src/share/vm/memory/generation.hpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 6978
30c99d8e0f02
child 7994
04ff2f6cd0eb
child 9793
7386b3a385ac
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
    26 #define SHARE_VM_MEMORY_GENERATION_HPP
    28 #include "gc_implementation/shared/collectorCounters.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "memory/memRegion.hpp"
    31 #include "memory/referenceProcessor.hpp"
    32 #include "memory/universe.hpp"
    33 #include "memory/watermark.hpp"
    34 #include "runtime/mutex.hpp"
    35 #include "runtime/perfData.hpp"
    36 #include "runtime/virtualspace.hpp"
    38 // A Generation models a heap area for similarly-aged objects.
    39 // It will contain one ore more spaces holding the actual objects.
    40 //
    41 // The Generation class hierarchy:
    42 //
    43 // Generation                      - abstract base class
    44 // - DefNewGeneration              - allocation area (copy collected)
    45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
    46 //                                   several threads
    47 // - CardGeneration                 - abstract class adding offset array behavior
    48 //   - OneContigSpaceCardGeneration - abstract class holding a single
    49 //                                    contiguous space with card marking
    50 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
    51 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
    52 //                                       (Detlefs-Printezis refinement of
    53 //                                       Boehm-Demers-Schenker)
    54 //
    55 // The system configurations currently allowed are:
    56 //
    57 //   DefNewGeneration + TenuredGeneration
    58 //   DefNewGeneration + ConcurrentMarkSweepGeneration
    59 //
    60 //   ParNewGeneration + TenuredGeneration
    61 //   ParNewGeneration + ConcurrentMarkSweepGeneration
    62 //
    64 class DefNewGeneration;
    65 class GenerationSpec;
    66 class CompactibleSpace;
    67 class ContiguousSpace;
    68 class CompactPoint;
    69 class OopsInGenClosure;
    70 class OopClosure;
    71 class ScanClosure;
    72 class FastScanClosure;
    73 class GenCollectedHeap;
    74 class GenRemSet;
    75 class GCStats;
    77 // A "ScratchBlock" represents a block of memory in one generation usable by
    78 // another.  It represents "num_words" free words, starting at and including
    79 // the address of "this".
    80 struct ScratchBlock {
    81   ScratchBlock* next;
    82   size_t num_words;
    83   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
    84                               // first two fields are word-sized.)
    85 };
    88 class Generation: public CHeapObj<mtGC> {
    89   friend class VMStructs;
    90  private:
    91   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
    92   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
    93                                // used region at some specific point during collection.
    95  protected:
    96   // Minimum and maximum addresses for memory reserved (not necessarily
    97   // committed) for generation.
    98   // Used by card marking code. Must not overlap with address ranges of
    99   // other generations.
   100   MemRegion _reserved;
   102   // Memory area reserved for generation
   103   VirtualSpace _virtual_space;
   105   // Level in the generation hierarchy.
   106   int _level;
   108   // ("Weak") Reference processing support
   109   ReferenceProcessor* _ref_processor;
   111   // Performance Counters
   112   CollectorCounters* _gc_counters;
   114   // Statistics for garbage collection
   115   GCStats* _gc_stats;
   117   // Returns the next generation in the configuration, or else NULL if this
   118   // is the highest generation.
   119   Generation* next_gen() const;
   121   // Initialize the generation.
   122   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
   124   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
   125   // "sp" that point into younger generations.
   126   // The iteration is only over objects allocated at the start of the
   127   // iterations; objects allocated as a result of applying the closure are
   128   // not included.
   129   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
   131  public:
   132   // The set of possible generation kinds.
   133   enum Name {
   134     ASParNew,
   135     ASConcurrentMarkSweep,
   136     DefNew,
   137     ParNew,
   138     MarkSweepCompact,
   139     ConcurrentMarkSweep,
   140     Other
   141   };
   143   enum SomePublicConstants {
   144     // Generations are GenGrain-aligned and have size that are multiples of
   145     // GenGrain.
