src/share/vm/opto/subnode.cpp

Fri, 15 Jan 2010 11:53:33 -0800

author
never
date
Fri, 15 Jan 2010 11:53:33 -0800
changeset 1609
ddb7834449d0
parent 1279
bd02caa94611
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6849984: Value methods for platform dependent math functions constant fold incorrectly
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_subnode.cpp.incl"
    31 #include "math.h"
    33 //=============================================================================
    34 //------------------------------Identity---------------------------------------
    35 // If right input is a constant 0, return the left input.
    36 Node *SubNode::Identity( PhaseTransform *phase ) {
    37   assert(in(1) != this, "Must already have called Value");
    38   assert(in(2) != this, "Must already have called Value");
    40   // Remove double negation
    41   const Type *zero = add_id();
    42   if( phase->type( in(1) )->higher_equal( zero ) &&
    43       in(2)->Opcode() == Opcode() &&
    44       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
    45     return in(2)->in(2);
    46   }
    48   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
    49   if( in(1)->Opcode() == Op_AddI ) {
    50     if( phase->eqv(in(1)->in(2),in(2)) )
    51       return in(1)->in(1);
    52     if (phase->eqv(in(1)->in(1),in(2)))
    53       return in(1)->in(2);
    55     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
    56     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
    57     // are originally used, although the optimizer sometimes jiggers things).
    58     // This folding through an O2 removes a loop-exit use of a loop-varying
    59     // value and generally lowers register pressure in and around the loop.
    60     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
    61         phase->eqv(in(1)->in(2)->in(1),in(2)) )
    62       return in(1)->in(1);
    63   }
    65   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
    66 }
    68 //------------------------------Value------------------------------------------
    69 // A subtract node differences it's two inputs.
    70 const Type *SubNode::Value( PhaseTransform *phase ) const {
    71   const Node* in1 = in(1);
    72   const Node* in2 = in(2);
    73   // Either input is TOP ==> the result is TOP
    74   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
    75   if( t1 == Type::TOP ) return Type::TOP;
    76   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
    77   if( t2 == Type::TOP ) return Type::TOP;
    79   // Not correct for SubFnode and AddFNode (must check for infinity)
    80   // Equal?  Subtract is zero
    81   if (phase->eqv_uncast(in1, in2))  return add_id();
    83   // Either input is BOTTOM ==> the result is the local BOTTOM
    84   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    85     return bottom_type();
    87   return sub(t1,t2);            // Local flavor of type subtraction
    89 }
    91 //=============================================================================
    93 //------------------------------Helper function--------------------------------
    94 static bool ok_to_convert(Node* inc, Node* iv) {
    95     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
    96     // "-" is loop invariant and collapsing extends the live-range of "x"
    97     // to overlap with the "+", forcing another register to be used in
    98     // the loop.
    99     // This test will be clearer with '&&' (apply DeMorgan's rule)
   100     // but I like the early cutouts that happen here.
   101     const PhiNode *phi;
   102     if( ( !inc->in(1)->is_Phi() ||
   103           !(phi=inc->in(1)->as_Phi()) ||
   104           phi->is_copy() ||
   105           !phi->region()->is_CountedLoop() ||
   106           inc != phi->region()->as_CountedLoop()->incr() )
   107        &&
   108         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
   109         // because "x" maybe invariant.
   110         ( !iv->is_loop_iv() )
   111       ) {
   112       return true;
   113     } else {
   114       return false;
   115     }
   116 }
   117 //------------------------------Ideal------------------------------------------
   118 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
   119   Node *in1 = in(1);
   120   Node *in2 = in(2);
   121   uint op1 = in1->Opcode();
   122   uint op2 = in2->Opcode();
   124 #ifdef ASSERT
   125   // Check for dead loop
   126   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   127       ( op1 == Op_AddI || op1 == Op_SubI ) &&
   128       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   129         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
   130     assert(false, "dead loop in SubINode::Ideal");
   131 #endif
   133   const Type *t2 = phase->type( in2 );
   134   if( t2 == Type::TOP ) return NULL;
   135   // Convert "x-c0" into "x+ -c0".
   136   if( t2->base() == Type::Int ){        // Might be bottom or top...
   137     const TypeInt *i = t2->is_int();
   138     if( i->is_con() )
   139       return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
   140   }
   142   // Convert "(x+c0) - y" into (x-y) + c0"
   143   // Do not collapse (x+c0)-y if "+" is a loop increment or
   144   // if "y" is a loop induction variable.
   145   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
   146     const Type *tadd = phase->type( in1->in(2) );
   147     if( tadd->singleton() && tadd != Type::TOP ) {
   148       Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
   149       return new (phase->C, 3) AddINode( sub2, in1->in(2) );
   150     }
   151   }
   154   // Convert "x - (y+c0)" into "(x-y) - c0"
   155   // Need the same check as in above optimization but reversed.
   156   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
   157     Node* in21 = in2->in(1);
   158     Node* in22 = in2->in(2);
   159     const TypeInt* tcon = phase->type(in22)->isa_int();
   160     if (tcon != NULL && tcon->is_con()) {
   161       Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
   162       Node* neg_c0 = phase->intcon(- tcon->get_con());
   163       return new (phase->C, 3) AddINode(sub2, neg_c0);
   164     }
   165   }
   167   const Type *t1 = phase->type( in1 );
   168   if( t1 == Type::TOP ) return NULL;
   170 #ifdef ASSERT
   171   // Check for dead loop
   172   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
   173       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   174         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   175     assert(false, "dead loop in SubINode::Ideal");
   176 #endif
   178   // Convert "x - (x+y)" into "-y"
   179   if( op2 == Op_AddI &&
   180       phase->eqv( in1, in2->in(1) ) )
   181     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
   182   // Convert "(x-y) - x" into "-y"
   183   if( op1 == Op_SubI &&
   184       phase->eqv( in1->in(1), in2 ) )
   185     return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
   186   // Convert "x - (y+x)" into "-y"
   187   if( op2 == Op_AddI &&
   188       phase->eqv( in1, in2->in(2) ) )
   189     return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
   191   // Convert "0 - (x-y)" into "y-x"
   192   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
   193     return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
   195   // Convert "0 - (x+con)" into "-con-x"
   196   jint con;
   197   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
   198       (con = in2->in(2)->find_int_con(0)) != 0 )
   199     return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
   201   // Convert "(X+A) - (X+B)" into "A - B"
   202   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
   203     return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
   205   // Convert "(A+X) - (B+X)" into "A - B"
   206   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
   207     return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
   209   // Convert "(A+X) - (X+B)" into "A - B"
   210   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
   211     return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
   213   // Convert "(X+A) - (B+X)" into "A - B"
   214   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
   215     return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
   217   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
   218   // nicer to optimize than subtract.
