src/share/vm/opto/block.cpp

Sun, 26 Jul 2009 12:59:41 -0700

author
kvn
date
Sun, 26 Jul 2009 12:59:41 -0700
changeset 1328
dd0a4e1e219b
parent 1268
acba6af809c8
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6851386: assert(b->find_node(def) < j,"uses must follow definitions")
Summary: Add additional check for a tight loop.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_block.cpp.incl"
    31 //-----------------------------------------------------------------------------
    32 void Block_Array::grow( uint i ) {
    33   assert(i >= Max(), "must be an overflow");
    34   debug_only(_limit = i+1);
    35   if( i < _size )  return;
    36   if( !_size ) {
    37     _size = 1;
    38     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    39     _blocks[0] = NULL;
    40   }
    41   uint old = _size;
    42   while( i >= _size ) _size <<= 1;      // Double to fit
    43   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    44   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    45 }
    47 //=============================================================================
    48 void Block_List::remove(uint i) {
    49   assert(i < _cnt, "index out of bounds");
    50   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    51   pop(); // shrink list by one block
    52 }
    54 void Block_List::insert(uint i, Block *b) {
    55   push(b); // grow list by one block
    56   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    57   _blocks[i] = b;
    58 }
    60 #ifndef PRODUCT
    61 void Block_List::print() {
    62   for (uint i=0; i < size(); i++) {
    63     tty->print("B%d ", _blocks[i]->_pre_order);
    64   }
    65   tty->print("size = %d\n", size());
    66 }
    67 #endif
    69 //=============================================================================
    71 uint Block::code_alignment() {
    72   // Check for Root block
    73   if( _pre_order == 0 ) return CodeEntryAlignment;
    74   // Check for Start block
    75   if( _pre_order == 1 ) return InteriorEntryAlignment;
    76   // Check for loop alignment
    77   if (has_loop_alignment())  return loop_alignment();
    79   return 1;                     // no particular alignment
    80 }
    82 uint Block::compute_loop_alignment() {
    83   Node *h = head();
    84   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
    85     // Pre- and post-loops have low trip count so do not bother with
    86     // NOPs for align loop head.  The constants are hidden from tuning
    87     // but only because my "divide by 4" heuristic surely gets nearly
    88     // all possible gain (a "do not align at all" heuristic has a
    89     // chance of getting a really tiny gain).
    90     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
    91                                 h->as_CountedLoop()->is_post_loop()) )
    92       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
    93     // Loops with low backedge frequency should not be aligned.
    94     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
    95     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
    96       return 1;             // Loop does not loop, more often than not!
    97     }
    98     return OptoLoopAlignment; // Otherwise align loop head
    99   }
   101   return 1;                     // no particular alignment
   102 }
   104 //-----------------------------------------------------------------------------
   105 // Compute the size of first 'inst_cnt' instructions in this block.
   106 // Return the number of instructions left to compute if the block has
   107 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
   108 // exceeds OptoLoopAlignment.
   109 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
   110                                     PhaseRegAlloc* ra) {
   111   uint last_inst = _nodes.size();
   112   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
   113     uint inst_size = _nodes[j]->size(ra);
   114     if( inst_size > 0 ) {
   115       inst_cnt--;
   116       uint sz = sum_size + inst_size;
   117       if( sz <= (uint)OptoLoopAlignment ) {
   118         // Compute size of instructions which fit into fetch buffer only
   119         // since all inst_cnt instructions will not fit even if we align them.
   120         sum_size = sz;
   121       } else {
   122         return 0;
   123       }
   124     }
   125   }
   126   return inst_cnt;
   127 }
   129 //-----------------------------------------------------------------------------
   130 uint Block::find_node( const Node *n ) const {
   131   for( uint i = 0; i < _nodes.size(); i++ ) {
   132     if( _nodes[i] == n )
   133       return i;
   134   }
   135   ShouldNotReachHere();
   136   return 0;
   137 }
   139 // Find and remove n from block list
   140 void Block::find_remove( const Node *n ) {
   141   _nodes.remove(find_node(n));
   142 }
   144 //------------------------------is_Empty---------------------------------------
   145 // Return empty status of a block.  Empty blocks contain only the head, other
   146 // ideal nodes, and an optional trailing goto.
   147 int Block::is_Empty() const {
   149   // Root or start block is not considered empty
   150   if (head()->is_Root() || head()->is_Start()) {
   151     return not_empty;
   152   }
   154   int success_result = completely_empty;
   155   int end_idx = _nodes.size()-1;
   157   // Check for ending goto
   158   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
   159     success_result = empty_with_goto;
   160     end_idx--;
   161   }
   163   // Unreachable blocks are considered empty
   164   if (num_preds() <= 1) {
   165     return success_result;
   166   }
   168   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   169   // turn directly into code, because only MachNodes have non-trivial
   170   // emit() functions.
   171   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
   172     end_idx--;
   173   }
   175   // No room for any interesting instructions?
   176   if (end_idx == 0) {
   177     return success_result;
   178   }
   180   return not_empty;
   181 }
   183 //------------------------------has_uncommon_code------------------------------
   184 // Return true if the block's code implies that it is likely to be
   185 // executed infrequently.  Check to see if the block ends in a Halt or
   186 // a low probability call.
   187 bool Block::has_uncommon_code() const {
   188   Node* en = end();
   190   if (en->is_Goto())
   191     en = en->in(0);
   192   if (en->is_Catch())
   193     en = en->in(0);
   194   if (en->is_Proj() && en->in(0)->is_MachCall()) {
   195     MachCallNode* call = en->in(0)->as_MachCall();
   196     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   197       // This is true for slow-path stubs like new_{instance,array},
   198       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   199       // The magic number corresponds to the probability of an uncommon_trap,
   200       // even though it is a count not a probability.
   201       return true;
   202     }
   203   }
   205   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   206   return op == Op_Halt;
   207 }
   209 //------------------------------is_uncommon------------------------------------
   210 // True if block is low enough frequency or guarded by a test which
   211 // mostly does not go here.
   212 bool Block::is_uncommon( Block_Array &bbs ) const {
   213   // Initial blocks must never be moved, so are never uncommon.