   146     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
   147     // (we expect its low byte to be zero - see implementation of post_barrier)
   148     LogOfGenGrain = 16 ARM32_ONLY(+1),
   149     GenGrain = 1 << LogOfGenGrain
   150   };
   152   // allocate and initialize ("weak") refs processing support
   153   virtual void ref_processor_init();
   154   void set_ref_processor(ReferenceProcessor* rp) {
   155     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
   156     _ref_processor = rp;
   157   }
   159   virtual Generation::Name kind() { return Generation::Other; }
   160   GenerationSpec* spec();
   162   // This properly belongs in the collector, but for now this
   163   // will do.
   164   virtual bool refs_discovery_is_atomic() const { return true;  }
   165   virtual bool refs_discovery_is_mt()     const { return false; }
   167   // Space enquiries (results in bytes)
   168   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
   169                                         // generation can currently hold.
   170   virtual size_t used() const = 0;      // The number of used bytes in the gen.
   171   virtual size_t free() const = 0;      // The number of free bytes in the gen.
   173   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
   174   // Returns the total number of bytes  available in a generation
   175   // for the allocation of objects.
   176   virtual size_t max_capacity() const;
   178   // If this is a young generation, the maximum number of bytes that can be
   179   // allocated in this generation before a GC is triggered.
   180   virtual size_t capacity_before_gc() const { return 0; }
   182   // The largest number of contiguous free bytes in the generation,
   183   // including expansion  (Assumes called at a safepoint.)
   184   virtual size_t contiguous_available() const = 0;
   185   // The largest number of contiguous free bytes in this or any higher generation.
   186   virtual size_t max_contiguous_available() const;
   188   // Returns true if promotions of the specified amount are
   189   // likely to succeed without a promotion failure.
   190   // Promotion of the full amount is not guaranteed but
   191   // might be attempted in the worst case.
   192   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
   194   // For a non-young generation, this interface can be used to inform a
   195   // generation that a promotion attempt into that generation failed.
   196   // Typically used to enable diagnostic output for post-mortem analysis,
   197   // but other uses of the interface are not ruled out.
   198   virtual void promotion_failure_occurred() { /* does nothing */ }
   200   // Return an estimate of the maximum allocation that could be performed
   201   // in the generation without triggering any collection or expansion
   202   // activity.  It is "unsafe" because no locks are taken; the result
   203   // should be treated as an approximation, not a guarantee, for use in
   204   // heuristic resizing decisions.
   205   virtual size_t unsafe_max_alloc_nogc() const = 0;
   207   // Returns true if this generation cannot be expanded further
   208   // without a GC. Override as appropriate.
   209   virtual bool is_maximal_no_gc() const {
   210     return _virtual_space.uncommitted_size() == 0;
   211   }
   213   MemRegion reserved() const { return _reserved; }
   215   // Returns a region guaranteed to contain all the objects in the
   216   // generation.
   217   virtual MemRegion used_region() const { return _reserved; }
   219   MemRegion prev_used_region() const { return _prev_used_region; }
   220   virtual void  save_used_region()   { _prev_used_region = used_region(); }
   222   // Returns "TRUE" iff "p" points into the committed areas in the generation.
   223   // For some kinds of generations, this may be an expensive operation.
   224   // To avoid performance problems stemming from its inadvertent use in
   225   // product jvm's, we restrict its use to assertion checking or
   226   // verification only.
   227   virtual bool is_in(const void* p) const;
   229   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
   230   bool is_in_reserved(const void* p) const {
   231     return _reserved.contains(p);
   232   }
   234   // Check that the generation kind is DefNewGeneration or a sub
   235   // class of DefNewGeneration and return a DefNewGeneration*
   236   DefNewGeneration*  as_DefNewGeneration();
   238   // If some space in the generation contains the given "addr", return a
   239   // pointer to that space, else return "NULL".