   219   if( op2 == Op_SubI && in2->outcnt() == 1) {
   220     Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
   221     return new (phase->C, 3) SubINode( add1, in2->in(1) );
   222   }
   224   return NULL;
   225 }
   227 //------------------------------sub--------------------------------------------
   228 // A subtract node differences it's two inputs.
   229 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
   230   const TypeInt *r0 = t1->is_int(); // Handy access
   231   const TypeInt *r1 = t2->is_int();
   232   int32 lo = r0->_lo - r1->_hi;
   233   int32 hi = r0->_hi - r1->_lo;
   235   // We next check for 32-bit overflow.
   236   // If that happens, we just assume all integers are possible.
   237   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   238        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   239       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   240        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   241     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   242   else                          // Overflow; assume all integers
   243     return TypeInt::INT;
   244 }
   246 //=============================================================================
   247 //------------------------------Ideal------------------------------------------
   248 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   249   Node *in1 = in(1);
   250   Node *in2 = in(2);
   251   uint op1 = in1->Opcode();
   252   uint op2 = in2->Opcode();
   254 #ifdef ASSERT
   255   // Check for dead loop
   256   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   257       ( op1 == Op_AddL || op1 == Op_SubL ) &&
   258       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   259         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
   260     assert(false, "dead loop in SubLNode::Ideal");
   261 #endif
   263   if( phase->type( in2 ) == Type::TOP ) return NULL;
   264   const TypeLong *i = phase->type( in2 )->isa_long();
   265   // Convert "x-c0" into "x+ -c0".
   266   if( i &&                      // Might be bottom or top...
   267       i->is_con() )
   268     return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
   270   // Convert "(x+c0) - y" into (x-y) + c0"
   271   // Do not collapse (x+c0)-y if "+" is a loop increment or
   272   // if "y" is a loop induction variable.
   273   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
   274     Node *in11 = in1->in(1);
   275     const Type *tadd = phase->type( in1->in(2) );
   276     if( tadd->singleton() && tadd != Type::TOP ) {
   277       Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
   278       return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
   279     }
   280   }
   282   // Convert "x - (y+c0)" into "(x-y) - c0"
   283   // Need the same check as in above optimization but reversed.
   284   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
   285     Node* in21 = in2->in(1);
   286     Node* in22 = in2->in(2);
   287     const TypeLong* tcon = phase->type(in22)->isa_long();
   288     if (tcon != NULL && tcon->is_con()) {
   289       Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
   290       Node* neg_c0 = phase->longcon(- tcon->get_con());
   291       return new (phase->C, 3) AddLNode(sub2, neg_c0);
   292     }
   293   }
   295   const Type *t1 = phase->type( in1 );
   296   if( t1 == Type::TOP ) return NULL;
   298 #ifdef ASSERT
   299   // Check for dead loop
   300   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
   301       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   302         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   303     assert(false, "dead loop in SubLNode::Ideal");
   304 #endif
   306   // Convert "x - (x+y)" into "-y"
   307   if( op2 == Op_AddL &&
   308       phase->eqv( in1, in2->in(1) ) )
   309     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
   310   // Convert "x - (y+x)" into "-y"
   311   if( op2 == Op_AddL &&
   312       phase->eqv( in1, in2->in(2) ) )
   313     return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
   315   // Convert "0 - (x-y)" into "y-x"
   316   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
   317     return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
   319   // Convert "(X+A) - (X+B)" into "A - B"
   320   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
   321     return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
   323   // Convert "(A+X) - (B+X)" into "A - B"
   324   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
   325     return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
   327   // Convert "A-(B-C)" into (A+C)-B"
   328   if( op2 == Op_SubL && in2->outcnt() == 1) {
   329     Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
   330     return new (phase->C, 3) SubLNode( add1, in2->in(1) );
   331   }
   333   return NULL;
   334 }
   336 //------------------------------sub--------------------------------------------
   337 // A subtract node differences it's two inputs.
   338 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
   339   const TypeLong *r0 = t1->is_long(); // Handy access
   340   const TypeLong *r1 = t2->is_long();
   341   jlong lo = r0->_lo - r1->_hi;
   342   jlong hi = r0->_hi - r1->_lo;
   344   // We next check for 32-bit overflow.
   345   // If that happens, we just assume all integers are possible.
   346   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   347        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   348       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   349        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   350     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   351   else                          // Overflow; assume all integers
   352     return TypeLong::LONG;
   353 }
   355 //=============================================================================
   356 //------------------------------Value------------------------------------------
   357 // A subtract node differences its two inputs.
