src/share/vm/opto/compile.cpp

Mon, 03 Dec 2012 15:48:49 -0800

author
twisti
date
Mon, 03 Dec 2012 15:48:49 -0800
changeset 4319
dd38cfd12c3a
parent 4318
cd3d6a6b95d9
child 4357
ad5dd04754ee
permissions
-rw-r--r--

8004319: test/gc/7168848/HumongousAlloc.java fails after 7172640
Reviewed-by: kvn, johnc

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/memnode.hpp"
    51 #include "opto/mulnode.hpp"
    52 #include "opto/node.hpp"
    53 #include "opto/opcodes.hpp"
    54 #include "opto/output.hpp"
    55 #include "opto/parse.hpp"
    56 #include "opto/phaseX.hpp"
    57 #include "opto/rootnode.hpp"
    58 #include "opto/runtime.hpp"
    59 #include "opto/stringopts.hpp"
    60 #include "opto/type.hpp"
    61 #include "opto/vectornode.hpp"
    62 #include "runtime/arguments.hpp"
    63 #include "runtime/signature.hpp"
    64 #include "runtime/stubRoutines.hpp"
    65 #include "runtime/timer.hpp"
    66 #include "utilities/copy.hpp"
    67 #ifdef TARGET_ARCH_MODEL_x86_32
    68 # include "adfiles/ad_x86_32.hpp"
    69 #endif
    70 #ifdef TARGET_ARCH_MODEL_x86_64
    71 # include "adfiles/ad_x86_64.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_MODEL_sparc
    74 # include "adfiles/ad_sparc.hpp"
    75 #endif
    76 #ifdef TARGET_ARCH_MODEL_zero
    77 # include "adfiles/ad_zero.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_MODEL_arm
    80 # include "adfiles/ad_arm.hpp"
    81 #endif
    82 #ifdef TARGET_ARCH_MODEL_ppc
    83 # include "adfiles/ad_ppc.hpp"
    84 #endif
    87 // -------------------- Compile::mach_constant_base_node -----------------------
    88 // Constant table base node singleton.
    89 MachConstantBaseNode* Compile::mach_constant_base_node() {
    90   if (_mach_constant_base_node == NULL) {
    91     _mach_constant_base_node = new (C) MachConstantBaseNode();
    92     _mach_constant_base_node->add_req(C->root());
    93   }
    94   return _mach_constant_base_node;
    95 }
    98 /// Support for intrinsics.
   100 // Return the index at which m must be inserted (or already exists).
   101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   102 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   103 #ifdef ASSERT
   104   for (int i = 1; i < _intrinsics->length(); i++) {
   105     CallGenerator* cg1 = _intrinsics->at(i-1);
   106     CallGenerator* cg2 = _intrinsics->at(i);
   107     assert(cg1->method() != cg2->method()
   108            ? cg1->method()     < cg2->method()
   109            : cg1->is_virtual() < cg2->is_virtual(),
   110            "compiler intrinsics list must stay sorted");
   111   }
   112 #endif
   113   // Binary search sorted list, in decreasing intervals [lo, hi].
   114   int lo = 0, hi = _intrinsics->length()-1;
   115   while (lo <= hi) {
   116     int mid = (uint)(hi + lo) / 2;
   117     ciMethod* mid_m = _intrinsics->at(mid)->method();
   118     if (m < mid_m) {
   119       hi = mid-1;
   120     } else if (m > mid_m) {
   121       lo = mid+1;
   122     } else {
   123       // look at minor sort key
   124       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   125       if (is_virtual < mid_virt) {
   126         hi = mid-1;
   127       } else if (is_virtual > mid_virt) {
   128         lo = mid+1;
   129       } else {
   130         return mid;  // exact match
   131       }
   132     }
   133   }
   134   return lo;  // inexact match
   135 }
   137 void Compile::register_intrinsic(CallGenerator* cg) {
   138   if (_intrinsics == NULL) {
   139     _intrinsics = new GrowableArray<CallGenerator*>(60);
   140   }
   141   // This code is stolen from ciObjectFactory::insert.
   142   // Really, GrowableArray should have methods for
   143   // insert_at, remove_at, and binary_search.
   144   int len = _intrinsics->length();
   145   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   146   if (index == len) {
   147     _intrinsics->append(cg);
   148   } else {
   149 #ifdef ASSERT
   150     CallGenerator* oldcg = _intrinsics->at(index);
   151     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   152 #endif
   153     _intrinsics->append(_intrinsics->at(len-1));
   154     int pos;
   155     for (pos = len-2; pos >= index; pos--) {
   156       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   157     }
   158     _intrinsics->at_put(index, cg);
   159   }
   160   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   161 }
   163 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   164   assert(m->is_loaded(), "don't try this on unloaded methods");
   165   if (_intrinsics != NULL) {
   166     int index = intrinsic_insertion_index(m, is_virtual);
   167     if (index < _intrinsics->length()
   168         && _intrinsics->at(index)->method() == m
   169         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   170       return _intrinsics->at(index);
   171     }
   172   }
   173   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   174   if (m->intrinsic_id() != vmIntrinsics::_none &&
   175       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   176     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   177     if (cg != NULL) {
   178       // Save it for next time:
   179       register_intrinsic(cg);
   180       return cg;
   181     } else {
   182       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   183     }
   184   }
   185   return NULL;
   186 }
   188 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   189 // in library_call.cpp.
   192 #ifndef PRODUCT
   193 // statistics gathering...
   195 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   196 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   198 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   199   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   200   int oflags = _intrinsic_hist_flags[id];
   201   assert(flags != 0, "what happened?");
   202   if (is_virtual) {
   203     flags |= _intrinsic_virtual;
   204   }
   205   bool changed = (flags != oflags);
   206   if ((flags & _intrinsic_worked) != 0) {
   207     juint count = (_intrinsic_hist_count[id] += 1);
   208     if (count == 1) {
   209       changed = true;           // first time
   210     }
   211     // increment the overall count also:
   212     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   213   }
   214   if (changed) {
   215     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   216       // Something changed about the intrinsic's virtuality.
   217       if ((flags & _intrinsic_virtual) != 0) {
   218         // This is the first use of this intrinsic as a virtual call.
   219         if (oflags != 0) {
   220           // We already saw it as a non-virtual, so note both cases.
   221           flags |= _intrinsic_both;
   222         }
   223       } else if ((oflags & _intrinsic_both) == 0) {
   224         // This is the first use of this intrinsic as a non-virtual
   225         flags |= _intrinsic_both;
   226       }
   227     }
   228     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   229   }
   230   // update the overall flags also:
   231   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   232   return changed;
   233 }
   235 static char* format_flags(int flags, char* buf) {
   236   buf[0] = 0;
   237   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   238   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   239   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   240   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   241   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   242   if (buf[0] == 0)  strcat(buf, ",");
   243   assert(buf[0] == ',', "must be");
   244   return &buf[1];
   245 }
   247 void Compile::print_intrinsic_statistics() {
   248   char flagsbuf[100];
   249   ttyLocker ttyl;
   250   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   251   tty->print_cr("Compiler intrinsic usage:");
   252   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   253   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   254   #define PRINT_STAT_LINE(name, c, f) \
   255     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   256   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   257     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   258     int   flags = _intrinsic_hist_flags[id];
   259     juint count = _intrinsic_hist_count[id];
   260     if ((flags | count) != 0) {
   261       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   262     }
   263   }
   264   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   265   if (xtty != NULL)  xtty->tail("statistics");
   266 }
   268 void Compile::print_statistics() {
   269   { ttyLocker ttyl;
   270     if (xtty != NULL)  xtty->head("statistics type='opto'");
   271     Parse::print_statistics();
   272     PhaseCCP::print_statistics();
   273     PhaseRegAlloc::print_statistics();
   274     Scheduling::print_statistics();
   275     PhasePeephole::print_statistics();
   276     PhaseIdealLoop::print_statistics();
   277     if (xtty != NULL)  xtty->tail("statistics");
   278   }
   279   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   280     // put this under its own <statistics> element.
   281     print_intrinsic_statistics();
   282   }
   283 }
   284 #endif //PRODUCT
   286 // Support for bundling info
   287 Bundle* Compile::node_bundling(const Node *n) {
   288   assert(valid_bundle_info(n), "oob");
   289   return &_node_bundling_base[n->_idx];
   290 }
   292 bool Compile::valid_bundle_info(const Node *n) {
   293   return (_node_bundling_limit > n->_idx);
   294 }
   297 void Compile::gvn_replace_by(Node* n, Node* nn) {
   298   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   299     Node* use = n->last_out(i);
   300     bool is_in_table = initial_gvn()->hash_delete(use);
   301     uint uses_found = 0;
   302     for (uint j = 0; j < use->len(); j++) {
   303       if (use->in(j) == n) {
   304         if (j < use->req())
   305           use->set_req(j, nn);
   306         else
   307           use->set_prec(j, nn);
   308         uses_found++;
   309       }
   310     }
   311     if (is_in_table) {
   312       // reinsert into table
   313       initial_gvn()->hash_find_insert(use);
   314     }
   315     record_for_igvn(use);
   316     i -= uses_found;    // we deleted 1 or more copies of this edge
   317   }
   318 }
   321 static inline bool not_a_node(const Node* n) {
   322   if (n == NULL)                   return true;
   323   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   324   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   325   return false;
   326 }
   328 // Identify all nodes that are reachable from below, useful.
   329 // Use breadth-first pass that records state in a Unique_Node_List,
   330 // recursive traversal is slower.
   331 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   332   int estimated_worklist_size = unique();
   333   useful.map( estimated_worklist_size, NULL );  // preallocate space
   335   // Initialize worklist
   336   if (root() != NULL)     { useful.push(root()); }
   337   // If 'top' is cached, declare it useful to preserve cached node
   338   if( cached_top_node() ) { useful.push(cached_top_node()); }
   340   // Push all useful nodes onto the list, breadthfirst
   341   for( uint next = 0; next < useful.size(); ++next ) {
   342     assert( next < unique(), "Unique useful nodes < total nodes");
   343     Node *n  = useful.at(next);
   344     uint max = n->len();
   345     for( uint i = 0; i < max; ++i ) {
   346       Node *m = n->in(i);
   347       if (not_a_node(m))  continue;
   348       useful.push(m);
   349     }
   350   }
   351 }
   353 // Update dead_node_list with any missing dead nodes using useful
   354 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   355 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   356   uint max_idx = unique();
   357   VectorSet& useful_node_set = useful.member_set();
   359   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   360     // If node with index node_idx is not in useful set,
   361     // mark it as dead in dead node list.
   362     if (! useful_node_set.test(node_idx) ) {
   363       record_dead_node(node_idx);
   364     }
   365   }
   366 }
   368 // Disconnect all useless nodes by disconnecting those at the boundary.
   369 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   370   uint next = 0;
   371   while (next < useful.size()) {
   372     Node *n = useful.at(next++);
   373     // Use raw traversal of out edges since this code removes out edges
   374     int max = n->outcnt();
   375     for (int j = 0; j < max; ++j) {
   376       Node* child = n->raw_out(j);
   377       if (! useful.member(child)) {
   378         assert(!child->is_top() || child != top(),
   379                "If top is cached in Compile object it is in useful list");
   380         // Only need to remove this out-edge to the useless node
   381         n->raw_del_out(j);
   382         --j;
   383         --max;
   384       }
   385     }
   386     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   387       record_for_igvn(n->unique_out());
   388     }
   389   }
   390   // Remove useless macro and predicate opaq nodes
   391   for (int i = C->macro_count()-1; i >= 0; i--) {
   392     Node* n = C->macro_node(i);
   393     if (!useful.member(n)) {
   394       remove_macro_node(n);
   395     }
   396   }
   397   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   398 }
   400 //------------------------------frame_size_in_words-----------------------------
   401 // frame_slots in units of words
   402 int Compile::frame_size_in_words() const {
   403   // shift is 0 in LP32 and 1 in LP64
   404   const int shift = (LogBytesPerWord - LogBytesPerInt);
   405   int words = _frame_slots >> shift;
   406   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   407   return words;
   408 }
   410 // ============================================================================
   411 //------------------------------CompileWrapper---------------------------------
   412 class CompileWrapper : public StackObj {
   413   Compile *const _compile;
   414  public:
   415   CompileWrapper(Compile* compile);
   417   ~CompileWrapper();
   418 };
   420 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   421   // the Compile* pointer is stored in the current ciEnv:
   422   ciEnv* env = compile->env();
   423   assert(env == ciEnv::current(), "must already be a ciEnv active");
   424   assert(env->compiler_data() == NULL, "compile already active?");
   425   env->set_compiler_data(compile);
   426   assert(compile == Compile::current(), "sanity");
   428   compile->set_type_dict(NULL);
   429   compile->set_type_hwm(NULL);
   430   compile->set_type_last_size(0);
   431   compile->set_last_tf(NULL, NULL);
   432   compile->set_indexSet_arena(NULL);
   433   compile->set_indexSet_free_block_list(NULL);
   434   compile->init_type_arena();
   435   Type::Initialize(compile);
   436   _compile->set_scratch_buffer_blob(NULL);
   437   _compile->begin_method();
   438 }
   439 CompileWrapper::~CompileWrapper() {
   440   _compile->end_method();
   441   if (_compile->scratch_buffer_blob() != NULL)
   442     BufferBlob::free(_compile->scratch_buffer_blob());
   443   _compile->env()->set_compiler_data(NULL);
   444 }
   447 //----------------------------print_compile_messages---------------------------
   448 void Compile::print_compile_messages() {
   449 #ifndef PRODUCT
   450   // Check if recompiling
   451   if (_subsume_loads == false && PrintOpto) {
   452     // Recompiling without allowing machine instructions to subsume loads
   453     tty->print_cr("*********************************************************");
   454     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   455     tty->print_cr("*********************************************************");
   456   }
   457   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   458     // Recompiling without escape analysis
   459     tty->print_cr("*********************************************************");
   460     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   461     tty->print_cr("*********************************************************");
   462   }
   463   if (env()->break_at_compile()) {
   464     // Open the debugger when compiling this method.