   240   virtual Space* space_containing(const void* addr) const;
   242   // Iteration - do not use for time critical operations
   243   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
   245   // Returns the first space, if any, in the generation that can participate
   246   // in compaction, or else "NULL".
   247   virtual CompactibleSpace* first_compaction_space() const = 0;
   249   // Returns "true" iff this generation should be used to allocate an
   250   // object of the given size.  Young generations might
   251   // wish to exclude very large objects, for example, since, if allocated
   252   // often, they would greatly increase the frequency of young-gen
   253   // collection.
   254   virtual bool should_allocate(size_t word_size, bool is_tlab) {
   255     bool result = false;
   256     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
   257     if (!is_tlab || supports_tlab_allocation()) {
   258       result = (word_size > 0) && (word_size < overflow_limit);
   259     }
   260     return result;
   261   }
   263   // Allocate and returns a block of the requested size, or returns "NULL".
   264   // Assumes the caller has done any necessary locking.
   265   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
   267   // Like "allocate", but performs any necessary locking internally.
   268   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
   270   // A 'younger' gen has reached an allocation limit, and uses this to notify
   271   // the next older gen.  The return value is a new limit, or NULL if none.  The
   272   // caller must do the necessary locking.
   273   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   274                                              size_t word_size) {
   275     return NULL;
   276   }
   278   // Some generation may offer a region for shared, contiguous allocation,
   279   // via inlined code (by exporting the address of the top and end fields
   280   // defining the extent of the contiguous allocation region.)
   282   // This function returns "true" iff the heap supports this kind of
   283   // allocation.  (More precisely, this means the style of allocation that
   284   // increments *top_addr()" with a CAS.) (Default is "no".)
   285   // A generation that supports this allocation style must use lock-free
   286   // allocation for *all* allocation, since there are times when lock free
   287   // allocation will be concurrent with plain "allocate" calls.
   288   virtual bool supports_inline_contig_alloc() const { return false; }
   290   // These functions return the addresses of the fields that define the
   291   // boundaries of the contiguous allocation area.  (These fields should be
   292   // physicall near to one another.)
   293   virtual HeapWord** top_addr() const { return NULL; }
   294   virtual HeapWord** end_addr() const { return NULL; }
   296   // Thread-local allocation buffers
   297   virtual bool supports_tlab_allocation() const { return false; }
   298   virtual size_t tlab_capacity() const {
   299     guarantee(false, "Generation doesn't support thread local allocation buffers");
   300     return 0;
   301   }
   302   virtual size_t tlab_used() const {
   303     guarantee(false, "Generation doesn't support thread local allocation buffers");
   304     return 0;
   305   }
   306   virtual size_t unsafe_max_tlab_alloc() const {
   307     guarantee(false, "Generation doesn't support thread local allocation buffers");
   308     return 0;
   309   }
   311   // "obj" is the address of an object in a younger generation.  Allocate space
   312   // for "obj" in the current (or some higher) generation, and copy "obj" into
   313   // the newly allocated space, if possible, returning the result (or NULL if
   314   // the allocation failed).
   315   //
   316   // The "obj_size" argument is just obj->size(), passed along so the caller can
   317   // avoid repeating the virtual call to retrieve it.
   318   virtual oop promote(oop obj, size_t obj_size);
   320   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
   321   // object "obj", whose original mark word was "m", and whose size is
   322   // "word_sz".  If possible, allocate space for "obj", copy obj into it
   323   // (taking care to copy "m" into the mark word when done, since the mark
   324   // word of "obj" may have been overwritten with a forwarding pointer, and
   325   // also taking care to copy the klass pointer *last*.  Returns the new
   326   // object if successful, or else NULL.
   327   virtual oop par_promote(int thread_num,
   328                           oop obj, markOop m, size_t word_sz);
   330   // Undo, if possible, the most recent par_promote_alloc allocation by
   331   // "thread_num" ("obj", of "word_sz").