   358 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
   359   const Node* in1 = in(1);
   360   const Node* in2 = in(2);
   361   // Either input is TOP ==> the result is TOP
   362   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   363   if( t1 == Type::TOP ) return Type::TOP;
   364   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   365   if( t2 == Type::TOP ) return Type::TOP;
   367   // if both operands are infinity of same sign, the result is NaN; do
   368   // not replace with zero
   369   if( (t1->is_finite() && t2->is_finite()) ) {
   370     if( phase->eqv(in1, in2) ) return add_id();
   371   }
   373   // Either input is BOTTOM ==> the result is the local BOTTOM
   374   const Type *bot = bottom_type();
   375   if( (t1 == bot) || (t2 == bot) ||
   376       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   377     return bot;
   379   return sub(t1,t2);            // Local flavor of type subtraction
   380 }
   383 //=============================================================================
   384 //------------------------------Ideal------------------------------------------
   385 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   386   const Type *t2 = phase->type( in(2) );
   387   // Convert "x-c0" into "x+ -c0".
   388   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
   389     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
   390   }
   392   // Not associative because of boundary conditions (infinity)
   393   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   394     // Convert "x - (x+y)" into "-y"
   395     if( in(2)->is_Add() &&
   396         phase->eqv(in(1),in(2)->in(1) ) )
   397       return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
   398   }
   400   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
   401   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
   402   //if( phase->type(in(1)) == TypeF::ZERO )
   403   //return new (phase->C, 2) NegFNode(in(2));
   405   return NULL;
   406 }
   408 //------------------------------sub--------------------------------------------
   409 // A subtract node differences its two inputs.
   410 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
   411   // no folding if one of operands is infinity or NaN, do not do constant folding
   412   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
   413     return TypeF::make( t1->getf() - t2->getf() );
   414   }
   415   else if( g_isnan(t1->getf()) ) {
   416     return t1;
   417   }
   418   else if( g_isnan(t2->getf()) ) {
   419     return t2;
   420   }
   421   else {
   422     return Type::FLOAT;
   423   }
   424 }
   426 //=============================================================================
   427 //------------------------------Ideal------------------------------------------
   428 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
   429   const Type *t2 = phase->type( in(2) );
   430   // Convert "x-c0" into "x+ -c0".
   431   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
   432     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
   433   }
   435   // Not associative because of boundary conditions (infinity)
   436   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   437     // Convert "x - (x+y)" into "-y"
   438     if( in(2)->is_Add() &&
   439         phase->eqv(in(1),in(2)->in(1) ) )
   440       return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
   441   }
   443   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
   444   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
   445   //if( phase->type(in(1)) == TypeD::ZERO )
   446   //return new (phase->C, 2) NegDNode(in(2));
   448   return NULL;
   449 }
   451 //------------------------------sub--------------------------------------------
   452 // A subtract node differences its two inputs.
   453 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
   454   // no folding if one of operands is infinity or NaN, do not do constant folding
   455   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
   456     return TypeD::make( t1->getd() - t2->getd() );
   457   }
   458   else if( g_isnan(t1->getd()) ) {
   459     return t1;
   460   }
   461   else if( g_isnan(t2->getd()) ) {
   462     return t2;
   463   }
   464   else {
   465     return Type::DOUBLE;
   466   }
   467 }
   469 //=============================================================================
   470 //------------------------------Idealize---------------------------------------
   471 // Unlike SubNodes, compare must still flatten return value to the
   472 // range -1, 0, 1.
   473 // And optimizations like those for (X + Y) - X fail if overflow happens.
   474 Node *CmpNode::Identity( PhaseTransform *phase ) {
   475   return this;
   476 }
   478 //=============================================================================
   479 //------------------------------cmp--------------------------------------------
   480 // Simplify a CmpI (compare 2 integers) node, based on local information.
   481 // If both inputs are constants, compare them.
   482 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
   483   const TypeInt *r0 = t1->is_int(); // Handy access
   484   const TypeInt *r1 = t2->is_int();
   486   if( r0->_hi < r1->_lo )       // Range is always low?
   487     return TypeInt::CC_LT;
   488   else if( r0->_lo > r1->_hi )  // Range is always high?
   489     return TypeInt::CC_GT;
   491   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   492     assert(r0->get_con() == r1->get_con(), "must be equal");
   493     return TypeInt::CC_EQ;      // Equal results.
   494   } else if( r0->_hi == r1->_lo ) // Range is never high?
   495     return TypeInt::CC_LE;
   496   else if( r0->_lo == r1->_hi ) // Range is never low?
   497     return TypeInt::CC_GE;
   498   return TypeInt::CC;           // else use worst case results
   499 }
   501 // Simplify a CmpU (compare 2 integers) node, based on local information.
   502 // If both inputs are constants, compare them.
   503 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
   504   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
   506   // comparing two unsigned ints
   507   const TypeInt *r0 = t1->is_int();   // Handy access
   508   const TypeInt *r1 = t2->is_int();
   510   // Current installed version
   511   // Compare ranges for non-overlap
   512   juint lo0 = r0->_lo;
   513   juint hi0 = r0->_hi;
   514   juint lo1 = r1->_lo;
   515   juint hi1 = r1->_hi;
   517   // If either one has both negative and positive values,
   518   // it therefore contains both 0 and -1, and since [0..-1] is the
   519   // full unsigned range, the type must act as an unsigned bottom.
   520   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
   521   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
   523   if (bot0 || bot1) {
   524     // All unsigned values are LE -1 and GE 0.
   525     if (lo0 == 0 && hi0 == 0) {
   526       return TypeInt::CC_LE;            //   0 <= bot
   527     } else if (lo1 == 0 && hi1 == 0) {
   528       return TypeInt::CC_GE;            // bot >= 0
   529     }
   530   } else {
   531     // We can use ranges of the form [lo..hi] if signs are the same.
   532     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
   533     // results are reversed, '-' > '+' for unsigned compare
   534     if (hi0 < lo1) {
   535       return TypeInt::CC_LT;            // smaller
   536     } else if (lo0 > hi1) {
   537       return TypeInt::CC_GT;            // greater
   538     } else if (hi0 == lo1 && lo0 == hi1) {
   539       return TypeInt::CC_EQ;            // Equal results
   540     } else if (lo0 >= hi1) {
   541       return TypeInt::CC_GE;
   542     } else if (hi0 <= lo1) {
   543       // Check for special case in Hashtable::get.  (See below.)
