src/cpu/x86/vm/stubGenerator_x86_32.cpp

Fri, 15 Jan 2010 11:53:33 -0800

author
never
date
Fri, 15 Jan 2010 11:53:33 -0800
changeset 1609
ddb7834449d0
parent 1280
df6caf649ff7
child 1627
776fb94f33cc
permissions
-rw-r--r--

6849984: Value methods for platform dependent math functions constant fold incorrectly
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 1999-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_32.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    33 #define a__ ((Assembler*)_masm)->
    35 #ifdef PRODUCT
    36 #define BLOCK_COMMENT(str) /* nothing */
    37 #else
    38 #define BLOCK_COMMENT(str) __ block_comment(str)
    39 #endif
    41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    43 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    44 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    46 // -------------------------------------------------------------------------------------------------------------------------
    47 // Stub Code definitions
    49 static address handle_unsafe_access() {
    50   JavaThread* thread = JavaThread::current();
    51   address pc  = thread->saved_exception_pc();
    52   // pc is the instruction which we must emulate
    53   // doing a no-op is fine:  return garbage from the load
    54   // therefore, compute npc
    55   address npc = Assembler::locate_next_instruction(pc);
    57   // request an async exception
    58   thread->set_pending_unsafe_access_error();
    60   // return address of next instruction to execute
    61   return npc;
    62 }
    64 class StubGenerator: public StubCodeGenerator {
    65  private:
    67 #ifdef PRODUCT
    68 #define inc_counter_np(counter) (0)
    69 #else
    70   void inc_counter_np_(int& counter) {
    71     __ incrementl(ExternalAddress((address)&counter));
    72   }
    73 #define inc_counter_np(counter) \
    74   BLOCK_COMMENT("inc_counter " #counter); \
    75   inc_counter_np_(counter);
    76 #endif //PRODUCT
    78   void inc_copy_counter_np(BasicType t) {
    79 #ifndef PRODUCT
    80     switch (t) {
    81     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
    82     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
    83     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
    84     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
    85     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
    86     }
    87     ShouldNotReachHere();
    88 #endif //PRODUCT
    89   }
    91   //------------------------------------------------------------------------------------------------------------------------
    92   // Call stubs are used to call Java from C
    93   //
    94   //    [ return_from_Java     ] <--- rsp
    95   //    [ argument word n      ]
    96   //      ...
    97   // -N [ argument word 1      ]
    98   // -7 [ Possible padding for stack alignment ]
    99   // -6 [ Possible padding for stack alignment ]
   100   // -5 [ Possible padding for stack alignment ]
   101   // -4 [ mxcsr save           ] <--- rsp_after_call
   102   // -3 [ saved rbx,            ]
   103   // -2 [ saved rsi            ]
   104   // -1 [ saved rdi            ]
   105   //  0 [ saved rbp,            ] <--- rbp,
   106   //  1 [ return address       ]
   107   //  2 [ ptr. to call wrapper ]
   108   //  3 [ result               ]
   109   //  4 [ result_type          ]
   110   //  5 [ method               ]
   111   //  6 [ entry_point          ]
   112   //  7 [ parameters           ]
   113   //  8 [ parameter_size       ]
   114   //  9 [ thread               ]
   117   address generate_call_stub(address& return_address) {
   118     StubCodeMark mark(this, "StubRoutines", "call_stub");
   119     address start = __ pc();
   121     // stub code parameters / addresses
   122     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   123     bool  sse_save = false;
   124     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   125     const int     locals_count_in_bytes  (4*wordSize);
   126     const Address mxcsr_save    (rbp, -4 * wordSize);
   127     const Address saved_rbx     (rbp, -3 * wordSize);
   128     const Address saved_rsi     (rbp, -2 * wordSize);
   129     const Address saved_rdi     (rbp, -1 * wordSize);
   130     const Address result        (rbp,  3 * wordSize);
   131     const Address result_type   (rbp,  4 * wordSize);
   132     const Address method        (rbp,  5 * wordSize);
   133     const Address entry_point   (rbp,  6 * wordSize);
   134     const Address parameters    (rbp,  7 * wordSize);
   135     const Address parameter_size(rbp,  8 * wordSize);
   136     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   137     sse_save =  UseSSE > 0;
   139     // stub code
   140     __ enter();
   141     __ movptr(rcx, parameter_size);              // parameter counter
   142     __ shlptr(rcx, Interpreter::logStackElementSize()); // convert parameter count to bytes
   143     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   144     __ subptr(rsp, rcx);
   145     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   147     // save rdi, rsi, & rbx, according to C calling conventions
   148     __ movptr(saved_rdi, rdi);
   149     __ movptr(saved_rsi, rsi);
   150     __ movptr(saved_rbx, rbx);
   151     // save and initialize %mxcsr
   152     if (sse_save) {
   153       Label skip_ldmx;
   154       __ stmxcsr(mxcsr_save);
   155       __ movl(rax, mxcsr_save);
   156       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   157       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   158       __ cmp32(rax, mxcsr_std);
   159       __ jcc(Assembler::equal, skip_ldmx);
   160       __ ldmxcsr(mxcsr_std);
   161       __ bind(skip_ldmx);
   162     }
   164     // make sure the control word is correct.
   165     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 #ifdef ASSERT
   168     // make sure we have no pending exceptions
   169     { Label L;
   170       __ movptr(rcx, thread);
   171       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   172       __ jcc(Assembler::equal, L);
   173       __ stop("StubRoutines::call_stub: entered with pending exception");
   174       __ bind(L);
   175     }
   176 #endif
   178     // pass parameters if any
   179     BLOCK_COMMENT("pass parameters if any");
   180     Label parameters_done;
   181     __ movl(rcx, parameter_size);  // parameter counter
   182     __ testl(rcx, rcx);
   183     __ jcc(Assembler::zero, parameters_done);
   185     // parameter passing loop
   187     Label loop;
   188     // Copy Java parameters in reverse order (receiver last)
   189     // Note that the argument order is inverted in the process
   190     // source is rdx[rcx: N-1..0]
   191     // dest   is rsp[rbx: 0..N-1]
   193     __ movptr(rdx, parameters);          // parameter pointer
   194     __ xorptr(rbx, rbx);
   196     __ BIND(loop);
   197     if (TaggedStackInterpreter) {
   198       __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(),
   199                       -2*wordSize));                          // get tag
   200       __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   201                       Interpreter::expr_tag_offset_in_bytes(0)), rax);     // store tag
   202     }
   204     // get parameter
   205     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   206     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   207                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   208     __ increment(rbx);
   209     __ decrement(rcx);
   210     __ jcc(Assembler::notZero, loop);
   212     // call Java function
   213     __ BIND(parameters_done);
   214     __ movptr(rbx, method);           // get methodOop
   215     __ movptr(rax, entry_point);      // get entry_point
   216     __ mov(rsi, rsp);                 // set sender sp
   217     BLOCK_COMMENT("call Java function");
   218     __ call(rax);
   220     BLOCK_COMMENT("call_stub_return_address:");
   221     return_address = __ pc();
   223     Label common_return;
   225     __ BIND(common_return);
   227     // store result depending on type
   228     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   229     __ movptr(rdi, result);
   230     Label is_long, is_float, is_double, exit;
   231     __ movl(rsi, result_type);
   232     __ cmpl(rsi, T_LONG);
   233     __ jcc(Assembler::equal, is_long);
   234     __ cmpl(rsi, T_FLOAT);
   235     __ jcc(Assembler::equal, is_float);
   236     __ cmpl(rsi, T_DOUBLE);
   237     __ jcc(Assembler::equal, is_double);
   239     // handle T_INT case
   240     __ movl(Address(rdi, 0), rax);
   241     __ BIND(exit);
   243     // check that FPU stack is empty
   244     __ verify_FPU(0, "generate_call_stub");
   246     // pop parameters
   247     __ lea(rsp, rsp_after_call);
   249     // restore %mxcsr
   250     if (sse_save) {
   251       __ ldmxcsr(mxcsr_save);
   252     }
   254     // restore rdi, rsi and rbx,
   255     __ movptr(rbx, saved_rbx);
   256     __ movptr(rsi, saved_rsi);
   257     __ movptr(rdi, saved_rdi);
   258     __ addptr(rsp, 4*wordSize);
   260     // return
   261     __ pop(rbp);
   262     __ ret(0);
   264     // handle return types different from T_INT
   265     __ BIND(is_long);
   266     __ movl(Address(rdi, 0 * wordSize), rax);
   267     __ movl(Address(rdi, 1 * wordSize), rdx);
   268     __ jmp(exit);
   270     __ BIND(is_float);
   271     // interpreter uses xmm0 for return values
   272     if (UseSSE >= 1) {
   273       __ movflt(Address(rdi, 0), xmm0);
   274     } else {
   275       __ fstp_s(Address(rdi, 0));
   276     }
   277     __ jmp(exit);
   279     __ BIND(is_double);
   280     // interpreter uses xmm0 for return values
   281     if (UseSSE >= 2) {
   282       __ movdbl(Address(rdi, 0), xmm0);
   283     } else {
   284       __ fstp_d(Address(rdi, 0));
   285     }
   286     __ jmp(exit);
   288     // If we call compiled code directly from the call stub we will
   289     // need to adjust the return back to the call stub to a specialized
   290     // piece of code that can handle compiled results and cleaning the fpu
   291     // stack. compiled code will be set to return here instead of the
   292     // return above that handles interpreter returns.