   214   if (head()->is_Root() || head()->is_Start())  return false;
   216   // Check for way-low freq
   217   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   219   // Look for code shape indicating uncommon_trap or slow path
   220   if (has_uncommon_code()) return true;
   222   const float epsilon = 0.05f;
   223   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   224   uint uncommon_preds = 0;
   225   uint freq_preds = 0;
   226   uint uncommon_for_freq_preds = 0;
   228   for( uint i=1; i<num_preds(); i++ ) {
   229     Block* guard = bbs[pred(i)->_idx];
   230     // Check to see if this block follows its guard 1 time out of 10000
   231     // or less.
   232     //
   233     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   234     // we intend to be "uncommon", such as slow-path TLE allocation,
   235     // predicted call failure, and uncommon trap triggers.
   236     //
   237     // Use an epsilon value of 5% to allow for variability in frequency
   238     // predictions and floating point calculations. The net effect is
   239     // that guard_factor is set to 9500.
   240     //
   241     // Ignore low-frequency blocks.
   242     // The next check is (guard->_freq < 1.e-5 * 9500.).
   243     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   244       uncommon_preds++;
   245     } else {
   246       freq_preds++;
   247       if( _freq < guard->_freq * guard_factor ) {
   248         uncommon_for_freq_preds++;
   249       }
   250     }
   251   }
   252   if( num_preds() > 1 &&
   253       // The block is uncommon if all preds are uncommon or
   254       (uncommon_preds == (num_preds()-1) ||
   255       // it is uncommon for all frequent preds.
   256        uncommon_for_freq_preds == freq_preds) ) {
   257     return true;
   258   }
   259   return false;
   260 }
   262 //------------------------------dump-------------------------------------------
   263 #ifndef PRODUCT
   264 void Block::dump_bidx(const Block* orig) const {
   265   if (_pre_order) tty->print("B%d",_pre_order);
   266   else tty->print("N%d", head()->_idx);
   268   if (Verbose && orig != this) {
   269     // Dump the original block's idx
   270     tty->print(" (");
   271     orig->dump_bidx(orig);
   272     tty->print(")");
   273   }
   274 }
   276 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
   277   if (is_connector()) {
   278     for (uint i=1; i<num_preds(); i++) {
   279       Block *p = ((*bbs)[pred(i)->_idx]);
   280       p->dump_pred(bbs, orig);
   281     }
   282   } else {
   283     dump_bidx(orig);
   284     tty->print(" ");
   285   }
   286 }
   288 void Block::dump_head( const Block_Array *bbs ) const {
   289   // Print the basic block
   290   dump_bidx(this);
   291   tty->print(": #\t");
   293   // Print the incoming CFG edges and the outgoing CFG edges
   294   for( uint i=0; i<_num_succs; i++ ) {
   295     non_connector_successor(i)->dump_bidx(_succs[i]);
   296     tty->print(" ");
   297   }
   298   tty->print("<- ");
   299   if( head()->is_block_start() ) {
   300     for (uint i=1; i<num_preds(); i++) {
   301       Node *s = pred(i);
   302       if (bbs) {
   303         Block *p = (*bbs)[s->_idx];
   304         p->dump_pred(bbs, p);
   305       } else {
   306         while (!s->is_block_start())
   307           s = s->in(0);
   308         tty->print("N%d ", s->_idx );
   309       }
   310     }
   311   } else
   312     tty->print("BLOCK HEAD IS JUNK  ");
   314   // Print loop, if any
   315   const Block *bhead = this;    // Head of self-loop
   316   Node *bh = bhead->head();
   317   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
   318     LoopNode *loop = bh->as_Loop();
   319     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
   320     while (bx->is_connector()) {
   321       bx = (*bbs)[bx->pred(1)->_idx];
   322     }
   323     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   324     // Dump any loop-specific bits, especially for CountedLoops.
   325     loop->dump_spec(tty);
   326   } else if (has_loop_alignment()) {
   327     tty->print(" top-of-loop");
   328   }
   329   tty->print(" Freq: %g",_freq);
   330   if( Verbose || WizardMode ) {
   331     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   332     tty->print(" RegPressure: %d",_reg_pressure);
   333     tty->print(" IHRP Index: %d",_ihrp_index);
   334     tty->print(" FRegPressure: %d",_freg_pressure);
   335     tty->print(" FHRP Index: %d",_fhrp_index);
   336   }
   337   tty->print_cr("");
   338 }
   340 void Block::dump() const { dump(0); }
   342 void Block::dump( const Block_Array *bbs ) const {
   343   dump_head(bbs);
   344   uint cnt = _nodes.size();
   345   for( uint i=0; i<cnt; i++ )
   346     _nodes[i]->dump();
   347   tty->print("\n");
   348 }
   349 #endif
   351 //=============================================================================
   352 //------------------------------PhaseCFG---------------------------------------
   353 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
   354   Phase(CFG),
   355   _bbs(a),
   356   _root(r)
   357 #ifndef PRODUCT
   358   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   359 #endif
   360 #ifdef ASSERT
   361   , _raw_oops(a)
   362 #endif
   363 {
   364   ResourceMark rm;
   365   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   366   // then Match it into a machine-specific Node.  Then clone the machine
   367   // Node on demand.
   368   Node *x = new (C, 1) GotoNode(NULL);
   369   x->init_req(0, x);
   370   _goto = m.match_tree(x);
   371   assert(_goto != NULL, "");
   372   _goto->set_req(0,_goto);
   374   // Build the CFG in Reverse Post Order
   375   _num_blocks = build_cfg();
   376   _broot = _bbs[_root->_idx];
   377 }
   379 //------------------------------build_cfg--------------------------------------
   380 // Build a proper looking CFG.  Make every block begin with either a StartNode
   381 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   382 // The RootNode both starts and ends it's own block.  Do this with a recursive
   383 // backwards walk over the control edges.
   384 uint PhaseCFG::build_cfg() {
   385   Arena *a = Thread::current()->resource_area();
   386   VectorSet visited(a);
   388   // Allocate stack with enough space to avoid frequent realloc
   389   Node_Stack nstack(a, C->unique() >> 1);
   390   nstack.push(_root, 0);
   391   uint sum = 0;                 // Counter for blocks
   393   while (nstack.is_nonempty()) {
   394     // node and in's index from stack's top
   395     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   396     // only nodes which point to the start of basic block (see below).
   397     Node *np = nstack.node();
   398     // idx > 0, except for the first node (_root) pushed on stack
   399     // at the beginning when idx == 0.
   400     // We will use the condition (idx == 0) later to end the build.