   544       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
   545           in(1)->Opcode() == Op_ModI &&
   546           in(1)->in(2) == in(2) )
   547         return TypeInt::CC_LT;
   548       return TypeInt::CC_LE;
   549     }
   550   }
   551   // Check for special case in Hashtable::get - the hash index is
   552   // mod'ed to the table size so the following range check is useless.
   553   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
   554   // to be positive.
   555   // (This is a gross hack, since the sub method never
   556   // looks at the structure of the node in any other case.)
   557   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
   558       in(1)->Opcode() == Op_ModI &&
   559       in(1)->in(2)->uncast() == in(2)->uncast())
   560     return TypeInt::CC_LT;
   561   return TypeInt::CC;                   // else use worst case results
   562 }
   564 //------------------------------Idealize---------------------------------------
   565 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   566   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
   567     switch (in(1)->Opcode()) {
   568     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
   569       return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
   570     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
   571       return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
   572     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
   573       return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
   574     //case Op_SubI:
   575       // If (x - y) cannot overflow, then ((x - y) <?> 0)
   576       // can be turned into (x <?> y).
   577       // This is handled (with more general cases) by Ideal_sub_algebra.
   578     }
   579   }
   580   return NULL;                  // No change
   581 }
   584 //=============================================================================
   585 // Simplify a CmpL (compare 2 longs ) node, based on local information.
   586 // If both inputs are constants, compare them.
   587 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
   588   const TypeLong *r0 = t1->is_long(); // Handy access
   589   const TypeLong *r1 = t2->is_long();
   591   if( r0->_hi < r1->_lo )       // Range is always low?
   592     return TypeInt::CC_LT;
   593   else if( r0->_lo > r1->_hi )  // Range is always high?
   594     return TypeInt::CC_GT;
   596   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   597     assert(r0->get_con() == r1->get_con(), "must be equal");
   598     return TypeInt::CC_EQ;      // Equal results.
   599   } else if( r0->_hi == r1->_lo ) // Range is never high?
   600     return TypeInt::CC_LE;
   601   else if( r0->_lo == r1->_hi ) // Range is never low?
   602     return TypeInt::CC_GE;
   603   return TypeInt::CC;           // else use worst case results
   604 }
   606 //=============================================================================
   607 //------------------------------sub--------------------------------------------
   608 // Simplify an CmpP (compare 2 pointers) node, based on local information.
   609 // If both inputs are constants, compare them.
   610 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
   611   const TypePtr *r0 = t1->is_ptr(); // Handy access
   612   const TypePtr *r1 = t2->is_ptr();
   614   // Undefined inputs makes for an undefined result
   615   if( TypePtr::above_centerline(r0->_ptr) ||
   616       TypePtr::above_centerline(r1->_ptr) )
   617     return Type::TOP;
   619   if (r0 == r1 && r0->singleton()) {
   620     // Equal pointer constants (klasses, nulls, etc.)
   621     return TypeInt::CC_EQ;
   622   }
   624   // See if it is 2 unrelated classes.
   625   const TypeOopPtr* p0 = r0->isa_oopptr();
   626   const TypeOopPtr* p1 = r1->isa_oopptr();
   627   if (p0 && p1) {
   628     Node* in1 = in(1)->uncast();
   629     Node* in2 = in(2)->uncast();
   630     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
   631     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
   632     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
   633       return TypeInt::CC_GT;  // different pointers
   634     }
   635     ciKlass* klass0 = p0->klass();
   636     bool    xklass0 = p0->klass_is_exact();
   637     ciKlass* klass1 = p1->klass();
   638     bool    xklass1 = p1->klass_is_exact();
   639     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   640     if (klass0 && klass1 &&
   641         kps != 1 &&             // both or neither are klass pointers
   642         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
   643         klass1->is_loaded() && !klass1->is_interface() &&
   644         (!klass0->is_obj_array_klass() ||
   645          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
   646         (!klass1->is_obj_array_klass() ||
   647          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
   648       bool unrelated_classes = false;
   649       // See if neither subclasses the other, or if the class on top
   650       // is precise.  In either of these cases, the compare is known
   651       // to fail if at least one of the pointers is provably not null.
   652       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
   653           !klass0->is_java_klass() ||   // types not part of Java language?
   654           !klass1->is_java_klass()) {   // types not part of Java language?
   655         // Do nothing; we know nothing for imprecise types
   656       } else if (klass0->is_subtype_of(klass1)) {
   657         // If klass1's type is PRECISE, then classes are unrelated.
   658         unrelated_classes = xklass1;
   659       } else if (klass1->is_subtype_of(klass0)) {
   660         // If klass0's type is PRECISE, then classes are unrelated.
   661         unrelated_classes = xklass0;
   662       } else {                  // Neither subtypes the other
   663         unrelated_classes = true;
   664       }
   665       if (unrelated_classes) {
   666         // The oops classes are known to be unrelated. If the joined PTRs of
   667         // two oops is not Null and not Bottom, then we are sure that one
   668         // of the two oops is non-null, and the comparison will always fail.
   669         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
   670         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
   671           return TypeInt::CC_GT;
   672         }
   673       }
   674     }
   675   }
   677   // Known constants can be compared exactly
   678   // Null can be distinguished from any NotNull pointers
   679   // Unknown inputs makes an unknown result
   680   if( r0->singleton() ) {
   681     intptr_t bits0 = r0->get_con();
   682     if( r1->singleton() )
   683       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   684     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   685   } else if( r1->singleton() ) {
   686     intptr_t bits1 = r1->get_con();
   687     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   688   } else
   689     return TypeInt::CC;
   690 }
   692 //------------------------------Ideal------------------------------------------
   693 // Check for the case of comparing an unknown klass loaded from the primary
   694 // super-type array vs a known klass with no subtypes.  This amounts to
   695 // checking to see an unknown klass subtypes a known klass with no subtypes;
   696 // this only happens on an exact match.  We can shorten this test by 1 load.