   294     BLOCK_COMMENT("call_stub_compiled_return:");
   295     StubRoutines::x86::set_call_stub_compiled_return( __ pc());
   297 #ifdef COMPILER2
   298     if (UseSSE >= 2) {
   299       __ verify_FPU(0, "call_stub_compiled_return");
   300     } else {
   301       for (int i = 1; i < 8; i++) {
   302         __ ffree(i);
   303       }
   305       // UseSSE <= 1 so double result should be left on TOS
   306       __ movl(rsi, result_type);
   307       __ cmpl(rsi, T_DOUBLE);
   308       __ jcc(Assembler::equal, common_return);
   309       if (UseSSE == 0) {
   310         // UseSSE == 0 so float result should be left on TOS
   311         __ cmpl(rsi, T_FLOAT);
   312         __ jcc(Assembler::equal, common_return);
   313       }
   314       __ ffree(0);
   315     }
   316 #endif /* COMPILER2 */
   317     __ jmp(common_return);
   319     return start;
   320   }
   323   //------------------------------------------------------------------------------------------------------------------------
   324   // Return point for a Java call if there's an exception thrown in Java code.
   325   // The exception is caught and transformed into a pending exception stored in
   326   // JavaThread that can be tested from within the VM.
   327   //
   328   // Note: Usually the parameters are removed by the callee. In case of an exception
   329   //       crossing an activation frame boundary, that is not the case if the callee
   330   //       is compiled code => need to setup the rsp.
   331   //
   332   // rax,: exception oop
   334   address generate_catch_exception() {
   335     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   336     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   337     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   338     address start = __ pc();
   340     // get thread directly
   341     __ movptr(rcx, thread);
   342 #ifdef ASSERT
   343     // verify that threads correspond
   344     { Label L;
   345       __ get_thread(rbx);
   346       __ cmpptr(rbx, rcx);
   347       __ jcc(Assembler::equal, L);
   348       __ stop("StubRoutines::catch_exception: threads must correspond");
   349       __ bind(L);
   350     }
   351 #endif
   352     // set pending exception
   353     __ verify_oop(rax);
   354     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   355     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   356            ExternalAddress((address)__FILE__));
   357     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   358     // complete return to VM
   359     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   360     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   362     return start;
   363   }
   366   //------------------------------------------------------------------------------------------------------------------------
   367   // Continuation point for runtime calls returning with a pending exception.
   368   // The pending exception check happened in the runtime or native call stub.
   369   // The pending exception in Thread is converted into a Java-level exception.
   370   //
   371   // Contract with Java-level exception handlers:
   372   // rax,: exception
   373   // rdx: throwing pc
   374   //
   375   // NOTE: At entry of this stub, exception-pc must be on stack !!
   377   address generate_forward_exception() {
   378     StubCodeMark mark(this, "StubRoutines", "forward exception");
   379     address start = __ pc();
   381     // Upon entry, the sp points to the return address returning into Java
   382     // (interpreted or compiled) code; i.e., the return address becomes the
   383     // throwing pc.
   384     //
   385     // Arguments pushed before the runtime call are still on the stack but
   386     // the exception handler will reset the stack pointer -> ignore them.
   387     // A potential result in registers can be ignored as well.
   389 #ifdef ASSERT
   390     // make sure this code is only executed if there is a pending exception
   391     { Label L;
   392       __ get_thread(rcx);
   393       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   394       __ jcc(Assembler::notEqual, L);
   395       __ stop("StubRoutines::forward exception: no pending exception (1)");
   396       __ bind(L);
   397     }
   398 #endif
   400     // compute exception handler into rbx,
   401     __ movptr(rax, Address(rsp, 0));
   402     BLOCK_COMMENT("call exception_handler_for_return_address");
   403     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rax);
   404     __ mov(rbx, rax);
   406     // setup rax, & rdx, remove return address & clear pending exception
   407     __ get_thread(rcx);
   408     __ pop(rdx);
   409     __ movptr(rax, Address(rcx, Thread::pending_exception_offset()));
   410     __ movptr(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
   412 #ifdef ASSERT
   413     // make sure exception is set
   414     { Label L;
   415       __ testptr(rax, rax);
   416       __ jcc(Assembler::notEqual, L);
   417       __ stop("StubRoutines::forward exception: no pending exception (2)");
   418       __ bind(L);
   419     }
   420 #endif
   422     // continue at exception handler (return address removed)
   423     // rax,: exception
   424     // rbx,: exception handler
   425     // rdx: throwing pc
   426     __ verify_oop(rax);
   427     __ jmp(rbx);
   429     return start;
   430   }
   433   //----------------------------------------------------------------------------------------------------
   434   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   435   //
   436   // xchg exists as far back as 8086, lock needed for MP only
   437   // Stack layout immediately after call:
   438   //
   439   // 0 [ret addr ] <--- rsp
   440   // 1 [  ex     ]
   441   // 2 [  dest   ]
   442   //
   443   // Result:   *dest <- ex, return (old *dest)
   444   //
   445   // Note: win32 does not currently use this code
   447   address generate_atomic_xchg() {
   448     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   449     address start = __ pc();
   451     __ push(rdx);
   452     Address exchange(rsp, 2 * wordSize);
   453     Address dest_addr(rsp, 3 * wordSize);
   454     __ movl(rax, exchange);
   455     __ movptr(rdx, dest_addr);
   456     __ xchgl(rax, Address(rdx, 0));
   457     __ pop(rdx);
   458     __ ret(0);
   460     return start;
   461   }
   463   //----------------------------------------------------------------------------------------------------
   464   // Support for void verify_mxcsr()
   465   //
   466   // This routine is used with -Xcheck:jni to verify that native
   467   // JNI code does not return to Java code without restoring the
   468   // MXCSR register to our expected state.
   471   address generate_verify_mxcsr() {
   472     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   473     address start = __ pc();
   475     const Address mxcsr_save(rsp, 0);
   477     if (CheckJNICalls && UseSSE > 0 ) {
   478       Label ok_ret;
   479       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   480       __ push(rax);
   481       __ subptr(rsp, wordSize);      // allocate a temp location
   482       __ stmxcsr(mxcsr_save);
   483       __ movl(rax, mxcsr_save);
   484       __ andl(rax, MXCSR_MASK);
   485       __ cmp32(rax, mxcsr_std);
   486       __ jcc(Assembler::equal, ok_ret);
   488       __ warn("MXCSR changed by native JNI code.");
   490       __ ldmxcsr(mxcsr_std);
   492       __ bind(ok_ret);
   493       __ addptr(rsp, wordSize);
   494       __ pop(rax);
   495     }
   497     __ ret(0);
   499     return start;
   500   }
   503   //---------------------------------------------------------------------------
   504   // Support for void verify_fpu_cntrl_wrd()
   505   //
   506   // This routine is used with -Xcheck:jni to verify that native
   507   // JNI code does not return to Java code without restoring the
   508   // FP control word to our expected state.
   510   address generate_verify_fpu_cntrl_wrd() {
   511     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   512     address start = __ pc();
   514     const Address fpu_cntrl_wrd_save(rsp, 0);
   516     if (CheckJNICalls) {
   517       Label ok_ret;
   518       __ push(rax);
   519       __ subptr(rsp, wordSize);      // allocate a temp location
   520       __ fnstcw(fpu_cntrl_wrd_save);
   521       __ movl(rax, fpu_cntrl_wrd_save);
   522       __ andl(rax, FPU_CNTRL_WRD_MASK);
   523       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   524       __ cmp32(rax, fpu_std);
   525       __ jcc(Assembler::equal, ok_ret);
   527       __ warn("Floating point control word changed by native JNI code.");
   529       __ fldcw(fpu_std);
   531       __ bind(ok_ret);
   532       __ addptr(rsp, wordSize);
   533       __ pop(rax);
   534     }
   536     __ ret(0);
   538     return start;
   539   }
   541   //---------------------------------------------------------------------------
   542   // Wrapper for slow-case handling of double-to-integer conversion
   543   // d2i or f2i fast case failed either because it is nan or because
   544   // of under/overflow.
