src/share/vm/opto/library_call.cpp

Mon, 03 Dec 2012 15:48:49 -0800

author
twisti
date
Mon, 03 Dec 2012 15:48:49 -0800
changeset 4319
dd38cfd12c3a
parent 4313
beebba0acc11
child 4346
18712b1caf7a
child 4357
ad5dd04754ee
child 4358
eb409f2f146e
permissions
-rw-r--r--

8004319: test/gc/7168848/HumongousAlloc.java fails after 7172640
Reviewed-by: kvn, johnc

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   bool             _is_predicted;
    48   vmIntrinsics::ID _intrinsic_id;
    50  public:
    51   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
    52     : InlineCallGenerator(m),
    53       _is_virtual(is_virtual),
    54       _is_predicted(is_predicted),
    55       _intrinsic_id(id)
    56   {
    57   }
    58   virtual bool is_intrinsic() const { return true; }
    59   virtual bool is_virtual()   const { return _is_virtual; }
    60   virtual bool is_predicted()   const { return _is_predicted; }
    61   virtual JVMState* generate(JVMState* jvms);
    62   virtual Node* generate_predicate(JVMState* jvms);
    63   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    64 };
    67 // Local helper class for LibraryIntrinsic:
    68 class LibraryCallKit : public GraphKit {
    69  private:
    70   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    71   Node*             _result;        // the result node, if any
    72   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    74   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    76  public:
    77   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    78     : GraphKit(jvms),
    79       _intrinsic(intrinsic),
    80       _result(NULL)
    81   {
    82     // Check if this is a root compile.  In that case we don't have a caller.
    83     if (!jvms->has_method()) {
    84       _reexecute_sp = sp();
    85     } else {
    86       // Find out how many arguments the interpreter needs when deoptimizing
    87       // and save the stack pointer value so it can used by uncommon_trap.
    88       // We find the argument count by looking at the declared signature.
    89       bool ignored_will_link;
    90       ciSignature* declared_signature = NULL;
    91       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    92       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    93       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    94     }
    95   }
    97   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
    99   ciMethod*         caller()    const    { return jvms()->method(); }
   100   int               bci()       const    { return jvms()->bci(); }
   101   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   102   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   103   ciMethod*         callee()    const    { return _intrinsic->method(); }
   105   bool try_to_inline();
   106   Node* try_to_predicate();
   108   void push_result() {
   109     // Push the result onto the stack.
   110     if (!stopped() && result() != NULL) {
   111       BasicType bt = result()->bottom_type()->basic_type();
   112       push_node(bt, result());
   113     }
   114   }
   116  private:
   117   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   118     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   119   }
   121   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   122   void  set_result(RegionNode* region, PhiNode* value);
   123   Node*     result() { return _result; }
   125   virtual int reexecute_sp() { return _reexecute_sp; }
   127   // Helper functions to inline natives
   128   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   129   Node* generate_slow_guard(Node* test, RegionNode* region);
   130   Node* generate_fair_guard(Node* test, RegionNode* region);
   131   Node* generate_negative_guard(Node* index, RegionNode* region,
   132                                 // resulting CastII of index:
   133                                 Node* *pos_index = NULL);
   134   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   135                                    // resulting CastII of index:
   136                                    Node* *pos_index = NULL);
   137   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   138                              Node* array_length,
   139                              RegionNode* region);
   140   Node* generate_current_thread(Node* &tls_output);
   141   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   142                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   143   Node* load_mirror_from_klass(Node* klass);
   144   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   145                                       RegionNode* region, int null_path,
   146                                       int offset);
   147   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   148                                RegionNode* region, int null_path) {
   149     int offset = java_lang_Class::klass_offset_in_bytes();
   150     return load_klass_from_mirror_common(mirror, never_see_null,
   151                                          region, null_path,
   152                                          offset);
   153   }
   154   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   155                                      RegionNode* region, int null_path) {
   156     int offset = java_lang_Class::array_klass_offset_in_bytes();
   157     return load_klass_from_mirror_common(mirror, never_see_null,
   158                                          region, null_path,
   159                                          offset);
   160   }
   161   Node* generate_access_flags_guard(Node* kls,
   162                                     int modifier_mask, int modifier_bits,
   163                                     RegionNode* region);
   164   Node* generate_interface_guard(Node* kls, RegionNode* region);
   165   Node* generate_array_guard(Node* kls, RegionNode* region) {
   166     return generate_array_guard_common(kls, region, false, false);
   167   }
   168   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   169     return generate_array_guard_common(kls, region, false, true);
   170   }
   171   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   172     return generate_array_guard_common(kls, region, true, false);
   173   }
   174   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   175     return generate_array_guard_common(kls, region, true, true);
   176   }
   177   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   178                                     bool obj_array, bool not_array);
   179   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   180   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   181                                      bool is_virtual = false, bool is_static = false);
   182   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   183     return generate_method_call(method_id, false, true);
   184   }
   185   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   186     return generate_method_call(method_id, true, false);
   187   }
   188   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   190   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   191   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   192   bool inline_string_compareTo();
   193   bool inline_string_indexOf();
   194   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   195   bool inline_string_equals();
   196   Node* round_double_node(Node* n);
   197   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   198   bool inline_math_native(vmIntrinsics::ID id);
   199   bool inline_trig(vmIntrinsics::ID id);
   200   bool inline_math(vmIntrinsics::ID id);
   201   bool inline_exp();
   202   bool inline_pow();
   203   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   204   bool inline_min_max(vmIntrinsics::ID id);
   205   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   206   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   207   int classify_unsafe_addr(Node* &base, Node* &offset);
   208   Node* make_unsafe_address(Node* base, Node* offset);
   209   // Helper for inline_unsafe_access.
   210   // Generates the guards that check whether the result of
   211   // Unsafe.getObject should be recorded in an SATB log buffer.
   212   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   213   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   214   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   215   bool inline_unsafe_allocate();
   216   bool inline_unsafe_copyMemory();
   217   bool inline_native_currentThread();
   218 #ifdef TRACE_HAVE_INTRINSICS
   219   bool inline_native_classID();
   220   bool inline_native_threadID();
   221 #endif
   222   bool inline_native_time_funcs(address method, const char* funcName);
   223   bool inline_native_isInterrupted();
   224   bool inline_native_Class_query(vmIntrinsics::ID id);
   225   bool inline_native_subtype_check();
   227   bool inline_native_newArray();
   228   bool inline_native_getLength();
   229   bool inline_array_copyOf(bool is_copyOfRange);
   230   bool inline_array_equals();
   231   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   232   bool inline_native_clone(bool is_virtual);
   233   bool inline_native_Reflection_getCallerClass();
   234   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   235   // Helper function for inlining native object hash method
   236   bool inline_native_hashcode(bool is_virtual, bool is_static);
   237   bool inline_native_getClass();
   239   // Helper functions for inlining arraycopy
   240   bool inline_arraycopy();
   241   void generate_arraycopy(const TypePtr* adr_type,
   242                           BasicType basic_elem_type,
   243                           Node* src,  Node* src_offset,
   244                           Node* dest, Node* dest_offset,
   245                           Node* copy_length,
   246                           bool disjoint_bases = false,
   247                           bool length_never_negative = false,
   248                           RegionNode* slow_region = NULL);
   249   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   250                                                 RegionNode* slow_region);
   251   void generate_clear_array(const TypePtr* adr_type,
   252                             Node* dest,
   253                             BasicType basic_elem_type,
   254                             Node* slice_off,
   255                             Node* slice_len,
   256                             Node* slice_end);
   257   bool generate_block_arraycopy(const TypePtr* adr_type,
   258                                 BasicType basic_elem_type,
   259                                 AllocateNode* alloc,
   260                                 Node* src,  Node* src_offset,
   261                                 Node* dest, Node* dest_offset,
   262                                 Node* dest_size, bool dest_uninitialized);
   263   void generate_slow_arraycopy(const TypePtr* adr_type,
   264                                Node* src,  Node* src_offset,
   265                                Node* dest, Node* dest_offset,
   266                                Node* copy_length, bool dest_uninitialized);
   267   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   268                                      Node* dest_elem_klass,
   269                                      Node* src,  Node* src_offset,
   270                                      Node* dest, Node* dest_offset,
   271                                      Node* copy_length, bool dest_uninitialized);
   272   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   273                                    Node* src,  Node* src_offset,
   274                                    Node* dest, Node* dest_offset,
   275                                    Node* copy_length, bool dest_uninitialized);
   276   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   277                                     BasicType basic_elem_type,
   278                                     bool disjoint_bases,
   279                                     Node* src,  Node* src_offset,
   280                                     Node* dest, Node* dest_offset,
   281                                     Node* copy_length, bool dest_uninitialized);
   282   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   283   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   284   bool inline_unsafe_ordered_store(BasicType type);
   285   bool inline_fp_conversions(vmIntrinsics::ID id);
   286   bool inline_number_methods(vmIntrinsics::ID id);
   287   bool inline_reference_get();
   288   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   289   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   290   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   291   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   292 };
   295 //---------------------------make_vm_intrinsic----------------------------
   296 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   297   vmIntrinsics::ID id = m->intrinsic_id();
   298   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   300   if (DisableIntrinsic[0] != '\0'
   301       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   302     // disabled by a user request on the command line:
   303     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   304     return NULL;
   305   }
   307   if (!m->is_loaded()) {
   308     // do not attempt to inline unloaded methods
   309     return NULL;
   310   }
   312   // Only a few intrinsics implement a virtual dispatch.
   313   // They are expensive calls which are also frequently overridden.
   314   if (is_virtual) {
   315     switch (id) {
   316     case vmIntrinsics::_hashCode:
   317     case vmIntrinsics::_clone:
   318       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   319       break;
   320     default:
   321       return NULL;
   322     }
   323   }
   325   // -XX:-InlineNatives disables nearly all intrinsics:
   326   if (!InlineNatives) {
   327     switch (id) {
   328     case vmIntrinsics::_indexOf:
   329     case vmIntrinsics::_compareTo:
   330     case vmIntrinsics::_equals:
   331     case vmIntrinsics::_equalsC:
   332     case vmIntrinsics::_getAndAddInt:
   333     case vmIntrinsics::_getAndAddLong:
   334     case vmIntrinsics::_getAndSetInt:
   335     case vmIntrinsics::_getAndSetLong:
   336     case vmIntrinsics::_getAndSetObject:
   337       break;  // InlineNatives does not control String.compareTo
   338     case vmIntrinsics::_Reference_get:
   339       break;  // InlineNatives does not control Reference.get
   340     default:
   341       return NULL;
   342     }
   343   }
   345   bool is_predicted = false;
   347   switch (id) {
   348   case vmIntrinsics::_compareTo:
   349     if (!SpecialStringCompareTo)  return NULL;
   350     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   351     break;
   352   case vmIntrinsics::_indexOf:
   353     if (!SpecialStringIndexOf)  return NULL;
   354     break;
   355   case vmIntrinsics::_equals:
   356     if (!SpecialStringEquals)  return NULL;
   357     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   358     break;
   359   case vmIntrinsics::_equalsC:
   360     if (!SpecialArraysEquals)  return NULL;
   361     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   362     break;
   363   case vmIntrinsics::_arraycopy:
   364     if (!InlineArrayCopy)  return NULL;
   365     break;
   366   case vmIntrinsics::_copyMemory:
   367     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   368     if (!InlineArrayCopy)  return NULL;
   369     break;
   370   case vmIntrinsics::_hashCode:
   371     if (!InlineObjectHash)  return NULL;
   372     break;
   373   case vmIntrinsics::_clone:
   374   case vmIntrinsics::_copyOf:
   375   case vmIntrinsics::_copyOfRange:
   376     if (!InlineObjectCopy)  return NULL;
   377     // These also use the arraycopy intrinsic mechanism:
   378     if (!InlineArrayCopy)  return NULL;
   379     break;
   380   case vmIntrinsics::_checkIndex:
   381     // We do not intrinsify this.  The optimizer does fine with it.
   382     return NULL;
   384   case vmIntrinsics::_getCallerClass:
   385     if (!UseNewReflection)  return NULL;
   386     if (!InlineReflectionGetCallerClass)  return NULL;
   387     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   388     break;
   390   case vmIntrinsics::_bitCount_i:
   391     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   392     break;
   394   case vmIntrinsics::_bitCount_l:
   395     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   396     break;
   398   case vmIntrinsics::_numberOfLeadingZeros_i:
   399     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   400     break;
   402   case vmIntrinsics::_numberOfLeadingZeros_l:
   403     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   404     break;
   406   case vmIntrinsics::_numberOfTrailingZeros_i:
   407     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   408     break;
   410   case vmIntrinsics::_numberOfTrailingZeros_l:
   411     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   412     break;
   414   case vmIntrinsics::_reverseBytes_c:
   415     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return false;
   416     break;
   417   case vmIntrinsics::_reverseBytes_s:
   418     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return false;
   419     break;
   420   case vmIntrinsics::_reverseBytes_i:
   421     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return false;
   422     break;
   423   case vmIntrinsics::_reverseBytes_l:
   424     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return false;
   425     break;
   427   case vmIntrinsics::_Reference_get:
   428     // Use the intrinsic version of Reference.get() so that the value in
   429     // the referent field can be registered by the G1 pre-barrier code.
   430     // Also add memory barrier to prevent commoning reads from this field
   431     // across safepoint since GC can change it value.
   432     break;
   434   case vmIntrinsics::_compareAndSwapObject:
   435 #ifdef _LP64
   436     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   437 #endif
   438     break;
   440   case vmIntrinsics::_compareAndSwapLong:
   441     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   442     break;
   444   case vmIntrinsics::_getAndAddInt:
   445     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   446     break;
   448   case vmIntrinsics::_getAndAddLong:
   449     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   450     break;
   452   case vmIntrinsics::_getAndSetInt:
   453     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   454     break;
   456   case vmIntrinsics::_getAndSetLong:
   457     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   458     break;
   460   case vmIntrinsics::_getAndSetObject:
   461 #ifdef _LP64
   462     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   463     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   464     break;
   465 #else
   466     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   467     break;
   468 #endif
   470   case vmIntrinsics::_aescrypt_encryptBlock:
   471   case vmIntrinsics::_aescrypt_decryptBlock:
   472     if (!UseAESIntrinsics) return NULL;
   473     break;
   475   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   476   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   477     if (!UseAESIntrinsics) return NULL;
   478     // these two require the predicated logic
   479     is_predicted = true;
   480     break;
   482  default:
   483     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   484     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   485     break;
   486   }
   488   // -XX:-InlineClassNatives disables natives from the Class class.
   489   // The flag applies to all reflective calls, notably Array.newArray
   490   // (visible to Java programmers as Array.newInstance).
   491   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   492       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   493     if (!InlineClassNatives)  return NULL;
   494   }
   496   // -XX:-InlineThreadNatives disables natives from the Thread class.
   497   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   498     if (!InlineThreadNatives)  return NULL;
   499   }
   501   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   502   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   503       m->holder()->name() == ciSymbol::java_lang_Float() ||
   504       m->holder()->name() == ciSymbol::java_lang_Double()) {
   505     if (!InlineMathNatives)  return NULL;
   506   }
   508   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   509   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   510     if (!InlineUnsafeOps)  return NULL;
   511   }
   513   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
   514 }
   516 //----------------------register_library_intrinsics-----------------------
   517 // Initialize this file's data structures, for each Compile instance.
   518 void Compile::register_library_intrinsics() {
   519   // Nothing to do here.
   520 }
   522 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   523   LibraryCallKit kit(jvms, this);
   524   Compile* C = kit.C;
   525   int nodes = C->unique();
   526 #ifndef PRODUCT
   527   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   528     char buf[1000];
   529     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   530     tty->print_cr("Intrinsic %s", str);
   531   }
   532 #endif
   533   ciMethod* callee = kit.callee();
   534   const int bci    = kit.bci();
   536   // Try to inline the intrinsic.
   537   if (kit.try_to_inline()) {
   538     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   539       CompileTask::print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   540     }
   541     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   542     if (C->log()) {
   543       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   544                      vmIntrinsics::name_at(intrinsic_id()),
   545                      (is_virtual() ? " virtual='1'" : ""),
   546                      C->unique() - nodes);
   547     }
   548     // Push the result from the inlined method onto the stack.
   549     kit.push_result();
   550     return kit.transfer_exceptions_into_jvms();
   551   }
   553   // The intrinsic bailed out
   554   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   555     if (jvms->has_method()) {
   556       // Not a root compile.
   557       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   558       CompileTask::print_inlining(callee, jvms->depth() - 1, bci, msg);
   559     } else {
   560       // Root compile
   561       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   562                vmIntrinsics::name_at(intrinsic_id()),
   563                (is_virtual() ? " (virtual)" : ""), bci);
   564     }
   565   }
   566   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   567   return NULL;
   568 }
   570 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   571   LibraryCallKit kit(jvms, this);
   572   Compile* C = kit.C;
   573   int nodes = C->unique();
   574 #ifndef PRODUCT
   575   assert(is_predicted(), "sanity");
   576   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   577     char buf[1000];
   578     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   579     tty->print_cr("Predicate for intrinsic %s", str);
   580   }
   581 #endif
   582   ciMethod* callee = kit.callee();
   583   const int bci    = kit.bci();
   585   Node* slow_ctl = kit.try_to_predicate();
   586   if (!kit.failing()) {
   587     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   588       CompileTask::print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   589     }
   590     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   591     if (C->log()) {
   592       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   593                      vmIntrinsics::name_at(intrinsic_id()),
   594                      (is_virtual() ? " virtual='1'" : ""),
   595                      C->unique() - nodes);
   596     }
   597     return slow_ctl; // Could be NULL if the check folds.
   598   }
   600   // The intrinsic bailed out
   601   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   602     if (jvms->has_method()) {
   603       // Not a root compile.
   604       const char* msg = "failed to generate predicate for intrinsic";
   605       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   606     } else {
   607       // Root compile
   608       tty->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   609                vmIntrinsics::name_at(intrinsic_id()),
   610                (is_virtual() ? " (virtual)" : ""), bci);
   611     }
   612   }
   613   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   614   return NULL;
   615 }
   617 bool LibraryCallKit::try_to_inline() {
   618   // Handle symbolic names for otherwise undistinguished boolean switches:
   619   const bool is_store       = true;
   620   const bool is_native_ptr  = true;
   621   const bool is_static      = true;
   622   const bool is_volatile    = true;
   624   if (!jvms()->has_method()) {
   625     // Root JVMState has a null method.
   626     assert(map()->memory()->Opcode() == Op_Parm, "");
   627     // Insert the memory aliasing node
   628     set_all_memory(reset_memory());
   629   }
   630   assert(merged_memory(), "");
   633   switch (intrinsic_id()) {
   634   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   635   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   636   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   638   case vmIntrinsics::_dsin:
   639   case vmIntrinsics::_dcos:
   640   case vmIntrinsics::_dtan:
   641   case vmIntrinsics::_dabs:
   642   case vmIntrinsics::_datan2:
   643   case vmIntrinsics::_dsqrt:
   644   case vmIntrinsics::_dexp:
   645   case vmIntrinsics::_dlog:
   646   case vmIntrinsics::_dlog10:
   647   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   649   case vmIntrinsics::_min:
   650   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   652   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   654   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   655   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   656   case vmIntrinsics::_equals:                   return inline_string_equals();
   658   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   659   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   660   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   661   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   662   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   663   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   664   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   665   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   666   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   668   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   669   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   670   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   671   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   672   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   673   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   674   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   675   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   676   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   678   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   679   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   680   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   681   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   682   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   683   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   684   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   685   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   687   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   688   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   689   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   690   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   691   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   692   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   693   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   694   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   696   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   697   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   698   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   699   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   700   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   701   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   702   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   703   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   704   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   706   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   707   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   708   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   709   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   710   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   711   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   712   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   713   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   714   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   716   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   717   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   718   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   719   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   721   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   722   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   723   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   725   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   726   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   727   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   729   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   730   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   731   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   732   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   733   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   735   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   736   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   738 #ifdef TRACE_HAVE_INTRINSICS
   739   case vmIntrinsics::_classID:                  return inline_native_classID();
   740   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   741   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   742 #endif
   743   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   744   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   745   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   746   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   747   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   748   case vmIntrinsics::_getLength:                return inline_native_getLength();
   749   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   750   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   751   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   752   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   754   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   756   case vmIntrinsics::_isInstance:
   757   case vmIntrinsics::_getModifiers:
   758   case vmIntrinsics::_isInterface:
   759   case vmIntrinsics::_isArray:
   760   case vmIntrinsics::_isPrimitive:
   761   case vmIntrinsics::_getSuperclass:
   762   case vmIntrinsics::_getComponentType:
   763   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   765   case vmIntrinsics::_floatToRawIntBits:
   766   case vmIntrinsics::_floatToIntBits:
   767   case vmIntrinsics::_intBitsToFloat:
   768   case vmIntrinsics::_doubleToRawLongBits:
   769   case vmIntrinsics::_doubleToLongBits:
   770   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   772   case vmIntrinsics::_numberOfLeadingZeros_i:
   773   case vmIntrinsics::_numberOfLeadingZeros_l:
   774   case vmIntrinsics::_numberOfTrailingZeros_i:
   775   case vmIntrinsics::_numberOfTrailingZeros_l:
   776   case vmIntrinsics::_bitCount_i:
   777   case vmIntrinsics::_bitCount_l:
   778   case vmIntrinsics::_reverseBytes_i:
   779   case vmIntrinsics::_reverseBytes_l:
   780   case vmIntrinsics::_reverseBytes_s:
   781   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   783   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   785   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   787   case vmIntrinsics::_aescrypt_encryptBlock:
   788   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   790   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   791   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   792     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   794   default:
   795     // If you get here, it may be that someone has added a new intrinsic
   796     // to the list in vmSymbols.hpp without implementing it here.