   697 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   698   // Constant pointer on right?
   699   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
   700   if (t2 == NULL || !t2->klass_is_exact())
   701     return NULL;
   702   // Get the constant klass we are comparing to.
   703   ciKlass* superklass = t2->klass();
   705   // Now check for LoadKlass on left.
   706   Node* ldk1 = in(1);
   707   if (ldk1->is_DecodeN()) {
   708     ldk1 = ldk1->in(1);
   709     if (ldk1->Opcode() != Op_LoadNKlass )
   710       return NULL;
   711   } else if (ldk1->Opcode() != Op_LoadKlass )
   712     return NULL;
   713   // Take apart the address of the LoadKlass:
   714   Node* adr1 = ldk1->in(MemNode::Address);
   715   intptr_t con2 = 0;
   716   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
   717   if (ldk2 == NULL)
   718     return NULL;
   719   if (con2 == oopDesc::klass_offset_in_bytes()) {
   720     // We are inspecting an object's concrete class.
   721     // Short-circuit the check if the query is abstract.
   722     if (superklass->is_interface() ||
   723         superklass->is_abstract()) {
   724       // Make it come out always false:
   725       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
   726       return this;
   727     }
   728   }
   730   // Check for a LoadKlass from primary supertype array.
   731   // Any nested loadklass from loadklass+con must be from the p.s. array.
   732   if (ldk2->is_DecodeN()) {
   733     // Keep ldk2 as DecodeN since it could be used in CmpP below.
   734     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
   735       return NULL;
   736   } else if (ldk2->Opcode() != Op_LoadKlass)
   737     return NULL;
   739   // Verify that we understand the situation
   740   if (con2 != (intptr_t) superklass->super_check_offset())
   741     return NULL;                // Might be element-klass loading from array klass
   743   // If 'superklass' has no subklasses and is not an interface, then we are
   744   // assured that the only input which will pass the type check is
   745   // 'superklass' itself.
   746   //
   747   // We could be more liberal here, and allow the optimization on interfaces
   748   // which have a single implementor.  This would require us to increase the
   749   // expressiveness of the add_dependency() mechanism.
   750   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
   752   // Object arrays must have their base element have no subtypes
   753   while (superklass->is_obj_array_klass()) {
   754     ciType* elem = superklass->as_obj_array_klass()->element_type();
   755     superklass = elem->as_klass();
   756   }
   757   if (superklass->is_instance_klass()) {
   758     ciInstanceKlass* ik = superklass->as_instance_klass();
   759     if (ik->has_subklass() || ik->is_interface())  return NULL;
   760     // Add a dependency if there is a chance that a subclass will be added later.
   761     if (!ik->is_final()) {
   762       phase->C->dependencies()->assert_leaf_type(ik);
   763     }
   764   }
   766   // Bypass the dependent load, and compare directly
   767   this->set_req(1,ldk2);
   769   return this;
   770 }
   772 //=============================================================================
   773 //------------------------------sub--------------------------------------------
   774 // Simplify an CmpN (compare 2 pointers) node, based on local information.
   775 // If both inputs are constants, compare them.
   776 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
   777   const TypePtr *r0 = t1->make_ptr(); // Handy access
   778   const TypePtr *r1 = t2->make_ptr();
   780   // Undefined inputs makes for an undefined result
   781   if( TypePtr::above_centerline(r0->_ptr) ||
   782       TypePtr::above_centerline(r1->_ptr) )
   783     return Type::TOP;
   785   if (r0 == r1 && r0->singleton()) {
   786     // Equal pointer constants (klasses, nulls, etc.)
   787     return TypeInt::CC_EQ;
   788   }
   790   // See if it is 2 unrelated classes.
   791   const TypeOopPtr* p0 = r0->isa_oopptr();
   792   const TypeOopPtr* p1 = r1->isa_oopptr();
   793   if (p0 && p1) {
   794     ciKlass* klass0 = p0->klass();
   795     bool    xklass0 = p0->klass_is_exact();
   796     ciKlass* klass1 = p1->klass();
   797     bool    xklass1 = p1->klass_is_exact();
   798     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   799     if (klass0 && klass1 &&
   800         kps != 1 &&             // both or neither are klass pointers
   801         !klass0->is_interface() && // do not trust interfaces
   802         !klass1->is_interface()) {
   803       bool unrelated_classes = false;
   804       // See if neither subclasses the other, or if the class on top
   805       // is precise.  In either of these cases, the compare is known
   806       // to fail if at least one of the pointers is provably not null.
   807       if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
   808           !klass0->is_java_klass() ||   // types not part of Java language?
   809           !klass1->is_java_klass()) {   // types not part of Java language?
   810         // Do nothing; we know nothing for imprecise types
   811       } else if (klass0->is_subtype_of(klass1)) {
   812         // If klass1's type is PRECISE, then classes are unrelated.
   813         unrelated_classes = xklass1;
   814       } else if (klass1->is_subtype_of(klass0)) {
   815         // If klass0's type is PRECISE, then classes are unrelated.
   816         unrelated_classes = xklass0;
   817       } else {                  // Neither subtypes the other
   818         unrelated_classes = true;
   819       }
   820       if (unrelated_classes) {
   821         // The oops classes are known to be unrelated. If the joined PTRs of
   822         // two oops is not Null and not Bottom, then we are sure that one
   823         // of the two oops is non-null, and the comparison will always fail.