   545   // Input:  FPU TOS: float value
   546   // Output: rax, (rdx): integer (long) result
   548   address generate_d2i_wrapper(BasicType t, address fcn) {
   549     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   550     address start = __ pc();
   552   // Capture info about frame layout
   553   enum layout { FPUState_off         = 0,
   554                 rbp_off              = FPUStateSizeInWords,
   555                 rdi_off,
   556                 rsi_off,
   557                 rcx_off,
   558                 rbx_off,
   559                 saved_argument_off,
   560                 saved_argument_off2, // 2nd half of double
   561                 framesize
   562   };
   564   assert(FPUStateSizeInWords == 27, "update stack layout");
   566     // Save outgoing argument to stack across push_FPU_state()
   567     __ subptr(rsp, wordSize * 2);
   568     __ fstp_d(Address(rsp, 0));
   570     // Save CPU & FPU state
   571     __ push(rbx);
   572     __ push(rcx);
   573     __ push(rsi);
   574     __ push(rdi);
   575     __ push(rbp);
   576     __ push_FPU_state();
   578     // push_FPU_state() resets the FP top of stack
   579     // Load original double into FP top of stack
   580     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   581     // Store double into stack as outgoing argument
   582     __ subptr(rsp, wordSize*2);
   583     __ fst_d(Address(rsp, 0));
   585     // Prepare FPU for doing math in C-land
   586     __ empty_FPU_stack();
   587     // Call the C code to massage the double.  Result in EAX
   588     if (t == T_INT)
   589       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   590     else if (t == T_LONG)
   591       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   592     __ call_VM_leaf( fcn, 2 );
   594     // Restore CPU & FPU state
   595     __ pop_FPU_state();
   596     __ pop(rbp);
   597     __ pop(rdi);
   598     __ pop(rsi);
   599     __ pop(rcx);
   600     __ pop(rbx);
   601     __ addptr(rsp, wordSize * 2);
   603     __ ret(0);
   605     return start;
   606   }
   609   //---------------------------------------------------------------------------
   610   // The following routine generates a subroutine to throw an asynchronous
   611   // UnknownError when an unsafe access gets a fault that could not be
   612   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   613   address generate_handler_for_unsafe_access() {
   614     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   615     address start = __ pc();
   617     __ push(0);                       // hole for return address-to-be
   618     __ pusha();                       // push registers
   619     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   620     BLOCK_COMMENT("call handle_unsafe_access");
   621     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   622     __ movptr(next_pc, rax);          // stuff next address
   623     __ popa();
   624     __ ret(0);                        // jump to next address
   626     return start;
   627   }
   630   //----------------------------------------------------------------------------------------------------
   631   // Non-destructive plausibility checks for oops
   633   address generate_verify_oop() {
   634     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   635     address start = __ pc();
   637     // Incoming arguments on stack after saving rax,:
   638     //
   639     // [tos    ]: saved rdx
   640     // [tos + 1]: saved EFLAGS
   641     // [tos + 2]: return address
   642     // [tos + 3]: char* error message
   643     // [tos + 4]: oop   object to verify
   644     // [tos + 5]: saved rax, - saved by caller and bashed
   646     Label exit, error;
   647     __ pushf();
   648     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   649     __ push(rdx);                                // save rdx
   650     // make sure object is 'reasonable'
   651     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   652     __ testptr(rax, rax);
   653     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   655     // Check if the oop is in the right area of memory
   656     const int oop_mask = Universe::verify_oop_mask();
   657     const int oop_bits = Universe::verify_oop_bits();
   658     __ mov(rdx, rax);
   659     __ andptr(rdx, oop_mask);
   660     __ cmpptr(rdx, oop_bits);
   661     __ jcc(Assembler::notZero, error);
   663     // make sure klass is 'reasonable'
   664     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   665     __ testptr(rax, rax);
   666     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   668     // Check if the klass is in the right area of memory
   669     const int klass_mask = Universe::verify_klass_mask();
   670     const int klass_bits = Universe::verify_klass_bits();
   671     __ mov(rdx, rax);
   672     __ andptr(rdx, klass_mask);
   673     __ cmpptr(rdx, klass_bits);
   674     __ jcc(Assembler::notZero, error);
   676     // make sure klass' klass is 'reasonable'
   677     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   678     __ testptr(rax, rax);
   679     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   681     __ mov(rdx, rax);
   682     __ andptr(rdx, klass_mask);
   683     __ cmpptr(rdx, klass_bits);
   684     __ jcc(Assembler::notZero, error);           // if klass not in right area
   685                                                  // of memory it is broken too.
   687     // return if everything seems ok
   688     __ bind(exit);
   689     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   690     __ pop(rdx);                                 // restore rdx
   691     __ popf();                                   // restore EFLAGS
   692     __ ret(3 * wordSize);                        // pop arguments
   694     // handle errors
   695     __ bind(error);
   696     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   697     __ pop(rdx);                                 // get saved rdx back
   698     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   699     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   700     BLOCK_COMMENT("call MacroAssembler::debug");
   701     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   702     __ popa();
   703     __ ret(3 * wordSize);                        // pop arguments
   704     return start;
   705   }
   707   //
   708   //  Generate pre-barrier for array stores
   709   //
   710   //  Input:
   711   //     start   -  starting address
   712   //     count   -  element count
   713   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
   714     assert_different_registers(start, count);
   715     BarrierSet* bs = Universe::heap()->barrier_set();
   716     switch (bs->kind()) {
   717       case BarrierSet::G1SATBCT:
   718       case BarrierSet::G1SATBCTLogging:
   719         {
   720           __ pusha();                      // push registers
   721           __ push(count);
   722           __ push(start);
   723           __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)));
   724           __ addptr(rsp, 2*wordSize);
   725           __ popa();
   726         }
   727         break;
   728       case BarrierSet::CardTableModRef:
   729       case BarrierSet::CardTableExtension:
   730       case BarrierSet::ModRef:
   731         break;
   732       default      :
   733         ShouldNotReachHere();
   735     }
   736   }
   739   //
   740   // Generate a post-barrier for an array store
   741   //
   742   //     start    -  starting address
   743   //     count    -  element count
   744   //
   745   //  The two input registers are overwritten.
   746   //
   747   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   748     BarrierSet* bs = Universe::heap()->barrier_set();
   749     assert_different_registers(start, count);
   750     switch (bs->kind()) {
   751       case BarrierSet::G1SATBCT:
   752       case BarrierSet::G1SATBCTLogging:
   753         {
   754           __ pusha();                      // push registers
   755           __ push(count);
   756           __ push(start);
   757           __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)));
   758           __ addptr(rsp, 2*wordSize);
   759           __ popa();
   760         }
   761         break;
   763       case BarrierSet::CardTableModRef:
   764       case BarrierSet::CardTableExtension:
   765         {
   766           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   767           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   769           Label L_loop;
   770           const Register end = count;  // elements count; end == start+count-1
   771           assert_different_registers(start, end);
   773           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   774           __ shrptr(start, CardTableModRefBS::card_shift);
   775           __ shrptr(end,   CardTableModRefBS::card_shift);
   776           __ subptr(end, start); // end --> count
   777         __ BIND(L_loop);
   778           intptr_t disp = (intptr_t) ct->byte_map_base;
   779           Address cardtable(start, count, Address::times_1, disp);
   780           __ movb(cardtable, 0);
   781           __ decrement(count);
   782           __ jcc(Assembler::greaterEqual, L_loop);
   783         }
   784         break;
   785       case BarrierSet::ModRef:
   786         break;
   787       default      :
   788         ShouldNotReachHere();
   790     }
   791   }
   794   // Copy 64 bytes chunks
   795   //
   796   // Inputs:
   797   //   from        - source array address
   798   //   to_from     - destination array address - from
   799   //   qword_count - 8-bytes element count, negative
   800   //
   801   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   802     assert( UseSSE >= 2, "supported cpu only" );
   803     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   804     // Copy 64-byte chunks
   805     __ jmpb(L_copy_64_bytes);
   806     __ align(16);
   807   __ BIND(L_copy_64_bytes_loop);
   809     if(UseUnalignedLoadStores) {
   810       __ movdqu(xmm0, Address(from, 0));
   811       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   812       __ movdqu(xmm1, Address(from, 16));
   813       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   814       __ movdqu(xmm2, Address(from, 32));
   815       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   816       __ movdqu(xmm3, Address(from, 48));
   817       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   819     } else {
   820       __ movq(xmm0, Address(from, 0));
   821       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   822       __ movq(xmm1, Address(from, 8));
   823       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   824       __ movq(xmm2, Address(from, 16));
   825       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   826       __ movq(xmm3, Address(from, 24));
   827       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   828       __ movq(xmm4, Address(from, 32));
   829       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   830       __ movq(xmm5, Address(from, 40));
   831       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   832       __ movq(xmm6, Address(from, 48));
   833       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   834       __ movq(xmm7, Address(from, 56));
   835       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   836     }
   838     __ addl(from, 64);
   839   __ BIND(L_copy_64_bytes);
   840     __ subl(qword_count, 8);
   841     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   842     __ addl(qword_count, 8);