   797 #ifndef PRODUCT
   798     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   799       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   800                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   801     }
   802 #endif
   803     return false;
   804   }
   805 }
   807 Node* LibraryCallKit::try_to_predicate() {
   808   if (!jvms()->has_method()) {
   809     // Root JVMState has a null method.
   810     assert(map()->memory()->Opcode() == Op_Parm, "");
   811     // Insert the memory aliasing node
   812     set_all_memory(reset_memory());
   813   }
   814   assert(merged_memory(), "");
   816   switch (intrinsic_id()) {
   817   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   818     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   819   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   820     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   822   default:
   823     // If you get here, it may be that someone has added a new intrinsic
   824     // to the list in vmSymbols.hpp without implementing it here.
   825 #ifndef PRODUCT
   826     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   827       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   828                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   829     }
   830 #endif
   831     Node* slow_ctl = control();
   832     set_control(top()); // No fast path instrinsic
   833     return slow_ctl;
   834   }
   835 }
   837 //------------------------------set_result-------------------------------
   838 // Helper function for finishing intrinsics.
   839 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   840   record_for_igvn(region);
   841   set_control(_gvn.transform(region));
   842   set_result( _gvn.transform(value));
   843   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   844 }
   846 //------------------------------generate_guard---------------------------
   847 // Helper function for generating guarded fast-slow graph structures.
   848 // The given 'test', if true, guards a slow path.  If the test fails
   849 // then a fast path can be taken.  (We generally hope it fails.)
   850 // In all cases, GraphKit::control() is updated to the fast path.
   851 // The returned value represents the control for the slow path.
   852 // The return value is never 'top'; it is either a valid control
   853 // or NULL if it is obvious that the slow path can never be taken.
   854 // Also, if region and the slow control are not NULL, the slow edge
   855 // is appended to the region.
   856 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   857   if (stopped()) {
   858     // Already short circuited.
   859     return NULL;
   860   }
   862   // Build an if node and its projections.
   863   // If test is true we take the slow path, which we assume is uncommon.
   864   if (_gvn.type(test) == TypeInt::ZERO) {
   865     // The slow branch is never taken.  No need to build this guard.
   866     return NULL;
   867   }
   869   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   871   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
   872   if (if_slow == top()) {
   873     // The slow branch is never taken.  No need to build this guard.
   874     return NULL;
   875   }
   877   if (region != NULL)
   878     region->add_req(if_slow);
   880   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
   881   set_control(if_fast);
   883   return if_slow;
   884 }
   886 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   887   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   888 }
   889 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   890   return generate_guard(test, region, PROB_FAIR);
   891 }
   893 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   894                                                      Node* *pos_index) {
   895   if (stopped())
   896     return NULL;                // already stopped
   897   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   898     return NULL;                // index is already adequately typed
   899   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   900   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   901   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   902   if (is_neg != NULL && pos_index != NULL) {
   903     // Emulate effect of Parse::adjust_map_after_if.
   904     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   905     ccast->set_req(0, control());
   906     (*pos_index) = _gvn.transform(ccast);
   907   }
   908   return is_neg;
   909 }
   911 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   912                                                         Node* *pos_index) {
   913   if (stopped())
   914     return NULL;                // already stopped
   915   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   916     return NULL;                // index is already adequately typed
   917   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   918   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   919   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
   920   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   921   if (is_notp != NULL && pos_index != NULL) {
   922     // Emulate effect of Parse::adjust_map_after_if.
   923     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   924     ccast->set_req(0, control());
   925     (*pos_index) = _gvn.transform(ccast);
   926   }
   927   return is_notp;
   928 }
   930 // Make sure that 'position' is a valid limit index, in [0..length].
   931 // There are two equivalent plans for checking this:
   932 //   A. (offset + copyLength)  unsigned<=  arrayLength
   933 //   B. offset  <=  (arrayLength - copyLength)
   934 // We require that all of the values above, except for the sum and
   935 // difference, are already known to be non-negative.
   936 // Plan A is robust in the face of overflow, if offset and copyLength
   937 // are both hugely positive.
   938 //
   939 // Plan B is less direct and intuitive, but it does not overflow at
   940 // all, since the difference of two non-negatives is always
   941 // representable.  Whenever Java methods must perform the equivalent
   942 // check they generally use Plan B instead of Plan A.
   943 // For the moment we use Plan A.
   944 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   945                                                   Node* subseq_length,
   946                                                   Node* array_length,
   947                                                   RegionNode* region) {
   948   if (stopped())
   949     return NULL;                // already stopped
   950   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   951   if (zero_offset && subseq_length->eqv_uncast(array_length))
   952     return NULL;                // common case of whole-array copy
   953   Node* last = subseq_length;
   954   if (!zero_offset)             // last += offset
   955     last = _gvn.transform( new (C) AddINode(last, offset));
   956   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
   957   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   958   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   959   return is_over;
   960 }
   963 //--------------------------generate_current_thread--------------------
   964 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   965   ciKlass*    thread_klass = env()->Thread_klass();
   966   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   967   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
   968   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   969   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   970   tls_output = thread;
   971   return threadObj;
   972 }
   975 //------------------------------make_string_method_node------------------------
   976 // Helper method for String intrinsic functions. This version is called
   977 // with str1 and str2 pointing to String object nodes.
   978 //
   979 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
   980   Node* no_ctrl = NULL;
   982   // Get start addr of string
   983   Node* str1_value   = load_String_value(no_ctrl, str1);
   984   Node* str1_offset  = load_String_offset(no_ctrl, str1);
   985   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   987   // Get length of string 1
   988   Node* str1_len  = load_String_length(no_ctrl, str1);
   990   Node* str2_value   = load_String_value(no_ctrl, str2);
   991   Node* str2_offset  = load_String_offset(no_ctrl, str2);
   992   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   994   Node* str2_len = NULL;
   995   Node* result = NULL;
   997   switch (opcode) {
   998   case Op_StrIndexOf:
   999     // Get length of string 2
  1000     str2_len = load_String_length(no_ctrl, str2);
  1002     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1003                                  str1_start, str1_len, str2_start, str2_len);
  1004     break;
  1005   case Op_StrComp:
  1006     // Get length of string 2
  1007     str2_len = load_String_length(no_ctrl, str2);
  1009     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1010                                  str1_start, str1_len, str2_start, str2_len);
  1011     break;
  1012   case Op_StrEquals:
  1013     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1014                                str1_start, str2_start, str1_len);
  1015     break;
  1016   default:
  1017     ShouldNotReachHere();
  1018     return NULL;
  1021   // All these intrinsics have checks.
  1022   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1024   return _gvn.transform(result);
  1027 // Helper method for String intrinsic functions. This version is called
  1028 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1029 // to Int nodes containing the lenghts of str1 and str2.
  1030 //
  1031 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1032   Node* result = NULL;
  1033   switch (opcode) {
  1034   case Op_StrIndexOf:
  1035     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1036                                  str1_start, cnt1, str2_start, cnt2);
  1037     break;
  1038   case Op_StrComp:
  1039     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1040                                  str1_start, cnt1, str2_start, cnt2);
  1041     break;
  1042   case Op_StrEquals:
  1043     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1044                                  str1_start, str2_start, cnt1);
  1045     break;
  1046   default:
  1047     ShouldNotReachHere();
  1048     return NULL;
  1051   // All these intrinsics have checks.
  1052   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1054   return _gvn.transform(result);
  1057 //------------------------------inline_string_compareTo------------------------
  1058 // public int java.lang.String.compareTo(String anotherString);
  1059 bool LibraryCallKit::inline_string_compareTo() {
  1060   Node* receiver = null_check(argument(0));
  1061   Node* arg      = null_check(argument(1));
  1062   if (stopped()) {
  1063     return true;
  1065   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1066   return true;
  1069 //------------------------------inline_string_equals------------------------
  1070 bool LibraryCallKit::inline_string_equals() {
  1071   Node* receiver = null_check_receiver();
  1072   // NOTE: Do not null check argument for String.equals() because spec
  1073   // allows to specify NULL as argument.
  1074   Node* argument = this->argument(1);
  1075   if (stopped()) {
  1076     return true;
  1079   // paths (plus control) merge
  1080   RegionNode* region = new (C) RegionNode(5);
  1081   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1083   // does source == target string?
  1084   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1085   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1087   Node* if_eq = generate_slow_guard(bol, NULL);
  1088   if (if_eq != NULL) {
  1089     // receiver == argument
  1090     phi->init_req(2, intcon(1));
  1091     region->init_req(2, if_eq);
  1094   // get String klass for instanceOf
  1095   ciInstanceKlass* klass = env()->String_klass();
  1097   if (!stopped()) {
  1098     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1099     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1100     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1102     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1103     //instanceOf == true, fallthrough
  1105     if (inst_false != NULL) {
  1106       phi->init_req(3, intcon(0));
  1107       region->init_req(3, inst_false);
  1111   if (!stopped()) {
  1112     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1114     // Properly cast the argument to String
  1115     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1116     // This path is taken only when argument's type is String:NotNull.
  1117     argument = cast_not_null(argument, false);
  1119     Node* no_ctrl = NULL;
  1121     // Get start addr of receiver
  1122     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1123     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1124     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1126     // Get length of receiver
  1127     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1129     // Get start addr of argument
  1130     Node* argument_val    = load_String_value(no_ctrl, argument);
  1131     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1132     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1134     // Get length of argument
  1135     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1137     // Check for receiver count != argument count
  1138     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
  1139     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
  1140     Node* if_ne = generate_slow_guard(bol, NULL);
  1141     if (if_ne != NULL) {
  1142       phi->init_req(4, intcon(0));
  1143       region->init_req(4, if_ne);
  1146     // Check for count == 0 is done by assembler code for StrEquals.
  1148     if (!stopped()) {
  1149       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1150       phi->init_req(1, equals);
  1151       region->init_req(1, control());
  1155   // post merge
  1156   set_control(_gvn.transform(region));
  1157   record_for_igvn(region);
  1159   set_result(_gvn.transform(phi));
  1160   return true;
  1163 //------------------------------inline_array_equals----------------------------
  1164 bool LibraryCallKit::inline_array_equals() {
  1165   Node* arg1 = argument(0);
  1166   Node* arg2 = argument(1);
  1167   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1168   return true;
  1171 // Java version of String.indexOf(constant string)
  1172 // class StringDecl {
  1173 //   StringDecl(char[] ca) {
  1174 //     offset = 0;
  1175 //     count = ca.length;
  1176 //     value = ca;
  1177 //   }
  1178 //   int offset;
  1179 //   int count;
  1180 //   char[] value;
  1181 // }
  1182 //
  1183 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1184 //                             int targetOffset, int cache_i, int md2) {
  1185 //   int cache = cache_i;
  1186 //   int sourceOffset = string_object.offset;
  1187 //   int sourceCount = string_object.count;
  1188 //   int targetCount = target_object.length;
  1189 //
  1190 //   int targetCountLess1 = targetCount - 1;
  1191 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1192 //
  1193 //   char[] source = string_object.value;
  1194 //   char[] target = target_object;
  1195 //   int lastChar = target[targetCountLess1];
  1196 //
  1197 //  outer_loop:
  1198 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1199 //     int src = source[i + targetCountLess1];
  1200 //     if (src == lastChar) {
  1201 //       // With random strings and a 4-character alphabet,
  1202 //       // reverse matching at this point sets up 0.8% fewer
  1203 //       // frames, but (paradoxically) makes 0.3% more probes.
  1204 //       // Since those probes are nearer the lastChar probe,
  1205 //       // there is may be a net D$ win with reverse matching.
  1206 //       // But, reversing loop inhibits unroll of inner loop
  1207 //       // for unknown reason.  So, does running outer loop from
  1208 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1209 //       for (int j = 0; j < targetCountLess1; j++) {
  1210 //         if (target[targetOffset + j] != source[i+j]) {
  1211 //           if ((cache & (1 << source[i+j])) == 0) {
  1212 //             if (md2 < j+1) {
  1213 //               i += j+1;
  1214 //               continue outer_loop;
  1215 //             }
  1216 //           }
  1217 //           i += md2;
  1218 //           continue outer_loop;
  1219 //         }
  1220 //       }
  1221 //       return i - sourceOffset;
  1222 //     }
  1223 //     if ((cache & (1 << src)) == 0) {
  1224 //       i += targetCountLess1;
  1225 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1226 //     i++;
  1227 //   }
  1228 //   return -1;
  1229 // }
  1231 //------------------------------string_indexOf------------------------
  1232 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1233                                      jint cache_i, jint md2_i) {
  1235   Node* no_ctrl  = NULL;
  1236   float likely   = PROB_LIKELY(0.9);
  1237   float unlikely = PROB_UNLIKELY(0.9);
  1239   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1241   Node* source        = load_String_value(no_ctrl, string_object);
  1242   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1243   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1245   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1246   jint target_length = target_array->length();
  1247   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1248   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1250   IdealKit kit(this, false, true);
  1251 #define __ kit.
  1252   Node* zero             = __ ConI(0);
  1253   Node* one              = __ ConI(1);
  1254   Node* cache            = __ ConI(cache_i);
  1255   Node* md2              = __ ConI(md2_i);
  1256   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1257   Node* targetCount      = __ ConI(target_length);
  1258   Node* targetCountLess1 = __ ConI(target_length - 1);
  1259   Node* targetOffset     = __ ConI(targetOffset_i);
  1260   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1262   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1263   Node* outer_loop = __ make_label(2 /* goto */);
  1264   Node* return_    = __ make_label(1);
  1266   __ set(rtn,__ ConI(-1));
  1267   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1268        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1269        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1270        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1271        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1272          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1273               Node* tpj = __ AddI(targetOffset, __ value(j));
  1274               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1275               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1276               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1277               __ if_then(targ, BoolTest::ne, src2); {
  1278                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1279                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1280                     __ increment(i, __ AddI(__ value(j), one));
  1281                     __ goto_(outer_loop);
  1282                   } __ end_if(); __ dead(j);
  1283                 }__ end_if(); __ dead(j);
  1284                 __ increment(i, md2);
  1285                 __ goto_(outer_loop);
  1286               }__ end_if();
  1287               __ increment(j, one);
  1288          }__ end_loop(); __ dead(j);
  1289          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1290          __ goto_(return_);
  1291        }__ end_if();
  1292        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1293          __ increment(i, targetCountLess1);
  1294        }__ end_if();
  1295        __ increment(i, one);
  1296        __ bind(outer_loop);
  1297   }__ end_loop(); __ dead(i);
  1298   __ bind(return_);
  1300   // Final sync IdealKit and GraphKit.
  1301   final_sync(kit);
  1302   Node* result = __ value(rtn);
  1303 #undef __
  1304   C->set_has_loops(true);
  1305   return result;
  1308 //------------------------------inline_string_indexOf------------------------
  1309 bool LibraryCallKit::inline_string_indexOf() {
  1310   Node* receiver = argument(0);
  1311   Node* arg      = argument(1);
  1313   Node* result;
  1314   // Disable the use of pcmpestri until it can be guaranteed that
  1315   // the load doesn't cross into the uncommited space.
  1316   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1317       UseSSE42Intrinsics) {
  1318     // Generate SSE4.2 version of indexOf
  1319     // We currently only have match rules that use SSE4.2
  1321     receiver = null_check(receiver);
  1322     arg      = null_check(arg);
  1323     if (stopped()) {
  1324       return true;
  1327     ciInstanceKlass* str_klass = env()->String_klass();
  1328     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1330     // Make the merge point
  1331     RegionNode* result_rgn = new (C) RegionNode(4);
  1332     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1333     Node* no_ctrl  = NULL;
  1335     // Get start addr of source string
  1336     Node* source = load_String_value(no_ctrl, receiver);
  1337     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1338     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1340     // Get length of source string
  1341     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1343     // Get start addr of substring
  1344     Node* substr = load_String_value(no_ctrl, arg);
  1345     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1346     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1348     // Get length of source string
  1349     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1351     // Check for substr count > string count
  1352     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
  1353     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
  1354     Node* if_gt = generate_slow_guard(bol, NULL);
  1355     if (if_gt != NULL) {
  1356       result_phi->init_req(2, intcon(-1));
  1357       result_rgn->init_req(2, if_gt);
  1360     if (!stopped()) {
  1361       // Check for substr count == 0
  1362       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
  1363       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  1364       Node* if_zero = generate_slow_guard(bol, NULL);
  1365       if (if_zero != NULL) {
  1366         result_phi->init_req(3, intcon(0));
  1367         result_rgn->init_req(3, if_zero);
  1371     if (!stopped()) {
  1372       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1373       result_phi->init_req(1, result);
  1374       result_rgn->init_req(1, control());
  1376     set_control(_gvn.transform(result_rgn));
  1377     record_for_igvn(result_rgn);
  1378     result = _gvn.transform(result_phi);
  1380   } else { // Use LibraryCallKit::string_indexOf
  1381     // don't intrinsify if argument isn't a constant string.
  1382     if (!arg->is_Con()) {
  1383      return false;
  1385     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1386     if (str_type == NULL) {
  1387       return false;
  1389     ciInstanceKlass* klass = env()->String_klass();
  1390     ciObject* str_const = str_type->const_oop();
  1391     if (str_const == NULL || str_const->klass() != klass) {
  1392       return false;
  1394     ciInstance* str = str_const->as_instance();
  1395     assert(str != NULL, "must be instance");
  1397     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1398     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1400     int o;
  1401     int c;
  1402     if (java_lang_String::has_offset_field()) {
  1403       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1404       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1405     } else {
  1406       o = 0;
  1407       c = pat->length();
  1410     // constant strings have no offset and count == length which
  1411     // simplifies the resulting code somewhat so lets optimize for that.
  1412     if (o != 0 || c != pat->length()) {
  1413      return false;
  1416     receiver = null_check(receiver, T_OBJECT);
  1417     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1418     if (stopped()) {
  1419       return true;
  1422     // The null string as a pattern always returns 0 (match at beginning of string)
  1423     if (c == 0) {
  1424       set_result(intcon(0));
  1425       return true;
  1428     // Generate default indexOf
  1429     jchar lastChar = pat->char_at(o + (c - 1));
  1430     int cache = 0;
  1431     int i;
  1432     for (i = 0; i < c - 1; i++) {
  1433       assert(i < pat->length(), "out of range");
  1434       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1437     int md2 = c;
  1438     for (i = 0; i < c - 1; i++) {
  1439       assert(i < pat->length(), "out of range");
  1440       if (pat->char_at(o + i) == lastChar) {
  1441         md2 = (c - 1) - i;
  1445     result = string_indexOf(receiver, pat, o, cache, md2);
  1447   set_result(result);
  1448   return true;
  1451 //--------------------------round_double_node--------------------------------
  1452 // Round a double node if necessary.
  1453 Node* LibraryCallKit::round_double_node(Node* n) {
  1454   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1455     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1456   return n;
  1459 //------------------------------inline_math-----------------------------------
  1460 // public static double Math.abs(double)
  1461 // public static double Math.sqrt(double)
  1462 // public static double Math.log(double)
  1463 // public static double Math.log10(double)
  1464 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1465   Node* arg = round_double_node(argument(0));
  1466   Node* n;
  1467   switch (id) {
  1468   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(    arg);  break;
  1469   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(0, arg);  break;
  1470   case vmIntrinsics::_dlog:   n = new (C) LogDNode(    arg);  break;
  1471   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(  arg);  break;
  1472   default:  fatal_unexpected_iid(id);  break;
  1474   set_result(_gvn.transform(n));
  1475   return true;
  1478 //------------------------------inline_trig----------------------------------
  1479 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1480 // argument reduction which will turn into a fast/slow diamond.
  1481 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1482   Node* arg = round_double_node(argument(0));
  1483   Node* n = NULL;
  1485   switch (id) {
  1486   case vmIntrinsics::_dsin:  n = new (C) SinDNode(arg);  break;
  1487   case vmIntrinsics::_dcos:  n = new (C) CosDNode(arg);  break;
  1488   case vmIntrinsics::_dtan:  n = new (C) TanDNode(arg);  break;
  1489   default:  fatal_unexpected_iid(id);  break;
  1491   n = _gvn.transform(n);
  1493   // Rounding required?  Check for argument reduction!
  1494   if (Matcher::strict_fp_requires_explicit_rounding) {
  1495     static const double     pi_4 =  0.7853981633974483;
  1496     static const double neg_pi_4 = -0.7853981633974483;
  1497     // pi/2 in 80-bit extended precision
  1498     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1499     // -pi/2 in 80-bit extended precision
  1500     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1501     // Cutoff value for using this argument reduction technique
  1502     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1503     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1505     // Pseudocode for sin:
  1506     // if (x <= Math.PI / 4.0) {
  1507     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1508     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1509     // } else {
  1510     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1511     // }
  1512     // return StrictMath.sin(x);
  1514     // Pseudocode for cos:
  1515     // if (x <= Math.PI / 4.0) {
  1516     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1517     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1518     // } else {
  1519     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1520     // }
  1521     // return StrictMath.cos(x);
  1523     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1524     // requires a special machine instruction to load it.  Instead we'll try
  1525     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1526     // probably do the math inside the SIN encoding.