   824         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
   825         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
   826           return TypeInt::CC_GT;
   827         }
   828       }
   829     }
   830   }
   832   // Known constants can be compared exactly
   833   // Null can be distinguished from any NotNull pointers
   834   // Unknown inputs makes an unknown result
   835   if( r0->singleton() ) {
   836     intptr_t bits0 = r0->get_con();
   837     if( r1->singleton() )
   838       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   839     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   840   } else if( r1->singleton() ) {
   841     intptr_t bits1 = r1->get_con();
   842     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   843   } else
   844     return TypeInt::CC;
   845 }
   847 //------------------------------Ideal------------------------------------------
   848 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   849   return NULL;
   850 }
   852 //=============================================================================
   853 //------------------------------Value------------------------------------------
   854 // Simplify an CmpF (compare 2 floats ) node, based on local information.
   855 // If both inputs are constants, compare them.
   856 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
   857   const Node* in1 = in(1);
   858   const Node* in2 = in(2);
   859   // Either input is TOP ==> the result is TOP
   860   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   861   if( t1 == Type::TOP ) return Type::TOP;
   862   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   863   if( t2 == Type::TOP ) return Type::TOP;
   865   // Not constants?  Don't know squat - even if they are the same
   866   // value!  If they are NaN's they compare to LT instead of EQ.
   867   const TypeF *tf1 = t1->isa_float_constant();
   868   const TypeF *tf2 = t2->isa_float_constant();
   869   if( !tf1 || !tf2 ) return TypeInt::CC;
   871   // This implements the Java bytecode fcmpl, so unordered returns -1.
   872   if( tf1->is_nan() || tf2->is_nan() )
   873     return TypeInt::CC_LT;
   875   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
   876   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
   877   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
   878   return TypeInt::CC_EQ;
   879 }
   882 //=============================================================================
   883 //------------------------------Value------------------------------------------
   884 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
   885 // If both inputs are constants, compare them.
   886 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
   887   const Node* in1 = in(1);
   888   const Node* in2 = in(2);
   889   // Either input is TOP ==> the result is TOP
   890   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   891   if( t1 == Type::TOP ) return Type::TOP;
   892   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   893   if( t2 == Type::TOP ) return Type::TOP;
   895   // Not constants?  Don't know squat - even if they are the same
   896   // value!  If they are NaN's they compare to LT instead of EQ.
   897   const TypeD *td1 = t1->isa_double_constant();
   898   const TypeD *td2 = t2->isa_double_constant();
   899   if( !td1 || !td2 ) return TypeInt::CC;
   901   // This implements the Java bytecode dcmpl, so unordered returns -1.
   902   if( td1->is_nan() || td2->is_nan() )
   903     return TypeInt::CC_LT;
   905   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
   906   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
   907   assert( td1->_d == td2->_d, "do not understand FP behavior" );
   908   return TypeInt::CC_EQ;
   909 }
   911 //------------------------------Ideal------------------------------------------
   912 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
   913   // Check if we can change this to a CmpF and remove a ConvD2F operation.
   914   // Change  (CMPD (F2D (float)) (ConD value))
   915   // To      (CMPF      (float)  (ConF value))
   916   // Valid when 'value' does not lose precision as a float.
   917   // Benefits: eliminates conversion, does not require 24-bit mode
   919   // NaNs prevent commuting operands.  This transform works regardless of the
   920   // order of ConD and ConvF2D inputs by preserving the original order.
   921   int idx_f2d = 1;              // ConvF2D on left side?
   922   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
   923     idx_f2d = 2;                // No, swap to check for reversed args
   924   int idx_con = 3-idx_f2d;      // Check for the constant on other input
   926   if( ConvertCmpD2CmpF &&
   927       in(idx_f2d)->Opcode() == Op_ConvF2D &&
   928       in(idx_con)->Opcode() == Op_ConD ) {
   929     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
   930     double t2_value_as_double = t2->_d;
   931     float  t2_value_as_float  = (float)t2_value_as_double;
   932     if( t2_value_as_double == (double)t2_value_as_float ) {
   933       // Test value can be represented as a float
   934       // Eliminate the conversion to double and create new comparison
   935       Node *new_in1 = in(idx_f2d)->in(1);
   936       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
   937       if( idx_f2d != 1 ) {      // Must flip args to match original order
   938         Node *tmp = new_in1;
   939         new_in1 = new_in2;
   940         new_in2 = tmp;
   941       }
   942       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
   943         ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
   944         : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
   945       return new_cmp;           // Changed to CmpFNode
   946     }
   947     // Testing value required the precision of a double
   948   }
   949   return NULL;                  // No change
   950 }
   953 //=============================================================================
   954 //------------------------------cc2logical-------------------------------------
   955 // Convert a condition code type to a logical type
   956 const Type *BoolTest::cc2logical( const Type *CC ) const {
   957   if( CC == Type::TOP ) return Type::TOP;
   958   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
   959   const TypeInt *ti = CC->is_int();
   960   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
   961     // Match low order 2 bits
   962     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
   963     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
   964     return TypeInt::make(tmp);       // Boolean result
   965   }
   967   if( CC == TypeInt::CC_GE ) {
   968     if( _test == ge ) return TypeInt::ONE;
   969     if( _test == lt ) return TypeInt::ZERO;
   970   }
   971   if( CC == TypeInt::CC_LE ) {
   972     if( _test == le ) return TypeInt::ONE;
   973     if( _test == gt ) return TypeInt::ZERO;
   974   }
   976   return TypeInt::BOOL;
   977 }
   979 //------------------------------dump_spec-------------------------------------
   980 // Print special per-node info
   981 #ifndef PRODUCT
   982 void BoolTest::dump_on(outputStream *st) const {
   983   const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
   984   st->print(msg[_test]);
   985 }
   986 #endif
   988 //=============================================================================
   989 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
   990 uint BoolNode::size_of() const { return sizeof(BoolNode); }
   992 //------------------------------operator==-------------------------------------
   993 uint BoolNode::cmp( const Node &n ) const {
   994   const BoolNode *b = (const BoolNode *)&n; // Cast up
   995   return (_test._test == b->_test._test);
   996 }
   998 //------------------------------clone_cmp--------------------------------------
   999 // Clone a compare/bool tree
  1000 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
  1001   Node *ncmp = cmp->clone();
  1002   ncmp->set_req(1,cmp1);
  1003   ncmp->set_req(2,cmp2);
  1004   ncmp = gvn->transform( ncmp );
  1005   return new (gvn->C, 2) BoolNode( ncmp, test );
  1008 //-------------------------------make_predicate--------------------------------
  1009 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
  1010   if (test_value->is_Con())   return test_value;
  1011   if (test_value->is_Bool())  return test_value;
  1012   Compile* C = phase->C;
  1013   if (test_value->is_CMove() &&
  1014       test_value->in(CMoveNode::Condition)->is_Bool()) {
  1015     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
  1016     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
  1017     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
  1018     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
  1019       return bol;
  1020     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
  1021       return phase->transform( bol->negate(phase) );
  1023     // Else fall through.  The CMove gets in the way of the test.