   843     __ jccb(Assembler::zero, L_exit);
   844     //
   845     // length is too short, just copy qwords
   846     //
   847   __ BIND(L_copy_8_bytes);
   848     __ movq(xmm0, Address(from, 0));
   849     __ movq(Address(from, to_from, Address::times_1), xmm0);
   850     __ addl(from, 8);
   851     __ decrement(qword_count);
   852     __ jcc(Assembler::greater, L_copy_8_bytes);
   853   __ BIND(L_exit);
   854   }
   856   // Copy 64 bytes chunks
   857   //
   858   // Inputs:
   859   //   from        - source array address
   860   //   to_from     - destination array address - from
   861   //   qword_count - 8-bytes element count, negative
   862   //
   863   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   864     assert( VM_Version::supports_mmx(), "supported cpu only" );
   865     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   866     // Copy 64-byte chunks
   867     __ jmpb(L_copy_64_bytes);
   868     __ align(16);
   869   __ BIND(L_copy_64_bytes_loop);
   870     __ movq(mmx0, Address(from, 0));
   871     __ movq(mmx1, Address(from, 8));
   872     __ movq(mmx2, Address(from, 16));
   873     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   874     __ movq(mmx3, Address(from, 24));
   875     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   876     __ movq(mmx4, Address(from, 32));
   877     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   878     __ movq(mmx5, Address(from, 40));
   879     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   880     __ movq(mmx6, Address(from, 48));
   881     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   882     __ movq(mmx7, Address(from, 56));
   883     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   884     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   885     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   886     __ addptr(from, 64);
   887   __ BIND(L_copy_64_bytes);
   888     __ subl(qword_count, 8);
   889     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   890     __ addl(qword_count, 8);
   891     __ jccb(Assembler::zero, L_exit);
   892     //
   893     // length is too short, just copy qwords
   894     //
   895   __ BIND(L_copy_8_bytes);
   896     __ movq(mmx0, Address(from, 0));
   897     __ movq(Address(from, to_from, Address::times_1), mmx0);
   898     __ addptr(from, 8);
   899     __ decrement(qword_count);
   900     __ jcc(Assembler::greater, L_copy_8_bytes);
   901   __ BIND(L_exit);
   902     __ emms();
   903   }
   905   address generate_disjoint_copy(BasicType t, bool aligned,
   906                                  Address::ScaleFactor sf,
   907                                  address* entry, const char *name) {
   908     __ align(CodeEntryAlignment);
   909     StubCodeMark mark(this, "StubRoutines", name);
   910     address start = __ pc();
   912     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   913     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   915     int shift = Address::times_ptr - sf;
   917     const Register from     = rsi;  // source array address
   918     const Register to       = rdi;  // destination array address
   919     const Register count    = rcx;  // elements count
   920     const Register to_from  = to;   // (to - from)
   921     const Register saved_to = rdx;  // saved destination array address
   923     __ enter(); // required for proper stackwalking of RuntimeStub frame
   924     __ push(rsi);
   925     __ push(rdi);
   926     __ movptr(from , Address(rsp, 12+ 4));
   927     __ movptr(to   , Address(rsp, 12+ 8));
   928     __ movl(count, Address(rsp, 12+ 12));
   929     if (t == T_OBJECT) {
   930       __ testl(count, count);
   931       __ jcc(Assembler::zero, L_0_count);
   932       gen_write_ref_array_pre_barrier(to, count);
   933       __ mov(saved_to, to);          // save 'to'
   934     }
   936     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   937     BLOCK_COMMENT("Entry:");
   939     __ subptr(to, from); // to --> to_from
   940     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   941     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   942     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   943       // align source address at 4 bytes address boundary
   944       if (t == T_BYTE) {
   945         // One byte misalignment happens only for byte arrays
   946         __ testl(from, 1);
   947         __ jccb(Assembler::zero, L_skip_align1);
   948         __ movb(rax, Address(from, 0));
   949         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   950         __ increment(from);
   951         __ decrement(count);
   952       __ BIND(L_skip_align1);
   953       }
   954       // Two bytes misalignment happens only for byte and short (char) arrays
   955       __ testl(from, 2);
   956       __ jccb(Assembler::zero, L_skip_align2);
   957       __ movw(rax, Address(from, 0));
   958       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   959       __ addptr(from, 2);
   960       __ subl(count, 1<<(shift-1));
   961     __ BIND(L_skip_align2);
   962     }
   963     if (!VM_Version::supports_mmx()) {
   964       __ mov(rax, count);      // save 'count'
   965       __ shrl(count, shift); // bytes count
   966       __ addptr(to_from, from);// restore 'to'
   967       __ rep_mov();
   968       __ subptr(to_from, from);// restore 'to_from'
   969       __ mov(count, rax);      // restore 'count'
   970       __ jmpb(L_copy_2_bytes); // all dwords were copied
   971     } else {
   972       if (!UseUnalignedLoadStores) {
   973         // align to 8 bytes, we know we are 4 byte aligned to start
   974         __ testptr(from, 4);
   975         __ jccb(Assembler::zero, L_copy_64_bytes);
   976         __ movl(rax, Address(from, 0));
   977         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   978         __ addptr(from, 4);
   979         __ subl(count, 1<<shift);
   980       }
   981     __ BIND(L_copy_64_bytes);
   982       __ mov(rax, count);
   983       __ shrl(rax, shift+1);  // 8 bytes chunk count
   984       //
   985       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   986       //
   987       if (UseXMMForArrayCopy) {
   988         xmm_copy_forward(from, to_from, rax);
   989       } else {
   990         mmx_copy_forward(from, to_from, rax);
   991       }
   992     }
   993     // copy tailing dword
   994   __ BIND(L_copy_4_bytes);
   995     __ testl(count, 1<<shift);
   996     __ jccb(Assembler::zero, L_copy_2_bytes);
   997     __ movl(rax, Address(from, 0));
   998     __ movl(Address(from, to_from, Address::times_1, 0), rax);
   999     if (t == T_BYTE || t == T_SHORT) {
  1000       __ addptr(from, 4);
  1001     __ BIND(L_copy_2_bytes);
  1002       // copy tailing word
  1003       __ testl(count, 1<<(shift-1));
  1004       __ jccb(Assembler::zero, L_copy_byte);
  1005       __ movw(rax, Address(from, 0));
  1006       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1007       if (t == T_BYTE) {
  1008         __ addptr(from, 2);
  1009       __ BIND(L_copy_byte);
  1010         // copy tailing byte
  1011         __ testl(count, 1);
  1012         __ jccb(Assembler::zero, L_exit);
  1013         __ movb(rax, Address(from, 0));
  1014         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1015       __ BIND(L_exit);
  1016       } else {
  1017       __ BIND(L_copy_byte);
  1019     } else {
  1020     __ BIND(L_copy_2_bytes);
  1023     if (t == T_OBJECT) {
  1024       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1025       __ mov(to, saved_to); // restore 'to'
  1026       gen_write_ref_array_post_barrier(to, count);
  1027     __ BIND(L_0_count);
  1029     inc_copy_counter_np(t);
  1030     __ pop(rdi);
  1031     __ pop(rsi);
  1032     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1033     __ xorptr(rax, rax); // return 0
  1034     __ ret(0);
  1035     return start;
  1039   address generate_conjoint_copy(BasicType t, bool aligned,
  1040                                  Address::ScaleFactor sf,
  1041                                  address nooverlap_target,
  1042                                  address* entry, const char *name) {
  1043     __ align(CodeEntryAlignment);
  1044     StubCodeMark mark(this, "StubRoutines", name);
  1045     address start = __ pc();
  1047     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1048     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1050     int shift = Address::times_ptr - sf;
  1052     const Register src   = rax;  // source array address
  1053     const Register dst   = rdx;  // destination array address
  1054     const Register from  = rsi;  // source array address
  1055     const Register to    = rdi;  // destination array address
  1056     const Register count = rcx;  // elements count
  1057     const Register end   = rax;  // array end address
  1059     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1060     __ push(rsi);
  1061     __ push(rdi);
  1062     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1063     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1064     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1065     if (t == T_OBJECT) {
  1066        gen_write_ref_array_pre_barrier(dst, count);
  1069     if (entry != NULL) {
  1070       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1071       BLOCK_COMMENT("Entry:");
  1074     if (t == T_OBJECT) {
  1075       __ testl(count, count);
  1076       __ jcc(Assembler::zero, L_0_count);
  1078     __ mov(from, src);
  1079     __ mov(to  , dst);
  1081     // arrays overlap test
  1082     RuntimeAddress nooverlap(nooverlap_target);
  1083     __ cmpptr(dst, src);
  1084     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1085     __ jump_cc(Assembler::belowEqual, nooverlap);
  1086     __ cmpptr(dst, end);
  1087     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1089     // copy from high to low
  1090     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1091     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1092     if (t == T_BYTE || t == T_SHORT) {
  1093       // Align the end of destination array at 4 bytes address boundary
  1094       __ lea(end, Address(dst, count, sf, 0));
  1095       if (t == T_BYTE) {
  1096         // One byte misalignment happens only for byte arrays
  1097         __ testl(end, 1);
  1098         __ jccb(Assembler::zero, L_skip_align1);
  1099         __ decrement(count);
  1100         __ movb(rdx, Address(from, count, sf, 0));
  1101         __ movb(Address(to, count, sf, 0), rdx);
  1102       __ BIND(L_skip_align1);
  1104       // Two bytes misalignment happens only for byte and short (char) arrays
  1105       __ testl(end, 2);
  1106       __ jccb(Assembler::zero, L_skip_align2);
  1107       __ subptr(count, 1<<(shift-1));
  1108       __ movw(rdx, Address(from, count, sf, 0));
  1109       __ movw(Address(to, count, sf, 0), rdx);
  1110     __ BIND(L_skip_align2);
  1111       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1112       __ jcc(Assembler::below, L_copy_4_bytes);
  1115     if (!VM_Version::supports_mmx()) {
  1116       __ std();
  1117       __ mov(rax, count); // Save 'count'
  1118       __ mov(rdx, to);    // Save 'to'
  1119       __ lea(rsi, Address(from, count, sf, -4));
  1120       __ lea(rdi, Address(to  , count, sf, -4));
  1121       __ shrptr(count, shift); // bytes count
  1122       __ rep_mov();
  1123       __ cld();
  1124       __ mov(count, rax); // restore 'count'
  1125       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1126       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1127       __ mov(to, rdx);   // restore 'to'
