src/share/vm/memory/blockOffsetTable.hpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 4061
859cd1a76f8a
child 6876
710a3c8b516e
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
    26 #define SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "runtime/virtualspace.hpp"
    30 #include "utilities/globalDefinitions.hpp"
    32 // The CollectedHeap type requires subtypes to implement a method
    33 // "block_start".  For some subtypes, notably generational
    34 // systems using card-table-based write barriers, the efficiency of this
    35 // operation may be important.  Implementations of the "BlockOffsetArray"
    36 // class may be useful in providing such efficient implementations.
    37 //
    38 // BlockOffsetTable (abstract)
    39 //   - BlockOffsetArray (abstract)
    40 //     - BlockOffsetArrayNonContigSpace
    41 //     - BlockOffsetArrayContigSpace
    42 //
    44 class ContiguousSpace;
    46 //////////////////////////////////////////////////////////////////////////
    47 // The BlockOffsetTable "interface"
    48 //////////////////////////////////////////////////////////////////////////
    49 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
    50   friend class VMStructs;
    51 protected:
    52   // These members describe the region covered by the table.
    54   // The space this table is covering.
    55   HeapWord* _bottom;    // == reserved.start
    56   HeapWord* _end;       // End of currently allocated region.
    58 public:
    59   // Initialize the table to cover the given space.
    60   // The contents of the initial table are undefined.
    61   BlockOffsetTable(HeapWord* bottom, HeapWord* end):
    62     _bottom(bottom), _end(end) {
    63     assert(_bottom <= _end, "arguments out of order");
    64   }
    66   // Note that the committed size of the covered space may have changed,
    67   // so the table size might also wish to change.
    68   virtual void resize(size_t new_word_size) = 0;
    70   virtual void set_bottom(HeapWord* new_bottom) {
    71     assert(new_bottom <= _end, "new_bottom > _end");
    72     _bottom = new_bottom;
    73     resize(pointer_delta(_end, _bottom));
    74   }
    76   // Requires "addr" to be contained by a block, and returns the address of
    77   // the start of that block.
    78   virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
    80   // Returns the address of the start of the block containing "addr", or
    81   // else "null" if it is covered by no block.
    82   HeapWord* block_start(const void* addr) const;
    83 };
    85 //////////////////////////////////////////////////////////////////////////
    86 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
    87 // divides the covered region into "N"-word subregions (where
    88 // "N" = 2^"LogN".  An array with an entry for each such subregion
    89 // indicates how far back one must go to find the start of the
    90 // chunk that includes the first word of the subregion.
    91 //
    92 // Each BlockOffsetArray is owned by a Space.  However, the actual array
    93 // may be shared by several BlockOffsetArrays; this is useful
    94 // when a single resizable area (such as a generation) is divided up into
    95 // several spaces in which contiguous allocation takes place.  (Consider,
    96 // for example, the garbage-first generation.)
    98 // Here is the shared array type.
    99 //////////////////////////////////////////////////////////////////////////
   100 // BlockOffsetSharedArray
   101 //////////////////////////////////////////////////////////////////////////
   102 class BlockOffsetSharedArray: public CHeapObj<mtGC> {
   103   friend class BlockOffsetArray;
   104   friend class BlockOffsetArrayNonContigSpace;
   105   friend class BlockOffsetArrayContigSpace;
   106   friend class VMStructs;
   108  private:
   109   enum SomePrivateConstants {
   110     LogN = 9,
   111     LogN_words = LogN - LogHeapWordSize,
   112     N_bytes = 1 << LogN,
   113     N_words = 1 << LogN_words
   114   };
   116   bool _init_to_zero;
   118   // The reserved region covered by the shared array.
   119   MemRegion _reserved;
   121   // End of the current committed region.
   122   HeapWord* _end;
   124   // Array for keeping offsets for retrieving object start fast given an
   125   // address.
   126   VirtualSpace _vs;
   127   u_char* _offset_array;          // byte array keeping backwards offsets
   129  protected:
   130   // Bounds checking accessors:
   131   // For performance these have to devolve to array accesses in product builds.