  1024     // It should be the case that make_predicate(bol->as_int_value()) == bol.
  1026   Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
  1027   cmp = phase->transform(cmp);
  1028   Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
  1029   return phase->transform(bol);
  1032 //--------------------------------as_int_value---------------------------------
  1033 Node* BoolNode::as_int_value(PhaseGVN* phase) {
  1034   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
  1035   Node* cmov = CMoveNode::make(phase->C, NULL, this,
  1036                                phase->intcon(0), phase->intcon(1),
  1037                                TypeInt::BOOL);
  1038   return phase->transform(cmov);
  1041 //----------------------------------negate-------------------------------------
  1042 BoolNode* BoolNode::negate(PhaseGVN* phase) {
  1043   Compile* C = phase->C;
  1044   return new (C, 2) BoolNode(in(1), _test.negate());
  1048 //------------------------------Ideal------------------------------------------
  1049 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1050   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
  1051   // This moves the constant to the right.  Helps value-numbering.
  1052   Node *cmp = in(1);
  1053   if( !cmp->is_Sub() ) return NULL;
  1054   int cop = cmp->Opcode();
  1055   if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
  1056   Node *cmp1 = cmp->in(1);
  1057   Node *cmp2 = cmp->in(2);
  1058   if( !cmp1 ) return NULL;
  1060   // Constant on left?
  1061   Node *con = cmp1;
  1062   uint op2 = cmp2->Opcode();
  1063   // Move constants to the right of compare's to canonicalize.
  1064   // Do not muck with Opaque1 nodes, as this indicates a loop
  1065   // guard that cannot change shape.
  1066   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
  1067       // Because of NaN's, CmpD and CmpF are not commutative
  1068       cop != Op_CmpD && cop != Op_CmpF &&
  1069       // Protect against swapping inputs to a compare when it is used by a
  1070       // counted loop exit, which requires maintaining the loop-limit as in(2)
  1071       !is_counted_loop_exit_test() ) {
  1072     // Ok, commute the constant to the right of the cmp node.
  1073     // Clone the Node, getting a new Node of the same class
  1074     cmp = cmp->clone();
  1075     // Swap inputs to the clone
  1076     cmp->swap_edges(1, 2);
  1077     cmp = phase->transform( cmp );
  1078     return new (phase->C, 2) BoolNode( cmp, _test.commute() );
  1081   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
  1082   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
  1083   // test instead.
  1084   int cmp1_op = cmp1->Opcode();
  1085   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
  1086   if (cmp2_type == NULL)  return NULL;
  1087   Node* j_xor = cmp1;
  1088   if( cmp2_type == TypeInt::ZERO &&
  1089       cmp1_op == Op_XorI &&
  1090       j_xor->in(1) != j_xor &&          // An xor of itself is dead
  1091       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
  1092       (_test._test == BoolTest::eq ||
  1093        _test._test == BoolTest::ne) ) {
  1094     Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
  1095     return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
  1098   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
  1099   // This is a standard idiom for branching on a boolean value.
  1100   Node *c2b = cmp1;
  1101   if( cmp2_type == TypeInt::ZERO &&
  1102       cmp1_op == Op_Conv2B &&
  1103       (_test._test == BoolTest::eq ||
  1104        _test._test == BoolTest::ne) ) {
  1105     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
  1106        ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
  1107        : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
  1108     );
  1109     return new (phase->C, 2) BoolNode( ncmp, _test._test );
  1112   // Comparing a SubI against a zero is equal to comparing the SubI
  1113   // arguments directly.  This only works for eq and ne comparisons
  1114   // due to possible integer overflow.
  1115   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
  1116         (cop == Op_CmpI) &&
  1117         (cmp1->Opcode() == Op_SubI) &&
  1118         ( cmp2_type == TypeInt::ZERO ) ) {
  1119     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
  1120     return new (phase->C, 2) BoolNode( ncmp, _test._test );
  1123   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
  1124   // most general case because negating 0x80000000 does nothing.  Needed for
  1125   // the CmpF3/SubI/CmpI idiom.
  1126   if( cop == Op_CmpI &&
  1127       cmp1->Opcode() == Op_SubI &&
  1128       cmp2_type == TypeInt::ZERO &&
  1129       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
  1130       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
  1131     Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
  1132     return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
  1135   //  The transformation below is not valid for either signed or unsigned
  1136   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
  1137   //  This transformation can be resurrected when we are able to
  1138   //  make inferences about the range of values being subtracted from
  1139   //  (or added to) relative to the wraparound point.
  1140   //
  1141   //    // Remove +/-1's if possible.
  1142   //    // "X <= Y-1" becomes "X <  Y"
  1143   //    // "X+1 <= Y" becomes "X <  Y"
  1144   //    // "X <  Y+1" becomes "X <= Y"
  1145   //    // "X-1 <  Y" becomes "X <= Y"
  1146   //    // Do not this to compares off of the counted-loop-end.  These guys are
  1147   //    // checking the trip counter and they want to use the post-incremented
  1148   //    // counter.  If they use the PRE-incremented counter, then the counter has
  1149   //    // to be incremented in a private block on a loop backedge.