  1128       __ jmpb(L_copy_2_bytes); // all dword were copied
  1129    } else {
  1130       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1131       __ testptr(end, 4);
  1132       __ jccb(Assembler::zero, L_copy_8_bytes);
  1133       __ subl(count, 1<<shift);
  1134       __ movl(rdx, Address(from, count, sf, 0));
  1135       __ movl(Address(to, count, sf, 0), rdx);
  1136       __ jmpb(L_copy_8_bytes);
  1138       __ align(16);
  1139       // Move 8 bytes
  1140     __ BIND(L_copy_8_bytes_loop);
  1141       if (UseXMMForArrayCopy) {
  1142         __ movq(xmm0, Address(from, count, sf, 0));
  1143         __ movq(Address(to, count, sf, 0), xmm0);
  1144       } else {
  1145         __ movq(mmx0, Address(from, count, sf, 0));
  1146         __ movq(Address(to, count, sf, 0), mmx0);
  1148     __ BIND(L_copy_8_bytes);
  1149       __ subl(count, 2<<shift);
  1150       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1151       __ addl(count, 2<<shift);
  1152       if (!UseXMMForArrayCopy) {
  1153         __ emms();
  1156   __ BIND(L_copy_4_bytes);
  1157     // copy prefix qword
  1158     __ testl(count, 1<<shift);
  1159     __ jccb(Assembler::zero, L_copy_2_bytes);
  1160     __ movl(rdx, Address(from, count, sf, -4));
  1161     __ movl(Address(to, count, sf, -4), rdx);
  1163     if (t == T_BYTE || t == T_SHORT) {
  1164         __ subl(count, (1<<shift));
  1165       __ BIND(L_copy_2_bytes);
  1166         // copy prefix dword
  1167         __ testl(count, 1<<(shift-1));
  1168         __ jccb(Assembler::zero, L_copy_byte);
  1169         __ movw(rdx, Address(from, count, sf, -2));
  1170         __ movw(Address(to, count, sf, -2), rdx);
  1171         if (t == T_BYTE) {
  1172           __ subl(count, 1<<(shift-1));
  1173         __ BIND(L_copy_byte);
  1174           // copy prefix byte
  1175           __ testl(count, 1);
  1176           __ jccb(Assembler::zero, L_exit);
  1177           __ movb(rdx, Address(from, 0));
  1178           __ movb(Address(to, 0), rdx);
  1179         __ BIND(L_exit);
  1180         } else {
  1181         __ BIND(L_copy_byte);
  1183     } else {
  1184     __ BIND(L_copy_2_bytes);
  1186     if (t == T_OBJECT) {
  1187       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1188       gen_write_ref_array_post_barrier(to, count);
  1189     __ BIND(L_0_count);
  1191     inc_copy_counter_np(t);
  1192     __ pop(rdi);
  1193     __ pop(rsi);
  1194     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1195     __ xorptr(rax, rax); // return 0
  1196     __ ret(0);
  1197     return start;
  1201   address generate_disjoint_long_copy(address* entry, const char *name) {
  1202     __ align(CodeEntryAlignment);
  1203     StubCodeMark mark(this, "StubRoutines", name);
  1204     address start = __ pc();
  1206     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1207     const Register from       = rax;  // source array address
  1208     const Register to         = rdx;  // destination array address
  1209     const Register count      = rcx;  // elements count
  1210     const Register to_from    = rdx;  // (to - from)
  1212     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1213     __ movptr(from , Address(rsp, 8+0));       // from
  1214     __ movptr(to   , Address(rsp, 8+4));       // to
  1215     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1217     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1218     BLOCK_COMMENT("Entry:");
  1220     __ subptr(to, from); // to --> to_from
  1221     if (VM_Version::supports_mmx()) {
  1222       if (UseXMMForArrayCopy) {
  1223         xmm_copy_forward(from, to_from, count);
  1224       } else {
  1225         mmx_copy_forward(from, to_from, count);
  1227     } else {
  1228       __ jmpb(L_copy_8_bytes);
  1229       __ align(16);
  1230     __ BIND(L_copy_8_bytes_loop);
  1231       __ fild_d(Address(from, 0));
  1232       __ fistp_d(Address(from, to_from, Address::times_1));
  1233       __ addptr(from, 8);
  1234     __ BIND(L_copy_8_bytes);
  1235       __ decrement(count);
  1236       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1238     inc_copy_counter_np(T_LONG);
  1239     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1240     __ xorptr(rax, rax); // return 0
  1241     __ ret(0);
  1242     return start;
  1245   address generate_conjoint_long_copy(address nooverlap_target,
  1246                                       address* entry, const char *name) {
  1247     __ align(CodeEntryAlignment);
  1248     StubCodeMark mark(this, "StubRoutines", name);
  1249     address start = __ pc();
  1251     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1252     const Register from       = rax;  // source array address
  1253     const Register to         = rdx;  // destination array address
  1254     const Register count      = rcx;  // elements count
  1255     const Register end_from   = rax;  // source array end address
  1257     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1258     __ movptr(from , Address(rsp, 8+0));       // from
  1259     __ movptr(to   , Address(rsp, 8+4));       // to
  1260     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1262     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1263     BLOCK_COMMENT("Entry:");
  1265     // arrays overlap test
  1266     __ cmpptr(to, from);
  1267     RuntimeAddress nooverlap(nooverlap_target);
  1268     __ jump_cc(Assembler::belowEqual, nooverlap);
  1269     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1270     __ cmpptr(to, end_from);
  1271     __ movptr(from, Address(rsp, 8));  // from
  1272     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1274     __ jmpb(L_copy_8_bytes);
  1276     __ align(16);
  1277   __ BIND(L_copy_8_bytes_loop);
  1278     if (VM_Version::supports_mmx()) {
  1279       if (UseXMMForArrayCopy) {
  1280         __ movq(xmm0, Address(from, count, Address::times_8));
  1281         __ movq(Address(to, count, Address::times_8), xmm0);
  1282       } else {
  1283         __ movq(mmx0, Address(from, count, Address::times_8));
  1284         __ movq(Address(to, count, Address::times_8), mmx0);
  1286     } else {
  1287       __ fild_d(Address(from, count, Address::times_8));
  1288       __ fistp_d(Address(to, count, Address::times_8));
  1290   __ BIND(L_copy_8_bytes);
  1291     __ decrement(count);
  1292     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1294     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1295       __ emms();
  1297     inc_copy_counter_np(T_LONG);
  1298     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1299     __ xorptr(rax, rax); // return 0
  1300     __ ret(0);
  1301     return start;
  1305   // Helper for generating a dynamic type check.
  1306   // The sub_klass must be one of {rbx, rdx, rsi}.
  1307   // The temp is killed.
  1308   void generate_type_check(Register sub_klass,
  1309                            Address& super_check_offset_addr,
  1310                            Address& super_klass_addr,
  1311                            Register temp,
  1312                            Label* L_success, Label* L_failure) {
  1313     BLOCK_COMMENT("type_check:");
  1315     Label L_fallthrough;
  1316 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1317     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1318     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1320     // The following is a strange variation of the fast path which requires
  1321     // one less register, because needed values are on the argument stack.
  1322     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1323     //                                  L_success, L_failure, NULL);
  1324     assert_different_registers(sub_klass, temp);
  1326     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1327                      Klass::secondary_super_cache_offset_in_bytes());
  1329     // if the pointers are equal, we are done (e.g., String[] elements)
  1330     __ cmpptr(sub_klass, super_klass_addr);
  1331     LOCAL_JCC(Assembler::equal, L_success);
  1333     // check the supertype display:
  1334     __ movl2ptr(temp, super_check_offset_addr);
  1335     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1336     __ movptr(temp, super_check_addr); // load displayed supertype
  1337     __ cmpptr(temp, super_klass_addr); // test the super type
  1338     LOCAL_JCC(Assembler::equal, L_success);
  1340     // if it was a primary super, we can just fail immediately
  1341     __ cmpl(super_check_offset_addr, sc_offset);
  1342     LOCAL_JCC(Assembler::notEqual, L_failure);
  1344     // The repne_scan instruction uses fixed registers, which will get spilled.
  1345     // We happen to know this works best when super_klass is in rax.
  1346     Register super_klass = temp;
  1347     __ movptr(super_klass, super_klass_addr);
  1348     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1349                                      L_success, L_failure);
  1351     __ bind(L_fallthrough);
  1353     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1354     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1356 #undef LOCAL_JCC
  1359   //
  1360   //  Generate checkcasting array copy stub
  1361   //
  1362   //  Input:
  1363   //    4(rsp)   - source array address
  1364   //    8(rsp)   - destination array address
  1365   //   12(rsp)   - element count, can be zero
  1366   //   16(rsp)   - size_t ckoff (super_check_offset)
  1367   //   20(rsp)   - oop ckval (super_klass)
  1368   //
  1369   //  Output:
  1370   //    rax, ==  0  -  success
  1371   //    rax, == -1^K - failure, where K is partial transfer count
  1372   //
  1373   address generate_checkcast_copy(const char *name, address* entry) {
  1374     __ align(CodeEntryAlignment);
  1375     StubCodeMark mark(this, "StubRoutines", name);
  1376     address start = __ pc();
  1378     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1380     // register use:
  1381     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1382     //  rdi, rsi      -- element access (oop, klass)
  1383     //  rbx,           -- temp
  1384     const Register from       = rax;    // source array address
  1385     const Register to         = rdx;    // destination array address
  1386     const Register length     = rcx;    // elements count
  1387     const Register elem       = rdi;    // each oop copied
  1388     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1389     const Register temp       = rbx;    // lone remaining temp
  1391     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1393     __ push(rsi);
  1394     __ push(rdi);
  1395     __ push(rbx);
  1397     Address   from_arg(rsp, 16+ 4);     // from
  1398     Address     to_arg(rsp, 16+ 8);     // to
  1399     Address length_arg(rsp, 16+12);     // elements count
  1400     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1401     Address  ckval_arg(rsp, 16+20);     // super_klass
  1403     // Load up:
  1404     __ movptr(from,     from_arg);
  1405     __ movptr(to,         to_arg);
  1406     __ movl2ptr(length, length_arg);
  1408     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1409     BLOCK_COMMENT("Entry:");
  1411     //---------------------------------------------------------------
  1412     // Assembler stub will be used for this call to arraycopy
  1413     // if the two arrays are subtypes of Object[] but the
  1414     // destination array type is not equal to or a supertype
  1415     // of the source type.  Each element must be separately
  1416     // checked.