   132   u_char offset_array(size_t index) const {
   133     assert(index < _vs.committed_size(), "index out of range");
   134     return _offset_array[index];
   135   }
   136   // An assertion-checking helper method for the set_offset_array() methods below.
   137   void check_reducing_assertion(bool reducing);
   139   void set_offset_array(size_t index, u_char offset, bool reducing = false) {
   140     check_reducing_assertion(reducing);
   141     assert(index < _vs.committed_size(), "index out of range");
   142     assert(!reducing || _offset_array[index] >= offset, "Not reducing");
   143     _offset_array[index] = offset;
   144   }
   146   void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
   147     check_reducing_assertion(reducing);
   148     assert(index < _vs.committed_size(), "index out of range");
   149     assert(high >= low, "addresses out of order");
   150     assert(pointer_delta(high, low) <= N_words, "offset too large");
   151     assert(!reducing || _offset_array[index] >=  (u_char)pointer_delta(high, low),
   152            "Not reducing");
   153     _offset_array[index] = (u_char)pointer_delta(high, low);
   154   }
   156   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
   157     check_reducing_assertion(reducing);
   158     assert(index_for(right - 1) < _vs.committed_size(),
   159            "right address out of range");
   160     assert(left  < right, "Heap addresses out of order");
   161     size_t num_cards = pointer_delta(right, left) >> LogN_words;
   163     // Below, we may use an explicit loop instead of memset()
   164     // because on certain platforms memset() can give concurrent
   165     // readers "out-of-thin-air," phantom zeros; see 6948537.
   166     if (UseMemSetInBOT) {
   167       memset(&_offset_array[index_for(left)], offset, num_cards);
   168     } else {
   169       size_t i = index_for(left);
   170       const size_t end = i + num_cards;
   171       for (; i < end; i++) {
   172         // Elided until CR 6977974 is fixed properly.
   173         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
   174         _offset_array[i] = offset;
   175       }
   176     }
   177   }
   179   void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
   180     check_reducing_assertion(reducing);
   181     assert(right < _vs.committed_size(), "right address out of range");
   182     assert(left  <= right, "indexes out of order");
   183     size_t num_cards = right - left + 1;
   185     // Below, we may use an explicit loop instead of memset
   186     // because on certain platforms memset() can give concurrent
   187     // readers "out-of-thin-air," phantom zeros; see 6948537.
   188     if (UseMemSetInBOT) {
   189       memset(&_offset_array[left], offset, num_cards);
   190     } else {
   191       size_t i = left;
   192       const size_t end = i + num_cards;
   193       for (; i < end; i++) {
   194         // Elided until CR 6977974 is fixed properly.
   195         // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
   196         _offset_array[i] = offset;
   197       }
   198     }
   199   }
   201   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
   202     assert(index < _vs.committed_size(), "index out of range");
   203     assert(high >= low, "addresses out of order");
   204     assert(pointer_delta(high, low) <= N_words, "offset too large");
   205     assert(_offset_array[index] == pointer_delta(high, low),
   206            "Wrong offset");
   207   }
   209   bool is_card_boundary(HeapWord* p) const;
   211   // Return the number of slots needed for an offset array
   212   // that covers mem_region_words words.
   213   // We always add an extra slot because if an object
   214   // ends on a card boundary we put a 0 in the next
   215   // offset array slot, so we want that slot always
   216   // to be reserved.
   218   size_t compute_size(size_t mem_region_words) {
   219     size_t number_of_slots = (mem_region_words / N_words) + 1;
   220     return ReservedSpace::allocation_align_size_up(number_of_slots);
   221   }
   223 public:
   224   // Initialize the table to cover from "base" to (at least)
   225   // "base + init_word_size".  In the future, the table may be expanded
   226   // (see "resize" below) up to the size of "_reserved" (which must be at
   227   // least "init_word_size".)  The contents of the initial table are
   228   // undefined; it is the responsibility of the constituent
   229   // BlockOffsetTable(s) to initialize cards.
   230   BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
   232   // Notes a change in the committed size of the region covered by the
   233   // table.  The "new_word_size" may not be larger than the size of the
   234   // reserved region this table covers.
   235   void resize(size_t new_word_size);
   237   void set_bottom(HeapWord* new_bottom);
   239   // Whether entries should be initialized to zero. Used currently only for
   240   // error checking.