  1528     // Make the merge point
  1529     RegionNode* r = new (C) RegionNode(3);
  1530     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1532     // Flatten arg so we need only 1 test
  1533     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1534     // Node for PI/4 constant
  1535     Node *pi4 = makecon(TypeD::make(pi_4));
  1536     // Check PI/4 : abs(arg)
  1537     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1538     // Check: If PI/4 < abs(arg) then go slow
  1539     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
  1540     // Branch either way
  1541     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1542     set_control(opt_iff(r,iff));
  1544     // Set fast path result
  1545     phi->init_req(2, n);
  1547     // Slow path - non-blocking leaf call
  1548     Node* call = NULL;
  1549     switch (id) {
  1550     case vmIntrinsics::_dsin:
  1551       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1552                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1553                                "Sin", NULL, arg, top());
  1554       break;
  1555     case vmIntrinsics::_dcos:
  1556       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1557                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1558                                "Cos", NULL, arg, top());
  1559       break;
  1560     case vmIntrinsics::_dtan:
  1561       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1562                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1563                                "Tan", NULL, arg, top());
  1564       break;
  1566     assert(control()->in(0) == call, "");
  1567     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1568     r->init_req(1, control());
  1569     phi->init_req(1, slow_result);
  1571     // Post-merge
  1572     set_control(_gvn.transform(r));
  1573     record_for_igvn(r);
  1574     n = _gvn.transform(phi);
  1576     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1578   set_result(n);
  1579   return true;
  1582 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1583   //-------------------
  1584   //result=(result.isNaN())? funcAddr():result;
  1585   // Check: If isNaN() by checking result!=result? then either trap
  1586   // or go to runtime
  1587   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1588   // Build the boolean node
  1589   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1591   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1592     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1593       // The pow or exp intrinsic returned a NaN, which requires a call
  1594       // to the runtime.  Recompile with the runtime call.
  1595       uncommon_trap(Deoptimization::Reason_intrinsic,
  1596                     Deoptimization::Action_make_not_entrant);
  1598     set_result(result);
  1599   } else {
  1600     // If this inlining ever returned NaN in the past, we compile a call
  1601     // to the runtime to properly handle corner cases
  1603     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1604     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
  1605     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
  1607     if (!if_slow->is_top()) {
  1608       RegionNode* result_region = new (C) RegionNode(3);
  1609       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1611       result_region->init_req(1, if_fast);
  1612       result_val->init_req(1, result);
  1614       set_control(if_slow);
  1616       const TypePtr* no_memory_effects = NULL;
  1617       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1618                                    no_memory_effects,
  1619                                    x, top(), y, y ? top() : NULL);
  1620       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1621 #ifdef ASSERT
  1622       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1623       assert(value_top == top(), "second value must be top");
  1624 #endif
  1626       result_region->init_req(2, control());
  1627       result_val->init_req(2, value);
  1628       set_result(result_region, result_val);
  1629     } else {
  1630       set_result(result);
  1635 //------------------------------inline_exp-------------------------------------
  1636 // Inline exp instructions, if possible.  The Intel hardware only misses
  1637 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1638 bool LibraryCallKit::inline_exp() {
  1639   Node* arg = round_double_node(argument(0));
  1640   Node* n   = _gvn.transform(new (C) ExpDNode(0, arg));
  1642   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1644   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1645   return true;
  1648 //------------------------------inline_pow-------------------------------------
  1649 // Inline power instructions, if possible.
  1650 bool LibraryCallKit::inline_pow() {
  1651   // Pseudocode for pow
  1652   // if (x <= 0.0) {
  1653   //   long longy = (long)y;
  1654   //   if ((double)longy == y) { // if y is long
  1655   //     if (y + 1 == y) longy = 0; // huge number: even
  1656   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1657   //   } else {
  1658   //     result = NaN;
  1659   //   }
  1660   // } else {
  1661   //   result = DPow(x,y);
  1662   // }
  1663   // if (result != result)?  {
  1664   //   result = uncommon_trap() or runtime_call();
  1665   // }
  1666   // return result;
  1668   Node* x = round_double_node(argument(0));
  1669   Node* y = round_double_node(argument(2));
  1671   Node* result = NULL;
  1673   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1674     // Short form: skip the fancy tests and just check for NaN result.
  1675     result = _gvn.transform(new (C) PowDNode(0, x, y));
  1676   } else {
  1677     // If this inlining ever returned NaN in the past, include all
  1678     // checks + call to the runtime.
  1680     // Set the merge point for If node with condition of (x <= 0.0)
  1681     // There are four possible paths to region node and phi node
  1682     RegionNode *r = new (C) RegionNode(4);
  1683     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1685     // Build the first if node: if (x <= 0.0)
  1686     // Node for 0 constant
  1687     Node *zeronode = makecon(TypeD::ZERO);
  1688     // Check x:0
  1689     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1690     // Check: If (x<=0) then go complex path
  1691     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
  1692     // Branch either way
  1693     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1694     // Fast path taken; set region slot 3
  1695     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
  1696     r->init_req(3,fast_taken); // Capture fast-control
  1698     // Fast path not-taken, i.e. slow path
  1699     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
  1701     // Set fast path result
  1702     Node *fast_result = _gvn.transform( new (C) PowDNode(0, x, y) );
  1703     phi->init_req(3, fast_result);
  1705     // Complex path
  1706     // Build the second if node (if y is long)
  1707     // Node for (long)y
  1708     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
  1709     // Node for (double)((long) y)
  1710     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
  1711     // Check (double)((long) y) : y
  1712     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1713     // Check if (y isn't long) then go to slow path
  1715     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
  1716     // Branch either way
  1717     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1718     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
  1720     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
  1722     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1723     // Node for constant 1
  1724     Node *conone = longcon(1);
  1725     // 1& (long)y
  1726     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
  1728     // A huge number is always even. Detect a huge number by checking
  1729     // if y + 1 == y and set integer to be tested for parity to 0.
  1730     // Required for corner case:
  1731     // (long)9.223372036854776E18 = max_jlong
  1732     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1733     // max_jlong is odd but 9.223372036854776E18 is even
  1734     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
  1735     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1736     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
  1737     Node* correctedsign = NULL;
  1738     if (ConditionalMoveLimit != 0) {
  1739       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1740     } else {
  1741       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1742       RegionNode *r = new (C) RegionNode(3);
  1743       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1744       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
  1745       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
  1746       phi->init_req(1, signnode);
  1747       phi->init_req(2, longcon(0));
  1748       correctedsign = _gvn.transform(phi);
  1749       ylong_path = _gvn.transform(r);
  1750       record_for_igvn(r);
  1753     // zero node
  1754     Node *conzero = longcon(0);
  1755     // Check (1&(long)y)==0?
  1756     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1757     // Check if (1&(long)y)!=0?, if so the result is negative
  1758     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
  1759     // abs(x)
  1760     Node *absx=_gvn.transform( new (C) AbsDNode(x));
  1761     // abs(x)^y
  1762     Node *absxpowy = _gvn.transform( new (C) PowDNode(0, absx, y) );
  1763     // -abs(x)^y
  1764     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1765     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1766     Node *signresult = NULL;
  1767     if (ConditionalMoveLimit != 0) {
  1768       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1769     } else {
  1770       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1771       RegionNode *r = new (C) RegionNode(3);
  1772       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1773       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
  1774       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
  1775       phi->init_req(1, absxpowy);
  1776       phi->init_req(2, negabsxpowy);
  1777       signresult = _gvn.transform(phi);
  1778       ylong_path = _gvn.transform(r);
  1779       record_for_igvn(r);
  1781     // Set complex path fast result
  1782     r->init_req(2, ylong_path);
  1783     phi->init_req(2, signresult);
  1785     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1786     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1787     r->init_req(1,slow_path);
  1788     phi->init_req(1,slow_result);
  1790     // Post merge
  1791     set_control(_gvn.transform(r));
  1792     record_for_igvn(r);
  1793     result = _gvn.transform(phi);
  1796   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1798   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1799   return true;
  1802 //------------------------------runtime_math-----------------------------
  1803 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1804   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1805          "must be (DD)D or (D)D type");
  1807   // Inputs
  1808   Node* a = round_double_node(argument(0));
  1809   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1811   const TypePtr* no_memory_effects = NULL;
  1812   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1813                                  no_memory_effects,
  1814                                  a, top(), b, b ? top() : NULL);
  1815   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1816 #ifdef ASSERT
  1817   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1818   assert(value_top == top(), "second value must be top");
  1819 #endif
  1821   set_result(value);
  1822   return true;
  1825 //------------------------------inline_math_native-----------------------------
  1826 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1827 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1828   switch (id) {
  1829     // These intrinsics are not properly supported on all hardware
  1830   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1831     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1832   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1833     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1834   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1835     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1837   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1838     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1839   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1840     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1842     // These intrinsics are supported on all hardware
  1843   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1844   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1846   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1847     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1848   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1849     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1850 #undef FN_PTR
  1852    // These intrinsics are not yet correctly implemented
  1853   case vmIntrinsics::_datan2:
  1854     return false;
  1856   default:
  1857     fatal_unexpected_iid(id);
  1858     return false;
  1862 static bool is_simple_name(Node* n) {
  1863   return (n->req() == 1         // constant
  1864           || (n->is_Type() && n->as_Type()->type()->singleton())
  1865           || n->is_Proj()       // parameter or return value
  1866           || n->is_Phi()        // local of some sort
  1867           );
  1870 //----------------------------inline_min_max-----------------------------------
  1871 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1872   set_result(generate_min_max(id, argument(0), argument(1)));
  1873   return true;
  1876 Node*
  1877 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1878   // These are the candidate return value:
  1879   Node* xvalue = x0;
  1880   Node* yvalue = y0;
  1882   if (xvalue == yvalue) {
  1883     return xvalue;
  1886   bool want_max = (id == vmIntrinsics::_max);
  1888   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1889   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1890   if (txvalue == NULL || tyvalue == NULL)  return top();
  1891   // This is not really necessary, but it is consistent with a
  1892   // hypothetical MaxINode::Value method:
  1893   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1895   // %%% This folding logic should (ideally) be in a different place.
  1896   // Some should be inside IfNode, and there to be a more reliable
  1897   // transformation of ?: style patterns into cmoves.  We also want
  1898   // more powerful optimizations around cmove and min/max.
  1900   // Try to find a dominating comparison of these guys.
  1901   // It can simplify the index computation for Arrays.copyOf
  1902   // and similar uses of System.arraycopy.
  1903   // First, compute the normalized version of CmpI(x, y).
  1904   int   cmp_op = Op_CmpI;
  1905   Node* xkey = xvalue;
  1906   Node* ykey = yvalue;
  1907   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
  1908   if (ideal_cmpxy->is_Cmp()) {
  1909     // E.g., if we have CmpI(length - offset, count),
  1910     // it might idealize to CmpI(length, count + offset)
  1911     cmp_op = ideal_cmpxy->Opcode();
  1912     xkey = ideal_cmpxy->in(1);
  1913     ykey = ideal_cmpxy->in(2);
  1916   // Start by locating any relevant comparisons.
  1917   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1918   Node* cmpxy = NULL;
  1919   Node* cmpyx = NULL;
  1920   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1921     Node* cmp = start_from->fast_out(k);
  1922     if (cmp->outcnt() > 0 &&            // must have prior uses
  1923         cmp->in(0) == NULL &&           // must be context-independent
  1924         cmp->Opcode() == cmp_op) {      // right kind of compare
  1925       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1926       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1930   const int NCMPS = 2;
  1931   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1932   int cmpn;
  1933   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1934     if (cmps[cmpn] != NULL)  break;     // find a result
  1936   if (cmpn < NCMPS) {
  1937     // Look for a dominating test that tells us the min and max.
  1938     int depth = 0;                // Limit search depth for speed
  1939     Node* dom = control();
  1940     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1941       if (++depth >= 100)  break;
  1942       Node* ifproj = dom;
  1943       if (!ifproj->is_Proj())  continue;
  1944       Node* iff = ifproj->in(0);
  1945       if (!iff->is_If())  continue;
  1946       Node* bol = iff->in(1);
  1947       if (!bol->is_Bool())  continue;
  1948       Node* cmp = bol->in(1);
  1949       if (cmp == NULL)  continue;
  1950       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1951         if (cmps[cmpn] == cmp)  break;
  1952       if (cmpn == NCMPS)  continue;
  1953       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1954       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1955       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1956       // At this point, we know that 'x btest y' is true.
  1957       switch (btest) {
  1958       case BoolTest::eq:
  1959         // They are proven equal, so we can collapse the min/max.
  1960         // Either value is the answer.  Choose the simpler.
  1961         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1962           return yvalue;
  1963         return xvalue;
  1964       case BoolTest::lt:          // x < y
  1965       case BoolTest::le:          // x <= y
  1966         return (want_max ? yvalue : xvalue);
  1967       case BoolTest::gt:          // x > y
  1968       case BoolTest::ge:          // x >= y
  1969         return (want_max ? xvalue : yvalue);
  1974   // We failed to find a dominating test.
  1975   // Let's pick a test that might GVN with prior tests.
  1976   Node*          best_bol   = NULL;
  1977   BoolTest::mask best_btest = BoolTest::illegal;
  1978   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1979     Node* cmp = cmps[cmpn];
  1980     if (cmp == NULL)  continue;
  1981     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1982       Node* bol = cmp->fast_out(j);
  1983       if (!bol->is_Bool())  continue;
  1984       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1985       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1986       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1987       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1988         best_bol   = bol->as_Bool();
  1989         best_btest = btest;
  1994   Node* answer_if_true  = NULL;
  1995   Node* answer_if_false = NULL;
  1996   switch (best_btest) {
  1997   default:
  1998     if (cmpxy == NULL)
  1999       cmpxy = ideal_cmpxy;
  2000     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
  2001     // and fall through:
  2002   case BoolTest::lt:          // x < y
  2003   case BoolTest::le:          // x <= y
  2004     answer_if_true  = (want_max ? yvalue : xvalue);
  2005     answer_if_false = (want_max ? xvalue : yvalue);
  2006     break;
  2007   case BoolTest::gt:          // x > y
  2008   case BoolTest::ge:          // x >= y
  2009     answer_if_true  = (want_max ? xvalue : yvalue);
  2010     answer_if_false = (want_max ? yvalue : xvalue);
  2011     break;
  2014   jint hi, lo;
  2015   if (want_max) {
  2016     // We can sharpen the minimum.
  2017     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2018     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2019   } else {
  2020     // We can sharpen the maximum.
  2021     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2022     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2025   // Use a flow-free graph structure, to avoid creating excess control edges
  2026   // which could hinder other optimizations.
  2027   // Since Math.min/max is often used with arraycopy, we want
  2028   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2029   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2030                                answer_if_false, answer_if_true,
  2031                                TypeInt::make(lo, hi, widen));
  2033   return _gvn.transform(cmov);
  2035   /*
  2036   // This is not as desirable as it may seem, since Min and Max
  2037   // nodes do not have a full set of optimizations.
  2038   // And they would interfere, anyway, with 'if' optimizations
  2039   // and with CMoveI canonical forms.
  2040   switch (id) {
  2041   case vmIntrinsics::_min:
  2042     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2043   case vmIntrinsics::_max:
  2044     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2045   default:
  2046     ShouldNotReachHere();
  2048   */
  2051 inline int
  2052 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2053   const TypePtr* base_type = TypePtr::NULL_PTR;
  2054   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2055   if (base_type == NULL) {
  2056     // Unknown type.
  2057     return Type::AnyPtr;
  2058   } else if (base_type == TypePtr::NULL_PTR) {
  2059     // Since this is a NULL+long form, we have to switch to a rawptr.
  2060     base   = _gvn.transform( new (C) CastX2PNode(offset) );
  2061     offset = MakeConX(0);
  2062     return Type::RawPtr;
  2063   } else if (base_type->base() == Type::RawPtr) {
  2064     return Type::RawPtr;
  2065   } else if (base_type->isa_oopptr()) {
  2066     // Base is never null => always a heap address.
  2067     if (base_type->ptr() == TypePtr::NotNull) {
  2068       return Type::OopPtr;
  2070     // Offset is small => always a heap address.
  2071     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2072     if (offset_type != NULL &&
  2073         base_type->offset() == 0 &&     // (should always be?)
  2074         offset_type->_lo >= 0 &&
  2075         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2076       return Type::OopPtr;
  2078     // Otherwise, it might either be oop+off or NULL+addr.
  2079     return Type::AnyPtr;
  2080   } else {
  2081     // No information:
  2082     return Type::AnyPtr;
  2086 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2087   int kind = classify_unsafe_addr(base, offset);
  2088   if (kind == Type::RawPtr) {
  2089     return basic_plus_adr(top(), base, offset);
  2090   } else {
  2091     return basic_plus_adr(base, offset);
  2095 //--------------------------inline_number_methods-----------------------------
  2096 // inline int     Integer.numberOfLeadingZeros(int)
  2097 // inline int        Long.numberOfLeadingZeros(long)
  2098 //
  2099 // inline int     Integer.numberOfTrailingZeros(int)
  2100 // inline int        Long.numberOfTrailingZeros(long)
  2101 //
  2102 // inline int     Integer.bitCount(int)
  2103 // inline int        Long.bitCount(long)
  2104 //
  2105 // inline char  Character.reverseBytes(char)
  2106 // inline short     Short.reverseBytes(short)
  2107 // inline int     Integer.reverseBytes(int)
  2108 // inline long       Long.reverseBytes(long)
  2109 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2110   Node* arg = argument(0);
  2111   Node* n;
  2112   switch (id) {
  2113   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2114   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2115   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2116   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2117   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2118   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2119   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2120   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2121   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2122   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2123   default:  fatal_unexpected_iid(id);  break;
  2125   set_result(_gvn.transform(n));
  2126   return true;
  2129 //----------------------------inline_unsafe_access----------------------------
  2131 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2133 // Helper that guards and inserts a pre-barrier.
  2134 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2135                                         Node* pre_val, bool need_mem_bar) {
  2136   // We could be accessing the referent field of a reference object. If so, when G1
  2137   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2138   // This routine performs some compile time filters and generates suitable
  2139   // runtime filters that guard the pre-barrier code.
  2140   // Also add memory barrier for non volatile load from the referent field
  2141   // to prevent commoning of loads across safepoint.
  2142   if (!UseG1GC && !need_mem_bar)
  2143     return;
  2145   // Some compile time checks.
  2147   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2148   const TypeX* otype = offset->find_intptr_t_type();
  2149   if (otype != NULL && otype->is_con() &&
  2150       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2151     // Constant offset but not the reference_offset so just return
  2152     return;
  2155   // We only need to generate the runtime guards for instances.
  2156   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2157   if (btype != NULL) {
  2158     if (btype->isa_aryptr()) {
  2159       // Array type so nothing to do
  2160       return;
  2163     const TypeInstPtr* itype = btype->isa_instptr();
  2164     if (itype != NULL) {
  2165       // Can the klass of base_oop be statically determined to be
  2166       // _not_ a sub-class of Reference and _not_ Object?
  2167       ciKlass* klass = itype->klass();
  2168       if ( klass->is_loaded() &&
  2169           !klass->is_subtype_of(env()->Reference_klass()) &&
  2170           !env()->Object_klass()->is_subtype_of(klass)) {
  2171         return;
  2176   // The compile time filters did not reject base_oop/offset so
  2177   // we need to generate the following runtime filters
  2178   //
  2179   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2180   //   if (instance_of(base, java.lang.ref.Reference)) {
  2181   //     pre_barrier(_, pre_val, ...);
  2182   //   }
  2183   // }
  2185   float likely   = PROB_LIKELY(  0.999);
  2186   float unlikely = PROB_UNLIKELY(0.999);
  2188   IdealKit ideal(this);
  2189 #define __ ideal.
  2191   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2193   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2194       // Update graphKit memory and control from IdealKit.
  2195       sync_kit(ideal);
  2197       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2198       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2200       // Update IdealKit memory and control from graphKit.
  2201       __ sync_kit(this);
  2203       Node* one = __ ConI(1);
  2204       // is_instof == 0 if base_oop == NULL
  2205       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2207         // Update graphKit from IdeakKit.
  2208         sync_kit(ideal);
  2210         // Use the pre-barrier to record the value in the referent field
  2211         pre_barrier(false /* do_load */,
  2212                     __ ctrl(),
  2213                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2214                     pre_val /* pre_val */,
  2215                     T_OBJECT);
  2216         if (need_mem_bar) {
  2217           // Add memory barrier to prevent commoning reads from this field
  2218           // across safepoint since GC can change its value.
  2219           insert_mem_bar(Op_MemBarCPUOrder);
  2221         // Update IdealKit from graphKit.
  2222         __ sync_kit(this);
  2224       } __ end_if(); // _ref_type != ref_none
  2225   } __ end_if(); // offset == referent_offset
  2227   // Final sync IdealKit and GraphKit.
  2228   final_sync(ideal);
  2229 #undef __
  2233 // Interpret Unsafe.fieldOffset cookies correctly:
  2234 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2236 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2237   // Attempt to infer a sharper value type from the offset and base type.
  2238   ciKlass* sharpened_klass = NULL;
  2240   // See if it is an instance field, with an object type.
  2241   if (alias_type->field() != NULL) {
  2242     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2243     if (alias_type->field()->type()->is_klass()) {
  2244       sharpened_klass = alias_type->field()->type()->as_klass();
  2248   // See if it is a narrow oop array.