  1418     // Loop-invariant addresses.  They are exclusive end pointers.
  1419     Address end_from_addr(from, length, Address::times_ptr, 0);
  1420     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1422     Register end_from = from;           // re-use
  1423     Register end_to   = to;             // re-use
  1424     Register count    = length;         // re-use
  1426     // Loop-variant addresses.  They assume post-incremented count < 0.
  1427     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1428     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1429     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1431     // Copy from low to high addresses, indexed from the end of each array.
  1432     gen_write_ref_array_pre_barrier(to, count);
  1433     __ lea(end_from, end_from_addr);
  1434     __ lea(end_to,   end_to_addr);
  1435     assert(length == count, "");        // else fix next line:
  1436     __ negptr(count);                   // negate and test the length
  1437     __ jccb(Assembler::notZero, L_load_element);
  1439     // Empty array:  Nothing to do.
  1440     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1441     __ jmp(L_done);
  1443     // ======== begin loop ========
  1444     // (Loop is rotated; its entry is L_load_element.)
  1445     // Loop control:
  1446     //   for (count = -count; count != 0; count++)
  1447     // Base pointers src, dst are biased by 8*count,to last element.
  1448     __ align(16);
  1450     __ BIND(L_store_element);
  1451     __ movptr(to_element_addr, elem);     // store the oop
  1452     __ increment(count);                // increment the count toward zero
  1453     __ jccb(Assembler::zero, L_do_card_marks);
  1455     // ======== loop entry is here ========
  1456     __ BIND(L_load_element);
  1457     __ movptr(elem, from_element_addr);   // load the oop
  1458     __ testptr(elem, elem);
  1459     __ jccb(Assembler::zero, L_store_element);
  1461     // (Could do a trick here:  Remember last successful non-null
  1462     // element stored and make a quick oop equality check on it.)
  1464     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1465     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1466                         &L_store_element, NULL);
  1467       // (On fall-through, we have failed the element type check.)
  1468     // ======== end loop ========
  1470     // It was a real error; we must depend on the caller to finish the job.
  1471     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1472     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1473     // and report their number to the caller.
  1474     __ addl(count, length_arg);         // transfers = (length - remaining)
  1475     __ movl2ptr(rax, count);            // save the value
  1476     __ notptr(rax);                     // report (-1^K) to caller
  1477     __ movptr(to, to_arg);              // reload
  1478     assert_different_registers(to, count, rax);
  1479     gen_write_ref_array_post_barrier(to, count);
  1480     __ jmpb(L_done);
  1482     // Come here on success only.
  1483     __ BIND(L_do_card_marks);
  1484     __ movl2ptr(count, length_arg);
  1485     __ movptr(to, to_arg);                // reload
  1486     gen_write_ref_array_post_barrier(to, count);
  1487     __ xorptr(rax, rax);                  // return 0 on success
  1489     // Common exit point (success or failure).
  1490     __ BIND(L_done);
  1491     __ pop(rbx);
  1492     __ pop(rdi);
  1493     __ pop(rsi);
  1494     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1495     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1496     __ ret(0);
  1498     return start;
  1501   //
  1502   //  Generate 'unsafe' array copy stub
  1503   //  Though just as safe as the other stubs, it takes an unscaled
  1504   //  size_t argument instead of an element count.
  1505   //
  1506   //  Input:
  1507   //    4(rsp)   - source array address
  1508   //    8(rsp)   - destination array address
  1509   //   12(rsp)   - byte count, can be zero
  1510   //
  1511   //  Output:
  1512   //    rax, ==  0  -  success
  1513   //    rax, == -1  -  need to call System.arraycopy
  1514   //
  1515   // Examines the alignment of the operands and dispatches
  1516   // to a long, int, short, or byte copy loop.
  1517   //
  1518   address generate_unsafe_copy(const char *name,
  1519                                address byte_copy_entry,
  1520                                address short_copy_entry,
  1521                                address int_copy_entry,
  1522                                address long_copy_entry) {
  1524     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1526     __ align(CodeEntryAlignment);
  1527     StubCodeMark mark(this, "StubRoutines", name);
  1528     address start = __ pc();
  1530     const Register from       = rax;  // source array address
  1531     const Register to         = rdx;  // destination array address
  1532     const Register count      = rcx;  // elements count
  1534     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1535     __ push(rsi);
  1536     __ push(rdi);
  1537     Address  from_arg(rsp, 12+ 4);      // from
  1538     Address    to_arg(rsp, 12+ 8);      // to
  1539     Address count_arg(rsp, 12+12);      // byte count
  1541     // Load up:
  1542     __ movptr(from ,  from_arg);
  1543     __ movptr(to   ,    to_arg);
  1544     __ movl2ptr(count, count_arg);
  1546     // bump this on entry, not on exit:
  1547     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1549     const Register bits = rsi;
  1550     __ mov(bits, from);
  1551     __ orptr(bits, to);
  1552     __ orptr(bits, count);
  1554     __ testl(bits, BytesPerLong-1);
  1555     __ jccb(Assembler::zero, L_long_aligned);
  1557     __ testl(bits, BytesPerInt-1);
  1558     __ jccb(Assembler::zero, L_int_aligned);
  1560     __ testl(bits, BytesPerShort-1);
  1561     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1563     __ BIND(L_short_aligned);
  1564     __ shrptr(count, LogBytesPerShort); // size => short_count
  1565     __ movl(count_arg, count);          // update 'count'
  1566     __ jump(RuntimeAddress(short_copy_entry));
  1568     __ BIND(L_int_aligned);
  1569     __ shrptr(count, LogBytesPerInt); // size => int_count
  1570     __ movl(count_arg, count);          // update 'count'
  1571     __ jump(RuntimeAddress(int_copy_entry));
  1573     __ BIND(L_long_aligned);
  1574     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1575     __ movl(count_arg, count);          // update 'count'
  1576     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1577     __ pop(rsi);
  1578     __ jump(RuntimeAddress(long_copy_entry));
  1580     return start;
  1584   // Perform range checks on the proposed arraycopy.
  1585   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1586   void arraycopy_range_checks(Register src,
  1587                               Register src_pos,
  1588                               Register dst,
  1589                               Register dst_pos,
  1590                               Address& length,
  1591                               Label& L_failed) {
  1592     BLOCK_COMMENT("arraycopy_range_checks:");
  1593     const Register src_end = src_pos;   // source array end position
  1594     const Register dst_end = dst_pos;   // destination array end position
  1595     __ addl(src_end, length); // src_pos + length
  1596     __ addl(dst_end, length); // dst_pos + length
  1598     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1599     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1600     __ jcc(Assembler::above, L_failed);
  1602     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1603     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1604     __ jcc(Assembler::above, L_failed);
  1606     BLOCK_COMMENT("arraycopy_range_checks done");
  1610   //
  1611   //  Generate generic array copy stubs
  1612   //
  1613   //  Input:
  1614   //     4(rsp)    -  src oop
  1615   //     8(rsp)    -  src_pos
  1616   //    12(rsp)    -  dst oop
  1617   //    16(rsp)    -  dst_pos
  1618   //    20(rsp)    -  element count
  1619   //
  1620   //  Output:
  1621   //    rax, ==  0  -  success
  1622   //    rax, == -1^K - failure, where K is partial transfer count
  1623   //
  1624   address generate_generic_copy(const char *name,
  1625                                 address entry_jbyte_arraycopy,
  1626                                 address entry_jshort_arraycopy,
  1627                                 address entry_jint_arraycopy,
  1628                                 address entry_oop_arraycopy,
  1629                                 address entry_jlong_arraycopy,
  1630                                 address entry_checkcast_arraycopy) {
  1631     Label L_failed, L_failed_0, L_objArray;
  1633     { int modulus = CodeEntryAlignment;
  1634       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1635       int advance = target - (__ offset() % modulus);
  1636       if (advance < 0)  advance += modulus;
  1637       if (advance > 0)  __ nop(advance);
  1639     StubCodeMark mark(this, "StubRoutines", name);
  1641     // Short-hop target to L_failed.  Makes for denser prologue code.
  1642     __ BIND(L_failed_0);
  1643     __ jmp(L_failed);
  1644     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1646     __ align(CodeEntryAlignment);
  1647     address start = __ pc();
  1649     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1650     __ push(rsi);
  1651     __ push(rdi);
  1653     // bump this on entry, not on exit:
  1654     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1656     // Input values
  1657     Address SRC     (rsp, 12+ 4);
  1658     Address SRC_POS (rsp, 12+ 8);
  1659     Address DST     (rsp, 12+12);
  1660     Address DST_POS (rsp, 12+16);
  1661     Address LENGTH  (rsp, 12+20);
  1663     //-----------------------------------------------------------------------
  1664     // Assembler stub will be used for this call to arraycopy
  1665     // if the following conditions are met:
  1666     //
  1667     // (1) src and dst must not be null.
  1668     // (2) src_pos must not be negative.
  1669     // (3) dst_pos must not be negative.
  1670     // (4) length  must not be negative.
  1671     // (5) src klass and dst klass should be the same and not NULL.
  1672     // (6) src and dst should be arrays.
  1673     // (7) src_pos + length must not exceed length of src.
  1674     // (8) dst_pos + length must not exceed length of dst.