   465     tty->print("### Breaking when compiling: ");
   466     method()->print_short_name();
   467     tty->cr();
   468     BREAKPOINT;
   469   }
   471   if( PrintOpto ) {
   472     if (is_osr_compilation()) {
   473       tty->print("[OSR]%3d", _compile_id);
   474     } else {
   475       tty->print("%3d", _compile_id);
   476     }
   477   }
   478 #endif
   479 }
   482 //-----------------------init_scratch_buffer_blob------------------------------
   483 // Construct a temporary BufferBlob and cache it for this compile.
   484 void Compile::init_scratch_buffer_blob(int const_size) {
   485   // If there is already a scratch buffer blob allocated and the
   486   // constant section is big enough, use it.  Otherwise free the
   487   // current and allocate a new one.
   488   BufferBlob* blob = scratch_buffer_blob();
   489   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   490     // Use the current blob.
   491   } else {
   492     if (blob != NULL) {
   493       BufferBlob::free(blob);
   494     }
   496     ResourceMark rm;
   497     _scratch_const_size = const_size;
   498     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   499     blob = BufferBlob::create("Compile::scratch_buffer", size);
   500     // Record the buffer blob for next time.
   501     set_scratch_buffer_blob(blob);
   502     // Have we run out of code space?
   503     if (scratch_buffer_blob() == NULL) {
   504       // Let CompilerBroker disable further compilations.
   505       record_failure("Not enough space for scratch buffer in CodeCache");
   506       return;
   507     }
   508   }
   510   // Initialize the relocation buffers
   511   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   512   set_scratch_locs_memory(locs_buf);
   513 }
   516 //-----------------------scratch_emit_size-------------------------------------
   517 // Helper function that computes size by emitting code
   518 uint Compile::scratch_emit_size(const Node* n) {
   519   // Start scratch_emit_size section.
   520   set_in_scratch_emit_size(true);
   522   // Emit into a trash buffer and count bytes emitted.
   523   // This is a pretty expensive way to compute a size,
   524   // but it works well enough if seldom used.
   525   // All common fixed-size instructions are given a size
   526   // method by the AD file.
   527   // Note that the scratch buffer blob and locs memory are
   528   // allocated at the beginning of the compile task, and
   529   // may be shared by several calls to scratch_emit_size.
   530   // The allocation of the scratch buffer blob is particularly
   531   // expensive, since it has to grab the code cache lock.
   532   BufferBlob* blob = this->scratch_buffer_blob();
   533   assert(blob != NULL, "Initialize BufferBlob at start");
   534   assert(blob->size() > MAX_inst_size, "sanity");
   535   relocInfo* locs_buf = scratch_locs_memory();
   536   address blob_begin = blob->content_begin();
   537   address blob_end   = (address)locs_buf;
   538   assert(blob->content_contains(blob_end), "sanity");
   539   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   540   buf.initialize_consts_size(_scratch_const_size);
   541   buf.initialize_stubs_size(MAX_stubs_size);
   542   assert(locs_buf != NULL, "sanity");
   543   int lsize = MAX_locs_size / 3;
   544   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   545   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   546   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   548   // Do the emission.
   550   Label fakeL; // Fake label for branch instructions.
   551   Label*   saveL = NULL;
   552   uint save_bnum = 0;
   553   bool is_branch = n->is_MachBranch();
   554   if (is_branch) {
   555     MacroAssembler masm(&buf);
   556     masm.bind(fakeL);
   557     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   558     n->as_MachBranch()->label_set(&fakeL, 0);
   559   }
   560   n->emit(buf, this->regalloc());
   561   if (is_branch) // Restore label.
   562     n->as_MachBranch()->label_set(saveL, save_bnum);
   564   // End scratch_emit_size section.
   565   set_in_scratch_emit_size(false);
   567   return buf.insts_size();
   568 }
   571 // ============================================================================
   572 //------------------------------Compile standard-------------------------------
   573 debug_only( int Compile::_debug_idx = 100000; )
   575 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   576 // the continuation bci for on stack replacement.
   579 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
   580                 : Phase(Compiler),
   581                   _env(ci_env),
   582                   _log(ci_env->log()),
   583                   _compile_id(ci_env->compile_id()),
   584                   _save_argument_registers(false),
   585                   _stub_name(NULL),
   586                   _stub_function(NULL),
   587                   _stub_entry_point(NULL),
   588                   _method(target),
   589                   _entry_bci(osr_bci),
   590                   _initial_gvn(NULL),
   591                   _for_igvn(NULL),
   592                   _warm_calls(NULL),
   593                   _subsume_loads(subsume_loads),
   594                   _do_escape_analysis(do_escape_analysis),
   595                   _failure_reason(NULL),
   596                   _code_buffer("Compile::Fill_buffer"),
   597                   _orig_pc_slot(0),
   598                   _orig_pc_slot_offset_in_bytes(0),
   599                   _has_method_handle_invokes(false),
   600                   _mach_constant_base_node(NULL),
   601                   _node_bundling_limit(0),
   602                   _node_bundling_base(NULL),
   603                   _java_calls(0),
   604                   _inner_loops(0),
   605                   _scratch_const_size(-1),
   606                   _in_scratch_emit_size(false),
   607                   _dead_node_list(comp_arena()),
   608                   _dead_node_count(0),
   609 #ifndef PRODUCT
   610                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   611                   _printer(IdealGraphPrinter::printer()),
   612 #endif
   613                   _congraph(NULL) {
   614   C = this;
   616   CompileWrapper cw(this);
   617 #ifndef PRODUCT
   618   if (TimeCompiler2) {
   619     tty->print(" ");
   620     target->holder()->name()->print();
   621     tty->print(".");
   622     target->print_short_name();
   623     tty->print("  ");
   624   }
   625   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   626   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   627   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   628   if (!print_opto_assembly) {
   629     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   630     if (print_assembly && !Disassembler::can_decode()) {
   631       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   632       print_opto_assembly = true;
   633     }
   634   }
   635   set_print_assembly(print_opto_assembly);
   636   set_parsed_irreducible_loop(false);
   637 #endif
   639   if (ProfileTraps) {
   640     // Make sure the method being compiled gets its own MDO,
   641     // so we can at least track the decompile_count().
   642     method()->ensure_method_data();
   643   }
   645   Init(::AliasLevel);
   648   print_compile_messages();
   650   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   651     _ilt = InlineTree::build_inline_tree_root();
   652   else
   653     _ilt = NULL;
   655   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   656   assert(num_alias_types() >= AliasIdxRaw, "");
   658 #define MINIMUM_NODE_HASH  1023
   659   // Node list that Iterative GVN will start with
   660   Unique_Node_List for_igvn(comp_arena());
   661   set_for_igvn(&for_igvn);
   663   // GVN that will be run immediately on new nodes
   664   uint estimated_size = method()->code_size()*4+64;
   665   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   666   PhaseGVN gvn(node_arena(), estimated_size);
   667   set_initial_gvn(&gvn);
   669   { // Scope for timing the parser
   670     TracePhase t3("parse", &_t_parser, true);
   672     // Put top into the hash table ASAP.
   673     initial_gvn()->transform_no_reclaim(top());
   675     // Set up tf(), start(), and find a CallGenerator.
   676     CallGenerator* cg = NULL;
   677     if (is_osr_compilation()) {
   678       const TypeTuple *domain = StartOSRNode::osr_domain();
   679       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   680       init_tf(TypeFunc::make(domain, range));
   681       StartNode* s = new (this) StartOSRNode(root(), domain);
   682       initial_gvn()->set_type_bottom(s);
   683       init_start(s);
   684       cg = CallGenerator::for_osr(method(), entry_bci());
   685     } else {
   686       // Normal case.
   687       init_tf(TypeFunc::make(method()));
   688       StartNode* s = new (this) StartNode(root(), tf()->domain());
   689       initial_gvn()->set_type_bottom(s);
   690       init_start(s);
   691       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   692         // With java.lang.ref.reference.get() we must go through the
   693         // intrinsic when G1 is enabled - even when get() is the root
   694         // method of the compile - so that, if necessary, the value in
   695         // the referent field of the reference object gets recorded by
   696         // the pre-barrier code.
   697         // Specifically, if G1 is enabled, the value in the referent
   698         // field is recorded by the G1 SATB pre barrier. This will
   699         // result in the referent being marked live and the reference
   700         // object removed from the list of discovered references during
   701         // reference processing.
   702         cg = find_intrinsic(method(), false);
   703       }
   704       if (cg == NULL) {
   705         float past_uses = method()->interpreter_invocation_count();
   706         float expected_uses = past_uses;
   707         cg = CallGenerator::for_inline(method(), expected_uses);
   708       }
   709     }
   710     if (failing())  return;
   711     if (cg == NULL) {
   712       record_method_not_compilable_all_tiers("cannot parse method");
   713       return;
   714     }
   715     JVMState* jvms = build_start_state(start(), tf());
   716     if ((jvms = cg->generate(jvms)) == NULL) {
   717       record_method_not_compilable("method parse failed");
   718       return;
   719     }
   720     GraphKit kit(jvms);
   722     if (!kit.stopped()) {
   723       // Accept return values, and transfer control we know not where.
   724       // This is done by a special, unique ReturnNode bound to root.
   725       return_values(kit.jvms());
   726     }
   728     if (kit.has_exceptions()) {
   729       // Any exceptions that escape from this call must be rethrown
   730       // to whatever caller is dynamically above us on the stack.
   731       // This is done by a special, unique RethrowNode bound to root.
   732       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   733     }
   735     if (!failing() && has_stringbuilder()) {
   736       {
   737         // remove useless nodes to make the usage analysis simpler
   738         ResourceMark rm;
   739         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   740       }
   742       {
   743         ResourceMark rm;
   744         print_method("Before StringOpts", 3);
   745         PhaseStringOpts pso(initial_gvn(), &for_igvn);
   746         print_method("After StringOpts", 3);
   747       }
   749       // now inline anything that we skipped the first time around
   750       while (_late_inlines.length() > 0) {
   751         CallGenerator* cg = _late_inlines.pop();
   752         cg->do_late_inline();
   753         if (failing())  return;
   754       }
   755     }
   756     assert(_late_inlines.length() == 0, "should have been processed");
   758     print_method("Before RemoveUseless", 3);
   760     // Remove clutter produced by parsing.
   761     if (!failing()) {
   762       ResourceMark rm;
   763       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   764     }
   765   }
   767   // Note:  Large methods are capped off in do_one_bytecode().
   768   if (failing())  return;
   770   // After parsing, node notes are no longer automagic.
   771   // They must be propagated by register_new_node_with_optimizer(),
   772   // clone(), or the like.
   773   set_default_node_notes(NULL);
   775   for (;;) {
   776     int successes = Inline_Warm();
   777     if (failing())  return;
   778     if (successes == 0)  break;
   779   }
   781   // Drain the list.
   782   Finish_Warm();
   783 #ifndef PRODUCT
   784   if (_printer) {
   785     _printer->print_inlining(this);
   786   }
   787 #endif
   789   if (failing())  return;
   790   NOT_PRODUCT( verify_graph_edges(); )
   792   // Now optimize
   793   Optimize();
   794   if (failing())  return;
   795   NOT_PRODUCT( verify_graph_edges(); )
   797 #ifndef PRODUCT
   798   if (PrintIdeal) {
   799     ttyLocker ttyl;  // keep the following output all in one block
   800     // This output goes directly to the tty, not the compiler log.
   801     // To enable tools to match it up with the compilation activity,
   802     // be sure to tag this tty output with the compile ID.
   803     if (xtty != NULL) {
   804       xtty->head("ideal compile_id='%d'%s", compile_id(),
   805                  is_osr_compilation()    ? " compile_kind='osr'" :
   806                  "");
   807     }
   808     root()->dump(9999);
   809     if (xtty != NULL) {
   810       xtty->tail("ideal");
   811     }
   812   }
   813 #endif
   815   // Now that we know the size of all the monitors we can add a fixed slot
   816   // for the original deopt pc.
   818   _orig_pc_slot =  fixed_slots();
   819   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   820   set_fixed_slots(next_slot);
   822   // Now generate code
   823   Code_Gen();
   824   if (failing())  return;
   826   // Check if we want to skip execution of all compiled code.