   241   void set_init_to_zero(bool val) { _init_to_zero = val; }
   242   bool init_to_zero() { return _init_to_zero; }
   244   // Updates all the BlockOffsetArray's sharing this shared array to
   245   // reflect the current "top"'s of their spaces.
   246   void update_offset_arrays();   // Not yet implemented!
   248   // Return the appropriate index into "_offset_array" for "p".
   249   size_t index_for(const void* p) const;
   251   // Return the address indicating the start of the region corresponding to
   252   // "index" in "_offset_array".
   253   HeapWord* address_for_index(size_t index) const;
   255   // Return the address "p" incremented by the size of
   256   // a region.  This method does not align the address
   257   // returned to the start of a region.  It is a simple
   258   // primitive.
   259   HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }
   260 };
   262 //////////////////////////////////////////////////////////////////////////
   263 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
   264 //////////////////////////////////////////////////////////////////////////
   265 class BlockOffsetArray: public BlockOffsetTable {
   266   friend class VMStructs;
   267   friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
   268  protected:
   269   // The following enums are used by do_block_internal() below
   270   enum Action {
   271     Action_single,      // BOT records a single block (see single_block())
   272     Action_mark,        // BOT marks the start of a block (see mark_block())
   273     Action_check        // Check that BOT records block correctly
   274                         // (see verify_single_block()).
   275   };
   277   enum SomePrivateConstants {
   278     N_words = BlockOffsetSharedArray::N_words,
   279     LogN    = BlockOffsetSharedArray::LogN,
   280     // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
   281     // All entries are less than "N_words + N_powers".
   282     LogBase = 4,
   283     Base = (1 << LogBase),
   284     N_powers = 14
   285   };
   287   static size_t power_to_cards_back(uint i) {
   288     return (size_t)1 << (LogBase * i);
   289   }
   290   static size_t power_to_words_back(uint i) {
   291     return power_to_cards_back(i) * N_words;
   292   }
   293   static size_t entry_to_cards_back(u_char entry) {
   294     assert(entry >= N_words, "Precondition");
   295     return power_to_cards_back(entry - N_words);
   296   }
   297   static size_t entry_to_words_back(u_char entry) {
   298     assert(entry >= N_words, "Precondition");
   299     return power_to_words_back(entry - N_words);
   300   }
   302   // The shared array, which is shared with other BlockOffsetArray's
   303   // corresponding to different spaces within a generation or span of
   304   // memory.
   305   BlockOffsetSharedArray* _array;
   307   // The space that owns this subregion.
   308   Space* _sp;
   310   // If true, array entries are initialized to 0; otherwise, they are
   311   // initialized to point backwards to the beginning of the covered region.
   312   bool _init_to_zero;
   314   // An assertion-checking helper method for the set_remainder*() methods below.
   315   void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
   317   // Sets the entries
   318   // corresponding to the cards starting at "start" and ending at "end"
   319   // to point back to the card before "start": the interval [start, end)
   320   // is right-open. The last parameter, reducing, indicates whether the
   321   // updates to individual entries always reduce the entry from a higher
   322   // to a lower value. (For example this would hold true during a temporal
   323   // regime during which only block splits were updating the BOT.
   324   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
   325   // Same as above, except that the args here are a card _index_ interval
   326   // that is closed: [start_index, end_index]
   327   void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
   329   // A helper function for BOT adjustment/verification work
   330   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
   332  public:
   333   // The space may not have its bottom and top set yet, which is why the
   334   // region is passed as a parameter.  If "init_to_zero" is true, the
   335   // elements of the array are initialized to zero.  Otherwise, they are
   336   // initialized to point backwards to the beginning.
   337   BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
   338                    bool init_to_zero_);
   340   // Note: this ought to be part of the constructor, but that would require
   341   // "this" to be passed as a parameter to a member constructor for
   342   // the containing concrete subtype of Space.
   343   // This would be legal C++, but MS VC++ doesn't allow it.
   344   void set_space(Space* sp) { _sp = sp; }
   346   // Resets the covered region to the given "mr".