   332   virtual void par_promote_alloc_undo(int thread_num,
   333                                       HeapWord* obj, size_t word_sz);
   335   // Informs the current generation that all par_promote_alloc's in the
   336   // collection have been completed; any supporting data structures can be
   337   // reset.  Default is to do nothing.
   338   virtual void par_promote_alloc_done(int thread_num) {}
   340   // Informs the current generation that all oop_since_save_marks_iterates
   341   // performed by "thread_num" in the current collection, if any, have been
   342   // completed; any supporting data structures can be reset.  Default is to
   343   // do nothing.
   344   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
   346   // This generation will collect all younger generations
   347   // during a full collection.
   348   virtual bool full_collects_younger_generations() const { return false; }
   350   // This generation does in-place marking, meaning that mark words
   351   // are mutated during the marking phase and presumably reinitialized
   352   // to a canonical value after the GC. This is currently used by the
   353   // biased locking implementation to determine whether additional
   354   // work is required during the GC prologue and epilogue.
   355   virtual bool performs_in_place_marking() const { return true; }
   357   // Returns "true" iff collect() should subsequently be called on this
   358   // this generation. See comment below.
   359   // This is a generic implementation which can be overridden.
   360   //
   361   // Note: in the current (1.4) implementation, when genCollectedHeap's
   362   // incremental_collection_will_fail flag is set, all allocations are
   363   // slow path (the only fast-path place to allocate is DefNew, which
   364   // will be full if the flag is set).
   365   // Thus, older generations which collect younger generations should
   366   // test this flag and collect if it is set.
   367   virtual bool should_collect(bool   full,
   368                               size_t word_size,
   369                               bool   is_tlab) {
   370     return (full || should_allocate(word_size, is_tlab));
   371   }
   373   // Returns true if the collection is likely to be safely
   374   // completed. Even if this method returns true, a collection
   375   // may not be guaranteed to succeed, and the system should be
   376   // able to safely unwind and recover from that failure, albeit
   377   // at some additional cost.
   378   virtual bool collection_attempt_is_safe() {
   379     guarantee(false, "Are you sure you want to call this method?");
   380     return true;
   381   }
   383   // Perform a garbage collection.
   384   // If full is true attempt a full garbage collection of this generation.
   385   // Otherwise, attempting to (at least) free enough space to support an
   386   // allocation of the given "word_size".
   387   virtual void collect(bool   full,
   388                        bool   clear_all_soft_refs,
   389                        size_t word_size,
   390                        bool   is_tlab) = 0;
   392   // Perform a heap collection, attempting to create (at least) enough
   393   // space to support an allocation of the given "word_size".  If
   394   // successful, perform the allocation and return the resulting
   395   // "oop" (initializing the allocated block). If the allocation is
   396   // still unsuccessful, return "NULL".
   397   virtual HeapWord* expand_and_allocate(size_t word_size,
   398                                         bool is_tlab,
   399                                         bool parallel = false) = 0;
   401   // Some generations may require some cleanup or preparation actions before
   402   // allowing a collection.  The default is to do nothing.
   403   virtual void gc_prologue(bool full) {};
   405   // Some generations may require some cleanup actions after a collection.
   406   // The default is to do nothing.
   407   virtual void gc_epilogue(bool full) {};
   409   // Save the high water marks for the used space in a generation.
   410   virtual void record_spaces_top() {};
   412   // Some generations may need to be "fixed-up" after some allocation
   413   // activity to make them parsable again. The default is to do nothing.
   414   virtual void ensure_parsability() {};
   416   // Time (in ms) when we were last collected or now if a collection is
   417   // in progress.
   418   virtual jlong time_of_last_gc(jlong now) {
   419     // Both _time_of_last_gc and now are set using a time source
   420     // that guarantees monotonically non-decreasing values provided
   421     // the underlying platform provides such a source. So we still
   422     // have to guard against non-monotonicity.