  2249   if (adr_type->isa_aryptr()) {
  2250     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2251       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2252       if (elem_type != NULL) {
  2253         sharpened_klass = elem_type->klass();
  2258   // The sharpened class might be unloaded if there is no class loader
  2259   // contraint in place.
  2260   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2261     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2263 #ifndef PRODUCT
  2264     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2265       tty->print("  from base type: ");  adr_type->dump();
  2266       tty->print("  sharpened value: ");  tjp->dump();
  2268 #endif
  2269     // Sharpen the value type.
  2270     return tjp;
  2272   return NULL;
  2275 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2276   if (callee()->is_static())  return false;  // caller must have the capability!
  2278 #ifndef PRODUCT
  2280     ResourceMark rm;
  2281     // Check the signatures.
  2282     ciSignature* sig = callee()->signature();
  2283 #ifdef ASSERT
  2284     if (!is_store) {
  2285       // Object getObject(Object base, int/long offset), etc.
  2286       BasicType rtype = sig->return_type()->basic_type();
  2287       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2288           rtype = T_ADDRESS;  // it is really a C void*
  2289       assert(rtype == type, "getter must return the expected value");
  2290       if (!is_native_ptr) {
  2291         assert(sig->count() == 2, "oop getter has 2 arguments");
  2292         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2293         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2294       } else {
  2295         assert(sig->count() == 1, "native getter has 1 argument");
  2296         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2298     } else {
  2299       // void putObject(Object base, int/long offset, Object x), etc.
  2300       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2301       if (!is_native_ptr) {
  2302         assert(sig->count() == 3, "oop putter has 3 arguments");
  2303         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2304         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2305       } else {
  2306         assert(sig->count() == 2, "native putter has 2 arguments");
  2307         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2309       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2310       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2311         vtype = T_ADDRESS;  // it is really a C void*
  2312       assert(vtype == type, "putter must accept the expected value");
  2314 #endif // ASSERT
  2316 #endif //PRODUCT
  2318   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2320   Node* receiver = argument(0);  // type: oop
  2322   // Build address expression.  See the code in inline_unsafe_prefetch.
  2323   Node* adr;
  2324   Node* heap_base_oop = top();
  2325   Node* offset = top();
  2326   Node* val;
  2328   if (!is_native_ptr) {
  2329     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2330     Node* base = argument(1);  // type: oop
  2331     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2332     offset = argument(2);  // type: long
  2333     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2334     // to be plain byte offsets, which are also the same as those accepted
  2335     // by oopDesc::field_base.
  2336     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2337            "fieldOffset must be byte-scaled");
  2338     // 32-bit machines ignore the high half!
  2339     offset = ConvL2X(offset);
  2340     adr = make_unsafe_address(base, offset);
  2341     heap_base_oop = base;
  2342     val = is_store ? argument(4) : NULL;
  2343   } else {
  2344     Node* ptr = argument(1);  // type: long
  2345     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2346     adr = make_unsafe_address(NULL, ptr);
  2347     val = is_store ? argument(3) : NULL;
  2350   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2352   // First guess at the value type.
  2353   const Type *value_type = Type::get_const_basic_type(type);
  2355   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2356   // there was not enough information to nail it down.
  2357   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2358   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2360   // We will need memory barriers unless we can determine a unique
  2361   // alias category for this reference.  (Note:  If for some reason
  2362   // the barriers get omitted and the unsafe reference begins to "pollute"
  2363   // the alias analysis of the rest of the graph, either Compile::can_alias
  2364   // or Compile::must_alias will throw a diagnostic assert.)
  2365   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2367   // If we are reading the value of the referent field of a Reference
  2368   // object (either by using Unsafe directly or through reflection)
  2369   // then, if G1 is enabled, we need to record the referent in an
  2370   // SATB log buffer using the pre-barrier mechanism.
  2371   // Also we need to add memory barrier to prevent commoning reads
  2372   // from this field across safepoint since GC can change its value.
  2373   bool need_read_barrier = !is_native_ptr && !is_store &&
  2374                            offset != top() && heap_base_oop != top();
  2376   if (!is_store && type == T_OBJECT) {
  2377     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2378     if (tjp != NULL) {
  2379       value_type = tjp;
  2383   receiver = null_check(receiver);
  2384   if (stopped()) {
  2385     return true;
  2387   // Heap pointers get a null-check from the interpreter,
  2388   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2389   // and it is not possible to fully distinguish unintended nulls
  2390   // from intended ones in this API.
  2392   if (is_volatile) {
  2393     // We need to emit leading and trailing CPU membars (see below) in
  2394     // addition to memory membars when is_volatile. This is a little
  2395     // too strong, but avoids the need to insert per-alias-type
  2396     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2397     // we cannot do effectively here because we probably only have a
  2398     // rough approximation of type.
  2399     need_mem_bar = true;
  2400     // For Stores, place a memory ordering barrier now.
  2401     if (is_store)
  2402       insert_mem_bar(Op_MemBarRelease);
  2405   // Memory barrier to prevent normal and 'unsafe' accesses from
  2406   // bypassing each other.  Happens after null checks, so the
  2407   // exception paths do not take memory state from the memory barrier,
  2408   // so there's no problems making a strong assert about mixing users
  2409   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2410   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2411   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2413   if (!is_store) {
  2414     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2415     // load value
  2416     switch (type) {
  2417     case T_BOOLEAN:
  2418     case T_CHAR:
  2419     case T_BYTE:
  2420     case T_SHORT:
  2421     case T_INT:
  2422     case T_LONG:
  2423     case T_FLOAT:
  2424     case T_DOUBLE:
  2425       break;
  2426     case T_OBJECT:
  2427       if (need_read_barrier) {
  2428         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2430       break;
  2431     case T_ADDRESS:
  2432       // Cast to an int type.
  2433       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2434       p = ConvX2L(p);
  2435       break;
  2436     default:
  2437       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2438       break;
  2440     // The load node has the control of the preceding MemBarCPUOrder.  All
  2441     // following nodes will have the control of the MemBarCPUOrder inserted at
  2442     // the end of this method.  So, pushing the load onto the stack at a later
  2443     // point is fine.
  2444     set_result(p);
  2445   } else {
  2446     // place effect of store into memory
  2447     switch (type) {
  2448     case T_DOUBLE:
  2449       val = dstore_rounding(val);
  2450       break;
  2451     case T_ADDRESS:
  2452       // Repackage the long as a pointer.
  2453       val = ConvL2X(val);
  2454       val = _gvn.transform( new (C) CastX2PNode(val) );
  2455       break;
  2458     if (type != T_OBJECT ) {
  2459       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2460     } else {
  2461       // Possibly an oop being stored to Java heap or native memory
  2462       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2463         // oop to Java heap.
  2464         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2465       } else {
  2466         // We can't tell at compile time if we are storing in the Java heap or outside
  2467         // of it. So we need to emit code to conditionally do the proper type of
  2468         // store.
  2470         IdealKit ideal(this);
  2471 #define __ ideal.
  2472         // QQQ who knows what probability is here??
  2473         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2474           // Sync IdealKit and graphKit.
  2475           sync_kit(ideal);
  2476           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2477           // Update IdealKit memory.
  2478           __ sync_kit(this);
  2479         } __ else_(); {
  2480           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2481         } __ end_if();
  2482         // Final sync IdealKit and GraphKit.
  2483         final_sync(ideal);
  2484 #undef __
  2489   if (is_volatile) {
  2490     if (!is_store)
  2491       insert_mem_bar(Op_MemBarAcquire);
  2492     else
  2493       insert_mem_bar(Op_MemBarVolatile);
  2496   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2498   return true;
  2501 //----------------------------inline_unsafe_prefetch----------------------------
  2503 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2504 #ifndef PRODUCT
  2506     ResourceMark rm;
  2507     // Check the signatures.
  2508     ciSignature* sig = callee()->signature();
  2509 #ifdef ASSERT
  2510     // Object getObject(Object base, int/long offset), etc.
  2511     BasicType rtype = sig->return_type()->basic_type();
  2512     if (!is_native_ptr) {
  2513       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2514       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2515       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2516     } else {
  2517       assert(sig->count() == 1, "native prefetch has 1 argument");
  2518       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2520 #endif // ASSERT
  2522 #endif // !PRODUCT
  2524   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2526   const int idx = is_static ? 0 : 1;
  2527   if (!is_static) {
  2528     null_check_receiver();
  2529     if (stopped()) {
  2530       return true;
  2534   // Build address expression.  See the code in inline_unsafe_access.
  2535   Node *adr;
  2536   if (!is_native_ptr) {
  2537     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2538     Node* base   = argument(idx + 0);  // type: oop
  2539     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2540     Node* offset = argument(idx + 1);  // type: long
  2541     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2542     // to be plain byte offsets, which are also the same as those accepted
  2543     // by oopDesc::field_base.
  2544     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2545            "fieldOffset must be byte-scaled");
  2546     // 32-bit machines ignore the high half!
  2547     offset = ConvL2X(offset);
  2548     adr = make_unsafe_address(base, offset);
  2549   } else {
  2550     Node* ptr = argument(idx + 0);  // type: long
  2551     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2552     adr = make_unsafe_address(NULL, ptr);
  2555   // Generate the read or write prefetch
  2556   Node *prefetch;
  2557   if (is_store) {
  2558     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2559   } else {
  2560     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2562   prefetch->init_req(0, control());
  2563   set_i_o(_gvn.transform(prefetch));
  2565   return true;
  2568 //----------------------------inline_unsafe_load_store----------------------------
  2569 // This method serves a couple of different customers (depending on LoadStoreKind):
  2570 //
  2571 // LS_cmpxchg:
  2572 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2573 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2574 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2575 //
  2576 // LS_xadd:
  2577 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2578 //   public long getAndAddLong(Object o, long offset, long delta)
  2579 //
  2580 // LS_xchg:
  2581 //   int    getAndSet(Object o, long offset, int    newValue)
  2582 //   long   getAndSet(Object o, long offset, long   newValue)
  2583 //   Object getAndSet(Object o, long offset, Object newValue)
  2584 //
  2585 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2586   // This basic scheme here is the same as inline_unsafe_access, but
  2587   // differs in enough details that combining them would make the code
  2588   // overly confusing.  (This is a true fact! I originally combined
  2589   // them, but even I was confused by it!) As much code/comments as
  2590   // possible are retained from inline_unsafe_access though to make
  2591   // the correspondences clearer. - dl
  2593   if (callee()->is_static())  return false;  // caller must have the capability!
  2595 #ifndef PRODUCT
  2596   BasicType rtype;
  2598     ResourceMark rm;
  2599     // Check the signatures.
  2600     ciSignature* sig = callee()->signature();
  2601     rtype = sig->return_type()->basic_type();
  2602     if (kind == LS_xadd || kind == LS_xchg) {
  2603       // Check the signatures.
  2604 #ifdef ASSERT
  2605       assert(rtype == type, "get and set must return the expected type");
  2606       assert(sig->count() == 3, "get and set has 3 arguments");
  2607       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2608       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2609       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2610 #endif // ASSERT
  2611     } else if (kind == LS_cmpxchg) {
  2612       // Check the signatures.
  2613 #ifdef ASSERT
  2614       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2615       assert(sig->count() == 4, "CAS has 4 arguments");
  2616       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2617       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2618 #endif // ASSERT
  2619     } else {
  2620       ShouldNotReachHere();
  2623 #endif //PRODUCT
  2625   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2627   // Get arguments:
  2628   Node* receiver = NULL;
  2629   Node* base     = NULL;
  2630   Node* offset   = NULL;
  2631   Node* oldval   = NULL;
  2632   Node* newval   = NULL;
  2633   if (kind == LS_cmpxchg) {
  2634     const bool two_slot_type = type2size[type] == 2;
  2635     receiver = argument(0);  // type: oop
  2636     base     = argument(1);  // type: oop
  2637     offset   = argument(2);  // type: long
  2638     oldval   = argument(4);  // type: oop, int, or long
  2639     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2640   } else if (kind == LS_xadd || kind == LS_xchg){
  2641     receiver = argument(0);  // type: oop
  2642     base     = argument(1);  // type: oop
  2643     offset   = argument(2);  // type: long
  2644     oldval   = NULL;
  2645     newval   = argument(4);  // type: oop, int, or long
  2648   // Null check receiver.
  2649   receiver = null_check(receiver);
  2650   if (stopped()) {
  2651     return true;
  2654   // Build field offset expression.
  2655   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2656   // to be plain byte offsets, which are also the same as those accepted
  2657   // by oopDesc::field_base.
  2658   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2659   // 32-bit machines ignore the high half of long offsets
  2660   offset = ConvL2X(offset);
  2661   Node* adr = make_unsafe_address(base, offset);
  2662   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2664   // For CAS, unlike inline_unsafe_access, there seems no point in
  2665   // trying to refine types. Just use the coarse types here.
  2666   const Type *value_type = Type::get_const_basic_type(type);
  2667   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2668   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2670   if (kind == LS_xchg && type == T_OBJECT) {
  2671     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2672     if (tjp != NULL) {
  2673       value_type = tjp;
  2677   int alias_idx = C->get_alias_index(adr_type);
  2679   // Memory-model-wise, a LoadStore acts like a little synchronized
  2680   // block, so needs barriers on each side.  These don't translate
  2681   // into actual barriers on most machines, but we still need rest of
  2682   // compiler to respect ordering.
  2684   insert_mem_bar(Op_MemBarRelease);
  2685   insert_mem_bar(Op_MemBarCPUOrder);
  2687   // 4984716: MemBars must be inserted before this
  2688   //          memory node in order to avoid a false
  2689   //          dependency which will confuse the scheduler.
  2690   Node *mem = memory(alias_idx);
  2692   // For now, we handle only those cases that actually exist: ints,
  2693   // longs, and Object. Adding others should be straightforward.
  2694   Node* load_store;
  2695   switch(type) {
  2696   case T_INT:
  2697     if (kind == LS_xadd) {
  2698       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2699     } else if (kind == LS_xchg) {
  2700       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2701     } else if (kind == LS_cmpxchg) {
  2702       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2703     } else {
  2704       ShouldNotReachHere();
  2706     break;
  2707   case T_LONG:
  2708     if (kind == LS_xadd) {
  2709       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2710     } else if (kind == LS_xchg) {
  2711       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2712     } else if (kind == LS_cmpxchg) {
  2713       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2714     } else {
  2715       ShouldNotReachHere();
  2717     break;
  2718   case T_OBJECT:
  2719     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2720     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2721     // Execute transformation here to avoid barrier generation in such case.
  2722     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2723       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2725     // Reference stores need a store barrier.
  2726     pre_barrier(true /* do_load*/,
  2727                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2728                 NULL /* pre_val*/,
  2729                 T_OBJECT);
  2730 #ifdef _LP64
  2731     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2732       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2733       if (kind == LS_xchg) {
  2734         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2735                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2736       } else {
  2737         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2738         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2739         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2740                                                                    newval_enc, oldval_enc));
  2742     } else
  2743 #endif
  2745       if (kind == LS_xchg) {
  2746         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2747       } else {
  2748         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2749         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2752     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2753     break;
  2754   default:
  2755     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2756     break;
  2759   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2760   // main role is to prevent LoadStore nodes from being optimized away
  2761   // when their results aren't used.
  2762   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
  2763   set_memory(proj, alias_idx);
  2765   // Add the trailing membar surrounding the access
  2766   insert_mem_bar(Op_MemBarCPUOrder);
  2767   insert_mem_bar(Op_MemBarAcquire);
  2769 #ifdef _LP64
  2770   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
  2771     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
  2773 #endif
  2775   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2776   set_result(load_store);
  2777   return true;
  2780 //----------------------------inline_unsafe_ordered_store----------------------
  2781 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  2782 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  2783 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  2784 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2785   // This is another variant of inline_unsafe_access, differing in
  2786   // that it always issues store-store ("release") barrier and ensures
  2787   // store-atomicity (which only matters for "long").
  2789   if (callee()->is_static())  return false;  // caller must have the capability!
  2791 #ifndef PRODUCT
  2793     ResourceMark rm;
  2794     // Check the signatures.
  2795     ciSignature* sig = callee()->signature();
  2796 #ifdef ASSERT
  2797     BasicType rtype = sig->return_type()->basic_type();
  2798     assert(rtype == T_VOID, "must return void");
  2799     assert(sig->count() == 3, "has 3 arguments");
  2800     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2801     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2802 #endif // ASSERT
  2804 #endif //PRODUCT
  2806   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2808   // Get arguments:
  2809   Node* receiver = argument(0);  // type: oop
  2810   Node* base     = argument(1);  // type: oop
  2811   Node* offset   = argument(2);  // type: long
  2812   Node* val      = argument(4);  // type: oop, int, or long
  2814   // Null check receiver.
  2815   receiver = null_check(receiver);
  2816   if (stopped()) {
  2817     return true;
  2820   // Build field offset expression.
  2821   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2822   // 32-bit machines ignore the high half of long offsets
  2823   offset = ConvL2X(offset);
  2824   Node* adr = make_unsafe_address(base, offset);
  2825   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2826   const Type *value_type = Type::get_const_basic_type(type);
  2827   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2829   insert_mem_bar(Op_MemBarRelease);
  2830   insert_mem_bar(Op_MemBarCPUOrder);
  2831   // Ensure that the store is atomic for longs:
  2832   const bool require_atomic_access = true;
  2833   Node* store;
  2834   if (type == T_OBJECT) // reference stores need a store barrier.
  2835     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2836   else {
  2837     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2839   insert_mem_bar(Op_MemBarCPUOrder);
  2840   return true;
  2843 //----------------------------inline_unsafe_allocate---------------------------
  2844 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
  2845 bool LibraryCallKit::inline_unsafe_allocate() {
  2846   if (callee()->is_static())  return false;  // caller must have the capability!
  2848   null_check_receiver();  // null-check, then ignore
  2849   Node* cls = null_check(argument(1));
  2850   if (stopped())  return true;
  2852   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2853   kls = null_check(kls);
  2854   if (stopped())  return true;  // argument was like int.class
  2856   // Note:  The argument might still be an illegal value like
  2857   // Serializable.class or Object[].class.   The runtime will handle it.
  2858   // But we must make an explicit check for initialization.
  2859   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  2860   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  2861   // can generate code to load it as unsigned byte.
  2862   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  2863   Node* bits = intcon(InstanceKlass::fully_initialized);
  2864   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
  2865   // The 'test' is non-zero if we need to take a slow path.
  2867   Node* obj = new_instance(kls, test);
  2868   set_result(obj);
  2869   return true;
  2872 #ifdef TRACE_HAVE_INTRINSICS
  2873 /*
  2874  * oop -> myklass
  2875  * myklass->trace_id |= USED
  2876  * return myklass->trace_id & ~0x3
  2877  */
  2878 bool LibraryCallKit::inline_native_classID() {
  2879   null_check_receiver();  // null-check, then ignore
  2880   Node* cls = null_check(argument(1), T_OBJECT);
  2881   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2882   kls = null_check(kls, T_OBJECT);
  2883   ByteSize offset = TRACE_ID_OFFSET;
  2884   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  2885   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  2886   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  2887   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  2888   Node* clsused = longcon(0x01l); // set the class bit
  2889   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  2891   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  2892   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  2893   set_result(andl);
  2894   return true;
  2897 bool LibraryCallKit::inline_native_threadID() {
  2898   Node* tls_ptr = NULL;
  2899   Node* cur_thr = generate_current_thread(tls_ptr);
  2900   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2901   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2902   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  2904   Node* threadid = NULL;
  2905   size_t thread_id_size = OSThread::thread_id_size();
  2906   if (thread_id_size == (size_t) BytesPerLong) {
  2907     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  2908   } else if (thread_id_size == (size_t) BytesPerInt) {
  2909     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  2910   } else {
  2911     ShouldNotReachHere();
  2913   set_result(threadid);
  2914   return true;
  2916 #endif
  2918 //------------------------inline_native_time_funcs--------------
  2919 // inline code for System.currentTimeMillis() and System.nanoTime()
  2920 // these have the same type and signature
  2921 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  2922   const TypeFunc* tf = OptoRuntime::void_long_Type();
  2923   const TypePtr* no_memory_effects = NULL;
  2924   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2925   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  2926 #ifdef ASSERT
  2927   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  2928   assert(value_top == top(), "second value must be top");
  2929 #endif
  2930   set_result(value);
  2931   return true;
  2934 //------------------------inline_native_currentThread------------------
  2935 bool LibraryCallKit::inline_native_currentThread() {
  2936   Node* junk = NULL;
  2937   set_result(generate_current_thread(junk));
  2938   return true;
  2941 //------------------------inline_native_isInterrupted------------------
  2942 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  2943 bool LibraryCallKit::inline_native_isInterrupted() {
  2944   // Add a fast path to t.isInterrupted(clear_int):
  2945   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2946   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2947   // So, in the common case that the interrupt bit is false,
  2948   // we avoid making a call into the VM.  Even if the interrupt bit
  2949   // is true, if the clear_int argument is false, we avoid the VM call.
  2950   // However, if the receiver is not currentThread, we must call the VM,
  2951   // because there must be some locking done around the operation.
  2953   // We only go to the fast case code if we pass two guards.
  2954   // Paths which do not pass are accumulated in the slow_region.
  2955   RegionNode* slow_region = new (C) RegionNode(1);
  2956   record_for_igvn(slow_region);
  2957   RegionNode* result_rgn = new (C) RegionNode(1+3); // fast1, fast2, slow
  2958   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  2959   enum { no_int_result_path   = 1,
  2960          no_clear_result_path = 2,
  2961          slow_result_path     = 3
  2962   };
  2964   // (a) Receiving thread must be the current thread.