   827   {
   828 #ifndef PRODUCT
   829     if (OptoNoExecute) {
   830       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   831       return;
   832     }
   833     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   834 #endif
   836     if (is_osr_compilation()) {
   837       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   838       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   839     } else {
   840       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   841       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   842     }
   844     env()->register_method(_method, _entry_bci,
   845                            &_code_offsets,
   846                            _orig_pc_slot_offset_in_bytes,
   847                            code_buffer(),
   848                            frame_size_in_words(), _oop_map_set,
   849                            &_handler_table, &_inc_table,
   850                            compiler,
   851                            env()->comp_level(),
   852                            has_unsafe_access(),
   853                            SharedRuntime::is_wide_vector(max_vector_size())
   854                            );
   856     if (log() != NULL) // Print code cache state into compiler log
   857       log()->code_cache_state();
   858   }
   859 }
   861 //------------------------------Compile----------------------------------------
   862 // Compile a runtime stub
   863 Compile::Compile( ciEnv* ci_env,
   864                   TypeFunc_generator generator,
   865                   address stub_function,
   866                   const char *stub_name,
   867                   int is_fancy_jump,
   868                   bool pass_tls,
   869                   bool save_arg_registers,
   870                   bool return_pc )
   871   : Phase(Compiler),
   872     _env(ci_env),
   873     _log(ci_env->log()),
   874     _compile_id(-1),
   875     _save_argument_registers(save_arg_registers),
   876     _method(NULL),
   877     _stub_name(stub_name),
   878     _stub_function(stub_function),
   879     _stub_entry_point(NULL),
   880     _entry_bci(InvocationEntryBci),
   881     _initial_gvn(NULL),
   882     _for_igvn(NULL),
   883     _warm_calls(NULL),
   884     _orig_pc_slot(0),
   885     _orig_pc_slot_offset_in_bytes(0),
   886     _subsume_loads(true),
   887     _do_escape_analysis(false),
   888     _failure_reason(NULL),
   889     _code_buffer("Compile::Fill_buffer"),
   890     _has_method_handle_invokes(false),
   891     _mach_constant_base_node(NULL),
   892     _node_bundling_limit(0),
   893     _node_bundling_base(NULL),
   894     _java_calls(0),
   895     _inner_loops(0),
   896 #ifndef PRODUCT
   897     _trace_opto_output(TraceOptoOutput),
   898     _printer(NULL),
   899 #endif
   900     _dead_node_list(comp_arena()),
   901     _dead_node_count(0),
   902     _congraph(NULL) {
   903   C = this;
   905 #ifndef PRODUCT
   906   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   907   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   908   set_print_assembly(PrintFrameConverterAssembly);
   909   set_parsed_irreducible_loop(false);
   910 #endif
   911   CompileWrapper cw(this);
   912   Init(/*AliasLevel=*/ 0);
   913   init_tf((*generator)());
   915   {
   916     // The following is a dummy for the sake of GraphKit::gen_stub
   917     Unique_Node_List for_igvn(comp_arena());
   918     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   919     PhaseGVN gvn(Thread::current()->resource_area(),255);
   920     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   921     gvn.transform_no_reclaim(top());
   923     GraphKit kit;
   924     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   925   }
   927   NOT_PRODUCT( verify_graph_edges(); )
   928   Code_Gen();
   929   if (failing())  return;
   932   // Entry point will be accessed using compile->stub_entry_point();
   933   if (code_buffer() == NULL) {
   934     Matcher::soft_match_failure();
   935   } else {
   936     if (PrintAssembly && (WizardMode || Verbose))
   937       tty->print_cr("### Stub::%s", stub_name);
   939     if (!failing()) {
   940       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   942       // Make the NMethod
   943       // For now we mark the frame as never safe for profile stackwalking
   944       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   945                                                       code_buffer(),
   946                                                       CodeOffsets::frame_never_safe,
   947                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   948                                                       frame_size_in_words(),
   949                                                       _oop_map_set,
   950                                                       save_arg_registers);
   951       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   953       _stub_entry_point = rs->entry_point();
   954     }
   955   }
   956 }
   958 //------------------------------Init-------------------------------------------
   959 // Prepare for a single compilation
   960 void Compile::Init(int aliaslevel) {
   961   _unique  = 0;
   962   _regalloc = NULL;
   964   _tf      = NULL;  // filled in later
   965   _top     = NULL;  // cached later
   966   _matcher = NULL;  // filled in later
   967   _cfg     = NULL;  // filled in later
   969   set_24_bit_selection_and_mode(Use24BitFP, false);
   971   _node_note_array = NULL;
   972   _default_node_notes = NULL;
   974   _immutable_memory = NULL; // filled in at first inquiry
   976   // Globally visible Nodes
   977   // First set TOP to NULL to give safe behavior during creation of RootNode
   978   set_cached_top_node(NULL);
   979   set_root(new (this) RootNode());
   980   // Now that you have a Root to point to, create the real TOP
   981   set_cached_top_node( new (this) ConNode(Type::TOP) );
   982   set_recent_alloc(NULL, NULL);
   984   // Create Debug Information Recorder to record scopes, oopmaps, etc.
   985   env()->set_oop_recorder(new OopRecorder(env()->arena()));
   986   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
   987   env()->set_dependencies(new Dependencies(env()));
   989   _fixed_slots = 0;
   990   set_has_split_ifs(false);
   991   set_has_loops(has_method() && method()->has_loops()); // first approximation
   992   set_has_stringbuilder(false);
   993   _trap_can_recompile = false;  // no traps emitted yet
   994   _major_progress = true; // start out assuming good things will happen
   995   set_has_unsafe_access(false);
   996   set_max_vector_size(0);
   997   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
   998   set_decompile_count(0);
  1000   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1001   set_num_loop_opts(LoopOptsCount);
  1002   set_do_inlining(Inline);
  1003   set_max_inline_size(MaxInlineSize);
  1004   set_freq_inline_size(FreqInlineSize);
  1005   set_do_scheduling(OptoScheduling);
  1006   set_do_count_invocations(false);
  1007   set_do_method_data_update(false);
  1009   if (debug_info()->recording_non_safepoints()) {
  1010     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1011                         (comp_arena(), 8, 0, NULL));
  1012     set_default_node_notes(Node_Notes::make(this));
  1015   // // -- Initialize types before each compile --
  1016   // // Update cached type information
  1017   // if( _method && _method->constants() )
  1018   //   Type::update_loaded_types(_method, _method->constants());
  1020   // Init alias_type map.
  1021   if (!_do_escape_analysis && aliaslevel == 3)
  1022     aliaslevel = 2;  // No unique types without escape analysis
  1023   _AliasLevel = aliaslevel;
  1024   const int grow_ats = 16;
  1025   _max_alias_types = grow_ats;
  1026   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1027   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1028   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1030     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1032   // Initialize the first few types.
  1033   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1034   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1035   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1036   _num_alias_types = AliasIdxRaw+1;
  1037   // Zero out the alias type cache.
  1038   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1039   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1040   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1042   _intrinsics = NULL;
  1043   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1044   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1045   register_library_intrinsics();
  1048 //---------------------------init_start----------------------------------------
  1049 // Install the StartNode on this compile object.
  1050 void Compile::init_start(StartNode* s) {
  1051   if (failing())
  1052     return; // already failing
  1053   assert(s == start(), "");
  1056 StartNode* Compile::start() const {
  1057   assert(!failing(), "");
  1058   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1059     Node* start = root()->fast_out(i);
  1060     if( start->is_Start() )
  1061       return start->as_Start();
  1063   ShouldNotReachHere();
  1064   return NULL;
  1067 //-------------------------------immutable_memory-------------------------------------
  1068 // Access immutable memory
  1069 Node* Compile::immutable_memory() {
  1070   if (_immutable_memory != NULL) {
  1071     return _immutable_memory;
  1073   StartNode* s = start();
  1074   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1075     Node *p = s->fast_out(i);
  1076     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1077       _immutable_memory = p;
  1078       return _immutable_memory;
  1081   ShouldNotReachHere();
  1082   return NULL;
  1085 //----------------------set_cached_top_node------------------------------------
  1086 // Install the cached top node, and make sure Node::is_top works correctly.
  1087 void Compile::set_cached_top_node(Node* tn) {
  1088   if (tn != NULL)  verify_top(tn);
  1089   Node* old_top = _top;
  1090   _top = tn;
  1091   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1092   // their _out arrays.
  1093   if (_top != NULL)     _top->setup_is_top();
  1094   if (old_top != NULL)  old_top->setup_is_top();
  1095   assert(_top == NULL || top()->is_top(), "");
  1098 #ifdef ASSERT
  1099 uint Compile::count_live_nodes_by_graph_walk() {
  1100   Unique_Node_List useful(comp_arena());
  1101   // Get useful node list by walking the graph.
  1102   identify_useful_nodes(useful);
  1103   return useful.size();
  1106 void Compile::print_missing_nodes() {
  1108   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1109   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1110     return;
  1113   // This is an expensive function. It is executed only when the user
  1114   // specifies VerifyIdealNodeCount option or otherwise knows the
  1115   // additional work that needs to be done to identify reachable nodes
  1116   // by walking the flow graph and find the missing ones using
  1117   // _dead_node_list.
  1119   Unique_Node_List useful(comp_arena());
  1120   // Get useful node list by walking the graph.
  1121   identify_useful_nodes(useful);
  1123   uint l_nodes = C->live_nodes();
  1124   uint l_nodes_by_walk = useful.size();
  1126   if (l_nodes != l_nodes_by_walk) {
  1127     if (_log != NULL) {
  1128       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1129       _log->stamp();
  1130       _log->end_head();
  1132     VectorSet& useful_member_set = useful.member_set();
  1133     int last_idx = l_nodes_by_walk;
  1134     for (int i = 0; i < last_idx; i++) {
  1135       if (useful_member_set.test(i)) {
  1136         if (_dead_node_list.test(i)) {
  1137           if (_log != NULL) {
  1138             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1140           if (PrintIdealNodeCount) {
  1141             // Print the log message to tty
  1142               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1143               useful.at(i)->dump();
  1147       else if (! _dead_node_list.test(i)) {
  1148         if (_log != NULL) {
  1149           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1151         if (PrintIdealNodeCount) {
  1152           // Print the log message to tty
  1153           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1157     if (_log != NULL) {
  1158       _log->tail("mismatched_nodes");
  1162 #endif
  1164 #ifndef PRODUCT
  1165 void Compile::verify_top(Node* tn) const {
  1166   if (tn != NULL) {
  1167     assert(tn->is_Con(), "top node must be a constant");
  1168     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1169     assert(tn->in(0) != NULL, "must have live top node");
  1172 #endif
  1175 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1177 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1178   guarantee(arr != NULL, "");
  1179   int num_blocks = arr->length();
  1180   if (grow_by < num_blocks)  grow_by = num_blocks;
  1181   int num_notes = grow_by * _node_notes_block_size;
  1182   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1183   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1184   while (num_notes > 0) {
  1185     arr->append(notes);
  1186     notes     += _node_notes_block_size;
  1187     num_notes -= _node_notes_block_size;
  1189   assert(num_notes == 0, "exact multiple, please");
  1192 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1193   if (source == NULL || dest == NULL)  return false;
  1195   if (dest->is_Con())
  1196     return false;               // Do not push debug info onto constants.
  1198 #ifdef ASSERT
  1199   // Leave a bread crumb trail pointing to the original node:
  1200   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1201     dest->set_debug_orig(source);
  1203 #endif
  1205   if (node_note_array() == NULL)
  1206     return false;               // Not collecting any notes now.
  1208   // This is a copy onto a pre-existing node, which may already have notes.
  1209   // If both nodes have notes, do not overwrite any pre-existing notes.
  1210   Node_Notes* source_notes = node_notes_at(source->_idx);
  1211   if (source_notes == NULL || source_notes->is_clear())  return false;
  1212   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1213   if (dest_notes == NULL || dest_notes->is_clear()) {
  1214     return set_node_notes_at(dest->_idx, source_notes);
  1217   Node_Notes merged_notes = (*source_notes);
  1218   // The order of operations here ensures that dest notes will win...
  1219   merged_notes.update_from(dest_notes);
  1220   return set_node_notes_at(dest->_idx, &merged_notes);
  1224 //--------------------------allow_range_check_smearing-------------------------
  1225 // Gating condition for coalescing similar range checks.
  1226 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1227 // single covering check that is at least as strong as any of them.
  1228 // If the optimization succeeds, the simplified (strengthened) range check
  1229 // will always succeed.  If it fails, we will deopt, and then give up
  1230 // on the optimization.
  1231 bool Compile::allow_range_check_smearing() const {
  1232   // If this method has already thrown a range-check,
  1233   // assume it was because we already tried range smearing
  1234   // and it failed.
  1235   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1236   return !already_trapped;
  1240 //------------------------------flatten_alias_type-----------------------------
  1241 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1242   int offset = tj->offset();
  1243   TypePtr::PTR ptr = tj->ptr();
  1245   // Known instance (scalarizable allocation) alias only with itself.
  1246   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1247                        tj->is_oopptr()->is_known_instance();
  1249   // Process weird unsafe references.
  1250   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1251     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1252     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1253     tj = TypeOopPtr::BOTTOM;
  1254     ptr = tj->ptr();
  1255     offset = tj->offset();
  1258   // Array pointers need some flattening
  1259   const TypeAryPtr *ta = tj->isa_aryptr();
  1260   if( ta && is_known_inst ) {
  1261     if ( offset != Type::OffsetBot &&
  1262          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1263       offset = Type::OffsetBot; // Flatten constant access into array body only
  1264       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1266   } else if( ta && _AliasLevel >= 2 ) {
  1267     // For arrays indexed by constant indices, we flatten the alias
  1268     // space to include all of the array body.  Only the header, klass
  1269     // and array length can be accessed un-aliased.
  1270     if( offset != Type::OffsetBot ) {
  1271       if( ta->const_oop() ) { // MethodData* or Method*
  1272         offset = Type::OffsetBot;   // Flatten constant access into array body
  1273         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1274       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1275         // range is OK as-is.