   401     uint idx = nstack.index();
   402     Node *proj = np->in(idx);
   403     const Node *x = proj->is_block_proj();
   404     // Does the block end with a proper block-ending Node?  One of Return,
   405     // If or Goto? (This check should be done for visited nodes also).
   406     if (x == NULL) {                    // Does not end right...
   407       Node *g = _goto->clone(); // Force it to end in a Goto
   408       g->set_req(0, proj);
   409       np->set_req(idx, g);
   410       x = proj = g;
   411     }
   412     if (!visited.test_set(x->_idx)) { // Visit this block once
   413       // Skip any control-pinned middle'in stuff
   414       Node *p = proj;
   415       do {
   416         proj = p;                   // Update pointer to last Control
   417         p = p->in(0);               // Move control forward
   418       } while( !p->is_block_proj() &&
   419                !p->is_block_start() );
   420       // Make the block begin with one of Region or StartNode.
   421       if( !p->is_block_start() ) {
   422         RegionNode *r = new (C, 2) RegionNode( 2 );
   423         r->init_req(1, p);         // Insert RegionNode in the way
   424         proj->set_req(0, r);        // Insert RegionNode in the way
   425         p = r;
   426       }
   427       // 'p' now points to the start of this basic block
   429       // Put self in array of basic blocks
   430       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
   431       _bbs.map(p->_idx,bb);
   432       _bbs.map(x->_idx,bb);
   433       if( x != p )                  // Only for root is x == p
   434         bb->_nodes.push((Node*)x);
   436       // Now handle predecessors
   437       ++sum;                        // Count 1 for self block
   438       uint cnt = bb->num_preds();
   439       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   440         Node *prevproj = p->in(i);  // Get prior input
   441         assert( !prevproj->is_Con(), "dead input not removed" );
   442         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   443         // i.e., it splits at the source (via an IF or SWITCH) and merges
   444         // at the destination (via a many-input Region).
   445         // This breaks critical edges.  The RegionNode to start the block
   446         // will be added when <p,i> is pulled off the node stack
   447         if ( cnt > 2 ) {             // Merging many things?
   448           assert( prevproj== bb->pred(i),"");
   449           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   450             // Force a block on the control-dependent edge
   451             Node *g = _goto->clone();       // Force it to end in a Goto
   452             g->set_req(0,prevproj);
   453             p->set_req(i,g);
   454           }
   455         }
   456         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   457       }
   458     } else { // Post-processing visited nodes
   459       nstack.pop();                 // remove node from stack
   460       // Check if it the fist node pushed on stack at the beginning.
   461       if (idx == 0) break;          // end of the build
   462       // Find predecessor basic block
   463       Block *pb = _bbs[x->_idx];
   464       // Insert into nodes array, if not already there
   465       if( !_bbs.lookup(proj->_idx) ) {
   466         assert( x != proj, "" );
   467         // Map basic block of projection
   468         _bbs.map(proj->_idx,pb);
   469         pb->_nodes.push(proj);
   470       }
   471       // Insert self as a child of my predecessor block
   472       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
   473       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
   474               "too many control users, not a CFG?" );
   475     }
   476   }
   477   // Return number of basic blocks for all children and self
   478   return sum;
   479 }
   481 //------------------------------insert_goto_at---------------------------------
   482 // Inserts a goto & corresponding basic block between
   483 // block[block_no] and its succ_no'th successor block
   484 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   485   // get block with block_no
   486   assert(block_no < _num_blocks, "illegal block number");
   487   Block* in  = _blocks[block_no];
   488   // get successor block succ_no
   489   assert(succ_no < in->_num_succs, "illegal successor number");
   490   Block* out = in->_succs[succ_no];
   491   // Compute frequency of the new block. Do this before inserting
   492   // new block in case succ_prob() needs to infer the probability from
   493   // surrounding blocks.
   494   float freq = in->_freq * in->succ_prob(succ_no);
   495   // get ProjNode corresponding to the succ_no'th successor of the in block
   496   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
   497   // create region for basic block
   498   RegionNode* region = new (C, 2) RegionNode(2);
   499   region->init_req(1, proj);
   500   // setup corresponding basic block
   501   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
   502   _bbs.map(region->_idx, block);
   503   C->regalloc()->set_bad(region->_idx);
   504   // add a goto node
   505   Node* gto = _goto->clone(); // get a new goto node
   506   gto->set_req(0, region);
   507   // add it to the basic block
   508   block->_nodes.push(gto);
   509   _bbs.map(gto->_idx, block);
   510   C->regalloc()->set_bad(gto->_idx);
   511   // hook up successor block
   512   block->_succs.map(block->_num_succs++, out);
   513   // remap successor's predecessors if necessary
   514   for (uint i = 1; i < out->num_preds(); i++) {
   515     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   516   }
   517   // remap predecessor's successor to new block
   518   in->_succs.map(succ_no, block);
   519   // Set the frequency of the new block
   520   block->_freq = freq;
   521   // add new basic block to basic block list
   522   _blocks.insert(block_no + 1, block);
   523   _num_blocks++;
   524 }
   526 //------------------------------no_flip_branch---------------------------------
   527 // Does this block end in a multiway branch that cannot have the default case
   528 // flipped for another case?
   529 static bool no_flip_branch( Block *b ) {
   530   int branch_idx = b->_nodes.size() - b->_num_succs-1;
   531   if( branch_idx < 1 ) return false;
   532   Node *bra = b->_nodes[branch_idx];
   533   if( bra->is_Catch() )
   534     return true;
   535   if( bra->is_Mach() ) {
   536     if( bra->is_MachNullCheck() )
   537       return true;
   538     int iop = bra->as_Mach()->ideal_Opcode();
   539     if( iop == Op_FastLock || iop == Op_FastUnlock )
   540       return true;
   541   }
   542   return false;
   543 }
   545 //------------------------------convert_NeverBranch_to_Goto--------------------
   546 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   547 // true target.  NeverBranch are treated as a conditional branch that always
   548 // goes the same direction for most of the optimizer and are used to give a
   549 // fake exit path to infinite loops.  At this late stage they need to turn
   550 // into Goto's so that when you enter the infinite loop you indeed hang.