  2965   Node* rec_thr = argument(0);
  2966   Node* tls_ptr = NULL;
  2967   Node* cur_thr = generate_current_thread(tls_ptr);
  2968   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
  2969   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
  2971   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2972   if (!known_current_thread)
  2973     generate_slow_guard(bol_thr, slow_region);
  2975   // (b) Interrupt bit on TLS must be false.
  2976   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2977   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2978   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2979   // Set the control input on the field _interrupted read to prevent it floating up.
  2980   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2981   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
  2982   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
  2984   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2986   // First fast path:  if (!TLS._interrupted) return false;
  2987   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
  2988   result_rgn->init_req(no_int_result_path, false_bit);
  2989   result_val->init_req(no_int_result_path, intcon(0));
  2991   // drop through to next case
  2992   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
  2994   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2995   Node* clr_arg = argument(1);
  2996   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
  2997   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
  2998   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3000   // Second fast path:  ... else if (!clear_int) return true;
  3001   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
  3002   result_rgn->init_req(no_clear_result_path, false_arg);
  3003   result_val->init_req(no_clear_result_path, intcon(1));
  3005   // drop through to next case
  3006   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
  3008   // (d) Otherwise, go to the slow path.
  3009   slow_region->add_req(control());
  3010   set_control( _gvn.transform(slow_region) );
  3012   if (stopped()) {
  3013     // There is no slow path.
  3014     result_rgn->init_req(slow_result_path, top());
  3015     result_val->init_req(slow_result_path, top());
  3016   } else {
  3017     // non-virtual because it is a private non-static
  3018     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3020     Node* slow_val = set_results_for_java_call(slow_call);
  3021     // this->control() comes from set_results_for_java_call
  3023     // If we know that the result of the slow call will be true, tell the optimizer!
  3024     if (known_current_thread)  slow_val = intcon(1);
  3026     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3027     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3028     // These two phis are pre-filled with copies of of the fast IO and Memory
  3029     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3030     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3032     result_rgn->init_req(slow_result_path, control());
  3033     io_phi    ->init_req(slow_result_path, i_o());
  3034     mem_phi   ->init_req(slow_result_path, reset_memory());
  3035     result_val->init_req(slow_result_path, slow_val);
  3037     set_all_memory( _gvn.transform(mem_phi) );
  3038     set_i_o(        _gvn.transform(io_phi) );
  3041   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3042   set_result(result_rgn, result_val);
  3043   return true;
  3046 //---------------------------load_mirror_from_klass----------------------------
  3047 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3048 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3049   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3050   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3053 //-----------------------load_klass_from_mirror_common-------------------------
  3054 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3055 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3056 // and branch to the given path on the region.
  3057 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3058 // compile for the non-null case.
  3059 // If the region is NULL, force never_see_null = true.
  3060 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3061                                                     bool never_see_null,
  3062                                                     RegionNode* region,
  3063                                                     int null_path,
  3064                                                     int offset) {
  3065   if (region == NULL)  never_see_null = true;
  3066   Node* p = basic_plus_adr(mirror, offset);
  3067   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3068   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3069   Node* null_ctl = top();
  3070   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3071   if (region != NULL) {
  3072     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3073     region->init_req(null_path, null_ctl);
  3074   } else {
  3075     assert(null_ctl == top(), "no loose ends");
  3077   return kls;
  3080 //--------------------(inline_native_Class_query helpers)---------------------
  3081 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3082 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3083 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3084   // Branch around if the given klass has the given modifier bit set.
  3085   // Like generate_guard, adds a new path onto the region.
  3086   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3087   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3088   Node* mask = intcon(modifier_mask);
  3089   Node* bits = intcon(modifier_bits);
  3090   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
  3091   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
  3092   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
  3093   return generate_fair_guard(bol, region);
  3095 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3096   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3099 //-------------------------inline_native_Class_query-------------------
  3100 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3101   const Type* return_type = TypeInt::BOOL;
  3102   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3103   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3104   bool expect_prim = false;     // most of these guys expect to work on refs
  3106   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3108   Node* mirror = argument(0);
  3109   Node* obj    = top();
  3111   switch (id) {
  3112   case vmIntrinsics::_isInstance:
  3113     // nothing is an instance of a primitive type
  3114     prim_return_value = intcon(0);
  3115     obj = argument(1);
  3116     break;
  3117   case vmIntrinsics::_getModifiers:
  3118     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3119     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3120     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3121     break;
  3122   case vmIntrinsics::_isInterface:
  3123     prim_return_value = intcon(0);
  3124     break;
  3125   case vmIntrinsics::_isArray:
  3126     prim_return_value = intcon(0);
  3127     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3128     break;
  3129   case vmIntrinsics::_isPrimitive:
  3130     prim_return_value = intcon(1);
  3131     expect_prim = true;  // obviously
  3132     break;
  3133   case vmIntrinsics::_getSuperclass:
  3134     prim_return_value = null();
  3135     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3136     break;
  3137   case vmIntrinsics::_getComponentType:
  3138     prim_return_value = null();
  3139     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3140     break;
  3141   case vmIntrinsics::_getClassAccessFlags:
  3142     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3143     return_type = TypeInt::INT;  // not bool!  6297094
  3144     break;
  3145   default:
  3146     fatal_unexpected_iid(id);
  3147     break;
  3150   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3151   if (mirror_con == NULL)  return false;  // cannot happen?
  3153 #ifndef PRODUCT
  3154   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3155     ciType* k = mirror_con->java_mirror_type();
  3156     if (k) {
  3157       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3158       k->print_name();
  3159       tty->cr();
  3162 #endif
  3164   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3165   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3166   record_for_igvn(region);
  3167   PhiNode* phi = new (C) PhiNode(region, return_type);
  3169   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3170   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3171   // if it is. See bug 4774291.
  3173   // For Reflection.getClassAccessFlags(), the null check occurs in
  3174   // the wrong place; see inline_unsafe_access(), above, for a similar
  3175   // situation.
  3176   mirror = null_check(mirror);
  3177   // If mirror or obj is dead, only null-path is taken.
  3178   if (stopped())  return true;
  3180   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3182   // Now load the mirror's klass metaobject, and null-check it.
  3183   // Side-effects region with the control path if the klass is null.
  3184   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3185   // If kls is null, we have a primitive mirror.
  3186   phi->init_req(_prim_path, prim_return_value);
  3187   if (stopped()) { set_result(region, phi); return true; }
  3189   Node* p;  // handy temp
  3190   Node* null_ctl;
  3192   // Now that we have the non-null klass, we can perform the real query.
  3193   // For constant classes, the query will constant-fold in LoadNode::Value.
  3194   Node* query_value = top();
  3195   switch (id) {
  3196   case vmIntrinsics::_isInstance:
  3197     // nothing is an instance of a primitive type
  3198     query_value = gen_instanceof(obj, kls);
  3199     break;
  3201   case vmIntrinsics::_getModifiers:
  3202     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3203     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3204     break;
  3206   case vmIntrinsics::_isInterface:
  3207     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3208     if (generate_interface_guard(kls, region) != NULL)
  3209       // A guard was added.  If the guard is taken, it was an interface.
  3210       phi->add_req(intcon(1));
  3211     // If we fall through, it's a plain class.
  3212     query_value = intcon(0);
  3213     break;
  3215   case vmIntrinsics::_isArray:
  3216     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3217     if (generate_array_guard(kls, region) != NULL)
  3218       // A guard was added.  If the guard is taken, it was an array.
  3219       phi->add_req(intcon(1));
  3220     // If we fall through, it's a plain class.
  3221     query_value = intcon(0);
  3222     break;
  3224   case vmIntrinsics::_isPrimitive:
  3225     query_value = intcon(0); // "normal" path produces false
  3226     break;
  3228   case vmIntrinsics::_getSuperclass:
  3229     // The rules here are somewhat unfortunate, but we can still do better
  3230     // with random logic than with a JNI call.
  3231     // Interfaces store null or Object as _super, but must report null.
  3232     // Arrays store an intermediate super as _super, but must report Object.
  3233     // Other types can report the actual _super.
  3234     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3235     if (generate_interface_guard(kls, region) != NULL)
  3236       // A guard was added.  If the guard is taken, it was an interface.
  3237       phi->add_req(null());
  3238     if (generate_array_guard(kls, region) != NULL)
  3239       // A guard was added.  If the guard is taken, it was an array.
  3240       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3241     // If we fall through, it's a plain class.  Get its _super.
  3242     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3243     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3244     null_ctl = top();
  3245     kls = null_check_oop(kls, &null_ctl);
  3246     if (null_ctl != top()) {
  3247       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3248       region->add_req(null_ctl);
  3249       phi   ->add_req(null());
  3251     if (!stopped()) {
  3252       query_value = load_mirror_from_klass(kls);
  3254     break;
  3256   case vmIntrinsics::_getComponentType:
  3257     if (generate_array_guard(kls, region) != NULL) {
  3258       // Be sure to pin the oop load to the guard edge just created:
  3259       Node* is_array_ctrl = region->in(region->req()-1);
  3260       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3261       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3262       phi->add_req(cmo);
  3264     query_value = null();  // non-array case is null
  3265     break;
  3267   case vmIntrinsics::_getClassAccessFlags:
  3268     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3269     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3270     break;
  3272   default:
  3273     fatal_unexpected_iid(id);
  3274     break;
  3277   // Fall-through is the normal case of a query to a real class.
  3278   phi->init_req(1, query_value);
  3279   region->init_req(1, control());
  3281   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3282   set_result(region, phi);
  3283   return true;
  3286 //--------------------------inline_native_subtype_check------------------------
  3287 // This intrinsic takes the JNI calls out of the heart of
  3288 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3289 bool LibraryCallKit::inline_native_subtype_check() {
  3290   // Pull both arguments off the stack.
  3291   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3292   args[0] = argument(0);
  3293   args[1] = argument(1);
  3294   Node* klasses[2];             // corresponding Klasses: superk, subk
  3295   klasses[0] = klasses[1] = top();
  3297   enum {
  3298     // A full decision tree on {superc is prim, subc is prim}:
  3299     _prim_0_path = 1,           // {P,N} => false
  3300                                 // {P,P} & superc!=subc => false
  3301     _prim_same_path,            // {P,P} & superc==subc => true
  3302     _prim_1_path,               // {N,P} => false
  3303     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3304     _both_ref_path,             // {N,N} & subtype check loses => false
  3305     PATH_LIMIT
  3306   };
  3308   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3309   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3310   record_for_igvn(region);
  3312   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3313   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3314   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3316   // First null-check both mirrors and load each mirror's klass metaobject.
  3317   int which_arg;
  3318   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3319     Node* arg = args[which_arg];
  3320     arg = null_check(arg);
  3321     if (stopped())  break;
  3322     args[which_arg] = _gvn.transform(arg);
  3324     Node* p = basic_plus_adr(arg, class_klass_offset);
  3325     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3326     klasses[which_arg] = _gvn.transform(kls);
  3329   // Having loaded both klasses, test each for null.
  3330   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3331   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3332     Node* kls = klasses[which_arg];
  3333     Node* null_ctl = top();
  3334     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3335     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3336     region->init_req(prim_path, null_ctl);
  3337     if (stopped())  break;
  3338     klasses[which_arg] = kls;
  3341   if (!stopped()) {
  3342     // now we have two reference types, in klasses[0..1]
  3343     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3344     Node* superk = klasses[0];  // the receiver
  3345     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3346     // now we have a successful reference subtype check
  3347     region->set_req(_ref_subtype_path, control());
  3350   // If both operands are primitive (both klasses null), then
  3351   // we must return true when they are identical primitives.
  3352   // It is convenient to test this after the first null klass check.
  3353   set_control(region->in(_prim_0_path)); // go back to first null check
  3354   if (!stopped()) {
  3355     // Since superc is primitive, make a guard for the superc==subc case.
  3356     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
  3357     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
  3358     generate_guard(bol_eq, region, PROB_FAIR);
  3359     if (region->req() == PATH_LIMIT+1) {
  3360       // A guard was added.  If the added guard is taken, superc==subc.
  3361       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3362       region->del_req(PATH_LIMIT);
  3364     region->set_req(_prim_0_path, control()); // Not equal after all.
  3367   // these are the only paths that produce 'true':
  3368   phi->set_req(_prim_same_path,   intcon(1));
  3369   phi->set_req(_ref_subtype_path, intcon(1));
  3371   // pull together the cases:
  3372   assert(region->req() == PATH_LIMIT, "sane region");
  3373   for (uint i = 1; i < region->req(); i++) {
  3374     Node* ctl = region->in(i);
  3375     if (ctl == NULL || ctl == top()) {
  3376       region->set_req(i, top());
  3377       phi   ->set_req(i, top());
  3378     } else if (phi->in(i) == NULL) {
  3379       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3383   set_control(_gvn.transform(region));
  3384   set_result(_gvn.transform(phi));
  3385   return true;
  3388 //---------------------generate_array_guard_common------------------------
  3389 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3390                                                   bool obj_array, bool not_array) {
  3391   // If obj_array/non_array==false/false:
  3392   // Branch around if the given klass is in fact an array (either obj or prim).
  3393   // If obj_array/non_array==false/true:
  3394   // Branch around if the given klass is not an array klass of any kind.
  3395   // If obj_array/non_array==true/true:
  3396   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3397   // If obj_array/non_array==true/false:
  3398   // Branch around if the kls is an oop array (Object[] or subtype)
  3399   //
  3400   // Like generate_guard, adds a new path onto the region.
  3401   jint  layout_con = 0;
  3402   Node* layout_val = get_layout_helper(kls, layout_con);
  3403   if (layout_val == NULL) {
  3404     bool query = (obj_array
  3405                   ? Klass::layout_helper_is_objArray(layout_con)
  3406                   : Klass::layout_helper_is_array(layout_con));
  3407     if (query == not_array) {
  3408       return NULL;                       // never a branch
  3409     } else {                             // always a branch
  3410       Node* always_branch = control();
  3411       if (region != NULL)
  3412         region->add_req(always_branch);
  3413       set_control(top());
  3414       return always_branch;
  3417   // Now test the correct condition.
  3418   jint  nval = (obj_array
  3419                 ? ((jint)Klass::_lh_array_tag_type_value
  3420                    <<    Klass::_lh_array_tag_shift)
  3421                 : Klass::_lh_neutral_value);
  3422   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
  3423   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3424   // invert the test if we are looking for a non-array
  3425   if (not_array)  btest = BoolTest(btest).negate();
  3426   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
  3427   return generate_fair_guard(bol, region);
  3431 //-----------------------inline_native_newArray--------------------------
  3432 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3433 bool LibraryCallKit::inline_native_newArray() {
  3434   Node* mirror    = argument(0);
  3435   Node* count_val = argument(1);
  3437   mirror = null_check(mirror);
  3438   // If mirror or obj is dead, only null-path is taken.
  3439   if (stopped())  return true;
  3441   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3442   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3443   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3444                                           TypeInstPtr::NOTNULL);
  3445   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3446   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3447                                           TypePtr::BOTTOM);
  3449   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3450   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3451                                                   result_reg, _slow_path);
  3452   Node* normal_ctl   = control();
  3453   Node* no_array_ctl = result_reg->in(_slow_path);
  3455   // Generate code for the slow case.  We make a call to newArray().
  3456   set_control(no_array_ctl);
  3457   if (!stopped()) {
  3458     // Either the input type is void.class, or else the
  3459     // array klass has not yet been cached.  Either the
  3460     // ensuing call will throw an exception, or else it
  3461     // will cache the array klass for next time.
  3462     PreserveJVMState pjvms(this);
  3463     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3464     Node* slow_result = set_results_for_java_call(slow_call);
  3465     // this->control() comes from set_results_for_java_call
  3466     result_reg->set_req(_slow_path, control());
  3467     result_val->set_req(_slow_path, slow_result);
  3468     result_io ->set_req(_slow_path, i_o());
  3469     result_mem->set_req(_slow_path, reset_memory());
  3472   set_control(normal_ctl);
  3473   if (!stopped()) {
  3474     // Normal case:  The array type has been cached in the java.lang.Class.
  3475     // The following call works fine even if the array type is polymorphic.
  3476     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3477     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3478     result_reg->init_req(_normal_path, control());
  3479     result_val->init_req(_normal_path, obj);
  3480     result_io ->init_req(_normal_path, i_o());
  3481     result_mem->init_req(_normal_path, reset_memory());
  3484   // Return the combined state.
  3485   set_i_o(        _gvn.transform(result_io)  );
  3486   set_all_memory( _gvn.transform(result_mem) );
  3488   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3489   set_result(result_reg, result_val);
  3490   return true;
  3493 //----------------------inline_native_getLength--------------------------
  3494 // public static native int java.lang.reflect.Array.getLength(Object array);
  3495 bool LibraryCallKit::inline_native_getLength() {
  3496   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3498   Node* array = null_check(argument(0));
  3499   // If array is dead, only null-path is taken.
  3500   if (stopped())  return true;
  3502   // Deoptimize if it is a non-array.
  3503   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3505   if (non_array != NULL) {
  3506     PreserveJVMState pjvms(this);
  3507     set_control(non_array);
  3508     uncommon_trap(Deoptimization::Reason_intrinsic,
  3509                   Deoptimization::Action_maybe_recompile);
  3512   // If control is dead, only non-array-path is taken.
  3513   if (stopped())  return true;
  3515   // The works fine even if the array type is polymorphic.
  3516   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3517   Node* result = load_array_length(array);
  3519   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3520   set_result(result);
  3521   return true;
  3524 //------------------------inline_array_copyOf----------------------------
  3525 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3526 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3527 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3528   return false;
  3529   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3531   // Get the arguments.
  3532   Node* original          = argument(0);
  3533   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3534   Node* end               = is_copyOfRange? argument(2): argument(1);
  3535   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3537   Node* newcopy;
  3539   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3540   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3541   { PreserveReexecuteState preexecs(this);
  3542     jvms()->set_should_reexecute(true);
  3544     array_type_mirror = null_check(array_type_mirror);
  3545     original          = null_check(original);
  3547     // Check if a null path was taken unconditionally.
  3548     if (stopped())  return true;
  3550     Node* orig_length = load_array_length(original);
  3552     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3553     klass_node = null_check(klass_node);
  3555     RegionNode* bailout = new (C) RegionNode(1);
  3556     record_for_igvn(bailout);
  3558     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3559     // Bail out if that is so.
  3560     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3561     if (not_objArray != NULL) {
  3562       // Improve the klass node's type from the new optimistic assumption:
  3563       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3564       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3565       Node* cast = new (C) CastPPNode(klass_node, akls);
  3566       cast->init_req(0, control());
  3567       klass_node = _gvn.transform(cast);
  3570     // Bail out if either start or end is negative.
  3571     generate_negative_guard(start, bailout, &start);
  3572     generate_negative_guard(end,   bailout, &end);
  3574     Node* length = end;
  3575     if (_gvn.type(start) != TypeInt::ZERO) {
  3576       length = _gvn.transform(new (C) SubINode(end, start));
  3579     // Bail out if length is negative.
  3580     // Without this the new_array would throw
  3581     // NegativeArraySizeException but IllegalArgumentException is what
  3582     // should be thrown
  3583     generate_negative_guard(length, bailout, &length);
  3585     if (bailout->req() > 1) {
  3586       PreserveJVMState pjvms(this);
  3587       set_control(_gvn.transform(bailout));
  3588       uncommon_trap(Deoptimization::Reason_intrinsic,
  3589                     Deoptimization::Action_maybe_recompile);
  3592     if (!stopped()) {
  3593       // How many elements will we copy from the original?
  3594       // The answer is MinI(orig_length - start, length).
  3595       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3596       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3598       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3600       // Generate a direct call to the right arraycopy function(s).
  3601       // We know the copy is disjoint but we might not know if the
  3602       // oop stores need checking.
  3603       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3604       // This will fail a store-check if x contains any non-nulls.
  3605       bool disjoint_bases = true;
  3606       // if start > orig_length then the length of the copy may be
  3607       // negative.
  3608       bool length_never_negative = !is_copyOfRange;
  3609       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3610                          original, start, newcopy, intcon(0), moved,
  3611                          disjoint_bases, length_never_negative);
  3613   } // original reexecute is set back here
  3615   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3616   if (!stopped()) {
  3617     set_result(newcopy);
  3619   return true;
  3623 //----------------------generate_virtual_guard---------------------------
  3624 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3625 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3626                                              RegionNode* slow_region) {
  3627   ciMethod* method = callee();
  3628   int vtable_index = method->vtable_index();
  3629   // Get the Method* out of the appropriate vtable entry.
  3630   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3631                      vtable_index*vtableEntry::size()) * wordSize +
  3632                      vtableEntry::method_offset_in_bytes();
  3633   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3634   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3636   // Compare the target method with the expected method (e.g., Object.hashCode).
  3637   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3639   Node* native_call = makecon(native_call_addr);
  3640   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
  3641   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
  3643   return generate_slow_guard(test_native, slow_region);
  3646 //-----------------------generate_method_call----------------------------
  3647 // Use generate_method_call to make a slow-call to the real
  3648 // method if the fast path fails.  An alternative would be to
  3649 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3650 // This only works for expanding the current library call,
  3651 // not another intrinsic.  (E.g., don't use this for making an
  3652 // arraycopy call inside of the copyOf intrinsic.)