  1150   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
  1151   //      return NULL;
  1152   //  #ifndef PRODUCT
  1153   //    // Do not do this in a wash GVN pass during verification.
  1154   //    // Gets triggered by too many simple optimizations to be bothered with
  1155   //    // re-trying it again and again.
  1156   //    if( !phase->allow_progress() ) return NULL;
  1157   //  #endif
  1158   //    // Not valid for unsigned compare because of corner cases in involving zero.
  1159   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
  1160   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
  1161   //    // "0 <=u Y" is always true).
  1162   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
  1163   //    int cmp2_op = cmp2->Opcode();
  1164   //    if( _test._test == BoolTest::le ) {
  1165   //      if( cmp1_op == Op_AddI &&
  1166   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
  1167   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
  1168   //      else if( cmp2_op == Op_AddI &&
  1169   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
  1170   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
  1171   //    } else if( _test._test == BoolTest::lt ) {
  1172   //      if( cmp1_op == Op_AddI &&
  1173   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
  1174   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
  1175   //      else if( cmp2_op == Op_AddI &&
  1176   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
  1177   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
  1178   //    }
  1180   return NULL;
  1183 //------------------------------Value------------------------------------------
  1184 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
  1185 // based on local information.   If the input is constant, do it.
  1186 const Type *BoolNode::Value( PhaseTransform *phase ) const {
  1187   return _test.cc2logical( phase->type( in(1) ) );
  1190 //------------------------------dump_spec--------------------------------------
  1191 // Dump special per-node info
  1192 #ifndef PRODUCT
  1193 void BoolNode::dump_spec(outputStream *st) const {
  1194   st->print("[");
  1195   _test.dump_on(st);
  1196   st->print("]");
  1198 #endif
  1200 //------------------------------is_counted_loop_exit_test--------------------------------------
  1201 // Returns true if node is used by a counted loop node.
  1202 bool BoolNode::is_counted_loop_exit_test() {
  1203   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  1204     Node* use = fast_out(i);
  1205     if (use->is_CountedLoopEnd()) {
  1206       return true;
  1209   return false;
  1212 //=============================================================================
  1213 //------------------------------NegNode----------------------------------------
  1214 Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1215   if( in(1)->Opcode() == Op_SubF )
  1216     return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
  1217   return NULL;
  1220 Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1221   if( in(1)->Opcode() == Op_SubD )
  1222     return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
  1223   return NULL;
  1227 //=============================================================================
  1228 //------------------------------Value------------------------------------------
  1229 // Compute sqrt
  1230 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
  1231   const Type *t1 = phase->type( in(1) );
  1232   if( t1 == Type::TOP ) return Type::TOP;
  1233   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1234   double d = t1->getd();
  1235   if( d < 0.0 ) return Type::DOUBLE;
  1236   return TypeD::make( sqrt( d ) );
  1239 //=============================================================================
  1240 //------------------------------Value------------------------------------------
  1241 // Compute cos
  1242 const Type *CosDNode::Value( PhaseTransform *phase ) const {
  1243   const Type *t1 = phase->type( in(1) );
  1244   if( t1 == Type::TOP ) return Type::TOP;
  1245   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1246   double d = t1->getd();
  1247   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
  1250 //=============================================================================
  1251 //------------------------------Value------------------------------------------
  1252 // Compute sin
  1253 const Type *SinDNode::Value( PhaseTransform *phase ) const {
  1254   const Type *t1 = phase->type( in(1) );
  1255   if( t1 == Type::TOP ) return Type::TOP;
  1256   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1257   double d = t1->getd();
  1258   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
  1261 //=============================================================================
  1262 //------------------------------Value------------------------------------------
  1263 // Compute tan
  1264 const Type *TanDNode::Value( PhaseTransform *phase ) const {
  1265   const Type *t1 = phase->type( in(1) );
  1266   if( t1 == Type::TOP ) return Type::TOP;
  1267   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1268   double d = t1->getd();
  1269   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
  1272 //=============================================================================
  1273 //------------------------------Value------------------------------------------
  1274 // Compute log
  1275 const Type *LogDNode::Value( PhaseTransform *phase ) const {
  1276   const Type *t1 = phase->type( in(1) );
  1277   if( t1 == Type::TOP ) return Type::TOP;
  1278   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1279   double d = t1->getd();
  1280   return TypeD::make( StubRoutines::intrinsic_log( d ) );
  1283 //=============================================================================
  1284 //------------------------------Value------------------------------------------
  1285 // Compute log10
  1286 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
  1287   const Type *t1 = phase->type( in(1) );
  1288   if( t1 == Type::TOP ) return Type::TOP;
  1289   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1290   double d = t1->getd();
  1291   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
  1294 //=============================================================================
  1295 //------------------------------Value------------------------------------------
  1296 // Compute exp
  1297 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
  1298   const Type *t1 = phase->type( in(1) );
  1299   if( t1 == Type::TOP ) return Type::TOP;
  1300   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1301   double d = t1->getd();
  1302   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
  1306 //=============================================================================
  1307 //------------------------------Value------------------------------------------
  1308 // Compute pow
  1309 const Type *PowDNode::Value( PhaseTransform *phase ) const {
  1310   const Type *t1 = phase->type( in(1) );
  1311   if( t1 == Type::TOP ) return Type::TOP;
  1312   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1313   const Type *t2 = phase->type( in(2) );
  1314   if( t2 == Type::TOP ) return Type::TOP;
  1315   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
  1316   double d1 = t1->getd();
  1317   double d2 = t2->getd();
  1318   if( d1 < 0.0 ) return Type::DOUBLE;
  1319   if( d2 < 0.0 ) return Type::DOUBLE;
  1320   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );

mercurial