   551 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   552   // Find true target
   553   int end_idx = b->end_idx();
   554   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
   555   Block *succ = b->_succs[idx];
   556   Node* gto = _goto->clone(); // get a new goto node
   557   gto->set_req(0, b->head());
   558   Node *bp = b->_nodes[end_idx];
   559   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
   560   _bbs.map(gto->_idx, b);
   561   C->regalloc()->set_bad(gto->_idx);
   562   b->_nodes.pop();              // Yank projections
   563   b->_nodes.pop();              // Yank projections
   564   b->_succs.map(0,succ);        // Map only successor
   565   b->_num_succs = 1;
   566   // remap successor's predecessors if necessary
   567   uint j;
   568   for( j = 1; j < succ->num_preds(); j++)
   569     if( succ->pred(j)->in(0) == bp )
   570       succ->head()->set_req(j, gto);
   571   // Kill alternate exit path
   572   Block *dead = b->_succs[1-idx];
   573   for( j = 1; j < dead->num_preds(); j++)
   574     if( dead->pred(j)->in(0) == bp )
   575       break;
   576   // Scan through block, yanking dead path from
   577   // all regions and phis.
   578   dead->head()->del_req(j);
   579   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
   580     dead->_nodes[k]->del_req(j);
   581 }
   583 //------------------------------move_to_next-----------------------------------
   584 // Helper function to move block bx to the slot following b_index. Return
   585 // true if the move is successful, otherwise false
   586 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
   587   if (bx == NULL) return false;
   589   // Return false if bx is already scheduled.
   590   uint bx_index = bx->_pre_order;
   591   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
   592     return false;
   593   }
   595   // Find the current index of block bx on the block list
   596   bx_index = b_index + 1;
   597   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
   598   assert(_blocks[bx_index] == bx, "block not found");
   600   // If the previous block conditionally falls into bx, return false,
   601   // because moving bx will create an extra jump.
   602   for(uint k = 1; k < bx->num_preds(); k++ ) {
   603     Block* pred = _bbs[bx->pred(k)->_idx];
   604     if (pred == _blocks[bx_index-1]) {
   605       if (pred->_num_succs != 1) {
   606         return false;
   607       }
   608     }
   609   }
   611   // Reinsert bx just past block 'b'
   612   _blocks.remove(bx_index);
   613   _blocks.insert(b_index + 1, bx);
   614   return true;
   615 }
   617 //------------------------------move_to_end------------------------------------
   618 // Move empty and uncommon blocks to the end.
   619 void PhaseCFG::move_to_end(Block *b, uint i) {
   620   int e = b->is_Empty();
   621   if (e != Block::not_empty) {
   622     if (e == Block::empty_with_goto) {
   623       // Remove the goto, but leave the block.
   624       b->_nodes.pop();
   625     }
   626     // Mark this block as a connector block, which will cause it to be
   627     // ignored in certain functions such as non_connector_successor().
   628     b->set_connector();
   629   }
   630   // Move the empty block to the end, and don't recheck.
   631   _blocks.remove(i);
   632   _blocks.push(b);
   633 }
   635 //---------------------------set_loop_alignment--------------------------------
   636 // Set loop alignment for every block
   637 void PhaseCFG::set_loop_alignment() {
   638   uint last = _num_blocks;
   639   assert( _blocks[0] == _broot, "" );
   641   for (uint i = 1; i < last; i++ ) {
   642     Block *b = _blocks[i];
   643     if (b->head()->is_Loop()) {
   644       b->set_loop_alignment(b);
   645     }
   646   }
   647 }
   649 //-----------------------------remove_empty------------------------------------
   650 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
   651 // to the end.
   652 void PhaseCFG::remove_empty() {
   653   // Move uncommon blocks to the end
   654   uint last = _num_blocks;
   655   assert( _blocks[0] == _broot, "" );
   657   for (uint i = 1; i < last; i++) {
   658     Block *b = _blocks[i];
   659     if (b->is_connector()) break;
   661     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   662     // true target.  NeverBranch are treated as a conditional branch that
   663     // always goes the same direction for most of the optimizer and are used
   664     // to give a fake exit path to infinite loops.  At this late stage they
   665     // need to turn into Goto's so that when you enter the infinite loop you
   666     // indeed hang.
   667     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
   668       convert_NeverBranch_to_Goto(b);
   670     // Look for uncommon blocks and move to end.
   671     if (!C->do_freq_based_layout()) {
   672       if( b->is_uncommon(_bbs) ) {
   673         move_to_end(b, i);
   674         last--;                   // No longer check for being uncommon!
   675         if( no_flip_branch(b) ) { // Fall-thru case must follow?
   676           b = _blocks[i];         // Find the fall-thru block
   677           move_to_end(b, i);
   678           last--;
   679         }
   680         i--;                      // backup block counter post-increment
   681       }
   682     }
   683   }
   685   // Move empty blocks to the end
   686   last = _num_blocks;
   687   for (uint i = 1; i < last; i++) {
   688     Block *b = _blocks[i];
   689     if (b->is_Empty() != Block::not_empty) {
   690       move_to_end(b, i);
   691       last--;
   692       i--;
   693     }
   694   } // End of for all blocks
   695 }
   697 //-----------------------------fixup_flow--------------------------------------
   698 // Fix up the final control flow for basic blocks.
   699 void PhaseCFG::fixup_flow() {
   700   // Fixup final control flow for the blocks.  Remove jump-to-next
   701   // block.  If neither arm of a IF follows the conditional branch, we
   702   // have to add a second jump after the conditional.  We place the
   703   // TRUE branch target in succs[0] for both GOTOs and IFs.
   704   for (uint i=0; i < _num_blocks; i++) {
   705     Block *b = _blocks[i];
   706     b->_pre_order = i;          // turn pre-order into block-index
   708     // Connector blocks need no further processing.
   709     if (b->is_connector()) {
   710       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
   711              "All connector blocks should sink to the end");
   712       continue;
   713     }
   714     assert(b->is_Empty() != Block::completely_empty,
   715            "Empty blocks should be connectors");
   717     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
   718     Block *bs0 = b->non_connector_successor(0);
   720     // Check for multi-way branches where I cannot negate the test to
   721     // exchange the true and false targets.
   722     if( no_flip_branch( b ) ) {
   723       // Find fall through case - if must fall into its target
   724       int branch_idx = b->_nodes.size() - b->_num_succs;
   725       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
   726         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
   727         if (p->_con == 0) {
   728           // successor j2 is fall through case
   729           if (b->non_connector_successor(j2) != bnext) {
   730             // but it is not the next block => insert a goto
   731             insert_goto_at(i, j2);
   732           }
   733           // Put taken branch in slot 0
   734           if( j2 == 0 && b->_num_succs == 2) {
   735             // Flip targets in succs map
   736             Block *tbs0 = b->_succs[0];
   737             Block *tbs1 = b->_succs[1];
   738             b->_succs.map( 0, tbs1 );
   739             b->_succs.map( 1, tbs0 );
   740           }
   741           break;
   742         }
   743       }
   744       // Remove all CatchProjs
   745       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
   747     } else if (b->_num_succs == 1) {
   748       // Block ends in a Goto?