  3653 CallJavaNode*
  3654 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3655   // When compiling the intrinsic method itself, do not use this technique.
  3656   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3658   ciMethod* method = callee();
  3659   // ensure the JVMS we have will be correct for this call
  3660   guarantee(method_id == method->intrinsic_id(), "must match");
  3662   const TypeFunc* tf = TypeFunc::make(method);
  3663   CallJavaNode* slow_call;
  3664   if (is_static) {
  3665     assert(!is_virtual, "");
  3666     slow_call = new(C) CallStaticJavaNode(tf,
  3667                            SharedRuntime::get_resolve_static_call_stub(),
  3668                            method, bci());
  3669   } else if (is_virtual) {
  3670     null_check_receiver();
  3671     int vtable_index = Method::invalid_vtable_index;
  3672     if (UseInlineCaches) {
  3673       // Suppress the vtable call
  3674     } else {
  3675       // hashCode and clone are not a miranda methods,
  3676       // so the vtable index is fixed.
  3677       // No need to use the linkResolver to get it.
  3678        vtable_index = method->vtable_index();
  3680     slow_call = new(C) CallDynamicJavaNode(tf,
  3681                           SharedRuntime::get_resolve_virtual_call_stub(),
  3682                           method, vtable_index, bci());
  3683   } else {  // neither virtual nor static:  opt_virtual
  3684     null_check_receiver();
  3685     slow_call = new(C) CallStaticJavaNode(tf,
  3686                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3687                                 method, bci());
  3688     slow_call->set_optimized_virtual(true);
  3690   set_arguments_for_java_call(slow_call);
  3691   set_edges_for_java_call(slow_call);
  3692   return slow_call;
  3696 //------------------------------inline_native_hashcode--------------------
  3697 // Build special case code for calls to hashCode on an object.
  3698 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3699   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3700   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3702   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3704   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3705   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3706                                           TypeInt::INT);
  3707   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3708   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3709                                           TypePtr::BOTTOM);
  3710   Node* obj = NULL;
  3711   if (!is_static) {
  3712     // Check for hashing null object
  3713     obj = null_check_receiver();
  3714     if (stopped())  return true;        // unconditionally null
  3715     result_reg->init_req(_null_path, top());
  3716     result_val->init_req(_null_path, top());
  3717   } else {
  3718     // Do a null check, and return zero if null.
  3719     // System.identityHashCode(null) == 0
  3720     obj = argument(0);
  3721     Node* null_ctl = top();
  3722     obj = null_check_oop(obj, &null_ctl);
  3723     result_reg->init_req(_null_path, null_ctl);
  3724     result_val->init_req(_null_path, _gvn.intcon(0));
  3727   // Unconditionally null?  Then return right away.
  3728   if (stopped()) {
  3729     set_control( result_reg->in(_null_path));
  3730     if (!stopped())
  3731       set_result(result_val->in(_null_path));
  3732     return true;
  3735   // After null check, get the object's klass.
  3736   Node* obj_klass = load_object_klass(obj);
  3738   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3739   // For each case we generate slightly different code.
  3741   // We only go to the fast case code if we pass a number of guards.  The
  3742   // paths which do not pass are accumulated in the slow_region.
  3743   RegionNode* slow_region = new (C) RegionNode(1);
  3744   record_for_igvn(slow_region);
  3746   // If this is a virtual call, we generate a funny guard.  We pull out
  3747   // the vtable entry corresponding to hashCode() from the target object.
  3748   // If the target method which we are calling happens to be the native
  3749   // Object hashCode() method, we pass the guard.  We do not need this
  3750   // guard for non-virtual calls -- the caller is known to be the native
  3751   // Object hashCode().
  3752   if (is_virtual) {
  3753     generate_virtual_guard(obj_klass, slow_region);
  3756   // Get the header out of the object, use LoadMarkNode when available
  3757   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3758   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3760   // Test the header to see if it is unlocked.
  3761   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3762   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
  3763   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3764   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
  3765   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
  3767   generate_slow_guard(test_unlocked, slow_region);
  3769   // Get the hash value and check to see that it has been properly assigned.
  3770   // We depend on hash_mask being at most 32 bits and avoid the use of
  3771   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3772   // vm: see markOop.hpp.
  3773   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3774   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3775   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
  3776   // This hack lets the hash bits live anywhere in the mark object now, as long
  3777   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3778   // Java spec says that HashCode is an int so there's no point in capturing
  3779   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3780   hshifted_header      = ConvX2I(hshifted_header);
  3781   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
  3783   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3784   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
  3785   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
  3787   generate_slow_guard(test_assigned, slow_region);
  3789   Node* init_mem = reset_memory();
  3790   // fill in the rest of the null path:
  3791   result_io ->init_req(_null_path, i_o());
  3792   result_mem->init_req(_null_path, init_mem);
  3794   result_val->init_req(_fast_path, hash_val);
  3795   result_reg->init_req(_fast_path, control());
  3796   result_io ->init_req(_fast_path, i_o());
  3797   result_mem->init_req(_fast_path, init_mem);
  3799   // Generate code for the slow case.  We make a call to hashCode().
  3800   set_control(_gvn.transform(slow_region));
  3801   if (!stopped()) {
  3802     // No need for PreserveJVMState, because we're using up the present state.
  3803     set_all_memory(init_mem);
  3804     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  3805     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3806     Node* slow_result = set_results_for_java_call(slow_call);
  3807     // this->control() comes from set_results_for_java_call
  3808     result_reg->init_req(_slow_path, control());
  3809     result_val->init_req(_slow_path, slow_result);
  3810     result_io  ->set_req(_slow_path, i_o());
  3811     result_mem ->set_req(_slow_path, reset_memory());
  3814   // Return the combined state.
  3815   set_i_o(        _gvn.transform(result_io)  );
  3816   set_all_memory( _gvn.transform(result_mem) );
  3818   set_result(result_reg, result_val);
  3819   return true;
  3822 //---------------------------inline_native_getClass----------------------------
  3823 // public final native Class<?> java.lang.Object.getClass();
  3824 //
  3825 // Build special case code for calls to getClass on an object.
  3826 bool LibraryCallKit::inline_native_getClass() {
  3827   Node* obj = null_check_receiver();
  3828   if (stopped())  return true;
  3829   set_result(load_mirror_from_klass(load_object_klass(obj)));
  3830   return true;
  3833 //-----------------inline_native_Reflection_getCallerClass---------------------
  3834 // public static native Class<?> sun.reflect.Reflection.getCallerClass(int realFramesToSkip);
  3835 //
  3836 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3837 //
  3838 // NOTE that this code must perform the same logic as
  3839 // vframeStream::security_get_caller_frame in that it must skip
  3840 // Method.invoke() and auxiliary frames.
  3841 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3842 #ifndef PRODUCT
  3843   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3844     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3846 #endif
  3848   Node* caller_depth_node = argument(0);
  3850   // The depth value must be a constant in order for the runtime call
  3851   // to be eliminated.
  3852   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3853   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3854 #ifndef PRODUCT
  3855     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3856       tty->print_cr("  Bailing out because caller depth was not a constant");
  3858 #endif
  3859     return false;
  3861   // Note that the JVM state at this point does not include the
  3862   // getCallerClass() frame which we are trying to inline. The
  3863   // semantics of getCallerClass(), however, are that the "first"
  3864   // frame is the getCallerClass() frame, so we subtract one from the
  3865   // requested depth before continuing. We don't inline requests of
  3866   // getCallerClass(0).
  3867   int caller_depth = caller_depth_type->get_con() - 1;
  3868   if (caller_depth < 0) {
  3869 #ifndef PRODUCT
  3870     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3871       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3873 #endif
  3874     return false;
  3877   if (!jvms()->has_method()) {
  3878 #ifndef PRODUCT
  3879     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3880       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3882 #endif
  3883     return false;
  3885   int _depth = jvms()->depth();  // cache call chain depth
  3887   // Walk back up the JVM state to find the caller at the required
  3888   // depth. NOTE that this code must perform the same logic as
  3889   // vframeStream::security_get_caller_frame in that it must skip
  3890   // Method.invoke() and auxiliary frames. Note also that depth is
  3891   // 1-based (1 is the bottom of the inlining).
  3892   int inlining_depth = _depth;
  3893   JVMState* caller_jvms = NULL;
  3895   if (inlining_depth > 0) {
  3896     caller_jvms = jvms();
  3897     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3898     do {
  3899       // The following if-tests should be performed in this order
  3900       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3901         // Skip a Method.invoke() or auxiliary frame
  3902       } else if (caller_depth > 0) {
  3903         // Skip real frame
  3904         --caller_depth;
  3905       } else {
  3906         // We're done: reached desired caller after skipping.
  3907         break;
  3909       caller_jvms = caller_jvms->caller();
  3910       --inlining_depth;
  3911     } while (inlining_depth > 0);
  3914   if (inlining_depth == 0) {
  3915 #ifndef PRODUCT
  3916     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3917       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3918       tty->print_cr("  JVM state at this point:");
  3919       for (int i = _depth; i >= 1; i--) {
  3920         ciMethod* m = jvms()->of_depth(i)->method();
  3921         tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3924 #endif
  3925     return false; // Reached end of inlining
  3928   // Acquire method holder as java.lang.Class
  3929   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3930   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3932   // Push this as a constant
  3933   set_result(makecon(TypeInstPtr::make(caller_mirror)));
  3935 #ifndef PRODUCT
  3936   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3937     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3938     tty->print_cr("  JVM state at this point:");
  3939     for (int i = _depth; i >= 1; i--) {
  3940       ciMethod* m = jvms()->of_depth(i)->method();
  3941       tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3944 #endif
  3945   return true;
  3948 // Helper routine for above
  3949 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3950   ciMethod* method = jvms->method();
  3952   // Is this the Method.invoke method itself?
  3953   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3954     return true;
  3956   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3957   ciKlass* k = method->holder();
  3958   if (k->is_instance_klass()) {
  3959     ciInstanceKlass* ik = k->as_instance_klass();
  3960     for (; ik != NULL; ik = ik->super()) {
  3961       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3962           ik == env()->find_system_klass(ik->name())) {
  3963         return true;
  3967   else if (method->is_method_handle_intrinsic() ||
  3968            method->is_compiled_lambda_form()) {
  3969     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3970     return true;
  3973   return false;
  3976 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3977   Node* arg = argument(0);
  3978   Node* result;
  3980   switch (id) {
  3981   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  3982   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  3983   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  3984   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  3986   case vmIntrinsics::_doubleToLongBits: {
  3987     // two paths (plus control) merge in a wood
  3988     RegionNode *r = new (C) RegionNode(3);
  3989     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  3991     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  3992     // Build the boolean node
  3993     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  3995     // Branch either way.
  3996     // NaN case is less traveled, which makes all the difference.
  3997     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3998     Node *opt_isnan = _gvn.transform(ifisnan);
  3999     assert( opt_isnan->is_If(), "Expect an IfNode");
  4000     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4001     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4003     set_control(iftrue);
  4005     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4006     Node *slow_result = longcon(nan_bits); // return NaN
  4007     phi->init_req(1, _gvn.transform( slow_result ));
  4008     r->init_req(1, iftrue);
  4010     // Else fall through
  4011     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4012     set_control(iffalse);
  4014     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4015     r->init_req(2, iffalse);
  4017     // Post merge
  4018     set_control(_gvn.transform(r));
  4019     record_for_igvn(r);
  4021     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4022     result = phi;
  4023     assert(result->bottom_type()->isa_long(), "must be");
  4024     break;
  4027   case vmIntrinsics::_floatToIntBits: {
  4028     // two paths (plus control) merge in a wood
  4029     RegionNode *r = new (C) RegionNode(3);
  4030     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4032     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4033     // Build the boolean node
  4034     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4036     // Branch either way.
  4037     // NaN case is less traveled, which makes all the difference.
  4038     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4039     Node *opt_isnan = _gvn.transform(ifisnan);
  4040     assert( opt_isnan->is_If(), "Expect an IfNode");
  4041     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4042     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4044     set_control(iftrue);
  4046     static const jint nan_bits = 0x7fc00000;
  4047     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4048     phi->init_req(1, _gvn.transform( slow_result ));
  4049     r->init_req(1, iftrue);
  4051     // Else fall through
  4052     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4053     set_control(iffalse);
  4055     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4056     r->init_req(2, iffalse);
  4058     // Post merge
  4059     set_control(_gvn.transform(r));
  4060     record_for_igvn(r);
  4062     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4063     result = phi;
  4064     assert(result->bottom_type()->isa_int(), "must be");
  4065     break;
  4068   default:
  4069     fatal_unexpected_iid(id);
  4070     break;
  4072   set_result(_gvn.transform(result));
  4073   return true;
  4076 #ifdef _LP64
  4077 #define XTOP ,top() /*additional argument*/
  4078 #else  //_LP64
  4079 #define XTOP        /*no additional argument*/
  4080 #endif //_LP64
  4082 //----------------------inline_unsafe_copyMemory-------------------------
  4083 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4084 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4085   if (callee()->is_static())  return false;  // caller must have the capability!
  4086   null_check_receiver();  // null-check receiver
  4087   if (stopped())  return true;
  4089   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4091   Node* src_ptr =         argument(1);   // type: oop
  4092   Node* src_off = ConvL2X(argument(2));  // type: long
  4093   Node* dst_ptr =         argument(4);   // type: oop
  4094   Node* dst_off = ConvL2X(argument(5));  // type: long
  4095   Node* size    = ConvL2X(argument(7));  // type: long
  4097   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4098          "fieldOffset must be byte-scaled");
  4100   Node* src = make_unsafe_address(src_ptr, src_off);
  4101   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4103   // Conservatively insert a memory barrier on all memory slices.
  4104   // Do not let writes of the copy source or destination float below the copy.
  4105   insert_mem_bar(Op_MemBarCPUOrder);
  4107   // Call it.  Note that the length argument is not scaled.
  4108   make_runtime_call(RC_LEAF|RC_NO_FP,
  4109                     OptoRuntime::fast_arraycopy_Type(),
  4110                     StubRoutines::unsafe_arraycopy(),
  4111                     "unsafe_arraycopy",
  4112                     TypeRawPtr::BOTTOM,
  4113                     src, dst, size XTOP);
  4115   // Do not let reads of the copy destination float above the copy.
  4116   insert_mem_bar(Op_MemBarCPUOrder);
  4118   return true;
  4121 //------------------------clone_coping-----------------------------------
  4122 // Helper function for inline_native_clone.
  4123 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4124   assert(obj_size != NULL, "");
  4125   Node* raw_obj = alloc_obj->in(1);
  4126   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4128   AllocateNode* alloc = NULL;
  4129   if (ReduceBulkZeroing) {
  4130     // We will be completely responsible for initializing this object -
  4131     // mark Initialize node as complete.
  4132     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4133     // The object was just allocated - there should be no any stores!
  4134     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4135     // Mark as complete_with_arraycopy so that on AllocateNode
  4136     // expansion, we know this AllocateNode is initialized by an array
  4137     // copy and a StoreStore barrier exists after the array copy.
  4138     alloc->initialization()->set_complete_with_arraycopy();
  4141   // Copy the fastest available way.
  4142   // TODO: generate fields copies for small objects instead.
  4143   Node* src  = obj;
  4144   Node* dest = alloc_obj;
  4145   Node* size = _gvn.transform(obj_size);
  4147   // Exclude the header but include array length to copy by 8 bytes words.
  4148   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4149   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4150                             instanceOopDesc::base_offset_in_bytes();
  4151   // base_off:
  4152   // 8  - 32-bit VM
  4153   // 12 - 64-bit VM, compressed klass
  4154   // 16 - 64-bit VM, normal klass
  4155   if (base_off % BytesPerLong != 0) {
  4156     assert(UseCompressedKlassPointers, "");
  4157     if (is_array) {
  4158       // Exclude length to copy by 8 bytes words.
  4159       base_off += sizeof(int);
  4160     } else {
  4161       // Include klass to copy by 8 bytes words.
  4162       base_off = instanceOopDesc::klass_offset_in_bytes();
  4164     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4166   src  = basic_plus_adr(src,  base_off);
  4167   dest = basic_plus_adr(dest, base_off);
  4169   // Compute the length also, if needed:
  4170   Node* countx = size;
  4171   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
  4172   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4174   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4175   bool disjoint_bases = true;
  4176   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4177                                src, NULL, dest, NULL, countx,
  4178                                /*dest_uninitialized*/true);
  4180   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4181   if (card_mark) {
  4182     assert(!is_array, "");
  4183     // Put in store barrier for any and all oops we are sticking
  4184     // into this object.  (We could avoid this if we could prove
  4185     // that the object type contains no oop fields at all.)
  4186     Node* no_particular_value = NULL;
  4187     Node* no_particular_field = NULL;
  4188     int raw_adr_idx = Compile::AliasIdxRaw;
  4189     post_barrier(control(),
  4190                  memory(raw_adr_type),
  4191                  alloc_obj,
  4192                  no_particular_field,
  4193                  raw_adr_idx,
  4194                  no_particular_value,
  4195                  T_OBJECT,
  4196                  false);
  4199   // Do not let reads from the cloned object float above the arraycopy.
  4200   if (alloc != NULL) {
  4201     // Do not let stores that initialize this object be reordered with
  4202     // a subsequent store that would make this object accessible by
  4203     // other threads.
  4204     // Record what AllocateNode this StoreStore protects so that
  4205     // escape analysis can go from the MemBarStoreStoreNode to the
  4206     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4207     // based on the escape status of the AllocateNode.
  4208     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4209   } else {
  4210     insert_mem_bar(Op_MemBarCPUOrder);
  4214 //------------------------inline_native_clone----------------------------
  4215 // protected native Object java.lang.Object.clone();
  4216 //
  4217 // Here are the simple edge cases:
  4218 //  null receiver => normal trap
  4219 //  virtual and clone was overridden => slow path to out-of-line clone
  4220 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4221 //
  4222 // The general case has two steps, allocation and copying.
  4223 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4224 //
  4225 // Copying also has two cases, oop arrays and everything else.
  4226 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4227 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4228 //
  4229 // These steps fold up nicely if and when the cloned object's klass
  4230 // can be sharply typed as an object array, a type array, or an instance.
  4231 //
  4232 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4233   PhiNode* result_val;
  4235   // Set the reexecute bit for the interpreter to reexecute
  4236   // the bytecode that invokes Object.clone if deoptimization happens.
  4237   { PreserveReexecuteState preexecs(this);
  4238     jvms()->set_should_reexecute(true);
  4240     Node* obj = null_check_receiver();
  4241     if (stopped())  return true;
  4243     Node* obj_klass = load_object_klass(obj);
  4244     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4245     const TypeOopPtr*   toop   = ((tklass != NULL)
  4246                                 ? tklass->as_instance_type()
  4247                                 : TypeInstPtr::NOTNULL);
  4249     // Conservatively insert a memory barrier on all memory slices.
  4250     // Do not let writes into the original float below the clone.
  4251     insert_mem_bar(Op_MemBarCPUOrder);
  4253     // paths into result_reg:
  4254     enum {
  4255       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4256       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4257       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4258       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4259       PATH_LIMIT
  4260     };
  4261     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4262     result_val             = new(C) PhiNode(result_reg,
  4263                                             TypeInstPtr::NOTNULL);
  4264     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4265     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4266                                             TypePtr::BOTTOM);
  4267     record_for_igvn(result_reg);
  4269     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4270     int raw_adr_idx = Compile::AliasIdxRaw;
  4272     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4273     if (array_ctl != NULL) {
  4274       // It's an array.
  4275       PreserveJVMState pjvms(this);
  4276       set_control(array_ctl);
  4277       Node* obj_length = load_array_length(obj);
  4278       Node* obj_size  = NULL;
  4279       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4281       if (!use_ReduceInitialCardMarks()) {
  4282         // If it is an oop array, it requires very special treatment,
  4283         // because card marking is required on each card of the array.
  4284         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4285         if (is_obja != NULL) {
  4286           PreserveJVMState pjvms2(this);
  4287           set_control(is_obja);
  4288           // Generate a direct call to the right arraycopy function(s).
  4289           bool disjoint_bases = true;
  4290           bool length_never_negative = true;
  4291           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4292                              obj, intcon(0), alloc_obj, intcon(0),
  4293                              obj_length,
  4294                              disjoint_bases, length_never_negative);
  4295           result_reg->init_req(_objArray_path, control());
  4296           result_val->init_req(_objArray_path, alloc_obj);
  4297           result_i_o ->set_req(_objArray_path, i_o());
  4298           result_mem ->set_req(_objArray_path, reset_memory());
  4301       // Otherwise, there are no card marks to worry about.
  4302       // (We can dispense with card marks if we know the allocation
  4303       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4304       //  causes the non-eden paths to take compensating steps to
  4305       //  simulate a fresh allocation, so that no further
  4306       //  card marks are required in compiled code to initialize
  4307       //  the object.)
  4309       if (!stopped()) {
  4310         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4312         // Present the results of the copy.
  4313         result_reg->init_req(_array_path, control());
  4314         result_val->init_req(_array_path, alloc_obj);
  4315         result_i_o ->set_req(_array_path, i_o());
  4316         result_mem ->set_req(_array_path, reset_memory());
  4320     // We only go to the instance fast case code if we pass a number of guards.
  4321     // The paths which do not pass are accumulated in the slow_region.
  4322     RegionNode* slow_region = new (C) RegionNode(1);
  4323     record_for_igvn(slow_region);
  4324     if (!stopped()) {
  4325       // It's an instance (we did array above).  Make the slow-path tests.