   423     NOT_PRODUCT(
   424       if (now < _time_of_last_gc) {
   425         warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, (int64_t)_time_of_last_gc, (int64_t)now);
   426       }
   427     )
   428     return _time_of_last_gc;
   429   }
   431   virtual void update_time_of_last_gc(jlong now)  {
   432     _time_of_last_gc = now;
   433   }
   435   // Generations may keep statistics about collection.  This
   436   // method updates those statistics.  current_level is
   437   // the level of the collection that has most recently
   438   // occurred.  This allows the generation to decide what
   439   // statistics are valid to collect.  For example, the
   440   // generation can decide to gather the amount of promoted data
   441   // if the collection of the younger generations has completed.
   442   GCStats* gc_stats() const { return _gc_stats; }
   443   virtual void update_gc_stats(int current_level, bool full) {}
   445   // Mark sweep support phase2
   446   virtual void prepare_for_compaction(CompactPoint* cp);
   447   // Mark sweep support phase3
   448   virtual void adjust_pointers();
   449   // Mark sweep support phase4
   450   virtual void compact();
   451   virtual void post_compact() {ShouldNotReachHere();}
   453   // Support for CMS's rescan. In this general form we return a pointer
   454   // to an abstract object that can be used, based on specific previously
   455   // decided protocols, to exchange information between generations,
   456   // information that may be useful for speeding up certain types of
   457   // garbage collectors. A NULL value indicates to the client that
   458   // no data recording is expected by the provider. The data-recorder is
   459   // expected to be GC worker thread-local, with the worker index
   460   // indicated by "thr_num".
   461   virtual void* get_data_recorder(int thr_num) { return NULL; }
   462   virtual void sample_eden_chunk() {}
   464   // Some generations may require some cleanup actions before allowing
   465   // a verification.
   466   virtual void prepare_for_verify() {};
   468   // Accessing "marks".
   470   // This function gives a generation a chance to note a point between
   471   // collections.  For example, a contiguous generation might note the
   472   // beginning allocation point post-collection, which might allow some later
   473   // operations to be optimized.
   474   virtual void save_marks() {}
   476   // This function allows generations to initialize any "saved marks".  That
   477   // is, should only be called when the generation is empty.
   478   virtual void reset_saved_marks() {}
   480   // This function is "true" iff any no allocations have occurred in the
   481   // generation since the last call to "save_marks".
   482   virtual bool no_allocs_since_save_marks() = 0;
   484   // Apply "cl->apply" to (the addresses of) all reference fields in objects
   485   // allocated in the current generation since the last call to "save_marks".
   486   // If more objects are allocated in this generation as a result of applying
   487   // the closure, iterates over reference fields in those objects as well.
   488   // Calls "save_marks" at the end of the iteration.
   489   // General signature...
   490   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
   491   // ...and specializations for de-virtualization.  (The general
   492   // implemention of the _nv versions call the virtual version.
   493   // Note that the _nv suffix is not really semantically necessary,
   494   // but it avoids some not-so-useful warnings on Solaris.)
   495 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
   496   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
   497     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
   498   }
   499   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
   501 #undef Generation_SINCE_SAVE_MARKS_DECL
   503   // The "requestor" generation is performing some garbage collection
   504   // action for which it would be useful to have scratch space.  If
   505   // the target is not the requestor, no gc actions will be required
   506   // of the target.  The requestor promises to allocate no more than
   507   // "max_alloc_words" in the target generation (via promotion say,
   508   // if the requestor is a young generation and the target is older).
   509   // If the target generation can provide any scratch space, it adds
   510   // it to "list", leaving "list" pointing to the head of the
   511   // augmented list.  The default is to offer no space.
   512   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
   513                                   size_t max_alloc_words) {}
   515   // Give each generation an opportunity to do clean up for any
   516   // contributed scratch.
   517   virtual void reset_scratch() {};
   519   // When an older generation has been collected, and perhaps resized,
   520   // this method will be invoked on all younger generations (from older to
   521   // younger), allowing them to resize themselves as appropriate.
