yield);
  1336 // Walk the given discovered ref list, and remove all reference objects
  1337 // whose referents are still alive, whose referents are NULL or which
  1338 // are not active (have a non-NULL next field). NOTE: When we are
  1339 // thus precleaning the ref lists (which happens single-threaded today),
  1340 // we do not disable refs discovery to honour the correct semantics of
  1341 // java.lang.Reference. As a result, we need to be careful below
  1342 // that ref removal steps interleave safely with ref discovery steps
  1343 // (in this thread).
  1344 void
  1345 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1346                                                 BoolObjectClosure* is_alive,
  1347                                                 OopClosure*        keep_alive,
  1348                                                 VoidClosure*       complete_gc,
  1349                                                 YieldClosure*      yield) {
  1350   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1351   while (iter.has_next()) {
  1352     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1353     oop obj = iter.obj();
  1354     oop next = java_lang_ref_Reference::next(obj);
  1355     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1356         next != NULL) {
  1357       // The referent has been cleared, or is alive, or the Reference is not
  1358       // active; we need to trace and mark its cohort.
  1359       if (TraceReferenceGC) {
  1360         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1361                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
  1363       // Remove Reference object from list
  1364       iter.remove();
  1365       // Keep alive its cohort.
  1366       iter.make_referent_alive();
  1367       if (UseCompressedOops) {
  1368         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1369         keep_alive->do_oop(next_addr);
  1370       } else {
  1371         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1372         keep_alive->do_oop(next_addr);
  1374       iter.move_to_next();
  1375     } else {
  1376       iter.next();
  1379   // Close the reachable set
  1380   complete_gc->do_void();
  1382   NOT_PRODUCT(
  1383     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1384       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1385         "Refs in discovered list " INTPTR_FORMAT,
  1386         iter.removed(), iter.processed(), (address)refs_list.head());
  1391 const char* ReferenceProcessor::list_name(uint i) {
  1392    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1393           "Out of bounds index");
  1395    int j = i / _max_num_q;
  1396    switch (j) {
  1397      case 0: return "SoftRef";
  1398      case 1: return "WeakRef";
  1399      case 2: return "FinalRef";
  1400      case 3: return "PhantomRef";
  1401      case 4: return "CleanerRef";
  1403    ShouldNotReachHere();
  1404    return NULL;
  1407 #ifndef PRODUCT
  1408 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1409   // empty for now
  1411 #endif
  1413 #ifndef PRODUCT
  1414 void ReferenceProcessor::clear_discovered_references() {
  1415   guarantee(!_discovering_refs, "Discovering refs?");
  1416   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1417     clear_discovered_references(_discovered_refs[i]);
  1421 #endif // PRODUCT

mercurial