  4326       // If this is a virtual call, we generate a funny guard.  We grab
  4327       // the vtable entry corresponding to clone() from the target object.
  4328       // If the target method which we are calling happens to be the
  4329       // Object clone() method, we pass the guard.  We do not need this
  4330       // guard for non-virtual calls; the caller is known to be the native
  4331       // Object clone().
  4332       if (is_virtual) {
  4333         generate_virtual_guard(obj_klass, slow_region);
  4336       // The object must be cloneable and must not have a finalizer.
  4337       // Both of these conditions may be checked in a single test.
  4338       // We could optimize the cloneable test further, but we don't care.
  4339       generate_access_flags_guard(obj_klass,
  4340                                   // Test both conditions:
  4341                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4342                                   // Must be cloneable but not finalizer:
  4343                                   JVM_ACC_IS_CLONEABLE,
  4344                                   slow_region);
  4347     if (!stopped()) {
  4348       // It's an instance, and it passed the slow-path tests.
  4349       PreserveJVMState pjvms(this);
  4350       Node* obj_size  = NULL;
  4351       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4353       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4355       // Present the results of the slow call.
  4356       result_reg->init_req(_instance_path, control());
  4357       result_val->init_req(_instance_path, alloc_obj);
  4358       result_i_o ->set_req(_instance_path, i_o());
  4359       result_mem ->set_req(_instance_path, reset_memory());
  4362     // Generate code for the slow case.  We make a call to clone().
  4363     set_control(_gvn.transform(slow_region));
  4364     if (!stopped()) {
  4365       PreserveJVMState pjvms(this);
  4366       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4367       Node* slow_result = set_results_for_java_call(slow_call);
  4368       // this->control() comes from set_results_for_java_call
  4369       result_reg->init_req(_slow_path, control());
  4370       result_val->init_req(_slow_path, slow_result);
  4371       result_i_o ->set_req(_slow_path, i_o());
  4372       result_mem ->set_req(_slow_path, reset_memory());
  4375     // Return the combined state.
  4376     set_control(    _gvn.transform(result_reg) );
  4377     set_i_o(        _gvn.transform(result_i_o) );
  4378     set_all_memory( _gvn.transform(result_mem) );
  4379   } // original reexecute is set back here
  4381   set_result(_gvn.transform(result_val));
  4382   return true;
  4385 //------------------------------basictype2arraycopy----------------------------
  4386 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4387                                             Node* src_offset,
  4388                                             Node* dest_offset,
  4389                                             bool disjoint_bases,
  4390                                             const char* &name,
  4391                                             bool dest_uninitialized) {
  4392   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4393   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4395   bool aligned = false;
  4396   bool disjoint = disjoint_bases;
  4398   // if the offsets are the same, we can treat the memory regions as
  4399   // disjoint, because either the memory regions are in different arrays,
  4400   // or they are identical (which we can treat as disjoint.)  We can also
  4401   // treat a copy with a destination index  less that the source index
  4402   // as disjoint since a low->high copy will work correctly in this case.
  4403   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4404       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4405     // both indices are constants
  4406     int s_offs = src_offset_inttype->get_con();
  4407     int d_offs = dest_offset_inttype->get_con();
  4408     int element_size = type2aelembytes(t);
  4409     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4410               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4411     if (s_offs >= d_offs)  disjoint = true;
  4412   } else if (src_offset == dest_offset && src_offset != NULL) {
  4413     // This can occur if the offsets are identical non-constants.
  4414     disjoint = true;
  4417   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4421 //------------------------------inline_arraycopy-----------------------
  4422 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4423 //                                                      Object dest, int destPos,
  4424 //                                                      int length);
  4425 bool LibraryCallKit::inline_arraycopy() {
  4426   // Get the arguments.
  4427   Node* src         = argument(0);  // type: oop
  4428   Node* src_offset  = argument(1);  // type: int
  4429   Node* dest        = argument(2);  // type: oop
  4430   Node* dest_offset = argument(3);  // type: int
  4431   Node* length      = argument(4);  // type: int
  4433   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4434   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4435   // is.  The checks we choose to mandate at compile time are:
  4436   //
  4437   // (1) src and dest are arrays.
  4438   const Type* src_type  = src->Value(&_gvn);
  4439   const Type* dest_type = dest->Value(&_gvn);
  4440   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4441   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4442   if (top_src  == NULL || top_src->klass()  == NULL ||
  4443       top_dest == NULL || top_dest->klass() == NULL) {
  4444     // Conservatively insert a memory barrier on all memory slices.
  4445     // Do not let writes into the source float below the arraycopy.
  4446     insert_mem_bar(Op_MemBarCPUOrder);
  4448     // Call StubRoutines::generic_arraycopy stub.
  4449     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4450                        src, src_offset, dest, dest_offset, length);
  4452     // Do not let reads from the destination float above the arraycopy.
  4453     // Since we cannot type the arrays, we don't know which slices
  4454     // might be affected.  We could restrict this barrier only to those
  4455     // memory slices which pertain to array elements--but don't bother.
  4456     if (!InsertMemBarAfterArraycopy)
  4457       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4458       insert_mem_bar(Op_MemBarCPUOrder);
  4459     return true;
  4462   // (2) src and dest arrays must have elements of the same BasicType
  4463   // Figure out the size and type of the elements we will be copying.
  4464   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4465   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4466   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4467   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4469   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4470     // The component types are not the same or are not recognized.  Punt.
  4471     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4472     generate_slow_arraycopy(TypePtr::BOTTOM,
  4473                             src, src_offset, dest, dest_offset, length,
  4474                             /*dest_uninitialized*/false);
  4475     return true;
  4478   //---------------------------------------------------------------------------
  4479   // We will make a fast path for this call to arraycopy.
  4481   // We have the following tests left to perform:
  4482   //
  4483   // (3) src and dest must not be null.
  4484   // (4) src_offset must not be negative.
  4485   // (5) dest_offset must not be negative.
  4486   // (6) length must not be negative.
  4487   // (7) src_offset + length must not exceed length of src.
  4488   // (8) dest_offset + length must not exceed length of dest.
  4489   // (9) each element of an oop array must be assignable
  4491   RegionNode* slow_region = new (C) RegionNode(1);
  4492   record_for_igvn(slow_region);
  4494   // (3) operands must not be null
  4495   // We currently perform our null checks with the null_check routine.
  4496   // This means that the null exceptions will be reported in the caller
  4497   // rather than (correctly) reported inside of the native arraycopy call.
  4498   // This should be corrected, given time.  We do our null check with the
  4499   // stack pointer restored.
  4500   src  = null_check(src,  T_ARRAY);
  4501   dest = null_check(dest, T_ARRAY);
  4503   // (4) src_offset must not be negative.
  4504   generate_negative_guard(src_offset, slow_region);
  4506   // (5) dest_offset must not be negative.
  4507   generate_negative_guard(dest_offset, slow_region);
  4509   // (6) length must not be negative (moved to generate_arraycopy()).
  4510   // generate_negative_guard(length, slow_region);
  4512   // (7) src_offset + length must not exceed length of src.
  4513   generate_limit_guard(src_offset, length,
  4514                        load_array_length(src),
  4515                        slow_region);
  4517   // (8) dest_offset + length must not exceed length of dest.
  4518   generate_limit_guard(dest_offset, length,
  4519                        load_array_length(dest),
  4520                        slow_region);
  4522   // (9) each element of an oop array must be assignable
  4523   // The generate_arraycopy subroutine checks this.
  4525   // This is where the memory effects are placed:
  4526   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4527   generate_arraycopy(adr_type, dest_elem,
  4528                      src, src_offset, dest, dest_offset, length,
  4529                      false, false, slow_region);
  4531   return true;
  4534 //-----------------------------generate_arraycopy----------------------
  4535 // Generate an optimized call to arraycopy.
  4536 // Caller must guard against non-arrays.
  4537 // Caller must determine a common array basic-type for both arrays.
  4538 // Caller must validate offsets against array bounds.
  4539 // The slow_region has already collected guard failure paths
  4540 // (such as out of bounds length or non-conformable array types).
  4541 // The generated code has this shape, in general:
  4542 //
  4543 //     if (length == 0)  return   // via zero_path
  4544 //     slowval = -1
  4545 //     if (types unknown) {
  4546 //       slowval = call generic copy loop
  4547 //       if (slowval == 0)  return  // via checked_path
  4548 //     } else if (indexes in bounds) {
  4549 //       if ((is object array) && !(array type check)) {
  4550 //         slowval = call checked copy loop
  4551 //         if (slowval == 0)  return  // via checked_path
  4552 //       } else {
  4553 //         call bulk copy loop
  4554 //         return  // via fast_path
  4555 //       }
  4556 //     }
  4557 //     // adjust params for remaining work:
  4558 //     if (slowval != -1) {
  4559 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4560 //     }
  4561 //   slow_region:
  4562 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4563 //     return  // via slow_call_path
  4564 //
  4565 // This routine is used from several intrinsics:  System.arraycopy,
  4566 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4567 //
  4568 void
  4569 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4570                                    BasicType basic_elem_type,
  4571                                    Node* src,  Node* src_offset,
  4572                                    Node* dest, Node* dest_offset,
  4573                                    Node* copy_length,
  4574                                    bool disjoint_bases,
  4575                                    bool length_never_negative,
  4576                                    RegionNode* slow_region) {
  4578   if (slow_region == NULL) {
  4579     slow_region = new(C) RegionNode(1);
  4580     record_for_igvn(slow_region);
  4583   Node* original_dest      = dest;
  4584   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4585   bool  dest_uninitialized = false;
  4587   // See if this is the initialization of a newly-allocated array.
  4588   // If so, we will take responsibility here for initializing it to zero.
  4589   // (Note:  Because tightly_coupled_allocation performs checks on the
  4590   // out-edges of the dest, we need to avoid making derived pointers
  4591   // from it until we have checked its uses.)
  4592   if (ReduceBulkZeroing
  4593       && !ZeroTLAB              // pointless if already zeroed
  4594       && basic_elem_type != T_CONFLICT // avoid corner case
  4595       && !src->eqv_uncast(dest)
  4596       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4597           != NULL)
  4598       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4599       && alloc->maybe_set_complete(&_gvn)) {
  4600     // "You break it, you buy it."
  4601     InitializeNode* init = alloc->initialization();
  4602     assert(init->is_complete(), "we just did this");
  4603     init->set_complete_with_arraycopy();
  4604     assert(dest->is_CheckCastPP(), "sanity");
  4605     assert(dest->in(0)->in(0) == init, "dest pinned");
  4606     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4607     // From this point on, every exit path is responsible for
  4608     // initializing any non-copied parts of the object to zero.
  4609     // Also, if this flag is set we make sure that arraycopy interacts properly
  4610     // with G1, eliding pre-barriers. See CR 6627983.
  4611     dest_uninitialized = true;
  4612   } else {
  4613     // No zeroing elimination here.
  4614     alloc             = NULL;
  4615     //original_dest   = dest;
  4616     //dest_uninitialized = false;
  4619   // Results are placed here:
  4620   enum { fast_path        = 1,  // normal void-returning assembly stub
  4621          checked_path     = 2,  // special assembly stub with cleanup
  4622          slow_call_path   = 3,  // something went wrong; call the VM
  4623          zero_path        = 4,  // bypass when length of copy is zero
  4624          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4625          PATH_LIMIT       = 6
  4626   };
  4627   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4628   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4629   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4630   record_for_igvn(result_region);
  4631   _gvn.set_type_bottom(result_i_o);
  4632   _gvn.set_type_bottom(result_memory);
  4633   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4635   // The slow_control path:
  4636   Node* slow_control;
  4637   Node* slow_i_o = i_o();
  4638   Node* slow_mem = memory(adr_type);
  4639   debug_only(slow_control = (Node*) badAddress);
  4641   // Checked control path:
  4642   Node* checked_control = top();
  4643   Node* checked_mem     = NULL;
  4644   Node* checked_i_o     = NULL;
  4645   Node* checked_value   = NULL;
  4647   if (basic_elem_type == T_CONFLICT) {
  4648     assert(!dest_uninitialized, "");
  4649     Node* cv = generate_generic_arraycopy(adr_type,
  4650                                           src, src_offset, dest, dest_offset,
  4651                                           copy_length, dest_uninitialized);
  4652     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4653     checked_control = control();
  4654     checked_i_o     = i_o();
  4655     checked_mem     = memory(adr_type);
  4656     checked_value   = cv;
  4657     set_control(top());         // no fast path
  4660   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4661   if (not_pos != NULL) {
  4662     PreserveJVMState pjvms(this);
  4663     set_control(not_pos);
  4665     // (6) length must not be negative.
  4666     if (!length_never_negative) {
  4667       generate_negative_guard(copy_length, slow_region);
  4670     // copy_length is 0.
  4671     if (!stopped() && dest_uninitialized) {
  4672       Node* dest_length = alloc->in(AllocateNode::ALength);
  4673       if (copy_length->eqv_uncast(dest_length)
  4674           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4675         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4676       } else {
  4677         // Clear the whole thing since there are no source elements to copy.
  4678         generate_clear_array(adr_type, dest, basic_elem_type,
  4679                              intcon(0), NULL,
  4680                              alloc->in(AllocateNode::AllocSize));
  4681         // Use a secondary InitializeNode as raw memory barrier.
  4682         // Currently it is needed only on this path since other
  4683         // paths have stub or runtime calls as raw memory barriers.
  4684         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4685                                                        Compile::AliasIdxRaw,
  4686                                                        top())->as_Initialize();
  4687         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4691     // Present the results of the fast call.
  4692     result_region->init_req(zero_path, control());
  4693     result_i_o   ->init_req(zero_path, i_o());
  4694     result_memory->init_req(zero_path, memory(adr_type));
  4697   if (!stopped() && dest_uninitialized) {
  4698     // We have to initialize the *uncopied* part of the array to zero.
  4699     // The copy destination is the slice dest[off..off+len].  The other slices
  4700     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4701     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4702     Node* dest_length = alloc->in(AllocateNode::ALength);
  4703     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
  4704                                                           copy_length) );
  4706     // If there is a head section that needs zeroing, do it now.
  4707     if (find_int_con(dest_offset, -1) != 0) {
  4708       generate_clear_array(adr_type, dest, basic_elem_type,
  4709                            intcon(0), dest_offset,
  4710                            NULL);
  4713     // Next, perform a dynamic check on the tail length.
  4714     // It is often zero, and we can win big if we prove this.
  4715     // There are two wins:  Avoid generating the ClearArray
  4716     // with its attendant messy index arithmetic, and upgrade
  4717     // the copy to a more hardware-friendly word size of 64 bits.
  4718     Node* tail_ctl = NULL;
  4719     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4720       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
  4721       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
  4722       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4723       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4726     // At this point, let's assume there is no tail.
  4727     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4728       // There is no tail.  Try an upgrade to a 64-bit copy.
  4729       bool didit = false;
  4730       { PreserveJVMState pjvms(this);
  4731         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4732                                          src, src_offset, dest, dest_offset,
  4733                                          dest_size, dest_uninitialized);
  4734         if (didit) {
  4735           // Present the results of the block-copying fast call.
  4736           result_region->init_req(bcopy_path, control());
  4737           result_i_o   ->init_req(bcopy_path, i_o());
  4738           result_memory->init_req(bcopy_path, memory(adr_type));
  4741       if (didit)
  4742         set_control(top());     // no regular fast path
  4745     // Clear the tail, if any.
  4746     if (tail_ctl != NULL) {
  4747       Node* notail_ctl = stopped() ? NULL : control();
  4748       set_control(tail_ctl);
  4749       if (notail_ctl == NULL) {
  4750         generate_clear_array(adr_type, dest, basic_elem_type,
  4751                              dest_tail, NULL,
  4752                              dest_size);
  4753       } else {
  4754         // Make a local merge.
  4755         Node* done_ctl = new(C) RegionNode(3);
  4756         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4757         done_ctl->init_req(1, notail_ctl);
  4758         done_mem->init_req(1, memory(adr_type));
  4759         generate_clear_array(adr_type, dest, basic_elem_type,
  4760                              dest_tail, NULL,
  4761                              dest_size);
  4762         done_ctl->init_req(2, control());
  4763         done_mem->init_req(2, memory(adr_type));
  4764         set_control( _gvn.transform(done_ctl) );
  4765         set_memory(  _gvn.transform(done_mem), adr_type );
  4770   BasicType copy_type = basic_elem_type;
  4771   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4772   if (!stopped() && copy_type == T_OBJECT) {
  4773     // If src and dest have compatible element types, we can copy bits.
  4774     // Types S[] and D[] are compatible if D is a supertype of S.
  4775     //
  4776     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4777     // which performs a fast optimistic per-oop check, and backs off
  4778     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4779     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4781     // Get the Klass* for both src and dest
  4782     Node* src_klass  = load_object_klass(src);
  4783     Node* dest_klass = load_object_klass(dest);
  4785     // Generate the subtype check.
  4786     // This might fold up statically, or then again it might not.
  4787     //
  4788     // Non-static example:  Copying List<String>.elements to a new String[].
  4789     // The backing store for a List<String> is always an Object[],
  4790     // but its elements are always type String, if the generic types
  4791     // are correct at the source level.
  4792     //
  4793     // Test S[] against D[], not S against D, because (probably)
  4794     // the secondary supertype cache is less busy for S[] than S.
  4795     // This usually only matters when D is an interface.
  4796     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4797     // Plug failing path into checked_oop_disjoint_arraycopy
  4798     if (not_subtype_ctrl != top()) {
  4799       PreserveJVMState pjvms(this);
  4800       set_control(not_subtype_ctrl);
  4801       // (At this point we can assume disjoint_bases, since types differ.)
  4802       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  4803       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4804       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4805       Node* dest_elem_klass = _gvn.transform(n1);
  4806       Node* cv = generate_checkcast_arraycopy(adr_type,
  4807                                               dest_elem_klass,
  4808                                               src, src_offset, dest, dest_offset,
  4809                                               ConvI2X(copy_length), dest_uninitialized);
  4810       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4811       checked_control = control();
  4812       checked_i_o     = i_o();
  4813       checked_mem     = memory(adr_type);
  4814       checked_value   = cv;
  4816     // At this point we know we do not need type checks on oop stores.
  4818     // Let's see if we need card marks:
  4819     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4820       // If we do not need card marks, copy using the jint or jlong stub.
  4821       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4822       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4823              "sizes agree");
  4827   if (!stopped()) {
  4828     // Generate the fast path, if possible.
  4829     PreserveJVMState pjvms(this);
  4830     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4831                                  src, src_offset, dest, dest_offset,
  4832                                  ConvI2X(copy_length), dest_uninitialized);
  4834     // Present the results of the fast call.
  4835     result_region->init_req(fast_path, control());
  4836     result_i_o   ->init_req(fast_path, i_o());
  4837     result_memory->init_req(fast_path, memory(adr_type));
  4840   // Here are all the slow paths up to this point, in one bundle:
  4841   slow_control = top();
  4842   if (slow_region != NULL)
  4843     slow_control = _gvn.transform(slow_region);
  4844   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  4846   set_control(checked_control);
  4847   if (!stopped()) {
  4848     // Clean up after the checked call.
  4849     // The returned value is either 0 or -1^K,
  4850     // where K = number of partially transferred array elements.
  4851     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
  4852     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  4853     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4855     // If it is 0, we are done, so transfer to the end.
  4856     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
  4857     result_region->init_req(checked_path, checks_done);
  4858     result_i_o   ->init_req(checked_path, checked_i_o);
  4859     result_memory->init_req(checked_path, checked_mem);
  4861     // If it is not zero, merge into the slow call.
  4862     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
  4863     RegionNode* slow_reg2 = new(C) RegionNode(3);
  4864     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  4865     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4866     record_for_igvn(slow_reg2);
  4867     slow_reg2  ->init_req(1, slow_control);
  4868     slow_i_o2  ->init_req(1, slow_i_o);
  4869     slow_mem2  ->init_req(1, slow_mem);
  4870     slow_reg2  ->init_req(2, control());
  4871     slow_i_o2  ->init_req(2, checked_i_o);
  4872     slow_mem2  ->init_req(2, checked_mem);
  4874     slow_control = _gvn.transform(slow_reg2);
  4875     slow_i_o     = _gvn.transform(slow_i_o2);
  4876     slow_mem     = _gvn.transform(slow_mem2);
  4878     if (alloc != NULL) {
  4879       // We'll restart from the very beginning, after zeroing the whole thing.
  4880       // This can cause double writes, but that's OK since dest is brand new.
  4881       // So we ignore the low 31 bits of the value returned from the stub.
  4882     } else {
  4883       // We must continue the copy exactly where it failed, or else
  4884       // another thread might see the wrong number of writes to dest.
  4885       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
  4886       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  4887       slow_offset->init_req(1, intcon(0));
  4888       slow_offset->init_req(2, checked_offset);
  4889       slow_offset  = _gvn.transform(slow_offset);
  4891       // Adjust the arguments by the conditionally incoming offset.
  4892       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
  4893       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
  4894       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
  4896       // Tweak the node variables to adjust the code produced below:
  4897       src_offset  = src_off_plus;
  4898       dest_offset = dest_off_plus;
  4899       copy_length = length_minus;
  4903   set_control(slow_control);
  4904   if (!stopped()) {
  4905     // Generate the slow path, if needed.