   522   virtual void compute_new_size() = 0;
   524   // Printing
   525   virtual const char* name() const = 0;
   526   virtual const char* short_name() const = 0;
   528   int level() const { return _level; }
   530   // Attributes
   532   // True iff the given generation may only be the youngest generation.
   533   virtual bool must_be_youngest() const = 0;
   534   // True iff the given generation may only be the oldest generation.
   535   virtual bool must_be_oldest() const = 0;
   537   // Reference Processing accessor
   538   ReferenceProcessor* const ref_processor() { return _ref_processor; }
   540   // Iteration.
   542   // Iterate over all the ref-containing fields of all objects in the
   543   // generation, calling "cl.do_oop" on each.
   544   virtual void oop_iterate(ExtendedOopClosure* cl);
   546   // Iterate over all objects in the generation, calling "cl.do_object" on
   547   // each.
   548   virtual void object_iterate(ObjectClosure* cl);
   550   // Iterate over all safe objects in the generation, calling "cl.do_object" on
   551   // each.  An object is safe if its references point to other objects in
   552   // the heap.  This defaults to object_iterate() unless overridden.
   553   virtual void safe_object_iterate(ObjectClosure* cl);
   555   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
   556   // in the current generation that contain pointers to objects in younger
   557   // generations. Objects allocated since the last "save_marks" call are
   558   // excluded.
   559   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
   561   // Inform a generation that it longer contains references to objects
   562   // in any younger generation.    [e.g. Because younger gens are empty,
   563   // clear the card table.]
   564   virtual void clear_remembered_set() { }
   566   // Inform a generation that some of its objects have moved.  [e.g. The
   567   // generation's spaces were compacted, invalidating the card table.]
   568   virtual void invalidate_remembered_set() { }
   570   // Block abstraction.
   572   // Returns the address of the start of the "block" that contains the
   573   // address "addr".  We say "blocks" instead of "object" since some heaps
   574   // may not pack objects densely; a chunk may either be an object or a
   575   // non-object.
   576   virtual HeapWord* block_start(const void* addr) const;
   578   // Requires "addr" to be the start of a chunk, and returns its size.
   579   // "addr + size" is required to be the start of a new chunk, or the end
   580   // of the active area of the heap.
   581   virtual size_t block_size(const HeapWord* addr) const ;
   583   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   584   // the block is an object.
   585   virtual bool block_is_obj(const HeapWord* addr) const;
   588   // PrintGC, PrintGCDetails support
   589   void print_heap_change(size_t prev_used) const;
   591   // PrintHeapAtGC support
   592   virtual void print() const;
   593   virtual void print_on(outputStream* st) const;
   595   virtual void verify() = 0;
   597   struct StatRecord {
   598     int invocations;
   599     elapsedTimer accumulated_time;
   600     StatRecord() :
   601       invocations(0),
   602       accumulated_time(elapsedTimer()) {}
   603   };
   604 private:
   605   StatRecord _stat_record;
   606 public:
   607   StatRecord* stat_record() { return &_stat_record; }
   609   virtual void print_summary_info();
   610   virtual void print_summary_info_on(outputStream* st);
   612   // Performance Counter support
   613   virtual void update_counters() = 0;
   614   virtual CollectorCounters* counters() { return _gc_counters; }
   615 };
   617 // Class CardGeneration is a generation that is covered by a card table,
   618 // and uses a card-size block-offset array to implement block_start.
   620 // class BlockOffsetArray;
   621 // class BlockOffsetArrayContigSpace;
   622 class BlockOffsetSharedArray;
   624 class CardGeneration: public Generation {
   625   friend class VMStructs;
   626  protected:
   627   // This is shared with other generations.
   628   GenRemSet* _rs;
   629   // This is local to this generation.
   630   BlockOffsetSharedArray* _bts;
   632   // current shrinking effect: this damps shrinking when the heap gets empty.
   633   size_t _shrink_factor;
   635   size_t _min_heap_delta_bytes;   // Minimum amount to expand.