  1276         tj = ta = TypeAryPtr::RANGE;
  1277       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1278         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1279         ta = TypeAryPtr::RANGE; // generic ignored junk
  1280         ptr = TypePtr::BotPTR;
  1281       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1282         tj = TypeInstPtr::MARK;
  1283         ta = TypeAryPtr::RANGE; // generic ignored junk
  1284         ptr = TypePtr::BotPTR;
  1285       } else {                  // Random constant offset into array body
  1286         offset = Type::OffsetBot;   // Flatten constant access into array body
  1287         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1290     // Arrays of fixed size alias with arrays of unknown size.
  1291     if (ta->size() != TypeInt::POS) {
  1292       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1293       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1295     // Arrays of known objects become arrays of unknown objects.
  1296     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1297       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1298       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1300     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1301       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1302       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1304     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1305     // cannot be distinguished by bytecode alone.
  1306     if (ta->elem() == TypeInt::BOOL) {
  1307       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1308       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1309       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1311     // During the 2nd round of IterGVN, NotNull castings are removed.
  1312     // Make sure the Bottom and NotNull variants alias the same.
  1313     // Also, make sure exact and non-exact variants alias the same.
  1314     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1315       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1319   // Oop pointers need some flattening
  1320   const TypeInstPtr *to = tj->isa_instptr();
  1321   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1322     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1323     if( ptr == TypePtr::Constant ) {
  1324       if (to->klass() != ciEnv::current()->Class_klass() ||
  1325           offset < k->size_helper() * wordSize) {
  1326         // No constant oop pointers (such as Strings); they alias with
  1327         // unknown strings.
  1328         assert(!is_known_inst, "not scalarizable allocation");
  1329         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1331     } else if( is_known_inst ) {
  1332       tj = to; // Keep NotNull and klass_is_exact for instance type
  1333     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1334       // During the 2nd round of IterGVN, NotNull castings are removed.
  1335       // Make sure the Bottom and NotNull variants alias the same.
  1336       // Also, make sure exact and non-exact variants alias the same.
  1337       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1339     // Canonicalize the holder of this field
  1340     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1341       // First handle header references such as a LoadKlassNode, even if the
  1342       // object's klass is unloaded at compile time (4965979).
  1343       if (!is_known_inst) { // Do it only for non-instance types
  1344         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1346     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1347       // Static fields are in the space above the normal instance
  1348       // fields in the java.lang.Class instance.
  1349       if (to->klass() != ciEnv::current()->Class_klass()) {
  1350         to = NULL;
  1351         tj = TypeOopPtr::BOTTOM;
  1352         offset = tj->offset();
  1354     } else {
  1355       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1356       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1357         if( is_known_inst ) {
  1358           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1359         } else {
  1360           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1366   // Klass pointers to object array klasses need some flattening
  1367   const TypeKlassPtr *tk = tj->isa_klassptr();
  1368   if( tk ) {
  1369     // If we are referencing a field within a Klass, we need
  1370     // to assume the worst case of an Object.  Both exact and
  1371     // inexact types must flatten to the same alias class so
  1372     // use NotNull as the PTR.
  1373     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1375       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1376                                    TypeKlassPtr::OBJECT->klass(),
  1377                                    offset);
  1380     ciKlass* klass = tk->klass();
  1381     if( klass->is_obj_array_klass() ) {
  1382       ciKlass* k = TypeAryPtr::OOPS->klass();
  1383       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1384         k = TypeInstPtr::BOTTOM->klass();
  1385       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1388     // Check for precise loads from the primary supertype array and force them
  1389     // to the supertype cache alias index.  Check for generic array loads from
  1390     // the primary supertype array and also force them to the supertype cache
  1391     // alias index.  Since the same load can reach both, we need to merge
  1392     // these 2 disparate memories into the same alias class.  Since the
  1393     // primary supertype array is read-only, there's no chance of confusion
  1394     // where we bypass an array load and an array store.
  1395     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1396     if (offset == Type::OffsetBot ||
  1397         (offset >= primary_supers_offset &&
  1398          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1399         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1400       offset = in_bytes(Klass::secondary_super_cache_offset());
  1401       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1405   // Flatten all Raw pointers together.
  1406   if (tj->base() == Type::RawPtr)
  1407     tj = TypeRawPtr::BOTTOM;
  1409   if (tj->base() == Type::AnyPtr)
  1410     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1412   // Flatten all to bottom for now
  1413   switch( _AliasLevel ) {
  1414   case 0:
  1415     tj = TypePtr::BOTTOM;
  1416     break;
  1417   case 1:                       // Flatten to: oop, static, field or array
  1418     switch (tj->base()) {
  1419     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1420     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1421     case Type::AryPtr:   // do not distinguish arrays at all
  1422     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1423     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1424     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1425     default: ShouldNotReachHere();
  1427     break;
  1428   case 2:                       // No collapsing at level 2; keep all splits
  1429   case 3:                       // No collapsing at level 3; keep all splits
  1430     break;
  1431   default:
  1432     Unimplemented();
  1435   offset = tj->offset();
  1436   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1438   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1439           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1440           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1441           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1442           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1443           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1444           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1445           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1446   assert( tj->ptr() != TypePtr::TopPTR &&
  1447           tj->ptr() != TypePtr::AnyNull &&
  1448           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1449 //    assert( tj->ptr() != TypePtr::Constant ||
  1450 //            tj->base() == Type::RawPtr ||
  1451 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1453   return tj;
  1456 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1457   _index = i;
  1458   _adr_type = at;
  1459   _field = NULL;
  1460   _is_rewritable = true; // default
  1461   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1462   if (atoop != NULL && atoop->is_known_instance()) {
  1463     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1464     _general_index = Compile::current()->get_alias_index(gt);
  1465   } else {
  1466     _general_index = 0;
  1470 //---------------------------------print_on------------------------------------
  1471 #ifndef PRODUCT
  1472 void Compile::AliasType::print_on(outputStream* st) {
  1473   if (index() < 10)
  1474         st->print("@ <%d> ", index());
  1475   else  st->print("@ <%d>",  index());
  1476   st->print(is_rewritable() ? "   " : " RO");
  1477   int offset = adr_type()->offset();
  1478   if (offset == Type::OffsetBot)
  1479         st->print(" +any");
  1480   else  st->print(" +%-3d", offset);
  1481   st->print(" in ");
  1482   adr_type()->dump_on(st);
  1483   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1484   if (field() != NULL && tjp) {
  1485     if (tjp->klass()  != field()->holder() ||
  1486         tjp->offset() != field()->offset_in_bytes()) {
  1487       st->print(" != ");
  1488       field()->print();
  1489       st->print(" ***");
  1494 void print_alias_types() {
  1495   Compile* C = Compile::current();
  1496   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1497   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1498     C->alias_type(idx)->print_on(tty);
  1499     tty->cr();
  1502 #endif
  1505 //----------------------------probe_alias_cache--------------------------------
  1506 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1507   intptr_t key = (intptr_t) adr_type;
  1508   key ^= key >> logAliasCacheSize;
  1509   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1513 //-----------------------------grow_alias_types--------------------------------
  1514 void Compile::grow_alias_types() {
  1515   const int old_ats  = _max_alias_types; // how many before?
  1516   const int new_ats  = old_ats;          // how many more?
  1517   const int grow_ats = old_ats+new_ats;  // how many now?
  1518   _max_alias_types = grow_ats;
  1519   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1520   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1521   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1522   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1526 //--------------------------------find_alias_type------------------------------
  1527 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1528   if (_AliasLevel == 0)
  1529     return alias_type(AliasIdxBot);
  1531   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1532   if (ace->_adr_type == adr_type) {
  1533     return alias_type(ace->_index);
  1536   // Handle special cases.
  1537   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1538   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1540   // Do it the slow way.
  1541   const TypePtr* flat = flatten_alias_type(adr_type);
  1543 #ifdef ASSERT
  1544   assert(flat == flatten_alias_type(flat), "idempotent");
  1545   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1546   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1547     const TypeOopPtr* foop = flat->is_oopptr();
  1548     // Scalarizable allocations have exact klass always.
  1549     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1550     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1551     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1553   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1554 #endif
  1556   int idx = AliasIdxTop;
  1557   for (int i = 0; i < num_alias_types(); i++) {
  1558     if (alias_type(i)->adr_type() == flat) {
  1559       idx = i;
  1560       break;
  1564   if (idx == AliasIdxTop) {
  1565     if (no_create)  return NULL;
  1566     // Grow the array if necessary.
  1567     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1568     // Add a new alias type.
  1569     idx = _num_alias_types++;
  1570     _alias_types[idx]->Init(idx, flat);
  1571     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1572     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1573     if (flat->isa_instptr()) {
  1574       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1575           && flat->is_instptr()->klass() == env()->Class_klass())
  1576         alias_type(idx)->set_rewritable(false);
  1578     if (flat->isa_klassptr()) {
  1579       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1580         alias_type(idx)->set_rewritable(false);
  1581       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1582         alias_type(idx)->set_rewritable(false);
  1583       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1584         alias_type(idx)->set_rewritable(false);
  1585       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1586         alias_type(idx)->set_rewritable(false);
  1588     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1589     // but the base pointer type is not distinctive enough to identify
  1590     // references into JavaThread.)
  1592     // Check for final fields.
  1593     const TypeInstPtr* tinst = flat->isa_instptr();
  1594     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1595       ciField* field;
  1596       if (tinst->const_oop() != NULL &&
  1597           tinst->klass() == ciEnv::current()->Class_klass() &&
  1598           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1599         // static field
  1600         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1601         field = k->get_field_by_offset(tinst->offset(), true);
  1602       } else {
  1603         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1604         field = k->get_field_by_offset(tinst->offset(), false);
  1606       assert(field == NULL ||
  1607              original_field == NULL ||
  1608              (field->holder() == original_field->holder() &&
  1609               field->offset() == original_field->offset() &&
  1610               field->is_static() == original_field->is_static()), "wrong field?");
  1611       // Set field() and is_rewritable() attributes.
  1612       if (field != NULL)  alias_type(idx)->set_field(field);
  1616   // Fill the cache for next time.
  1617   ace->_adr_type = adr_type;
  1618   ace->_index    = idx;
  1619   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1621   // Might as well try to fill the cache for the flattened version, too.
  1622   AliasCacheEntry* face = probe_alias_cache(flat);
  1623   if (face->_adr_type == NULL) {
  1624     face->_adr_type = flat;
  1625     face->_index    = idx;
  1626     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1629   return alias_type(idx);
  1633 Compile::AliasType* Compile::alias_type(ciField* field) {
  1634   const TypeOopPtr* t;
  1635   if (field->is_static())
  1636     t = TypeInstPtr::make(field->holder()->java_mirror());
  1637   else
  1638     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1639   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1640   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1641   return atp;
  1645 //------------------------------have_alias_type--------------------------------
  1646 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1647   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1648   if (ace->_adr_type == adr_type) {
  1649     return true;
  1652   // Handle special cases.
  1653   if (adr_type == NULL)             return true;
  1654   if (adr_type == TypePtr::BOTTOM)  return true;
  1656   return find_alias_type(adr_type, true, NULL) != NULL;
  1659 //-----------------------------must_alias--------------------------------------
  1660 // True if all values of the given address type are in the given alias category.
  1661 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1662   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1663   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1664   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1665   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1667   // the only remaining possible overlap is identity
  1668   int adr_idx = get_alias_index(adr_type);
  1669   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1670   assert(adr_idx == alias_idx ||
  1671          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1672           && adr_type                       != TypeOopPtr::BOTTOM),
  1673          "should not be testing for overlap with an unsafe pointer");
  1674   return adr_idx == alias_idx;
  1677 //------------------------------can_alias--------------------------------------
  1678 // True if any values of the given address type are in the given alias category.
  1679 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1680   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1681   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1682   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1683   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1685   // the only remaining possible overlap is identity
  1686   int adr_idx = get_alias_index(adr_type);
  1687   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1688   return adr_idx == alias_idx;
  1693 //---------------------------pop_warm_call-------------------------------------
  1694 WarmCallInfo* Compile::pop_warm_call() {
  1695   WarmCallInfo* wci = _warm_calls;
  1696   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1697   return wci;
  1700 //----------------------------Inline_Warm--------------------------------------
  1701 int Compile::Inline_Warm() {
  1702   // If there is room, try to inline some more warm call sites.
  1703   // %%% Do a graph index compaction pass when we think we're out of space?
  1704   if (!InlineWarmCalls)  return 0;
  1706   int calls_made_hot = 0;
  1707   int room_to_grow   = NodeCountInliningCutoff - unique();
  1708   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1709   int amount_grown   = 0;
  1710   WarmCallInfo* call;
  1711   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1712     int est_size = (int)call->size();
  1713     if (est_size > (room_to_grow - amount_grown)) {
  1714       // This one won't fit anyway.  Get rid of it.
  1715       call->make_cold();
  1716       continue;
  1718     call->make_hot();
  1719     calls_made_hot++;
  1720     amount_grown   += est_size;
  1721     amount_to_grow -= est_size;
  1724   if (calls_made_hot > 0)  set_major_progress();
  1725   return calls_made_hot;
  1729 //----------------------------Finish_Warm--------------------------------------
  1730 void Compile::Finish_Warm() {
  1731   if (!InlineWarmCalls)  return;
  1732   if (failing())  return;
  1733   if (warm_calls() == NULL)  return;
  1735   // Clean up loose ends, if we are out of space for inlining.