   749       if (bnext == bs0) {
   750         // We fall into next block; remove the Goto
   751         b->_nodes.pop();
   752       }
   754     } else if( b->_num_succs == 2 ) { // Block ends in a If?
   755       // Get opcode of 1st projection (matches _succs[0])
   756       // Note: Since this basic block has 2 exits, the last 2 nodes must
   757       //       be projections (in any order), the 3rd last node must be
   758       //       the IfNode (we have excluded other 2-way exits such as
   759       //       CatchNodes already).
   760       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
   761       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
   762       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
   764       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   765       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
   766       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
   768       Block *bs1 = b->non_connector_successor(1);
   770       // Check for neither successor block following the current
   771       // block ending in a conditional. If so, move one of the
   772       // successors after the current one, provided that the
   773       // successor was previously unscheduled, but moveable
   774       // (i.e., all paths to it involve a branch).
   775       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
   776         // Choose the more common successor based on the probability
   777         // of the conditional branch.
   778         Block *bx = bs0;
   779         Block *by = bs1;
   781         // _prob is the probability of taking the true path. Make
   782         // p the probability of taking successor #1.
   783         float p = iff->as_MachIf()->_prob;
   784         if( proj0->Opcode() == Op_IfTrue ) {
   785           p = 1.0 - p;
   786         }
   788         // Prefer successor #1 if p > 0.5
   789         if (p > PROB_FAIR) {
   790           bx = bs1;
   791           by = bs0;
   792         }
   794         // Attempt the more common successor first
   795         if (move_to_next(bx, i)) {
   796           bnext = bx;
   797         } else if (move_to_next(by, i)) {
   798           bnext = by;
   799         }
   800       }
   802       // Check for conditional branching the wrong way.  Negate
   803       // conditional, if needed, so it falls into the following block
   804       // and branches to the not-following block.
   806       // Check for the next block being in succs[0].  We are going to branch
   807       // to succs[0], so we want the fall-thru case as the next block in
   808       // succs[1].
   809       if (bnext == bs0) {
   810         // Fall-thru case in succs[0], so flip targets in succs map
   811         Block *tbs0 = b->_succs[0];
   812         Block *tbs1 = b->_succs[1];
   813         b->_succs.map( 0, tbs1 );
   814         b->_succs.map( 1, tbs0 );
   815         // Flip projection for each target
   816         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
   818       } else if( bnext != bs1 ) {
   819         // Need a double-branch
   820         // The existing conditional branch need not change.
   821         // Add a unconditional branch to the false target.
   822         // Alas, it must appear in its own block and adding a
   823         // block this late in the game is complicated.  Sigh.
   824         insert_goto_at(i, 1);
   825       }
   827       // Make sure we TRUE branch to the target
   828       if( proj0->Opcode() == Op_IfFalse ) {
   829         iff->negate();
   830       }
   832       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
   833       b->_nodes.pop();
   835     } else {
   836       // Multi-exit block, e.g. a switch statement
   837       // But we don't need to do anything here
   838     }
   839   } // End of for all blocks
   840 }
   843 //------------------------------dump-------------------------------------------
   844 #ifndef PRODUCT
   845 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
   846   const Node *x = end->is_block_proj();
   847   assert( x, "not a CFG" );
   849   // Do not visit this block again
   850   if( visited.test_set(x->_idx) ) return;
   852   // Skip through this block
   853   const Node *p = x;
   854   do {
   855     p = p->in(0);               // Move control forward
   856     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
   857   } while( !p->is_block_start() );
   859   // Recursively visit
   860   for( uint i=1; i<p->req(); i++ )
   861     _dump_cfg(p->in(i),visited);
   863   // Dump the block
   864   _bbs[p->_idx]->dump(&_bbs);
   865 }
   867 void PhaseCFG::dump( ) const {
   868   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
   869   if( _blocks.size() ) {        // Did we do basic-block layout?
   870     for( uint i=0; i<_num_blocks; i++ )
   871       _blocks[i]->dump(&_bbs);
   872   } else {                      // Else do it with a DFS
   873     VectorSet visited(_bbs._arena);
   874     _dump_cfg(_root,visited);
   875   }
   876 }
   878 void PhaseCFG::dump_headers() {
   879   for( uint i = 0; i < _num_blocks; i++ ) {
   880     if( _blocks[i] == NULL ) continue;
   881     _blocks[i]->dump_head(&_bbs);
   882   }
   883 }
   885 void PhaseCFG::verify( ) const {
   886 #ifdef ASSERT
   887   // Verify sane CFG
   888   for( uint i = 0; i < _num_blocks; i++ ) {
   889     Block *b = _blocks[i];
   890     uint cnt = b->_nodes.size();
   891     uint j;
   892     for( j = 0; j < cnt; j++ ) {
   893       Node *n = b->_nodes[j];
   894       assert( _bbs[n->_idx] == b, "" );
   895       if( j >= 1 && n->is_Mach() &&
   896           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   897         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
   898                 "CreateEx must be first instruction in block" );
   899       }
   900       for( uint k = 0; k < n->req(); k++ ) {
   901         Node *def = n->in(k);
   902         if( def && def != n ) {
   903           assert( _bbs[def->_idx] || def->is_Con(),
   904                   "must have block; constants for debug info ok" );
   905           // Verify that instructions in the block is in correct order.
   906           // Uses must follow their definition if they are at the same block.
   907           // Mostly done to check that MachSpillCopy nodes are placed correctly
   908           // when CreateEx node is moved in build_ifg_physical().