   637   // Some statistics from before gc started.
   638   // These are gathered in the gc_prologue (and should_collect)
   639   // to control growing/shrinking policy in spite of promotions.
   640   size_t _capacity_at_prologue;
   641   size_t _used_at_prologue;
   643   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
   644                  GenRemSet* remset);
   646  public:
   648   // Attempt to expand the generation by "bytes".  Expand by at a
   649   // minimum "expand_bytes".  Return true if some amount (not
   650   // necessarily the full "bytes") was done.
   651   virtual bool expand(size_t bytes, size_t expand_bytes);
   653   // Shrink generation with specified size (returns false if unable to shrink)
   654   virtual void shrink(size_t bytes) = 0;
   656   virtual void compute_new_size();
   658   virtual void clear_remembered_set();
   660   virtual void invalidate_remembered_set();
   662   virtual void prepare_for_verify();
   664   // Grow generation with specified size (returns false if unable to grow)
   665   virtual bool grow_by(size_t bytes) = 0;
   666   // Grow generation to reserved size.
   667   virtual bool grow_to_reserved() = 0;
   668 };
   670 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
   671 // contiguous space.
   672 //
   673 // Garbage collection is performed using mark-compact.
   675 class OneContigSpaceCardGeneration: public CardGeneration {
   676   friend class VMStructs;
   677   // Abstractly, this is a subtype that gets access to protected fields.
   678   friend class VM_PopulateDumpSharedSpace;
   680  protected:
   681   ContiguousSpace*  _the_space;       // actual space holding objects
   682   WaterMark  _last_gc;                // watermark between objects allocated before
   683                                       // and after last GC.
   685   // Grow generation with specified size (returns false if unable to grow)
   686   virtual bool grow_by(size_t bytes);
   687   // Grow generation to reserved size.
   688   virtual bool grow_to_reserved();
   689   // Shrink generation with specified size (returns false if unable to shrink)
   690   void shrink_by(size_t bytes);
   692   // Allocation failure
   693   virtual bool expand(size_t bytes, size_t expand_bytes);
   694   void shrink(size_t bytes);
   696   // Accessing spaces
   697   ContiguousSpace* the_space() const { return _the_space; }
   699  public:
   700   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
   701                                int level, GenRemSet* remset,
   702                                ContiguousSpace* space) :
   703     CardGeneration(rs, initial_byte_size, level, remset),
   704     _the_space(space)
   705   {}
   707   inline bool is_in(const void* p) const;
   709   // Space enquiries
   710   size_t capacity() const;
   711   size_t used() const;
   712   size_t free() const;
   714   MemRegion used_region() const;
   716   size_t unsafe_max_alloc_nogc() const;
   717   size_t contiguous_available() const;
   719   // Iteration
   720   void object_iterate(ObjectClosure* blk);
   721   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
   723   void younger_refs_iterate(OopsInGenClosure* blk);
   725   inline CompactibleSpace* first_compaction_space() const;
   727   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
   728   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
   730   // Accessing marks
   731   inline WaterMark top_mark();
   732   inline WaterMark bottom_mark();
   734 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
   735   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   736   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
   737   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
   739   void save_marks();
   740   void reset_saved_marks();
   741   bool no_allocs_since_save_marks();
   743   inline size_t block_size(const HeapWord* addr) const;
   745   inline bool block_is_obj(const HeapWord* addr) const;
   747   virtual void collect(bool full,
   748                        bool clear_all_soft_refs,
   749                        size_t size,
   750                        bool is_tlab);
   751   HeapWord* expand_and_allocate(size_t size,
   752                                 bool is_tlab,
   753                                 bool parallel = false);
   755   virtual void prepare_for_verify();
   757   virtual void gc_epilogue(bool full);
   759   virtual void record_spaces_top();
   761   virtual void verify();
   762   virtual void print_on(outputStream* st) const;
   763 };
   765 #endif // SHARE_VM_MEMORY_GENERATION_HPP

mercurial