  1736   WarmCallInfo* call;
  1737   while ((call = pop_warm_call()) != NULL) {
  1738     call->make_cold();
  1742 //---------------------cleanup_loop_predicates-----------------------
  1743 // Remove the opaque nodes that protect the predicates so that all unused
  1744 // checks and uncommon_traps will be eliminated from the ideal graph
  1745 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1746   if (predicate_count()==0) return;
  1747   for (int i = predicate_count(); i > 0; i--) {
  1748     Node * n = predicate_opaque1_node(i-1);
  1749     assert(n->Opcode() == Op_Opaque1, "must be");
  1750     igvn.replace_node(n, n->in(1));
  1752   assert(predicate_count()==0, "should be clean!");
  1755 //------------------------------Optimize---------------------------------------
  1756 // Given a graph, optimize it.
  1757 void Compile::Optimize() {
  1758   TracePhase t1("optimizer", &_t_optimizer, true);
  1760 #ifndef PRODUCT
  1761   if (env()->break_at_compile()) {
  1762     BREAKPOINT;
  1765 #endif
  1767   ResourceMark rm;
  1768   int          loop_opts_cnt;
  1770   NOT_PRODUCT( verify_graph_edges(); )
  1772   print_method("After Parsing");
  1775   // Iterative Global Value Numbering, including ideal transforms
  1776   // Initialize IterGVN with types and values from parse-time GVN
  1777   PhaseIterGVN igvn(initial_gvn());
  1779     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1780     igvn.optimize();
  1783   print_method("Iter GVN 1", 2);
  1785   if (failing())  return;
  1787   // Perform escape analysis
  1788   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  1789     if (has_loops()) {
  1790       // Cleanup graph (remove dead nodes).
  1791       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1792       PhaseIdealLoop ideal_loop( igvn, false, true );
  1793       if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
  1794       if (failing())  return;
  1796     ConnectionGraph::do_analysis(this, &igvn);
  1798     if (failing())  return;
  1800     // Optimize out fields loads from scalar replaceable allocations.
  1801     igvn.optimize();
  1802     print_method("Iter GVN after EA", 2);
  1804     if (failing())  return;
  1806     if (congraph() != NULL && macro_count() > 0) {
  1807       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  1808       PhaseMacroExpand mexp(igvn);
  1809       mexp.eliminate_macro_nodes();
  1810       igvn.set_delay_transform(false);
  1812       igvn.optimize();
  1813       print_method("Iter GVN after eliminating allocations and locks", 2);
  1815       if (failing())  return;
  1819   // Loop transforms on the ideal graph.  Range Check Elimination,
  1820   // peeling, unrolling, etc.
  1822   // Set loop opts counter
  1823   loop_opts_cnt = num_loop_opts();
  1824   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  1826       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1827       PhaseIdealLoop ideal_loop( igvn, true );
  1828       loop_opts_cnt--;
  1829       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  1830       if (failing())  return;
  1832     // Loop opts pass if partial peeling occurred in previous pass
  1833     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  1834       TracePhase t3("idealLoop", &_t_idealLoop, true);
  1835       PhaseIdealLoop ideal_loop( igvn, false );
  1836       loop_opts_cnt--;
  1837       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  1838       if (failing())  return;
  1840     // Loop opts pass for loop-unrolling before CCP
  1841     if(major_progress() && (loop_opts_cnt > 0)) {
  1842       TracePhase t4("idealLoop", &_t_idealLoop, true);
  1843       PhaseIdealLoop ideal_loop( igvn, false );
  1844       loop_opts_cnt--;
  1845       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  1847     if (!failing()) {
  1848       // Verify that last round of loop opts produced a valid graph
  1849       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1850       PhaseIdealLoop::verify(igvn);
  1853   if (failing())  return;
  1855   // Conditional Constant Propagation;
  1856   PhaseCCP ccp( &igvn );
  1857   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  1859     TracePhase t2("ccp", &_t_ccp, true);
  1860     ccp.do_transform();
  1862   print_method("PhaseCPP 1", 2);
  1864   assert( true, "Break here to ccp.dump_old2new_map()");
  1866   // Iterative Global Value Numbering, including ideal transforms
  1868     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  1869     igvn = ccp;
  1870     igvn.optimize();
  1873   print_method("Iter GVN 2", 2);
  1875   if (failing())  return;
  1877   // Loop transforms on the ideal graph.  Range Check Elimination,
  1878   // peeling, unrolling, etc.
  1879   if(loop_opts_cnt > 0) {
  1880     debug_only( int cnt = 0; );
  1881     while(major_progress() && (loop_opts_cnt > 0)) {
  1882       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1883       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  1884       PhaseIdealLoop ideal_loop( igvn, true);
  1885       loop_opts_cnt--;
  1886       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  1887       if (failing())  return;
  1892     // Verify that all previous optimizations produced a valid graph
  1893     // at least to this point, even if no loop optimizations were done.
  1894     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1895     PhaseIdealLoop::verify(igvn);
  1899     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  1900     PhaseMacroExpand  mex(igvn);
  1901     if (mex.expand_macro_nodes()) {
  1902       assert(failing(), "must bail out w/ explicit message");
  1903       return;
  1907  } // (End scope of igvn; run destructor if necessary for asserts.)
  1909   // A method with only infinite loops has no edges entering loops from root
  1911     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  1912     if (final_graph_reshaping()) {
  1913       assert(failing(), "must bail out w/ explicit message");
  1914       return;
  1918   print_method("Optimize finished", 2);
  1922 //------------------------------Code_Gen---------------------------------------
  1923 // Given a graph, generate code for it
  1924 void Compile::Code_Gen() {
  1925   if (failing())  return;
  1927   // Perform instruction selection.  You might think we could reclaim Matcher
  1928   // memory PDQ, but actually the Matcher is used in generating spill code.
  1929   // Internals of the Matcher (including some VectorSets) must remain live
  1930   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  1931   // set a bit in reclaimed memory.
  1933   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1934   // nodes.  Mapping is only valid at the root of each matched subtree.
  1935   NOT_PRODUCT( verify_graph_edges(); )
  1937   Node_List proj_list;
  1938   Matcher m(proj_list);
  1939   _matcher = &m;
  1941     TracePhase t2("matcher", &_t_matcher, true);
  1942     m.match();
  1944   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1945   // nodes.  Mapping is only valid at the root of each matched subtree.
  1946   NOT_PRODUCT( verify_graph_edges(); )
  1948   // If you have too many nodes, or if matching has failed, bail out
  1949   check_node_count(0, "out of nodes matching instructions");
  1950   if (failing())  return;
  1952   // Build a proper-looking CFG
  1953   PhaseCFG cfg(node_arena(), root(), m);
  1954   _cfg = &cfg;
  1956     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  1957     cfg.Dominators();
  1958     if (failing())  return;
  1960     NOT_PRODUCT( verify_graph_edges(); )
  1962     cfg.Estimate_Block_Frequency();
  1963     cfg.GlobalCodeMotion(m,unique(),proj_list);
  1964     if (failing())  return;
  1966     print_method("Global code motion", 2);
  1968     NOT_PRODUCT( verify_graph_edges(); )
  1970     debug_only( cfg.verify(); )
  1972   NOT_PRODUCT( verify_graph_edges(); )
  1974   PhaseChaitin regalloc(unique(),cfg,m);
  1975   _regalloc = &regalloc;
  1977     TracePhase t2("regalloc", &_t_registerAllocation, true);
  1978     // Perform any platform dependent preallocation actions.  This is used,
  1979     // for example, to avoid taking an implicit null pointer exception
  1980     // using the frame pointer on win95.
  1981     _regalloc->pd_preallocate_hook();
  1983     // Perform register allocation.  After Chaitin, use-def chains are
  1984     // no longer accurate (at spill code) and so must be ignored.
  1985     // Node->LRG->reg mappings are still accurate.
  1986     _regalloc->Register_Allocate();
  1988     // Bail out if the allocator builds too many nodes
  1989     if (failing())  return;
  1992   // Prior to register allocation we kept empty basic blocks in case the
  1993   // the allocator needed a place to spill.  After register allocation we
  1994   // are not adding any new instructions.  If any basic block is empty, we
  1995   // can now safely remove it.
  1997     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  1998     cfg.remove_empty();
  1999     if (do_freq_based_layout()) {
  2000       PhaseBlockLayout layout(cfg);
  2001     } else {
  2002       cfg.set_loop_alignment();
  2004     cfg.fixup_flow();
  2007   // Perform any platform dependent postallocation verifications.
  2008   debug_only( _regalloc->pd_postallocate_verify_hook(); )
  2010   // Apply peephole optimizations
  2011   if( OptoPeephole ) {
  2012     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2013     PhasePeephole peep( _regalloc, cfg);
  2014     peep.do_transform();
  2017   // Convert Nodes to instruction bits in a buffer
  2019     // %%%% workspace merge brought two timers together for one job
  2020     TracePhase t2a("output", &_t_output, true);
  2021     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2022     Output();
  2025   print_method("Final Code");
  2027   // He's dead, Jim.
  2028   _cfg     = (PhaseCFG*)0xdeadbeef;
  2029   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2033 //------------------------------dump_asm---------------------------------------
  2034 // Dump formatted assembly
  2035 #ifndef PRODUCT
  2036 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2037   bool cut_short = false;
  2038   tty->print_cr("#");
  2039   tty->print("#  ");  _tf->dump();  tty->cr();
  2040   tty->print_cr("#");
  2042   // For all blocks
  2043   int pc = 0x0;                 // Program counter
  2044   char starts_bundle = ' ';
  2045   _regalloc->dump_frame();
  2047   Node *n = NULL;
  2048   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  2049     if (VMThread::should_terminate()) { cut_short = true; break; }
  2050     Block *b = _cfg->_blocks[i];
  2051     if (b->is_connector() && !Verbose) continue;
  2052     n = b->_nodes[0];
  2053     if (pcs && n->_idx < pc_limit)
  2054       tty->print("%3.3x   ", pcs[n->_idx]);
  2055     else
  2056       tty->print("      ");
  2057     b->dump_head( &_cfg->_bbs );
  2058     if (b->is_connector()) {
  2059       tty->print_cr("        # Empty connector block");
  2060     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2061       tty->print_cr("        # Block is sole successor of call");
  2064     // For all instructions
  2065     Node *delay = NULL;
  2066     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  2067       if (VMThread::should_terminate()) { cut_short = true; break; }
  2068       n = b->_nodes[j];
  2069       if (valid_bundle_info(n)) {
  2070         Bundle *bundle = node_bundling(n);
  2071         if (bundle->used_in_unconditional_delay()) {
  2072           delay = n;
  2073           continue;
  2075         if (bundle->starts_bundle())
  2076           starts_bundle = '+';
  2079       if (WizardMode) n->dump();
  2081       if( !n->is_Region() &&    // Dont print in the Assembly
  2082           !n->is_Phi() &&       // a few noisely useless nodes
  2083           !n->is_Proj() &&
  2084           !n->is_MachTemp() &&
  2085           !n->is_SafePointScalarObject() &&
  2086           !n->is_Catch() &&     // Would be nice to print exception table targets
  2087           !n->is_MergeMem() &&  // Not very interesting
  2088           !n->is_top() &&       // Debug info table constants
  2089           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2090           ) {
  2091         if (pcs && n->_idx < pc_limit)
  2092           tty->print("%3.3x", pcs[n->_idx]);
  2093         else
  2094           tty->print("   ");
  2095         tty->print(" %c ", starts_bundle);
  2096         starts_bundle = ' ';
  2097         tty->print("\t");
  2098         n->format(_regalloc, tty);
  2099         tty->cr();
  2102       // If we have an instruction with a delay slot, and have seen a delay,
  2103       // then back up and print it
  2104       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2105         assert(delay != NULL, "no unconditional delay instruction");
  2106         if (WizardMode) delay->dump();
  2108         if (node_bundling(delay)->starts_bundle())
  2109           starts_bundle = '+';
  2110         if (pcs && n->_idx < pc_limit)
  2111           tty->print("%3.3x", pcs[n->_idx]);
  2112         else
  2113           tty->print("   ");
  2114         tty->print(" %c ", starts_bundle);
  2115         starts_bundle = ' ';
  2116         tty->print("\t");
  2117         delay->format(_regalloc, tty);
  2118         tty->print_cr("");
  2119         delay = NULL;
  2122       // Dump the exception table as well
  2123       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2124         // Print the exception table for this offset
  2125         _handler_table.print_subtable_for(pc);
  2129     if (pcs && n->_idx < pc_limit)
  2130       tty->print_cr("%3.3x", pcs[n->_idx]);
  2131     else
  2132       tty->print_cr("");
  2134     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2136   } // End of per-block dump
  2137   tty->print_cr("");
  2139   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2141 #endif
  2143 //------------------------------Final_Reshape_Counts---------------------------
  2144 // This class defines counters to help identify when a method
  2145 // may/must be executed using hardware with only 24-bit precision.