  4906     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4908     set_memory(slow_mem, adr_type);
  4909     set_i_o(slow_i_o);
  4911     if (dest_uninitialized) {
  4912       generate_clear_array(adr_type, dest, basic_elem_type,
  4913                            intcon(0), NULL,
  4914                            alloc->in(AllocateNode::AllocSize));
  4917     generate_slow_arraycopy(adr_type,
  4918                             src, src_offset, dest, dest_offset,
  4919                             copy_length, /*dest_uninitialized*/false);
  4921     result_region->init_req(slow_call_path, control());
  4922     result_i_o   ->init_req(slow_call_path, i_o());
  4923     result_memory->init_req(slow_call_path, memory(adr_type));
  4926   // Remove unused edges.
  4927   for (uint i = 1; i < result_region->req(); i++) {
  4928     if (result_region->in(i) == NULL)
  4929       result_region->init_req(i, top());
  4932   // Finished; return the combined state.
  4933   set_control( _gvn.transform(result_region) );
  4934   set_i_o(     _gvn.transform(result_i_o)    );
  4935   set_memory(  _gvn.transform(result_memory), adr_type );
  4937   // The memory edges above are precise in order to model effects around
  4938   // array copies accurately to allow value numbering of field loads around
  4939   // arraycopy.  Such field loads, both before and after, are common in Java
  4940   // collections and similar classes involving header/array data structures.
  4941   //
  4942   // But with low number of register or when some registers are used or killed
  4943   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4944   // The next memory barrier is added to avoid it. If the arraycopy can be
  4945   // optimized away (which it can, sometimes) then we can manually remove
  4946   // the membar also.
  4947   //
  4948   // Do not let reads from the cloned object float above the arraycopy.
  4949   if (alloc != NULL) {
  4950     // Do not let stores that initialize this object be reordered with
  4951     // a subsequent store that would make this object accessible by
  4952     // other threads.
  4953     // Record what AllocateNode this StoreStore protects so that
  4954     // escape analysis can go from the MemBarStoreStoreNode to the
  4955     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4956     // based on the escape status of the AllocateNode.
  4957     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4958   } else if (InsertMemBarAfterArraycopy)
  4959     insert_mem_bar(Op_MemBarCPUOrder);
  4963 // Helper function which determines if an arraycopy immediately follows
  4964 // an allocation, with no intervening tests or other escapes for the object.
  4965 AllocateArrayNode*
  4966 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4967                                            RegionNode* slow_region) {
  4968   if (stopped())             return NULL;  // no fast path
  4969   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4971   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4972   if (alloc == NULL)  return NULL;
  4974   Node* rawmem = memory(Compile::AliasIdxRaw);
  4975   // Is the allocation's memory state untouched?
  4976   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4977     // Bail out if there have been raw-memory effects since the allocation.
  4978     // (Example:  There might have been a call or safepoint.)
  4979     return NULL;
  4981   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4982   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4983     return NULL;
  4986   // There must be no unexpected observers of this allocation.
  4987   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4988     Node* obs = ptr->fast_out(i);
  4989     if (obs != this->map()) {
  4990       return NULL;
  4994   // This arraycopy must unconditionally follow the allocation of the ptr.
  4995   Node* alloc_ctl = ptr->in(0);
  4996   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4998   Node* ctl = control();
  4999   while (ctl != alloc_ctl) {
  5000     // There may be guards which feed into the slow_region.
  5001     // Any other control flow means that we might not get a chance
  5002     // to finish initializing the allocated object.
  5003     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5004       IfNode* iff = ctl->in(0)->as_If();
  5005       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5006       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5007       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5008         ctl = iff->in(0);       // This test feeds the known slow_region.
  5009         continue;
  5011       // One more try:  Various low-level checks bottom out in
  5012       // uncommon traps.  If the debug-info of the trap omits
  5013       // any reference to the allocation, as we've already
  5014       // observed, then there can be no objection to the trap.
  5015       bool found_trap = false;
  5016       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5017         Node* obs = not_ctl->fast_out(j);
  5018         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5019             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5020           found_trap = true; break;
  5023       if (found_trap) {
  5024         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5025         continue;
  5028     return NULL;
  5031   // If we get this far, we have an allocation which immediately
  5032   // precedes the arraycopy, and we can take over zeroing the new object.
  5033   // The arraycopy will finish the initialization, and provide
  5034   // a new control state to which we will anchor the destination pointer.
  5036   return alloc;
  5039 // Helper for initialization of arrays, creating a ClearArray.
  5040 // It writes zero bits in [start..end), within the body of an array object.
  5041 // The memory effects are all chained onto the 'adr_type' alias category.
  5042 //
  5043 // Since the object is otherwise uninitialized, we are free
  5044 // to put a little "slop" around the edges of the cleared area,
  5045 // as long as it does not go back into the array's header,
  5046 // or beyond the array end within the heap.
  5047 //
  5048 // The lower edge can be rounded down to the nearest jint and the
  5049 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5050 //
  5051 // Arguments:
  5052 //   adr_type           memory slice where writes are generated
  5053 //   dest               oop of the destination array
  5054 //   basic_elem_type    element type of the destination
  5055 //   slice_idx          array index of first element to store
  5056 //   slice_len          number of elements to store (or NULL)
  5057 //   dest_size          total size in bytes of the array object
  5058 //
  5059 // Exactly one of slice_len or dest_size must be non-NULL.
  5060 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5061 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5062 void
  5063 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5064                                      Node* dest,
  5065                                      BasicType basic_elem_type,
  5066                                      Node* slice_idx,
  5067                                      Node* slice_len,
  5068                                      Node* dest_size) {
  5069   // one or the other but not both of slice_len and dest_size:
  5070   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5071   if (slice_len == NULL)  slice_len = top();
  5072   if (dest_size == NULL)  dest_size = top();
  5074   // operate on this memory slice:
  5075   Node* mem = memory(adr_type); // memory slice to operate on
  5077   // scaling and rounding of indexes:
  5078   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5079   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5080   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5081   int bump_bit  = (-1 << scale) & BytesPerInt;
  5083   // determine constant starts and ends
  5084   const intptr_t BIG_NEG = -128;
  5085   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5086   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5087   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5088   if (slice_len_con == 0) {
  5089     return;                     // nothing to do here
  5091   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5092   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5093   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5094     assert(end_con < 0, "not two cons");
  5095     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5096                        BytesPerLong);
  5099   if (start_con >= 0 && end_con >= 0) {
  5100     // Constant start and end.  Simple.
  5101     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5102                                        start_con, end_con, &_gvn);
  5103   } else if (start_con >= 0 && dest_size != top()) {
  5104     // Constant start, pre-rounded end after the tail of the array.
  5105     Node* end = dest_size;
  5106     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5107                                        start_con, end, &_gvn);
  5108   } else if (start_con >= 0 && slice_len != top()) {
  5109     // Constant start, non-constant end.  End needs rounding up.
  5110     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5111     intptr_t end_base  = abase + (slice_idx_con << scale);
  5112     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5113     Node*    end       = ConvI2X(slice_len);
  5114     if (scale != 0)
  5115       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
  5116     end_base += end_round;
  5117     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
  5118     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
  5119     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5120                                        start_con, end, &_gvn);
  5121   } else if (start_con < 0 && dest_size != top()) {
  5122     // Non-constant start, pre-rounded end after the tail of the array.
  5123     // This is almost certainly a "round-to-end" operation.
  5124     Node* start = slice_idx;
  5125     start = ConvI2X(start);
  5126     if (scale != 0)
  5127       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
  5128     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
  5129     if ((bump_bit | clear_low) != 0) {
  5130       int to_clear = (bump_bit | clear_low);
  5131       // Align up mod 8, then store a jint zero unconditionally
  5132       // just before the mod-8 boundary.
  5133       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5134           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5135         bump_bit = 0;
  5136         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5137       } else {
  5138         // Bump 'start' up to (or past) the next jint boundary:
  5139         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
  5140         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5142       // Round bumped 'start' down to jlong boundary in body of array.
  5143       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
  5144       if (bump_bit != 0) {
  5145         // Store a zero to the immediately preceding jint:
  5146         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
  5147         Node* p1 = basic_plus_adr(dest, x1);
  5148         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5149         mem = _gvn.transform(mem);
  5152     Node* end = dest_size; // pre-rounded
  5153     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5154                                        start, end, &_gvn);
  5155   } else {
  5156     // Non-constant start, unrounded non-constant end.
  5157     // (Nobody zeroes a random midsection of an array using this routine.)
  5158     ShouldNotReachHere();       // fix caller
  5161   // Done.
  5162   set_memory(mem, adr_type);
  5166 bool
  5167 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5168                                          BasicType basic_elem_type,
  5169                                          AllocateNode* alloc,
  5170                                          Node* src,  Node* src_offset,
  5171                                          Node* dest, Node* dest_offset,
  5172                                          Node* dest_size, bool dest_uninitialized) {
  5173   // See if there is an advantage from block transfer.
  5174   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5175   if (scale >= LogBytesPerLong)
  5176     return false;               // it is already a block transfer
  5178   // Look at the alignment of the starting offsets.
  5179   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5181   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5182   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5183   if (src_off_con < 0 || dest_off_con < 0)
  5184     // At present, we can only understand constants.
  5185     return false;
  5187   intptr_t src_off  = abase + (src_off_con  << scale);
  5188   intptr_t dest_off = abase + (dest_off_con << scale);
  5190   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5191     // Non-aligned; too bad.
  5192     // One more chance:  Pick off an initial 32-bit word.
  5193     // This is a common case, since abase can be odd mod 8.
  5194     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5195         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5196       Node* sptr = basic_plus_adr(src,  src_off);
  5197       Node* dptr = basic_plus_adr(dest, dest_off);
  5198       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5199       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5200       src_off += BytesPerInt;
  5201       dest_off += BytesPerInt;
  5202     } else {
  5203       return false;
  5206   assert(src_off % BytesPerLong == 0, "");
  5207   assert(dest_off % BytesPerLong == 0, "");
  5209   // Do this copy by giant steps.
  5210   Node* sptr  = basic_plus_adr(src,  src_off);
  5211   Node* dptr  = basic_plus_adr(dest, dest_off);
  5212   Node* countx = dest_size;
  5213   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
  5214   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5216   bool disjoint_bases = true;   // since alloc != NULL
  5217   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5218                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5220   return true;
  5224 // Helper function; generates code for the slow case.
  5225 // We make a call to a runtime method which emulates the native method,
  5226 // but without the native wrapper overhead.
  5227 void
  5228 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5229                                         Node* src,  Node* src_offset,
  5230                                         Node* dest, Node* dest_offset,
  5231                                         Node* copy_length, bool dest_uninitialized) {
  5232   assert(!dest_uninitialized, "Invariant");
  5233   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5234                                  OptoRuntime::slow_arraycopy_Type(),
  5235                                  OptoRuntime::slow_arraycopy_Java(),
  5236                                  "slow_arraycopy", adr_type,
  5237                                  src, src_offset, dest, dest_offset,
  5238                                  copy_length);
  5240   // Handle exceptions thrown by this fellow:
  5241   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5244 // Helper function; generates code for cases requiring runtime checks.
  5245 Node*
  5246 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5247                                              Node* dest_elem_klass,
  5248                                              Node* src,  Node* src_offset,
  5249                                              Node* dest, Node* dest_offset,
  5250                                              Node* copy_length, bool dest_uninitialized) {
  5251   if (stopped())  return NULL;
  5253   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5254   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5255     return NULL;
  5258   // Pick out the parameters required to perform a store-check
  5259   // for the target array.  This is an optimistic check.  It will
  5260   // look in each non-null element's class, at the desired klass's
  5261   // super_check_offset, for the desired klass.
  5262   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5263   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5264   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5265   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5266   Node* check_value  = dest_elem_klass;
  5268   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5269   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5271   // (We know the arrays are never conjoint, because their types differ.)
  5272   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5273                                  OptoRuntime::checkcast_arraycopy_Type(),
  5274                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5275                                  // five arguments, of which two are
  5276                                  // intptr_t (jlong in LP64)
  5277                                  src_start, dest_start,
  5278                                  copy_length XTOP,
  5279                                  check_offset XTOP,
  5280                                  check_value);
  5282   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5286 // Helper function; generates code for cases requiring runtime checks.
  5287 Node*
  5288 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5289                                            Node* src,  Node* src_offset,
  5290                                            Node* dest, Node* dest_offset,
  5291                                            Node* copy_length, bool dest_uninitialized) {
  5292   assert(!dest_uninitialized, "Invariant");
  5293   if (stopped())  return NULL;
  5294   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5295   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5296     return NULL;
  5299   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5300                     OptoRuntime::generic_arraycopy_Type(),
  5301                     copyfunc_addr, "generic_arraycopy", adr_type,
  5302                     src, src_offset, dest, dest_offset, copy_length);
  5304   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5307 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5308 void
  5309 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5310                                              BasicType basic_elem_type,
  5311                                              bool disjoint_bases,
  5312                                              Node* src,  Node* src_offset,
  5313                                              Node* dest, Node* dest_offset,
  5314                                              Node* copy_length, bool dest_uninitialized) {
  5315   if (stopped())  return;               // nothing to do
  5317   Node* src_start  = src;
  5318   Node* dest_start = dest;
  5319   if (src_offset != NULL || dest_offset != NULL) {
  5320     assert(src_offset != NULL && dest_offset != NULL, "");
  5321     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5322     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5325   // Figure out which arraycopy runtime method to call.
  5326   const char* copyfunc_name = "arraycopy";
  5327   address     copyfunc_addr =
  5328       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5329                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5331   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5332   make_runtime_call(RC_LEAF|RC_NO_FP,
  5333                     OptoRuntime::fast_arraycopy_Type(),
  5334                     copyfunc_addr, copyfunc_name, adr_type,
  5335                     src_start, dest_start, copy_length XTOP);
  5338 //----------------------------inline_reference_get----------------------------
  5339 // public T java.lang.ref.Reference.get();
  5340 bool LibraryCallKit::inline_reference_get() {
  5341   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5342   guarantee(referent_offset > 0, "should have already been set");
  5344   // Get the argument:
  5345   Node* reference_obj = null_check_receiver();
  5346   if (stopped()) return true;
  5348   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5350   ciInstanceKlass* klass = env()->Object_klass();
  5351   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5353   Node* no_ctrl = NULL;
  5354   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5356   // Use the pre-barrier to record the value in the referent field
  5357   pre_barrier(false /* do_load */,
  5358               control(),
  5359               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5360               result /* pre_val */,
  5361               T_OBJECT);
  5363   // Add memory barrier to prevent commoning reads from this field
  5364   // across safepoint since GC can change its value.
  5365   insert_mem_bar(Op_MemBarCPUOrder);
  5367   set_result(result);
  5368   return true;
  5372 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5373                                               bool is_exact=true, bool is_static=false) {
  5375   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5376   assert(tinst != NULL, "obj is null");
  5377   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5378   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5380   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5381                                                                           ciSymbol::make(fieldTypeString),
  5382                                                                           is_static);
  5383   if (field == NULL) return (Node *) NULL;
  5384   assert (field != NULL, "undefined field");
  5386   // Next code  copied from Parse::do_get_xxx():
  5388   // Compute address and memory type.
  5389   int offset  = field->offset_in_bytes();
  5390   bool is_vol = field->is_volatile();
  5391   ciType* field_klass = field->type();
  5392   assert(field_klass->is_loaded(), "should be loaded");
  5393   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5394   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5395   BasicType bt = field->layout_type();
  5397   // Build the resultant type of the load
  5398   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5400   // Build the load.
  5401   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5402   return loadedField;
  5406 //------------------------------inline_aescrypt_Block-----------------------
  5407 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5408   address stubAddr;
  5409   const char *stubName;
  5410   assert(UseAES, "need AES instruction support");
  5412   switch(id) {
  5413   case vmIntrinsics::_aescrypt_encryptBlock:
  5414     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5415     stubName = "aescrypt_encryptBlock";
  5416     break;
  5417   case vmIntrinsics::_aescrypt_decryptBlock:
  5418     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5419     stubName = "aescrypt_decryptBlock";
  5420     break;
  5422   if (stubAddr == NULL) return false;
  5424   Node* aescrypt_object = argument(0);
  5425   Node* src             = argument(1);
  5426   Node* src_offset      = argument(2);
  5427   Node* dest            = argument(3);
  5428   Node* dest_offset     = argument(4);
  5430   // (1) src and dest are arrays.
  5431   const Type* src_type = src->Value(&_gvn);
  5432   const Type* dest_type = dest->Value(&_gvn);
  5433   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5434   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5435   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5437   // for the quick and dirty code we will skip all the checks.
  5438   // we are just trying to get the call to be generated.
  5439   Node* src_start  = src;
  5440   Node* dest_start = dest;
  5441   if (src_offset != NULL || dest_offset != NULL) {
  5442     assert(src_offset != NULL && dest_offset != NULL, "");
  5443     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5444     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5447   // now need to get the start of its expanded key array
  5448   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5449   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5450   if (k_start == NULL) return false;
  5452   // Call the stub.
  5453   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5454                     stubAddr, stubName, TypePtr::BOTTOM,
  5455                     src_start, dest_start, k_start);
  5457   return true;
  5460 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5461 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5462   address stubAddr;
  5463   const char *stubName;
  5465   assert(UseAES, "need AES instruction support");
  5467   switch(id) {
  5468   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5469     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5470     stubName = "cipherBlockChaining_encryptAESCrypt";
  5471     break;
  5472   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5473     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5474     stubName = "cipherBlockChaining_decryptAESCrypt";
  5475     break;
  5477   if (stubAddr == NULL) return false;
  5479   Node* cipherBlockChaining_object = argument(0);
  5480   Node* src                        = argument(1);
  5481   Node* src_offset                 = argument(2);
  5482   Node* len                        = argument(3);
  5483   Node* dest                       = argument(4);
  5484   Node* dest_offset                = argument(5);
  5486   // (1) src and dest are arrays.
  5487   const Type* src_type = src->Value(&_gvn);
  5488   const Type* dest_type = dest->Value(&_gvn);
  5489   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5490   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5491   assert (top_src  != NULL && top_src->klass()  != NULL
  5492           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5494   // checks are the responsibility of the caller
  5495   Node* src_start  = src;
  5496   Node* dest_start = dest;
  5497   if (src_offset != NULL || dest_offset != NULL) {
  5498     assert(src_offset != NULL && dest_offset != NULL, "");
  5499     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5500     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5503   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5504   // (because of the predicated logic executed earlier).
  5505   // so we cast it here safely.
  5506   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5508   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5509   if (embeddedCipherObj == NULL) return false;
  5511   // cast it to what we know it will be at runtime
  5512   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5513   assert(tinst != NULL, "CBC obj is null");
  5514   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5515   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5516   if (!klass_AESCrypt->is_loaded()) return false;
  5518   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5519   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5520   const TypeOopPtr* xtype = aklass->as_instance_type();
  5521   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5522   aescrypt_object = _gvn.transform(aescrypt_object);
  5524   // we need to get the start of the aescrypt_object's expanded key array
  5525   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5526   if (k_start == NULL) return false;
  5528   // similarly, get the start address of the r vector
  5529   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5530   if (objRvec == NULL) return false;
  5531   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5533   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5534   make_runtime_call(RC_LEAF|RC_NO_FP,
  5535                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5536                     stubAddr, stubName, TypePtr::BOTTOM,
  5537                     src_start, dest_start, k_start, r_start, len);
  5539   // return is void so no result needs to be pushed
  5541   return true;
  5544 //------------------------------get_key_start_from_aescrypt_object-----------------------
  5545 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  5546   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  5547   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  5548   if (objAESCryptKey == NULL) return (Node *) NULL;
  5550   // now have the array, need to get the start address of the K array
  5551   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  5552   return k_start;
  5555 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  5556 // Return node representing slow path of predicate check.
  5557 // the pseudo code we want to emulate with this predicate is:
  5558 // for encryption:
  5559 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  5560 // for decryption:
  5561 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  5562 //    note cipher==plain is more conservative than the original java code but that's OK
  5563 //
  5564 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  5565   // First, check receiver for NULL since it is virtual method.
  5566   Node* objCBC = argument(0);
  5567   objCBC = null_check(objCBC);
  5569   if (stopped()) return NULL; // Always NULL
  5571   // Load embeddedCipher field of CipherBlockChaining object.
  5572   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5574   // get AESCrypt klass for instanceOf check
  5575   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  5576   // will have same classloader as CipherBlockChaining object
  5577   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  5578   assert(tinst != NULL, "CBCobj is null");
  5579   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  5581   // we want to do an instanceof comparison against the AESCrypt class
  5582   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5583   if (!klass_AESCrypt->is_loaded()) {
  5584     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  5585     Node* ctrl = control();
  5586     set_control(top()); // no regular fast path
  5587     return ctrl;
  5589   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5591   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  5592   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  5593   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  5595   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  5597   // for encryption, we are done
  5598   if (!decrypting)
  5599     return instof_false;  // even if it is NULL
  5601   // for decryption, we need to add a further check to avoid
  5602   // taking the intrinsic path when cipher and plain are the same
  5603   // see the original java code for why.
  5604   RegionNode* region = new(C) RegionNode(3);
  5605   region->init_req(1, instof_false);
  5606   Node* src = argument(1);
  5607   Node* dest = argument(4);
  5608   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  5609   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  5610   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  5611   region->init_req(2, src_dest_conjoint);
  5613   record_for_igvn(region);
  5614   return _gvn.transform(region);

mercurial