   909           if( _bbs[def->_idx] == b &&
   910               !(b->head()->is_Loop() && n->is_Phi()) &&
   911               // See (+++) comment in reg_split.cpp
   912               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
   913             bool is_loop = false;
   914             if (n->is_Phi()) {
   915               for( uint l = 1; l < def->req(); l++ ) {
   916                 if (n == def->in(l)) {
   917                   is_loop = true;
   918                   break; // Some kind of loop
   919                 }
   920               }
   921             }
   922             assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
   923           }
   924           if( def->is_SafePointScalarObject() ) {
   925             assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
   926             assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
   927           }
   928         }
   929       }
   930     }
   932     j = b->end_idx();
   933     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
   934     assert( bp, "last instruction must be a block proj" );
   935     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
   936     if( bp->is_Catch() ) {
   937       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
   938       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
   939     }
   940     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
   941       assert( b->_num_succs == 2, "Conditional branch must have two targets");
   942     }
   943   }
   944 #endif
   945 }
   946 #endif
   948 //=============================================================================
   949 //------------------------------UnionFind--------------------------------------
   950 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
   951   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
   952 }
   954 void UnionFind::extend( uint from_idx, uint to_idx ) {
   955   _nesting.check();
   956   if( from_idx >= _max ) {
   957     uint size = 16;
   958     while( size <= from_idx ) size <<=1;
   959     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
   960     _max = size;
   961   }
   962   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
   963   _indices[from_idx] = to_idx;
   964 }
   966 void UnionFind::reset( uint max ) {
   967   assert( max <= max_uint, "Must fit within uint" );
   968   // Force the Union-Find mapping to be at least this large
   969   extend(max,0);
   970   // Initialize to be the ID mapping.
   971   for( uint i=0; i<max; i++ ) map(i,i);
   972 }
   974 //------------------------------Find_compress----------------------------------
   975 // Straight out of Tarjan's union-find algorithm
   976 uint UnionFind::Find_compress( uint idx ) {
   977   uint cur  = idx;
   978   uint next = lookup(cur);
   979   while( next != cur ) {        // Scan chain of equivalences
   980     assert( next < cur, "always union smaller" );
   981     cur = next;                 // until find a fixed-point
   982     next = lookup(cur);
   983   }
   984   // Core of union-find algorithm: update chain of
   985   // equivalences to be equal to the root.
   986   while( idx != next ) {
   987     uint tmp = lookup(idx);
   988     map(idx, next);
   989     idx = tmp;
   990   }
   991   return idx;
   992 }
   994 //------------------------------Find_const-------------------------------------
   995 // Like Find above, but no path compress, so bad asymptotic behavior
   996 uint UnionFind::Find_const( uint idx ) const {
   997   if( idx == 0 ) return idx;    // Ignore the zero idx
   998   // Off the end?  This can happen during debugging dumps
   999   // when data structures have not finished being updated.
  1000   if( idx >= _max ) return idx;
  1001   uint next = lookup(idx);
  1002   while( next != idx ) {        // Scan chain of equivalences
  1003     idx = next;                 // until find a fixed-point
  1004     next = lookup(idx);
  1006   return next;
  1009 //------------------------------Union------------------------------------------
  1010 // union 2 sets together.
  1011 void UnionFind::Union( uint idx1, uint idx2 ) {
  1012   uint src = Find(idx1);
  1013   uint dst = Find(idx2);
  1014   assert( src, "" );
  1015   assert( dst, "" );
  1016   assert( src < _max, "oob" );
  1017   assert( dst < _max, "oob" );
  1018   assert( src < dst, "always union smaller" );
  1019   map(dst,src);
  1022 #ifndef PRODUCT
  1023 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
  1024   tty->print_cr("---- Edges ----");
  1025   for (int i = 0; i < edges->length(); i++) {
  1026     CFGEdge *e = edges->at(i);
  1027     if (e != NULL) {
  1028       edges->at(i)->dump();
  1033 static void trace_dump(Trace *traces[], int count) {
  1034   tty->print_cr("---- Traces ----");
  1035   for (int i = 0; i < count; i++) {
  1036     Trace *tr = traces[i];
  1037     if (tr != NULL) {
  1038       tr->dump();
  1043 void Trace::dump( ) const {
  1044   tty->print_cr("Trace (freq %f)", first_block()->_freq);
  1045   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1046     tty->print("  B%d", b->_pre_order);
  1047     if (b->head()->is_Loop()) {
  1048       tty->print(" (L%d)", b->compute_loop_alignment());
  1050     if (b->has_loop_alignment()) {
  1051       tty->print(" (T%d)", b->code_alignment());
  1054   tty->cr();
  1057 void CFGEdge::dump( ) const {
  1058   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
  1059              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
  1060   switch(state()) {
  1061   case connected:
  1062     tty->print("connected");
  1063     break;
  1064   case open:
  1065     tty->print("open");
  1066     break;
  1067   case interior:
  1068     tty->print("interior");
  1069     break;
  1071   if (infrequent()) {
  1072     tty->print("  infrequent");
  1074   tty->cr();
  1076 #endif
  1078 //=============================================================================
  1080 //------------------------------edge_order-------------------------------------
  1081 // Comparison function for edges
  1082 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
  1083   float freq0 = (*e0)->freq();
  1084   float freq1 = (*e1)->freq();
  1085   if (freq0 != freq1) {
  1086     return freq0 > freq1 ? -1 : 1;
  1089   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
  1090   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
  1092   return dist1 - dist0;
  1095 //------------------------------trace_frequency_order--------------------------
  1096 // Comparison function for edges
  1097 static int trace_frequency_order(const void *p0, const void *p1) {
  1098   Trace *tr0 = *(Trace **) p0;
  1099   Trace *tr1 = *(Trace **) p1;
  1100   Block *b0 = tr0->first_block();
  1101   Block *b1 = tr1->first_block();
  1103   // The trace of connector blocks goes at the end;
  1104   // we only expect one such trace
  1105   if (b0->is_connector() != b1->is_connector()) {
  1106     return b1->is_connector() ? -1 : 1;
  1109   // Pull more frequently executed blocks to the beginning
  1110   float freq0 = b0->_freq;
  1111   float freq1 = b1->_freq;
  1112   if (freq0 != freq1) {
  1113     return freq0 > freq1 ? -1 : 1;
  1116   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
  1118   return diff;
  1121 //------------------------------find_edges-------------------------------------
  1122 // Find edges of interest, i.e, those which can fall through. Presumes that
  1123 // edges which don't fall through are of low frequency and can be generally
  1124 // ignored.  Initialize the list of traces.