  2146 struct Final_Reshape_Counts : public StackObj {
  2147   int  _call_count;             // count non-inlined 'common' calls
  2148   int  _float_count;            // count float ops requiring 24-bit precision
  2149   int  _double_count;           // count double ops requiring more precision
  2150   int  _java_call_count;        // count non-inlined 'java' calls
  2151   int  _inner_loop_count;       // count loops which need alignment
  2152   VectorSet _visited;           // Visitation flags
  2153   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2155   Final_Reshape_Counts() :
  2156     _call_count(0), _float_count(0), _double_count(0),
  2157     _java_call_count(0), _inner_loop_count(0),
  2158     _visited( Thread::current()->resource_area() ) { }
  2160   void inc_call_count  () { _call_count  ++; }
  2161   void inc_float_count () { _float_count ++; }
  2162   void inc_double_count() { _double_count++; }
  2163   void inc_java_call_count() { _java_call_count++; }
  2164   void inc_inner_loop_count() { _inner_loop_count++; }
  2166   int  get_call_count  () const { return _call_count  ; }
  2167   int  get_float_count () const { return _float_count ; }
  2168   int  get_double_count() const { return _double_count; }
  2169   int  get_java_call_count() const { return _java_call_count; }
  2170   int  get_inner_loop_count() const { return _inner_loop_count; }
  2171 };
  2173 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2174   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2175   // Make sure the offset goes inside the instance layout.
  2176   return k->contains_field_offset(tp->offset());
  2177   // Note that OffsetBot and OffsetTop are very negative.
  2180 // Eliminate trivially redundant StoreCMs and accumulate their
  2181 // precedence edges.
  2182 void Compile::eliminate_redundant_card_marks(Node* n) {
  2183   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2184   if (n->in(MemNode::Address)->outcnt() > 1) {
  2185     // There are multiple users of the same address so it might be
  2186     // possible to eliminate some of the StoreCMs
  2187     Node* mem = n->in(MemNode::Memory);
  2188     Node* adr = n->in(MemNode::Address);
  2189     Node* val = n->in(MemNode::ValueIn);
  2190     Node* prev = n;
  2191     bool done = false;
  2192     // Walk the chain of StoreCMs eliminating ones that match.  As
  2193     // long as it's a chain of single users then the optimization is
  2194     // safe.  Eliminating partially redundant StoreCMs would require
  2195     // cloning copies down the other paths.
  2196     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2197       if (adr == mem->in(MemNode::Address) &&
  2198           val == mem->in(MemNode::ValueIn)) {
  2199         // redundant StoreCM
  2200         if (mem->req() > MemNode::OopStore) {
  2201           // Hasn't been processed by this code yet.
  2202           n->add_prec(mem->in(MemNode::OopStore));
  2203         } else {
  2204           // Already converted to precedence edge
  2205           for (uint i = mem->req(); i < mem->len(); i++) {
  2206             // Accumulate any precedence edges
  2207             if (mem->in(i) != NULL) {
  2208               n->add_prec(mem->in(i));
  2211           // Everything above this point has been processed.
  2212           done = true;
  2214         // Eliminate the previous StoreCM
  2215         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2216         assert(mem->outcnt() == 0, "should be dead");
  2217         mem->disconnect_inputs(NULL, this);
  2218       } else {
  2219         prev = mem;
  2221       mem = prev->in(MemNode::Memory);
  2226 //------------------------------final_graph_reshaping_impl----------------------
  2227 // Implement items 1-5 from final_graph_reshaping below.
  2228 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2230   if ( n->outcnt() == 0 ) return; // dead node
  2231   uint nop = n->Opcode();
  2233   // Check for 2-input instruction with "last use" on right input.
  2234   // Swap to left input.  Implements item (2).
  2235   if( n->req() == 3 &&          // two-input instruction
  2236       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2237       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2238       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2239       !n->in(2)->is_Con() ) {   // right use is not a constant
  2240     // Check for commutative opcode
  2241     switch( nop ) {
  2242     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2243     case Op_MaxI:  case Op_MinI:
  2244     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2245     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2246     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2247       // Move "last use" input to left by swapping inputs
  2248       n->swap_edges(1, 2);
  2249       break;
  2251     default:
  2252       break;
  2256 #ifdef ASSERT
  2257   if( n->is_Mem() ) {
  2258     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2259     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2260             // oop will be recorded in oop map if load crosses safepoint
  2261             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2262                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2263             "raw memory operations should have control edge");
  2265 #endif
  2266   // Count FPU ops and common calls, implements item (3)
  2267   switch( nop ) {
  2268   // Count all float operations that may use FPU
  2269   case Op_AddF:
  2270   case Op_SubF:
  2271   case Op_MulF:
  2272   case Op_DivF:
  2273   case Op_NegF:
  2274   case Op_ModF:
  2275   case Op_ConvI2F:
  2276   case Op_ConF:
  2277   case Op_CmpF:
  2278   case Op_CmpF3:
  2279   // case Op_ConvL2F: // longs are split into 32-bit halves
  2280     frc.inc_float_count();
  2281     break;
  2283   case Op_ConvF2D:
  2284   case Op_ConvD2F:
  2285     frc.inc_float_count();
  2286     frc.inc_double_count();
  2287     break;
  2289   // Count all double operations that may use FPU
  2290   case Op_AddD:
  2291   case Op_SubD:
  2292   case Op_MulD:
  2293   case Op_DivD:
  2294   case Op_NegD:
  2295   case Op_ModD:
  2296   case Op_ConvI2D:
  2297   case Op_ConvD2I:
  2298   // case Op_ConvL2D: // handled by leaf call
  2299   // case Op_ConvD2L: // handled by leaf call
  2300   case Op_ConD:
  2301   case Op_CmpD:
  2302   case Op_CmpD3:
  2303     frc.inc_double_count();
  2304     break;
  2305   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2306   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2307     n->subsume_by(n->in(1), this);
  2308     break;
  2309   case Op_CallStaticJava:
  2310   case Op_CallJava:
  2311   case Op_CallDynamicJava:
  2312     frc.inc_java_call_count(); // Count java call site;
  2313   case Op_CallRuntime:
  2314   case Op_CallLeaf:
  2315   case Op_CallLeafNoFP: {
  2316     assert( n->is_Call(), "" );
  2317     CallNode *call = n->as_Call();
  2318     // Count call sites where the FP mode bit would have to be flipped.
  2319     // Do not count uncommon runtime calls:
  2320     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2321     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2322     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2323       frc.inc_call_count();   // Count the call site
  2324     } else {                  // See if uncommon argument is shared
  2325       Node *n = call->in(TypeFunc::Parms);
  2326       int nop = n->Opcode();
  2327       // Clone shared simple arguments to uncommon calls, item (1).
  2328       if( n->outcnt() > 1 &&
  2329           !n->is_Proj() &&
  2330           nop != Op_CreateEx &&
  2331           nop != Op_CheckCastPP &&
  2332           nop != Op_DecodeN &&
  2333           nop != Op_DecodeNKlass &&
  2334           !n->is_Mem() ) {
  2335         Node *x = n->clone();
  2336         call->set_req( TypeFunc::Parms, x );
  2339     break;
  2342   case Op_StoreD:
  2343   case Op_LoadD:
  2344   case Op_LoadD_unaligned:
  2345     frc.inc_double_count();
  2346     goto handle_mem;
  2347   case Op_StoreF:
  2348   case Op_LoadF:
  2349     frc.inc_float_count();
  2350     goto handle_mem;
  2352   case Op_StoreCM:
  2354       // Convert OopStore dependence into precedence edge
  2355       Node* prec = n->in(MemNode::OopStore);
  2356       n->del_req(MemNode::OopStore);
  2357       n->add_prec(prec);
  2358       eliminate_redundant_card_marks(n);
  2361     // fall through
  2363   case Op_StoreB:
  2364   case Op_StoreC:
  2365   case Op_StorePConditional:
  2366   case Op_StoreI:
  2367   case Op_StoreL:
  2368   case Op_StoreIConditional:
  2369   case Op_StoreLConditional:
  2370   case Op_CompareAndSwapI:
  2371   case Op_CompareAndSwapL:
  2372   case Op_CompareAndSwapP:
  2373   case Op_CompareAndSwapN:
  2374   case Op_GetAndAddI:
  2375   case Op_GetAndAddL:
  2376   case Op_GetAndSetI:
  2377   case Op_GetAndSetL:
  2378   case Op_GetAndSetP:
  2379   case Op_GetAndSetN:
  2380   case Op_StoreP:
  2381   case Op_StoreN:
  2382   case Op_StoreNKlass:
  2383   case Op_LoadB:
  2384   case Op_LoadUB:
  2385   case Op_LoadUS:
  2386   case Op_LoadI:
  2387   case Op_LoadKlass:
  2388   case Op_LoadNKlass:
  2389   case Op_LoadL:
  2390   case Op_LoadL_unaligned:
  2391   case Op_LoadPLocked:
  2392   case Op_LoadP:
  2393   case Op_LoadN:
  2394   case Op_LoadRange:
  2395   case Op_LoadS: {
  2396   handle_mem:
  2397 #ifdef ASSERT
  2398     if( VerifyOptoOopOffsets ) {
  2399       assert( n->is_Mem(), "" );
  2400       MemNode *mem  = (MemNode*)n;
  2401       // Check to see if address types have grounded out somehow.
  2402       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2403       assert( !tp || oop_offset_is_sane(tp), "" );
  2405 #endif
  2406     break;
  2409   case Op_AddP: {               // Assert sane base pointers
  2410     Node *addp = n->in(AddPNode::Address);
  2411     assert( !addp->is_AddP() ||
  2412             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2413             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2414             "Base pointers must match" );
  2415 #ifdef _LP64
  2416     if ((UseCompressedOops || UseCompressedKlassPointers) &&
  2417         addp->Opcode() == Op_ConP &&
  2418         addp == n->in(AddPNode::Base) &&
  2419         n->in(AddPNode::Offset)->is_Con()) {
  2420       // Use addressing with narrow klass to load with offset on x86.
  2421       // On sparc loading 32-bits constant and decoding it have less
  2422       // instructions (4) then load 64-bits constant (7).
  2423       // Do this transformation here since IGVN will convert ConN back to ConP.
  2424       const Type* t = addp->bottom_type();
  2425       if (t->isa_oopptr() || t->isa_klassptr()) {
  2426         Node* nn = NULL;
  2428         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2430         // Look for existing ConN node of the same exact type.
  2431         Node* r  = root();
  2432         uint cnt = r->outcnt();
  2433         for (uint i = 0; i < cnt; i++) {
  2434           Node* m = r->raw_out(i);
  2435           if (m!= NULL && m->Opcode() == op &&
  2436               m->bottom_type()->make_ptr() == t) {
  2437             nn = m;
  2438             break;
  2441         if (nn != NULL) {
  2442           // Decode a narrow oop to match address
  2443           // [R12 + narrow_oop_reg<<3 + offset]
  2444           if (t->isa_oopptr()) {
  2445             nn = new (this) DecodeNNode(nn, t);
  2446           } else {
  2447             nn = new (this) DecodeNKlassNode(nn, t);
  2449           n->set_req(AddPNode::Base, nn);
  2450           n->set_req(AddPNode::Address, nn);
  2451           if (addp->outcnt() == 0) {
  2452             addp->disconnect_inputs(NULL, this);
  2457 #endif
  2458     break;
  2461 #ifdef _LP64
  2462   case Op_CastPP:
  2463     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2464       Node* in1 = n->in(1);
  2465       const Type* t = n->bottom_type();
  2466       Node* new_in1 = in1->clone();
  2467       new_in1->as_DecodeN()->set_type(t);
  2469       if (!Matcher::narrow_oop_use_complex_address()) {
  2470         //
  2471         // x86, ARM and friends can handle 2 adds in addressing mode
  2472         // and Matcher can fold a DecodeN node into address by using
  2473         // a narrow oop directly and do implicit NULL check in address:
  2474         //
  2475         // [R12 + narrow_oop_reg<<3 + offset]
  2476         // NullCheck narrow_oop_reg
  2477         //
  2478         // On other platforms (Sparc) we have to keep new DecodeN node and
  2479         // use it to do implicit NULL check in address:
  2480         //
  2481         // decode_not_null narrow_oop_reg, base_reg
  2482         // [base_reg + offset]
  2483         // NullCheck base_reg
  2484         //
  2485         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2486         // to keep the information to which NULL check the new DecodeN node
  2487         // corresponds to use it as value in implicit_null_check().
  2488         //
  2489         new_in1->set_req(0, n->in(0));
  2492       n->subsume_by(new_in1, this);
  2493       if (in1->outcnt() == 0) {
  2494         in1->disconnect_inputs(NULL, this);
  2497     break;
  2499   case Op_CmpP:
  2500     // Do this transformation here to preserve CmpPNode::sub() and
  2501     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2502     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2503       Node* in1 = n->in(1);
  2504       Node* in2 = n->in(2);
  2505       if (!in1->is_DecodeNarrowPtr()) {
  2506         in2 = in1;
  2507         in1 = n->in(2);
  2509       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2511       Node* new_in2 = NULL;
  2512       if (in2->is_DecodeNarrowPtr()) {
  2513         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2514         new_in2 = in2->in(1);
  2515       } else if (in2->Opcode() == Op_ConP) {
  2516         const Type* t = in2->bottom_type();
  2517         if (t == TypePtr::NULL_PTR) {
  2518           assert(in1->is_DecodeN(), "compare klass to null?");
  2519           // Don't convert CmpP null check into CmpN if compressed
  2520           // oops implicit null check is not generated.
  2521           // This will allow to generate normal oop implicit null check.
  2522           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2523             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2524           //
  2525           // This transformation together with CastPP transformation above
  2526           // will generated code for implicit NULL checks for compressed oops.