  1675     //
  1677     const Register src     = rax;       // source array oop
  1678     const Register src_pos = rsi;
  1679     const Register dst     = rdx;       // destination array oop
  1680     const Register dst_pos = rdi;
  1681     const Register length  = rcx;       // transfer count
  1683     //  if (src == NULL) return -1;
  1684     __ movptr(src, SRC);      // src oop
  1685     __ testptr(src, src);
  1686     __ jccb(Assembler::zero, L_failed_0);
  1688     //  if (src_pos < 0) return -1;
  1689     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1690     __ testl(src_pos, src_pos);
  1691     __ jccb(Assembler::negative, L_failed_0);
  1693     //  if (dst == NULL) return -1;
  1694     __ movptr(dst, DST);      // dst oop
  1695     __ testptr(dst, dst);
  1696     __ jccb(Assembler::zero, L_failed_0);
  1698     //  if (dst_pos < 0) return -1;
  1699     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1700     __ testl(dst_pos, dst_pos);
  1701     __ jccb(Assembler::negative, L_failed_0);
  1703     //  if (length < 0) return -1;
  1704     __ movl2ptr(length, LENGTH);   // length
  1705     __ testl(length, length);
  1706     __ jccb(Assembler::negative, L_failed_0);
  1708     //  if (src->klass() == NULL) return -1;
  1709     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1710     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1711     const Register rcx_src_klass = rcx;    // array klass
  1712     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1714 #ifdef ASSERT
  1715     //  assert(src->klass() != NULL);
  1716     BLOCK_COMMENT("assert klasses not null");
  1717     { Label L1, L2;
  1718       __ testptr(rcx_src_klass, rcx_src_klass);
  1719       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1720       __ bind(L1);
  1721       __ stop("broken null klass");
  1722       __ bind(L2);
  1723       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1724       __ jccb(Assembler::equal, L1);      // this would be broken also
  1725       BLOCK_COMMENT("assert done");
  1727 #endif //ASSERT
  1729     // Load layout helper (32-bits)
  1730     //
  1731     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1732     // 32        30    24            16              8     2                 0
  1733     //
  1734     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1735     //
  1737     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1738                     Klass::layout_helper_offset_in_bytes();
  1739     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1741     // Handle objArrays completely differently...
  1742     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1743     __ cmpl(src_klass_lh_addr, objArray_lh);
  1744     __ jcc(Assembler::equal, L_objArray);
  1746     //  if (src->klass() != dst->klass()) return -1;
  1747     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1748     __ jccb(Assembler::notEqual, L_failed_0);
  1750     const Register rcx_lh = rcx;  // layout helper
  1751     assert(rcx_lh == rcx_src_klass, "known alias");
  1752     __ movl(rcx_lh, src_klass_lh_addr);
  1754     //  if (!src->is_Array()) return -1;
  1755     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1756     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1758     // At this point, it is known to be a typeArray (array_tag 0x3).
  1759 #ifdef ASSERT
  1760     { Label L;
  1761       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1762       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1763       __ stop("must be a primitive array");
  1764       __ bind(L);
  1766 #endif
  1768     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1769     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1771     // typeArrayKlass
  1772     //
  1773     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1774     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1775     //
  1776     const Register rsi_offset = rsi; // array offset
  1777     const Register src_array  = src; // src array offset
  1778     const Register dst_array  = dst; // dst array offset
  1779     const Register rdi_elsize = rdi; // log2 element size
  1781     __ mov(rsi_offset, rcx_lh);
  1782     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1783     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1784     __ addptr(src_array, rsi_offset);  // src array offset
  1785     __ addptr(dst_array, rsi_offset);  // dst array offset
  1786     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1788     // next registers should be set before the jump to corresponding stub
  1789     const Register from       = src; // source array address
  1790     const Register to         = dst; // destination array address
  1791     const Register count      = rcx; // elements count
  1792     // some of them should be duplicated on stack
  1793 #define FROM   Address(rsp, 12+ 4)
  1794 #define TO     Address(rsp, 12+ 8)   // Not used now
  1795 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1797     BLOCK_COMMENT("scale indexes to element size");
  1798     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1799     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1800     assert(src_array == from, "");
  1801     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1802     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1803     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1804     assert(dst_array == to, "");
  1805     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1806     __ movptr(FROM, from);      // src_addr
  1807     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1808     __ movl2ptr(count, LENGTH); // elements count
  1810     BLOCK_COMMENT("choose copy loop based on element size");
  1811     __ cmpl(rdi_elsize, 0);
  1813     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1814     __ cmpl(rdi_elsize, LogBytesPerShort);
  1815     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1816     __ cmpl(rdi_elsize, LogBytesPerInt);
  1817     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1818 #ifdef ASSERT
  1819     __ cmpl(rdi_elsize, LogBytesPerLong);
  1820     __ jccb(Assembler::notEqual, L_failed);
  1821 #endif
  1822     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1823     __ pop(rsi);
  1824     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1826   __ BIND(L_failed);
  1827     __ xorptr(rax, rax);
  1828     __ notptr(rax); // return -1
  1829     __ pop(rdi);
  1830     __ pop(rsi);
  1831     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1832     __ ret(0);
  1834     // objArrayKlass
  1835   __ BIND(L_objArray);
  1836     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1838     Label L_plain_copy, L_checkcast_copy;
  1839     //  test array classes for subtyping
  1840     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1841     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1843     // Identically typed arrays can be copied without element-wise checks.
  1844     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1845     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1847   __ BIND(L_plain_copy);
  1848     __ movl2ptr(count, LENGTH); // elements count
  1849     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1850     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1851                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1852     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1853     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1854                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1855     __ movptr(FROM,  from);   // src_addr
  1856     __ movptr(TO,    to);     // dst_addr
  1857     __ movl(COUNT, count);  // count
  1858     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1860   __ BIND(L_checkcast_copy);
  1861     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1863       // Handy offsets:
  1864       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1865                         objArrayKlass::element_klass_offset_in_bytes());
  1866       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1867                         Klass::super_check_offset_offset_in_bytes());
  1869       Register rsi_dst_klass = rsi;
  1870       Register rdi_temp      = rdi;
  1871       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1872       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1873       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1875       // Before looking at dst.length, make sure dst is also an objArray.
  1876       __ movptr(rsi_dst_klass, dst_klass_addr);
  1877       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1878       __ jccb(Assembler::notEqual, L_failed);
  1880       // It is safe to examine both src.length and dst.length.
  1881       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1882       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1883       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1885       // We'll need this temp (don't forget to pop it after the type check).
  1886       __ push(rbx);
  1887       Register rbx_src_klass = rbx;
  1889       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1890       __ movptr(rsi_dst_klass, dst_klass_addr);
  1891       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1892       Label L_fail_array_check;
  1893       generate_type_check(rbx_src_klass,
  1894                           super_check_offset_addr, dst_klass_addr,
  1895                           rdi_temp, NULL, &L_fail_array_check);
  1896       // (On fall-through, we have passed the array type check.)
  1897       __ pop(rbx);
  1898       __ jmp(L_plain_copy);
  1900       __ BIND(L_fail_array_check);
  1901       // Reshuffle arguments so we can call checkcast_arraycopy:
  1903       // match initial saves for checkcast_arraycopy
  1904       // push(rsi);    // already done; see above
  1905       // push(rdi);    // already done; see above
  1906       // push(rbx);    // already done; see above
  1908       // Marshal outgoing arguments now, freeing registers.
  1909       Address   from_arg(rsp, 16+ 4);   // from
  1910       Address     to_arg(rsp, 16+ 8);   // to
  1911       Address length_arg(rsp, 16+12);   // elements count
  1912       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1913       Address  ckval_arg(rsp, 16+20);   // super_klass
  1915       Address SRC_POS_arg(rsp, 16+ 8);
  1916       Address DST_POS_arg(rsp, 16+16);
  1917       Address  LENGTH_arg(rsp, 16+20);
  1918       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1919       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1921       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1922       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1923       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1924       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1926       __ movptr(ckval_arg, rbx);          // destination element type
  1927       __ movl(rbx, Address(rbx, sco_offset));
  1928       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1930       __ movl(length_arg, length);      // outgoing length argument
  1932       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1933                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1934       __ movptr(from_arg, from);
  1936       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1937                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1938       __ movptr(to_arg, to);
  1939       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1942     return start;
  1945   void generate_arraycopy_stubs() {
  1946     address entry;
  1947     address entry_jbyte_arraycopy;
  1948     address entry_jshort_arraycopy;
  1949     address entry_jint_arraycopy;
  1950     address entry_oop_arraycopy;
  1951     address entry_jlong_arraycopy;
  1952     address entry_checkcast_arraycopy;
  1954     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1955         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1956                                "arrayof_jbyte_disjoint_arraycopy");
  1957     StubRoutines::_arrayof_jbyte_arraycopy =
  1958         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1959                                NULL, "arrayof_jbyte_arraycopy");
  1960     StubRoutines::_jbyte_disjoint_arraycopy =
  1961         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1962                                "jbyte_disjoint_arraycopy");
  1963     StubRoutines::_jbyte_arraycopy =
  1964         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1965                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1967     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  1968         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  1969                                "arrayof_jshort_disjoint_arraycopy");
  1970     StubRoutines::_arrayof_jshort_arraycopy =
  1971         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  1972                                NULL, "arrayof_jshort_arraycopy");
  1973     StubRoutines::_jshort_disjoint_arraycopy =
  1974         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  1975                                "jshort_disjoint_arraycopy");
  1976     StubRoutines::_jshort_arraycopy =
  1977         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  1978                                &entry_jshort_arraycopy, "jshort_arraycopy");
  1980     // Next arrays are always aligned on 4 bytes at least.