   347   void set_region(MemRegion mr) {
   348     _bottom = mr.start();
   349     _end = mr.end();
   350   }
   352   // Note that the committed size of the covered space may have changed,
   353   // so the table size might also wish to change.
   354   virtual void resize(size_t new_word_size) {
   355     HeapWord* new_end = _bottom + new_word_size;
   356     if (_end < new_end && !init_to_zero()) {
   357       // verify that the old and new boundaries are also card boundaries
   358       assert(_array->is_card_boundary(_end),
   359              "_end not a card boundary");
   360       assert(_array->is_card_boundary(new_end),
   361              "new _end would not be a card boundary");
   362       // set all the newly added cards
   363       _array->set_offset_array(_end, new_end, N_words);
   364     }
   365     _end = new_end;  // update _end
   366   }
   368   // Adjust the BOT to show that it has a single block in the
   369   // range [blk_start, blk_start + size). All necessary BOT
   370   // cards are adjusted, but _unallocated_block isn't.
   371   void single_block(HeapWord* blk_start, HeapWord* blk_end);
   372   void single_block(HeapWord* blk, size_t size) {
   373     single_block(blk, blk + size);
   374   }
   376   // When the alloc_block() call returns, the block offset table should
   377   // have enough information such that any subsequent block_start() call
   378   // with an argument equal to an address that is within the range
   379   // [blk_start, blk_end) would return the value blk_start, provided
   380   // there have been no calls in between that reset this information
   381   // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
   382   // for an appropriate range covering the said interval).
   383   // These methods expect to be called with [blk_start, blk_end)
   384   // representing a block of memory in the heap.
   385   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
   386   void alloc_block(HeapWord* blk, size_t size) {
   387     alloc_block(blk, blk + size);
   388   }
   390   // If true, initialize array slots with no allocated blocks to zero.
   391   // Otherwise, make them point back to the front.
   392   bool init_to_zero() { return _init_to_zero; }
   393   // Corresponding setter
   394   void set_init_to_zero(bool val) {
   395     _init_to_zero = val;
   396     assert(_array != NULL, "_array should be non-NULL");
   397     _array->set_init_to_zero(val);
   398   }
   400   // Debugging
   401   // Return the index of the last entry in the "active" region.
   402   virtual size_t last_active_index() const = 0;
   403   // Verify the block offset table
   404   void verify() const;
   405   void check_all_cards(size_t left_card, size_t right_card) const;
   406 };
   408 ////////////////////////////////////////////////////////////////////////////
   409 // A subtype of BlockOffsetArray that takes advantage of the fact
   410 // that its underlying space is a NonContiguousSpace, so that some
   411 // specialized interfaces can be made available for spaces that
   412 // manipulate the table.
   413 ////////////////////////////////////////////////////////////////////////////
   414 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
   415   friend class VMStructs;
   416  private:
   417   // The portion [_unallocated_block, _sp.end()) of the space that
   418   // is a single block known not to contain any objects.
   419   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
   420   HeapWord* _unallocated_block;
   422  public:
   423   BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
   424     BlockOffsetArray(array, mr, false),
   425     _unallocated_block(_bottom) { }
   427   // accessor
   428   HeapWord* unallocated_block() const {
   429     assert(BlockOffsetArrayUseUnallocatedBlock,
   430            "_unallocated_block is not being maintained");
   431     return _unallocated_block;
   432   }
   434   void set_unallocated_block(HeapWord* block) {
   435     assert(BlockOffsetArrayUseUnallocatedBlock,
   436            "_unallocated_block is not being maintained");
   437     assert(block >= _bottom && block <= _end, "out of range");
   438     _unallocated_block = block;
   439   }
   441   // These methods expect to be called with [blk_start, blk_end)
   442   // representing a block of memory in the heap.
   443   void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
   444   void alloc_block(HeapWord* blk, size_t size) {
   445     alloc_block(blk, blk + size);
   446   }
   448   // The following methods are useful and optimized for a
   449   // non-contiguous space.
   451   // Given a block [blk_start, blk_start + full_blk_size), and
   452   // a left_blk_size < full_blk_size, adjust the BOT to show two
   453   // blocks [blk_start, blk_start + left_blk_size) and
   454   // [blk_start + left_blk_size, blk_start + full_blk_size).