  2527           //
  2528           // The original code after Optimize()
  2529           //
  2530           //    LoadN memory, narrow_oop_reg
  2531           //    decode narrow_oop_reg, base_reg
  2532           //    CmpP base_reg, NULL
  2533           //    CastPP base_reg // NotNull
  2534           //    Load [base_reg + offset], val_reg
  2535           //
  2536           // after these transformations will be
  2537           //
  2538           //    LoadN memory, narrow_oop_reg
  2539           //    CmpN narrow_oop_reg, NULL
  2540           //    decode_not_null narrow_oop_reg, base_reg
  2541           //    Load [base_reg + offset], val_reg
  2542           //
  2543           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2544           // since narrow oops can be used in debug info now (see the code in
  2545           // final_graph_reshaping_walk()).
  2546           //
  2547           // At the end the code will be matched to
  2548           // on x86:
  2549           //
  2550           //    Load_narrow_oop memory, narrow_oop_reg
  2551           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2552           //    NullCheck narrow_oop_reg
  2553           //
  2554           // and on sparc:
  2555           //
  2556           //    Load_narrow_oop memory, narrow_oop_reg
  2557           //    decode_not_null narrow_oop_reg, base_reg
  2558           //    Load [base_reg + offset], val_reg
  2559           //    NullCheck base_reg
  2560           //
  2561         } else if (t->isa_oopptr()) {
  2562           new_in2 = ConNode::make(this, t->make_narrowoop());
  2563         } else if (t->isa_klassptr()) {
  2564           new_in2 = ConNode::make(this, t->make_narrowklass());
  2567       if (new_in2 != NULL) {
  2568         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2569         n->subsume_by(cmpN, this);
  2570         if (in1->outcnt() == 0) {
  2571           in1->disconnect_inputs(NULL, this);
  2573         if (in2->outcnt() == 0) {
  2574           in2->disconnect_inputs(NULL, this);
  2578     break;
  2580   case Op_DecodeN:
  2581   case Op_DecodeNKlass:
  2582     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2583     // DecodeN could be pinned when it can't be fold into
  2584     // an address expression, see the code for Op_CastPP above.
  2585     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2586     break;
  2588   case Op_EncodeP:
  2589   case Op_EncodePKlass: {
  2590     Node* in1 = n->in(1);
  2591     if (in1->is_DecodeNarrowPtr()) {
  2592       n->subsume_by(in1->in(1), this);
  2593     } else if (in1->Opcode() == Op_ConP) {
  2594       const Type* t = in1->bottom_type();
  2595       if (t == TypePtr::NULL_PTR) {
  2596         assert(t->isa_oopptr(), "null klass?");
  2597         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2598       } else if (t->isa_oopptr()) {
  2599         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2600       } else if (t->isa_klassptr()) {
  2601         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2604     if (in1->outcnt() == 0) {
  2605       in1->disconnect_inputs(NULL, this);
  2607     break;
  2610   case Op_Proj: {
  2611     if (OptimizeStringConcat) {
  2612       ProjNode* p = n->as_Proj();
  2613       if (p->_is_io_use) {
  2614         // Separate projections were used for the exception path which
  2615         // are normally removed by a late inline.  If it wasn't inlined
  2616         // then they will hang around and should just be replaced with
  2617         // the original one.
  2618         Node* proj = NULL;
  2619         // Replace with just one
  2620         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2621           Node *use = i.get();
  2622           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2623             proj = use;
  2624             break;
  2627         assert(proj != NULL, "must be found");
  2628         p->subsume_by(proj, this);
  2631     break;
  2634   case Op_Phi:
  2635     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2636       // The EncodeP optimization may create Phi with the same edges
  2637       // for all paths. It is not handled well by Register Allocator.
  2638       Node* unique_in = n->in(1);
  2639       assert(unique_in != NULL, "");
  2640       uint cnt = n->req();
  2641       for (uint i = 2; i < cnt; i++) {
  2642         Node* m = n->in(i);
  2643         assert(m != NULL, "");
  2644         if (unique_in != m)
  2645           unique_in = NULL;
  2647       if (unique_in != NULL) {
  2648         n->subsume_by(unique_in, this);
  2651     break;
  2653 #endif
  2655   case Op_ModI:
  2656     if (UseDivMod) {
  2657       // Check if a%b and a/b both exist
  2658       Node* d = n->find_similar(Op_DivI);
  2659       if (d) {
  2660         // Replace them with a fused divmod if supported
  2661         if (Matcher::has_match_rule(Op_DivModI)) {
  2662           DivModINode* divmod = DivModINode::make(this, n);
  2663           d->subsume_by(divmod->div_proj(), this);
  2664           n->subsume_by(divmod->mod_proj(), this);
  2665         } else {
  2666           // replace a%b with a-((a/b)*b)
  2667           Node* mult = new (this) MulINode(d, d->in(2));
  2668           Node* sub  = new (this) SubINode(d->in(1), mult);
  2669           n->subsume_by(sub, this);
  2673     break;
  2675   case Op_ModL:
  2676     if (UseDivMod) {
  2677       // Check if a%b and a/b both exist
  2678       Node* d = n->find_similar(Op_DivL);
  2679       if (d) {
  2680         // Replace them with a fused divmod if supported
  2681         if (Matcher::has_match_rule(Op_DivModL)) {
  2682           DivModLNode* divmod = DivModLNode::make(this, n);
  2683           d->subsume_by(divmod->div_proj(), this);
  2684           n->subsume_by(divmod->mod_proj(), this);
  2685         } else {
  2686           // replace a%b with a-((a/b)*b)
  2687           Node* mult = new (this) MulLNode(d, d->in(2));
  2688           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2689           n->subsume_by(sub, this);
  2693     break;
  2695   case Op_LoadVector:
  2696   case Op_StoreVector:
  2697     break;
  2699   case Op_PackB:
  2700   case Op_PackS:
  2701   case Op_PackI:
  2702   case Op_PackF:
  2703   case Op_PackL:
  2704   case Op_PackD:
  2705     if (n->req()-1 > 2) {
  2706       // Replace many operand PackNodes with a binary tree for matching
  2707       PackNode* p = (PackNode*) n;
  2708       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2709       n->subsume_by(btp, this);
  2711     break;
  2712   case Op_Loop:
  2713   case Op_CountedLoop:
  2714     if (n->as_Loop()->is_inner_loop()) {
  2715       frc.inc_inner_loop_count();
  2717     break;
  2718   case Op_LShiftI:
  2719   case Op_RShiftI:
  2720   case Op_URShiftI:
  2721   case Op_LShiftL:
  2722   case Op_RShiftL:
  2723   case Op_URShiftL:
  2724     if (Matcher::need_masked_shift_count) {
  2725       // The cpu's shift instructions don't restrict the count to the
  2726       // lower 5/6 bits. We need to do the masking ourselves.
  2727       Node* in2 = n->in(2);
  2728       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2729       const TypeInt* t = in2->find_int_type();
  2730       if (t != NULL && t->is_con()) {
  2731         juint shift = t->get_con();
  2732         if (shift > mask) { // Unsigned cmp
  2733           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2735       } else {
  2736         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2737           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2738           n->set_req(2, shift);
  2741       if (in2->outcnt() == 0) { // Remove dead node
  2742         in2->disconnect_inputs(NULL, this);
  2745     break;
  2746   default:
  2747     assert( !n->is_Call(), "" );
  2748     assert( !n->is_Mem(), "" );
  2749     break;
  2752   // Collect CFG split points
  2753   if (n->is_MultiBranch())
  2754     frc._tests.push(n);
  2757 //------------------------------final_graph_reshaping_walk---------------------
  2758 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2759 // requires that the walk visits a node's inputs before visiting the node.
  2760 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  2761   ResourceArea *area = Thread::current()->resource_area();
  2762   Unique_Node_List sfpt(area);
  2764   frc._visited.set(root->_idx); // first, mark node as visited
  2765   uint cnt = root->req();
  2766   Node *n = root;
  2767   uint  i = 0;
  2768   while (true) {
  2769     if (i < cnt) {
  2770       // Place all non-visited non-null inputs onto stack
  2771       Node* m = n->in(i);
  2772       ++i;
  2773       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  2774         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  2775           sfpt.push(m);
  2776         cnt = m->req();
  2777         nstack.push(n, i); // put on stack parent and next input's index
  2778         n = m;
  2779         i = 0;
  2781     } else {
  2782       // Now do post-visit work
  2783       final_graph_reshaping_impl( n, frc );
  2784       if (nstack.is_empty())
  2785         break;             // finished
  2786       n = nstack.node();   // Get node from stack
  2787       cnt = n->req();
  2788       i = nstack.index();
  2789       nstack.pop();        // Shift to the next node on stack
  2793   // Skip next transformation if compressed oops are not used.
  2794   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  2795       (!UseCompressedOops && !UseCompressedKlassPointers))
  2796     return;
  2798   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  2799   // It could be done for an uncommon traps or any safepoints/calls
  2800   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  2801   while (sfpt.size() > 0) {
  2802     n = sfpt.pop();
  2803     JVMState *jvms = n->as_SafePoint()->jvms();
  2804     assert(jvms != NULL, "sanity");
  2805     int start = jvms->debug_start();
  2806     int end   = n->req();
  2807     bool is_uncommon = (n->is_CallStaticJava() &&
  2808                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  2809     for (int j = start; j < end; j++) {
  2810       Node* in = n->in(j);
  2811       if (in->is_DecodeNarrowPtr()) {
  2812         bool safe_to_skip = true;
  2813         if (!is_uncommon ) {
  2814           // Is it safe to skip?
  2815           for (uint i = 0; i < in->outcnt(); i++) {
  2816             Node* u = in->raw_out(i);
  2817             if (!u->is_SafePoint() ||
  2818                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  2819               safe_to_skip = false;
  2823         if (safe_to_skip) {
  2824           n->set_req(j, in->in(1));
  2826         if (in->outcnt() == 0) {
  2827           in->disconnect_inputs(NULL, this);
  2834 //------------------------------final_graph_reshaping--------------------------
  2835 // Final Graph Reshaping.
  2836 //
  2837 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  2838 //     and not commoned up and forced early.  Must come after regular
  2839 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  2840 //     inputs to Loop Phis; these will be split by the allocator anyways.
  2841 //     Remove Opaque nodes.
  2842 // (2) Move last-uses by commutative operations to the left input to encourage
  2843 //     Intel update-in-place two-address operations and better register usage
  2844 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  2845 //     calls canonicalizing them back.
  2846 // (3) Count the number of double-precision FP ops, single-precision FP ops
  2847 //     and call sites.  On Intel, we can get correct rounding either by
  2848 //     forcing singles to memory (requires extra stores and loads after each
  2849 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  2850 //     clearing the mode bit around call sites).  The mode bit is only used
  2851 //     if the relative frequency of single FP ops to calls is low enough.
  2852 //     This is a key transform for SPEC mpeg_audio.
  2853 // (4) Detect infinite loops; blobs of code reachable from above but not
  2854 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  2855 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  2856 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  2857 //     Detection is by looking for IfNodes where only 1 projection is
  2858 //     reachable from below or CatchNodes missing some targets.
  2859 // (5) Assert for insane oop offsets in debug mode.
  2861 bool Compile::final_graph_reshaping() {
  2862   // an infinite loop may have been eliminated by the optimizer,
  2863   // in which case the graph will be empty.
  2864   if (root()->req() == 1) {
  2865     record_method_not_compilable("trivial infinite loop");
  2866     return true;
  2869   Final_Reshape_Counts frc;
  2871   // Visit everybody reachable!
  2872   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2873   Node_Stack nstack(unique() >> 1);
  2874   final_graph_reshaping_walk(nstack, root(), frc);
  2876   // Check for unreachable (from below) code (i.e., infinite loops).
  2877   for( uint i = 0; i < frc._tests.size(); i++ ) {
  2878     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  2879     // Get number of CFG targets.
  2880     // Note that PCTables include exception targets after calls.
  2881     uint required_outcnt = n->required_outcnt();
  2882     if (n->outcnt() != required_outcnt) {
  2883       // Check for a few special cases.  Rethrow Nodes never take the
  2884       // 'fall-thru' path, so expected kids is 1 less.
  2885       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  2886         if (n->in(0)->in(0)->is_Call()) {
  2887           CallNode *call = n->in(0)->in(0)->as_Call();
  2888           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  2889             required_outcnt--;      // Rethrow always has 1 less kid
  2890           } else if (call->req() > TypeFunc::Parms &&
  2891                      call->is_CallDynamicJava()) {
  2892             // Check for null receiver. In such case, the optimizer has
  2893             // detected that the virtual call will always result in a null
  2894             // pointer exception. The fall-through projection of this CatchNode
  2895             // will not be populated.
  2896             Node *arg0 = call->in(TypeFunc::Parms);
  2897             if (arg0->is_Type() &&
  2898                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  2899               required_outcnt--;
  2901           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  2902                      call->req() > TypeFunc::Parms+1 &&
  2903                      call->is_CallStaticJava()) {
  2904             // Check for negative array length. In such case, the optimizer has
  2905             // detected that the allocation attempt will always result in an
  2906             // exception. There is no fall-through projection of this CatchNode .
  2907             Node *arg1 = call->in(TypeFunc::Parms+1);
  2908             if (arg1->is_Type() &&
  2909                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  2910               required_outcnt--;
  2915       // Recheck with a better notion of 'required_outcnt'
  2916       if (n->outcnt() != required_outcnt) {
  2917         record_method_not_compilable("malformed control flow");
  2918         return true;            // Not all targets reachable!