  1981     StubRoutines::_jint_disjoint_arraycopy =
  1982         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  1983                                "jint_disjoint_arraycopy");
  1984     StubRoutines::_jint_arraycopy =
  1985         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  1986                                &entry_jint_arraycopy, "jint_arraycopy");
  1988     StubRoutines::_oop_disjoint_arraycopy =
  1989         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  1990                                "oop_disjoint_arraycopy");
  1991     StubRoutines::_oop_arraycopy =
  1992         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  1993                                &entry_oop_arraycopy, "oop_arraycopy");
  1995     StubRoutines::_jlong_disjoint_arraycopy =
  1996         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  1997     StubRoutines::_jlong_arraycopy =
  1998         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  1999                                     "jlong_arraycopy");
  2001     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
  2002         StubRoutines::_jint_disjoint_arraycopy;
  2003     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
  2004         StubRoutines::_oop_disjoint_arraycopy;
  2005     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
  2006         StubRoutines::_jlong_disjoint_arraycopy;
  2008     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
  2009     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
  2010     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
  2012     StubRoutines::_checkcast_arraycopy =
  2013         generate_checkcast_copy("checkcast_arraycopy",
  2014                                   &entry_checkcast_arraycopy);
  2016     StubRoutines::_unsafe_arraycopy =
  2017         generate_unsafe_copy("unsafe_arraycopy",
  2018                                entry_jbyte_arraycopy,
  2019                                entry_jshort_arraycopy,
  2020                                entry_jint_arraycopy,
  2021                                entry_jlong_arraycopy);
  2023     StubRoutines::_generic_arraycopy =
  2024         generate_generic_copy("generic_arraycopy",
  2025                                entry_jbyte_arraycopy,
  2026                                entry_jshort_arraycopy,
  2027                                entry_jint_arraycopy,
  2028                                entry_oop_arraycopy,
  2029                                entry_jlong_arraycopy,
  2030                                entry_checkcast_arraycopy);
  2033   void generate_math_stubs() {
  2035       StubCodeMark mark(this, "StubRoutines", "log");
  2036       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2038       __ fld_d(Address(rsp, 4));
  2039       __ flog();
  2040       __ ret(0);
  2043       StubCodeMark mark(this, "StubRoutines", "log10");
  2044       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2046       __ fld_d(Address(rsp, 4));
  2047       __ flog10();
  2048       __ ret(0);
  2051       StubCodeMark mark(this, "StubRoutines", "sin");
  2052       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2054       __ fld_d(Address(rsp, 4));
  2055       __ trigfunc('s');
  2056       __ ret(0);
  2059       StubCodeMark mark(this, "StubRoutines", "cos");
  2060       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2062       __ fld_d(Address(rsp, 4));
  2063       __ trigfunc('c');
  2064       __ ret(0);
  2067       StubCodeMark mark(this, "StubRoutines", "tan");
  2068       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2070       __ fld_d(Address(rsp, 4));
  2071       __ trigfunc('t');
  2072       __ ret(0);
  2075     // The intrinsic version of these seem to return the same value as
  2076     // the strict version.
  2077     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2078     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2081  public:
  2082   // Information about frame layout at time of blocking runtime call.
  2083   // Note that we only have to preserve callee-saved registers since
  2084   // the compilers are responsible for supplying a continuation point
  2085   // if they expect all registers to be preserved.
  2086   enum layout {
  2087     thread_off,    // last_java_sp
  2088     rbp_off,       // callee saved register
  2089     ret_pc,
  2090     framesize
  2091   };
  2093  private:
  2095 #undef  __
  2096 #define __ masm->
  2098   //------------------------------------------------------------------------------------------------------------------------
  2099   // Continuation point for throwing of implicit exceptions that are not handled in
  2100   // the current activation. Fabricates an exception oop and initiates normal
  2101   // exception dispatching in this frame.
  2102   //
  2103   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2104   // This is no longer true after adapter frames were removed but could possibly
  2105   // be brought back in the future if the interpreter code was reworked and it
  2106   // was deemed worthwhile. The comment below was left to describe what must
  2107   // happen here if callee saves were resurrected. As it stands now this stub
  2108   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2109   // Since it doesn't make much difference we've chosen to leave it the
  2110   // way it was in the callee save days and keep the comment.
  2112   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2113   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2114   // If the compiler needs all registers to be preserved between the fault
  2115   // point and the exception handler then it must assume responsibility for that in
  2116   // AbstractCompiler::continuation_for_implicit_null_exception or
  2117   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2118   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2119   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2120   // so caller saved registers were assumed volatile in the compiler.
  2121   address generate_throw_exception(const char* name, address runtime_entry,
  2122                                    bool restore_saved_exception_pc) {
  2124     int insts_size = 256;
  2125     int locs_size  = 32;
  2127     CodeBuffer code(name, insts_size, locs_size);
  2128     OopMapSet* oop_maps  = new OopMapSet();
  2129     MacroAssembler* masm = new MacroAssembler(&code);
  2131     address start = __ pc();
  2133     // This is an inlined and slightly modified version of call_VM
  2134     // which has the ability to fetch the return PC out of
  2135     // thread-local storage and also sets up last_Java_sp slightly
  2136     // differently than the real call_VM
  2137     Register java_thread = rbx;
  2138     __ get_thread(java_thread);
  2139     if (restore_saved_exception_pc) {
  2140       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2141       __ push(rax);
  2144     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2146     // pc and rbp, already pushed
  2147     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2149     // Frame is now completed as far as size and linkage.
  2151     int frame_complete = __ pc() - start;
  2153     // push java thread (becomes first argument of C function)
  2154     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2156     // Set up last_Java_sp and last_Java_fp
  2157     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2159     // Call runtime
  2160     BLOCK_COMMENT("call runtime_entry");
  2161     __ call(RuntimeAddress(runtime_entry));
  2162     // Generate oop map
  2163     OopMap* map =  new OopMap(framesize, 0);
  2164     oop_maps->add_gc_map(__ pc() - start, map);
  2166     // restore the thread (cannot use the pushed argument since arguments
  2167     // may be overwritten by C code generated by an optimizing compiler);
  2168     // however can use the register value directly if it is callee saved.
  2169     __ get_thread(java_thread);
  2171     __ reset_last_Java_frame(java_thread, true, false);
  2173     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2175     // check for pending exceptions
  2176 #ifdef ASSERT
  2177     Label L;
  2178     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2179     __ jcc(Assembler::notEqual, L);
  2180     __ should_not_reach_here();
  2181     __ bind(L);
  2182 #endif /* ASSERT */
  2183     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2186     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2187     return stub->entry_point();
  2191   void create_control_words() {
  2192     // Round to nearest, 53-bit mode, exceptions masked
  2193     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2194     // Round to zero, 53-bit mode, exception mased
  2195     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2196     // Round to nearest, 24-bit mode, exceptions masked
  2197     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2198     // Round to nearest, 64-bit mode, exceptions masked
  2199     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2200     // Round to nearest, 64-bit mode, exceptions masked
  2201     StubRoutines::_mxcsr_std           = 0x1F80;
  2202     // Note: the following two constants are 80-bit values
  2203     //       layout is critical for correct loading by FPU.
  2204     // Bias for strict fp multiply/divide
  2205     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2206     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2207     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2208     // Un-Bias for strict fp multiply/divide
  2209     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2210     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2211     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2214   //---------------------------------------------------------------------------
  2215   // Initialization
  2217   void generate_initial() {
  2218     // Generates all stubs and initializes the entry points
  2220     //------------------------------------------------------------------------------------------------------------------------
  2221     // entry points that exist in all platforms
  2222     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2223     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2224     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2226     StubRoutines::_call_stub_entry              =
  2227       generate_call_stub(StubRoutines::_call_stub_return_address);
  2228     // is referenced by megamorphic call
  2229     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2231     // These are currently used by Solaris/Intel
  2232     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2234     StubRoutines::_handler_for_unsafe_access_entry =
  2235       generate_handler_for_unsafe_access();
  2237     // platform dependent
  2238     create_control_words();
  2240     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2241     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2242     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2243                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2244     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2245                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2249   void generate_all() {
  2250     // Generates all stubs and initializes the entry points
  2252     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2253     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2254     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2255     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2256     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2257     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2258     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2259     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2261     //------------------------------------------------------------------------------------------------------------------------
  2262     // entry points that are platform specific
  2264     // support for verify_oop (must happen after universe_init)
  2265     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2267     // arraycopy stubs used by compilers
  2268     generate_arraycopy_stubs();
  2270     // generic method handle stubs
  2271     if (EnableMethodHandles && SystemDictionary::MethodHandle_klass() != NULL) {
  2272       for (MethodHandles::EntryKind ek = MethodHandles::_EK_FIRST;
  2273            ek < MethodHandles::_EK_LIMIT;
  2274            ek = MethodHandles::EntryKind(1 + (int)ek)) {
  2275         StubCodeMark mark(this, "MethodHandle", MethodHandles::entry_name(ek));
  2276         MethodHandles::generate_method_handle_stub(_masm, ek);
  2280     generate_math_stubs();
  2284  public:
  2285   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2286     if (all) {
  2287       generate_all();
  2288     } else {
  2289       generate_initial();
  2292 }; // end class declaration
  2295 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2296   StubGenerator g(code, all);

mercurial