   455   // It is assumed (and verified in the non-product VM) that the
   456   // BOT was correct for the original block.
   457   void split_block(HeapWord* blk_start, size_t full_blk_size,
   458                            size_t left_blk_size);
   460   // Adjust BOT to show that it has a block in the range
   461   // [blk_start, blk_start + size). Only the first card
   462   // of BOT is touched. It is assumed (and verified in the
   463   // non-product VM) that the remaining cards of the block
   464   // are correct.
   465   void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
   466   void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
   467     mark_block(blk, blk + size, reducing);
   468   }
   470   // Adjust _unallocated_block to indicate that a particular
   471   // block has been newly allocated or freed. It is assumed (and
   472   // verified in the non-product VM) that the BOT is correct for
   473   // the given block.
   474   void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
   475     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   476     verify_single_block(blk_start, blk_end);
   477     if (BlockOffsetArrayUseUnallocatedBlock) {
   478       _unallocated_block = MAX2(_unallocated_block, blk_end);
   479     }
   480   }
   482   void allocated(HeapWord* blk, size_t size, bool reducing = false) {
   483     allocated(blk, blk + size, reducing);
   484   }
   486   void freed(HeapWord* blk_start, HeapWord* blk_end);
   487   void freed(HeapWord* blk, size_t size);
   489   HeapWord* block_start_unsafe(const void* addr) const;
   491   // Requires "addr" to be the start of a card and returns the
   492   // start of the block that contains the given address.
   493   HeapWord* block_start_careful(const void* addr) const;
   495   // Verification & debugging: ensure that the offset table reflects
   496   // the fact that the block [blk_start, blk_end) or [blk, blk + size)
   497   // is a single block of storage. NOTE: can't const this because of
   498   // call to non-const do_block_internal() below.
   499   void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
   500     PRODUCT_RETURN;
   501   void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
   503   // Verify that the given block is before _unallocated_block
   504   void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
   505     const PRODUCT_RETURN;
   506   void verify_not_unallocated(HeapWord* blk, size_t size)
   507     const PRODUCT_RETURN;
   509   // Debugging support
   510   virtual size_t last_active_index() const;
   511 };
   513 ////////////////////////////////////////////////////////////////////////////
   514 // A subtype of BlockOffsetArray that takes advantage of the fact
   515 // that its underlying space is a ContiguousSpace, so that its "active"
   516 // region can be more efficiently tracked (than for a non-contiguous space).
   517 ////////////////////////////////////////////////////////////////////////////
   518 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
   519   friend class VMStructs;
   520  private:
   521   // allocation boundary at which offset array must be updated
   522   HeapWord* _next_offset_threshold;
   523   size_t    _next_offset_index;      // index corresponding to that boundary
   525   // Work function when allocation start crosses threshold.
   526   void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
   528  public:
   529   BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
   530     BlockOffsetArray(array, mr, true) {
   531     _next_offset_threshold = NULL;
   532     _next_offset_index = 0;
   533   }
   535   void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
   537   // Initialize the threshold for an empty heap.
   538   HeapWord* initialize_threshold();
   539   // Zero out the entry for _bottom (offset will be zero)
   540   void      zero_bottom_entry();
   542   // Return the next threshold, the point at which the table should be
   543   // updated.
   544   HeapWord* threshold() const { return _next_offset_threshold; }
   546   // In general, these methods expect to be called with
   547   // [blk_start, blk_end) representing a block of memory in the heap.
   548   // In this implementation, however, we are OK even if blk_start and/or
   549   // blk_end are NULL because NULL is represented as 0, and thus
   550   // never exceeds the "_next_offset_threshold".
   551   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   552     if (blk_end > _next_offset_threshold) {
   553       alloc_block_work(blk_start, blk_end);
   554     }
   555   }
   556   void alloc_block(HeapWord* blk, size_t size) {
   557     alloc_block(blk, blk + size);
   558   }
   560   HeapWord* block_start_unsafe(const void* addr) const;
   562   // Debugging support
   563   virtual size_t last_active_index() const;
   564 };
   566 #endif // SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP

mercurial