  2921     // Check that I actually visited all kids.  Unreached kids
  2922     // must be infinite loops.
  2923     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  2924       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  2925         record_method_not_compilable("infinite loop");
  2926         return true;            // Found unvisited kid; must be unreach
  2930   // If original bytecodes contained a mixture of floats and doubles
  2931   // check if the optimizer has made it homogenous, item (3).
  2932   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  2933       frc.get_float_count() > 32 &&
  2934       frc.get_double_count() == 0 &&
  2935       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  2936     set_24_bit_selection_and_mode( false,  true );
  2939   set_java_calls(frc.get_java_call_count());
  2940   set_inner_loops(frc.get_inner_loop_count());
  2942   // No infinite loops, no reason to bail out.
  2943   return false;
  2946 //-----------------------------too_many_traps----------------------------------
  2947 // Report if there are too many traps at the current method and bci.
  2948 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  2949 bool Compile::too_many_traps(ciMethod* method,
  2950                              int bci,
  2951                              Deoptimization::DeoptReason reason) {
  2952   ciMethodData* md = method->method_data();
  2953   if (md->is_empty()) {
  2954     // Assume the trap has not occurred, or that it occurred only
  2955     // because of a transient condition during start-up in the interpreter.
  2956     return false;
  2958   if (md->has_trap_at(bci, reason) != 0) {
  2959     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  2960     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2961     // assume the worst.
  2962     if (log())
  2963       log()->elem("observe trap='%s' count='%d'",
  2964                   Deoptimization::trap_reason_name(reason),
  2965                   md->trap_count(reason));
  2966     return true;
  2967   } else {
  2968     // Ignore method/bci and see if there have been too many globally.
  2969     return too_many_traps(reason, md);
  2973 // Less-accurate variant which does not require a method and bci.
  2974 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  2975                              ciMethodData* logmd) {
  2976  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  2977     // Too many traps globally.
  2978     // Note that we use cumulative trap_count, not just md->trap_count.
  2979     if (log()) {
  2980       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  2981       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  2982                   Deoptimization::trap_reason_name(reason),
  2983                   mcount, trap_count(reason));
  2985     return true;
  2986   } else {
  2987     // The coast is clear.
  2988     return false;
  2992 //--------------------------too_many_recompiles--------------------------------
  2993 // Report if there are too many recompiles at the current method and bci.
  2994 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  2995 // Is not eager to return true, since this will cause the compiler to use
  2996 // Action_none for a trap point, to avoid too many recompilations.
  2997 bool Compile::too_many_recompiles(ciMethod* method,
  2998                                   int bci,
  2999                                   Deoptimization::DeoptReason reason) {
  3000   ciMethodData* md = method->method_data();
  3001   if (md->is_empty()) {
  3002     // Assume the trap has not occurred, or that it occurred only
  3003     // because of a transient condition during start-up in the interpreter.
  3004     return false;
  3006   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3007   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3008   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3009   Deoptimization::DeoptReason per_bc_reason
  3010     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3011   if ((per_bc_reason == Deoptimization::Reason_none
  3012        || md->has_trap_at(bci, reason) != 0)
  3013       // The trap frequency measure we care about is the recompile count:
  3014       && md->trap_recompiled_at(bci)
  3015       && md->overflow_recompile_count() >= bc_cutoff) {
  3016     // Do not emit a trap here if it has already caused recompilations.
  3017     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3018     // assume the worst.
  3019     if (log())
  3020       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3021                   Deoptimization::trap_reason_name(reason),
  3022                   md->trap_count(reason),
  3023                   md->overflow_recompile_count());
  3024     return true;
  3025   } else if (trap_count(reason) != 0
  3026              && decompile_count() >= m_cutoff) {
  3027     // Too many recompiles globally, and we have seen this sort of trap.
  3028     // Use cumulative decompile_count, not just md->decompile_count.
  3029     if (log())
  3030       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3031                   Deoptimization::trap_reason_name(reason),
  3032                   md->trap_count(reason), trap_count(reason),
  3033                   md->decompile_count(), decompile_count());
  3034     return true;
  3035   } else {
  3036     // The coast is clear.
  3037     return false;
  3042 #ifndef PRODUCT
  3043 //------------------------------verify_graph_edges---------------------------
  3044 // Walk the Graph and verify that there is a one-to-one correspondence
  3045 // between Use-Def edges and Def-Use edges in the graph.
  3046 void Compile::verify_graph_edges(bool no_dead_code) {
  3047   if (VerifyGraphEdges) {
  3048     ResourceArea *area = Thread::current()->resource_area();
  3049     Unique_Node_List visited(area);
  3050     // Call recursive graph walk to check edges
  3051     _root->verify_edges(visited);
  3052     if (no_dead_code) {
  3053       // Now make sure that no visited node is used by an unvisited node.
  3054       bool dead_nodes = 0;
  3055       Unique_Node_List checked(area);
  3056       while (visited.size() > 0) {
  3057         Node* n = visited.pop();
  3058         checked.push(n);
  3059         for (uint i = 0; i < n->outcnt(); i++) {
  3060           Node* use = n->raw_out(i);
  3061           if (checked.member(use))  continue;  // already checked
  3062           if (visited.member(use))  continue;  // already in the graph
  3063           if (use->is_Con())        continue;  // a dead ConNode is OK
  3064           // At this point, we have found a dead node which is DU-reachable.
  3065           if (dead_nodes++ == 0)
  3066             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3067           use->dump(2);
  3068           tty->print_cr("---");
  3069           checked.push(use);  // No repeats; pretend it is now checked.
  3072       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3076 #endif
  3078 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3079 // This is required because there is not quite a 1-1 relation between the
  3080 // ciEnv and its compilation task and the Compile object.  Note that one
  3081 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3082 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3083 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3084 // by the logic in C2Compiler.
  3085 void Compile::record_failure(const char* reason) {
  3086   if (log() != NULL) {
  3087     log()->elem("failure reason='%s' phase='compile'", reason);
  3089   if (_failure_reason == NULL) {
  3090     // Record the first failure reason.
  3091     _failure_reason = reason;
  3093   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3094     C->print_method(_failure_reason);
  3096   _root = NULL;  // flush the graph, too
  3099 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3100   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3101     _phase_name(name), _dolog(dolog)
  3103   if (dolog) {
  3104     C = Compile::current();
  3105     _log = C->log();
  3106   } else {
  3107     C = NULL;
  3108     _log = NULL;
  3110   if (_log != NULL) {
  3111     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3112     _log->stamp();
  3113     _log->end_head();
  3117 Compile::TracePhase::~TracePhase() {
  3119   C = Compile::current();
  3120   if (_dolog) {
  3121     _log = C->log();
  3122   } else {
  3123     _log = NULL;
  3126 #ifdef ASSERT
  3127   if (PrintIdealNodeCount) {
  3128     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3129                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3132   if (VerifyIdealNodeCount) {
  3133     Compile::current()->print_missing_nodes();
  3135 #endif
  3137   if (_log != NULL) {
  3138     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3142 //=============================================================================
  3143 // Two Constant's are equal when the type and the value are equal.
  3144 bool Compile::Constant::operator==(const Constant& other) {
  3145   if (type()          != other.type()         )  return false;
  3146   if (can_be_reused() != other.can_be_reused())  return false;
  3147   // For floating point values we compare the bit pattern.
  3148   switch (type()) {
  3149   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3150   case T_LONG:
  3151   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3152   case T_OBJECT:
  3153   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3154   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3155   case T_METADATA: return (_v._metadata == other._v._metadata);
  3156   default: ShouldNotReachHere();
  3158   return false;
  3161 static int type_to_size_in_bytes(BasicType t) {
  3162   switch (t) {
  3163   case T_LONG:    return sizeof(jlong  );
  3164   case T_FLOAT:   return sizeof(jfloat );
  3165   case T_DOUBLE:  return sizeof(jdouble);
  3166   case T_METADATA: return sizeof(Metadata*);
  3167     // We use T_VOID as marker for jump-table entries (labels) which
  3168     // need an internal word relocation.
  3169   case T_VOID:
  3170   case T_ADDRESS:
  3171   case T_OBJECT:  return sizeof(jobject);
  3174   ShouldNotReachHere();
  3175   return -1;
  3178 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3179   // sort descending
  3180   if (a->freq() > b->freq())  return -1;
  3181   if (a->freq() < b->freq())  return  1;
  3182   return 0;
  3185 void Compile::ConstantTable::calculate_offsets_and_size() {
  3186   // First, sort the array by frequencies.
  3187   _constants.sort(qsort_comparator);
  3189 #ifdef ASSERT
  3190   // Make sure all jump-table entries were sorted to the end of the
  3191   // array (they have a negative frequency).
  3192   bool found_void = false;
  3193   for (int i = 0; i < _constants.length(); i++) {
  3194     Constant con = _constants.at(i);
  3195     if (con.type() == T_VOID)
  3196       found_void = true;  // jump-tables
  3197     else
  3198       assert(!found_void, "wrong sorting");
  3200 #endif
  3202   int offset = 0;
  3203   for (int i = 0; i < _constants.length(); i++) {
  3204     Constant* con = _constants.adr_at(i);
  3206     // Align offset for type.
  3207     int typesize = type_to_size_in_bytes(con->type());
  3208     offset = align_size_up(offset, typesize);
  3209     con->set_offset(offset);   // set constant's offset
  3211     if (con->type() == T_VOID) {
  3212       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3213       offset = offset + typesize * n->outcnt();  // expand jump-table
  3214     } else {
  3215       offset = offset + typesize;
  3219   // Align size up to the next section start (which is insts; see
  3220   // CodeBuffer::align_at_start).
  3221   assert(_size == -1, "already set?");
  3222   _size = align_size_up(offset, CodeEntryAlignment);
  3225 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3226   MacroAssembler _masm(&cb);
  3227   for (int i = 0; i < _constants.length(); i++) {
  3228     Constant con = _constants.at(i);
  3229     address constant_addr;
  3230     switch (con.type()) {
  3231     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3232     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3233     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3234     case T_OBJECT: {
  3235       jobject obj = con.get_jobject();
  3236       int oop_index = _masm.oop_recorder()->find_index(obj);
  3237       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3238       break;
  3240     case T_ADDRESS: {
  3241       address addr = (address) con.get_jobject();
  3242       constant_addr = _masm.address_constant(addr);
  3243       break;
  3245     // We use T_VOID as marker for jump-table entries (labels) which
  3246     // need an internal word relocation.
  3247     case T_VOID: {
  3248       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3249       // Fill the jump-table with a dummy word.  The real value is
  3250       // filled in later in fill_jump_table.
  3251       address dummy = (address) n;
  3252       constant_addr = _masm.address_constant(dummy);
  3253       // Expand jump-table
  3254       for (uint i = 1; i < n->outcnt(); i++) {
  3255         address temp_addr = _masm.address_constant(dummy + i);
  3256         assert(temp_addr, "consts section too small");
  3258       break;
  3260     case T_METADATA: {
  3261       Metadata* obj = con.get_metadata();
  3262       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3263       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3264       break;
  3266     default: ShouldNotReachHere();
  3268     assert(constant_addr, "consts section too small");
  3269     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3273 int Compile::ConstantTable::find_offset(Constant& con) const {
  3274   int idx = _constants.find(con);
  3275   assert(idx != -1, "constant must be in constant table");
  3276   int offset = _constants.at(idx).offset();
  3277   assert(offset != -1, "constant table not emitted yet?");
  3278   return offset;
  3281 void Compile::ConstantTable::add(Constant& con) {
  3282   if (con.can_be_reused()) {
  3283     int idx = _constants.find(con);
  3284     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3285       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3286       return;
  3289   (void) _constants.append(con);
  3292 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3293   Block* b = Compile::current()->cfg()->_bbs[n->_idx];
  3294   Constant con(type, value, b->_freq);
  3295   add(con);
  3296   return con;
  3299 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3300   Constant con(metadata);
  3301   add(con);
  3302   return con;
  3305 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3306   jvalue value;
  3307   BasicType type = oper->type()->basic_type();
  3308   switch (type) {
  3309   case T_LONG:    value.j = oper->constantL(); break;
  3310   case T_FLOAT:   value.f = oper->constantF(); break;
  3311   case T_DOUBLE:  value.d = oper->constantD(); break;
  3312   case T_OBJECT:
  3313   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3314   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3315   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3317   return add(n, type, value);
  3320 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3321   jvalue value;
  3322   // We can use the node pointer here to identify the right jump-table
  3323   // as this method is called from Compile::Fill_buffer right before
  3324   // the MachNodes are emitted and the jump-table is filled (means the
  3325   // MachNode pointers do not change anymore).
  3326   value.l = (jobject) n;
  3327   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3328   add(con);
  3329   return con;
  3332 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3333   // If called from Compile::scratch_emit_size do nothing.
  3334   if (Compile::current()->in_scratch_emit_size())  return;
  3336   assert(labels.is_nonempty(), "must be");
  3337   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3339   // Since MachConstantNode::constant_offset() also contains
  3340   // table_base_offset() we need to subtract the table_base_offset()
  3341   // to get the plain offset into the constant table.
  3342   int offset = n->constant_offset() - table_base_offset();
  3344   MacroAssembler _masm(&cb);
  3345   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3347   for (uint i = 0; i < n->outcnt(); i++) {
  3348     address* constant_addr = &jump_table_base[i];
  3349     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3350     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3351     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);

mercurial