  1125 void PhaseBlockLayout::find_edges()
  1127   // Walk the blocks, creating edges and Traces
  1128   uint i;
  1129   Trace *tr = NULL;
  1130   for (i = 0; i < _cfg._num_blocks; i++) {
  1131     Block *b = _cfg._blocks[i];
  1132     tr = new Trace(b, next, prev);
  1133     traces[tr->id()] = tr;
  1135     // All connector blocks should be at the end of the list
  1136     if (b->is_connector()) break;
  1138     // If this block and the next one have a one-to-one successor
  1139     // predecessor relationship, simply append the next block
  1140     int nfallthru = b->num_fall_throughs();
  1141     while (nfallthru == 1 &&
  1142            b->succ_fall_through(0)) {
  1143       Block *n = b->_succs[0];
  1145       // Skip over single-entry connector blocks, we don't want to
  1146       // add them to the trace.
  1147       while (n->is_connector() && n->num_preds() == 1) {
  1148         n = n->_succs[0];
  1151       // We see a merge point, so stop search for the next block
  1152       if (n->num_preds() != 1) break;
  1154       i++;
  1155       assert(n = _cfg._blocks[i], "expecting next block");
  1156       tr->append(n);
  1157       uf->map(n->_pre_order, tr->id());
  1158       traces[n->_pre_order] = NULL;
  1159       nfallthru = b->num_fall_throughs();
  1160       b = n;
  1163     if (nfallthru > 0) {
  1164       // Create a CFGEdge for each outgoing
  1165       // edge that could be a fall-through.
  1166       for (uint j = 0; j < b->_num_succs; j++ ) {
  1167         if (b->succ_fall_through(j)) {
  1168           Block *target = b->non_connector_successor(j);
  1169           float freq = b->_freq * b->succ_prob(j);
  1170           int from_pct = (int) ((100 * freq) / b->_freq);
  1171           int to_pct = (int) ((100 * freq) / target->_freq);
  1172           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
  1178   // Group connector blocks into one trace
  1179   for (i++; i < _cfg._num_blocks; i++) {
  1180     Block *b = _cfg._blocks[i];
  1181     assert(b->is_connector(), "connector blocks at the end");
  1182     tr->append(b);
  1183     uf->map(b->_pre_order, tr->id());
  1184     traces[b->_pre_order] = NULL;
  1188 //------------------------------union_traces----------------------------------
  1189 // Union two traces together in uf, and null out the trace in the list
  1190 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
  1192   uint old_id = old_trace->id();
  1193   uint updated_id = updated_trace->id();
  1195   uint lo_id = updated_id;
  1196   uint hi_id = old_id;
  1198   // If from is greater than to, swap values to meet
  1199   // UnionFind guarantee.
  1200   if (updated_id > old_id) {
  1201     lo_id = old_id;
  1202     hi_id = updated_id;
  1204     // Fix up the trace ids
  1205     traces[lo_id] = traces[updated_id];
  1206     updated_trace->set_id(lo_id);
  1209   // Union the lower with the higher and remove the pointer
  1210   // to the higher.
  1211   uf->Union(lo_id, hi_id);
  1212   traces[hi_id] = NULL;
  1215 //------------------------------grow_traces-------------------------------------
  1216 // Append traces together via the most frequently executed edges
  1217 void PhaseBlockLayout::grow_traces()
  1219   // Order the edges, and drive the growth of Traces via the most
  1220   // frequently executed edges.
  1221   edges->sort(edge_order);
  1222   for (int i = 0; i < edges->length(); i++) {
  1223     CFGEdge *e = edges->at(i);
  1225     if (e->state() != CFGEdge::open) continue;
  1227     Block *src_block = e->from();
  1228     Block *targ_block = e->to();
  1230     // Don't grow traces along backedges?
  1231     if (!BlockLayoutRotateLoops) {
  1232       if (targ_block->_rpo <= src_block->_rpo) {
  1233         targ_block->set_loop_alignment(targ_block);
  1234         continue;
  1238     Trace *src_trace = trace(src_block);
  1239     Trace *targ_trace = trace(targ_block);
  1241     // If the edge in question can join two traces at their ends,
  1242     // append one trace to the other.
  1243    if (src_trace->last_block() == src_block) {
  1244       if (src_trace == targ_trace) {
  1245         e->set_state(CFGEdge::interior);
  1246         if (targ_trace->backedge(e)) {
  1247           // Reset i to catch any newly eligible edge
  1248           // (Or we could remember the first "open" edge, and reset there)
  1249           i = 0;
  1251       } else if (targ_trace->first_block() == targ_block) {
  1252         e->set_state(CFGEdge::connected);
  1253         src_trace->append(targ_trace);
  1254         union_traces(src_trace, targ_trace);
  1260 //------------------------------merge_traces-----------------------------------
  1261 // Embed one trace into another, if the fork or join points are sufficiently
  1262 // balanced.
  1263 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
  1265   // Walk the edge list a another time, looking at unprocessed edges.
  1266   // Fold in diamonds
  1267   for (int i = 0; i < edges->length(); i++) {
  1268     CFGEdge *e = edges->at(i);
  1270     if (e->state() != CFGEdge::open) continue;
  1271     if (fall_thru_only) {
  1272       if (e->infrequent()) continue;
  1275     Block *src_block = e->from();
  1276     Trace *src_trace = trace(src_block);
  1277     bool src_at_tail = src_trace->last_block() == src_block;
  1279     Block *targ_block  = e->to();
  1280     Trace *targ_trace  = trace(targ_block);
  1281     bool targ_at_start = targ_trace->first_block() == targ_block;
  1283     if (src_trace == targ_trace) {
  1284       // This may be a loop, but we can't do much about it.
  1285       e->set_state(CFGEdge::interior);
  1286       continue;
  1289     if (fall_thru_only) {
  1290       // If the edge links the middle of two traces, we can't do anything.
  1291       // Mark the edge and continue.
  1292       if (!src_at_tail & !targ_at_start) {
  1293         continue;
  1296       // Don't grow traces along backedges?
  1297       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
  1298           continue;
  1301       // If both ends of the edge are available, why didn't we handle it earlier?
  1302       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
  1304       if (targ_at_start) {
  1305         // Insert the "targ" trace in the "src" trace if the insertion point
  1306         // is a two way branch.
  1307         // Better profitability check possible, but may not be worth it.
  1308         // Someday, see if the this "fork" has an associated "join";
  1309         // then make a policy on merging this trace at the fork or join.
  1310         // For example, other things being equal, it may be better to place this
  1311         // trace at the join point if the "src" trace ends in a two-way, but
  1312         // the insertion point is one-way.
  1313         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
  1314         e->set_state(CFGEdge::connected);
  1315         src_trace->insert_after(src_block, targ_trace);
  1316         union_traces(src_trace, targ_trace);
  1317       } else if (src_at_tail) {
  1318         if (src_trace != trace(_cfg._broot)) {
  1319           e->set_state(CFGEdge::connected);
  1320           targ_trace->insert_before(targ_block, src_trace);
  1321           union_traces(targ_trace, src_trace);
  1324     } else if (e->state() == CFGEdge::open) {
  1325       // Append traces, even without a fall-thru connection.
  1326       // But leave root entry at the beginning of the block list.
  1327       if (targ_trace != trace(_cfg._broot)) {
  1328         e->set_state(CFGEdge::connected);
  1329         src_trace->append(targ_trace);
  1330         union_traces(src_trace, targ_trace);
  1336 //----------------------------reorder_traces-----------------------------------
  1337 // Order the sequence of the traces in some desirable way, and fixup the
  1338 // jumps at the end of each block.
  1339 void PhaseBlockLayout::reorder_traces(int count)
  1341   ResourceArea *area = Thread::current()->resource_area();
  1342   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
  1343   Block_List worklist;
  1344   int new_count = 0;
  1346   // Compact the traces.
  1347   for (int i = 0; i < count; i++) {
  1348     Trace *tr = traces[i];
  1349     if (tr != NULL) {
  1350       new_traces[new_count++] = tr;
  1354   // The entry block should be first on the new trace list.
  1355   Trace *tr = trace(_cfg._broot);
  1356   assert(tr == new_traces[0], "entry trace misplaced");
  1358   // Sort the new trace list by frequency
  1359   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
  1361   // Patch up the successor blocks
  1362   _cfg._blocks.reset();
  1363   _cfg._num_blocks = 0;
  1364   for (int i = 0; i < new_count; i++) {
  1365     Trace *tr = new_traces[i];
  1366     if (tr != NULL) {
  1367       tr->fixup_blocks(_cfg);
  1372 //------------------------------PhaseBlockLayout-------------------------------
  1373 // Order basic blocks based on frequency
  1374 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
  1375   Phase(BlockLayout),
  1376   _cfg(cfg)
  1378   ResourceMark rm;
  1379   ResourceArea *area = Thread::current()->resource_area();
  1381   // List of traces
  1382   int size = _cfg._num_blocks + 1;
  1383   traces = NEW_ARENA_ARRAY(area, Trace *, size);
  1384   memset(traces, 0, size*sizeof(Trace*));
  1385   next = NEW_ARENA_ARRAY(area, Block *, size);
  1386   memset(next,   0, size*sizeof(Block *));
  1387   prev = NEW_ARENA_ARRAY(area, Block *, size);
  1388   memset(prev  , 0, size*sizeof(Block *));
  1390   // List of edges
  1391   edges = new GrowableArray<CFGEdge*>;
  1393   // Mapping block index --> block_trace
  1394   uf = new UnionFind(size);
  1395   uf->reset(size);
  1397   // Find edges and create traces.
  1398   find_edges();
  1400   // Grow traces at their ends via most frequent edges.
  1401   grow_traces();
  1403   // Merge one trace into another, but only at fall-through points.
  1404   // This may make diamonds and other related shapes in a trace.
  1405   merge_traces(true);
  1407   // Run merge again, allowing two traces to be catenated, even if
  1408   // one does not fall through into the other. This appends loosely
  1409   // related traces to be near each other.
  1410   merge_traces(false);
  1412   // Re-order all the remaining traces by frequency
  1413   reorder_traces(size);
  1415   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
  1419 //------------------------------backedge---------------------------------------
  1420 // Edge e completes a loop in a trace. If the target block is head of the
  1421 // loop, rotate the loop block so that the loop ends in a conditional branch.
  1422 bool Trace::backedge(CFGEdge *e) {
  1423   bool loop_rotated = false;
  1424   Block *src_block  = e->from();
  1425   Block *targ_block    = e->to();
  1427   assert(last_block() == src_block, "loop discovery at back branch");
  1428   if (first_block() == targ_block) {
  1429     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
  1430       // Find the last block in the trace that has a conditional
  1431       // branch.
  1432       Block *b;
  1433       for (b = last_block(); b != NULL; b = prev(b)) {
  1434         if (b->num_fall_throughs() == 2) {
  1435           break;
  1439       if (b != last_block() && b != NULL) {
  1440         loop_rotated = true;
  1442         // Rotate the loop by doing two-part linked-list surgery.
  1443         append(first_block());
  1444         break_loop_after(b);
  1448     // Backbranch to the top of a trace
  1449     // Scroll forward through the trace from the targ_block. If we find
  1450     // a loop head before another loop top, use the the loop head alignment.
  1451     for (Block *b = targ_block; b != NULL; b = next(b)) {
  1452       if (b->has_loop_alignment()) {
  1453         break;
  1455       if (b->head()->is_Loop()) {
  1456         targ_block = b;
  1457         break;
  1461     first_block()->set_loop_alignment(targ_block);
  1463   } else {
  1464     // Backbranch into the middle of a trace
  1465     targ_block->set_loop_alignment(targ_block);
  1468   return loop_rotated;
  1471 //------------------------------fixup_blocks-----------------------------------
  1472 // push blocks onto the CFG list
  1473 // ensure that blocks have the correct two-way branch sense
  1474 void Trace::fixup_blocks(PhaseCFG &cfg) {
  1475   Block *last = last_block();
  1476   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1477     cfg._blocks.push(b);
  1478     cfg._num_blocks++;
  1479     if (!b->is_connector()) {
  1480       int nfallthru = b->num_fall_throughs();
  1481       if (b != last) {
  1482         if (nfallthru == 2) {
  1483           // Ensure that the sense of the branch is correct
  1484           Block *bnext = next(b);
  1485           Block *bs0 = b->non_connector_successor(0);
  1487           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
  1488           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
  1489           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
  1491           if (bnext == bs0) {
  1492             // Fall-thru case in succs[0], should be in succs[1]
  1494             // Flip targets in _succs map
  1495             Block *tbs0 = b->_succs[0];
  1496             Block *tbs1 = b->_succs[1];
  1497             b->_succs.map( 0, tbs1 );
  1498             b->_succs.map( 1, tbs0 );
  1500             // Flip projections to match targets
  1501             b->_nodes.map(b->_nodes.size()-2, proj1);
  1502             b->_nodes.map(b->_nodes.size()-1, proj0);

mercurial